Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

QUANTITATIVE INHERITANCE STUDIES OF GRAIN MATURATION AND GERMINATION IN THREE WHEAT CROSSES.

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT MASSEY UNIVERSITY

VINICH SEREEPRASERT

ABSTRACT

The pattern of grain maturation and germinability was studied in three wheat crosses ripening in warm and cool environments. Two white grained and two red grained wheat cultivars with varying resistance to preharvest sprouting were used as parents in three crosses. The white grained wheats were Tordo, "resistant" to sprouting through gibberellin insensitivity, and Gabo, a standard cultivar susceptible to sprouting. The two red grained wheats were Karamu and Sonora 64A, the former being sprouting resistant while the latter was susceptible. Tordo was the common parent in all three crosses. Six generations, P1, P2, F2, F3, BC1(P1)S1 and BC1(P2)S1 from each cross were grown in a glasshouse and were transferred into controlled climate rooms at booting stage, being arranged in a randomized complete block experiment with three replications. The patterns of grain development were measured from serial samples of the grains from ears which had been tagged at anthesis. The changes in grain dry weight, moisture content, germination and α -amylase activities were measured at intervals from just after anthesis until maturity; and the patterns were described using regression analysis against age of grain (in days after anthesis). The functions of best fitted were used to estimate nine key stages of grain development, which were : harvest ripeness, amylase maturity, GA amylase maturity, median germination, germination maturity, median embryo maturity, embryo maturity, grain colour maturity and grain weight maturity.

Gene effects were estimated for these variables, and also for maximum grain coat colour, grain weight at harvest ripeness, maximum dry weight, α -amylase activities at harvest ripeness and at embryo maturity, standard germination and potential germination at harvest ripeness. The gene effects were fitted using Hayman's Generation Means Analysis. The full twelve parameter model (digenic epistasis, environment and their interactions included) were used to explain the

i

phenotypic variations among the six genetic populations ripening in the two environments. The gene effects estimated were used to assist in making recommendation for breeding for preharvest sprouting resistance.

The experimental results showed that cool environment prolonged the time to reach most developmental stages compared to the warm environment. Harvest ripeness (12.5 % grain moisture) occurred after grain weight maturity (time to 90 % maximum grain weight) but before the time when the grains reached their maximum dry weight. Embryo maturity, as a measure of ability of the grains to germinate when the dormancy had been bypassed, was considered the important component for germinability. Germinative α -amylase at harvest ripeness was the variable most consistently correlated with germination at harvest ripeness.

The gene actions for the derived variables appeared to be complicated, with epistasis and epistasis x environment effects being significant more often than the additive or dominance effects. The gene actions for the maximum grain colour and percent sterility were also studied. For the maximum colour score the result indicated that there was interallelic interaction between the "classical" gene for grain redness and unknown genes. The breeding strategies for preharvest sprouting resistance were discussed based on the actions of the genes for the characters. Briefly it appeared that producing hybrids would enhance the earliness in many maturity characters which would indirectly resulted in more susceptible genotypes. To improve resistance to preharvest sprouting, selection for characters like low α -amylase activities at harvest ripeness, low standard germination and potential germination at harvest ripeness, or late embryo maturity was recommended. These characters were controlled by many genes which interacted and showed epistasis effect and also the gene effects were dependent on environmental condition. Effectiveness in selection would be specific to a particular environment. The selection for cultivar resistant to preharvest sprouting based on these characters should be deferred until later generations when the plants had reached

ii

high level of homozygosity. The selection for low α -amylase and low germination at harvest ripeness would give more reliable protection against preharvest sprouting damage.

ACKNOWLEDGEMENT

I would like to express my deep gratitude to my chief supervisor, Dr. I.L. Gordon for his patient guidance, and close supervision through the course of this study.

I also feel deeply grateful to Dr. J.M. McEwan of the Crop Research Division, D.S.I.R. and Dr. P. Coolbear of the Seed Technology Centre for their valuable discussions, criticisms and thoroughly examining the manuscript.

I would like to thank Mr. Ian Warrington of the Plant Physiology Division for providing the glasshouse and climate room facilities. All assistance from staff at the Climate Laboratory was highly appreciated.

I am personally indebted to Dr. D.R. Smith for his help in providing the F_1 seeds and computer programs used in this work.

The help from Mr Wichien Chatupote, Mr Pirote Wiriyacharee and Dr. Quingfeng Li in preparing the graphic work in the Appendices was received with gratitude. Their help and encouragement were so valuable to me.

Finally I would like to express my sincere thanks to the New Zealand Government for their financial support during my stay in New Zealand and to the Thai Government for granting me study leave.

iv

TABLE OF CONTENTS

		page	
ABSTRACT		i	
ACKNOWLEDGEMENTS			
TABLE OF CON	JTENTS	v	
LIST OF TABL	LES	ix	
LIST OF FIGU	JRES	xiv	
LIST OF APPE	ENDICES	xviii	
CHAPTER 1. I	INTRODUCTION: THE NATURE AND OCCURRENCE OF		
F	PREHARVEST SPROUTING	1	
CHAPTER 2. F	REVIEW OF LITERATURE	5	
I	I. The Nature of Seed Dormancy	5	
I	II. Dormancy of Wheat Grain	6	
1	II.1 Structure of the Wheat Grain	6	
I	II.2 Role of Grain Coat	8	
1	II.3 Hormonal Effect on Grain Dormancy	12	
1	II.3.1 Gibberellic Acid	12	
1	II.3.2 Abscisic Acid	17	
:	II.3.3 Cytokinins	19	
	III. Preharvest Sprouting in Wheat	20	
	IV. Temperature Effects on Grain Development and		
	Preharvest Sprouting	25	
	IV.1 Effects on Grain Development	25	
	IV.2 Effects on Grain Dormancy and Preharvest		
	Sprouting	25	
	V. α-Amylase	26	
	V.1 α -Amylase in Germinating Grain of Wheat	28	
	VI. Endosperm Degradation	30	
	VII. Genetics of Preharvest Sprouting	32	
	VII.1 Grain Coat Colour	32	
1	VII.2 GA Insensitivity	33	
	VII.3 α -Amylase Genes	34	
	VII.4 Inheritance of Dormancy and Preharvest		
	Sprouting Characters	34	
ï	VIII. Generation Mean Analysis	35	

v

nago

			vi
	IX. Other	Method of Inheritance Studies	39
	IX.1 Dial	lel	39
	IX.2 Other	r Designs	41
CHAPTER 3.	MATERIALS	AND METHODS	42
	I. Cult:	ivars and Generations	43
	II. Gener	ration Advance	44
	III. Expe	rimental Materials	44
	IV. Expe	rimental Details in the Controlled Climate	
	Rooms	5	45
	IV.1 Tempe	erature	46
	IV.2 Light		46
	IV.3 Nutra	ient	46
	IV.4 CO2		46
	IV.5 Insed	ct and Disease Control	46
	V. Samp	ling of the Ears	47
	VI. Attr	ibutes Measured	47
	VI.1 Grain	n Dry Weight and Grain Moisture Content	47
	VI.2 Harve	est Ripeness	48
	VI.3 Stand	dard Germination and Potential Germination	48
	VI.4 Grain	n Colour Score	49
	VI.5 α-Am	ylase Concentrations	50
	VI.5.1	Base <i>α</i> -amylase	50
	VI.5.2	Germinative α -Amylase	50
	VI.5.3	Gibberellin α -Amylase	50
	VII. Data	Analysis	51
	VII.1	Estimating Data from Regression Equations	51
	VII.1.1	Moisture Content	52
	VII.1.2	Grain Dry Weight	53
	VII.1.3	Standard Germination and Potential	
		Germination	54
	VII.1.4	Estimated Dormancy Percentages.	55
	VII.1.5	Grain Colour Scour	56
	VII.1.6	α-Amylase Data	57
	VII.1.6.1	Base α-Amylase	57
	VII.1.6.2	Germinative α -Amylase and GA ₃ -Induced	
		<pre>α-Amylase</pre>	57
	VII.2	Analysis of Variance	59
	VII.3	Generation Mean Analysis	61

CHAPTER 4.	RESU	LTS	66
	I.	Timing of Events During Grain Development and	
		Ripening	66
	I.1	Definitions	66
	I.2	Cross 1's Results	67
	I.3	Cross 2's Results	71
	I.4	Cross 3's Results	76
	I.5	Comparisons of Tordo's Maturity Characters	
		Between Crosses	80
	II.	Germination Percentages at Harvest Ripeness	82
	II.1	Cross 1's Results	82
	II.2	Cross 2's Results	84
	II.3	Cross 3's Results	86
	II.4	Comparison Among Crosses	88
	III.	Grain Dry Weight at Harvest Ripeness and Maximum	
		Grain Dry Weight	89
	III.	1 Cross 1's Results	89
	III.	2 Cross 2's Results	91
	III.	3 Cross 3's Results	92
	IV.	$\alpha\text{-}Amylase$ Contents in the Grains at Harvest	
		Ripeness and Embryo Maturity	95
	IV.1	Cross 1's Results	95
	IV.2	Cross 2's Results	101
	IV.3	Cross 3's Results	108
	v.	Maximum Colour Score.	116
	VI.	Sterility Percentage.	119
	VII.	Generation Mean Analysis.	121
	VII.	1 Generation Mean Analysis of Maximum Colour	
		Score.	122
	VII.	2 Germinative α -Amylase at Harvest Ripeness.	125
	VII.	3 Harvest Ripeness and α -Amylase Maturities.	126
	VII.	4 Median Embryo Maturity and Embryo Maturity.	129
	VII.	5 Dry weight Maturity and Grain Colour	
		Maturity	134
	VII.	6 Germinations at Harvest Ripeness	136
	VTT	7 Grain Dry Weight	139

	VII.8	Base <i>α</i> -Amylases	140
	VII.9	Germinative α -Amylase at Embryo Maturity	143
	VII.10	GA ₃ <i>α</i> -Amylases	144
	VII.11	Percent Sterility	146
CHAPTER 5.	DISCUSIO	N	148
	I. Gen	eral Discussion	148
	I.1 Gra	in Maturity	148
	I.2 Ger	minability	150
	I.3 Dor	mancy	151
	I.4 Gra	in Weight at Harvest Ripeness and Maximum	
	Gra	in Dry Weight	152
	I.5 α-A	mylase Levels	154
	I.6 Max	imum Colour Score	156
	I.7 Ste	rility Percentage	157
	II. Gen	e Effects	157
	II.1 Gen	e Effects Controlling the Maximum Colour	
	Sco	re	158
	II.2 Gen	e Effects of the Grain Maturity Characters	160
	II.3 Gen	e Effects Controlling Germination	162
	II.4 Gen	e Effects Controlling the Grain Weight	
	Cha	racters	163
	II.5 Ger	e Effects Controlling the α -Amylase Levels	164
	II.6 Ger	e Effects Controlling the Sterility	
	Per	centage	165
CHAPTER 6.	CONCLUSI	ON AND FUTURE RESEARCH	166
REFERENCES			170
APPENDICES			190

ï

LIST OF TABLES

	page
Table 1. Estimated times of occurrence of harve	est ripeness
and other stages of grain development	of Cross 1
(Tordo x Karamu) grown in two environm	ments (in days
after anthesis).	69
Table 2. Estimated times of occurrence of harve	est ripeness
and other stages of grain development	of cross
Tordo x Karamu (Cross 1), averaged ac	ross the two
environments.	70
Table 3. The tests for the difference between a	maturity
variables and the correlation coeffic.	ients for some
pairs of variables in cross 1.	71
Table 4. Estimated times of occurrence of harva	est ripeness
and other stages of grain development	of the six
generations of wheat cross Tordo x Gal	bo (cross 2)
grown in the two environments (in day	s after
anthesis).	72
Table 5. Estimated times of occurence of harve	st ripeness
and other stages of grain development	of cross
Tordo x Gabo (Cross 2), averaged acro	ss two
environments.	74
Table 6. The tests for the difference between variables and the correlation coeffic pairs of variables in cross 2.	maturity ients for some 75
Table 7. Estimated times of occurrence of harv	ested ripeness
and other stages of grain development	of the six
generations of wheat cross Tordo x So	nora 64A
(cross 3) grown in the two environmen	ts (in days
after anthesis).	77
Table 8. Estimated times of occurence of harve	est ripeness
and other stages of grain development	of cross
Tordo x Sonora 64A (Cross 3) averaged	l across two
environments.	78
Table 9. The tests for the difference between	maturity
variables and the correlation coeffic	cients for some
pairs of variables in cross 3.	79
Table 10. The test of differences between the maturity variables of Tordo in differ	mean values of cent crosses. 80
Table 11. Percentage standard germination, pot	ential
germination and dormancy at harvest	ripeness of

the six generations of wheat cross Tordo x Karamu

(cross 1) grown in the two environments.

ix

Table 12. Standard germination, potential germination and dormancy at harvest ripeness of the six generations of wheat cross Tordo x Karamu (cross 1), averaged across two environments. 84 Table 13. Percentage standard germination, potential germination and dormancy at harvest ripeness of the six generations of wheat cross Tordo x Gabo (Cross 2) grown in the two environments. 85 Table 14. Standard germination and potential germination at harvest ripeness of the six generations of wheat cross Tordo x Gabo (Cross 2), averaged across two environments. 86 Table 15. Percentage standard germination, potential germination and dormancy at harvest ripeness of the six generations of wheat cross Tordo x Sonora 64A (cross 3) grown in the two environments. 87 Table 16. Percentage standard germination, potential germination and dormancy at harvest ripeness of the six generations of wheat cross Tordo x Sonora 64A (cross 3), averaged across two environments (in 88 percent). Table 17. Grain dry weight at harvest ripeness and maximum grain dry weight (mg/grain) of six generations of wheat cross 1 (Tordo x Karamu) grown in the two environments. 89 Table 18. Grain dry weight at harvest ripeness and maximum grain dry weight (in mg/grain) of six generations of wheat cross Tordo x Karamu (Cross 1) averaged across two environments. 90 Table 19. Grain dry weights at harvest ripeness and maximum grain dry weights of six generations of wheat cross 2 (Tordo x Gabo) grown in the two environments 91 (mg/grain). Table 20. Grain dry weight at harvest ripeness and maximum grain dry weight (mg/grain) of six generations of wheat cross Tordo X Gabo (Cross 2), averaged across two environments. 92 Table 21. Grain dry weight at harvest ripeness and maximum grain dry weight (in mg/grain) of six generations of wheat in cross 3 grown in two environments. 93 Table 22. Grain dry weight at harvest ripeness and maximum grain dry weight (mg/grain) of six generations of wheat cross Tordo X Sonora 64A (Cross 3) averaged across two environments. 94

х

- Table 23. The levels of the three types of α -amylase activity at harvest ripeness and at embryo maturity of six generations of wheat in cross Tordo x Karamu (cross 1) grown in the two environments (in log. mEU/g).
- Table 24. The levels of the three types of α -amylases activity at harvest ripeness and at embryo maturity of six generations of wheat cross Tordo x Karamu (Cross 1) averaged across two environments (in log mEU/g).
- Table 25. Similarity and dissimilarity of base α -amylase, germinative α -amylase and GA3 α -amylase levels at harvest ripeness and at embryo maturity of cross 1 wheat as a result of paired t-tests.
- Table 26. Correlations between α -amylases at harvest ripeness α -amylase at embryo maturity and germination percentags at harvest ripeness in wheat cross 1.
- Table 27. The levels of the three types of α -amylases activity at harvest ripeness and at embryo maturity of six generations of wheat in cross Tordo x Gabo (cross 2) grown in the two environments (in log. mEU/g).
- Table 28. The levels of the three types of α -amylase activity at harvest ripeness and at embryo maturity of six generations of wheat cross Tordo x Gabo (Cross 2) averaged across two environments (in log mEU/g).
- Table 29. Similarity and dissimilarity of base α -amylase, germinative α -amylase and GA3 α -amylase levels at harvest ripeness and at embryo maturity of cross 2 wheat as a result of paired t-tests.
- Table 30. Correlations between α -amylases at harvest ripeness, α -amylase at embryo maturity and germination percentages at harvest ripeness in wheat cross 2.
- Table 31. The levels of the three types of α -amylases at harvest ripeness and at embryo maturity of six generations of wheat in cross Tordo x Sonora 64A (cross 3) grown in the two environments (in log. mEU/g).
- Table 32. The levels of the three types of α -amylases at harvest ripeness and at embryo maturity of six generations of wheat cross Tordo x Sonora 64A (Cross 3) averaged across two environments (in log mEU/g).

96

97

99

100

102

104

106

107

111

Table	33. Similarity and dissimilarity of base α -amylase, germinative α -amylase and GA3 α -amylase levels at harvest ripeness and at embryo maturity of cross 3 wheat as a result of paired t-tests.	113
Table	34. Correlations between α -amylases at harvest ripeness, α -amylase at embryo maturity and germination percentags at harvest ripeness in wheat cross 3.	115
Table	35. Maximum colour scores of each of the six generations in the three wheat crosses grown in the two environments.	117
Table	36. Maximum colour scores of each of the six generations in the three wheat crosses, average across two environments.	118
Table	37. Sterility percentages of each of the six generations in the three wheat crosses grown in the two environments.	119
Table	38. Sterility percentages of each of the six generations in the three wheat crosses, average across two environments.	120
Table	39. Estimation of the components of generation means on a six parameter model and twelve parameter model for maximum colour score in the three wheat crosses.	123
Table	40. Estimation of the components of generation means on a six-parameter model and twelve parameter model for germinative α -amylase at harvest ripeness in the three wheat crosses.	125
Table	41. Estimation of the components of generation means on a twelve-parameter model for times to harvest ripeness, amylase maturity and GA amylase maturity in the three wheat crosses.	127
Table	42. Estimation of the components of generation means on a twelve-parameter model for times to median embryo maturity (T50PG) and embryo maturity (T90PG) in the three wheat crosses.	130
Table	43. Estimation of the components of generation means on a twelve-parameter model for times to median germination and germination maturity in cross 3 wheat (Tordo x Sonora 64A).	132
Table	44. Estimation of the components of generation means on a twelve-parameter model for times to dry weight maturity (T90DW) and grain colour maturity (T90COL) in the three wheat crosses.	134

Table	45. Estimation of the components of generation means on a twelve-parameter model for standard germination and potential germination at harvest ripeness in the three wheat crosses.	136
Table	46. Estimation of the components of generation means on a twelve-parameter model for grain dry weight at harvest ripeness and maximum grain dry weight in the three wheat crosses.	139
Table	47. Estimation of the components of generation means on a twelve-parameter model for base α -amylases at harvest ripeness and at embryo maturity in the three wheat crosses.	141
Table	48. Estimation of the components of generation means on a twelve-parameter model for germinative α -amylase at embryo maturity in the two wheat crosses.	143
Table	49. Estimation of the components of generation means on a twelve-parameter model for GA_3 α -amylase at harvest ripeness and at embryo maturity in the three wheat crosses.	144
Table	50. Estimation of the components of generation means on a twelve-parameter model for percent sterility in the three wheat crosses.	146

.

xiii

LIST OF FIGURES.

page		
8	Figure 1. The structure of the wheat grain.	
38	Figure 2. Genetic model based on diploid and triploid scale.	
196	Figure A.1. Changes in moisture content during grain development of the six generations of cross 1 wheat ripening in the warm environment.	
197	Figure A.2. Changes in moisture content during grain development of the six generations of cross 1 wheat ripening in the cool environment.	
198	Figure A.3. Changes in moisture content during grain development of the six generations of cross 2 wheat ripening in the warm environment.	
199	Figure A.4. Changes in moisture content during grain development of the six generations of cross 2 wheat ripening in the cool environment.	
200	Figure A.5. Changes in moisture content during grain development of the six generations of cross 3 wheat ripening in the warm environment.	
201	Figure A.6. Changes in moisture content during grain development of the six generations of cross 3 wheat ripening in the cool environment.	
202	Figure A.7. Change in standard germination during grain development of the six generations of cross 1 wheat ripening in the warm environment.	
203	Figure A.8. Change in standard germination during grain development of the six generations of cross 1 wheat ripening in the cool environment.	
204	Figure A.9. Change in potential germination during grain development of the six generations of cross 1 wheat ripening in the warm environment.	
205	Figure A.10. Change in potential germination during grain development of the six generations of cross 1 wheat ripening in the cool environment.	
206	Figure A.11. Change in standard germination during grain development of the six generations of cross 2 wheat ripening in the warm environment.	
207	Figure A.12. Change in standard germination during grain development of the six generations of cross 2 wheat ripening in the cool environment.	

Figure	A.13. Change development ripening in	in potential germination during grain of the six generations of cross 2 wheat the warm environment.	208
Figure	A.14. Change development ripening in	in potential germination during grain of the six generations of cross 2 wheat the cool environment.	209
Figure	A.15. Change development ripening in	in standard germination during grain of the six generations of cross 3 wheat the warm environment.	210
Figure	A.16. Change development ripening in	in standard germination during grain of the six generations of cross 3 wheat the cool environment.	211
Figure	A.17. Change development ripening in	in potential germination during grain of the six generations of cross 3 wheat the warm environment.	212
Figure	A.18. Change development ripening in	in potential germination during grain of the six generations of cross 3 wheat the cool environment.	213
Figure	A.19. Change development ripening in	in grain dry weight during grain of the six generations of cross 1 wheat the warm environment.	214
Figure	A.20. Change development ripening in	in grain dry weight during grain of the six generations of cross 1 wheat the cool environment.	215
Figure	A.21. Change development ripening in	in grain dry weight during grain of the six generations of cross 2 wheat the warm environment.	216
Figure	A.22. Change development ripening in	in grain dry weight during grain of the six generations of cross 2 wheat the cool environment.	217
Figure	A.23. Change development ripening in	in grain dry weight during grain of the six generations of cross 3 wheat the warm environment.	218
Figure	A.24. Change development ripening in	in grain dry weight during grain of the six generations of cross 3 wheat the cool environment.	219
Figure	A.25. Change development ripening in	in base a-amylase during grain of the six generations of cross 1 wheat the warm environment.	220
Figure	A.26. Change development ripening in	in base a-amylase during grain of the six generations of cross 1 wheat the cool environment.	221

xv

Figure	A.27. Change development ripening in	in germinative a-amylase during of the six generations of cross the warm environment.	grain 1 wheat	222
Figure	A.28. Change development ripening in	in germinative a-amylase during of the six generations of cross the cool environment.	grain 1 wheat	223
Figure	A.29. Change development ripening in	in GA ₃ a-amylase during grain of the six generations of cross the warm environment.	1 wheat	224
Figure	A.30. Change development ripening in	in GA ₃ a-amylase during grain of the six generations of cross the cool environment.	1 wheat	225
Figure	A.31. Change development ripening in	in base a-amylase during grain of the six generations of cross the warm environment.	2 wheat	226
Figure	A.32. Change development ripening in	in base a-amylase during grain of the six generations of cross the cool environment.	2 wheat	227
Figure	A.33. Change development ripening in	in germinative a-amylase during of the six generations of cross the warm environment.	grain 2 wheat	228
Figure	A.34. Change development ripening in	in germinative a-amylase during of the six generations of cross the cool environment.	grain 2 wheat	229
Figure	A.35. Change development ripening in	in GA ₃ a-amylase during grain of the six generations of cross the warm environment.	2 wheat	230
Figure	A.36. Change development ripening in	in GA ₃ a-amylase during grain of the six generations of cross the cool environment.	2 wheat	231
Figure	A.37. Change development ripening in	in base a-amylase during grain of the six generations of cross the warm environment.	3 wheat	232
Figure	A.38. Change development ripening in	in base a-amylase during grain of the six generations of cross the cool environment.	3 wheat	233
Figure	A.39. Change development ripening in	in germinative a-amylase during of the six generations of cross the warm environment.	grain 3 wheat	234
Figure	A.40. Change development ripening in	in germinative a-amylase during of the six generations of cross the cool environment.	grain 3 wheat	235

xvi

Figure	A.41. Change in GA ₃ a-amylase during grain development of the six generations of cross 3 wheat ripening in the warm environment.	236
Figure	A.42. Change in GA ₃ a-amylase during grain development of the six generations of cross 3 wheat ripening in the cool environment.	237
Figure	A.43. Change in colour score during grain development of the six generations of cross 1 wheat ripening in the warm environment.	238
Figure	A.44. Change in colour score during grain development of the six generations of cross 1 wheat ripening in the cool environment.	239
Figure	A.45. Change in colour score during grain development of the six generations of cross 2 wheat ripening in the warm environment.	240
Figure	A.46. Change in colour score during grain development of the six generations of cross 2 wheat ripening in the cool environment.	241
Figure	A.47. Change in colour score during grain development of the six generations of cross 3 wheat ripening in the warm environment.	242
Figure	A.48. Change in colour score during grain development of the six generations of cross 3 wheat ripening in the cool environment.	243

r.

xvii

xviii

page

LIST OF APPENDICES

Appendix 1. The planting medium for the wheat plants in the generation advance in the glasshouse.	190
Appendix 2 The North Carolina State University nutrient solution, used to feed the plants in the glasshouse and in the climate rooms.	191
Appendix 3.A Planting Dates and number of pots planted with the six generations of cross 1 wheat in PPD glasshouse before transfering to the controlled climate rooms.	192
Appendix 3.B Planting dates and number of pot planted to the six generations of cross 2 wheat in PPD glasshouse before transfering to the controlled climate rooms.	192
Appendix 3.C Planting dates and number of pots planted with the six generations of cross 3 wheat in PPD glasshouse before transfering to the controlled climate rooms.	192
Appendix 4. Abbreviations and variable names used in the experiments.	193
Appendix 5. Expected Mean squares in single environment analysis of variance, random effect model.	194
Appendix 6. Expected mean squares in combined analysis of variance, random effect model.	194
Appendix 7. Chi square values in the test for homogeneity of error variance from the warm and the cool environments.	195