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Abstract

This research work is focused on understanding the effects of inhomogeneity on traf-

fic flow by theoretical analysis and computer simulations. Traffic has been observed

at almost all levels of natural and manmade systems (e.g., from microscopic protein

motors to macroscopic objects like cars). For these various traffic, basic and emer-

gent phenomena, modelling methods, theoretical analysis and physical meanings are

normally concerned.

Inhomogeneity like bottlenecks may cause traffic congestions or motor protein

crowding. The crowded protein motors may lead to some human diseases. The

congested traffic patterns have not been understood well so far.

The modelling method in this research is based on totally asymmetric simple

exclusion process (TASEP). The following TASEP models are developed: TASEP

with single inhomogeneity, TASEP with zoned inhomogeneity, TASEP with junction,

TASEP with site sharing and different boundary conditions. These models are

motivated by vehicular traffic, pedestrian traffic, ant traffic, protein motor traffic

and/or Internet traffic.

Theoretical solutions for the proposed models are obtained and verified by

Monte Carlo simulations. These theoretical results can be used as a base for further

developments. The emergent properties such as phase transitions, phase separa-

tions and spontaneous symmetry breaking are observed and discussed. This study

has contributed to a deeper understanding of generic traffic dynamics, particularly,

in the presence of inhomogeneity, and has important implications for explanation or

guidance of future traffic studies.



vi

Acknowledgements

I would like to take this opportunity to acknowledge those people who have

guided and supported me to achieve this qualification.

First and foremost, I would like to thank my thesis supervisors Prof. Ken

Hawick and Prof. Stephen Marsland for their strong support and guidance. They set

a wonderful example of being an excellent scientist: curiosity, enthusiasm, honesty

and hard working towards research! Their intellectual rigor and enthusiastic attitude

kept my research on track and well focused. I also greatly appreciate their help when

I was going through my personal difficulties.

Special thanks go to my co-supervisor Prof. Rui Jiang for having numerous

fruitful discussions on this research work. Rui made a lot of suggestions for theo-

retical analysis and simulations. Rui has always been prepared to talk about any

issues, even in times he was very busy.

I would also like to thank my previous supervisor, Dr. Ruili Wang, who has

supervised my first two and half years of my PhD study. He led me to the topic of

traffic modelling and simulations. I have learnt a great deal from him.

A special thank-you to Prof. Ray Kemp for always being supportive and patient.

I would further like to acknowledge many academic and supporting staff at

Massey University for providing the comfortable and well-equipped environment in

which to study, especially, Prof. Hans W. Guesgen, Prof. Martin Hazelton, Prof.

Elizabeth Kemp and Dr. Patrick Rynhart.

I thank Prof. Paul Merrick, Dr. Ian Bond and Dr. Marcus Frean for accepting

to serve on my thesis committee.



vii

Contents

Chapter 1 Introduction 1
1.1 Research description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Review on TASEP Models 9
2.1 Totally asymmetric simple exclusion process (TASEP) . . . . . . . . . . . 9

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Updating procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Random update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Parallel update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 TASEP with different particle properties . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 TASEP with large particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 TASEP with long-range hopping . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 TASEP with Langmuir kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 TASEP with two-species particles . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 TASEP with different lattice structures . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 TASEP with multiple parallel channels . . . . . . . . . . . . . . . . . . . 25
2.3.2 TASEP with multiple-input multiple-output junctions . . . . 29
2.3.3 TASEP with local inhomogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Research methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 3 Local Inhomogeneity in a Single-channel System 38
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Mean-field approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Domain wall approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Theoretical calculations and computer simulations . . . . . . . . . . . . . . . 49
3.6 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 4 Zoned Inhomogeneity on Asymmetric Exclusion



viii

Process 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Case V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Case W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Chapter 5 Asymmetric Exclusion Process with Junction 72
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 m-input 1-output junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Model and mean-field analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.2 Domain wall theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.3 Monte Carlo simulations and discussion . . . . . . . . . . . . . . . . . . . 83

5.3 m-input n-output junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.1 Model and theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Chapter 6 Two-species TASEP with Site Sharing in a
Single-channel System 102

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Model formation and theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 7 Spontaneous Symmetry Breaking in Asymmetric
Exclusion Process with Site Sharing 118

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3 Monte Carlo simulations and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Chapter 8 Conclusions and Outlook 129
8.1 Research summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.1.1 Local inhomogeneity in a single-channel system . . . . . . . . . . . 130
8.1.2 TASEP with m-input n-output junction . . . . . . . . . . . . . . . . . . 132
8.1.3 TASEP with site sharing and relaxed boundaries . . . . . . . . . 133
8.1.4 TASEP with site sharing and constrained boundaries . . . . . 134

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Bibliography 137
Appendix Publications 147



ix

List of Figures

Figure 2.1 Illustration of TASEP in open boundary conditions . . . . . . . 11

Figure 2.2 Phase diagrams of TASEP in open boundaries . . . . . . . . . . . . 14

Figure 2.3 Illustration of possible TASEP extensions . . . . . . . . . . . . . . . . 16

Figure 2.4 Sketch of the Bridge model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.5 Sketch of two-channel TASEP with narrow entrances . . . . . 24

Figure 2.6 Sketch of a four-channel model with narrow entrances . . . . 24

Figure 2.7 General two-channel TASEP models . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.8 Flow chart of Monte Carlo simulations . . . . . . . . . . . . . . . . . . . 37

Figure 3.1 Illustration of TASEP with a local inhomogeneity . . . . . . . . 40

Figure 3.2 Phase diagrams of TASEP with a local inhomogeneity . . . . 44

Figure 3.3 Schematic diagram of the domain wall dynamics . . . . . . . . . . 46

Figure 3.4 Density profiles from theoretical analysis and MCS . . . . . . . 50

Figure 3.5 Density profiles with different p . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.6 Dependence of current on entrance rate α . . . . . . . . . . . . . . . . 52

Figure 3.7 Density profiles near the phase boundaries . . . . . . . . . . . . . . . . 53

Figure 4.1 Illustration of TASEP with a zoned inhomogeneity . . . . . . . 58

Figure 4.2 Diagrams of possible stationary-state phases . . . . . . . . . . . . . . 62

Figure 4.3 Currents with different hopping probability p . . . . . . . . . . . . . 64

Figure 4.4 Density profiles from simulations with different p . . . . . . . . . 66

Figure 4.5 Phase diagram in case W with p . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.6 Currents with fixed p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 4.7 Density profiles with different p . . . . . . . . . . . . . . . . . . . . . . . . . . 70



x

Figure 5.1 Schematic diagram of TASEP with a MISO junction . . . . . 75

Figure 5.2 Phase boundaries and phase diagram of the model . . . . . . . . 81

Figure 5.3 Density profiles from theoretical calculations and MCS . . . 94

Figure 5.4 Density profiles from DW theory and MCS . . . . . . . . . . . . . . . 95

Figure 5.5 Density profiles vs different m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 5.6 Density profiles in random and parallel updates . . . . . . . . . . 97

Figure 5.7 TASEP with m-input n-output junction . . . . . . . . . . . . . . . . . . 98

Figure 5.8 Illustration of entering and exiting in two subsystems . . . . . 98

Figure 5.9 Phase boundaries and phase diagram vs different λ . . . . . . . 99

Figure 5.10 Density profiles vs different λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 5.11 Density profiles from DW theory and MCS . . . . . . . . . . . . . . . 101

Figure 5.12 Currents from theoretical calculations and MCS . . . . . . . . . . 101

Figure 6.1 Illustration of the TASEP with site sharing . . . . . . . . . . . . . . . 105

Figure 6.2 Four possible states on each site . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 6.3 Phase diagram of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 6.4 Stationary currents vs sharing probability . . . . . . . . . . . . . . . . 113

Figure 6.5 Density profiles in the LD, HD and MC phases . . . . . . . . . . . 114

Figure 6.6 Four possible states vs sharing probability . . . . . . . . . . . . . . . . 116

Figure 6.7 Currents in our model and the Bridge model . . . . . . . . . . . . . 117

Figure 7.1 Illustration of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 7.2 Symmetry breaking in the phase diagram . . . . . . . . . . . . . . . . . 122

Figure 7.3 Histograms of densities in all phases . . . . . . . . . . . . . . . . . . . . . . 124

Figure 7.4 Flipping processes in the asymmetric phases . . . . . . . . . . . . . . 125

Figure 7.5 Finite-size effects with different system length . . . . . . . . . . . . 125

Figure 7.6 Stationary current with different β . . . . . . . . . . . . . . . . . . . . . . . 126

Figure 7.7 Currents obtained from our model and the Bridge model . 127



xi

List of Tables

Table 2.1 Stationary properties of TASEP in random update . . . . . . . 13

Table 2.2 Stationary properties of TASEP in parallel update . . . . . . . . 15

Table 2.3 Stationary properties of TASEP with large particles . . . . . . 18

Table 2.4 Stationary properties of TASEP with inhomogeneity . . . . . . 32

Table 3.1 Comparisons of TASEP with local inhomogeneity . . . . . . . . . 46

Table 4.1 Details of Figure 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table 5.1 Possible phases and corresponding conditions . . . . . . . . . . . . . 89



Chapter 1

Introduction

1.1 Research description

Traffic is a ubiquitous phenomenon and has been observed at almost all levels of

natural and manmade systems, covering macroscopic objects like cars, pedestrians,

and ants, to microscopic molecular motors [1, 2]. These motile objects are self-

driven by converting chemical energy into mechanical works like directed movement.

Self-driven systems often exhibit emergent properties (e.g., phase transitions, phase

separations) that result from interactions among these motile objects, rather than

being imposed by a central controller. In this sense, such systems are regarded as

complex systems [3] and characterised by non-zero traffic currents.

A common modelling strategy for such complex systems is to abstract motile

objects into particles by neglecting their size and underlying structure, and then

looking at traffic as a non-equilibrium system of interacting particles. It is proposed

that there has not been a well-established general theoretical framework which can be

used to analyse all non-equilibrium systems [4, 5, 6]. As a result the non-equilibrium

systems are less understood, compared to the equilibrium systems. In the equilib-

rium case, the Gibbs measure provides such a theoretical framework [5, 6]. Therefore,

seeking for similar stationary properties and general behaviour of non-equilibrium
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systems by investigating individually a large variety of mathematical models based

on a paradigm has attracted much attention in recent decades.

Such a paradigmatic model for non-equilibrium systems is known as an asym-

metric simple exclusion process (ASEP). An ASEP is a one-dimensional lattice model

in which particles hop to the nearest-neighbour sites in a preferred direction and in-

teract through hard-core exclusion (i.e., each site can be occupied by no more than

one particle at any given time). It was introduced originally in 1968 as a theoret-

ical model for describing ribosome motion along mRNA [7]. The simplest form of

the ASEP is that particles can move along only one direction, which is called the

totally ASEP (TASEP). The TASEP and its variants have shown to be suitable for

modelling traffic flow. The reasons for this can be as follows:

1. TASEP models can describe both single- and multiple-channel traffic easily,

which is particularly important in modelling traffic flow.

2. TASEP models can be computationally advantageous and are easy to be im-

plemented in large-scale simulations since traffic variables such as position,

speed and time are treated as discrete. Obviously, such models can be easily

computed using random and parallel computing paradigms.

3. Random speed fluctuations caused by driver behaviour or external conditions

(e.g., night visibility or weather) can be described by different hopping prob-

abilities.

4. Different driver types can be represented as different species of particles.

5. Macroscopic traffic flow variables, such as average flux, average speed and

density profiles can be obtained by averaging individual particle or site data.

A better understanding of non-equilibrium steady states in self-driven systems

has been a central research topic in recent years. Various models and solutions along
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this line have found their natural applications in biology, physics, and chemistry

[8, 9] such as gel electrophoresis [10], protein synthesis [11, 12], mRNA translation

[13], motion of molecular motors along the cytoskeletal filaments [14], and the de-

polymerization of microtubules by special enzymes [15] as well as vehicular traffic

[16, 17]. Meanwhile, problems from these systems have motivated many mathemati-

cal models. For more details, see Chapter 2 where various TASEP models have been

reviewed.

This thesis studies the emergent properties induced by various inhomogeneities

on TASEP in single- and multiple-channel systems. In particular, the focus of this

study is on theoretically investigating the effects of:

1. A single inhomogeneity and a zoned inhomogeneity on TASEP in a single-

channel system.

2. TASEP with a multiple-input multiple-output junction. The junction point

can be viewed as an inhomogeneity.

3. Random inhomogeneities on two-species TASEP with site sharing and re-

laxed/constrained boundaries in a single-channel system.

This research is expected to:

1. Contribute to a deeper understanding of non-equilibrium systems, especially

in the case of inhomogeneity.

2. Advance the theoretical understanding of general behaviour of various systems

including vehicular traffic and biological transport by investigating dynamical

traffic properties (e.g., phase diagrams, current and density profiles).

3. Provide a theoretical basis for further investigation of non-equilibrium systems.

Furthermore, the research findings may have implications for the guidance or

explanation of future experiments on vehicular traffic or biological transport.
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1.2 Research motivation

As mentioned above, there is no general theoretical framework that can be used to

describe general non-equilibrium systems [4, 5, 6]. Alternatively, a large variety of

models and solutions need to be further developed, so as to enhance understanding

of non-equilibrium systems. Having been extensively studied for decades, TASEP

still possess many fascinating, yet non-trivial, phenomena observed in computer

simulations that are worth further exploring theoretically.

A broader understanding of transport systems is still required, in particular, a

great need for deeper understanding of traffic jams in those systems. It is known

that vehicular traffic congestions can pollute the environment and increase fuel con-

sumption. Intracellular traffic jams have been proposed to involve in a variety of

diseases such as cardiovascular problems and neuronal diseases (e.g., Alzheimer’s,

sclerosis, retinitis pigmentosa, see Refs. [18, 19, 20] for more details). One possi-

ble explanation for intracellular traffic jams is defective molecular motors or tracks.

Thus, a better understanding of traffic jam patterns may help shed light on possible

disease treatments.

The experimental observations reveal many interesting motion fashions of molec-

ular motors such as molecular motors moving along cytoskeletal filaments [21], ran-

dom motors (e.g., kinesins) attaching to and detaching from cytoskeletal filaments

[22], freely changing to the adjacent filaments [23], bidirectional transport [24], co-

operative many-motor transport [25] and so on.

Studies of the traffic dynamics of non-equilibrium systems, motivated by molec-

ular motor traffic, could have many potential applications in bionanotechnology, for

example, alleviating traffic jams in intracellular transport systems, controlling po-

sitions and directions of molecular motors, delivering drugs targeted to control or

even cure some diseases [26].
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Although this research is motivated by vehicular traffic, pedestrian traffic and

biological transport, the proposed models are still simplified and far from reality

due to the lack of empirical data. Nevertheless it has inspired various TASEP

models which revealed many interesting phenomena and gained the attention from

interdisciplinary researchers.

1.3 Main contributions

1.3.1 Research contributions

This research is focused on investigating traffic dynamics of TASEP with various

inhomogeneities. The main contributions of this research are as follows:

1. Theoretical solutions for the following research issues (except for (e)) have been

obtained via mean-field methods as well as domain-wall theory in some cases.

The theoretical predictions are well supported by Monte Carlo simulations.

(a) TASEP with single inhomogeneity in a single-channel system

(b) TASEP with a zoned inhomogeneity in a single-channel system

(c) TASEP with multiple-input multiple-output junction

(d) Two-species TASEP with site sharing and relaxed boundaries in a single-

channel system

(e) Two-species TASEP with site sharing and constrained boundaries in a

single-channel system

2. Theoretical results gained in points (a), (b), (c) and (d) can be viewed as

fundamental results for further developments.

3. In point (c), a generic theoretical solution for TASEP with a m-input n-output

junction is presented. Junctions with the same λ (λ = m/n) are demonstrated
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to possess the same phase diagram, stationary current, and density profiles.

Furthermore, the areas of the low-density and high-density phases can be cal-

culated directly.

4. In points (d) and (e), the site-sharing model is firstly proposed. The site-

sharing mechanism is different from the widely used site-exchanging mecha-

nism in previous two-species TASEP models. The new models allow double

occupation of sites, rather than excluding each other. This kind of site-sharing

model has been little studied before.

5. In point (e), the model exhibits spontaneous symmetry breaking in two asym-

metric phases: low-density-low-density phase and low-density-high-density phase.

The flipping processes of particles in these phases have been observed.

1.3.2 Author’s contributions

Chapters 3-7, corresponding to research issues (a-e), of this thesis have been

published or submitted for review in a variety of academic journals, as listed in

Appendix Publications [1-5]. All of these papers have multiple co-authors as

well as the author of this thesis, Mingzhe Liu. The input of the co-authors of

each paper in all stages of the research development is gratefully acknowledged,

as are the suggestions made by the anonymous peer reviewers of the journals.

All of the computational work and theoretical analysis involved in the research

described in this thesis is the primary work of the thesis author. While the

initial ideas for the papers arose from useful discussions with the co-authors,

and their input was useful in all cases, the author of this thesis initiated the
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written materials, and the production of all graphs and figures. The super-

vision panel of the student changed to reflect the circumstances of the PhD

project late in the project.

1.4 Thesis outline

The outline of this thesis is as follows:

Chapter 2: The TASEP model and its variants are comprehensively reviewed. The

known results of TASEP with random update and parallel update are briefly

summarized, then the review on TASEP models in terms of particle properties

(e.g., large particles, multiple-speed particles and Langmuir kinetics) and lat-

tice geometries (e.g., one channel and multiple channels, local inhomogeneity)

is made.

Chapter 3: A one-dimensional TASEP with a single inhomogeneity in parallel up-

date is studied. An inhomogeneity is characterized by the reduced hopping

probability. The results obtained from the mean-field approach and Monte

Carlo simulations are discussed. The phase diagram is shifted with the strength

of local inhomogeneity, but topologically unchanged, compared to that of the

normal TASEP. The phenomenon of phase separation is observed.

Chapter 4: The effect of a zoned inhomogeneity on a one-dimensional TASEP in

parallel update is investigated. By using a simple mean-field approximation,

the phase diagram, stationary current and density profiles are predicted and

supported by Monte Carlo simulations.

Chapter 5: The traffic dynamics of TASEP with a multiple-input single-output

junction in parallel update is investigated, then the model is extended to a

general case: m-input n-output junction.
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Chapter 6: A two-species TASEP with site sharing and relaxed boundaries in

a single-channel system is presented. The model is motivated by multiple-

channel traffic and pedestrian traffic. The new aspect of this investigation,

compared to previous two-species TASEP models, is that the particles moving

in opposite directions do not pass each other by an exchanging mechanism,

but by sharing a site.

Chapter 7: Based on Chapter 6, further investigation of a two-species TASEP

with site sharing and constrained boundaries is conducted. The spontaneous

symmetry breaking is observed and exhibits two asymmetric phases: low-

density-low-density phase and low-density-high-density phase. The flipping

processes of particles in these phases have been observed.

Chapter 8: A summary is given by revisiting the main findings of the thesis and

commenting on possible future work.



Chapter 2

Review on TASEP Models

In this Chapter, the main features of totally asymmetric simple exclusion process

(TASEP) in random and parallel updating procedures are reviewed. An overview

of some generalizations and extensions of the TASEP is given, and several popular

mean-field techniques used to analyze TASEP models are summarized. TASEP vari-

ants have been successfully used to model real complex systems in Biology, Physics

and Chemistry. However, it is not the purpose of this Chapter to review such ap-

plications in any detail. There is much literature on TASEP-related applications;

I refer to review articles [1, 31] and the references therein for biological transport,

and review articles [16, 17] and the references therein for vehicular traffic.

2.1 Totally asymmetric simple exclusion process

2.1.1 Introduction

The exclusion process in a one-dimensional system has been well studied with

extensive computer simulations and some theoretical solutions in the stationary

state. Totally asymmetric simple exclusion process (TASEP), a basic model for

non-equilibrium systems, describes a single-species particle moving unidirectionally

along a homogeneous lattice. Particles can hop to the nearest-neighbor site with
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probability 1 provided the target site is empty.

There are normally two kinds of boundary conditions: periodic boundary condi-

tions and open boundary conditions [16]. The former describes closed systems, while

the latter simulates open systems. In periodic boundary conditions, the system size

N and number of particles M are known. Thus, the system density ρ is given by

ρ = M/N . Periodic boundary conditions are normally used to calculate the fun-

damental diagram (i.e., the current-density relationship) in the study of vehicular

traffic [16]. The fundamental diagram can describe the dynamic properties of ve-

hicular traffic flow, e.g., free flow and congested flow. Alternatively, systems require

input and output parameters under open boundary conditions . Open boundary

conditions provide a more realistic description of traffic flow in the real world and

will be used in this research.

2.1.2 Updating procedures

In open boundary conditions, the TASEP is defined in a one-dimensional lattice

of N sites (see Figure 2.1). Sites 1 and N define the left and right boundaries,

respectively, while a set of sites 2, ..., N -1 is referred to as the bulk. For the purpose

of description, an occupation variable τi is used to represent the state of the ith site.

τi = 1 (0) corresponds to the site being occupied (empty). The following update

rules are applied to each individual site.

• Site 1. (i) If τ1 = 0, a particle enters the system with rate α. (ii) If τ1 = 1 and

τ2 = 0, a particle in site 1 moves into site 2 with probability 1. (iii) If τ1 = 1

and τ2 = 1, the particle stays site 1.

• Site N. If τN = 1, a particle leaves the system with rate β.

• Site 1 < i < N . If τi = 1, a particle moves into site i + 1 with probability 1 if

τi+1 = 0. Otherwise, the particle stays there.
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Figure 2.1: Schematic representation of TASEP with open boundary conditions.
Particles move from the left to the right with hard-core exclusion (i.e., each site
cannot be occupied by more than one particle at a time). The solid arrow indicates
an allowable hopping, while the dashed arrow corresponds to a prohibited movement.

To study the TASEP, it is necessary to specify the update order of particles.

Basically, there are four types of updating procedures: random, ordered-sequential,

sublattice-parallel, and fully parallel [30]. Obviously, the dynamics of particles in

the TASEP is different according to different updating procedures. The following

updating procedures determine how an individual site is chosen.

1. Random. A site i (1 ≤ i ≤ N) is randomly chosen at each time step.

2. Ordered-sequential. A particle at site i = N is first removed with probability

β, then the state of site N −1 is followed. If there is a particle at site N −1, it

can move into site N provided site N is empty. The states of sites N − 2, N −
3, ..., 3, 2, 1 are updated in order, until the left boundary is reached.

3. Sublattice-parallel. Sites are divided into groups, e.g., the first group is odd

number sites, and the second is even number sites, then the system updates

those groups in some predefined order. Within the individual group, the sites

are updated in parallel.

4. Fully parallel. All sites are updated at the same time.

Most of TASEP variants in the literature are implemented with random update,

which shows the weakest interactions between particles [30] and is widely used in
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describing biological transport [1, 31]. Parallel update shows the strongest interac-

tions between particles [32, 33] and is more suitable for vehicular, pedestrian, and ant

traffic [16] since parallel update can describe better continuous movement of motile

objects in a system, compared to other updating procedures. It has been shown

that parallel traffic simulations can reproduce observed traffic phenomena more re-

alistically. In addition, TASEP is a simplified version of cellular automata. Parallel

cellular automata models have been successfully used in road traffic simulations.

Other updating procedures, such as ordered-sequential and sublattice-parallel, can

be considered as intermediate versions. Thus, studying TASEP and its extensions

with random and parallel updates suffices to understand qualitatively and quanti-

tatively the dynamics of the TASEP and its extensions. Note that the TASEP with

ordered-sequential and sublattice-parallel updates have been investigated recently.

For instance, [34] studies bi-directional particle transport with ordered-sequential

update. Two-species TASEP in ordered-sequential and sublattice parallel updates

is investigated in [35]. Jafarpour et al. [36] examined shock profiles for the TASEP

with sublattice-parallel update. The exact results of the TASEP with these four

updating procedures for general p (see Figure 2.1) have been reported in [30]. Here

I briefly summarise the results of the TASEP for p = 1 with random and parallel

updates.

2.1.3 Random update

The TASEP with random update on a one-dimensional lattice has been analyzed

theoretically in [8]. The corresponding equation for the evolution of particle densities

〈τi〉 in a bulk can be written as follows:

d〈τi〉
dt

= 〈τi−1(1− τi)〉 − 〈τi(1− τi+1)〉, (2.1)
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Table 2.1: Relation between current and bulk density of different phases in the
normal TASEP with random update. α is the entrance rate, and β is the exit rate.
LD (HD) is for low (high) density, and MC for maximal current

phase conditions current (J ) bulk density (ρ)
LD α < β, α < 0.5 α(1− α) α

HD α > β, β < 0.5 β(1− β) 1− β

MC α ≥ 0.5, β ≥ 0.5 0.25 0.5

while at the left and right boundaries one obtains:

d〈τ1〉
dt

= α〈(1− τ1)〉 − 〈τ1(1− τ2)〉. (2.2)

d〈τN 〉
dt

= 〈τN−1(1− τN )〉 − β〈τN 〉. (2.3)

where 〈· · ·〉 denotes a statistical average. The first term corresponds to a particle

entering into site i, and the second term corresponds to a particle leaving site i.

Depending on the values of α and β, the normal TASEP exhibits three stationary

phases [8]: low-density (LD), high-density (HD) and maximal-current (MC) (see

Figure 2.2(a)). The phase transition from the LD phase to the HD phase is first-

order, while the LD phase to the MC phase and the HD phase to the MC phase are

continuous. In the LD phase, the system current is independent of β. In the HD

phase, the system current is independent of α. In the MC phase, the system current

is independent of both α and β. Table 2.1 summarizes the relationship between

current and bulk density for different phases in the normal TASEP with random

update.
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Figure 2.2: Phase diagrams of TASEP under open boundary conditions. The solid
lines mean transitions between LD phase and HD phase are the first order, while
the dashed lines correspond to continuous transitions between LD phase and HD
phase. J is the system current and ρ is the bulk density. (a): random update; (b):
parallel update.

2.1.4 Parallel update

The dynamic rules of the TASEP in parallel update can be described by the micro-

dynamic equation [32]:

τi(t + 1)− τi(t) = Ĵi−1(t)− Ĵi(t), (2.4)

where Ĵi(t) denotes the number of particles passing through the link (i, i + 1) at

time t, i.e., the current. As the current in the system is conserved, one obtains [32]:

J = Ji, Ji = 〈Ĵi〉 i = 1, 2, ..., L, (2.5)

where J is the system current and 〈Ĵi〉 = 〈τi(1−τi+1)〉 is the average current through

the link (i, i + 1). Exact solutions for the TASEP in parallel update have been

presented in [32, 33] and there are still three stationary phases: low-density (LD),

high-density (HD) and maximal-current (MC) phases (see Figure 2.2(b)). Table 2.2



2.1: Totally asymmetric simple exclusion process 15

Table 2.2: Relation between current and bulk density of different phases in the
normal TASEP with parallel update. α is the entrance rate. β is the exit rate.

phase conditions current (J ) bulk density (ρ)
LD α < β < 1 α/(1 + α) α/(1 + α)
HD β < α < 1 β/(1 + β) 1/(1 + β)
MC α = β = 1 0.5 0.5

summarizes the relationship between current and bulk density of different phases in

the normal TASEP with parallel update.

The differences between the phase diagrams for the TASEP with random and

parallel updates are obvious. For instance, the MC phase in random update is

specified by 0.5 ≤ α ≤ 1 and 0.5 ≤ β ≤ 1 (see Figure 2.2), while it reduces to a

point at α = β = 1 in parallel update (see Figure 2.2(b)). These differences indicate

that different updating procedures can lead to different phase structures even in the

simplest case.

The parallel update has been typically adopted for modelling vehicular and

pedestrian traffic [16, 37]. It is argued that this might be adopted for modelling

motor traffic within cells as well since (i) the number of such motors within cells is

huge; (ii) these motors move along cytoskeletal filaments simultaneously; and (iii)

normally these motors can make about 100 successive steps in the absence of loads

[38].

The TASEP model can be seen as the minimal particle-hopping model for non-

equilibrium systems in the sense that all four components (i.g., particles, lattice,

boundary conditions and updating procedures) are necessary. Any further simpli-

fication of the model will leads to an incomplete description of the system. Thus,

a change of particle properties, lattice structures, boundary conditions, and/or up-

dating procedures may lead to a variation of the TASEP. Figure 2.3 shows some
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Figure 2.3: Illustration of some possible TASEP extensions. These extensions can be
made with particle properties, lattice structures, boundary conditions, or updating
procedures to suit various issues.
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possible variations derived from these four aspects. Since open boundary condi-

tions, random update and parallel update are normally used in TASEP models, the

focus of this review is mainly on particle properties and lattice structures. In other

words, this review follows along two lines: TASEP with different particle properties

and TASEP with different lattice structures. Particle properties may include: large

particles (some researchers also call them extended objects), long-range hopping

(or multiple-speed hopping), Langmuir kinetics (LK)1, and two species of particles.

Lattice structures can be multiple parallel channels, multiple-input multiple-output

junctions, intersections, roundabouts, and local inhomogeneities (also called defects

or bottlenecks in some cases).

2.2 TASEP with particle properties

2.2.1 TASEP with large particles

Large particles are also referred to as extended objects in the literature. Each of them

can occupy several sites (i.e., particle size ` > 1). The counterparts of large particles

in nature can be long-size vehicles, ribosomes, dimers, multiple-motor cooperative

motion, large molecules or vesicles and so on.

Lakatos and Chou [39] studied the TASEP on a one-dimensional lattice with

large particles and random update. Their theoretical analysis predicts that there

are still three stationary phases: the LD, HD and MC phases similar to the normal

TASEP [8]. However, the phase boundaries, current, and bulk density are affected

by particle size `. Table 2.3 briefly recalls the theoretical results of possible phases,

corresponding conditions, current and density profiles of the TASEP with large par-

1Irving Langmuir (1881-1957) was an American physicist and chemist. He recieved 1932 Nobel
Prize in chemistry for his contributions in surface chemistry. Langmuir kinetics is widely used to
describe absorption-desorption process in surface chemistry. In biophysics, it is used to describe
particles randomly attachment to and detachment from a lattice, LK for short.
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Table 2.3: Relation between current and bulk density of different phases in the
normal TASEP with large particles and random update. α is the entrance rate, β
is the exit rate, and ` is the particle size.

phase conditions current (J ) bulk density (ρ)
LD α < β, α < 1/(1 +

√
`) α(1− α)/[1 + α(`− 1)] `α/[1 + α(`− 1)]

HD α > β, β < 1/(1 +
√

`) β(1− β)/[1 + β(`− 1)] 1− β

MC α ≥ 1/(1 +
√

`), β ≥ 1/(1 +
√

`) 1/(1 +
√

`)2
√

`/(1 +
√

`)

ticles. Note that for ` > 1 , no exact solutions exist and results are obtained from

mean-field approximations. In what follows, much attention has been devoted to in-

vestigating joint effects of large particles and Langmuir kinetics (particles randomly

attachment to and detachment from a lattice) on TASEP [40, 41] and joint effects

of large particles and local inhomogeneity on TASEP [12, 42, 43]. These articles are

reviewed in Sections 2.2.3 and 2.3.3.

Note that these papers considered homogenous traffic (i.e., consisting of parti-

cles with the same size) of large particles. The mixed traffic (consisting of particles

with different sizes) has not been well understood theoretically although it has been

extensively simulated in vehicular traffic. Moreover, the theoretical investigation

of the effect of large particles on TASEP in a single-channel system with parallel

update has not been conducted so far. The following comparisons of theoretical

results should be addressed: (i) TASEP with large particles in random update and

in parallel update; (ii) TASEP with large particles in parallel update and the normal

TASEP in parallel update.

2.2.2 TASEP with long-range hopping

Long-range hopping means that a particle can hop more than one site at one time

step. The effects of long-range hopping in the TASEP with parallel update have been
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investigated in [44]. However, the long-range hopping in [44] implies that a particle

can jump several successive sites ahead provided all of these sites are empty. The

model, essentially, a multiple-speed TASEP, can be characterized by the maximal

hopping distance, vmax. The theoretical calculations indicate that the current is

determined by injection or ejection rate, independent of vmax. The influence of vmax

on the bulk density is only in the low-density phase, that is, the increase of vmax

will lead to a decrease in bulk density.

Recently, Kunwar et al. [45] developed a mathematical model for intracellular

traffic of dynein motor proteins. Their model is also a multiple-speed TASEP, but in

random update. Furthermore, the kinetics of attachment and detachment of motors

on the lattice is incorporated in their model. The model exhibits an unusual feature

where low and high density phases can coexist over a range of parameter values.

The TASEP with long-range hopping in random update was investigated in

[46] as well. In that model, particles are allowed to pass over each other by jumping

l sites with probability pl = 1/lσ+1 (σ is a control parameter). This long-range

hopping only checks whether the target site is empty, rather than checking whether

all successive sites between the current site and the target site are available. This is

the main difference from the above-mentioned multiple-speed models. It was found

that when σ > 1,the phase diagram remains the same as the standard one [8].

When 1 < σ < 2, density profiles depend on values of σ. In the MC phase, current

decreases with a σ-dependent exponent. One possible application of the model, as

the authors suggested [46], is to describe attachment and detachment processes of

molecular motors moving along a filament.

2.2.3 TASEP with Langmuir kinetics

Motivated by attachment-detachment kinetics of molecular motors on cytoskeletal

filaments [22], [47] studied a one-dimensional TASEP coupled with Langmuir kinet-
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ics (LK for short). This model can be regarded as a minimal model for intracellular

transport, and is also referred to as the PFF model. In [47], an unexpected phe-

nomenon, a phase coexistence between low-density and high-density phases, is ob-

served and a mean-field theory is developed. The mean field approximation derived

for density profiles has been shown to agree with Monte Carlo simulations.

Popkov et al. [49] argued that the mean-field method developed in the PFF

model cannot be used in general. They believe that the coincidence with the Monte

Carlo simulations in [47] is due to a lack of correlations in the steady state of the

TASEP. Furthermore, they claim that stationary density profiles can be derived,

in general, using a hydrodynamic equation [49], which can take correlations into

account. They have also demonstrated that the equation can correctly describe

density profiles on a quantitative level of the Katz-Lebowitz-Spohn (KLS) model

[50, 51], which a mean field approach has failed to reproduce, e.g., phase separation

into three distinct density regimes.

The PFF model can be used to describe the traffic dynamics of monomers. The

authors in [41] extended the PFF model by considering large particle properties,

specifically dimers (e.g., two-headed molecular motors). Dimers advance by a single

site at each time step. Thus, their model can be viewed as a combination of the

TASEP with large particles and LK. Unsurprisingly, the models exhibits the LD/HD

phase coexistence, and the phase diagram alters quantitatively, compared to the

phase diagram in the PFF model. The reason for that is, probably, due to the fact

that the phase diagram of the TASEP with large particles is qualitatively identical

with that of the normal TASEP.

A model, incorporating a single-channel TASEP, LK and Brownian ratchet

mechanism2, is proposed by Nishinari et al. [53] to mimic the movement of the

2Brownian ratchet is a mechanism that can rectify the random Brownian motion of particles
to generate a directed steady-state flow. An illustration of Brownian ratchet can be found in
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single-headed kinesin motor, KIF1A. A novel feature in their model is that there are

three states (strong attachment, weak attachment and no attachment) of a KIF1A,

compared with two states (attachment or detachment) in previous models. Their

model can capture explicitly thee effects of adenosine triphosphate (ATP) hydrolysis

as well as the ratchet mechanism. In the low-density phase, the experimentally ob-

served single molecular properties are reproduced and a phase diagram is presented.

Recently, the influence of inhomogeneity on TASEP coupled with LK has at-

tracted attention from several research groups [54, 55]. These papers will be reviewed

in Subsection 2.3.3.

2.2.4 TASEP with two species of particles

Studies on TASEP with two species of particles under open boundary conditions

mainly aim at observing the phenomenon of spontaneous symmetry breaking (SSB).

The SSB has been observed in both single- and multiple-channel systems [56, 57,

58, 59, 60, 61, 62, 63, 64, 65].

The SSB means that a system in symmetry (e.g., structures, updating proce-

dures) can be affected by some factors. At this point, the system no longer keeps in

a symmetric manner, that is, the symmetry of the system is spontaneously broken

[66]. In other words, one can observe two different densities of two species of parti-

cles in the SSB. More recently, the SSB is used to describe how one X chromosome

is randomly chosen and the other X chromosome stays silent in female cells [67].

Evans et al. [56, 57] firstly observed the phenomenon of the SSB in one-

dimensional two species TASEP with open boundary conditions. The first species

move from the left to the right while the second species particles move in the oppo-

site direction. The two kinds of particles may exchange each other with a certain

http://www.elmer.unibas.ch/bm/index.html, latest access on 14th Sept. 2009.
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probability. At the left boundary, the first species may enter the system with rate α

if the first site is empty, while the second species may leave the system with rate β.

Similarly, at the right boundary, the second species may enter the system with rate

α if the last site is empty, while the first species may leave the system with rate β.

As the shape of the model in [56, 57] looks like a bridge (see Figure 2.4), the

model is known as the “Bridge model”. In the Bridge model, it was shown that a

high-density-low-density (HD/LD) phase and an asymmetric LD/LD phase could

exist and both of them exhibit broken symmetry. Mean-field analysis shows that

the asymmetric LD/LD phase exists in a very small region. However, Monte Carlo

simulations suggest that the asymmetric LD/LD phase does not exist in the ther-

modynamic limit (i.e., as the number of the lattice sites N → ∞) [58, 59, 61, 62].

Figure 2.4: Sketch of the Bridge model. First species of particles move from the
left to the right, represented by filled circles. Second species of particles move with
opposite directions, denoted by open circles. Numbers over the arrows correspond
to hopping rates.

Levine and Willmann [60] extended the Bridge model by considering LK on a

lattice. The LK dynamics was assumed to be symmetric for two species of particles,

that is, two species with the same attachment rate and detachment rate. They

found that the SSB could exist and the localized shocks appear in some conditions.

The Bridge model with sublattice-parallel update is also investigated in [62]. The

symmetry breaking phenomenon, as [62] indicated, can be explained as a result of
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an amplification mechanism of fluctuations.

The SSB has been observed in a two-channel system as well. Popkov and Peschel

[59] investigated a two-channel system where two species of particles move in the

same direction. There is no exchange of particles between two channels. Interactions

between two channels are considered via the hopping rates. The hopping rates in

one channel (denoted as A) are assumed to depend on the local configuration of the

other channel (denoted as B). Local configuration can be understood in the following

way: in normal conditions, (1 0) −→ (0 1) on channel A with rate 1. If the local

configuration on the corresponding sites of channel B is (0 1), the hopping rate on

channel A is ε (ε < 1). Here (1 0) means that site i is occupied, while site i + 1

is empty. It is also shown that the symmetry breaking phenomenon could weaken

with the increase in values of ε.

Recently, the SSB has been investigated using two-species two-channel TASEP

with narrow entrances and random update under open boundary conditions [63].

Narrow entrances mean that particles cannot enter a channel if the exit site in the

other channel is occupied (see Figure 2.5). Two species of particles move along dif-

ferent channels and opposite directions. Interactions between two species of particles

are assumed to take place only on left and right boundaries. Four steady phases

(LD/HD, LD/LD, LD and MC) are obtained and two of them (LD/HD and LD/LD)

exhibit the SSB phenomenon. It is found that the effective boundary defects (e.g.,

narrow entrances) can lead to the SSB. Moreover, the MC phase can exist in two-

channel two species TASEP, while it does not exist in the single-channel two species

TASEP [56, 57, 58, 61]. The theoretical calculations qualitatively agree with Monte

Carlo simulations. However, as the authors in [63] indicated, the exact solutions

using TASEP to describe the SSB have not been obtained so far. The model in

[63] is motivated by kinesins and dyneins moving along microtubules in opposite

directions [63].
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Figure 2.5: Sketch of two-channel TASEP with narrow entrances [63]. Narrow en-
trances mean that a particle cannot enter a channel if the exit site in the other
channel is occupied. First species particle moves from the left to the right, repre-
sented by black circles. Second species particle moves oppositely, denoted by grey
circles.

Jiang et al. [64] further investigated the SSB in a two-channel system with

parallel update. The entrance rules of particles are the same as that in [63]. Two

symmetric breaking phases (HD/LD and LD/LD) are obtained and the LD/LD

phase just occupies a line in the phase diagram. Their investigations confirm that

for the same system, different updating procedures (e.g., random and parallel) can

lead to different dynamic properties.

L = 4
L = 3

L = 2

1

1
x

L = 1

Figure 2.6: Sketch of a four-channel TASEP model with narrow entrances [65].
Narrow entrances mean that particles cannot enter a channel if the nearest-neighbor
exit site in another channel is occupied.

More recently, Jiang et al. extended their work in [64] to a n-channel loop

system (n > 2) [65] (see Figure 2.6). The n-channel system is configured like a loop:
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the tail of channel 1 is next to the head of channel 2; the tail of channel 2 is next to

the head of channel 3, and so on. The system exhibits more complicated properties.

If n is an even number, the results revert to their two-channel system [64], i.e., the

HD/LD and LD/LD phases are two symmetric breaking phases. In this case, the

SSB is observed. When n is an odd number, a periodic structure is observed and

the period is related to n, the system size L, injection rate α and ejection rate β.

2.3 TASEP with different lattice structures

2.3.1 TASEP with multiple parallel channels
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Figure 2.7: General two-channel TASEP models. (a) Positive coupling models.
Particles may freely change to the corresponding site on the other channel with
probability ω1 (ω2) provided the corresponding site on the other channel is empty.
(b) Negative coupling models. Particles can change to the corresponding site on the
other channel with probability ω1(ω2) only when the immediately preceding site is
occupied and the corresponding site on the other channel is empty.

Most previous work on modelling particle traffic deals with single-channel sys-

tems. Obviously, the description of particle traffic would be more realistic if two-

or multiple-channel systems can be considered. Two- or multiple-channel vehicu-

lar traffic are common in our everyday life. In biological transport, experimental

observations have found that molecular motors (e.g., kinesins) can move along par-

allel protofilaments of microtubules and they can jump between these protofilaments



2.3: TASEP with different lattice structures 26

without restraint [23].

With regard to multiple-channel systems, inter-channel coupling rules have a

strong effect on system properties (e.g., phase diagrams, currents, and bulk den-

sities) and thus attract much attention. In general, there are two kinds of basic

inter-channel changing models: (a) positive channel-changing (PCC) model; and

(b) negative channel-changing (NCC) model (see Figure 2.7). For the purpose of

description, I introduce an occupation variable τ`,i denoting the state of the ith

(1 < i < N) site in the `th channel (` = 1, 2). τ`,i = 1 (0) corresponds to whether

the site is occupied or not. The PCC model corresponds to the following channel-

changing rules:

• If τ`,i = 1, τ3−`,i = 1, and τ`,i+1 = 0, a particle can move into site (`, i + 1)

with probability 1.

• If τ`,i = 1, τ3−`,i = 0, and τ`,i+1 = 0, a particle can move into site (`, i + 1)

with probability 1− w` or move into site (3− `, i) with probability w`.

In other words, particles in the PCC model may freely change to the corresponding

site on the other channel with probability w1(or w2) if the corresponding site on

the other channel is empty. However, particles in the NCC model can change to

the corresponding site on the other channel with probability w1(or w2) only when

the immediately preceding site is occupied and the corresponding site on the other

channel is empty.

A simple symmetric PCC model where α1 = α2 = α, β1 = β2 = β, and

w1 = w2 = w is investigated in [68]. Computational results suggest that values of

the coupling rate w have a strong effect on the steady-state properties of the system.

In particular, with the increase of w, the particle current of each channel decreases

and particle density increases. Following this line, Pronina and Kolomeisky then

extended their work in [68] to a general case where the asymmetric coupling rules
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are applied (i.e., w1 6= w2) [69]. It is found that the asymmetric coupling rules lead

to a very complex phase diagram, quite different from symmetric coupling. There

are seven phases in the TASEP with asymmetric coupling rules, in contrast to three

phases found in the system with symmetric coupling rules [68].

In [68, 69], inter-channel coupling rules are applicable to all sites. Recently,

TASEP with two parallel channels and symmetric/asymmetric coupling between

them are investigated by Tsekouras and Kolomeisky [70]. Symmetric/asymmetric

coupling between two parallel channels is allowed only at one specific site far from

the boundaries. In the case of the symmetric coupling there are three stationary

phases, similarly to the case of single-channel TASEP with local inhomogeneity

[71]. However, the asymmetric coupling lead to a very complex phase diagram with

ten stationary-state regimes. Both authors then investigated the symmetric and

asymmetric exclusion processes with asymmetric couplings in a two-channel system

[72]. Particles in one channel follow the rules of the TASEP, while they move as in

symmetric simple exclusion process (SSEP) along the other channel. In the SSEP

particles can jump forward and backward with equal probabilities. Their theoretical

calculations and computer simulations show that there are three stationary phases

(LD, HD, and MC) in the system. The phase boundaries are shifted according to

different coupling rates.

A generic solution for positive coupling models is so-called vertical cluster mean-

field approximation. In this method, there are four possible states for a cluster of

two vertical sites [68, 69, 70]. These states are: (i) Both vertical sites are occupied,

denoted as P11; (2) Vertical site on channel 1 is occupied, while the corresponding

site on channel 2 is empty, denoted as P10; (3) Vertical site on channel 1 is empty,

while the corresponding site on channel 2 is occupied, represented as P01; (4) Both

vertical sites are empty, represented as P00. Since these four states can be found

in any vertical sites on both channel, the corresponding probabilities for these four
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states can be normalized to 1, that is

P11 + P10 + P01 + P00 = 1. (2.6)

Thus, the bulk density in channel 1 can be written as: ρ1 = P11 + P10. Similarly,

ρ2 = P11 + P01. Combining boundary conditions and coupling rules, the phase

diagram, currents, and density profiles are obtained.

With regard to the NCC models, Mitsudo and Hayakawa investigated two-

channel TASEP with asymmetric coupling rules [73]. Different injection and ejection

rates of particles at the boundaries of two channels are considered. The positions of

kinks (i.e., shocks) are reported to be synchronized although the number of particles

may be different on two channels.

Jiang et al. [74] introduced LK into one channel of a two-channel system with

symmetric coupling rules. It is shown that synchronization of shocks on both chan-

nels occurs when the coupling rate exceeds a threshold. A boundary layer is also

observed at the left boundary as a finite-size effect. Two-channel TASEP both

coupled with LK are investigated in [75]. The model is inspired by the dynamics

of molecular motors, for instance, random motor (e.g., kinesin) attachments and

detachments on filaments [22], random changing to the adjacent filaments [23], uni-

directional motion of molecular motors along filaments [21], and local inhomogeneity

in a filament [76]. The shock is found to move left first and then move towards the

right with the increase of the channel-changing rates. This phenomenon is called

the jumping effect [75]. Shocks or kinks are also called domain walls (see Section 3.4

for details of the domain wall theory). It is also shown that increasing attachment

and detachment rates will weaken the jumping effect.

Effects of local inhomogeneity in one of the two TASEP channels on its neighbor

channel are also investigated in [77]. The system mainly demonstrates following

complex behavior on two channels: the local inhomogeneity has strong effects on
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both channels when the hopping rate at the local inhomogeneity, p, is small and

channel changing rate Ω is not so small. With the increase of p or Ω, the local

inhomogeneity effects are weakened.

Jiang et al. investigated a two-channel TASEP with asymmetric weak and

strong inter-channel couplings [78]. The weak couplings mean that the coupling

rates are inversely proportional to the system size, while in strong coupling condi-

tions, the coupling rates are independent of the system size. In the weak coupling

case, localized shock appears on one channel and the discontinuous phase transi-

tion is reproduced. For strong coupling, the shock disappears. When ω2 = 0, the

phase diagram consists of six regions. When ω2 6= 0, the authors report that the

current could be larger than 0.5 due to the correlation effect between neighbour

vertical clusters. Note that the NCC models are normally constructed in the hydro-

dynamic limit. The phase diagram, currents, and density profiles can be obtained

by numerically solving the steady state equations.

2.3.2 TASEP with multiple-input multiple-output junction

Junctions can be seen as an extension of the multiple channels connected by junction

points, which are one of the common used traffic facilities in nature. At junction

points, several traffic flow are merged into one, which may lead to traffic congestion.

In this sense, traffic points can be viewed as local inhomogeneities.

TASEP on lattices with a Y-junction (e.g., two-input-single-out junction) in

random update have been investigated in [79]. In their model, three stationary

phases (LD/LD, HD/HD and HD/MC) are obtained and two phase boundaries

(LD/HD and LD/MC) are presented. A domain wall approach is proposed to predict

density profiles on phase boundaries in [79, 80]. A similar approach has been used

to calculate density profiles on phase boundaries in synchronous TASEP [28]. The

basic idea of the domain wall is that, before a stationary state is reached, the left
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part and the right part of the system will form different domains of densities in the

bulk due to the particles entrance and exit. The coexistence of both domains causes

the appearance of a shock (or domain wall). The domain wall will move forward

and backward along the channel according to the values of entrance rate α and exit

rate β. For the normal TASEP in a stationary state, the domain wall will eventually

move to the right (left) end for the LD (HD) phase. For the Y-junction described

in [79], the domain wall finally locates at the junction points in a stationary state.

Wang et al. [28] investigated the dynamics of synchronous TASEP on lattices

with a multiple-input single-output (MISO) junction. They further extended the

MISO junction [28] to a general case, a m-input n-output (MINO) junction, in par-

allel update by mean-field analysis and computer simulations [29]. This generation

shows an integrated picture of the dynamics of TASEP with junctions. Further-

more, the MINO junctions can be classified by a parameter λ = m/n. Junctions

with the same λ possess the same traffic properties (e.g., phase diagrams, stationary

currents, and density profiles). This research issue has been completed and reported

in Chapter 6.

Recently, Cai et al. [81] introduced LK into the system with a Y-junction

described in [79]. Their model exhibit richer stationary phases, depending on the

ratio of ωA and ωD, the attachment and detachment rates, respectively. Setting

K = ωA/ωD, the authors studied three cases: K > 1, K = 1, and K < 1. In the

case of K > 1, there are four stationary phases. For K ≤ 1, more phases can be

observed. For a fixed K, the phase diagram structure changes with the increase of

ωD.

TASEP with two consecutive junctions connected by a single channel in the

middle are studied by Popkov et al. [82]. Particles on junctions are governed by

TASEP, while they follow the rules of the Bridge model on the single channel. Two

species of particles are involved in the system and move along opposite directions.
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The model can be seen as a combination of TASEP with junctions and the Bridge

model. The model exhibits SSB, i.e., the low-density-high-density phase. Moreover,

there is a coexistence region of the SSB phase and a low-density symmetric phase.

The starting point for analysing TASEP with various junctions is the rule of

current conservation through the junction points [81] and through the system [79,

28, 29, 82]. The junction geometry can be divided into two or more sections in terms

of junction points. Each section can be treated as a TASEP or its extension. The

overall phase diagram is thus a combination of possible phases in all sections. The

weakness of this approach is that the correlation near the junction points has not

been considered, which leads to deviations of theoretical calculations from computer

simulations.

2.3.3 TASEP with local inhomogeneity

Studies on local inhomogeneity in TASEP have received much attention in recent

years [27, 43, 54, 71, 77, 83, 84, 85, 87, 88, 89, 90]. Local inhomogeneity is also

referred to as site-wise inhomogeneity. It may include (i) a single inhomogeneous

site; (ii) a group of consecutive inhomogeneous sites; and (iii) randomly distributed

inhomogeneous sites. An inhomogeneous site is normally characterized by a different

hopping probability3 from the homogeneous ones. In other words, if the hopping

probability is denoted by p, p = 1 represents normal sites, while p < 1 corresponds

to inhomogeneous sites. In reality, local inhomogeneity may be involved in many

biological transport processes [76, 91, 92, 93] as well as in vehicular and pedes-

trian traffic [94, 95]. For instance, the local inhomogeneity of immunoreactivity may

lead to a high susceptibility to respiratory infection [93], while high-density (e.g.,

3Note that some scholars like to use the word ”probability” such as in [30, 32, 33, 56, 57, 71, 85],
while others prefer ”rate”, e.g., in [43, 89, 90]. The word ”probability” is adopted in this research
work.
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Table 2.4: Relation between current and bulk density of different phases in the
TASEP with local inhomogeneity and random update [71].

phase conditions current (J ) bulk density (ρ)
LD α < β, α < q/(1 + q) α(1− α) ρL = ρR = α

HD α > β, β < q/(1 + q) β(1− β) ρL = ρR = 1− β

MC α ≥ q/(1 + q), β ≥ q/(1 + q) q/(1 + q)2 ρL = 1/(1 + q), ρR = q/(1 + q)

congested) vehicular traffic may be attributed to some local inhomogeneity, e.g.,

on-ramps, lane reductions or temporary road works [94, 96]. Moreover, it has been

proposed that the crowding of molecular motors may be a source of some human dis-

eases such as neurodegenerative diseases, kidney diseases, and other human diseases

[18, 19, 20].

TASEP with a local inhomogeneity in a one-dimensional lattice under open

boundary conditions were studied in [71]. Table 2.4 lists the stationary phases, condi-

tions for the existence of the phases, and the corresponding current and bulk density.

Such a system can be decomposed to two steps: (i) one system with inhomogeneity

can be divided into two homogeneous subsystems. Each of them is treated as a

normal TASEP; (ii) two subsystems are connected by this inhomogeneous site. This

approach may be called as “Segmented Mean Field Approximation” (SMFA) and

has been followed by many researchers [27, 43, 54, 71, 77, 83, 84, 85, 87, 88, 89, 90].

Theoretical analysis of the model in [71] indicates that the phase diagram is

similar to the normal TASEP (i.e., the LD, HD and MC phases) [8] with shifts of

phase boundaries. Table 2.4 lists the relationship between current and bulk density

of different phases in the TASEP with local inhomogeneity and random update.

Based on the research in [39, 71], TASEP with local inhomogeneity and large

particles were investigated in [83]. As expected, the phase diagrams are still quali-
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tatively the same as the standard TASEP with different phase boundaries.

The effects of clustered slow codons (local inhomogeneities) in mRNA transla-

tion and protein synthesis are investigated using TASEP in [84]. The results show

that the clustered defects can affect the current of ribosomes (particles). However,

when the number of slow codons in a cluster is more than 3 or 4, the current of

ribosomes does not significantly reduce.

TASEP with local inhomogeneity coupled with LK on one-dimensional lattices

has been investigated in [54] and [87] at nearly the same time. In [54], a novel phase,

bottleneck phase, is introduced to describe the current independently of boundary

conditions. Due to the bottleneck phase (BP), several rich bottleneck-induced mixed

phases (e.g., LD-BP, LD-MC-BP, MC-BP-MC) are reported.

Qiu et al. [87] indicated that the system behavior exhibited in their model is

more complex than that in the PFF model [47]. Eight stationary-state phases are

found, and theoretical analysis approximately agrees with computer simulations.

When several inhomogeneities exist, the system becomes more complex. [86]

investigated dynamic properties of a TASEP with two different hopping rates, pa

and pb, on a one-dimensional lattice. In their model, sites at rate pb are arranged

with a period of T . Their theoretical analysis suggests that the dual-rate TASEP

still retains the three stationary phases (e.g., LD, HD and MC).

Dong et al. [43] investigated the effects of having inhomogeneities in different

positions on a lattice. For instance, having a slow site near the system boundaries

leads to a higher current than when the inhomogeneity is in the bulk of the lattice.

Foulaadvand et al. [88] studied a TASEP with variable hopping probability. The

hopping probability is assumed to follow a binary or uniform distribution. It is

found that the impact of disorder greatly depends upon the boundary conditions.

In [90], the effects of inhomogeneities on a one-dimensional TASEP with open

boundaries are reported. Inhomogeneous sites are randomly distributed with re-
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duced hopping rate. [77] studied the effects of local inhomogeneity in two-lane

TASEP coupled with LK. A single inhomogeneity is assumed to be located at one

of two lanes. It is found that the local inhomogeneity effect can be observed in both

lanes due to particles changing to the other channel when the hopping probability

of the inhomogeneous site is small. This effect can be reduced by increasing the

hopping probability or channel-changing rate.

Most TASEP models are implemented in random update, which shows the weak-

est spatial correlation, as indicated in [30]. Conversely, the synchronous/parallel

update [28, 30, 33, 97, 98, 99] exhibits the strongest interaction between parti-

cles, which has been typically adopted in modelling vehicular and pedestrian traffic

[16, 37]. TASEP in parallel update have been used to describe traffic flow in a single-

lane highway with ramps [100]. For a single ramp (either on-ramp or off-ramp), in

their model, the bottleneck phenomenon does not exist. Traffic jams before the

ramp and free flow after the ramp are not observed. For two consecutive ramps,

in particular, when the on-ramp is placed before the off-ramp, the bottleneck effect

occurs and the flow between two ramps saturates. These predictions are obtained

from their model. No real traffic experiments have been reported to either confirm

or reject these predictions.

2.4 Research methods

There are, in general, three types of research method (theoretical, experimental,

and computer simulations) involved in scientific study. In this research, the focus

is on theoretical methods (e.g, mean-field approximation and domain-wall theory)

and computer simulations, e.g., Monte Carlo method.

This section briefly introduces the Monte Carlo method. To verify theoretical

calculations of TASEP models, Monte Carlo simulations are carried out, in which



2.4: Research methods 35

various dynamical properties of the system: phase diagrams, density profiles, and

currents etc. are computed.

The Monte Carlo method is defined as “a method of approximately solving

mathematical and physical problems by the simulation of random quantities” [101].

The Monte Carlo method was systematically proposed by Metropolis and Ulam

in 1949 [102]. The name “Monte Carlo” originates from the city of Monte Carlo

Monaco, famous for its casino.

With the great improvements of computing power and generalization of of vector

and parallel computers, the Monte Carlo method has been used in the simulation

of many mathematical and physical problems influenced by random factors (see

[6,7,9,10,11] for example). Also its variants have been used in signal processing (e.g.,

stochastic approximation algorithm) and in optimization (e.g., simulated annealing)

[103]. On the other hand, the limitations of the Monte Carlo method are obvious as

well. For instance, the mathematical justification of the method is not always clear

[103].

I briefly explain how to use Monte Carlo method to simulate the normal TASEP

with open boundary conditions and random update. The TASEP variants can then

be simulated based on the standard Monte Carlo method. The Monte Carlo method

includes two parts: pre-processing and sampling. In the pre-processing part, it

normally runs 108 time steps without sampling dynamical properties of the system

in order to let the system reach the steady state. When the overall number of

particles entering the system is equal to that of particles exiting the system, one can

confirm that the system has reached steady state. For most TASEP systems 105 time

steps per site is sufficient to obtain good simulation results. In the sampling part,

bulk density, boundary currents and other quantities are computed with statistical

average. To avoid correlations, one normally performs a sample every 10L (L is

the system size). In general, the simulation scheme for particle-hopping process
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normally consists of the following steps:

1. Initialize the system (e.g., T = 1× 107, L = 1000)

2. Do T Monte Carlo time steps:

(a) Randomly choose a site index from 1 to L (1 corresponds to the first site,

L to the last site and all other indices are for hopping to the neighbour

site along the lattice)

(b) In case of the first site. If the first site is vacant, a particle can enter the

system with rate α; If the first site is not empty but the second site is

empty, the particle in the first site can hops to the second site

(c) In case of the last site. If the last site is not empty, the particle can leave

the system with rate β

(d) In case of another site. If the site is occupied and the next right site is

empty, the particle can hop to the next one with rate 1

(e) update the state of the chosen site

3. Repeat Step 2 with 10T time steps and compute average site densities and

boundary currents over the running times of 10T

A flow chart of Monte Carlo simulations for this normal TASEP is shown in

Figure 2.8.

2.5 Summary

In this Chapter, the totally asymmetric simple exclusion process (TASEP) and its re-

cent developments have been comprehensively reviewed. Several popular theoretical

methods are summarized. The Monte Carlo method used to verify theoretical analy-

sis is also introduced. This review provides a basic picture for a better understanding
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Figure 2.8: Flow chart of Monte Carlo simulations for the normal TASEP with
random update.

of non-equilibrium processes in complex systems, such as biological transport and

vehicular traffic. These models constitute the fundamental building blocks for this

research.



Chapter 3

Local Inhomogeneity in a
Single-channel System

3.1 Introduction

Traffic phenomena (e.g., intracellular transport and vehicular traffic) have received

much attention since the early 1970s [7]. One important issue in understanding

such traffic is to characterise stationary phases and transitions between them, using

theoretical analysis. There are also a great number of efforts to integrate traffic

theory with empirical observations in order to describe traffic more realistically [16,

104, 120, 121]. These achievements deepen understanding of the collective dynamics

of self-driven interacting particles such as cars and molecular motors (e.g., kinesins,

dyneins and myosins).

Totally asymmetric simple exclusion process (TASEP) has been widely accepted

as a powerful tool in studying traffic, which is far from equilibrium, and has been

successfully applied to describing stochastic dynamics of multi-particle interactions

in chemistry, physics and biology [9, 105, 106] such as protein synthesis [11, 12, 43,

84], mRNA translation phenomena [13], and motion of molecular motors along the

cytoskeletal filaments [14].

As a matter of fact, local inhomogeneity may be involved in many biological
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transport processes [76, 91, 92, 93] as well as in vehicular and pedestrian traffic flow

[94, 95]. The effects of local inhomogeneity on traffic properties have been exten-

sively investigated in recent years [43, 54, 71, 77, 83, 84, 85, 87, 88, 89, 90] within

the framework of non-equilibrium processes (see Section 2.3.3 for details). Most of

these TASEP models are based on random update. The focus of this Chapter is

on developing the theoretical and computational descriptions of the TASEP with

a single inhomogeneity in parallel update. The phase diagram is obtained using a

simple approximate theory, which gives an integrated picture of the traffic dynamics

of the system and covers the full parameter space. Extensive computer simulations

are carried out to verify the theoretical analysis. The parallel update has been typ-

ically adopted in modeling vehicular, ant and pedestrian traffic [16, 37]. Obviously,

the proposed model may be more suitable for car, ant and pedestrian traffic, but

less suitable for molecular motors or other biological transport.

This Chapter is organised as follows. In Section 3.2, A description of a one-

dimensional TASEP model with a local inhomogeneity in parallel update is given.

In Section 3.3, a mean-field approximation is developed, followed by a phenomeno-

logical domain wall approach in Section 3.4. In Section 3.5, the results of theoretical

analysis and computer simulations are presented and discussed. Finally, conclusions

are given in Section 3.6.

3.2 Model description

The model is defined in a one-dimensional lattice of N sites (N is an even number).

Particles are assumed to go through the system from the left to the right. Site 1

(N) defines the left (right) boundary, while a set of sites 2, ..., N -1 is referred to

as the bulk (see Figure 3.1(a)). It is assumed that the link between site k and site

(k + 1) is inhomogeneous and other links are homogeneous. In other words, the
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hopping probability at the inhomogeneous link is p, while the hopping probability

of other normal links is 1. The inhomogeneous link can be in any position of the

lattice; however, it is expected that the phase diagram and density profiles will

be qualitatively the same, provided the inhomogeneous link is far away from the

boundaries. For simplicity, k = N/2 is assumed in this Chapter. The following rules

are applied to all sites in parallel.

• Entrance: A particle can enter the system from site 1 with rate α if the site is

empty.

• Exit: A particle can leave the system from site N with rate β.

• Movement: A particle can move from site i into site (i + 1)with probability 1,

provided i 6= k. If i = k, it moves to site (i + 1) with probability p; or if site

(i + 1) is occupied by another particle, the particle stays at site i.

Figure 3.1: (a) Illustration of TASEP with a local inhomogeneity, which can be seen
as two subsystems: (b) the left subsystem, and (c) the right subsystem. Arrows
mean that the movements are allowed. Numbers over arrows are hopping rates.
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A one-dimensional synchronous TASEP with a local inhomogeneity can be seen

as two homogeneous one-dimensional subsystems connected by an inhomogeneous

link between sites k and (k+1) (see Figures 3.1(b) and (c)). The left subsystem

is a homogeneous TASEP with entrance rate α at site 1 and exit rate βeff at site

k. Similarly, the right subsystem is also a homogeneous TASEP with entrance rate

αeff at site (k+1) and exit rate β at site N .

In this Chapter, only 0 ≤ p < 1 is considered since the dynamics of such system

can be analyzed and simulated in parallel update. Obviously, when p = 1, the

system is the TASEP without local inhomogeneity. The exact solutions for this case

have been obtained in Refs. [32, 33].

3.3 Mean-field approximation

Here the results of a synchronous TASEP without local inhomogeneity is briefly

presented [32, 33]. There are three phases (low density, high density and maximal

current) in that system. The maximum current (MC), J = 0.5, can only be reached

at α = β = 1. When α < β, a low-density (LD) phase is obtained with

J = ρ, ρ = ρ1, ρ1 =
α

1 + α
, ρN =

α

β(1 + α)
, (3.1)

where J is the system current; ρ is the bulk density; ρ1 (ρN ) is the particle density

at the first (last) site of the system. The condition, α > β, corresponds to a high-

density (HD) phase, where

J = 1− ρ, ρ =
1

1 + β
, ρ1 = 1− β

α(1 + β)
, ρN = ρ. (3.2)

The currents in the left subsystem (JL), the right subsystem (JR) and the local

inhomogeneity (Jlocal) should be equal in a stationary state, that is

JL = JR = Jlocal. (3.3)
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Jlocal can be written as follows [33]

Jlocal =
1
2
(1−

√
1− 4pρk(1− ρk+1)). (3.4)

The overall phases in the system can be obtained from the combinations of

phases in the two subsystems. The possible stationary phases of the system are the

(LD, LD), (LD, HD), (HD, LD), (HD, HD), (LD, MC), (HD, MC), (MC, LD), (MC,

HD) and (MC, MC) phases as there are three possible phases (LD, HD and MC) in

each subsystem. As p < 1, it cannot guarantee βeff equal to 1, thus, it is impossible

for the MC phase to exist in the left subsystem. As a consequence, αeff is less than

1. In this condition, the MC phase would not exist in the right subsystem either.

That is, the last five phases could not exist in the system.

For the (LD, LD) phase, the following conditions should be satisfied

α < βeff , αeff < β. (3.5)

According to Eqs. (3.1), (3.3) and (3.4), one obtains

α

1 + α
=

αeff

1 + αeff
=

1
2
(1−

√
1− 4pα

βeff (1 + α)
(1− αeff

1 + αeff
)). (3.6)

Then, one gets αeff = α and βeff = p. Thus, the system is in the (LD, LD) phase

when

α < β, α < p. (3.7)

The corresponding current and density profiles in this phase are

J = ρ, ρ = ρ1, ρ1 =
α

1 + α
, ρk =

α

p(1 + α)
, ρk+1 =

α

1 + α
, ρN =

α

β(1 + α)
.

(3.8)

The (LD, HD) phase corresponds to

α < βeff , αeff > β. (3.9)
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As the current is conserved in the system, that is,

α

1 + α
=

β

1 + β
=

1
2
(1−

√
1− 4pα

βeff (1 + α)
β

αeff (1 + β)
), (3.10)

One obtains α = β and αeffβeff = pα. As αeff > β and βeff > α, α = β < p. This

phase corresponds to a transition line between the (LD, LD) and (HD, HD) phases

in the system. The density profiles of this phase will be studied using the domain

wall theory as shown in the following section.

The (HD, LD) phase corresponds to the following conditions

α > βeff , αeff < β. (3.11)

According to Eqs. (3.1-3.4), one has

βeff

1 + βeff
=

αeff

1 + αeff
=

1
2
(1−

√
1− 4p

1 + βeff
(1− αeff

1 + αeff
)), (3.12)

where αeff = βeff = p is obtained. Thus, the system is in the (HD, LD) phase

when

α > p, β > p. (3.13)

The current and density profiles in this phase are given by

J =
p

1 + p
, ρL =

1
1 + p

, ρ1 = 1− p

α(1 + p)
, ρk =

1
1 + p

,

ρR =
p

1 + p
, ρk+1 =

p

1 + p
, ρN =

p

β(1 + p)
. (3.14)

The (HD, HD) phase should be satisfied with

α > βeff , αeff > β. (3.15)

Similarly, one reads

βeff

1 + βeff
=

β

1 + β
=

1
2
(1−

√
1− 4p

(1 + βeff )
β

αeff (1 + β)
), (3.16)
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which is equivalent to βeff = β and αeff = p . According to Eq. (3.15), the system

is in the (HD, HD) phase when

α > β, β < p. (3.17)

Thus, the current and density profiles in this phase correspond to

J = 1− ρ, ρ=
1

1 + β
, ρ1 = 1− β

α(1 + β)
,

ρk =
1

1 + β
, ρk+1 = 1− β

p(1 + β)
, ρN =

β

1 + β
. (3.18)
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Figure 3.2: Phase diagrams of the TASEP with a local inhomogeneity in parallel
update. Filled circles correspond to simulation results, while lines are obtained from
the mean-field approximation of Sec. III. (a) p = 0.2, (b) p = 0.6, and (c) p = 1.0.

The above analysis suggests that there are four possible steady-state phases

((LD, LD), (LD, HD), (HD, LD) and (HD, HD)) existing in this system (see Fig-

ure 3.2). Theoretical predictions of phase boundaries are almost the same as com-

puter simulations. The (LD, HD) phase is a coexistence line of the first-order phase

transition between the (LD, LD) and (HD, HD) phases. The current in the (LD,

LD) and (HD, HD) phases is determined by the values of α or β (see Figure 3.2). In

other words, the current depends on the boundary conditions. In contrast, the (HD,

LD) phase is similar to a maximal current phase. The current through this phase
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is J = p/(1 + p). One can see that this current is constant and has the maximal

possible value compared to the (LD, LD) and (HD, HD) phases. Also, the current

in the (HD, LD) phase is boundary conditions-independent. In Ref. [54], this kind

of phase is called as the bottleneck phase.

The (HD, LD) phase region is specified by p ≤ α ≤ 1 and p ≤ β ≤ 1. When

p = 0, J = 0. This is obviously correct as p = 0 means that no particles can pass the

inhomogeneous link. Thus, the current of the system J = 0. When 0 < p < 1, one

can see that the (LD, LD) phase region and the (HD, HD) phase region expand with

the increase of p, while the (HD, LD) phase region shrinks (see Figures 3.2(a) and

(b)). Finally, in the case of p = 1, the system reduces to the normal synchronous

TASEP without local inhomogeneity (see Figure 3.2(c)).

Note that the phase diagram (see Figure 3.2) of the synchronous TASEP with

a local inhomogeneity is related to understanding the general properties of traffic

flow. Local inhomogeneities in a system can be blocks (e.g., road reductions or

road works) on roads. Although these blocks just cover very short road segments,

they can cause congested traffic. In the (LD, LD) and (HD, HD) phases, only local

deviations of density profiles can be observed when p changes. However, when the

system changes from the (LD, LD) phase to the (HD, LD) phase, a phase separation

between high and low densities occurs at the local inhomogeneity. Experimental

data collected on a German highway near Cologne (see Fig. 2 in Ref. [94]) exhibit

such a separation in the presence of an on-ramp where the transition from free flow

to congested flow is characterized by a sudden fall of the local velocity. This allows

us to separate the data set into free-flow and congested regimes.

I also compare theoretical results (e.g., stationary currents and bulk densities) of

TASEP with a single inhomogeneity in parallel update (present model) and random

update (in [71]) in Table 3.1. It has shown that different updating procedures

produce different dynamical properties even for the same system.
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Table 3.1: Comparisons of stationary currents and bulk densities of TASEP with
local inhomogeneity in parallel update (present model) and in random update [71].

update ρL
LD = ρR

LD JLD ρL
HD = ρR

HD JHD ρL
MC 6= ρR

MC JMC

parallel α
1+α

α
1+α

1
1+β

β
1+β

1
1+p , p

1+p
p

1+p

random α α(1− α) 1− β β(1− β) 1
1+p , p

1+p
p

(1+p)2

3.4 Domain wall theory
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Figure 3.3: Schematic diagram of the domain wall dynamics in the (LD, HD) phase,
i.e., the phase coexistence line. The domain wall moves in the left and right subsys-
tems at rates vL and vR, respectively.

Although the mean-field method introduced in the above section predicts the

existence of four phases, it fails for the prediction of bulk densities in the (LD,

HD) phase. This gives a direct justification to apply domain wall (shock) theory

instead. The domain wall theory has been employed successfully to explain the

phase behavior of the TASEP with a junction in random update in Ref. [79]. The
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domain wall theory is a phenomenological approach of the system dynamics [80].

That is, two different domains (of constant density) will appear in the bulk staring

from the left and right boundaries, respectively before the steady state of the system

reaches. When the system is in the steady state, two domains meet. The coexistence

of two domains in the bulk means the existence of a wall (shock). It is believed that

this approach could be applied to the TASEP with a local inhomogeneity in parallel

update. In this Chapter, the domain wall approach is used to calculate the density

profiles of the line α = β < p, i.e., the (LD, HD) phase. To determine a position of

the domain wall in the system, I define x as x = i/N , where i is the site index and

N is the length of the system size. The case of 0 < x ≤ 0.5, thus, corresponds to

the domain wall moving at rate vL in the left subsystem, and 0.5 < x ≤ 1 for the

domain wall moving at rate vR in the right subsystem (see Figure 3.3). vL and vR

can be given by

vL =
JL

ρL
+ − ρL−

, vR =
JR

ρR
+ − ρR−

. (3.19)

where

JL =
α

1 + α
, ρL

+ =
1

1 + α
, ρL

− =
α

1 + α
, (3.20)

and

JR =
β

1 + β
, ρR

+ =
1

1 + β
, ρR

− =
β

1 + β
. (3.21)

As a result, vL and vR are rewritten as:

vL =
α

1− α
, vR =

β

1− β
. (3.22)

Similarly to Ref. [79], qL (qR) is denoted as a probability to find the domain

wall at any position in the left (right) subsystem. For a special site i in the left

(right) subsystem, the probability is obviously equal to 2qL/N (2qR/N). Then, at

the local inhomogeneity, one reads

2vLqL

N
=

2vRqR

N
. (3.23)
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In addition, normalized qL and qR are satisfied with:

qL + qR = 1. (3.24)

Instituting Eq. (3.24) into Eq. (3.23), one obtains

qL =
vR

vL + vR
, qR =

vL

vL + vR
. (3.25)

As α = β < p corresponds to the transition line, one has vL = vR and qL = qR = 1/2.

These expressions reflect the fact that the domain wall can travel the left and right

subsystems within the same probability.

Accordingly, the probability of the domain wall falling in a certain zone in the

left subsystem is given by

Prob(xDW < x) = 2qLx, 0 < x ≤ 0.5, (3.26)

and in the right subsystem

Prob(xDW < x) = qL + 2qR(x− 0.5), 0.5 < x ≤ 1. (3.27)

Thus, the density at any position in the system becomes

ρ(x)m = ρm
−Prob(xDW > x) + ρm

+Prob(xDW < x), m = L,R (3.28)

Finally, from Eqs. (3.22-3.28), one can obtain

ρ(x)L =
α

1 + α
+

1− α

1 + α
x, 0 < x ≤ 0.5, (3.29)

and

ρ(x)R =
1
2

+
1− α

1 + α
(x− 0.5), 0.5 < x ≤ 1. (3.30)

Densities in the boundary conditions can be calculated as ρ(x = 0)L = α/(1+α) and

ρ(x = 1)R = 1/(1 + α). At the inhomogeneous site k (k = N/2), the densities are

equal to ρ(x = 0.5)L = ρ(x = 0.5)R = 1/2. These results are completely identical

with the theoretical analysis in Ref. [33] without inhomogeneity.
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3.5 Theoretical calculations and computer simulations

In this section, computer simulations are carried out to validate the theoretical

analysis. The length of the system size is assumed to be N = 1000 sites. For larger

size N , simulation results show almost identical results with the ones presented here.

The simulation results for the density profiles are shown in Figure 3.4. In the

(LD, LD), (HD, HD) and (HD, LD) phases, density profiles are still quantitatively

and qualitatively the same as theoretical calculations (see Figures 3.4(a)-(c)). As

mentioned, the (LD, HD) phase corresponds to the phase coexistence line between

the (LD, LD) and (HD, HD) phases. Figure 3.4(d) shows the density profiles in

this phase obtained from computer simulations and theoretical predictions. It is

found that the density profiles derived from mean-field approximation are close to

that obtained in computer simulations except around the local inhomogeneity. One

possible explanation of these deviations is that the interaction between the particles

near the local inhomogeneity is stronger than theoretical predictions.

The effects of hopping probability p on density profiles are examined when α <

β. The influence of p with α > β can be obtained using particle-hole symmetry [71]

and the phase diagram shown in Figure 3.2. In Figure 3.5(a), α = 0, 2, β = 0.6, and

p = 0.1 lead to the (HD, LD) phase which is determined by αeff = βeff = 0.1 (see

Eq. (3.11)). When p > 0.2, a phase transition from the (HD, LD) phase to the (LD,

LD) phase is observed. In the (LD, LD) phase, the bulk density ρ = α/(1+α), which

is independent of the value of p. The details of densities near the inhomogeneous site

are shown in Figure 3.5(b). It can be seen that the amplitude of density increment

near the local inhomogeneity in the left subsystem decreases with the increase of p,

while densities remain unchanged in the right subsystem when p > 0.2.

Currents with different hopping probabilities are also investigated. For simplic-

ity, it is assumed that exit rate β is constant in each figure, i.e., β = 0.5 in Fig-
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Figure 3.4: Density profiles from simulations and theoretical analysis in the sta-
tionary states. (a) the (LD, LD) phase with α = 0.2, β = 0.6 and p = 0.5 (Eq.
(3.8) for theoretical calculation); (b) the (HD, HD) phase with α = 0.8, β = 0.3
and p = 0.5 (Eq. (3.18) for theoretical calculation); (c) the (HD, LD) phase with
α = 0.9, β = 0.7 and p = 0.3 (Eq. (3.14) for theoretical calculation); and (d) the
(LD, HD) phase with α = 0.3, β = 0.3 and p = 0.5 (Eqs. (3.29) and (3.30) for
theoretical calculations).
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Figure 3.5: Density profiles with p = 0.1, 0.3, 0.5, 0.7 and 0.9. (a) and (b) α = 0.2
and β = 0.6. (b) is the detailed density profiles near the inhomogeneous site in the
left subsystem.

ure 3.6(a) and β = 1 in Figure 3.6(b). Entrance rate α changes within [0, 1]. From

the phase diagram (see Figure 3.2(a)) one observes that the system is in the (LD,

LD) phase when p = 0.2, β = 0.5 and α < 0.2. In these situations, J = α/(1 + α).

Upon increasing α to 0.2, a saturation point S is reached with S = p = 0.2 and

J = p/(1 + p) ≈ 0.16667. Further increasing α, the system transfers from the (LD,

LD) phase to the (HD, LD) phase, while the current is constant (see Figure 3.6(a))

since p dictates the dynamics of the system, in particularly, the right subsystem.

When p = 0.8 and β = 0.5, a phase transition from the (LD, LD) phase to the (HD,

HD) phase can be observed with α increasing to 0.5 (see Figure 3.2(b)). Clearly,

saturation point S is at S = β = 0.5 with J = β/(1+β) ≈ 0.3333. Similarly, one can

obtain theoretically currents with β = 1.0 and p = 0.2 and 0.8 (see Figure 3.6(b)).

It can be seen that theoretical calculations are in perfect agreement with computer

simulations. In this Chapter, saturation point S and corresponding current Jsat can



3.5: Theoretical calculations and computer simulations 52

be expressed as follows (see Eq. (3.31)). However, I note that Eq. (3.31) is not

general since this equation gives the saturation point and current only for fixed p,

β and upon varying α.

S = min(p, β), Jsat = min(
p

1 + p
,

β

1 + β
). (3.31)
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Figure 3.6: Dependence of current on entrance rate α with hopping probability p =
0.2 and 0.8. The exit rate is constant with: (a) β = 0.5 and (b) β = 1. The lines
correspond to theoretical calculations, while symbols are the results of computer
simulations.

In order to investigate the system behavior close to the phase boundaries, e.g., in

Figure 3.2(a), a verification with Monte Carlo simulations is carried out. Figure 3.7

shows simulated results of density profiles near the theoretical phase boundaries

(see Figure 3.2(a)) with hopping probability p = 0.2. In Figure 3.7(a), the system

is in the (LD, LD) phase when α = 0.195 and β = 0.5. When α increases to 0.2,

the phase boundary is reached. In other words, a saturation point (see Figure 3.6)

appears. Further increasing the value of α (e.g., α = 0.205), the system transfers
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Figure 3.7: Simulation results of density profiles near the predicted phase boundaries
(see Figure 3.2(a)) with hopping probability p = 0.2. (a) β = 0.5 and (b) α = 0.5.

into the (HD, LD) phase. One can observe that the transition from the (LD, LD)

phase to the (HD, LD) phase is discontinuous in the left subsystem, while it is

continuous in the right subsystem. Also, the transition from the (HD, HD) phase to

the (HD, LD) phase is continuous in the left subsystem, while it is discontinuous in

the right subsystem (see Figure 3.7(b)). The simulation results show that there is

little deviation of phase boundaries between theoretical calculations and computer

simulations, compared to Ref. [71] in which the random update is used. The reasons

for this are, probably, the different update procedures as well as different treatment

with the local inhomogeneity, e.g., see Eq. (3.4) in the present model and Eqs. (3.6)

and (3.7) in Ref. [71].

3.6 Summary and conclusions

A one-dimensional TASEP with a single inhomogeneity in parallel update is studied

via mean-field approximation and extensive computer simulations. The approxi-
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mate calculation is accomplished by separating the system into two subsystems.

Both subsystems are connected at the inhomogeneity. The current through both

subsystems is the equal. There are four possible stationary phases ((LD, LD), (LD,

HD), (HD, LD) and (HD, HD)) in the system for p < 1. The (HD, LD) phase can be

seen as a bottleneck phase in which the current is constant and dictated by the local

inhomogeneity. With the increase of p, the (HD, LD) phase region shrinks, while the

(LD, LD) and (HD, HD) phase regions expand. A phenomenological domain wall

approach is developed to predict density profiles of the (LD, HD) phase. Density

profiles and currents are simulated, and show very good agreement with theoretical

calculations.

This approach can be extended to investigate effects of a local inhomogeneity

in synchronous TASEPs with extended objects. It is also interesting to study the

dynamics of synchronous TASEPs with an inhomogeneity near one of boundaries or

randomly distributed inhomogeneities on the bulk.

This Chapter is based on the paper ”Defect-induced transitions in synchronous

asymmetric exclusion processes”. The paper has been published in Physics Letters

A 373 (2009) 195-200.



Chapter 4

Zoned Inhomogeneity on
Asymmetric Exclusion Process

4.1 Introduction

Totally asymmetric simple exclusion process (TASEP) on lattices has been widely

acknowledged as a paradigm in modelling vehicular traffic [16] and biological trans-

port such as motion of molecular motors on microtubules [1, 31]. The corresponding

tracks in these non-equilibrium systems are lanes, protofilaments or actin filaments.

It is observed that the existence of local inhomogeneities (or defects) on these tracks

can badly affect the dynamics of the systems such as in biological transport and

vehicular traffic.

Theoretical investigations of effects of local inhomogeneity on non-equilibrium

systems have been conducted intensively in recent years. TASEPs with an inho-

mogeneity under open boundary conditions attracted more attention from physicist

and traffic scientists [27, 43, 54, 71, 77, 83, 84, 85, 87, 88, 89, 90] (see Section 2.3.3

for details). In reality, a segment of a road can be marked as a speed limit zone

due to road works or safety reasons. Also in biological transport, molecular motors

may experience diffusive processes until they reach filaments and then move along

these filaments in a preferred direction [14]. Therefore, it is necessary to investigate
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emergent traffic properties induced by a zoned inhomogeneity.

This Chapter studies effects of a zoned inhomogeneity on a one-dimensional

TASEP in parallel update. The zoned inhomogeneity is a sequence of consecutive

inhomogeneous sites with a reduced hopping probability p (0 < p < 1). Two lattice

geometries are considered here: Cases V and W (see Figures 4.1(a) and (b)). In Case

V, the system consists of a left subsystem (segment I) and right subsystem (segment

II). Segment I is a homogeneous lattice with hopping probability 1, while segment

II is also a homogeneous one, but with hopping probability p. Case W is a natural

extension of Case V, but has three segements (I, II and III). The three segments

correspond to the left, middle and right subsystems, respectively (see Figure 4.1(b)).

Segments I and III are the normal TASEPs. Phase diagrams are obtained, and

currents and density profiles are calculated. Phase diagrams of Cases V and W are

compared as well as the system with an inhomogeneous site in parallel update [27].

The Chapter is organised as follows. In Section 4.2, the model of Case V is

described. Theoretical analysis of Case V is developed and the phase diagram is

obtained. Saturation points are defined. The results of theoretical analysis and

computer simulations are presented and discussed. In Section 4.3, solutions for

Case W are presented. Finally, conclusions are given in Section 4.4.

4.2 Case V

4.2.1 Model description

With regard to Case V, the model is defined in a one-dimensional lattice of N sites

(see Figure 4.1(a)). Particles are assumed to hop to the right end. Site 1 (N)

represents the left (right) boundary, while sites 2, ..., N -1 are referred to as the

bulk. The following rules are applied to all sites in parallel : (i) A particle can enter

the system at site 1 with probability α (0 ≤ α ≤ 1), if the site is empty; (ii) A
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particle at site N can leave the system with probability β (0 ≤ β ≤ 1); (iii) If site

i + 1 is not occupied, a particle at site i can hop to that site with probability 1 for

i ≤ k or with probability p for k + 1 ≤ i < N (i is an index of the sites). In other

words, in the left subsystem, the hopping probability on the bulk is equal to 1, while

it is equal to p in the right subsystem (see Figure 4.1(a)).

Both subsystems are linked by sites k and k + 1. The left subsystem is a ho-

mogeneous TASEP with entrance probability α at site 1 and exit probability βeff

at site k (see Figure 4.1(c)). Similarly, the right subsystem is, in fact, also a homo-

geneous TASEP with entrance probability αeff at site (k+1) and exit probability β

(0 ≤ β ≤ 1 at site N (see Figure 4.1(c)). For simplicity, k = N/2 is asumed in this

Chapter. Note that the phase diagram would be qualitatively the same provided

site k is far away from the boundaries.

Only 0 < p < 1 is considered in this Chapter here since the dynamics of the

system can be affected under such circumstances. When p = 0, particles cannot hop

to the right subsystem, thus the current through the system is equal to 0. When

p = 1, the system becomes a homogeneous one. The theoretical analysis can exactly

restore the current for two extreme cases: p = 0 and p = 1.

4.2.2 Theoretical analysis

The results of a synchronous TASEP for general p (0 < p ≤ 1) has been presented

in Refs. [30, 33]. There are three phases (low density, high density and maximal

current) in that system. When α < β and α < 1−√1− p, a low-density (LD) phase

is obtained with the current J = α(p−α)/(p−α2). When α > β and β < 1−√1− p,

the system is in the high-density (HD) phase with J = β(p − β)/(p − β2). The

conditions, α > 1−√1− p and β > 1−√1− p, correspond to the maximal current

(MC) phase with J = (1 − √
1− p)/2. Obviously, when p = 1, the currents in

LD, HD and MC phases reduce to J = α/(1 + α), J = β/(1 + β) and J = 1/2,
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Figure 4.1: Illustration of an inhomogeneous TASEP on a one-dimensional lattice.
Arrows mean allowed hoppings. Numbers over arrows represent hopping probabili-
ties. (a) two subsystems in case V : left (segment I) and right (segment II); (b) three
subsystems in case W : left (segment I), middle (segment II), and right (segment
III); (c) Description of the left and right subsystems in case V in details.

respectively (see Refs. [32, 33]).

The theoretical analysis is based on a solid fact that the stationary current in

the left subsystem (JL) should be equal to that in the right subsystem (JR), i.e.,

JL = JR in a steady state, which is called the rule of current conservation.

Note that the MC phase cannot exist in the left subsystem for Case V shown

in Figure 4.1(a). If the MC phase exists in the left subsystem, the maximal current

should be equal to Jmax
L = 1/2. However, in the right subsystem, Jmax

R = (1 −
√

1− p)/2 < 1/2 when 0 < p < 1 [33]. Thus, according to the rule of current
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conservation, the maximal current in the left subsystem cannot exist. Therefore,

the possible stationary phases in the system of Case V include the following six

phases: LD/LD, LD/HD, LD/MC, HD/LD, HD/HD and HD/MC. The LD/MC

phase means that the left subsystem is in the LD phase, while the right subsystem

is in the MC phase.

If the system is in the LD/LD phase, based on the rule of current conservation,

the current can be written as

JL =
α

1 + α
= JR =

αeff (p− αeff )
p− α2

eff

. (4.1)

Thus,

αeff =
1
2
(p + pα±

√
(p + pα)2 − 4pα). (4.2)

Since the right subsystem is in the LD phase, αeff < 1 − √
1− p. However, as

1
2(p + pα +

√
(p + pα)2 − 4pα) > 1−√1− p, one can obtain:

αeff =
1
2
(p + pα−

√
(p + pα)2 − 4pα). (4.3)

Also, since αeff < β, one can get:

1
2
(p + pα−

√
(p + pα)2 − 4pα) < β. (4.4)

The above expression is meaningful only when the term in the square root is not

negative, which implies

(p + pα)2 − 4pα ≥ 0. (4.5)

Accordingly, one has

α ≤ 2− p− 2
√

1− p

p
, α ≥ 2− p + 2

√
1− p

p
. (4.6)

As 0 < p < 1, α ≥ (2− p + 2
√

1− p)/p > 1, which violates the condition 0 ≤ α ≤ 1.

Hence, α ≥ (2− p + 2
√

1− p)/p should be discarded. Moreover, the current in the
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system is less than the maximal current, that is, the following inequality should be

met

JL =
α

1 + α
<

1−√1− p

2
= Jmax, (4.7)

which means

α <
2− p− 2

√
1− p

p
. (4.8)

Thus, the conditions for the system to be in the LD/LD phase are:

α <
2− p− 2

√
1− p

p
, β >

1
2
(p + pα−

√
(p + pα)2 − 4pα). (4.9)

For the LD/HD phase one gets

α

1 + α
=

β(p− β)
p− β2

, (4.10)

which is equivalent to

β =
1
2
(p + pα±

√
(p + pα)2 − 4pα). (4.11)

Since the right subsystem is in the HD phase, β < 1 − √1− p. However, since
1
2(p + pα +

√
(p + pα)2 − 4pα) > 1−√1− p, one obtains:

β =
1
2
(p + pα−

√
(p + pα)2 − 4pα). (4.12)

Thus, the following conditions can guarantee the LD/HD phase in the system

α <
2− p− 2

√
1− p

p
, β =

1
2
(p + pα−

√
(p + pα)2 − 4pα). (4.13)

For the LD/MC phase the current can be written as

α

1 + α
=

1−√1− p

2
, (4.14)

which means

α =
2− p− 2

√
1− p

p
. (4.15)
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Also, when the right subsystem is in the MC phase, the condition β > 1 −√1− p

should be satisfied. Thus, the LD/MC phase exists in the system when

α =
2− p− 2

√
1− p

p
, β > 1−

√
1− p. (4.16)

In the HD/MC phase the current is satisfied with

βeff

1 + βeff
=

1−√1− p

2
, (4.17)

which means

βeff =
2− p− 2

√
1− p

p
. (4.18)

The left subsystem is in the HD phase only when α > βeff . Thus, the system is in

the HD/MC phase when

α >
2− p− 2

√
1− p

p
, β > 1−

√
1− p. (4.19)

The HD/HD phase corresponds to the following conditions

βeff

1 + βeff
=

β(p− β)
p− β2

. (4.20)

That is

βeff =
β(p− β)
p(1− β)

. (4.21)

Since the left subsystem is in the HD phase (i.e. α > βeff ), The solutions for the

HD/HD phase can be obtained similarly to that of the LD/LD phase. They include:

α >
β(p− β)
p(1− β)

, β < 1−
√

1− p. (4.22)

The HD/LD phase describes the following current relationship

βeff

1 + βeff
=

αeff (p− αeff )
p− α2

eff

. (4.23)

Thus, αeff and βeff cannot be represented as functions of p, α or β. This suggests

that the HD/LD phase would not appear in the α − β plane. From the traffic flow
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point of view, when the right subsystem is in the LD phase, particles in the right

subsystem will hop forward without any block until they approach to the exit. In

this condition, the effective exit rate βeff → 1, which leads to the left subsystem in

the LD (or MC) phase as α ≤ βeff . Thus, the HD/LD phase does not exist in the

system.
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Figure 4.2: (a) Diagram of possible stationary-state phases in the system with p =
0.8; and (b) Saturation point pair (α∗, β∗) with different values of p.

Figure 4.2(a) illustrates all possible stationary phases in the system, which

include the LD/LD, LD/HD, LD/MC, HD/MC, and HD/HD phases. The LD/HD

phase corresponds to a first-order transition line between the LD/LD and HD/HD

phases, while the LD/MC phase corresponds to a straight line specified by α =

(2 − p − 2
√

1− p)/p and β ≥ 1 − √1− p. The transition from the LD/LD phase

to the HD/MC phase is discontinuous in the left subsystem, while it is continuous

in the right subsystem. Meanwhile, continuous transitions can be found in both

subsystems between the HD/MC and HD/HD phases.

When the value of p is fixed, currents in the LD/LD, LD/HD and HD/HD



4.2: Case V 63

phases are determined by the values of α or β. However, currents in the LD/MC

and HD/MC phases are only related to p (i.e., J = (1−√1− p)/2). In other words,

the currents in both the LD/MC and HD/MC phases are independent of boundary

conditions.

For a better understanding the phase diagram, a saturation point pair (α∗, β∗)

of the current is introduced, which can be written as

α∗ =
2− p− 2

√
1− p

p
, β∗ = 1−

√
1− p. (4.24)

Values of α∗ and β∗ are plotted in Figure 4.2(b) with different p. With the increase

of p, α∗ and β∗ increase, which corresponds to a decrease of regions in the LD/MC

and HD/MC phases and an increase of the currents in both phases.

4.2.3 Results and discussion

This section discusses theoretical and simulation results. The system length is set to

be N = 2, 000 sites for Case V and N = 3, 000 sites for Case W. The number of the

running time steps in each experiment is 1.1× 109 in order to obtain the stationary

current and density profiles. The first 108 time steps are discarded as transients.

Theoretical and simulation results for currents are shown in Figure 4.3. One can

see they are in good agreement. The hopping probability p is arbitrarily assumed to

be p = 0.3, 0.6, and 0.9, respectively. In Figure 4.3(a), one can see that the current

increases with the increase of the hopping probability. For instance, the saturated

current Jsat ≈ 0.082 for p = 0.3, while it increases to Jsat ≈ 0.186 for p = 0.6 and

Jsat ≈ 0.345 for p = 0.9.

When p = 0.3, the saturation point, according to Eq. (4.24), corresponds

to α∗ = 0.089 and β∗ = 0.163. Thus, the system is in the HD/MC phase when

α > 0.089 and β > 0.163. Similarly, one can calculate α∗ = 0.225 and β∗ = 0.3675

for p = 0.6, and α∗ = 0.52 and β∗ = 0.684 for p = 0.9. As I assume β = 1.0 > β∗,
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Figure 4.3: Currents with different hopping probabilities p = 0.3, 0.6, and 0.9.
The lines describe theoretical calculations, while symbols correspond to computer
simulations. The exit rate is: (a) β = 1.0 and (b) β = 0.3.

the system is only in one of the three phases: LD/LD, LD/MC, and HD/MC (see

Figure 4.3). In other words, the HD/HD phase cannot be reached. One then set

β = 0.3 to check the currents in the HD/HD phase (see Figure 4.3(b)). It is found

that, when p = 0.6 and p = 0.9, the system is in the HD/HD phase as β < β∗.

The corresponding saturation currents can be obtained using Eq. (4.20), which are

Jsat ≈ 0.176 for p = 0.6 and Jsat ≈ 0.222 for p = 0.9.

The effects of hopping probability p on density profiles are simulated with dif-

ferent α and β (see Figure 4.4). In Figure 4.4(a), the system is in the HD/MC phase.

This can be explained as follows. When p is increased from 0.1 to 0.5, α∗(β∗) is still

less than 0.2(0.8), which is the entrance (exit) rate. One can also observe that the

bulk density in the left subsystem decreases with the increase of p. However, when

p ≥ 0.6, the system transfers to the LD/LD phase (see Figure 4.4(b)). The bulk

density decreases in the right subsystem upon increasing p to 1.0. One can see that
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the bulk density remains unchanged in the right subsystem in Figure 4.4(a), while

it is constant in the left subsystem in Figure 4.4(b). Figure 4.4(c) shows a similar

picture when α = 0.7 and β = 0.3, compared to Figure 4.4(a). Density profiles in

the HD/HD phase are illustrated in Figure 4.4(d). With the increase of p, density

profiles decrease in the left subsystem, while they increase in the right subsystem.

4.3 Case W

In this section, the phase diagram, currents and density profiles in Case W are

discussed. As shown in Figure 4.1(b), in Case W, hopping probability p (0 < p < 1)

in the middle subsystem is different from that in the left and right subsystems. Both

left and right subsystems have the same hopping probability (p = 1) (see Figure 4.1).

The phase diagram can be obtained in the same way as discussed above, which is

shown in Figure 4.5(a). In other words, the rule of current conservation is still

applied in a stationary state, i.e., JL = JM = JR. JM is the current through the

middle segment.

Differences between Figure 4.2 and Figure 4.5(a) are compared as follows: (1)

saturation point (α∗, β∗) pair for Case V corresponds to α∗ = (2− p− 2
√

1− p)/p

and β∗ = 1−√1− p in Figure 4.2, while it changes to α∗ = β∗ = (2−p−2
√

1− p)/p

for Case W (see Figure 4.5(a)). This is because that segment I and segment

III have the same system dynamics; (2) the number of stationary phases is 5

for Case V in Figure 4.2, while it becomes 7 for Case W in Figure 4.5(a). Two

new LD/MC/HD and HD/MC/HD phases appear in Case W as shown in Fig-

ure 4.5(a). The LD/MC/HD phase corresponds to a point which is described by

α∗ = β∗ = (2 − p − 2
√

1− p)/p. The HD/MC/HD phase is specified by a line

(α > (2 − p − 2
√

1− p)/p and β = 1 − √
1− p). Despite these differences, Fig-

ure 4.5(a) is still qualitatively similar to Figure 4.2 since: (1) the phases of segment
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Figure 4.4: Density profiles from simulations in the stationary state with different
p. x = i/N , i is an index of sites and N is the system length. (a) and (b) α = 0.2
and β = 0.8; (c) and (d) α = 0.7 and β = 0.3.

I and segment II in both cases are the same (see Figures 4.2 and 4.5(a)), that is,

the introduction of segment III does not lead to a new phase in either segment I or

segment II, and (2) Figure 4.5(a) will reduce to Figure 4.2 if segment III is ignored.
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If there is only one inhomogeneous site in the system, the maximal-current

(MC) region is specified by α = β ≥ p and α = β ≤ 1 [27]. The corresponding

maximal current is J = p/(1 + p). For Case V, the MC region is described by

α ≥ (2− p− 2
√

1− p)/p, β ≥ 1−√1− p, and α = β ≤ 1. Finally, for Case W, the

MC region is determined by α = β ≥ 1−√1− p and α = β ≤ 1. The different MC

regions are illustrated in Figure 4.5(b) and details in Table 1. In other words, Case

W has the maximal area of the MC region.

Currents are calculated and plotted in Figure 4.6 when p = 0.8 with different

values of β, and α ranges from 0 to 1. When β < β∗ ≈ 0.382, the system changes

to the HD/HD/HD phase from the LD/LD/LD phase with the increase of values

of α (see Figure 4.5(a)). In the LD/LD/LD phase, the current increase when α

increases, while the current becomes constant (J = β/(1 + β)) in the HD/HD/HD

phase, independent of α. Similarly, when β > β∗, the system transfers into the

HD/MC/LD phase from the LD/LD/LD phase upon increasing α (see Figure 4.5(a)).

In the HD/MC/LD phase, the current is determined by p (J = (1 − √
1− p)/2),

independent of α and β.

Density profiles in Case W are shown in Figure 4.7. In Figure 4.7(a), the system

is in the HD/MC/LD phase and the increase of p only affects density profiles in the

left and right subsystems. Further increasing p, e.g., p ≥ 0.6, the system transfers to

the LD/LD/LD phase and only density profiles in the middle subsystem are affected

(see Figure 4.7(b)). A similar picture is also shown in Figure 4.7(c). However, the

phase transition is complex with the change of p (see Figure 4.7(d)). The system

first transfers into the HD/MC/HD phase from the HD/MC/LD when p = 0.7, and

then changes to the HD/HD/HD phase.
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Figure 4.5: (a) Phase diagram of inhomogeneous asymmetric exclusion process with
hopping probability p in the middle subsystem when p = 0.8; (b) Comparisons of
the MC regions with the following relationship: A⊆B, B⊆C, and C⊆D. Details of
A, B, C, and D see Table 4.1.

4.4 Summary and conclusions

A one-dimensional TASEP with a zoned inhomogeneity in parallel update is studied

theoretically and by extensive computer simulations. A sequence of consecutive sites

with hopping probability p (0 < p < 1) is called a zoned inhomogeneity. A zoned

inhomogeneity in the real world may correspond to a speed limit zone for vehicular

traffic. Two cases of lattice geometries are discussed. In Case V, the system consists

of two subsystems. The left subsystem (segment I) is a normal TASEP (i.e., p = 1),

while the right subsystem (segment II) is the TASEP with hopping probability p. In

Case W, the left and right subsystems are normal ones, while the middle subsystem

(segment II) is the TASEP with hopping probability p.

The phase diagrams of Cases V and W are qualitatively the same with shifts of

the phase boundaries. However, the differences between these two phase diagrams
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Table 4.1: Details of Figure 4.5(b)

Region Number and position of inhomogeneous sites MC
A an inhomogeneous site far away from boundaries p/(1+p)
B all sites are inhomogeneous (1−√1− p)/2
C case V (1−√1− p)/2
D case W (1−√1− p)/2
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Figure 4.6: Currents with fixed hopping probabilities p = 0.8 and flexible exit rate
β. The lines describe theoretical calculations, while symbols correspond to computer
simulations.

include: (1) the number of the stationary phases in Case V is 5, while it is 7 in

Case W, and (2) the saturation point pair (α∗, β∗) is α∗ = (2 − p − 2
√

1− p)/p

and β∗ = 1 − √
1− p in Case V, while it is α∗ = (2 − p − 2

√
1− p)/p and β∗ =

(2 − p − 2
√

1− p)/p in Case W. This indicates that the MC region in Case W is

larger than that in Case V. In other words, the introduction of segment III into

Case W can enhance the current in some situations. It is also found that the

TASEP with an inhomogeneous site has the minimal MC region. The maximal
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Figure 4.7: Density profiles from simulations in the stationary state with different
p. x = i/N , i is an index of sites and N is the system length. (a) and (b): α = 0.2
and β = 0.8; (c) and (d): α = 0.7 and β = 0.3.

current in a system with an inhomogeneous site is equal to p/(1 + p) which is larger

than that in either Cases V or W where the maximal current is (1 − √1− p)/2.

Density profiles and currents are simulated, which shows very good agreement with



4.4: Summary and conclusions 71

theoretical calculations. It is interesting to investigate a zoned inhomogeneity in

synchronous TASEPs with large particles or different positions.

The present model and the previous one in Chapter 3 investigated the effects

of inhomogeneities on a one-dimensional traffic system. For simplicity, the size of

inhomogeneities used in these models is arbitrarily assumed to be 1, L/2 and L/3,

respectively. L is the length of the lattice in the system. In other words, Chapters 3

and 4 just discussed several special cases of inhomogeneity in a one-channel lattice.

Further investigation of the effect of inhomogeneity with any size on traffic dynamics

would be expected to lead to a general solution for this subject.

This Chapter is based on the paper ”Synchronous asymmetric exclusion process

with an extended defect”. The paper has been published in Physics Letters A 374

(2010) 1407-1413.



Chapter 5

Asymmetric Exclusion Process
with Junction

5.1 Introduction

Traffic has been observed at almost all levels of natural and manmade systems (e.g.,

from microscopic molecular motors to macroscopic objects like vehicles) and proved

to be a rewarding research topic in the last few decades [1, 16, 31, 108]. Totally

asymmetric simple exclusion processes (TASEPs), as a paradigmatic model for non-

equilibrium processes, have been widely applied in the study of traffic phenomena

in chemistry, physics and biology [1, 9, 31]. To describe traffic more realistically, it

is necessary to study traffic flow on more complex geometries. In particular, some

of these geometries are associated with local inhomogeneity [27, 43, 54, 71, 77, 83,

84, 85, 87, 88, 89, 90]. A decrease of stationary current can be seen as a major effect

of the presence of local inhomogeneity. Two-channel TASEPs with different inter-

channel coupling rules have been studied as well (e.g., in Refs. [68, 69, 70, 73, 74,

75, 78]). More recently, investigations on multiple-channel TASEPs with two species

particles [63, 64, 65] have been conducted, which aims at exploring the phenomenon

of spontaneous symmetry breaking on multiple-channel systems.

Junctions can be seen as connections of several single-channel systems, which
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are one of the commonly used traffic facilities in nature. Such systems with junctions

may be used to describe a wide range of possible applications such as: (i) kinesins

moving on a microtubule in which the number of protofilaments may vary [109]; (ii)

transport of vesicles in a branching axon or dendrite [110]; (iii) vehicular traffic on

intersections or roundabouts [111], and (iv) data traffic through hubs (e.g., switches,

routers) on local/wide networks [112]. As a junction can also be viewed as a ”local

inhomogeneity” in a transport system, it is necessary to study the effects of such

”local inhomogeneity” on traffic dynamics.

Inspired by this wide range of possible applications, the dynamics of syn-

chronous (i.e., in parallel update) TASEP on lattices with a multiple-input single-

output (MISO) junction is investigated. The MISO junction is shown in Figure 5.1.

In reality, it can be observed that several traffic lanes merge into one lane and mul-

tiple protofilaments come together to form one protofilament [109]. However, they

have not been understood well from the viewpoint of theoretical analysis.

This work is then extended to a general case, TASEPs with a m-input n-output

(MINO) junction in parallel update. The aim of this extension is to give an inte-

grated picture of macroscopic dynamic traffic properties at MINO junctions within

the framework of TASEPs. This generalization produced three main results: (1)

A general theoretical solution for traffic dynamics of TASEPs with junctions is ob-

tained; (2) m-input n-output junctions can be classified by a parameter, λ = m/n.

The systems with the same λ exhibit the same dynamic properties (e.g., phase dia-

grams, stationary currents, and density profiles); (3) When the number of input or

output channels is increased or decreased, the low-density and high-density regions

can be measured qualitatively and quantitatively. Such systematic analysis of the

dynamics of TASEPs with junctions has not been studied before.

The Chapter is organized as follows. In Section 5.2, a description of a syn-

chronous TASEP model with a MISO junction is given. The mean-field approx-
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imation is developed in section 5.2.1. In Section 5.2.2, the phase boundaries is

analyzed using a phenomenological domain wall theory. In Section 5.2.3, the results

of theoretical calculations and computer simulations are presented. In Secion 5.3,

A m-input n-output junction is studied, which includes a general theoretical solu-

tion of TASEPs with a MINO junction, a simple classification for MINO junctions,

and a theoretical solution for areas of low-density and high-density regions. Finally,

conclusions are given in Section 5.4.

5.2 m-input 1-output junction

5.2.1 Model and Mean-field Approximation

A MISO junction is illustrated in Figure 5.1. The system consists of m subchains

for input and one main chain (chain m+1) for output connected by junction points–

sites N on the subchains and site N + 1 on the main chain. Each subchain and the

main chain includes N sites. Particles are assumed to move from the left to the

right.

For simplicity, inter-lane transitions between subchains are not permitted in this

Chapter. This assumption is reasonable. In real-world situations, junctions can be

seen as connections between inputs (e.g., road lanes, proto-filaments or data lines)

from different directions and outputs to different directions. Although sometimes

those multiple inputs may come from the same direction, lane-changing may not

always be applicable. As a junction can also be seen as a “local inhomogeneity” in

a transport system, to study the traffic dynamics at such ”inhomogeneity” (i.e., the

junction point) is important regardless of whether lane-changing can occur.

An occupation variable, τ`,i, denotes the state of the ith site in the `th subchain

(` = 1, 2, ..., m) and the main chain (` = m + 1). τ`,i = 1 (or τ`,i = 0) means that

site τ`,i is occupied (or empty). The system updates all particles in parallel by the
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(a)

Figure 5.1: (a) Schematic diagram of a synchronous TASEP with a multiple-input
single-output junction. Particles move from the left to the right with hard-core
exclusion. (b) In a subchain, the injection rate at site 1 and the ejection rate at site
N are given by α and βeff , respectively. (c) In the main chain, the injection rate at
site N + 1 and the ejection rate at site 2N are given by αeff and β, respectively.

following rules (see Figure 5.1):

• i = 1. (i) If τ`,1 = 0, a particle enters the system at rate α; or (ii) If τ`,1 = 1

and τ`,2 = 0, then the particle at site (`, 1) moves into site (`, 2); or (iii) If

both τ`,1 = 1 and τ`,2 = 1, then the particle at site (`, 1) does not move.

• i = N . (i) If sites N of k subchains (1 < k ≤ m) are occupied by k particles at

the same time, particles have the same priority to hop to site N +1. However,

only one particle will enter site N + 1 at any single time step, providing that

site N +1 is empty; or (ii) If only one site N of the subchains is occupied by a

particle, the particle can directly hop to site N + 1 providing that site N + 1

is empty.

• i = 2N . If τm+1,2N = 1, the particle leaves the system with rate β.

• 1 < i < N or N + 1 ≤ i < 2N . If τ`,i = 1, the particle can move into site
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(`, i + 1) providing τ`,i+1 = 0. Otherwise, the particle cannot move.

Exactly solvable results of an one-dimensional synchronous TASEP have been

obtained in Ref. [32, 33], which are briefly reviewed here since the solution of the

proposed model can be derived from them. There are three phases (low density

(LD), high density (HD) and maximal current(MC)) and a transition line when

α = β. The MC J = 0.5 can only be reached at α = β = 1 [33].

• When α < β ≤ 1, a low-density (LD) phase is obtained with

J = ρ, ρ = ρ1, ρ1 =
α

1 + α
, ρN =

α

β(1 + a)
. (5.1)

where J is the system current; ρ is the bulk density; ρ1 (ρN ) is the particle

density at the first (last) site.

• When 1 ≥ α > β, a high-density (HD) phase is obtained with

J = 1− ρ, ρ =
1

1 + β
, ρ1 = 1− β

α(1 + β)
, ρN = ρ. (5.2)

• When α = β < 1, a transition line between LD and HD is obtained.

• When α = β = 1, the maximal current (MC) is obtained and J = 0.5.

Based on the above results, exactly solvable results for TASEPs with a MISO

junction can be developed. For a MISO junction, as the current is conserved through

the system, one has

J1 + J2 + · · ·+ Jm = Jm+1, J1 = J2 = · · · = Jm, mJ` = Jm+1 ≤ 0.5 (5.3)

where J` (` = 1, 2, ..., m) is the current on the `th subchain; Jm+1 is the current of

the main chain.

Each of the m subchains of the MISO junction can be seen as a synchronous

TASEP with injection rate α and ejection rate βeff , while the main chain can be
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seen as a synchronous TASEP with injection rate αeff and ejection rate β. αeff

and βeff can be written as

βeff = 1− ρN+1, αeff = mρN . (5.4)

These m subchains should have the identical phases when particles on the m

subchains merge into the main chain with the same priority. Computer simulations

also support this prediction. Thus, the stationary state of the system can be obtained

by combining the possible phases that exist in each of these subchains and the main

chain. As each single chain may have three possible phases (LD, HD and MC), due

to the equivalence of these subchains, the number of possible stationary phases of

the system is equal to 32 = 9. In other words, a stationary state can be one of the

following nine phases: the (LD, LD), (LD, HD), (LD, MC), (HD, LD), (HD, HD),

(HD, MC), (MC, LD), (MC, HD), and (MC, MC) phases.

One can see that three phases cannot exist: (MC, LD), (MC, HD) and (MC,

MC). According to Eq. (5.3), it is impossible for the maximal current phase to exist

in a subchain since the maximal possible current in the system is no more than 0.5.

Therefore, the number of the possible phase combinations reduce to 6, i.e., the (LD,

LD), (LD, HD), (LD, MC), (HD, LD), (HD, HD), (HD, MC) phases.

• The (LD, HD) phase. The conditions for this case are as follows

α < βeff , αeff > β. (5.5)

From Eqs. (5.1) and (5.2), the stationary properties of this phase are given by

J1 =
α

1 + α
, Jm+1 =

β

1 + β
, ρ1 =

α

1 + α
,

ρN =
α

βeff (1 + α)
, ρN+1 = 1− β

αeff (1 + β)
, ρ2N =

1
1 + β

. (5.6)
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According to Eq. (5.3), mJ1 = Jm+1, one gets

α =
β

m + (m− 1)β
(5.7)

However, αeff and βeff are not solvable from above equations. In other words,

the bulk density cannot be obtained through above equations. The density will

be solved through the domain wall theory in Section III. From Figures 5.2(a)

and (b), one can see that α = β/[m + (m− 1)β] (when β < 1) corresponds to

the transition line between the (LD, LD) phase and the (HD, HD) phase.

• The (LD, MC) phase. This phase corresponds to the following conditions

α < βeff , αeff = β = 1. (5.8)

According to Eqs. (5.1) and (5.3), one obtains:

α =
1

2m− 1
, J1 =

1
2m

, Jm+1 = 0.5. (5.9)

When the left subsystem is in the LD phase, particles are in free flow. This

leads to αeff < 1. According to Eq. (5.8), αeff = 1. The two statements con-

tradict each other. So the (LD, MC) phase does not exist in the system. But,

when βeff = α, the coexisted phase (LD/HD) appears in the left subsystem.

Therefore, the (LD/HD, MC) phase coexists in the system, which corresponds

to a point specified by α = βeff and αeff = β = 1.

Again, the bulk density cannot be calculated through above equations. The

density will also be solved through domain wall theory in Section 5.2.2. From

Figures 5.2(a) and (b), one can see that the (LD/HD, MC) phase is the transi-

tion phase between the (LD, LD), (LD, HD), (HD, HD) and (HD, MC) phases.
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• The (LD, LD) phase. The following conditions should be satisfied

α < βeff , αeff < β. (5.10)

According to Eq. (5.1), the stationary current and density are given by

J1 =
α

1 + α
, Jm+1 =

αeff

1 + αeff
, ρ1 =

α

1 + α
,

ρN =
α

βeff (1 + α)
, ρN+1 =

αeff

1 + αeff
, ρ2N =

αeff

β(1 + αeff )
. (5.11)

Using Eqs. (5.3) and (5.4), αeff and βeff are expressed as

αeff =
mα

1− (m− 1)α
, βeff =

1− (m− 1)α
1 + α

. (5.12)

Since αeff ≤ 1 and αeff = mα/[1− (m− 1)α], α ≤ 1/(2m− 1). Substituting

Eq. (5.13) into Eq. (5.11), one obtains α <
√

1 + m2/4 −m/2 for α < βeff ,

and α < β/[m+(m−1)β] for αeff < β. Since 1/(2m−1) <
√

1 + m2/4−m/2

(when m ≥ 2) and β/[m + (m − 1)β] ≤ 1/(2m− 1) (as β ≤ 1), the system is

in the (LD, LD) phase when

α <
β

m + (m− 1)β
, β ≤ 1. (5.13)

• The (HD, HD) phase. The conditions for this case are given by

α > βeff , αeff > β. (5.14)

The current and density of this phase in a stationary state are

J1 =
βeff

1 + βeff
, Jm+1 =

β

1 + β
, ρ1 = 1− βeff

α(1 + βeff )
,
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ρN =
1

1 + βeff
, ρN+1 = 1− β

αeff (1 + β)
, ρ2N =

1
1 + β

. (5.15)

From Eqs. (5.3) and (5.15), one obtains βeff = β/[m + (m− 1)β]. Thus, the

system is in the (HD, HD) phase when

α >
β

m + (m− 1)β
(5.16)

• The (HD, MC) phase. The corresponding conditions for this phase are

α > βeff , αeff = β = 1. (5.17)

According to Eqs. (5.2-5.3), one obtains

J1 =
1

2m
, ρN =

1
m

, ρN+1 =
2m− 2
2m− 1

, βeff =
1

2m− 1
. (5.18)

Thus, the (HD, MC) phase can exist in the system when

α >
1

2m− 1
, β = 1. (5.19)

• (HD, LD) phase. The conditions of existence for this phase can be written as

α > βeff , αeff < β. (5.20)

The corresponding expressions for stationary current and density are

J1 =
βeff

1 + βeff
, Jm+1 =

αeff

1 + αeff
, ρ1 = 1− βeff

α(1 + βeff )
,

ρN =
1

1 + βeff
, ρN+1 =

αeff

1 + αeff
, ρ2N =

αeff

β(1 + αeff )
. (5.21)

According to Eq. (5.3), one reads

αeff =
mβeff

1− (m− 1)βeff
. (5.22)
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From Eqs. (5.4) and (5.21), αeff and βeff can be rewritten as follows

αeff =
m

1 + βeff
, βeff =

1
1 + αeff

. (5.23)

Substituting Eq. (5.23) into Eq. (5.22), one obtains αeff =
√

1 + m2/4+m/2−
1 and βeff =

√
1 + m2/4 −m/2. It can be seen that values of αeff and βeff are

determined by the number of subchains m, independent of α and β. This indicates

that the (HD, LD) phase cannot be represented in the α− β plane. In other words,

the (HD, LD) phase does not exist in the system. In fact, when the subchains are in

the high density phase, particles at site N will hop to site N +1 at almost each time

step, which leads to αeff ≈ 1. Thus, it is impossible for the main chain to maintain

the low density phase.
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Figure 5.2: (a) Phase boundaries (or transition lines) for m = 1, 2 and 3 in the
synchronous TASEPs with a MISO junctions. (b) Phase diagram for m = 2 in the
synchronous TASEPs with a MISO junction. The solid line represents the (LD, HD)
phase specified by α = β/[m + (m − 1)β] and β < 1; the grey oval corresponds to
the (LD/HD, MC) phase specified by α = 1/(2m − 1) and β = 1; and the black
rectangle for the (HD, MC) phase specified by α > 1/(2m− 1) and β = 1.
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From the analysis above, one can see that there are five possible phases ((LD,

LD), (LD, HD), (LD/HD, MC), (HD, HD) and (HD, MC)) in this system. Figure

5.2(a) shows the possible phase boundaries (α = β/[m+(m−1)β]) for m = 1, 2 and

3. With the increase of m, one can predict that the phase boundary moves toward

the left in the phase diagram, which means that the low-density area decreases while

the high-density area increases. The phase diagram for m = 2 is also shown in Figure

5.2(b). From Figure 5.2(b), one can see that: (i) The (LD, HD) phase corresponds to

the transition line between the (LD, LD) phase and the (HD, HD) phase specified

by α = β/[m + (m − 1)β] and 0 ≤ β < 1. (ii) The (LD/HD, MC) phase is the

transition phase between the (LD, LD),(LD, HD), (HD, HD) and (HD, MC) phases

specified by α = 1/(2m − 1) and β = 1 . Also, note that the transition from the

(LD, LD) phase to the (LD, HD) phase, the density change on the subchains is

continuous, while the density change on the main chain is discontinuous. Similarly,

the transition from the (LD, HD) to the (HD, HD) phases, the density change on the

subchains is discontinuous, while the density change of the main chain is continuous.

Also, for the transition from the (LD/HD, MC) phase to the (HD, MC) phase, the

density change on the subchains is discontinuous, while the density profile on the

main chain is unchanged.

5.2.2 Domain Wall Dynamics

A phenomenological domain wall approach is introduced in Section 3.4. In this

Chapter, the line specified by α = β/[m + (m− 1)β] corresponds to the coexistence

of the (LD, LD) and (HD, HD) phases. Similarly, one can see

qL =
β(1− α)

α + β − 2αβ
, qR =

α(1− β)
α + β − 2αβ

. (5.24)

Accordingly, the probabilities of the domain walls falling in certain zones in the
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left and right subsystems are also given by:

Prob(xDW < x) = qLx, 0 < x ≤ 1, (5.25)

and

Prob(xDW < x) = qL + qR(x− 1), 1 < x ≤ 2. (5.26)

Thus, the density at any position in the system becomes:

ρ(x)k = ρk
−Prob(xDW > x) + ρk

+Prob(xDW < x), k = L,R (5.27)

Finally, from Eqs. (5.24)-(5.27), one can obtain:

ρ(x)L =
α

1 + α
+

β(1− α)2

(1 + α)(α + β − 2αβ)
x, 0 < x ≤ 1 (5.28)

and

ρ(x)R =
β

1 + β
+

β(1− α)(1− β)
(1 + β)(α + β − 2αβ)

+

α(1− β)2

(1 + β)(α + β − 2αβ)
(x− 1), 1 < x ≤ 2 (5.29)

Densities in the boundary conditions can be calculated as ρ(x = 0)L = α/(1+α)

and ρ(x = 2)R = 1/(1 + β). These results are completely identical with theoretical

analysis in Refs. [32, 33]. At the junction point N , the densities are equal to

ρ(x = 1)L = [α2(1 − β) + β(1 − α)]/[(1 + α)(α + β − 2αβ)], ρ(x = 1)R = β(1 −
αβ)/[(1 + β)(α + β − 2αβ)]. Note that in the transition line between the (LD, LD)

and (HD, HD) phases, the relationship α = β/[m + (m− 1)β] can be obtained.

5.2.3 Simulation results and discussions

To validate the theoretical analysis, computer simulations are performed. Here, the

results only for a synchronous TASEP with a Y-type junction, that is m = 2, are

presented. The numbers of sites of the subchains and the main chain are all equal
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to 1,000. In simulations, stationary density profiles are obtained by averaging 108

sampling at each site. The first 105N time steps are discarded to let the transient

time out.

The density profiles for the (LD, LD), (HD, HD) and (HD, MC) phases are

shown in Figure 5.3. Only the density properties of subchain 1 and the main chain

are illustrated since the density properties of the other subchain is essentially the

same as subchain 1. It is found that there is a good agreement between Monte

Carlo simulations (MCS) and mean field (MF) analysis (see Figures 5.3(a)-(e)),

which verifies theoretical investigations.

A phenomenological domain wall (DW) theory developed in Section 3.4 is used

to calculate the density profiles of phase boundaries such as the (LD, HD) and

(LD/HD, MC) phases (see Figure 5.4). The results obtained from the domain wall

theory show an agreement with computer simulations. When α and β both increase

and also maintain α = β/[m + (m− 1)β], the system keeps in the (LD, HD) phase

until β = 1; the slope of the density profiles for x < 1 decreases until the slope

reduces to 0.5, while the slope of the density profiles for 1 < x < 2 also decrease

until the slope decreases to 0. For instance, the slope decreases from 0.588 to 0.542

when α increases from 0.1 to 0.2 (see Figures 5.4(a) and (b)). Finally, the slopes of

density profiles of the subchains become 0.5 and the slope of density profile of the

main chain becomes 0 when α = 1/3 and β = 1 (see Figure 5.4(c)). Additionally,

Monte Carlo simulations, theoretical calculations and domain wall theory all show

that, when α = 1/3 and β = 1 (i.e., the transition phase between the other four

phases), the main chain is in the maximal current phase.

Density profiles of the systems for m = 2 and m = 3 with the synchronous

update scheme are simulated and compared (see Figure 5.5). According to Eq. (5.7),

the phase boundary between the (LD, LD) and (HD, HD) phases can be described

as α = β/(2 + β) for m = 2 and α = β/(3 + 2β) for m = 3. Figure 5.5 shows that
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both systems are in the (LD, LD) phase when α = 0.1 and β = 0.8. However, when

α increases (e.g., α = 0.2), the system for m = 2 is still in the (LD, LD) phase,

while the system for m = 3 is in the (HD, HD) phase (see Figure 5.5(b)). This is

due to the phase boundary between the (LD, LD) and (HD, HD) phases moving

towards the left when m increases (see Figure 5.2(a)). Density profiles in the (HD,

HD) phase for both m = 2 and m = 3 are shown in Figure 5.5(c). Compared with

Figure 5.5(a) and (c), it can be seen that the density profiles of the subchains of

both systems are the same when both systems in the (LD, LD) phase, while the

density profiles of the main chains of both systems are the same when both systems

are in the (HD, HD) phase. Figure 5.5(d) illustrates that the system is in the (LD,

LD) phase for m = 2, while it is in the (HD, MC) phase for m = 3.

A comparison of the phase diagrams between the system with the parallel up-

date (see Figure 5.2(b)) and that of the random update (see Figure 3 in [79]) is also

made. One can see that the structures of the phase diagrams are similar. All have

five phases in their phase diagrams. Also, increasing the number of subchains (i.e.,

inputs) only shifts the transition line between the (LD, LD) phase and the (HD,

HD) phase that does not fall on the boundaries of the phase diagrams. However,

the differences in the phase diagrams include: (i) the (HD, MC) phase region in

the phase diagram of the system with the random update scheme reduces to a line

in that of the system with the synchronous update scheme; and (ii) the line of the

(LD/HD, MC) phase in the phase diagram of the system with the random update

scheme reduces to a point in the phase diagram of the system with the synchronous

update scheme.

Figure 5.6 shows the differences in the density profiles of the systems with the

synchronous update scheme and the system with the random update scheme when

m = 2. In Figure 5.6(a), these two systems are in the (LD, LD) phase when α = 0.1

and β = 0.8. When α is increased to 0.2 and β is unchanged, the system with
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the synchronous update scheme is still in the (LD, LD) phase, while the phase

of the system with the random update scheme becomes the (HD, MC) phase (see

Figure 5.6(b)). Figure 5.6(c) shows the system in the (HD, HD) phase in both

systems when α = 0.8 and β = 0.32. With the increase of β (e.g., β = 0.8),the

phase of the system with the random update scheme changes to the (HD, MC)

phase, while it still keeps in the (HD, HD) phase in the other system. It is found

that parallel and random update results differ, especially when the differences are so

marked as in Figure 5.6(b). These results are supported by theoretical predictions

though only simulation results are presented here (see phase diagrams in Figure

5.2(b) and Figure 3 in [79])). These differences illustrate that different update rules

will lead to different results. These differences are quantitative as well as qualitative

for special values of α and β.

Note that the system also exhibits a particle-hole symmetry. Since particles

moving forward at junction points with the same priority is equivalent to holes

moving backward at the same priority. Also, the method can be used to analyze

synchronous TASEPs with a single-input multi-output (SIMO) junction. Other

inhomogeneous synchronous TASEPs can be investigated in the similar way. For

instance, it would be interesting to study a MISO junction where these parallel

subchains are dynamically different.

5.3 m-input n-output junctions

5.3.1 Model and Theoretical Analysis

A MINO junction is illustrated in Figure 5.7. The system can be seen as two parts:

the left and right subsystems. The former includes m one-dimensional TASEPs,

while the latter consists of n one-dimensional TASEPs. Particles are assumed to

move from the left to the right with the discrete time step. Each channel includes
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N sites. The behavior of the system can be described by applying the following

rules to all sites simultaneously (see Figure 5.8). At sites 1 (in total, the number of

sites 1 is m), particles can enter each site 1 with probability α, provided the site is

empty. They can leave the left subsystem from each site N with probability βeff

and enter the right subsystem from each site N + 1 with probability αeff . For the

purpose of description of interactions at the junction, the number of particles at

sites N is denoted as KN and the number of empty sites N + 1 is represented as

LN+1. If KN ≤ LN+1, all particles at sites N can hop to sites N + 1 at one time

step. If KN > LN+1, not all particles at sites N can enter the right subsystem at

the same time. Under such conditions, only LN+1 particles are selected from KN

particleswith probability LN+1/KN to hop to the right, and the rest (KN − LN+1)

particles have to stay at sites N . Particles finally leave the system from each site

2N with probability β.

This Chapter focuses on m < n. The dynamics of the system for m > n can be

easily obtained from the condition m < n as the system should exhibit a particle-hole

symmetry [71]. The particle-hole symmetry in the system means that particles enter

each of the m channels at the left boundary with probability α and exit from each

of the n channels at the right boundary with probability β, which is equivalent that

holes are injected into each of the n channels at the right boundary with probability

β and removed from each of the m channels at the left boundary with probability α.

When m = n, it is obvious that the dynamics of the system is similar to the normal

TASEP.

Since the dynamics of m(n) TASEPs in the left(right) should be identical, and

the total current in the steady state is conserved through the system, one has

J1 + · · ·+ Jm = Jm+1 + · · ·+ Jm+n,

J1 = · · · = Jm, Jm+1 = · · · = Jm+n, mJ1 = nJm+1 = J (5.30)
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where J` (` = 1, ..., m,m + 1, ...,m + n) is the current on the `th channel. Using

the similar theoretical analysis as in Ref. [28], five possible stationary phases ((LD,

LD), (LD, HD), (HD, HD), (MC, LD), (MC, LD/HD)) are obtained. Among them,

the (LD, HD) phase is a phase boundary between the (LD, LD) phase and (HD,

HD) phase, defined by

β =
mα

n + (n−m)α
. (5.31)

Then, let

λ =
m

n
, λ ∈ (0, 1], (5.32)

where λ is the proportion between m and n. Instituting Eq. (5.3) into Eq. (5.2),

one obtains

β =
λα

1 + (1− λ)α
. (5.33)

It can be seen that Eq. (5.4) is independent of m and n, but dependent of the

proportion between m and n. In other words, when λ is fixed, the phase boundaries

of TASEPs with a group of MINO junctions (not only a given one) are the same. For

example, m = 1, n = 2 and m = 2, n = 4 correspond to the same phase boundaries

(λ = 0.5 in both cases). Table 5.1 lists the five phases and corresponding conditions

as well as stationary properties on each channel of the left and right subsystems,

respectively. It is shown that the stationary current and bulk densities keep constant

for the same λ. Figure 5.9(a) shows the phase boundaries defined by Eq. (5.5) for

λ = 1 (m = n), λ = 0.5 (m = n/2), λ = 1/3 (m = n/3), and λ = 2/3 (m = 2n/3).

Once the phase boundary is determined, the phase diagram is obtained as well.

On the other hand, the slope of the phase boundaries can be written approxi-

mately as κ ≈ λ/(2− λ) = m/(2n−m). With increasing n (m is fixed), the phase

boundary curves downward, which means that the (LD, LD) phase region expands

while the (HD, HD) phase region shrinks. In the extreme case of n → ∞, κ → 0

indicates that almost the whole phase space is covered by the (LD, LD) phase. For
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Table 5.1: Possible stationary phases and corresponding conditions. JL(JR) repre-
sents the stationary current on each channel of the left (right) subsystem. ρL(ρR) is
the corresponding bulk density. λ = m/n.

Phase Conditions JL JR ρL ρR

(LD, LD) β > λα
1+(1−λ)α

α
1+α

λα
1+α

α
1+α

λα
1+α

(HD, HD) β < λα
1+(1−λ)α

β
λ(1+β)

β
1+β 1− β

λ(1+β)
1

1+β

(LD, HD) β = λα
1+(1−λ)α

α
1+α

β
1+β Eq. 5.28 Eq. 5.29

(MC, LD) β > λ
2−λ , α = 1 1

2
λ
2

1
2

λ
2

(MC, LD/HD) β = λ
2−λ , α = 1 1

2
λ
2

1
2 Eqs. 5.28-5.29

vehicular traffic, this can explain that increasing the number of outlets can alleviate

jammed traffic.

The phase diagram for m = 2n/3 is shown in Figure 5.9(b). The (MC, LD/HD)

phase corresponds to a point specified by α = βeff = 1 and αeff = β = m/(2n−m).

Also, it is a critical phase connected by the (LD, LD), (MC, LD), (LD, HD) and

(HD, HD) phases. The (MC, LD) phase is specified by a line (α = 1 and β > 1/2).

The (LD, HD) phase is a coexistence line of first-order phase transitions between the

(LD, LD) and (HD, HD) phases. The transition of density profiles from the (LD, LD)

phase to the (MC, LD) phase is continuous. However, the density change from the

(LD, LD) phase to the (MC, LD/HD) phase is discontinuous in the right subsystem.

It is found that computer simulations support well theoretical predictions of the

phase diagram. Clearly, the phase diagrams for m < n and m > n are symmetric

along the line α = β ≤ 1.

The (LD, LD) and (HD, HD) phase regions can be calculated quantitatively

based on Eq. (5.4) and SLD + SHD = 1. SLD and SHD are areas of the (LD, LD)

and (HD, HD) phases, respectively. The solution for SHD is:

SHD =
∫ 1

0

λαdα

1 + (1− λ)α
=

λ

1− λ
+

λ

(1− λ)2
ln

1
2− λ
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=
m

n−m
+

mn

(n−m)2
ln

n

2n−m
. (5.34)

Using Eq. (5.5), one obtains SHD = 0.19 for m = 1 and n = 2, and SHD = 0.1175

for m = 1 and n = 3. Thus, when n is increased from 2 to 3, the (HD, HD)

phase region will decrease by 0.0725(=0.19-0.1175). It is equivalent to say that the

(LD, LD) phase region will increase by 0.0725. Also, when m = 1 and n = 1, one

has SHD = 0.5 which is reduced to the normal synchronous TASEP. In the same

way, it is easily to measure areas of the (LD, LD) and (HD, HD) regions using Eq.

(5.5) for any integer values of m and n under m < n. Correspondingly, one can

directly obtain SHD and SLD for m > n using the expressions as follows. Thus, a

general theoretical solution for TASEPs with MINO junctions in parallel update is

obtained. The low-density and high-density regions can be measured qualitatively

and quantitatively for both m ≤ n and m ≥ n.

Sm>n
HD = Sm<n

LD , Sm>n
LD = Sm<n

HD . (5.35)

5.3.2 Simulation Results and Discussions

As mentioned above, the theoretical solution is in general for TASEPs with MINO

junctions. To verify the theoretical results, computer simulations are carried out

in this section. I arbitrarily set N = 500, m = 2 and n = 3, 4. However, I also

checked larger system sizes and found that the results do not deviate from the ones

used here. Stationary current and density profiles are obtained by averaging 1× 109

sampling at each site. The first 1 × 108 time steps are discarded to let the system

steady state.

The density profiles for the (LD, LD), (HD, HD), (MC, LD), and (MC, LD/HD)

phases are shown in Figure 5.10. It is found that there is a good agreement between

computer simulations and theoretical analysis (see Figure 5.10(a-c)). Also, there is

no phase transitions when the number of outputs in the right subsystem is increased
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from 3 to 4. In Figure 5.10(d) a phase transition from the (HD, HD) phase to the

(MC, LD/HD) phase occurs. When m = 2, n = 3, α = 1.0, and β = 1/3, the

system is in the (HD, HD) phase. Upon increasing the number of outputs in the

right subsystem (e.g., n = 4), the system transfers to the (MC, LD/HD) phase. In

the (MC, LD/HD) phase, theoretical calculations deviate from simulation results in

the right subsystem. This deviation could partially be related to correlations which

are in general strong in parallel updating scheme.

The domain wall approach produces almost identical estimates for density pro-

files comparable to the results from Monte Carlo simulations in the left subsystem,

while it shows deviations from simulations in the right subsystem (see Figures 5.11(a)

and (b)). These deviations may be caused due to the following reasons: (1) the finite-

size effect. The more simulation runtime and larger system size should be used to

confirm this effect in future work; (2) neglecting the cross-correlation between the

particles in channels; and (3) errors in the exact positioning this phase boundary.

With the increase of α (accordingly increasing β) in the (LD, HD) phase, the slopes

of density profiles decrease. In the left subsystem, the slope decreases from 0.19

to 0.01) when α increases from 0.2 to 0.8 (see Figures 5.11(a) and (b)). One can

predict that the slope will finally reduce to 0 when α is increased to 1.0. In the right

subsystem, the slope decreases from 0.594 to 0.512 when α increases from 0.2 to 0.8

(see Figures 5.11(a) and (b)). Further increasing α to 1.0, the slope is equal to 0.5.

Finally, current profiles in these five phases with m = 2 and n = 4 are investi-

gated. For simplicity, I assume that α is fixed while β changes from 0 to 1. Figure

5.12 shows stationary current obtained from theoretical calculations and computer

simulations for α = 0.5 and 1.0, respectively. It can be seen that theoretical pre-

dictions are in good agreement with computer simulations. α = 0.5, β1 = 0.2

correspond to the (LD, HD) phase. When β < β1, the system is in the (HD, HD)

phase (see Figures 5.3(a) and 5.12(a)). In this phase, the current increases with the
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increase of β as the current is determined by β. When β > β1, the system transfers

to the (LD, LD) phase in which α dominates the system with J = α/(1 + α) = 1/3.

When α = 1.0 and β2 = 1/3, the (MC, LD/HD) phase is reached (see Figure 3.6(b)).

β < β2 corresponds to the (HD, HD) phase, which is similar as β < β1 in Figure

5.12(a). When β > β2, a phase transition from the (MC, LD/HD) to the (MC, LD)

occurs in which the maximal current J = 0.5 is maintained.

5.4 Summary and conclusions

Synchronous totally asymmetric exclusion processes (TASEPs) with a multiple-

input single-output MISO junction are investigated by using a rule of current con-

servation, a domain wall approach and extensive computer simulations in this Chap-

ter. Junctions may be relevant to many biological processes as well as vehicular and

pedestrian traffic flow. The theoretical solutions, mean-field approximation, domain

wall theory are developed. Extensive computer simulations are conducted. The the-

oretical analysis suggests that there are five possible stationary phases ((LD, LD),

(LD, HD), (LD/HD, MC), (HD, HD) and (HD, MC)).

The MISO junction is then extended to a m-input n-output junction. A general

theoretical solution for TASEPs with MINO junctions is obtained. More interest-

ingly, it is shown that TASEPs with a group of MINO junctions (not only a specific

one) can possess the same phase diagram, stationary current, and density profiles

when the systems are with the same λ (λ = m/n). Using Eqs. (5.34) and (5.35),

the areas of the (LD, LD) and (HD, HD) phases can be calculated directly. The cur-

rent and density profiles are calculated, which show good agreement with computer

simulations.

For a better understanding of the general dynamics of TASEPs with MINO

junctions, it is necessary to investigate TASEPs with MINO junction in random
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update and compare results with those reported in this paper. It is also interesting

to extend this model by considering large particles or lane-changing rules.

This Chapter is based on two published papers. They are: (1) Theoretical

investigation of synchronous totally asymmetric exclusion processes on lattices with

multiple-input single-output junctions, Physical Review E: Statistical, Nonlinear,

and Soft Matter Physics 77 (2008) 051108. This paper has been selected for the

Issue of the Virtual Journal of Biological Physics Research ( Vir. J. Bio. Phys.

Res. Volume 15, Issue 10, Statistical and Nonlinear Physics); and (2) Asymmetric

exclusion processes on m-input n-output junctions with parallel update, Physica A:

Statistical Mechanics and its Applications 388 (2009) 4068.
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Figure 5.3: Density profiles obtained from mean-field analysis (MFA) and Monte
Carlo simulations (MCS) when m = 2: (a) and (b) are for the (LD, LD) phase,
(c) and (d) are for the (HD, HD) phase, and (e) for the (HD, MC) phase. The
parameters are set to: (a) α = 0.1 and β = 0.8, (b) α = 0.2 and β = 0.8, (c) α = 0.8
and β = 0.32, (d) α = 0.8 and β = 0.44, and (e) α = 0.6 and β = 1.0.
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Figure 5.4: Density profiles obtained by the domain wall (DW) theory and Monte
Carlo simulations (MCS) when m = 2: (a) and (b) for the phase coexistence line be-
tween the (LD, LD) and (HD, HD) phases, (c) is for the coexistence phases between
the (LD, LD), (LD, HD),(HD,HD)and (HD, MC) phases. The parameters are: (a)
α = 0.1 and β = 0.222, (b) α = 0.2 and β = 0.5, and (c) α = 1/3 and β = 1.0.
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Figure 5.5: Density profiles in Monte Carlo simulations when m = 2 and m = 3.
The parameters are: (a) α = 0.1 and β = 0.8, (b) α = 0.2 and β = 0.8, (c) α = 0.8
and β = 0.32, and (d) α = 0.25 and β = 1.0.
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Figure 5.6: Density profiles in Monte Carlo simulations when m = 2 in random and
parallel updates. The parameters are: (a) α = 0.1 and β = 0.8, (b) α = 0.2 and
β = 0.8, (c) α = 0.8 and β = 0.32, and (d) α = 0.8 and β = 0.8.
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Figure 5.7: Schematic diagram of a m-input n-output (MINO) junction. Particles
move from the left to the right with hard-core exclusion. There are m inputs and n
outputs in the system.

Figure 5.8: (a) The left subsystem. Entrance probability at site 1 and exit proba-
bility at site N are denoted as α and βeff , respectively. (b) The right subsystem.
Entrance probability at site N + 1 and exit probability at site 2N are denoted as
αeff and β, respectively. Solid arrows indicate the allowed hopping with probability
one in the bulk, while dashed arrows correspond to the prohibited movement.
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Figure 5.9: (a) Phase boundaries for m = n, m = n/2, m = n/3 and m = 2n/3 in
TASEPs with a MINO junction in parallel update. (b) Phase diagram for m = 2n/3.
There are five phases: (LD, LD), (HD, HD), (LD, HD), (MC, LD) and (MC, LD/HD)
in the system. The lines are for theoretical prediction, while the symbols are for
computer simulations.
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Figure 5.10: Density profiles of theoretical calculations and computer simulations
with m = 2 and n = 3, 4: (a) the (LD, LD) phase, (b) the (HD, HD) phase, (c) the
(MC, LD) phase, and (d) the (HD, HD) and (MC, LD/HD) phases. The parameters
are: (a) α = 0.2 and β = 0.6, (b) α = 0.8 and β = 0.1, (c) α = 1.0 and β = 0.6, and
(d) α = 1 and β = 1/3.
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Figure 5.11: Density profiles of the domain wall approach and computer simulations
in the (LD, HD) phase with m = 2 and n = 4. The parameters are: (a) α = 0.2 and
β = 0.091, and (b) α = 0.8 and β = 0.2857.
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Figure 5.12: Currents are obtained from theoretical calculations and computer sim-
ulations with m = 2 and n = 4. The parameters are: (a) α = 0.5, and (b) α = 1.0.



Chapter 6

Two-species TASEPs with Site
Sharing and Relaxed Boundaries

6.1 Introduction

The totally asymmetric simple exclusion process (TASEP) is a one-dimensional lat-

tice model where particles move unidirectionally with hard-core exclusion (that is,

each site can be occupied by at most one particle at any given time). The original

TASEP was introduced in 1968 as a model of biopolymersation of ribosomes [7].

Recently, a great number of variants have been developed to model biological trans-

port, such as in [1, 31, 43, 84, 53, 85, 125]. The model also finds applications in

traffic simulations and other transport systems e.g., in [16, 126, 127]. Meanwhile, as

a paradigm of driven diffusive systems, TASEPs have been investigated theoretically

in their own right [8, 9, 27, 28, 30, 33, 39, 47, 54, 56, 71, 89, 97].

In these TASEP models, either single species of particles or multiple species,

particles follow the site-exclusion mechanism, i.e., hard-core rule, on one channel

or multiple channels of movement. The TASEP with site-sharing mechanism has

not been well studied so far. It is believed that the study on the TASEPs with site

sharing is interesting and worthwhile theoretically and practically. In many realistic

models component entities such as different species of particles do indeed share the
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same sites simultaneously and this multiple occupancy likely plays an important

role in system properties. In fact, it is possible that different species particles can

share the same site. For instance, when pedestrians walk along a narrow one-channel

pathway in opposite directions and meet together, they may share a space, and then

pass each other.

The proposed two-species TASEP model is based on the site-sharing mecha-

nism. There is also a substantial literature on two-species ASEP models with a

site-exchanging mechanism, e.g., under periodic boundary conditions [113, 114, 115]

and open boundary conditions [56, 60, 82, 116, 118]. Evans et al. [56] firstly investi-

gated two-species TASEP with a particle-exchange mechanism and open boundaries.

Their model is known as the Bridge model. Jafarpour [118] studied an interesting

case in which two-species of particles can be converted each other with a certain

probability at boundaries. Popkov et al. [82] introduced the Bridge model with

two junctions. More recently, Gupta et al. [116] extended the Bridge model to the

relaxed case, that is, the particle-exchange mechanism is also applied to the bound-

aries. The basic stationary and dynamic properties of non-equilibrium systems with

two-species of particles are reviewed in [105]. The spontaneous symmetry breaking

(SSB) is observed and exhibited as high-density/low-density phase and/or asym-

metric low-density/low-density phase in [56, 60, 82, 113, 116]. Physically one would

expect that these models show a similar phase diagram and general behaviour since

the details of the exchange mechanism (with or without site-sharing) are expected

to be irrelevant.

In this Chapter, a one-dimensional lattice model under open boundary con-

ditions is investigated. In the model, two species of particles move in opposite

directions and are allowed to share a site with a certain probability when they meet.

Note that there are two major differences between the proposed model and previous

two-species TASEP models: (1) In the bulk, two species of particles may share the
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same site in the present model, rather than exchanging each other in other models;

(2) In the boundaries, the model allows two species of particles to share the same site

as well, rather than excluding each other like in the Bridge model and its variants.

Interestingly, when the boundary conditions of the model are the same as that of

the Bridge model, the spontaneous symmetry breaking is observed. This work is

now in progress and will be reported later.

This Chapter is organized as follows. In section 6.2, the model is described and

mean-field theoretical analysis is conducted. In section 6.3, the results of theoretical

calculations and Monte-Carlo simulations are discussed. A comparison is also made

between the proposed model and the Bridge model. Conclusions and areas for

further investigation are given in section 6.4.

6.2 Model formation and theoretical analysis

An illustration of a one-dimensional TASEP with two species of particles is shown

in Figure 6.1. The system includes N sites. Each site can be occupied by a (+)

particle and/or a (-) particle, or empty. The (+) particles move from the left to the

right, represented by filled circles, while the (-) particles (denoted by open circles)

move in the opposite direction (see Figure 6.1). In each time step, a site i is picked.

At this site, a (+) particle or a (-) particle may be chosen. If a (+) particle is chosen,

one of the following rules is applied:

• In the bulk. (1) A (+) particle at site i can hop to site i + 1 with probability

1 if the target site is empty; (2) If the target site is occupied by a (-) particle,

the (+) particle can share the site with probability q (0 ≤ q ≤ 1); (3) If the

target site is occupied by another (+) particle, the (+) particle stays at site i.

• In the boundaries. (1) A (+) particle enters the left boundary with rate α+ if

the first site is empty, or with probability qα+ if the site is occupied by a (-)
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particle; (2) A (+) particle can exit the system from the last site at the right

boundary with rate β+.

If a (-) particle is chosen, the similar rules are performed by (-) particles from the

right to the left. For simplicity, this Chapter just discusses the case of α+ = α− = α

and β+ = β− = β.

Figure 6.1: Diagrammatical representation of a one dimensional TASEP with two
species of particles. The (+) particles move from the left to the right, represented
by filled circles, while the (-) particles do the opposite movement, denoted by open
circles. A site can be shared with probability q by two species of particles when they
meet on the same lattice.

   Pe    P+    P-     P
+

-

Figure 6.2: Four possible states on each site. Pe, P+, P−, and P± denote correspond-
ing probabilities.

Since a site can be shared by two species of particles in the present model, there

are four possible states for each site: (1) occupied by a (+) particle; (2) occupied by

a (-) particle; (3) occupied by both a (+) and a (-) particle; (4) empty. According

to these states, four corresponding probabilities: P+(i), P−(i), P±(i), and Pe(i) are
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defined, as shown in Figure 6.2. Clearly, these probabilities can be normalised as:

P+(i) + P−(i) + P±(i) + Pe(i) = 1. (6.1)

The evolution equation of P±(i) over time can be given by

dP±(i)
dt

= qP±(i− 1)P−(i) + qP+(i)P±(i + 1) + qP+(i− 1)P−(i) +

qP+(i)P−(i + 1)− P±(i)Pe(i + 1)− P±(i)Pe(i− 1)−

qP±(i)P+(i− 1)− qP±(i)P−(i + 1), (6.2)

where the four positive terms represent the possible inflow for the formation of P±

from site i−1 to site i for a (+) particle and from site i+1 to site i for a (-) particle.

The four negative terms correspond to the possible outflow from site i. Similarly,

the evolution of P+ and P− can be written as

dP+(i)
dt

= P+(i−1)Pe(i)+P±(i−1)Pe(i)− qP+(i)P−(i+1)−P+(i)Pe(i+1), (6.3)

dP−(i)
dt

= P−(i+1)Pe(i)+P±(i+1)Pe(i)− qP−(i)P+(i−1)−P−(i)Pe(i−1). (6.4)

Note that Eqs. (6.2-6.4) are not exact, but mean-field approximations. In

steady state, these probabilities are expected to be independent of positions of sites.

Thus, it is reasonable to neglect i indices in above equations. The above equations

will tend to be zero in a stationary state. That is, dP±/dt = dP+/dt = dP−/dt = 0,

which leads to

qP+P− = P±Pe. (6.5)

The currents and bulk densities for (+) particles and (-) particles can be written

as follows

J+ = (P± + P+)(Pe + qP−), ρ+ = P± + P+, (6.6)

J− = (P± + P−)(Pe + qP+), ρ− = P± + P−, (6.7)
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where J+ and J− represent currents of (+) particles and (-) particles in the system,

respectively. ρ+ and ρ− denote the corresponding bulk densities. The first term

multiplier in the current expression in Eq. (6.6) represents the probability of finding

a (+) particle at a site, while the second term corresponds to the probability that the

next site is available. The system is in left-right symmetry, and the dynamical rules

are identical. Under the conditions where the symmetry of the system is retained,

one expects that the currents of (+) particles and (-) particles should be equal.

When J+ = J−, one obtains P+ = P− by comparing Eq. (6.6) with Eq. (6.7).

Then by using Eq. (6.1), Eq. (6.5) can be rewritten as

qP 2
+ = P±(1− 2P+ − P±), (6.8)

so that

P+ =
−P± +

√
(1− q)P 2± + qP±

q
. (6.9)

According Eqs. (6.1) and (6.9), Eq. (6.6) is given by

J+ =
1
q2

((q−1)P±+
√

(1− q)P 2± + qP±)(q+2P±−2qP±−(2−q)
√

(1− q)P 2± + qP±).

(6.10)

In the low-density (LD) phase, the current of (+) particles at the entrance of

the left boundary is equal to

J+
LD = α(Pe + qP−). (6.11)

According to the rule of current conservation in a steady state and comparing Eq.

(6.11) with Eq. (6.6), one has

α = P± + P+. (6.12)
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Eq. (6.12) means that the bulk density of (+) particles ρ+ = P± + P+ = α. Then

according to Eqs. (6.9) and (6.12), one obtains

P+ =
1−

√
1− 4α(1− q)(1− α)

2(1− q)
, P± =

2α(1− q)− 1 +
√

1− 4α(1− q)(1− α)
2(1− q)

.

(6.13)

Substituting Eq. (6.13) into Eq. (6.10), the system current in the LD phase reads,

J+
LD =

α

2
(1− 2α +

√
1− 4α(1− q)(1− α)). (6.14)

In the high-density (HD) phase, the system dynamics is determined by exit rate

β. The current for (+) particles at the right boundary is given by

J+
HD = β(P± + P+). (6.15)

Applying the rule of current conservation, the following equation is derived from

Eqs. (6.6) and (6.15)

β = Pe + qP−. (6.16)

As P+ = P−, according to Eq. (6.9), then

q(1− q)P 2
± + (q2 + 4β − 4qβ)P± − q(1− β)2 = 0, (6.17)

The above equation has a solution

P± =
−(q2 + 4β − 4qβ) +

√
q4 + 4(1− q)[q2 + β2(2− q)2]

2q(1− q)
. (6.18)

P+ can be obtained from Eq. (6.9)

P+ =
2q + 2q2β + 4β − 6qβ − q2 −

√
q4 + 4(1− q)[q2 + β2(2− q)2]

2q(1− q)(2− q)
. (6.19)

Thus, the bulk density and current in the HD phase can be calculated

ρ+
HD =

q − 2β

2q
+

√
q4 + 4(1− q)[q2 + β2(2− q)2]

2q(2− q)
, J+

HD = βρ+
HD. (6.20)
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In the maximal-current (MC) phase, the current, JMC , is independent of α and

β, but is only determined by q. When J is maximal, Eq. (6.10) corresponds to
∂J+

∂P± = 0 which leads to

[3q − 2q2 + (8− 14q + 6q2)P±]
√

(1− q)P 2± + qP± = (2− 5q + 4q2 − q3)P 2
± +

(1 +
1
2
q − 5

2
q2 + q3)P± −

1
2
q + 1. (6.21)

When q is known, P± can be solved exactly. Then P+, ρ+ and JMC can be calculated

using Eqs. (6.9) and (6.10).

Two extreme cases: q = 0 and q = 1 are examined. With regard to q = 0, a (+)

particle cannot share a site with a (-) particle, i.e., P± = 0. Obviously, the system

is blocked and system current J = 0. Theoretically, P+ = 0.5 and P− = 0.5, which

leads to Pe = 0 and J+ = 0. As to q = 1, a (+) particle does not distinguish between

a (-) particle and a hole. And similarly for a (-) particle. The system is therefore

decoupled into two independent TASEPs. Thus, system current J and density ρ

satisfy: J = ρ(1− ρ). According to Eq. (6.9), P+ =
√

P± − P±. Then Eq. (6.6) is

rewritten as

J+ =
√

P±(1−
√

P±). (6.22)

When the system is in the LD phase, comparing Eq. (6.22) with Eq. (6.11), one

obtains
√

P± = α. The corresponding current in this phase can be read as J =

α(1 − α). For the HD phase, comparing Eq. (6.22) with Eq. (6.15), one has
√

P± = 1 − β. Thus the current in the HD phase is equal to J = β(1 − β). In the

MC phase, P± = 1/4 can be derived from Eq. (6.21) when q = 1. Then according to

Eq. (6.9), one obtains P+ = 1/4. Substituting values of P± and P+ into Eq. (6.6),

one obtains J+ = 1/4 and ρ+ = 1/2. It can be seen that the system for q = 1 is

reduced to the usual one-dimensional TASEP with random update [8].
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For another limiting case α− = 0, Eq. (6.1) is simplified as P+(i) + Pe(i) = 1

(i.e., P±(i) = P−(i) = 0). The corresponding stationary current and bulk density

for (+) particles can be represented as J+ = P+Pe and ρ+ = P+ (see Eq. (6.6)).

Thus, the model reduces to the usual TASEP. A proper mean-field theory for this

case has been developed by Derrida et al. [8].

The possibility of observing spontaneous symmetry breaking in the system is

discussed. Spontaneous symmetry breaking is characterized by unequal bulk densi-

ties of (+) particles and (-) particles under the symmetric structure and updating

rules. There are six possibly asymmetric phases in the system, i.e., the (LD, LD),

(HD, HD), (MC, MC), (LD, HD), (LD, MC), and (HD, MC) phases. The (LD, HD)

phase means that (+) particles are in the LD phase, while (-) particles are in the

HD phase.

In the (LD, LD) phase, J−LD at the entrance of the right boundary is given by

J−LD = α(Pe + qP+). (6.23)

Comparing the equation with Eq. (6.7), one obtains α = P± + P−. Similarly, one

has α = P± + P+ for (+) particles. One then derives P+ = P−, which contracts

the assumption P+ 6= P−. Thus, the (LD, LD) phase does not exist in the system.

Similarly, one can confirm nonexistence of the (HD, HD) phase.

For the (LD, HD) phase, according to Eqs. (6.6) and (6.7), J+
LD − J−HD =

qP±(P−−P+)+Pe(P+−P−) 6= 0. If J+
LD−J−HD > 0, one has qP± > Pe as P− > P+.

Then according to Eq. (6.16), β = Pe + qP+ < qP± + qP+ = qα. However, as (+)

particles are in the LD phase, one has α < β, which means qα < qβ. Thus, it

leads to β < qα < qβ. This is impossible for 0 < q < 1. In the similar way, one

disconfirms the assumption J+
LD − J−HD < 0. Therefore, the (LD, HD) phase does

not exist in the system.
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As mentioned above, the MC phase is determined by P±. The values of P±

are the same for (+) particles and (-) particles in the system. Thus, the (MC, MC)

phase reduces to the MC phase. If the (LD, MC) phase could exist in the system,

P± in the LD phase should equal to that in the MC phase. However, P± only

depends on q in the MC phase (see Eq. (6.21)), while it depends on q and α in

the LD phase. Therefore, it is impossible that the (LD, MC) and (HD, MC) phases

exist in the system. Therefore, only three stationary phases: LD, HD and MC are

identified in this system, which are similar to the standard TASEP [8], but with

shifted boundaries according to different sharing probability q.

6.3 Results and discussion

To verify the theoretical analysis above, Monte Carlo simulations were carried out.

Open boundary conditions and random update were used with the system size N =

1000. For larger size N , thesimulations show little deviations from those presented

here. The first 1 × 109 time steps were discarded to let the transient out. The

system current and density profiles were obtained by averaging 5× 109 time steps.

The system current J is defined as J = J+ = J− and bulk density as ρ = ρ+ = ρ−,

unless stated otherwise.

Phase diagrams obtained from theoretical predictions and computer simulations

are presented in Figure 6.3(a). By comparing the simulation results with theoretical

calculations one can conclude that the simple mean-field approach agrees well with

simulations. However, there are still deviations from simulations for some values

of q (see Figure 6.3(b)). The simulations were repeated ten times with different

random number seeds and the resulting critical points (α∗, β∗) are shown in Figure

6.3(b). α∗andβ∗ in Figure 6.3(b) are intersection points of the LD, HD, and MC

phases. Thus, a phase diagram can be determined once a (α∗, β∗) pair is obtained.
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Figure 6.3: (a) Phase diagram of the TASEP with two species of particles and
sharing probabilities q = 0.6 and 1. (b) The critical points (α∗, β∗) with different q
in the α− β plane. The solid line is for theoretical results, while the filled symbols
correspond to simulation results. These figures are averaged over 10 runs.

For example, the MC phase is specified by α ≥ α∗ and β ≥ β∗. Theoretical analysis

of the model indicates that the phase diagram is similar to the normal TASEP [8],

however, the phase boundaries are shifted according to different values of sharing

probability q.

Current profiles in these phases with different q are investigated. For simplicity,

one assumes that α is fixed while β changes from 0 to 1. Figure 6.4(a) shows the

stationary current obtained from theoretical calculations and computer simulations

for α = 1.0. With the increase of β, a phase transition from the HD phase to the MC

phase is observed in which the maximal current Jmax is maintained and its value is

determined by q. In Figure 6.4(b), Jmax versus different q is shown with α = 0.9

and β = 0.9. It can be seen that the theoretical predictions are in agreement with

computer simulations for q = 1, while they have slight deviations from simulation
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Figure 6.4: (a) Currents obtained from theoretical calculations and computer simu-
lations with α = 1. (b) Jmax versus q with α = 0.9 and β = 0.9. The lines are for
theoretical predictions, while the symbols correspond to simulation results. Data
are collected by averaging 10 independent configurations.

results (e.g., q = 0.1 and q = 0.5). The reason for this is probably due to neglecting

the correlations between the two species of particles.

An interesting quantity in this study is P+
− which is the quantity that is new

compared to previous one-dimensional two-species TASEP models. Thus, density

profiles (denoted by P+, P−, P±, Pe) in the LD, HD and MC phases can be obtained

from theoretical predictions and computer simulations and are shown in Figure. 6.5.

It is seen that theoretical results of P+, P−, P±, Pe agree well with computer simu-

lations when the system is in the LD or HD phase (see Figures. 6.5(a-b)). However,

when the system is in the MC phase, only P+ and P− show a good agreement with

simulation results. Large deviations can be found in P± and Pe (see Figure. 6.5(c)).

For a better understanding of the MC phase, Figure. 6.5(d) shows the bulk density

of (+) particles in the MC phase, i.e., ρ+ = P+ + P±. One can see that the theoret-
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ical results of the bulk density agree qualitatively with simulation results when the

system is in the MC phase.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

d
e
n
si

ty

 

 

i/N

 P+ = P_   P+
_   Pe

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

i/N

d
e
n
si

ty

(b)

 P+ = P_  P+
_  Pe

 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

i/N

d
e
n
si

ty

(c)

 P+ = P_  P+
_  Pe

 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 P+ + P+
_     Pe    

(d)

i/N

d
e
n
si

ty

 

 

Figure 6.5: Density profiles (P+, P−, P±, Pe) in the LD, HD and MC phases ob-
tained from theoretical predictions and computer simulations. Symbols represent
the simulation results, while the corresponding thick lines are for the theoretical
calculations. (a) LD phase with α = 0.2, β = 0.8 and q = 0.8. (b) HD phase with
α = 0.8, β = 0.2 and q = 0.8. (c) and (d) MC phase with α = 0.8, β = 0.8 and
q = 0.8. (d) Bulk density of (+) particles in the MC phase, i.e., ρ+ = P+ + P±.
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The relationship among P+, P−, P+
− , Pe and α is simulated and shown in Fig-

ure. 6.6. For simplicity, I arbitrarily set β = 1 and α changing from 0 to 1. In

this case, the phase transition from the LD phase to the MC phase is observed. In

the MC phase, P+
− is determined by sharing probability q, independent of α and β.

With the increase of q, Pe increases in the MC phase. Upon increasing to q = 1,

P+ = P− = P+
− = Pe = 0.25 (see Figure. 6.6(d)). On the other hand, when increas-

ing q, the region of the MC phase shrinks while the region of the LD phase expands

(see Figure 3(a) and Figures. 6.6(a-d)).

A comparison of the average currents is also made between the present model

and the Bridge model under the same parameters in Monte Carlo simulations. Tak-

ing the flipping phenomenon into account in the Bridge model, the average current

of (+) and (-) particles is used here, i.e., Jave = (J+ + J−)/2, where J+ and J−

are currents of (+) and (-) particles, respectively. It is assumed that α = 0.2, 1,

q = 0.3, 0.6, 0.9 while β changes within [0,1] so that one can observe the average

current in all possible phases. It is shown that the proposed model can enhance the

average current than that in the Bridge model (see Figure. 6.7). The reason for this

is probably due to the relaxed boundary conditions and the site-sharing mechanism

used in the present model.

6.4 Summary and conclusions

This chapter studied the dynamics of two-species TASEP with site sharing under

random update and open boundary conditions. Hard-core exclusion is only applied

to the particles of the same species, while different species of particles may break the

hard-core exclusion, that is, they can share the same site with a certain probability

q. This kind of sharing mechanism has been little studied in previous TASEP mod-

els, to the best of our knowledge. The steady-state phase diagrams, currents and
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Figure 6.6: P+, P−, P+
− and Pe versus α with β = 1 and different q. (a) q = 0.3.

(b) q = 0.6. (c) q = 0.9 and (d) q = 1.

bulk densities are obtained using a simple mean-field approximation and extensive

Monte Carlo simulations. Histograms of two species of particle densities are simu-

lated. Three stationary phases (LD, HD, and MC) are identified with shifted phase

boundaries, compared to the normal TASEP. In the MC phase, currents and density
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Figure 6.7: A comparison on the stationary currents between the proposed model
and the Bridge model with different β in simulations. Jave is the average current of
(+) and (-) particles, i.e., Jave = (J+ + J−)/2. The red filled symbols correspond
to the present model, while the black open symbols are for the Bridge model. (a)
α = 0.2 and (b) α = 1.0.

profiles are dictated by the sharing probability q. The theoretical predictions are

supported by computer simulations.

This work shows that the sharing mechanism of two species of particles is an

interesting issue and needs to be further investigated. The present model can be

extended to a more general case where particles can randomly attach to or detach

from the lattice. It would be interesting to study the present model with parallel

updating procedure.

This Chapter is based on the paper ”Asymmetric exclusion processes with site

sharing in a one-channel transport system”. The paper has been published in Physics

Letters A 374 (2010) 516-521.



Chapter 7

Spontaneous Symmetry
Breaking in TASEP with Site
Sharing and constrained
boundaries

7.1 Introduction

Non-equilibrium systems have attracted the interests of interdisciplinary researchers

because a variety of interesting phenomena such as boundary-induced phase transi-

tions, phase separations, and spontaneous symmetry breaking are observed. Orig-

inally introduced in the description of ribosome motion along mRNA in 1968 [7],

totally asymmetric simple exclusion process (TASEP) and its variants have exhib-

ited properties believed to be characteristics of many real-world non-equilibrium

processes such as molecular motor traffic [53], protein synthesis [43], fungal hyphal

growth [123]. On the other hand, the TASEP has also been extensively studied

in its own right in the context of different particle properties (e.g., large particles

[39, 41, 42], two species of particles [56, 62] and different lattice geometries (e.g., mul-

tiple channels [68, 78], junctions [27, 79]) as well as different updating procedures

(e.g., random update [30], parallel update [33]). These investigations enhanced a
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broader understanding of non-equilibrium systems.

Recently, the study on spontaneous symmetry breaking (SSB) in non-equilibrium

systems has received much attention using TASEP with two species of particles.

The SSB in this way is characterised by unequal densities of two species of particles.

Evans et al. [56] firstly observed the SSB in one-dimensional two-species TASEP

with open boundary conditions. In their model, two-species of particles can exchange

their positions with a certain probability when they meet together. As the shape of

the model in [56] looks like a bridge, the model is known as the “Bridge model”. In

the Bridge model, it was shown that a high-density-low-density (HD/LD) phase and

an asymmetric LD/LD phase could exist and both of them exhibit broken symmetry.

Erickson et al. [61] also revisited the Bridge model via high-precision Monte Carlo

data and associated their work with the study of traffic on a narrow bridge. Their

simulation results show that the LD/LD phase will disappear if the system size is

sufficiently large and/or the exchange probability is sufficiently low. Levine and

Willmann [60] extended the Bridge model by considering Langmuir Kinetics (LK)

on a lattice. Two-species of particles are assumed to have the same attachment rate

and detachment rate. They found that the SSB could exist and the localized shocks

appear in some conditions.

The SSB has also been investigated in multiple-channel TASEPs with random

update [63] and parallel update [64, 65]. More recently, Popkov et al. introduced

the Bridge model fed by two junctions [82]. The SSB is observed as well. In addi-

tion, a co-existence region between the symmetry-broken phase and the low-density

symmetric phase exists in their system.

In this Chapter, the site-sharing mechanism is still adopted, but with con-

strained boundaries to study the dynamics of two-species TASEP using extensive

Monte Carlo simulations. The constrained boundaries mean that particles cannot

enter the system if the corresponding sites at boundaries are not empty. The spon-
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taneous symmetry breaking is observed. Phase diagram, bulk density and particle

currents are computed. For comparison, the Bridge model is also revisited. It is

shown that the model exhibits higher current than the Bridge model in the high-

density phase. This Chapter is organized as follows. In section 7.2, the model is

formed, followed by simulation results in section 7.3. Conclusions are given in section

7.4.

7.2 Model description

An illustration of a one-dimensional TASEP with two-species of particles is shown

in Figure 7.1. The system size is assumed to be N . Each site can be occupied by a

(+) particle and/or a (-) particle, or empty. The (+) particles move from the left to

the right, represented by filled circles, while the (-) particles denoted by open circles

move oppositely (see Figure 7.1). The model is symmetric with regard to the rules

and two species of particles. Therefore, the rules of (+) particles are defined. The

(-) particles perform the similar rules from the right to the left. For simplicity, I

assume α+ = α− = α and β+ = β− = β in simulations. In each time step, a site i is

randomly chosen. A probability for choosing a (+) or (-) particle at site i is equal,

i.e., 0.5.

• When i is in the bulk (1 < i < N),

1. A (+) particle at site i can hop to site i + 1 with probability 1 if the

target site is empty;

2. If the target site is occupied by a (-) particle, the (+) particle can share

the site with probability q (0 ≤ q ≤ 1);

3. If the target site is occupied by the same species particle, the (+) particle

stays at site i.
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• When i is in the boundaries,

1. i = 1. A (+) particles can enter the left boundary with rate α+ only if

the first site is empty. If the site is occupied by the other (+) particle,

the (+) particle already at site 1 can hop to site 2 with probability 1 if

site 2 is empty or with probability q if site 2 is occupied by a (-) particle;

2. i = N . A (+) particle can exit the system from the last site with rate

β+.

(b)

p1 1 1

11

x

x
x

x
1 p

(a)

Figure 7.1: Diagrammatical representation of a one dimensional TASEP with two-
species of particles. The (+) particles move from the left to the right, represented
by filled circles, while the (-) particles (denoted by open circles) move from the right
to the left. Arrows mean the possible movements. Symbols over the arrows indicate
the corresponding hopping probabilities. A site can be shared with probability q by
two-species of particles when they meet each other. (a): prohibited entrance for (+)
particles, (b): prohibited entrance for (-) particles.
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7.3 Simulation results and discussion

To investigate the dynamics of the system, Monte Carlo simulations are carried

out. Open boundary conditions and random update are used with the system size

N = 1000. The first 1× 109 time steps are discarded to let the transient out. The

phase diagram, stationary current and density profiles are obtained by averaging

2× 109 time steps.
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Figure 7.2: Phase diagram of the TASEP with two species of particles and site
sharing for different sharing probabilities q. The red open squares correspond to the
boundary between the symmetric LD/LD and asymmetric LD/LD phases, while
the black open circles denotes the boundary between the asymmetric LD/LD and
HD/LD phases. The lines are guided for eyes. (a) q = 1 and (b) q = 0.5.

The phase diagram is simulated for q = 0.5, 1 and shown in Figure 7.2. The

red open squares correspond to the boundary between the LD/LD and asymmetric

LD/LD phases, while the black open circles denotes the boundary between the

asymmetric LD/LD and HD/LD phases. When q = 1, a (+) particle does not

distinguish between a (-) particle and a hole. Similarly, a (-) particle does not
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distinguish between a (+) particle and a hole. In this case, four stationary phases

exist in the system, that is, symmetric LD/LD, asymmetric LD/LD, HD/LD and

MC phases (see Figure 7.2(a)). Note that the MC phase covers a small region in

the site-sharing model, while it is reduced to a point (α = 1, β = 1) in the Bridge

model. The simulation results show that the MC phase will disappear when q is

approximately q < 0.97. In other words, there are only three phases in the system

for q < 0.97 (see Figure 7.2(b)). Furthermore, as q decreases approximately to

q ≤ 0.3, the asymmetric LD/LD phase disappears as well. In such conditions, there

is only one symmetry-breaking transition from the LD/LD to the HD/LD in this

model.

The histograms P (ρ+, ρ−) of particle densities is investigated, where ρ+ and ρ−

are instantaneous densities of (+) and (-) particles, respectively. Figure 7.3 shows

four typical particle density histograms in the HD/LD, asymmetric LD/LD, LD/LD

and MC phases, respectively. One can see that in the HD/LD phase, a double peak

with two off-diagonal maxima appears, while in the symmetric LD/LD and MC

phases, a single peak exists on the diagonal.

The flipping process is shown in Figure 7.4. The density difference ρ+− ρ− has

been measured as functions of time. The flipping processes of the HD/LD and asym-

metric LD/LD phases are observed clearly in Figures 7.4(a) and (b). The system

flips between positive net values and negative net values. The positive (negative) net

values imply that the bulk density of positive (negative) particles are larger than

that of negative (positive) particles. This means the existence of the SSB in the

system.

Computer simulations with different system length (up to L = 10,000) are per-

formed in order to study the finite-size effect in the present model (see Figure 7.5).

It is shown that the phase boundary between the asymmetric LD/LD and symmet-

ric LD phases little depend on the system size, while the region of the asymmetric
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Figure 7.3: The simulation results of densities with (a) HD/LD phase: α = 0.8,
β = 0.16 and q = 0.8; (b)Asymmetric LD/LD phase: α = 0.8, β = 0.26 and q = 0.8;
(c) LD phase: α = 0.8, β = 0.4 and q = 0.8; (d) MC phase: α = 1, β = 1 and q = 1.

LD/LD phase seems to shrink and then keep unchanged with the increase of the

system size. This suggests that the asymmetric LD/LD phase probably exists in the

thermodynamic limit (L).
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Figure 7.4: Illustration of flipping processes of spontaneous densities in two breaking
phases with q = 0.5 and N = 40. (a) HD/LD phase: α = 0.4 and β = 0.1; (b)
Asymmetric LD/LD phase: α = 0.4 and β = 0.16.
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Figure 7.5: The size effect with q = 1, α = 0.6 and different system sizes.

Stationary currents in the present model are investigated. Due to the flipping

phenomenon in the model, the average current of (+) and (-) particles is used as the
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system current, i.e., Jave = (J+ + J−)/2, where J+ and J− are currents of (+) and

(-) particles, respectively. For simplicity, I assume that q = 0.5, 1, β = 0.3, 0.6, 0.9

while α changes from 0 to 1. Figure 7.6(a) shows the stationary current obtained

from computer simulations for q = 1. With the increase of β, the average current

increases as well. However, when q 6= 1 (e.g., q = 0.5), an unexpected phenomenon

appears. The average current first increases upon increasing β, and then reaches

the maximal current (see Figure 7.6(b)). In other words, Jave is maintained and its

value is dictated by q rather than α or β even the system is in the symmetric LD

phase. It is also observed that the maximal current region shrinks with the increase

of q.
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Figure 7.6: The stationary current with different β. Jave is the average current of
(+) and (-) particles, i.e., Jave = (J+ + J−)/2. (a) q = 1 and (b) q = 0.5.

The average currents between the proposed model and the Bridge model are

compared under the same α, β and q. It is assumed that α = 0.4, 1, q = 0.3, 0.6, 0.9

while β changes from 0 to 1 so that one can observe the current in all possible

phases. It is shown that the present model can lead to a higher current than that in
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the Bridge model (see Figure 7.7(a)). The reason for this is due to the site-sharing

mechanism in the present model rather than the site-exchanging mechanism in the

Bridge model.
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Figure 7.7: The stationary current with different q in the present model and the
Bridge model. The red symbols correspond to the present model, while the black
symbols are for the Bridge model. (a) α = 0.4 and (b) α = 1.

7.4 Summary and conclusions

The totally asymmetric simple exclusion process (TASEP) with two species of par-

ticles in a one-lane system is studied. The model is reminiscent of pedestrian traffic

crossing a narrow pathway in both directions. Two species of particles move oppo-

sitely and can enter the system only if the corresponding sites are empty. Hard-core

exclusion is applied to the same species of particles while different species of par-

ticles are allowed to share the same site at a certain probability q. This kind of

sharing effect has not been investigated in previous TASEP models, to the best of

our knowledge. There are four possible phases in the system, i.e., MC, symmet-
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ric LD/LD, asymmetric LD/LD and HD/LD. The spontaneous symmetry breaking

(SSB) is observed in the two phases: HD/LD and asymmetric LD/LD. With the

decrease of q, the asymmetric phase reduces to the boundary between the symmet-

ric LD/LD and the HD/LD phases. The MC phase will disappear when q < 0.97.

The histograms of two species of particles and the flipping process are plotted. The

proposed model exhibits higher current, compared to the Bridge model, which is

due to the site-sharing mechanism in the present model. More interestingly, it is

shown that the average current in the symmetric LD/LD phase is determined by q

rather than α or β when q 6= 1.

This work shows that the sharing effect on the TASEP is an interesting topic

and needs to be further investigated. The present model has been investigated

using extensive Monte Carlo simulations. However, it has not been conducted by

theoretical analysis. This work is now in progress and will be reported later.

This Chapter is based on the paper ”Spontaneous Symmetry Breaking in Aasym-

metric Exclusion Process with Site Sharing: a Monte Carlo Study”. The paper has

been submitted for review.



Chapter 8

Conclusions and Outlook

This research is motivated by recent developments in theoretical investigations of

non-equilibrium systems and traffic observations in Biology and Physics. The mod-

elling method is based on a paradigmatic model - totally asymmetric simple exclusion

process (TASEP). The self-driven many-body systems are characterised by non-zero

currents in conjunction with some emergent properties, e.g., phase separation, phase

coexistence, or spontaneous symmetry breaking. These collective behaviors cannot

be derived from microscopic interactions among individuals. Thus, these systems

are regarded as complex systems. Such systems in nature may be involved in, for

example, vehicular traffic, protein motor traffic, Internet traffic.

Originally introduced in the description of ribosome motion along mRNA in

1968 [7], TASEP and its extensions have exhibited properties believed to be char-

acteristics of many real-world non-equilibrium processes such as molecular motor

traffic [47, 53], protein synthesis [12, 43, 84], fungal hyphal growth [123].

On the other hand, the TASEP has also been extensively studied in its own

right in the context of different particle properties (e.g., large particles, two species

of particles) and different lattice geometries (e.g., multiple channels, intersections)

as well as different updating procedures (e.g., random update, parallel update), see
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Chapter 2 for more details.

The focus of this thesis is on investigating inhomogeneity-induced emergent

behavior within the framework of TASEP. Local inhomogeneity (or bottleneck) can

lead to some kinds of crowding phenomena, which are often seen as a main source

of environmental pollution for vehicular traffic and of some molecular motor-related

diseases, e.g., Alzheimer’s disease [18], for biological transport. It is known that local

inhomogeneity induces traffic jams in vehicular traffic. However, these congested

phenomena have not been well understood theoretically.

In the following paragraphs, the main results are briefly summarized. Many

fundamental issues remain and many new questions have been raised. The last

section of this Chapter is focused on these points, providing an outlook for future

research.

8.1 Research summary

8.1.1 Local inhomogeneity in a single-channel system

The starting of the research is from the simplest scenario of local inhomogeneity: a

single inhomogeneity is located in a one-dimensional system, far away from bound-

aries. For simplicity, it is assumed that the local inhomogeneity is in the middle

site of the lattice. The system can be divided into two subsystems connected by the

single inhomogeneity. The phase diagrams, stationary currents and density profiles

are obtained using a rule of current conservation through two subsystems and the

single inhomogeneity and known results of the normal TASEP in parallel update.

There are four possible stationary phases ((LD, LD), (LD, HD), (HD, LD), and

(HD, HD)) in the system. In the (HD, LD) phase, the system reaches a maximal

current which is determined by the strength of the inhomogeneity, but independent

of boundary conditions. In the (LD, HD) phase, density profiles cannot be obtained
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using a simple mean-field approximation. However, a phenomenological domain wall

approach is developed to predict density profiles in the (LD, HD) phase. Density

and current profiles obtained from theoretical calculations are in good agreement

with Monte Carlo simulations.

Note that this study is related to understanding the general properties of traf-

fic flow. Local inhomogeneities in a system can be viewed as blocks (e.g., road

reductions or road works) on roads. Although these blocks just cover very short

road segments, they can cause congested traffic. When the system changes from

the (LD, LD) phase to the (HD, LD) phase, a phase separation between high and

low densities occurs at the local inhomogeneity. Experimental data collected on a

German highway near Cologne (see Fig. 2 in Ref. [94]) exhibit such a separation in

the presence of an on-ramp where the transition from free flow to congested flow is

characterized by a sudden fall of the local velocity. This allows us to separate the

data set into free-flow and congested regimes.

The model is then extended to the case of a zoned inhomogeneity in parallel up-

date. The zoned inhomogeneity in vehicular traffic can be seen as a speed limit zone.

In the language of physics, the zoned inhomogeneity is characterised by a reduced

hopping probability which is applied to all sites within this zone. Two cases (i.e.,

Cases V and W ) of lattice geometries are studied. In Case V, the lattice is divided

into two segments; the first segment is a normal TASEP, while the second segment

has a reduced hopping rate. Case W is an extension of Case V, and it has three

segments (segments I, II and III). Segments I and III have the same hopping prob-

ability, while the middle segment (segment II) has a reduced hopping probability.

The phase diagrams, stationary current, and density profiles are obtained. Case W

shows a more complex system behaviour than Case V. The maximal-current regions

in systems with different numbers of successive inhomogeneous sites are compared.

The region of the maximal-current phase in Case W is larger than that in Case V
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under the same parameters. This indicates that the introduction of segment III in

Case W can enhance the current in some conditions.

8.1.2 TASEP with m-input n-output junction

The forementioned theoretical studies of TASEP with inhomogeneity involve par-

ticles moving along the one-channel lattices. Although the one-channel systems

describe many situations in vehicular traffic and biophysical processes, a more real-

istic description of traffic conditions require an extension of the normal TASEP to

a more complex lattice geometry.

Junctions can be seen as connections of several one-channel systems, which are

one of the commonly used traffic facilities in nature. Such systems with junctions

may be used to describe a wide range of possible applications such as: (i) kinesins

moving on a microtubule in which the number of protofilaments may be various

[109]; (ii) transport of vesicles in a branching axon or dendrite [110]; (iii) vehicular

traffic on intersections or roundabouts [111], and (iv) data traffic through hubs (e.g.,

switches, routers) on local/wide networks [112]. As a junction can also be viewed as

a “local inhomogeneity” in a transport system, it is necessary to study the effects of

such “local inhomogeneity” on traffic dynamics.

Inspired by this wide range of possible applications, TASEP with a multiple-

input single-output junction is first investigated, then it is extended to TASEP with

a m-input n-output junction. In reality, it can be observed that several traffic lanes

merge into one lane and multiple protofilaments come together to form one protofil-

ament [109]. However, they have not been understood well from the viewpoint of

theoretical analysis.

This investigation produces three interesting but nontrivial results: (1) A gen-

eral theoretical solution for traffic dynamics of TASEP with junction is developed,

for any m and n (m and n are integer numbers); (2) m-input n-output junctions
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can be classified by a parameter, λ = m/n. The junctions with the same λ exhibit

the same dynamic properties (e.g., phase diagrams, stationary currents, and den-

sity profiles); (3) When the number of m and/or n changes, the low-density and

high-density regions can be measured qualitatively and quantitatively.

8.1.3 Two-species TASEP with site sharing and relaxed boundaries

The previous TASEP models obey the same interaction rule, i.e., hard-core exclu-

sion. In other words, each lattice site is not allowed to be shared by more than one

particle at the same time. This study presents a one-dimensional TASEP model

in which two species of particles move oppositely. In this model, different species

of particles are allowed to share a lattice site at probability q (0 ≤ q ≤ 1) when

they meet each other. The same species of particles obey hard core exclusion. An

obvious difference between the proposed model and previous TASEP models is that

different species of particles can occupy the same site in the proposed model, which

is prohibited in previous TASEP models. This relaxed exclusion principle is applied

to the bulk as well as the boundaries. Such kind of sharing mechanism has not been

explored so far, to the best of our knowledge.

This study is motivated by single- or multiple-channel traffic. When pedestrians

walk along a single-channel pathway in opposite directions and meet together, they

may share a site, and then pass each other. Particles sharing sites in the TASEP

models would represent particles that are side by side on different channels. Mul-

tiple channels can be motivated in motor traffic because microtubules have several

(usually 13) protofilaments which serve as parallel channels [122].

The site-sharing model is studied using both a simple mean-field approach and

extensive Monte Carlo simulations. Theoretical calculations and computer simula-

tions show that there are three stationary phases (LD, HD, and MC) in the system.

However, the phase boundaries are shifted according to different sharing probability
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q. The theoretical analysis can agree well with Monte Carlo simulations.

8.1.4 SSB in TASEP with site sharing and constrained boundaries

This model is also based on the site-sharing mechanism, but with constrained bound-

aries. The constrained boundaries mean that particles cannot enter the system if

the corresponding sites at boundaries are not empty. There are four possible phases

in the system, i.e., MC, symmetric LD/LD, asymmetric LD/LD and HD/LD. The

spontaneous symmetry breaking (SSB) is observed in the two phases: HD/LD and

asymmetric LD/LD. With the decrease of q (q is sharing probability), the asymmet-

ric phase reduces to the boundary between the symmetric LD/LD and the HD/LD

phases. The MC phase will appear when q is sufficiently enough. The histograms

of two species of particles and the flipping process are plotted. The model exhibits

higher current, compared to the Bridge model, which is due to the site-sharing mech-

anism in the model. More interestingly, it is shown that the average current in the

symmetric LD/LD phase is determined by q rather than α or β when q 6= 1.

This work shows that the sharing effect on the TASEP is an interesting topic

and needs to be further investigated. The present model has been investigated

using extensive Monte Carlo simulations. It would be interesting to analyse this

site-sharing model or its variants. In fact, this work is now in progress and will be

reported later.

8.2 Future Work

The various aspects of TASEP with inhomogeneity investigated in this thesis only

cover a rather small part of problems related to non-equilibrium processes. Theoret-

ical methods (e.g., mean-field approximation, domain-wall theory) introduced in the

literature review and in this work could be used as a basis for further developments

along the following two lines.
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The biological experiments and traffic observations could inspire new classes

of models. For instance, in neurons, microtubules are abundantly decorated with

microtubule-associated proteins such as Tau. It is found that Tau acts like a speed

bump to regulate protein traffic [124]. When kinesins and dyneins encounter a Tau

on their travels along microtubules, they show different behavior: kinesins detach

their cargo while dyneins maneuver around the Tau. It is clear that the existence

of Tau influences the motion of the motors as well as their processivity (i.e., the

capability of long walk for motors without getting detached from microtubules).

However, such a transport mechanism and its effect on the system have not been

understood theoretically.

Mixed vehicular traffic (e.g., small cars and large trucks) has been observed

everyday. Detailed theoretical analysis of the mixed traffic has not been conducted

so far. Cars and trucks can be mapped into normal-size with normal-range hopping

particles and large-size with reduced-hopping particles, respectively. In the context

of TASEP, the effect of mixed particles in random and parallel updates are still

to be clarified. The model could be extended to a two-channel system considering

asymmetric/symmetric coupling rules.

On the other hand, from a perspective of mathematical modelling, there are

much more investigations could be made. An example is the attachment-detachment

kinetics (LK). [47] assumes that LK can take place on any site in a one-dimensional

lattice. If only a site associated with the LK is near or far from boundaries, what

kind of dynamic properties can the system exhibit? The similar investigations could

be extended to TASEP with inhomogeneity in parallel update, in particular, when a

single inhomogeneity is located near the left or right boundary (or inhomogeneities

are distributed randomly).

Since the spatial correlations in mean-field treatments are neglected, theoretical

calculations normally have some deviations from computer simulations, which has
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been indicated in this thesis. More recently, using correlation functions to exam-

ine the spatially correlated variability has attracted much attention. Remarkable

properties of spatial correlations in TASEP with local inhomogeneities have been

reported in [89]. It is suggested to pursue this line in future work and expect a rich

variety of new phenomena.

In conclusion, how to model and analyze inhomogeneity-related non-equilibrium

systems has been highlighted though they are still simplified and far from reality

due to the lack of empirical data. Nevertheless it has inspired various TASEP

models which revealed many interesting phenomena and gained the attention from

interdisciplinary researchers. Hopefully, future studies along these lines will provide

deeper insight into fundamental issues as well as real traffic.
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Localization of shocks in driven diffusive systems without particle number
conservation. Phys. Rev. E 67, 066117 (2003).

[50] S. Katz, J.L. Lebowitz and H. Spohn, Nonequilibrium steady states of stochas-
tic lattice gas models of fast ionic conductors . J. Stat. Phys. 34, 497 (1984).

[51] B. Schmittmann and R.K.P. Zia, in Phase Transitions and Critical Phenom-
ena, edited by C. Domb and J. Lebowitz (Academic Press, London, 1995).

[52] R.D. Astumian, Thermodynamics and Kinetics of a Brownian Motor. Science
276, 917 (1997).

[53] K. Nishinari, Y. Okada, A. Schadschneider and D. Chowdhury, Intracellular
Transport of Single-Headed Molecular Motors KIF1A. Phys. Rev. Lett. 95,
118101 (2005).



Bibliography 141

[54] P. Pierobon, M. Mobilia, R. Kouyos and E. Frey, Bottleneck-induced transi-
tions in a minimal model for intracellular transport. Phys. Rev. E 74, 031906
(2006).

[55] P. Greulich and A. SchadschneiderDisordered, Driven lattice gases with bound-
ary reservoirs and Langmuir kinetics. Phys. Rev. E 79, 031107 (2009).

[56] M.R. Evans, D.P. Foster, C. Godreche and D. Mukamel, Spontaneous Symme-
try Breaking in a One Dimensional Driven Diffusive System. Phys. Rev. Lett.
74, 208 (1995).

[57] M.R. Evans, D.P. Foster, C. Godreche and D. Mukamel, Asymmetric exclusion
model with two species: spontaneous symmetry breaking. J. Stat. Phys. 80,
69 (1995).

[58] P.F. Arndt, T. Heinzel and V. Rittenberg, First-order phase transitions in
one-dimensional steady states. J. Stat. Phys. 90, 783, (1998).

[59] V. Popkov and I. Peschel, Symmetry breaking and phase coexistence in a
driven diffusive two-channel system. Phys. Rev. E 64, 026126 (2001).

[60] E. Levine and R. D. Willmann, Sponteneous symmetry breaking and phase
coexistence in a non-conserving one-dimensional model. J. Phys. A 37, 3333
(2004).

[61] D.W. Erickson, G. Pruessner, B. Schmittmann and R.K.P. Zia, Spurious phase
in a model for traffic on a bridge. J. Phys. A 38, L659 (2005).

[62] R.D. Willmann, G.M. Schtz and S. Grosskinsky, Dynamical origin of sponta-
neous symmetry breaking in a field-driven nonequilibrium system. Europhys.
Lett. 71, 542 (2005).

[63] E. Pronina and A.B. Kolomeisky, Spontaneous symmetry breaking in two-
channel asymmetric exclusion processes with narrow entrances. J. Phys. A 40,
2275 (2007).

[64] R. Jiang, R. Wang, M.B. Hu, B. Jia and Q.S. Wu, Spontaneous symmetry
breaking in a two-lane system with parallel update. J. Phys. A 40, 9213 (2007).

[65] R. Jiang, M.-B. Hu, B. Jia, R. Wang and Q.-S. Wu, Spontaneous symmetry
breaking and periodic structure in a multilane system. Phys. Rev. E 76, 036116
(2007).

[66] Spontaneous symmetry breaking in Wikipedia http://en.wikipedia.org/
wiki/Spontaneous symmetry breaking, Retrieved on 20 May 2007.



Bibliography 142

[67] M. Nocodemi and A. Prisco, Symmetry-Breaking Model for X-Chromosome
Inactivation. Phys. Rev. Lett. 98, 108104 (2007).

[68] E. Pronina and A.B. Kolomeisky, Two-Channel Totally Asymmetric Exclusion
Processes. J. Phys. A 37, 9907 (2004).

[69] E. Pronina and A.B. Kolomeisky, Asymmetric Coupling in Two-Channel Sim-
ple Exclusion Processes. Physica A 372, 12 (2006).

[70] K. Tsekouras and A.B. Kolomeisky, Inhomogeneous coupling in two-channel
asymmetric simple exclusion processes. J. Phys. A 41, 095002 (2008).

[71] A.B. Kolomeisky, Asymmetric Simple Exclusion Model with Local Inhomo-
geneity. J. Phys. A 31, 1153 (1998).

[72] K. Tsekouras and A.B. Kolomeisky, Parallel coupling of symmetric and asym-
metric exclusion processes. J. Phys. A 41, 465001 (2008).

[73] T. Mitsudo and H. Hayakawa, Synchronization of kinks in the two-lane totally
asymmetric simple exclusion process with open boundary conditions. J. Phys.
A 38, 3087 (2005).

[74] R. Jiang, R. Wang and Q.S. Wu, Two-lane Totally Asymmetric Exclusion
Processes with Particle Creation and Annihilation. Physica A 375, 247 (2007).

[75] R. Wang, R. Jiang, M. Liu, J. Liu and Q.-S. Wu, Effects of Langmuir Kinetics
on a Two-lane TASEP of Molecular Motor Traffic. Int. J. Mod. Phys. C 18(9),
1483 (2007).
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[103] B. Lapeyre, É. Pardoux and R. Sentis, Introduction to Monte Carlo Methods
for Transport and Diffusion Equations, Oxford University Press, (2003).

[104] B.S. Kerner, The Physics of Traffic: Empirical Freeway Pattern Features,
Engineering Applications and Theory (Understanding Complex Systems),
Springer (2006).
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