
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



PhD Thesis

Structure and Dynamics of Biopolymer
Networks

A thesis presented in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Physics

at Massey University, Manawatu,
New Zealand.

Author: Bradley William Mansel
Supervisor: Prof. Bill Williams

Co-supervisor: A. Prof. Yacine Hemar

November 2015



Abstract
The aim of this work was to further understand the structural and dynamical properties

of pectin-based biopolymer networks. This is pertinent to furthering our understanding

of the plant cell wall and has further implications for the food and pharmaceutical indus-

tries where biopolymer networks play a fundamental role in thickening and stabilizing

food products and controlling the rate of drug release.

Firstly, microrheological studies on an acid-induced pectin network revealed previously

unseen slow motions of the network at times longer than one second. This "slow mode"

is reminiscent of so-called alpha processes that are predicted with mode coupling theory

in colloidal glasses. Such slow motions present in the networks are a signature of an out-

of-equilibrium system and lead to further work on studying slow relaxation processes in

pectin networks.

Secondly, structural and rheological measurements were performed on the acid-formed

pectin networks. It was found using small-angle x-ray scattering that the network was

composed of flexible cylindrical entities with a radius of 7 Å. At larger length scales

these entities were arranged in a clustered confirmation that upon heating increased in

density, indicating the importance of kinetic trapping for the initial network formation.

Finally, multi-speckle dynamic light scattering experiments were performed on three

different ionotropic pectin gels formed with calcium to study the dependence of the

slow dynamics on the junction length (and binding energy) between pectin chains. It

was found that increasing the junction length slows the dynamics until a point where

the internal stress becomes so large that the dynamics increase again. Spatially re-

solved photon correlation spectroscopy measurements revealed previously unmeasured

millimetre sized heterogeneity in the networks. Angle-resolved multi-speckle photon

correlation spectroscopy showed conclusively that the dynamics are driven by internal

stresses and further more allowed the temporal heterogeneity to be measured.
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