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ABSTRACT 

 

Grätzel cells are liquid-electrolyte photoelectrochemical cells that contain dye-

sensitised titania electrodes.  The sensitiser is typically an organic species that absorbs 

visible light and increases the spectral region in which Grätzel cells may produce 

electricity.  A key feature in the success of Grätzel cells is the high surface area of 

nanostructured titania electrodes.  In this study, the nanostructuring of titania has been 

explored by two complementary methods: templation and self-assembly.   

 

The templation of silica colloidal crystals (opals) was chosen as an inverse opal of 

titania would display a porous, bicontinuous structure in addition to a photonic band-

gap.  A diverse variety of titania inverse opals was produced, ranging from ideal 

‘honeycomb’ to non-ideal ‘grape-like’ morphologies.  However, the fragility of the 

material and difficulties in reproduction meant that the testing of such electrodes within 

Grätzel cells was limited.  

 

Study towards the formation of a nanoparticle superlattice of titania via chemically-

assisted self-assembly involved the investigation of both nanostructured titania surfaces 

and dye adsorption.  The mode of dye binding to titania and the stability of adsorbed 

dyes was studied to aid work toward the design of a self-assembled titania superlattice, 

as well as to assist in the analysis of dye performance in Grätzel cells.  Crystalline, 

aggregated titania and amorphous, dispersible titania was produced for dye binding 

studies of small organic carboxylic acid dyes.  It was found that while dyes are adsorbed 

and intimately associated with titania, the mode of dye binding is different on a dry 

electrode than upon dispersed and solvated titania.  The dyes appear to be bound to 

titania in a carboxylate form in the dry state, but in a mode that closer resembles that of 

the native dye upon dispersed titania. 
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and for J-aggregates is of lower energy. 

Figure 6.4.   Coumarin dyes as described by Z. S. Wang et al. 2005.  a) Cyano(5,5-
dimethyl-3-[2-(1,1,6,6-tetramethyl-10-oxo-2,3,5,6-tetrahydro-
1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracen-9-yl)vinyl]cyclohex-
2-enylidene)acetic acid which bears a side ring on the alkene chain, 
which prevents aggregation.  b) The analogous material, which is 
without a side ring and forms H-aggregates. 

Figure 6.5.   Hemin, the Fe3+ analogue of heme. 
Figure 6.6.   Glutamic acid as described by A. D. Roddick-Lanzilotta et al. 2000.  

Glutamic acid bound to titania by a) a single acid group and b) both 
acid functionalities. 

 
Section 6.4. 
Table 6.1.   Spectral properties of carboxylic acid probe dyes. 
 
Section 6.5 
Figure 6.7.   Chem3D® representations of 6.1 to 6.6 with estimates of the 

rectangular footprint area for dyes bound by only one carboxylic 
group. 
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Figure 6.8.   Chem3D® representations of 6.1 to 6.6 with estimates of the 
rectangular footprint area for bound dye with potential binding groups 
towards the surface. 

Table 6.2.   Surface area of titania from nitrogen sorption data, unless otherwise 
stated. 

Table 6.3.   Range of the rectangular footprint areas of probe dyes (Figs 6.7, 6.8) 
and monolayer coverage values for dye upon sintered transparent 
Dyesol titania and native sol-gel titania.   

 
Section 6.5.1.1. 
Figure 6.9.   UV-Vis absorbance over time for the 410 nm peak of 6.3 adsorbed 

onto sintered Dyesol titania plates from a 2 mM solution in 
tetrahydrofuran.  The x-axis error bars are for ± 1 minute, the y-axis 
error bars are for ± 0.001 absorbance units.    

Figure 6.10.   Adsorption of 6.2 onto sintered Dyesol titania powder from a 2.3 mM 
methanolic solution and desorption in dry methanol.  Data was 
collected for the UV-Vis maximum at 330 nm, the error bars are for 
conservative values of a ± 10% uncertainty for the calculated number 
of moles of 6.2 and ± 2 minutes of time.  Similar data was obtained 
for 6.1. 

 
Section 6.5.1.2. 
Table 6.4.   FWHM values for UV-Vis absorption signals of the probe dyes in 

tetrahydrofuran (THF) and on both dispersed sol-gel and sintered 
Dyesol titania. 

Table 6.5.   UV-Vis absorption of pure dyes in THF and on both dispersed sol-gel 
and sintered Dyesol titania. 

Figure 6.11.   UV-Vis spectra of a 1 : 1 and a 2 : 1 molar ratio of tetra-n-
butylammonium hydroxide to 6.1  in methanol. 

Table 6.6.   UV-Vis absorption of pure dyes and dyed titania in solvent A. 
Figure 6.12.   UV-Vis spectra of 6.5 in tetrahydrofuran in a 1 : 5 v/v solution of 

tetrahydrofuran to 95% ethanol and adsorbed onto sintered titania 
plates.   

Figure 6.13.   A red shift of UV-Vis absorbance is observed when a titania plate 
dyed with 6.5 is wet with tetrahydrofuran is dried.  The effect is 
reproducible as shown by further immersion of the plate in a solution 
of 6.5 and subsequent drying.  The spectra are not subtracted for the 
titania blank in order to show that the wet plate is more transparent 
than the dry plate.  

Figure 6.14.   UV-Vis spectra of 6.4 in methanol, tetrahydrofuran, in a 1 : 5 v/v 
solution of tetrahydrofuran to 95% ethanol (solvent A) and with sol-
gel titania in methanol, tetrahydrofuran and solvent A. 

Equation 6.1.   Equilibrium dye binding involving free and bound dye, only. 
Equation 6.2.  Equilibrium dye binding involving the available binding sites of 

titania and both free and bound dye. 
Figure 6.15.   UV-Vis spectra of 6.4, showing an absence of signal shoulders on 

titration with sol-gel titania in ethanol.  Pure dye, a 339 : 1, a 21 : 1, 
and a 1 : 1 mole ratio of dye to titania.  The FWHM values are 99 nm, 
109 nm, 114 nm and 113 nm, respectively, with an uncertainty of 3%. 

Figure 6.16. UV-Vis spectra of 6.1 in tetrahydrofuran, in acidic solution, in 
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solution with acidic-sol-gel titania.  The mole ratio of sol-gel titania 
spheres 2 nm in diameter to dye was 1 : 5. 

Figure 6.17.   UV-Vis spectra of 6.2 in tetrahydrofuran, in acidic solution, in 
solution with acidic-sol-gel titania.  The mole ratio of sol-gel titania 
spheres 2 nm in diameter to dye was 1 : 4. 

Figure 6.18.   UV-Vis spectra of 6.3 in tetrahydrofuran, in acidic solution, in 
solution with acidic-sol-gel titania and adsorbed onto sintered titania 
plates.  The mole ratio of sol-gel titania spheres 2 nm in diameter to 
dye was 4 : 1. 

Figure 6.19.   UV-Vis spectra of 6.4 in tetrahydrofuran, in acidic solution, in 
solution with acidic-sol-gel titania and adsorbed on sintered titania 
plates.  The mole ratio of sol-gel titania spheres 2 nm in diameter to 
dye was 4 : 1. 

Figure 6.20.   UV-Vis spectra of terthienylcyanoacrylic acid in tetrahydrofuran, in 
acidic solution, in solution with acidic-sol-gel titania and adsorbed on 
sintered titania plates.  n(sol-gel titania spheres 2 nm in diameter) : 
n(dye) of 3 : 1.   

Figure 6.21.   UV-Vis spectra of terthienylvinylenemalonic acid in tetrahydrofuran, 
in acidic solution, in solution with acidic-sol-gel titania and adsorbed 
on sintered titania plates.  n(sol-gel titania 2 nm in diameter) : n(dye) 
of 3 : 1.   

Figure 6.22.    A cartoon of possible aggregation and packing of a) 6.4 and b) 6.3 
upon titania. 

Figure 6.23.    A depiction of the packing of a malonic acid with the binding groups 
a) parallel and b) staggered with respect to each other.  The carbon 
atom labelled ‘R’ denotes the rest of the molecule. 

Figure 6.24.   UV-Vis spectra of 6.6 in tetrahydrofuran (507 nm), in acidic solution 
(514 nm), in solution with acidic-sol-gel titania (522 nm) and 
adsorbed onto sintered titania plates (510 nm).  The mole ratio of sol-
gel titania spheres 2 nm in diameter to dye was 4 : 1. 

Figure 6.25.   UV-Vis spectra of 6.5 in tetrahydrofuran, in acidic solution, in 
solution with acidic-sol-gel titania and adsorbed onto sintered titania 
plates.  The mole ratio of sol-gel titania spheres 2 nm in diameter to 
dye was 4 : 1. 

Figure 6.26.   An extreme conformation of 6.6, where the ter(thienylenevinylene) 
group lies parallel to the surface. 

Table 6.7.   Porphyrin-based dyes used in dye aggregation studies. 
Figure 6.27.   UV-Vis spectra of sintered Dyesol titania dyed with 6.7 from a 0.2 

mM solution in tetrahydrofuran.  The dye absorbance increases with 
progressive immersion times of 2 min, 4 min, 12 min and 99 min.    

Figure 6.28.   UV-Vis spectra of sintered Dyesol titania dyed with 6.9 from a 0.2 
mM solution in tetrahydrofuran.  The dye absorbance increases with 
progressive immersion times of 2 min, 4 min, 8 min and 50 min.    

Figure 6.29.   UV-Vis spectra of sintered Dyesol titania dyed with 6.11 from a 0.2 
mM solution in tetrahydrofuran.  The dye absorbance increases with 
progressive immersion times of 2 min, 4 min, 10 min and 60 min.    

Figure 6.30.   UV-Vis spectra of sintered Dyesol titania dyed with 6.8 from a 0.2 
mM solution in tetrahydrofuran.  The dye absorbance increases with 
progressive immersion times of 2 min, 4 min, 13 min and 90 min. 

Figure 6.31.   UV-Vis spectra of sintered Dyesol titania dyed with 6.10 from a 0.2 
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mM solution in tetrahydrofuran.  The dye absorbance increases with 
progressive immersion times of 2 min, 4 min, 12 min and 99 min.    

 
Section 6.5.3. 
Figure 6.32.   ATR-FTIR spectra of native sol-gel titania and a sintered Dyesol 

titania plate.  The fine structure in the spectra at 3700 and 1606 cm-1 
are due to residual water. 

Figure 6.33.   Illustration of the two configurations (a) and (b) of 6.2 that were 
modelled for ab initio calculations.   

Figure 6.34.   Calculated vibrational data for configuration (a) of 6.2.  
Figure 6.35.   Calculated vibrational data for configuration (b) of 6.2.  
Figure 6.36.   Calculated vibrational data for configuration (c) of 6.2.  
Figure 6.37.   Calculated FTIR spectra for configuration (a) of 6.2 in vacuo. 
Figure 6.38.   Calculated FTIR spectra for configuration (b) of 6.2 in vacuo. 
Figure 6.39.   Calculated FTIR spectra for configuration (c) of 6.2 in vacuo. 
Figure 6.40.   Experimental ATR-FTIR data for pure 6.1. 
Figure 6.41.   Experimental ATR-FTIR data for pure 6.2. 
Figure 6.42.   The minimised conformation of the doubly-deprotonated forms (a) to 

(c) of 6.2. 
Figure 6.43.   Calculated vibrational data for the doubly-deprotonated form of 6.2.  
Figure 6.44.   Calculated FTIR spectra of the doubly-deprotonated form of 6.2 in 

vacuo. 
Figure 6.45.   ATR-FTIR spectra of pure 6.1 and the acid adsorbed onto native sol-

gel titania in a 29 : 1 mole ratio of dye to 2 nm titania particles. 
Figure 6.46.   An expansion of Figure 6.43, of pure 6.1 and the acid adsorbed onto 

native sol-gel titania in a 29 : 1 mole ratio of dye to 2 nm titania 
particles. 

Figure 6.47.   Experimental ATR-FTIR data for pure 6.2 and the dye adsorbed onto 
sol-gel titania in a 15 : 1 mole ratio of dye to 2 nm titania particles. 

Figure 6.48.   ATR-FTIR spectrum of pure 6.3 and upon sol-gel titania in an 18 : 1 
mole ratio of dye to titania 2 nm in diameter.    

Figure 6.49.   ATR-FTIR spectra of pure 6.4 and the acid bound to sol-gel titania in 
an 18 : 1 and in a 21 : 1 mole ratio of dye to titania 2 nm in diameter.  

 
Section 6.5.4. 
Figure 6.50.   Fluorescence of 6.4 in methanol and with a calculated mole ratio of 

dye to titania 2 nm in diameter of 39 : 1, 20 : 1, 10 : 1  and 1 : 1.  The 
excitation wavelength was 455 nm.  

Figure 6.51.   Fluorescence maximum of 6.4 in methanol versus the mole ratio of 
dye to titania particles 2 nm in diameter.  The fluorescence maximum 
of pure 6.4 is 592 nm.  The excitation wavelength was 455 nm.  The 
error bars are for an uncertainty of ± 0.5 nm of the fluorescence signal 
and approximately ± 7 % for the mole ratio of dye to 2 nm diameter 
titania. 

Figure 6.52.   Raman spectra of a methanolic solution with a 12 : 1, a 6 : 1, a 4 : 1  
and a 1 : 3 mole ratio of acidic, amorphous 2 nm sol-gel titania to dye 
6.4.  The non-linear background has not been subtracted. 

 
Section 6.5.5.2. 
Figure 6.53.   1H-NMR spectrum of 6.1 in CD3OD.   
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Figure 6.54.  1H-NMR spectrum of 6.2 in CD3OD. 
Figure 6.55.  1H-NMR spectrum of 6.4 in CD3OD. 
Figure 6.56.   1H-NMR spectrum of the tetramethylammonium salt of 6.1 in 

CD3OD.  Pure 6.1, a 1 : 1 mole ratio and a 2 : 1 mole ratio of 6.1 to 
tetramethylammonium hydroxide. 

Figure 6.57.   1H-NMR spectra of a 12 M solution of 6.2 in CD3OD, titrated with 
hydrochloric acid.  A mole ratio of dye to hydrochloric acid of 1 : 0, 1 
: 45, 1 : 89 and 1 : 116.  

Figure 6.58. 1H-NMR spectra of 6.3 in CD3OD, with a mole ratio of dye to 
hydrochloric acid of 1 : 124 and with a mole ratio of dye to titania 
particles 2 nm in diameter of 19 : 1.  

 
Section 6.5.5.3. 
Figure 6.59.   A cartoon of the solvent partition method.  a) Sol-gel titania solvated 

in D2O is added to a saturated solution of dye in CDCl3.  b) Dye 
diffuses through the solvent-solvent interface and binds to titania in 
the D2O layer.  c) The D2O layer was removed by pipette for analysis 
by NMR spectroscopy. 

Figure 6.60.   1H-NMR spectra of the titration of 6.1 with acidic, amorphous, sol-gel 
titania in CD3OD.  An 8 : 1, 12 : 1 and a 17 : 1 mole ratio of 6.1 to 
titania particles 2 nm in diameter. 

Figure 6.61.   1H-NMR spectrum of the methanol-soluble portion of a titania 
resuspension experiment.  The mole ratio of 6.1 to 2 nm titania 
particles was 18 : 1.  A crude indication of the position of sharp 
overlaid signals due to free dye. 

Figure 6.62.   1H-NMR spectrum of a 2 mM solution of 6.1 in D2O-DSS.  
Figure 6.63.  Representations of: (a) the cis- and (b) the trans- mono-salt forms and 

(c) the di-salt of 6.1. 
Figure 6.64.  1H-NMR spectrum of a saturated solution of 6.1 in D2O. 
Figure 6.65.   1H-NMR spectrum of an initial 12 : 1 mole ratio of 6.1 to 2 nm titania 

particles in D2O-DSS. 
Figure 6.66.   1H-NMR spectrum of the D2O layer of a partition experiment that 

used an initial 17 : 1 mole ratio of 6.1 to 2 nm titania particles. 
Figure 6.67.   1H-NMR spectra of the D2O layer of a solvent partition experiment 

which used an initial 12 : 1 mole ratio of 6.1 to 2 nm titania particles.  
A 3x and a 10x dilution in CD3OD. 

Equation 6.3.   The Einstein-Stokes equation, using methanol at 298K. 
 
Section 8.1. 
Table 8.1.   Analysis of the TiO2, water, solvent and acid content of  sol-gel 

titania. 
 
Section 8.2. 
Table 8.2.   Experimental extinction coefficients of probe dyes in tetrahydrofuran. 
Table 8.3.   Theoretical ratios of dye to titania, using estimated surface area for 

non-sintered native sol-gel titania 2 nm in diameter, with a surface 
area of 12.57 nm2 per particle and a molar mass of 10847 g mol-1. 

Table 8.4.   Theoretical ratios of dye to titania, using estimated surface area for 
non-sintered native sol-gel titania 3 nm in diameter, with a surface 
area of 28.27 nm2 per particle and a molar mass of 36607 g mol-1. 
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Table 8.5.   Theoretical ratios of dye to titania, using estimated surface area for 
non-sintered native sol-gel titania 4 nm in diameter, with a surface 
area of 50.27 nm2 per particle and a molar mass of 86771 g mol-1. 

Table 8.6.   The amount of dye required for monolayer coverage of sintered 
Dyesol titania, using the footprint areas shown in Table 8.3. 

Table 8.7.   The amount of dye required for monolayer coverage of sintered sol-
gel titania, using the footprint areas shown in Table 8.3. 

Table 8.8.   If the surface area of sintered ‘native’ sol-gel titania is 187 m2 g-1, if 
the footprint area of 6.1 is 4.5 x 10

-19
, a monolayer dye loading is 6.9 

x 10
-4

 mol g-1.  Supposing that the sintered material was still 
composed of discrete spheres, then the mole ratio between dye and 
titania spheres is given by n(dye) : n(TiO2).  The percentage dye 
loading of sintered titania over that of native sol-gel titania gives an 
indication of the degree of particle aggregation introduced by 
sintering.  

Table 8.9.   UV-Vis absorption of dyes on sintered titania. 
Figure 8.1.   The integrated area of the UV-Vis absorption of sintered Dyesol 

titania dyed with 6.5.    The red shift in dye absorbance is due to 
rearrangement of dye on titania due to the loss of solvent, rather than 
to a decrease in the amount of dye present.  The integrated region was 
390 to 700 nm.  Data is shown for samples immersed in a 0.2 mM 
solution of 6.5 in tetrahydrofuran for: a) 3 minutes, wet and dried; b) 6 
minutes, wet and dried.   

Figure 8.2.   The fluorescence intensity of 6.4, in methanol, normalised to 
absorbance.  Two sets of data are displayed.  The error bars are for 
conservative uncertainties of ± 50 counts of intensity and ± 10% of 
concentration.    
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ABBREVIATIONS 
 
AFM Atomic force microscopy, a type of scanning probe microscopy. 

AM 1.5 Air mass 1.5.  'One Sun'.  Equivalent to 100 mW cm-2, the intensity of  
 solar light when the sun is 48.2° from zenith.1-3 

ATR-FTIR Attenuated total internal reflectance Fourier transform infra-red 
 spectroscopy. 

CVD Chemical vapour deposition. 

DSSC Dye-sensitised solar cell; Grätzel cell.. 

ITO Indium-doped tin oxide.  Commonly used to coat glass for a 
 conductive surface. 

SEM Scanning electron microscopy. 

SPM Scanning probe microscopy.    

STM Scanning tunnelling microscopy, which is a type of scanning probe 
 microscopy.    

TEM Transmission electron microscopy. 

UV-Vis Ultra-violet and visible light. 

XRD  X-ray diffraction 
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DEFINITIONS AND SYNONYMS 
 
Aqua Regia 
1 : 3 v/v concentrated (fuming) nitric acid to concentrated (1.18 g mL-1) hydrochloric 
acid.  If the solution is to be stored, include 1 volume of water.4 
 
Bohr radius 
The Bohr radius is unique for each substance and is the distance between the electron 
and hole of a Mott-Wannier pair, or ‘exciton’. 
 
Dyesol Limited 
Previously known as Sustainable Technologies Australia (STA), then as Sustainable 
Technologies International Pty Ltd (STI).  
 
External Quantum Efficiency (EQE) 
Of a solar cell: also known as the incident photon conversion efficiency, which is the 
number of electrons generated per incident photon.5  EQE = ne/nhv = (Isc.hc)/(Po.λe)   
 
Fill-Factor (ff) 
Of a solar cell: the maximum electrical power generated divided by the product of the 
short-circuit current and the open circuit voltage.  The maximum power generated is the 
product of the short circuit current (maximum) and the open circuit voltage (maximum).  
ff = (Imax.Vmax)/(Isc.Voc) 
 
Global conversion efficiency (ηglobal) 
Of a solar cell: the maximum electrical power generated divided by the intensity of the 
incident light.  ηglobal = (Imax.Vmax)/Is    
 
Grätzel Cell 
A liquid heterojunction DSSC which employs a mesoporous and nanocrystalline titania 
electrode that has been sensitised to absorb visible light.   
 
Inverse Opal 
Inverse colloidal crystal, reverse-contrast colloidal crystal, air-sphere colloidal crystal. 
 
Macrostructure 
A structure with dimensions larger than 100 nm. 
 
Nanocrystalline 
A material that is crystalline with dimensions on the order of nanometres.  The term is 
often used in reference to particulate material which may be composed of smaller 
particles. 
 
Nanoparticles 
Particles with a size on the order of nanometres. 
 
Nanostructure 
The structuring of materials such that at least one dimension that is less than a hundred 
nanometres wide. 
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Opal 
A colloidal crystal.  Specifically, opal refers to a colloidal crystal of silica. 
 
Polydispersity Index 
Equals the weight-average molecular weight divided by the number-average molecular 
weight.  The number-average is never greater than the weight-average and the larger the 
index, the wider is the distribution. 
 
Power Conversion Efficiency (ηeff) 
Of solar cells: the maximum electrical power generated divided by the incident optical 
power.  ηeff = (Imax.Vmax)/Po 
 
Polyelectrolyte 
A polymer in which the degree of ionisation is dependent on the pH of the 
environment.6 
 
Piranha Solution 
Either a 2 : 1 v/v, a 3 : 1 v/v or a 4 : 1 solution of concentrated (96%) sulfuric acid to 
30% aqueous hydrogen peroxide.7-9 
 
Quantum dot 
A material that is quantum-confined in three-dimensions. 
 
Relative Centrifugal Force (rcf ) 
Calculated from the rotations per minute (rpm) and the swing radius of the centrifuge.  
The units of measure are ‘g’, for gravitational acceleration. 
 
Root Mean Square (RMS) 
Quadratic mean.  RMS = ((Σxi)2)/n)1/2    
 
Screen-printing 
Equivalent to tape-casting of material by pressing material through a mesh screen.  The 
paste viscosity, mesh size, thread thickness and the tension of the screen determine the 
film thickness.  
 
Sol; Sol-gel 
A suspension of tiny particles, which may be stabilised; a gel formed of a sol. 
 
Superlattice 
An arrangement of material which recalls the ordering found within ionic lattices. 
 
Tape-casting 
Doctor-blading, where a film is cast onto a substrate by application of a blade along 
guide rails or a mask.  The paste viscosity and the height of the mask or guide 
determines the film thickness.  
 
V Ag/Ag+ 
Potential with respect to a psuedo-reference electrode of silver/silver ion. 
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V SCE 
Potential with respect to a standard calomel electrode. 
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PICTORIAL TABLES OF ORGANIC SPECIES 
 
 

Ferrocenyl compounds for the functionalisation of ITO 

Fe

N

NH2

2+

 

Compound 5.3 
N-(ferrocenylmethylidene)-4-
phenylenediamine 
N-(ferrocenylmethylidene)-p-
phenylenediamine 
 
Mono-Schiff Base.  304 g mol-1. 
Synthesised by Ms. Yvonne Ting 

Fe
NH2

2+

 

Compound 5.4 
2-(4-aminophenyl)ethenylferrocence 
2-(p-aminophenyl)ethenylferrocence 
 
RJD-99-3.  303 g mol-1. 
Synthesised by Mr. Ross Davidson. 

Fe

N

N

2+ Fe 2+

 

N,N’-di(ferrocenylmethylidene)-4-
phenylenediamine 
N,N’-di(ferrocenylmethylidene)-p-
phenylenediamine 
 
Di-Schiff Base.  500 g mol-1. 
Synthesised by Ms. Yvonne Ting. 

 
 

Small organic dyes for  binding to titania 

O

CO2H

CO2H

 

Compound 6.1 
4-methoxybenzylidenemalonic acid 
4-methoxyphenylmethylene propanedioic acid 
p-methoxybenzylidene malonic acid 
p-methoxybenzal malonic acid 
 
060720.  222 g mol-1. 
Synthesised by Ms. Yvonne Ting. 

CO2H

CO2H  

Compound 6.2 
Cinnamylidenemalonic acid. 
(3-phenyl-2-propenylidene)-propanedioic acid 
3-phenyl-2-propenylidene propanedioic acid 
 
AWIS-126.  218 g mol-1. 
Synthesised by Mr. Adam Stephenson. 
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Trans-stilbene.  Trans-1,2-diphenyl-1-ethene 
 
180 g mol-1. 

 
 

Ter(thienylenevinylene) and ter(thienylvinylene) dyes for  binding to titania 

S S

S
CO2H

CO2H

 

Compound 6.3 
Ter(thienylenevinylene)malonic acid 
Ter(thiophene-2,5-diyl)vinylenemalonic 
acid 
(E,E)-(2-( 5-(2-(5-(2-(2-thienyl)vinyl)-2-
thienyl)vinyl)thiophenevinylmalonic acid 
5-((5-(2-thien-2-ylethenyl)thien-2-
ylethenyl)thien-2yl malonic acid 
 
E-491.  414.5 g mol-1. 
Synthesised by Dr. Pawel Wagner. 

S S

S
CN

CO2H

 

Compound 6.4 
Ter(thienylenevinylene)cyanoacetic acid 
2-cyano-3[2,2’,5’,2”]terthiophen-5-yl 
acrylic acid 
5-((5-(2-thien-2-ylethenyl)thien-2-
ylethenyl)thien-2yl cyanoacetic acid 
 
E-490.  395.5 g mol-1. 
Synthesised by Dr. Pawel Wagner. 

S S
S CO2H

CO2H

CN NC  

Compound 6.5 
8,15-dicyanoter(thienylenevinylene)-
malonic acid   
2-(5-(1-cyano-2-(5-(2(thiophen-2-
yl)ethenyl)thiophen-2-yl)ethenyl)-
thiophen-2-ylmethylene)malonic acid 
 
E-513.  464.5 g mol-1. 
Synthesised by Dr. Pawel Wagner. 

 

Compound 6.6 
Ter(thienylenevinylene)rhodanine acetic 
acid 
 
EM-59.  503 g mol-1. 
Synthesised by Dr. Pawel Wagner.  
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S S

S
CO2Et

CO2H

 

Ter(thienylenevinylene)malonate 
monoethyl ester 
 
EM-50.  442.5 g mol-1. 
Synthesised by Dr. Pawel Wagner. 

S
CO2H

CO2HS
S

 

Terthienylvinylenemalonic acid 
3-((2,2’:5’,2”)terthiophen-5-yl)malonic 
acid 
 
SG-72/5.  362.4 g mol-1.  
Synthesised by Dr. Sanjeev Ghambir. 

S
S

S
CN

CO2H

 

Terthienylcyanoacrylic acid 
2-cyano-3-((2,2’:5’,2”)terthiophen-5-
yl)acrylic acid 
 
SG-74/5.  343.4 g mol-1. 
Synthesised by Dr. Sanjeev Ghambir. 

 
 

Porphyrin dyes and coordination compounds for binding to titania 

N

N N

N

Zn

O

OH
O

OH  

Compound 6.7 
4-(2’-(5’,10’,15’,20’-
tetraphenylporphyrinato 
zinc(II)yl)butadienylmalonic acid 
4-(2’-(5’,10’,15’,20’-
tetraphenylporphyrinato 
zinc(II)yl)allylidenemalonic acid 
 
WMC-236.  Zn-2a.  818.2 g mol-1. 
Synthesised by Dr. Wayne Campbell. 

N

N N

N
Zn

O

OHO
OH  

Compound 6.8 
4-(2’-(5’,10’,15’,20’-
tetraxylylporphyrinato 
zinc(II)yl)butadienylmalonic acid 
4-(2’-(5’,10’,15’,20’-
tetraxylylporphyrinato 
zinc(II)yl)allylidenemalonic acid 
 
WMC-299B.  Zn-2g.  930.4 g mol-1. 
Synthesised by Dr. Wayne Campbell. 
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N
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Compound 6.9 
(5’-(10’,15’,20’-
triphenylporphyrinato zinc(II))-4-
benzoic acid 
 
EM-95.  722.12 g mol-1. 
Synthesised by Dr. Pawel Wagner. 
 

N

N N

N
Zn

O

OH

 

Compound 6.10 
(5’-(10’,15’,20’-
trimesitylporphyrinato zinc(II))-4-
benzoic acid 
5-(4-carboxyphenyl)-10,15,20-
trimesitylporphyrinato zinc(II) 
 
EM-55.  848.4 g mol-1. 
Synthesised by Dr. Pawel Wagner. 

N

N N

N
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OH

nC8H17

nC8H17

C8H17n

 

Compound 6.11 
(5’-(10’,15’,20’-tri-(4-n-
octylphenyl)porphyrinato zinc(II))-
4-benzoic acid 
 
EM-84.  1058.8 g mol-1. 
Synthesised by Dr. Pawel Wagner. 

N
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N

Zn

O

OHO
OH

 

4-(2’-(5’,10’,15’,20’-
tetraphenylporphyrinato 
zinc(II)yl)ethenylmalonic acid 
 
WMC-221.  Zn-1a.  792.2 g mol-1. 
Synthesised by Dr. Wayne Campbell. 
 

N

N N

N
Cu

NH2

 

2-(5’-(10’,15’,20’-
tetraphenylporphyrinato zinc(II))-
amine 
 
EM-428.  690.6 g mol-1. 
Synthesised by Dr. Pawel Wagner.
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N

N N

N
Ru

O
C

 

Carbonyl(5’,10’,15’,20’-
tetraphenylporphyrinato 
ruthenium(II) 
Carbonyl(tetraphenylporphyrinato) 
ruthenium(II) 
 
RuTPPCO.  742.2 g mol-1. 
Synthesised by Dr. Sanjeev Ghambir. 
 

N
COOH

 

γ-stilbazole-4’-carboxylic acid  
4-[trans-2-(pyrid-4-yl-vinyl)]-
benzoic acid 
4-(trans-2-(4-pyridinyl)ethenyl)-
benzoic acid 
 
060306.  225 g mol-1. 
Synthesised by Ms. Yvonne Ting. 
 

N
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N
Ru

O
C

N

O

HO
C

Carbonyl(5’,10’,15’,20’-
tetraphenylporphyrinato 
ruthenium(II) with 4-(trans-2-(4-
pyridinyl)ethenyl)benzoic acid. 
 
060327.  967 g mol-1. 
Synthesised by Ms. Yvonne Ting. 
 
 

O O

NRu
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S C N

S
C
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Cis-bis(isothiocyanato)bis(2,2'-
bipyridyl-4,4'-dicarboxylato)-
ruthenium(II) bis-
tetrabutylammonium 
 
Ru ‘N3’ dye, Ru-535 bis-TBA,  
DyeSol B2/N719.  1188.5 g mol-1. 
1260.5 g mol-1 with 4H2O. 
Purchased from DyeSol, Australia. 
 

 
 
 
 
 


