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ABSTRACT 

The effects of non-standard conditions on the application of the 

Gauss-Markov Theorem are discussed and methods proposed in the 

literature for dealing with these effects are reviewed. The 

multicollinearity problem, which is typified by imprecise 

least squares estimation of parameters in a multiple linear 

regression and which arises when the vectors of the input or 

predictor variables are nearly linearly dependent, is focussed 

upon and a class of alternative biased estimators examined. 

In particular several members of the class of biased linear 

estimators or linear transformations of the Gauss-Markov least 

squares estimator are reviewed. A particular generalized 

ridge estimator is introduced and its relation to other techniques 

already existing in the literature is noted. The use of this 

estimator and the simple ridge regression estimator is illustrated 

on a small data set. Further comparisonsof the estimator, the 

ridge estimator and other generalized ridge estimators are 

suggested. 
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1. INTRODUCTION 

The solution of a system of overdetermined or overidentified 

linear equations requires s ome kind of approximation method. The 

most common method of arriving at a solution for Bin the 

overdetermined system of linear equations, 

XB = Y 

1. 

where Xis an nXp matrix of full column rank p, Bis an unknown px1 

vector of parameters and y is an nx1 vector, and in which n > p, 

is the method of least squares. The least squares solution identifies 

the pX1 vector which minimizes the Euclidean norm of Y-XB. 

The source of the overdetermination or inconsistency in the system 

of linear equations is usually attributed to the presence of some 

kind of error component in then realizations of the p+1 variables 

which form X and Y. Statisticians often make very specific 

assumptions about the error content of then realizations. Errors 

are usually assumed, in the lack of any knowledge concerning their 

origin, to be generated by some sort of random device which may be 

represented by a probability density. The realizations of the p 

variables which make up the matrix X and which are often controllable 

are usually assumed to be measurable without error whereas the 

vector variable Y is usually assumed to contain the randomly generated 

errors. Thus statisticians have concerned themselves with the 

linear model, 

y = Xfl + e 

wheie e is an nx1 vector of stochastic errors which are independent 

of the measurements of the p variables which make up the matrix S, 

and, have used the method of least squares to extract an approximation 

to, or an estimate of, the unknown vector of parameters, fl. Under 

various assumptions about X,y and e, and under various restrictions 

on possible methods of approximation, the method of least squares has 

other optimal features besides the norm minimization property 



mentioned above. If, however, these assumptions are not met in 

practice the other optimal features may disappear. 

2. 

The purpose of this thesis is to review some of the work which has 

been completed or is currently in progress, concerning the effect 

of the relaxation of these assumptions and restrictions on the 

optimality properties of least squares and to review some of the 

alternatives to least squares which have been developed in response 

to these effects. The conditions of the Gauss-Markov Theorem, 

which are presented in Chapter 2, form the framework for the review 

and it is the effect of the relaxation of these conditions on the 

least squares procedure which is presented in Chapter 3. In 

Chapter 3 it is established that multicollinearity in the matrix X 

is one non-standard condition which can have serious effects on 

least squares estimation of the parameter vector. A class of 

alternatives to the least squares estimator, namely biased estimators, 

is focussed upon in Chapter 4. These estimators were designed 

originally to tackle the multicollinearity problem but many variants 

of these biased estimation procedures have been constructed with 

different goals in mind. A particular member of a subclass of 

these biased estimators, a doubly ridged estimator, is introduced 

in Chapter 5. The doubly ridged estimator, which is a generalized 

ridge estimator, displays many of the advantages and disadvantages 

of the well known ridge estimator. The application of the ridge 

and doubly ridged estimators to a small but well known test problem -

the Longley data - is undertaken in Chapter 6. A summary, Chapter 7, 

which also includes suggestions for further investigations in the 

search for alternatives to least squares, completes the thesis. 



2. THE METHOD OF LEAST SQUARES 

AND THE GAUSS-MARKOV THEOREM 

The method of least squares has its origins in the writings of 

Gauss, Laplace and Legendre in the early 19th century. The 

allocation of credit for various justifications of the method has 

been attempted by Plackett (1949) who concludes that Gauss was 

3. 

the first to give a distribution-free proof that least squares 

provides minimum variance unbiased linear estimates of the parameters 

in a linear model. Since the 19th century, justifications for 

the method have been modified to allow for more general formulations 

of the linear model, namely, a not necessarily diagonal variance -

covariance matrix, a design matrix of less than full column rank, 

and, constraints on the parameters in the model. The most recent 

attempts to provide a unified theory of least squares, embracing 

the formulations of the linear model mentioned above, have been 

made by Rao (1971, 1973) and have utilized the theory of generalised 

inverses of matrices. 

The popularity of least squares, as either a method of parameter 

estimation in a linear model or a provider of a linear interpolation 

formula giving what could well be the best linear fit to a nonlinear 

model, has prompted Tukey (1975) to describe least squares as a 

"scientific idol". Tukey suggests that, "neither unquestioning 

acceptance or iconoclasm is a proper way to manage a scientific 

idol", but that the idol should be used as a point of embarkation 

for developing techniques which are more realistic and useful. 

A particular "manifestation" of the least squares "scientific idol", 

which might serve as the embarkation point for developing techniques 

which have a wider application to more realistic situations, is the 

Gauss-Markov Theorem (with reference to the name of the theorem, 

Plackett (1949) comments, "Markov, who refers to Gauss's work, may 

perhaps have clarified assumptions implicit there but proved nothing 

new"). 

follows: 

A nondefinitive formulation of the Gauss-Markov Theorem 



(i) y = Xp + e (a linear model) 

where y is an nx1 vector of observations 

Xis a known n)(p matrix of full column rank p ~ n 

pis a px1 vector of unknown parameters 

e is an nx1 vector of errors 

(ii) Xis known exactly, there are no stochastic or 

non-stochastic errors in X. 

There are no non-stochastic errors in y. 

(iii) The error vector e has zero mean, i.e. 

E(e) = O, E(y) = Xp 

The error vector has variance-covariance matrix a2
I 
n 

so that the variance-covariance matrix for y is also 

2 o I . n The scalar quantity o
2 

is generally unknown. 

(iv) The estimates of the parameters can only be linear 

functions of y, i.e. 

B = Ay + c where A is pxn and not a function 

of y and c is pX1 and not a 

function of y. 

(v) The estimates of the parameters are unbiased in mean, 

E(B) = p 

4. 

(vi) The variance of the estimates of the unknown parameters is 

to be minimised. 

If the conditions (i) to (vi) are met then the best estimate of the 

unknown parameter vector pis to be found in least squares, i.e., 

min IIY-XB 11
2 

B 

where II, .,II denotes the Euclidean norm of a vector. 



5. 

The Gauss-Markov Theorem, as stated here, consists of six conditions 

and a conclusion. The six conditions restrict the choice of an 

estimator B, of the unknown parameter vector~, to a class of 

linear, unbiased-in-mean estimators and make assumptions about the 

first and second moments of the error vector~. Under these 

conditions the least squares estimator is "best" (of minimum 

variance). 

Tukey's suggestion, that the least squares scientific idol should 

be used as a takeoff point for developing statistical tools which 

have greater utility in the real world, can be implemented by 

relaxing singly or simultaneously the conditions of the Gauss-Markov 

Theorem and evaluating the consequent alternative estimation procedures 

or modified least squares procedures. Tukey has of course attempted 

this (see Tukey (1975)) but the same approach is used here as a 

means of surveying some of the developments (past and current) in 

the theory of estimation in linear statistical models. 



3.1 

3. SOME CONSEQUENCES OF 

MODIFICATIONS TO THE 

CONDITIONS OF THE 

GAUSS-MARKOV THEOREM 

The Model Misspecified. 

The first condition of the Gauss-Markov Theorem specifies a model 

linear in the components of the parameter vector~- Relaxing 

this linearity assumption leads to a consideration of nonlinear 

models which does not necessarily take one too far from the least 

squares idol. If the model is not linear but is intrinsically 

6. 

linear (the model can be transformed into a form which is linear in 

the parameters) then nonlinearity is not a problem and the method 

of least squares can be applied to the transformed model. If the 

model is nonlinear and intrinsically nonlinear (not able to be 

transformed into a linear form) an approximating linear expansion 

may be investigated using an iterative process involving least 

squares. An introduction to the estimation of parameters in 

nonlinear models is contained in Draper and Smith (1966). 

Even if it is assumed that the linear model relationship between 

the variables is appropriate, the first condition of the Gauss Markov 

Theorem still contains requirements which may be difficult to meet 

in practice. 

3.11 Latent or Lurking Variables. 

The first condition of the Gauss-Markov Theorem requires the matrix 

of independent or predictor variables to be known. Box (1966) 

has drawn attention to the fact that in many regression analyses all 

of the predictor variables may not be known. The error vector e, 

the undetermined or non-measurable component of the data, is usually 

dismissed as a random variable (see condition (iii) of the Gauss-Markov 

Theorem). Box points out that e: is a "catch-all" vector that 

actually contains the effects of other unknown "latent" or "lurking" 



predictor variables. Thus the model, 

y = X~+e 

in which the matrix X contains n values of p predictor variables 

may be a facade masking the true relationship, 

y = x~ + zy 

7. 

(3.1) 

(3.2) 

in which the matrix Z contains n unknown values of some m-p latent 

predictor variables. Including only the X matrix of input variables 

in the least squares regression analysis gives the following for 

the predicted values of y: 

~ x(x'x)- 1x'y y = x~ = 
= x~ + x(x'x)- 1x'zy 

~ 

= x~ + ZY 

~ I -1 I 
The matrix Z = XA, where A= (XX) X Z can be thought of as the 

(3.3) 

matrix of estimated parameters of the regression of the m-p latent 

variables on the p known independent variables. Comparing the 

predicted values of y with the values of yin the true model, the 

expression for the predicted values is similar to the true model 

except that the unknown values of the matrix of latent variables Z 

are replaced by an estimate z. 

However the estimates of~ are biased, 

~ = ~ + AY (3.4) 

and in a sense because there are no estimates of Y the estimates of 

Y are biased too (they are shrunk to the value zero). 

Box makes the point that if the matrix of independent variables Xis 

passively observed or unplanned, the prediction equation (3.3) which 

results from fitting the model in equation (3.1) may be appropriate 

for prediction of y from further passive or unplanned observation of 

the independent variables but will not be appropriate for predicting 



·B. 

in a controlled situation how adjustments in the observable 

independent variables will affect the dependent variable y. The 

impropriety of the use of equation (3.3), based on unplanned 

data, for prediction of y from controlled data stems from the 

fact that the estimated coefficients (3.4) stand for combinations 

of effects due to the known independent variables and the unknown 

latent variables, so that _~ in (3.4) does not tell of the effect 

on y of unit changes in X. 

Box further comments that planned observation, including 

randomization of the levels of the observable input variables, 

prevents the levels of these known input variables from being 

affected by the levels of the latent variables, so that predication 

of y for controlled values of X using least squares estimates of 

~ is appropriate even though the known predictor variables may be 

producing the predicted changes in y through some latent variable. 

Thus the message from Box is that the consequences of overlooking 

predictor variables in a regression analysis may not be great in 

situations where the data is unplanned and predictions are required 

for further unplanned observation of the known predictor variables 

in unaltered circumstances, and in situations where a randomized 

design has been used and predictions are required for controlled 

levels of the predictor variables within some region of interest. 

There are, however, dangers in using a prediction equation based 

on passive, unplanned, historical data to predict expected responses 

in situations where the levels of the input variables are being 

manipulated. This is because the relationships which obtain while 

the system is being passively observed may change drastically 

when the system is interfered with (the overlooked lurking variables 

may change wildly when the known input variables are adjusted and 

could cause responses quite different from the predicted responses). 

This situation is referred to in section 4.22. 



9. 

3.12 The Disaggregation Problem. 

In some circumstances the general linear model form assumed in the 

first condition of the Gauss-Markov Theorem may not be appropriate 

for all combinations or subsets of the p independent variables. 

This disaggregation problem often occurs in econometrics after 

microrelations have been aggregated in a macrorelation, the 

macrorelation used to construct a fitted model, and the fitted 

model used for prediction in a particular disaggregate of the 

macrorelation. Rao (1975) discusses three colourful examples in 

which problems occur when the regression equation is disaggregated. 

In general, disaggregation problems occur in the following way. 

Consider a fitted model, 

(3.5) 

Suppose predictions are required for the following two sets of 

observations of the independent variables, 

In the first case the prediction is, 

~1 + ~2 + ~3 + ' .• + ~p 

and in the second case the prediction is, 

~1 

Both predictions use the estimate ~1 . However, in the second set 

of observations of the independent variables, p-1 of the independent 

variables are not present. The underlying microrelation which 

would generate the dependent variable yin this case is, 

(3.6) 



10 . 

.. 
But in this case the predicted value, ~

1
, results from the regression 

of yon all of the p independent variables in the macrorelation, 

( 3. 7) 

If ~1 in the macrorelation is equal to b
1 

in the microrelation 

then ~1 happens to be an unbiased estimate of b
1

. However, it 

may not be true that ~1 and b1 are the same and using an estimate 

of ~
1 

to estimate b
1 

makes little statistical sense and explains 

the sometimes unreasonable values (negative estimates for parameters 

which on physical grounds must be positive) which result. Rao 

calls this phenomenon "Foti effect" and seems to regard it as a 

pathological case in regression analysis. 

However, the problem seems to arise from the aggregation process 

itself and the temptation to attribute specific meanings to the 

estimated parameters in the macrorelation. If it is not true 

that all of the coefficients of a particular independent variable 

in all of the microrelations are equal, then the aggregation process 

should not proceed and separate models should be investigated for 

separate microrelations. If an aggregation of microrelations is 

proceeded with and a fitted model, in the form of equation (3.5) 

is the result, then disaggregating the fitted model, by, for 

example, trying to predict y for the set of observations, 

involves attaching specific meanings to the estimated parameters 

(in this example, disaggregation involves assuming that _~1 tells 

of the effect of x1 on y). In a different context, Beaton and 

Tukey (1974) and Tukey (1975) have discussed the meanings of 

parameter estimates in fitted models. They point out that a 

particular parameter estimate, say ~
1

, does not tell of the effect 

of the carrier to which it is attached, in this case the independent 

variable x
1

, but tells of the apparent effect of the carrier, x1 , 

in the presence of a subposse composed of all the linear combinations 

of all the other carriers (in this case the independent variables 



... , x) in the fitted model, which give the same degree 
p 

A 

In the given disaggregation example, ~1 is supposed to tell of 

the effect of x 1 on yin the microrelation (3.6) when in fact 

11. 

~
1 

tells of the effect of x
1 

on yin the presence of a particular 

set (a subposse) of linear combinations of the p-1 other independent 

variables in the fitted macrorelation (3.5). It really is little 

wonder that anomalous estimates and predictions result from the 

disaggregation of a regression equation when the prior aggregation 

of separate models itself may be unjustified, and, the estimated 

parameters in the regression equation are misinterpreted in the 

disaggregation. 

3.13 Deficiencies in the column rank of X. 

The first condition of the Gauss-Markov Theorem also requires the 

matrix X of independent variables to have full column rank p. 

In specifying the matrix x'x to be non-singular, something of a 

strawman has been set up. This strawrnan (the full rank model) 

has been knocked down and adequately treated (the non-full rank 

model) in, for example, Rao (1971, 1973) and Searle (1971). A 

related problem that has not, as yet, been adequately treated 

concerns near singularity of the matrix x'x or multicollinearity 

of the independent variables. When the matrix x'x is singular, 

the parameter vector~ is non-identifiable and only some linear 
• I functions t ~ of the parameter vector are estimable. When two 

or more of the independent variables are highly correlated and the 

matrix x'x is subsequently ill-conditioned, nearly-singular, 

non-orthogonal (x'x may be thought of as having fractional' rank), 

then the parameter vector~ is identifiable and all linear combinations 

of the parameter vector~ are estimable, but only some linear 

combinations are estimable with any precision. It is the relative 

lack of precision with which some linear functions of the parameter 

vector~ are able to be estimated which characterizes the 

multicollinearity problem. 



3.131 The Multicollinearity Problem 

The usual least squares estimator of the parameter vector~ 

may be written, 

,. I -1 I 
f;! = ~ + (X X) X e ( 3. 8) 

and the corresponding estimator of the linear function t'~ may 

be written, 

I,. I I I -1 I 
t ~ = t ~ + t ( X X) X e ( 3. 9) 

Thus, depending on (X
1
X)- 1x'e, an estimate§ may well be some 

distance away from~- If the usual distributional assumptions 

are made about e, as in the third condition of the Gauss-Markov 

Theorem, then the variance of 8 and linear functions of~ is 

given by, 

(3.10) 

12. 

If the matrix X can be predetermined or the collection of the data 

planned (Xis truly a design matrix) then X can be chosen to make 

(x'x)- 1 as small as possible and hence~ (or t'§) as close to 

~ (or t'~) as possible. One of the conditions for this kind of 

design optimality is that the columns of X should be orthogonal 

(see, for example, Rao (1973) p.235). With unplanned observations, 

if some of the columns of X are highly correlated or collinear and 

the matrix x'x is subsequently ill-conditioned or nearly singular, 

then the matrix (x'x)-1 
is large and the estimate of~ has a large 

variance matrix and may be described as unstable. 

The presence of multicollinearity has been characterized in several 

ways. Marquardt (1970), Snee (1973) and Marquardt and Snee (1975) 

propose that the diagonal elements of the inverse of the correlation 

matrix be used as indicators of multicollinearity and instability 

of least squares estimates. These diagonal elements which they 

call variance inflation factors become infinite as the correlation 

of any independent variable with the others approaches unity. As 



an example, consider the correlation matrix: 

a 
b 

I 
PxP 

+ 
(b-a) 

b 
J 

PxP 

in which the matrix J = 11'. 
PxP 

correlation matrix is 

b 
a 

I 
PxP 

b 
a 

b :.:: a> 0 

Then the inverse of this 

13. 

If a=b the correlation matrix is the identity matrix (the design 

matrix X has orth ogonal columns) and the inverse of the correlation 

matrix is the identity matrix. The variance inflation factors in 

this case are all equal to one and this suggests that the least 

squares estimates of~ and linear functions of~ are relatively 

precise (for fixed cr2 ) from equation ( 3 .10). If b > a the variance 

inflation factors are greater than one. If, for example, 

b=10
3

, a=1 and p=3 then x'x in correlation form equals, 

[
\99 

.999 

.999 

1 

.999 

.999] 

.999 

1 

and the inverse of this matrix is, 

[ 

666. 7779 

-333.2221 

-333.2221 

-333.2221 

666.7779 

-333.2221 

-333. 2221 l 
-333.2221 

666.7779 

In this case, the variance inflation factors of more than 600 

suggest that the estimators of the components of~ have high 

variance or are very unstable (for fixed cr2 ). In the limit as 

a tends to zero the correlation matrix equals J which is singular 
PxP 

and the parameter vector~ is non-identifiable. 

Other characterizations of multicollinearity based on measures of 



14. 

conditioning of matrices (the value of the determinant for example) 

are possible. However, multicollinearity and its effect on the 

least squares estimates of parameters is probably illustrated 

best by transforming the model in the first condition of the Gauss­

Markov Theorem to a canonical form, 

y = Za + e: (3.11) 

in which Z = XP' and a= P~, and p' is the orthogonal matrix 

whose columns are the normalised eigenvectors of x'x. Thus, 

x'x = P
1 AP where A is the diagonal matrix of eigenvalues of 

x'x, and llaii2 = 11Esll2 • The equations which are analogues of (3.8), 

(3.9) and ( 3.10) are, 

,. 
a = 

I ,. 

t a = 

and 

var(a) = 

var(t' a) = 

a+ A- 1z' e 

, 
+ t' A-1z'e: t a 

2 -1 o A 

</t' A- 1t 
} 

(3.12) 

(3.13) 

(3.14) 

When multicollinearity is present, the ill-conditioned matrix x'x 

has one or more small eigenvalues. Thus, in the canonical form 

of the model, one or more of the components of a corresponding to 

the small eigenvalues, or small diagonal elements of A are estimated 

with a high variance or imprecisely (see equation (3.14)). For 

example, the correlation matrix introduced earlier has eigenvalues, 

with multiplicity p-1 

>.. = 

Thus for the case, b=10 3 , a=1 and p=3; 

0 

.001 

0 



15. 

so that, 

A-1 = 

r
o:.3335 0 

1,000 

0 

So, from equation (3.14), the estimation of a
2 

and a
3 

in this 

little example is relatively imprecise as A; 1 = 1,000 and A; 1 = 1,000. 

The estimation of a1 is however very precise (more precise than 

if x'x were orthogonal). More generally, from a perusal of 

equation (3.14) estimation in the direction of eigenvectors of x'x 
which correspond to large eigenvalues is relatively precise while 

estimation in the directions which correspond to small eigenvalues 

of x'x is relatively imprecise. An estimate oft'~ where the 

vector t equals kp. (k is a scalar, p. is the normalised eigenvector 
l i 

corresponding to the ith eigenvalue of x'x, A,) has variance equal 
i 

to, 

(3.15) 

For fixed k and a2 this variance is maximised when tis the 

normalised eigenvector corresponding to the minimum eigenvalue of 

x'x, A. . Thus the direction in which prediction is the least 
min 

precise is the direction of the eigenvector associated with 

A .. min Thus the magnitude of a multicollinearity problem is 

related to a "set of directions of interest" in which estimation 

and prediction are required. The quoted phrase in the last 

sentence is due to Rao (1975) p.112 who stresses that a multi­

collinearity problem is not merely a conditioning problem, which can 

be measured by perhaps noting that variance infiation factors are 

large or that a determinant is small, but is a problem concerning 

relative precision of estimation and prediction in certain directions 

of the estimation space. 

Silvey (1969). 

A similar view has been expressed by 

Various methods have been suggested for dealing with data which 

exhibit multicollinearity. Since collinearity or high correlation 



16. 

between "independent" variables has the statistical interpretation 

that the variables are different labels for the same factor, 

the conventional statistical strategy in dealing with multicollinearity 

has been variable selection - of two highly correlated input variables 

the one which is least highly correlated with the dependent 

variable is deleted. Hoerl and Kennard (1970a) describe this as 

dropping factors "to destroy the correlation bonds among the X. 
J. 

used to form x' X" and claim that if the intention is prediction 

for control and optimization the experimenter is "left with a set 

of dangling controllables or observables". On a priori grounds 

variable selection, motivated by a desire to improve conditioning 

and not by the principle of parsimony, may result in a model which 

lacks physical credibility - important input variables may be 

deleted. Kendall (1975) p.101 contains the following example and 

warning: 

"Criteria of discard by reference to correlations themselves 
are dangerous. Consider the case of a medical man 
concerned with conditions of the spine such as displaced 
vertebrae. Measurements which he might take on the body 
include the length of the legs. Now the length of one leg 
is so highly correlated with the length of the other that 
it might be regarded as a waste of time to measure both. 
But if we reject one variable as unnecessary we should miss 
an important contributor to spinal deformation, the 
difference of leg lengths." 

In this quoted passage, in which Kendall's disapproval of such 

variable selection practices is rather clear, an alternative 

procedure for dealing with multicollinearity is alluded to, namely, 

replacing two or more highly correlated input variables with a 

linear combination of the same variables (in Kendall's example 

replacing the variables "length of left leg" and "length of right 

leg" by "the difference in leg lengths"). Such a strategy has 

been mentioned by Rao (1975) who points out that multicollinearity 

can be artificially introduced into or removed from a regression 

analysis by replacing some input variables with hopefully "equally 

meaningful" linear combinations of those variables. 

A limiting case of this heuristic coalescing of highly correlated 

input variables into one variable, or a set of less highly correlated 
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variables, is provided by principal component analysis. In 

principal component analysis a matrix X of n observations on p 

variables is transformed, as in equation (3.11), to an orthogonal 

matrix Z of n observations on p linear combinations of the p 

variables (the original p input variables are replaced by p 

uncorrelated input variables) . Such a transformation, while 

useful in discovering the structure of, or interdependencies in, 

a multivariate data set does not, however, overcome the multi-

collinearity problem itself. This was demonstrated earlier when 

the linear model form was transformed into a canonical form in 

equation (3.11) . Regressing the dependent variable yon the p 

principal components does however illuminate the directions in the 

estimation space in which estimation and prediction are relatively 

imprecise (see equations (3.14) and (3.15)). Several authors, 

including Kendall (1957), Massy (1965) and Greenberg (1975) have 

however suggested principal component regression as a means of 

"overcoming" the multicollinearity problem. Instead of variable 

selection on the input variables they suggest variable selection 

on the principal components by either; 

(a) deleting components with the smallest eigenvalues, 

or, 

(b) deleting components which are not highly correlated with 

the dependent variable. 

Of course, both of these component selection criteria may lead to 

quite different estimates of the parameter vector~- The component 

selection procedure (a) ignores the correlations between the 

dependent variable y and the prin~ipal components of the input 

variables. It is quite possible then, that the principal component 

or eigenvector associated with the smallest eigenvalue of x' x, 
which is a sure candidate for deletion, might lie in the same 

direction as, or be a scalar multiple of, the unknown parameter 

vector~- In this case, the retained principal components are 

all orthogonal to this deleted eigenvector and the unknown parameter 

vector~, so that no linear combination of these retained principal 



components will give an estimated parameter vector lying in the 

direction of the true "unknown" parameter vector fl. Using 

this selection criterion and dropping the last p-r "minor" 

principal components, while it may result in a reduction in the 

trace of the variance of estimates fl+ of~ compared with the 
r 

least squares estimator, that is, 

r 
.E 

i=1 :i] < 
,. -- 2 
Lr( var fl) = o 

p 
.E 

i=1 x\] 
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results in a biased estimator for fl and an increased residual sum 

of squares. The selection procedure (b) , which takes note of 

the correlation between the dependent variable y and the principal 

components, also results in a reduction in the trace of the 

variance of estimates of fl but the reduction is not necessarily 

as great as that achieved using (a) as the p-r principal components 

dropped are not necessarily those associated with the s mallest p-r 

eigenvalues. However, the increase in lack of fit or residual sum 

of squares over least squares, in using this criterion, is not as 

great as that incurred using (a). Both criteria then decrease 

the trace of the variance matrix of the estimated parameters but 

the expense incurred in reducing this variance is a non-zero bias 

and an increase in lack of fit. However criterion (a) attaches 

more weight to variance reduction than criterion (b). The use of 

these component selection techniques which play off variance 

reduction against bias inflation, for overcoming the multicollinearity 

problem suggests that a consideration of classes of biased estimators 

may lead to estimation methods which are relatively insensitive 

to multicollinearity. Biased estimation as a direct consequence 

of relaxing the fifth condition of the Gauss-Markov Theorem is 

introduced in section 3.5 and a thorough review of biased estimation 

procedures for tackling multicollinearity is presented in Chapter 4. 

Of course, if it is feasible, the most preferred method of overcoming 

the multicollinearity problem is to augment the data with an 

additional collection of observations on the variables . If the 



input variables are controllable (this means that the original 

data set arises from a poorly designed experiment and the whole 

problem of multicollinearity could have been avoided with a 

carefully chosen design) then it is possible by judiciously 

choosing additional values of the input variables to improve 

estimation and prediction in the directions of the estimation 
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space in which they are least precise. Silvey (1969) has shown 

that to overcome the imprecise estimation in directions of the 

estimation space corresponding to small eigenvalues of x'x, which 

is essentially the multicollinearity problem, additional observations 

of the dependent variable should be taken at values of the input 

variables which are scalar multiples of the minor principal 

components of x'x. For example, suppose that the matrix x'x has 

p-1 large eigenvalues and one eigenvalue, A. , close to zero. 
min 

Then estimation is relatively imprecise in the direction of the 

normalised eigenvector p . corresponding to A . or the last 
min min 

principal component of X. From equation (3.15), 

var(p'. ~) = var(p'. p' a) 
min min 

2 
= (j 

¾iin 

Suppose an additional observation of the dependent variable, 

y 
1 

is taken at x 
1 

= cp . where c is a scalar. 
n+ n+ min 

Then the model 

for the augmented data set is now: 

+ (~~-) 
n+1 

where the error e 
1 

associated with the additional observation is 
n+ 

assumed to be uncorrelated with errors in the original model and is 
2 

assumed to have zero expectation and variance er. The least squares 

estimator of~ now becomes: 



~aug 

However, since, 

2 = ( A . + C )p . 
min min 

and, for i=1,2, ... ,p-1, 

= >...p. 
i i 
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the PxP matrices x'x and x'x + x x' have p-1 equal eigenvalues n+1 n+1 
and p equal eigenvectors. 

with p . in the original 

The smallest eigenvalue>... associated min 

2 min 
model is however increased by an amount 

c in the augment ed model. Thus the variance of an estimate in 

the direction of the normalised eigenvector p . becomes, min 

var(p' . ~ ) = 
mn1 aug 

2 
CJ 

2 >.. . +c min 

so that for "large enough" c the precision of estimation in the 

direction for which prediction was most imprecise is greatly 

improved. 

Silvey has also shown that if instead of "improving estimation 

where it is most imprecise" the aim is to improve the estimation 

of a specific linear combination of~' t'~, by taking a further 

obse1·vation y 1 at x 1 with llx 1 11
2 

constrained to equal a n+ n+ n+ 
constant k, then the optimum direction of x 1 for improving the n+ 
precision of estimation oft'~ is that of the vector, 

(3.16) 

This result does have immediate intuitive appeal. If the matrix 
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X=O and there is no information about 8 contained in the original 

data set, then the best direction for an additional observation 
• I • to estimate t 8 is the direction oft. If k is large compared 

to the components of x'x, and is made arbitrarily large, the 

new observation x 
1 

dominates the original data set so that 
n+ 

it makes sense that the direction of x 
1 

should tend towards the 
n+ 

direction oft. If however k is small then information about 

t'8 in the original data set is used to fix a direction of x 
1

. 
n+ 

In many circumstances, however, the collection of further data to 

augment the original multicollinear data set is either not 

practicable or not possible. Even if further collection is 

possible it may not be possible to control the collection in the 

manner suggested by Silvey - values of the input variables may be 

determined by the system under study and may not be subject to 

experimental control. Thus when more data is not available and 

multicollinearity is present in the data the most that can be done 

classically is an analysis of the canonical structure of the input 

variables to seek out the directions in which relatively precise 

estimation and prediction are possible. However a consideration 

of the classes of estimators alluded to earlier may provide a way 

forward (see Chapter 4). 

Several requirements are contained in the first condition of the 

Gauss-Markov Theorem. A failure to meet these requirements when 

the result of the Gauss-Markov Theorem is applied can cause 

problems. Some of these problems have been referred to in the 

preceding discussion. There are other aspects of this first 

co~dition that have not been discussed. The case when Xis 

stochastic has not been treated but is touched upon in the next 

section. The unknown vector of parameters 8 has been asstnned to 

be c0nstant but may, in some circumstances, be regarded as a 

random variable with unknown mean and variance. Modifying the 

assumption that~ is constant leads to a study of random coefficient 

regression models. There is clearly much more to the first 

condition of the Gauss-Markov Theorem than that which has been 

discussed here. 
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3.2 Errors in the Variables 

Suppose the variable y* and the p-variate vector x* have an exact 

theoretical linear relationship, 

where l:l is an unknown vector of p parameters. Then n realizations 

of the variable y* and its corresponding vector variable x* may 

be written in the form, 
... 

= X"l:l (3.17) 

where y:': is an nx1 vector of realizations of the variable y1
': and 

x:': is an nXP matrix whose rows are the n realizations of ( x1
':)' • 

In practice the variables y1
': and x:': may not be directly observable 

or precisely measurable. Those variables which are measured 

directly and precisely are y and X. 

may arise: 

Three non-trivial situations 

(i) x1
': = x. In this case the p input variables 

are truly observed without error but the output or dependent variable 

/: is observed indirectly. If the error in observation of y1
': is 

defined to be y-/: = e, say, then, from equation ( 3 .17), 

.•. 
y-e = X

0

1:l 

or, 

y = Xfj + e 

If the error vector e is assumed to be a random variable with zero 

expectation and variance matrix a
2

I then the usual linear model 

form is recovered. Clearly, the Gauss-Markov Theorem caters for 

the case in which the variable /: is measured with a stochastic 

error component adjoined . 

. ,. 
(ii) x" t- x. In this case all variables are 

measured with errors. If the error in observation of y* is defined 

to be y-y* = e and the error in observation of x* is defined to be 

X-x* =~then, from equation (3.17), 



y-e = ( X-.6) ~ 

or, 

y = X~ + e - Afj 

If the presence of the errors in the input variables is ignored 

and the result of the Gauss-Markov Theorem is applied to the 

observed data the resulting estimator of the parameter vector~ 

may be written, 
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(3.18) 

where it is assumed the n)(p matrix X has full column rank p. 

Two situations seem to be of interest to statisticians - the case 

when e is a random variable but A is a constant matrix determined 

by the value of X and some consistent rounding rule or constant 

insensitivity in a measuring device, and, the case when both e 

and A are random variables. Both these situations and the merits 

of equation (3 . 18) as an estimator of fj are discussed in the 

following subsections . 

(iii) 
~•: y = y 

... 
X" # X. 

... 
In this case the variable y" is 

observed directly and precisely but the p input variables are 

measured indirectly and imperfectly. If the error in observation 

of x* is defined to be x-x* = A equation (3.17) becomes, 

y = (X-.6)fj 

If the observed matrix Xis of full column rank, the usual least 

squares estimation procedure gives as an estimator of fj, 

(3.19) 

If A, the unknown error matrix, is constant and non-zero this 

"estimator" of the unknown parameter vector fj is badly biased (in 

fact the wrong set of equations, y=Xfj, has been tackled). However, 

as long as Xis sufficiently close to x* (i.e. A sufficiently 

small) and as long as x'x is not ill-conditioned, equation (3.19) 
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shows that the usual least squares procedure may give a good 

enough approximation to~. If A is a matrix of n observations 

on p random variables such that each observation, or row of A, 
is independently and identically distributed with mean the zero 

vector and covariance matrix E , that is, 
pXp 

E(ti) = 0 
nXp 

E(t/ ti) = nE 
pXp 

and if ~ x~•:, x~•: - C as n-tc0 where C is positive definite, then the 
n 

following limits in probability hold, 

. ( 1 I ) plim - XX = 
n 

= C + E 

plim(~ x*'A + ~ A1 ~)plim ~ 
n n 

Thus the limit in probability of the estimator in equation (3.19) 

is given by, 

I -1 I 
plim(~-(X X) X A~) = ~ - (plim ~ x'x)-1 (plim ~ x' A~) 

n n 

(3.20) 

The equation (3.19) does not provide a consistent estimator of~­

As a special case, if Eis a diagonal matrix and C is diagonal 

(the design is orthogonal) the components of 'the resulting estimator 

tend to be scalar multiples of the corresponding components of~ -

the dominant effect of the measurement errors in Xis a multi­

plicative scaling of the estimates of the components of~ so that 

the estimate of each component of the parameter vector is somewhat 

insulated from the others. Further discussion of this situation, 

in which the input variables are observed with a stochastic error 

but the "dependent" variable is measured without error is easily 



derived from the discussion of the more general case (ii) which 

takes place in section 3.22, 

3.21 Non-stochastic errors in the input variables. 

2 5. 

In this instance of case (ii) above, the true model is considered 

to be the usual linear model form, 

... 
y = X"fj + P. 

while the candidate model for analysis is, 

y = Xf:s + e 

where the matrix X = x*+~. The recorded matrix X, the actual 

but unrecorded matrix x*, and the error matrix~ are considered to 

be fixed so that b may be thought of as a constant, non-stochastic 

matrix of rounding errors or censored bits of the true matrix of 

inputs x*. The usual procedure, when it is suspected that the 

matrix of recorded or observed input variables X contains a 

non-stochastic error component, is to proceed with affected 

innocence with an application of the Gauss-Markov Theorem. The 

resulting estimator of f:l, given in equation (3.18), has bias, 

(3.21) 

under the usual assumptions on r. Several points immediately 

arise from an inspection of equation (3.21). If x'x is ill­

conditioned the bias is likely to be large, even when the components 

of~ are "fairly small". If one of the independent variables is 

recorded exactly, without any rounding or censoring, the corresponding 

colul!Ul of~ is the zero vector and the corresponding component of 

the parameter vector f:s does not contribute to the bias term. This 

means that bias depends only on those components of fj whose 

associated input variables are measured with error, but, it also 

means that least squares estimates of the components of the 

parameter vector fj which correspond to precisely known input 

variables are not insulated from the errors in the imprecisely 

known input variables. Also, on the negative side, even if the 

approximate magnitude of~ is known, in general fj - the object of 
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the estimation exercise - is not known, so that knowledge of the 

bias is not obtainable. One ray of hope might lie in the fact 

that a necessary and sufficient condition for the bias to be zero 

is that A should satisfy, 

x' A = o 
PxP 

In general, however, it is not possible to arrange for the 

experimental design and the rounding or censoring mechanisms in 

the measuring devices to satisfy this condition. In a sense 

then, the problem of fixed but unknown measuring errors in the 

input variables is intractable - in order to ascertain the effects 

of the unknown errors on estimates of the unknown parameters, 

the errors and parameters or at least their magnitudes have to be 

known. 

If some knowledge of these magnitudes or knowledge of bounds on 

the errors and parameter values is available some headway is possible . 

Swindel and Bower (1972) have produced what they term "useful" 

bounds for the bias. 

A brief summary of their arguments is as follows: 

When the linear combination t:~ is estimated by least squares and 

non-stochastic errors are present in the input variables the 

squared bias of the estimator is, from equation (3.21), 

and the variance of this estimator is, from equation (3.18) and 

the usual assumptions on~, 

Swindel and Bower call, 

lit' (x'x)-1x' A@l l2 

a2t' (x' x)-1t 

the squared relative bias of the estimator. This squared relative 
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bias can be written, 

1 T
1 !:ipp 1 !:i 1

T 

a2 
T

1
T 

h T X(x 'x)-1t, f h' h . were = rom w ic it can be seen that, 

0 ~ the relative bias (3.22) 

as llt:i~ll2 , which is the maximum eigenvalue, and in fact the only 

nonzero eigenvalue, of A~~' t:i', is the maximum value for all T 

of the squared relative bias. Note that the inequality (3.22) 

holds for all X and x~•: of full column rank and for all vectors t. 

Thus from inequality (3.22) if llt:iflll!a is known or suspected to be 

small, the bias in the usual least squares estimator oft'~ 

caused by the non-stochastic error matrix A is negligibly small. 

The usefulness of these bounds on the bias is questionable. 

However Davies and Hutton (1975) have extended this result of 

Swindel and Bower. By introducing the following measure of ill-

conditioning of the matrix x' , called the "distance of the matrix 

x' from singularity" ; 

p(x') I ½ = min[ [tr(D D)} (X+DR)' is singular] (3.23) 

(where Dis an n)(p matrix and the matrix R = diag(r1 , ... ,rp) 

where the valuer. is the absolute value of the suspected measurement 
l. 

or rounding error in the ith column of X) they have been able to 

construct a more practical bound on the relative bias. 

summary of their arguments is as follows: 

The distance of x' from singularity can be written, 

A brief 

where II, • -11 denotes the Hilbert norm, sup l\jxjll of A, provided x' X 

is nonsingular. If R is also nonsingular then p(X
1

) is equal to 
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the square root of the minimum eigenvalue of R- 1x'xR- 1 . Suppose 

the elements of Rare more precisely defined to be "informed 

guesses" of the square roots of the diagonal elements of ! t:i.' ~ n , 
then, 

where j •• • l denotes the sum of the absolute values of the components 

of a vector. Thus, 

0 s the relative bias~ ,/n ~ 
0 

(3.24) 

To make this upper bound fully operational the least squares 

estimator of~. equation (3.18), which is denoted by§, may be 

substituted for~- However _§ is biased so that jR§j is a biased 

estimator of jR~j. But the absolute value of the bias in 

jR§j is given by, 

l lR~l - jRE(~)l ls .filp IR~I 
p( x' ) 

Thus, if p(x') is "at least several times the value" of ,.fiip the 

bias incurred in using jR~j to estimate jR~j is negligible. It 

only remains to estimate o in inequality (3.24). The usual 

procedure gives, 

A2 I I -1 I 
o = y (I-X(X X) X )y/(n-p). 

2 
The bias in this estimate of o is clearly, 

so that, 

2 
- 0 

(3. 25) 

Thus if the upper bound of Swindel and Bower on the relative bias 
A2 

term is small then this upper bound on the bias of o is very small 

too. 
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Consequently Davies and Hutton suggest that a safe approximation 

to an upper bound on the relative bias of the least squares 

estimator~ in equation (3.18) 

a 

or after further manipulation, 

✓r;"p llxgjj 
o p(X') 

is, 

(3.26) 

(3.27) 

I 
The use of the bound in (3.26) is only recommended when p(X) is 

much greater than ,fiip, that is when the distance of x' from 

singularity is large. The bound in (3.27), which incorporates 

p(X'), demonstrates explicitly the joint effect of near singularity 

and errors on the bias term. Obviously small values of p(X
1

) 

should be avoided if the effect of non-stochastic errors in the 

input variables on least squares estimates of~ is to be minimized. 

This work of Swindel and Bower, and Davies and Hutton is a first 

step in formalising the well known hypersensitivity, in the 

presence of even moderate multicollinearity, of the least squares 

estimator of~ to small deterministic errors in the input variables. 

The distance from singularity p(X') seems to be a worthwhile index 

of this hypersensitivity as it enables, in conjunction with the 

bound (3.27), a researcher to discover whether the bias caused by 

errors in the input variables is likely to be serious. Other 

indices of sensitivity or instability have been proposed. They 

are discussed in the next section. 

3.22 Stochastic errors in the input variables. 

In this instance of case (ii) both~ and the rows of~ are assumed 

to be random variables. Much work has been published on the effect 

of such stochastic errors on the usual least squares estimator but 

most of it has referred to the bivariate case in which there is 

only one input variable (see, for example, Cochran (1972)). However, 
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several alternative estimation procedures for the multivariate 

case have been suggested in the literature. Foremost among 

these would be instrumental variable estimation, but in many non­

econometric problems there are difficulties in finding suitable 

jointly observable instrumental variates with which to operate. 

Thus the usual procedure adopted by researchers is to apply the 

result of the Gauss-Markov Theorem in spite of the stochastic 

error component in X and in spite of the existence of possible 

alternative procedures. Some work has been devoted to an 

examination of this technique. 

The resulting least squares estimator, equation (3.18), can be 

rewritten as, 

(3.28) 

Two differing approaches have been used to investigate equation 

(3.28). 

Hodges and Moore (1972) proceeded under the assumption that in 

any experimental situation the error matrix 6 is small so that the 

series expansion of the inverse of (x~•:+M' ( x~•:+6) could be 

conveniently truncated and approximations to the expectation, bias 

and variance of (3.28) easily evaluated. 

The series expansion of the inverse of the aforementioned matrix is, 

cx*'x*)-1 - cx*'x*)-1ncx*'x*)- 1 + cx*'x*)-1ncx*'x*)-1ncx*'x*)-1 

where D = (6'x* + x*' 6 + 6
1

6) and it is assumed that the n>cp matrix 
.,. 

X" has full column rank p. Hodges and Moore truncated this series 

by ignof:'ing all terms in 6
1 
6 and "higher powers" of 6 except the 

"principal quadratic term", 

As an approximation to the estimator in expression (3.28) Hodges 

and Moore gave the following expression, 

a+ <x*'x*)-1 <x*+6)'e - cx*'x*)-1ti.'x*<x*'x*>-1x*'~ 

(3 . 29) 
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If the components of e are assumed to be distributed independently 

of the rows of l::. in such a way that, 

E(e) = 0 E(e~') = 2I 
nx1 CJ nxn 

E( .6) = 0 E(t::.' l::.) = nE E(f/~) = 0 
nxP pxp px1 

then the expected value of (3.29) is, 

Thus, an approximate expression for the bias in the usual least 

squares estimator is, 

Hodges and Moore suggested replacing (x~':'x~':) by (X
1
X), fs by 

expression (3.18), and Eby "whatever information is available" to 

arrive at a rough estimate of the bias. Again it can be seen 

that the conditioning of x~·., x~•: and x' X has an important consequence 

for the bias of the least squares estimator. 

If the expression (3.28) is approximated further by ignoring all 

terms int::.' l::. and higher powers of l::. the result is, 

fs + <x*'x*)-1 <x*+t::.)'e - (x*'x*)- 1t::.'x*<x*'x*)- 1x*'~ 

(3.30) 

This approximation to the estimator in (3.28) has zero bias which 

is an indication of its crudity as an approximation. However, 

the variance-covariance matrix of this approximation to the estimator 

is able to be derived from the assumptions on ~ and t,, given 

earlier, as, 

This expression for the variance-covariance matrix is used by 

Hodges and Moore (1972, p.189) to claim that the estimated covariance 

matrix a2(x'x)-l will not be far from o2(x*'x*)-l, but their 

notation and reasoning seem confused. They also proposed a 

"sensitivity analysis" for calculating the sensitivity of each 
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estimate of a component of~ to each observation in the recorded 

input matrix. However their defined sensitivity depends on 

the unobserved matrix x~•;, the "true" least squares estimator of 
"''' '"''' -1 .,., .,. _,., .,. -1 "':1 ~/X X ) X" y, and the "true" residual vector (I-X"(X" X") X )y. 

The second, and more fruitful approach, to an investigation of 

the properties of expression (3.28) has come from Davies and 

Hutton ( 1975). Hodges and Moore assumed that the matrix A was 

small so that with fixed sample size n the expected value of 

higher powers of A could be ignored. Davies and Hutton however 

examined the asymptotic performance of (3.28) and (3.25) as 

the sample size, n, tended to infinity. 

arguments and results is as follows; 

A brief summary of their 

If the components of e and the rows of A are assumed to be 

distributed in the manner described previously and if 

lim ~ /:' x~•: = c 
n 

where C is a positive definite 
n-oco 

matrix, then in the manner of the arguments leading to equation 

(3.20) the limit in probability of the estimator in expression 

(3.28) is, 

-1 
~ - ( C + E) E~ (3.31) 

If Eis nonsingular (a similar argument holds if Eis singular) 

and diagonal, the asymptotic bias can be related to the distance 

from singularity (equation (3.23)) by, 

sup = 

= 

= 

IIE\c + E)-1t2II 

[p((C + E)½)J- 2 

1 . ( n ) p im 
[p(X')J2 
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Thus if the distance from singularity p(x') is small, large 

errors may be present in the estimator (3.28). It is also 

possible to show that, provided the fourth order moments of the 

elements of~ exist, 

has an asymptotically normal distribution with mean the zero 

vector and a complicated covariance matrix . 

result if E can be written} S then, 

Further to this 

-1 
has an asymptotically normal distribution with mean C S~ and 

2 -1 c-1s covariance matrix o C • Notice that if = 0 , and 
-1 PxP 

C is small, the bias in the estimator (3.28) is likely to be 

negligible in large samples. If, however C is ill-conditioned 

this large sample distributional result indicates that the bias 

is not likely to be negligible. This suggests that a simple 

kind of relationship holds among errors, conditioning and probable 

bias. In fact Davies and Hutton show in the manner of the 

arguments leading to the bound (3.27) that the bias in expression 

(3.28) is negligible if, 

( 3. 32) 

is small compared with one. Analogous with the non-stochastic 

case the diagonal matrix R is composed of "guestimates" of the 

square roots of the diagonal elements of E. They also show that 

~ and o in bound (3.32) can be safely replaced by their estimators 

(3.28) and (3.25) if p(X') is large compared with ./hp. They also 

show that, 

so that for E close to the null matrix the estimate of the 

covariance matrix of the least squares estimator is not too far, 

in the limit, from o2 (i''x1=)- 1 . This places the claim of 



Hodges and Moore (1972; p.189) on a slightly more substantial 

footing. 

Again the distance of the matrix x' from singularity, p(X') 

which is really a measure of how far the recorded matrix x' is 

away from arising out of a possibly singular unrecorded matrix 
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x* = X+A, where the only information about A is contained in 
n)(p 

R , seems a good index for measuring the combined effect of 
PxP 

multicollinearity and stochastic errors on the estimator in 

expression (3.18). The estimated value of the bound in (3.32) 

would seem to be more readily obtainable and hence of more 

practical value than the approximate bias term derived by Hodges 

and Moore. 

In a slightly different context Beaton, Rubin and Barone (1976) 

have also studied the effect of stochastic errors in the input 

variables on the least squares estimator of~- Beaton et al 

were interested in the effect of non-stochastic rounding errors, 

errors between -0.5 and +0.4999 ... , in the last recorded digit 

of each observation in the input matrix, on the least squares 

estimator. Using a particular multicollinear test problem they 

generated 1,000 input matrices x~•: by adding rectangularly 

distributed random numbers between -0.5 and +0.4999 ... to the 

last digit of each observation in the recorded input matrix X 

and then proceeded to compute the 1,000 regressions on these 

equally plausible "true" input matrices. They found huge 

variations in the 1,000 values of the estimated coefficients 
·'· resulting from the regressions on the input matrices ~ = x-~, 

(k=1, ... ,1000) but most seemed to be clustered around a mean 

value that did not necessarily coincide with the least square 

solution for X. They surmised that these mean values about 

which the solutions were distributed were estimates of the large-

sample limit of the equally likely solutions. 

development they gave is as follows. 

The theoretical 

Let x* = X-6 where A is a matrix of plausible rounding errors. 

Then the "true" least squares solution vector for a particular 

6 is, 
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"" .,., .,. -1 .. ,., l:l = (Xn Xn) Xn y 

= cx'x - ~'x - x' ~ + ~' ~>-1cx-~)'y 

.•. 
However the true input matrix Xn is unknown, but Xis known and 

fixed, and~ may vary by the construction of the simulation in 

such a way that, 

E(~) = 0 

Suppose ~ x'x = C for all sampled nxp n xx input matrices X, and 

1 x' C Then, . . 1 ~' - y = since plim - X = n xy n 
0 d . 1 "' an plim ~ L.l y = 0, 

A 

(C D)-1C plim p = + xx xy (3.33) 

The usual least squares estimator (3.18) based on the matrix X 

is, 

It is easy to show that, 

A A 

[I (I C-1D)-1]~ l:l - plim l:l = - + 
X XX X 

If the matrix, C-1D A A 

If tr(C-1D) = 0 then !:ix = plirn f:l. xx PxP xx 
A A 

close to zero then ~xis approximately equal to plirn f:i. 
is that Beaton et al call, 

= n 
p 
l: 

i=1 
cx'x>~: d. = P.I. 

11 1 

( 3, 34) 

is 

So it 

( 3. 35) 

a perturbation index. If the perturbation index is close to zero 

the usual least squares estimator (3.34) is close to plim ~ and 

is relatively stable, under the influence of the unknown~, for 

large n. The perturbation index is likely to be large, and 
A 

consequently the usual least squares estimator ~x unstable, 

when x'x is ill-conditioned. Again the sensitivity of the usual 

least squares estimator (3.18) to stochastic errors in the input 

variables is greatest when multicollinearity is present in the 

input variables. 



The plim solution (3.33) which is the large sample limit of the 

"true" least squares solution to the regression problem may be 

rewritten as, 
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I -1 I 
(XX+ nD) X y. (3.36) 

In this form the plim solution has the appearance of a generalised 

ridge estimator (see section 4.222). Perhaps the usual least 

squares estimator should be replaced by this estimation procedure 

when the matrix Xis known to contain rounding errors and the 

rounding errors are assumed to be independently and uniformly 

distributed. Other alternatives to the least squares method of 

estimation when stochastic errors are present in the input 

variables have been suggested. The form of these estimators is 

similar to (3.36). Theil (1971, p.614) has suggested estimating 

the parameter vector~ by, 

(x'x - nI:)-1x'y (3.37) 

1 ... , .,. 
Here Theil has assumed that n X" X" converges to a positive 

definite matrix C, and E(ti) = 0 , E(ti' /:l.) = nE , E(l:l.
1 
~) = 0 

nxP p X1 

The matrix f: is a "guestimate" of E and is stochastically independent 

of e and /:l.. 

Under these conditions, the probability limit of the usual least 

squares estimator is, from (3.31), 

-1 -1 
~ - (C+E) E~ = (C+E) C~ 

whereas the probability limit of Theil's estimator in expression 

(3.37) is, 

(3.38) 

A 

Thus, if the "guestimate" E is close to E the inconsistency or 

asymptotic bias of Theil's estimator is small. 

In a similar vein Warren, White and Fuller (1974) have proposed 

and demonstrated the use of the estimator, 

I A -1 / 
(X X - (n-a)E) X y ( 3. 39) 
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,. 
where :Eis some available estimator of I: and a is some "constant", 

usually less than n in value, introduced to reduce the mean 

square error of the estimator. Warren et al have also proposed 

a small refinement to the estimator (3.39). If the smallest 

root Y of, 

1
1 I "' 
- X X - YJ:I = 0 n 

is less than n+i then the coefficient of£ should be replaced 
n 

by ~nY - (a+1)] as a safeguard that the matrix to be inverted is 
. l A . d . f y"' a+i h h . . nonsingu ar. s an asi e, i < ~ tent e estimator is 

a generalized ridge estimator. 

At first sight there seems to be 

between the plim solution (3.36) 

estimators (3.37) and (3.39) of 

some conflict in appearance 

of Beaton et al and the alternative 

Theil and Warren et al. Whereas 

the "estimator" (3.36) modifies the least squares procedure by 

adding a diagonal non-negative definite matrix t o x' x, Theil's 

estimator and the usual form of (3.39) subtract a matrix from x' x. 
The source of this di f ference is easily detected. The plim 

solution of Beaton et al results from assuming that the observed 

matrix of input variables Xis fixed and somehow primordial and 

that the "true" matrix X1
: of input variables is unknown but has 

many equally likely forms. That is, Beaton et al assume Xi s 

fixed and x* is stochastic. However, Theil and Warren et al 

assume that the unknown "true" matrix of input variables x·': is 

fixed and primordial and the observed matrix X=x·':+ti is stochastic. 

The plim estimator of Beaton et al seems to be a response to the 

question, "What if there are errors in the input variables?" 

whereas the estimators of Theil and Warren et al are responses to 

the statement "There are· errors in the input variables". If 

x'x is close to singularity it would seem to be safer to respond 

to the former statement than to admit to the latter, as the form 

of (3.36) improves the conditioning of the matrix to be inverted 

while (3.37) is likely to worsen the conditioning problem. 
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3.23 Some remarks about Outliers. 

Unusual or outlying values of the dependent variable (values 

which have large residuals when a least squares fit is carried 

out) may arise as "blunders" or mistakes in recording the values 

of observations, or may be due to unusual combinations of 

circumstances not adequately allowed for in the formulation of 

the linear model. If it is certain that an outlier is the result 

of a recording error then it is desirable to either delete the 

observation from the data or correct it (smooth it) in some 

way. If an outlying value is not a blunder then rejection or 

correction of the observation means that valuable information 

not contained in the other observations is being discarded or 

distorted merely because the assumed model cannot handle it. 

Establishing the source of an outlier, before any action is taken, 

is therefore very important. 

The sensitivity of the method of least squares to such outlying 

values is well known. It is possible for one or more outliers 

to dominate a regression producing a fit determined by only one 

or a few observations, see for example Andrews (1975). However, 

detecting outliers after a least squares regression has been 

carried out can be difficult. Various plots of the residuals 

may reveal outliers but very often the least squares fit, which 

responds to the presence of the outliers and correspondingly 

downgrades the fit to the remaining observations, masks these 

outliers. Thus an observation which might be termed an outlier 

prior to the regression (on the basis of some prescreening 

exercise, inspection of plots of y versus x. for example) may 
J. 

not appear to be an outlier from an examination of the residuals 

after a regression. However, the impact of an outlier on the 

resulting least squares estimator may not be as great as the 

impact of some other observation. Often the structure of X (its 

principal components and conditioning) conspires to make the 

least squares procedure relatively insensitive to the outliers 

and more sensitive to some other observations. Thus, while 

least squares may frequently be sensitive to an outlier there is 

no guarantee that the outlier is having a greater influence on 



the least squares estimate than any other observation. 

Fortunately, Cook (1977) has suggested a measure which detects 

the most influential observations in a least squares analysis. 

Cook has proposed that the influence or importance of the ith 

data point in determining the least squares estimate~ of~ 

be measured by; 

where_~(-i) is the least squares estimate of~ with the ith 

b . dl d d 2 ' h ' f 2 
o servation e ete an s is t e usual estimator o a from 

equation (3.25), with i ranging from 1 ton. 

distribution theory, 

F
1 

(p,n-p) -a 

Under the usual 

defines a (1-a)x10 0% confidence hyperell i psoid for~ so that 
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if Di= r_ 50 (p,n-p) the removal of the ith data point shifts the 

least squares estimate to the edge of the 50% confidence region 
A -

for~ based on~ and~ is consequently greatly influenced by the 

presence of the ith observation. Cook has suggested that the 

Di's should be less than F. lO ( p ,n-p) for an "uncomplicated" 

regression analysis. 

If an outlier is detected by one or more of the more usual 

methods - examination of the studentized residuals for example -

and it also has the highest D value of then observations then 

the least sqµares estimate has certainly been overinfluenced 

by the combination of this observation and the structure of the 

observations on the input variables. If the observation is 

certainly a blunder it must be deleted or smoothed. If the 

observation is not clearly a blunder its presence poses a problem 

and further collection of data points and a reformulation of the 

model may be necessary. If an outlier is detected but its D 

value is relatively small it is having little influence on the 

least squares estimate. In this case it may be of lesser 



importance whether the observation is a blunder or not as the 

retention or deletion of the observation has little effect on 

the least squares estimate. However, the presence of the 

outlier may still raise doubts about the model if the fit is 

inadequate. 
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Previously it was mentioned that least squares regression often 

masks the presence of outliers by (nonteleologically) attaching 

more weight to them, in the fit, than the other observations. 

Some work has been directed to finding estimation and fitting 

techniques which are less sensitive to the outliers. These 

techniques attach lesser weights to outliers, preserving the 

large residuals usually associated with them and consequently 

allowing the clearer detection of blunders or inadequacies in 

the model. These techniques are mentioned in section 3.4. 

3. 3 Generalized Least Squares 

The third condition of the Gauss-Markov Theorem, as stated in 

Chapter 2, makes very specific assumptions about the distribution 

of the error or disturbance vector~. Fortunately these 

assumptions can be generalized somewhat to cover possible non­

standard situations. 

Suppose the variance-covariance matrix for€ is given by, 

E(ee') = 

then several situations of increasing complexity can arise: 

(i) 

(ii) 

E may be completely known 
2 

E may be known up to a constant scale factor o 

(iii) E may be unknown but may have some known special pattern 

(iv) E may be completely unknown. 

In the first situation, if Eis completely known and of full rank 
-½ then the transformation matrix E can be applied to the data set 

so that, 



E-\ 1 
z = E; = E-"2e 

- k 
E(z) = :E 2Xfj = WI:! 

E(zz') = I . 

The model is now z = Wfj + E; where E(E;) = 0 and E(E;E;
1

) = I which 

is just a special case of the set up defined in the first three 

conditions of the Gauss-Markov Theorem. 
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In the second situation the variance-covariance matrix :E may take 

one of three forms, 

cr2I 

a2
G in which G has full rank n 

a2G in which G is singular. 

2 In all three forms the scale factor a is assumed to be unknown. 

The first form is just that postulated in the third condition of 

the Gauss-Markov Theorem. The second form o2G, in which the known 

matrix G has full rank, can also be catered for under the third 

condition as it stands with the application of the transformation 
- 1: 

matrix G 2 in the manner of the transformation suggested for 
2 situation (i). If the covariance matrix has the form a G where 

G is singular, then no such transformation exists and the Gauss-

Markov Theorem cannot be applied. However, Rao (1971, 1973) 

has developed an analogue of the Gauss-Markov Theorem for this 

situation: 

Given an input matrix X (which may or may not be of full rank) 

and the (possibly) singular matrix G, then the best linear 
I I ,... ,.. 

unbiased estimator oft 8 (if it is estimable) is t 8, where fj 

minimizes 

with T = G + k2xx', kiO and T- any generalized inverse of T. 

2 
Thus the second situation, E known up to a constant factor a, 

is more or less covered by the third condition of the Gauss-Markov 

Theorem as it stands. 
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The third and fourth situations require the estimation of other 
2 

parameters besides~ and the possibly unknown scale factor o. 

The third situation can be treated as a special case of the 

fourth situation. Concentrating on the fourth situation where 
n(n+1) Lis completely unknown there are --- elements of L to be 

2 
estimated as well as the elements of~- With only n observations, 

the simultaneous estimation of E and~ is not possible. If, 

however, m independent replications of y are available, and if 

the distribution of the error vector~ is assumed to be normal, 

then maximum likelihood estimators of~ and Lare obtainable 

using standard results from multivariate analysis. Thus the 

estimation of~ in the most complex case requires extra information 

in the form of replications of the observations and an extra 

assumption. 

Given these various covariance matrix formulations an immediate 

problem presents itself to the practioner. What happens if an 

assumed covariance matrix formulation is less complex than the 

actual covariance matrix? Or more generally, what is the effect 

on the least squares estimation procedure of misweightings in 

the assumed covariance matrix? A related problem concerns 

heteroscedastic variances - what happens to the least squares 

estimator if case (ii) is assumed when in reality case (iii) or 

(iv) holds and there is no common scale factor o2? Some of the 

work which has been directed to these problems is reviewed in the 

next two sections. 

3.31 Misweighting 

2 
Suppose E(ee') = o W but the covariance matrix is assumed to be 

2 o G, where Wand Gare both nonsingular. Then the obtained 

least squares estimator oft'~ is, 

whereas the proper least squares estimator is, 
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Both estimators are unbiased but are not necessarily equal. 

If the two covariance matrices differ only by a scalar multiple, 

that is the ratios of assumed weight to proper weight are nearly 

equal for every data point then the obtained least squares 

estimator is equal to or not too far from the "true" least squares 

estimator. The obtained least squares estimator has variance, 

whereas the proper least squares estimator has variance, 

2 , , -1 -1 
o t (X W X) t . 

The ratio of the variance of the obtained estimator to the 

variance of the proper estimator clearly has an upper bound given 

by the maximum eigenvalue of, 

(3.40) 

Without too much loss of generality it can be assumed that G=I 

and W=E=diag(µ1 , ... ,½,i). 

the maximum eigenvalue of, 

The problem now becomes that of finding 

If it is also assumed that x'x = I then the problem reduces to 

that of finding the maximum eigenvalue of, 

(3.41) 

If x' is partitioned by its first column as [r1\ R2 ] and Eis 

correspondingly partitioned as diag(u
1

,u
2

) then expression (3.41) 

can be rewritten as, 

so that the maximum eigenvalue of expression (3.41) is less than, 

Thus, the ratio of the 

variance of the obtained estimator to the variance of the proper 

estimator is less than, 



2 
(~ax+ 1-luiin) 

4 µmaxµmin 

This upper bound is quoted by Bloomfield and Watson (1975). 
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( 3. 42) 

The usefulness of the upper bound is open to question. Generally 

the maximum and minimum eigenvalues of the proper, unused diagonal 

covariance matrix E are unknown. But the use of the bound 

doesn't necessarily require knowledge of these. 

u /u. = r is known, the bound is, 

If the ratio 

'7llax 7nin 

(r+1) 2 

4r 

a result quoted by Tukey (1975). Thus if it is suspected that E 

is illconditioned or close to singularity (r very large) then the 

obtained least squares estimator may be very inefficient. 

This bound was first displayed in a rather cryptic paper by Tukey 

(1948) but only for the case p=1 (the calculation of a weighted 

average). Much of the work which, temporally but not logically, 

followed Tukey's paper, by Anderson, Durbin and Watson, and others, 

was concerned primarily with finding necessary and sufficient 

conditions for the equality of the least squares estimator, 

"' I -1 I f:l = (X X) X y 

and the best linear unbiased or Markov estimator, 

under the condition that E(€€
1

) = E. This work was reviewed by 

Watson (1967). One of the most recent papers concerning the 

equality of these estimators, for X not necessarily of full column 
' 

rank, is by Styan (1973). Bloomfield and Watson (1975) and Knott 

(1975) have presented proofs of the result, 

1 s: Ivar ~ I 
Ivar ~Ml 

max min 

f
(µ +u . )2 }P 

(3.43) 
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and proofs of an even tighter upper bound on this ratio. The 

problem for many practioners is that generally Eis unknown and 

the eigenvalues of E are unknown, so that the crude upper bounds 

(3.42), (3.43) are unknown. However, as long as the ratio r 

is thought not to be too large (r ~ 3) the bound (3.42) tells 

practioners that the choice of covariance matrix is not crucial 

and a simple weighting scheme is probably sufficient. 

sentiment has been expressed by Tukey (1975). 

3.32 Heteroscedastic Variances 

Such a 

Suppose a special case of situation (ii) is assumed to hold where, 

2 E = o I 
nm 

. h 2 wit o unknown, 

but in reality a special case of situation (iii) holds where, 

E = (diag(o~,o~, •.. ,a~). 

Then the assumed covariance matrix posits equality of variance 

for then disturbances or homoscedasticity whereas, in reality, 

the errors are heteroscedastic. As pointed out in the previous 

subsection the obtained least squares estimator of~ is still 

unbiased but is no longer minimum variance or best. However, the 

loss in efficiency is not too great provided the o~ do not vary 
2 l 

greatly. If the o. do vary greatly the obtained least squares 
l 

estimator rapidly loses efficiency (see inequality (3.43)). 

The detection of situations in which markedly different 

h~teroscedastic disturbances are present in a data set and the 

efficient estimation of~ under this heteroscedasticity are clearly 

of some importance. The presence of nonconstant variances may 

be detected by an examination of residuals from an initial least 

squares fit with the assumed homoscedastic error structure. 

Plots of residuals versus predicted values of y and plots of 

residuals against time or against the sequence in which the 

observations were taken may reveal heteroscedastic error structure. 

A good introduction to the examination and analysis of residual 

plots is contained in Draper and Smith (1966). Various statistical 
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tests against heteroscedasticity which utilize the residuals 

are also available (see, for example, Theil (1971)). If the 

presence of heteroscedasticity is established, the parameter 

vector~ should be reestimated. One approach to reestimation 

is to transform the dependent variable y so that the error 

variances are homogenized. A seminal article on this technique 

is that of Box and Cox (1964). Another approach is to approximate 

E in some way and perform a weighted least squares analysis and 

continue in an iterative fashion (monitoring goodness of fit) 

until residual plots indicate that the heteroscedasticity has 

been adequately accounted for. The best approach, if it is 

feasible, is to estimate E = diag(o~, ... ,o
2

) and if the estimate 
l n 

indicts the homoscedasticity assumption use it to reestimate~-

Several techniques for estimating such a diagonal covariance 

matrix exist in the literature. Most require replication of the 

observations or in lieu of replication make further restrictive 

assumptions on the dimensionality or the structure of the input 

matrix. References to these estimation techniques and comparisons 

of t hem can be found in Horn and Horn (1975) and Horn, Horn and 

Duncan (1975). 

3.4 Nonlinear Estimation 

The fourth condition of the Gauss-Markov Theorem requires the 

estimate of the parameter vector~ to be a linear function of 

the vector of observations on the dependent variable y . 

requirement seems to originate from two sources: 

This 

(i) the need for a computationally feasible procedure, 

(ii) the result that the least squares estimator, whi¢h is 

the best linear unbiased estimator (BLUE or MVLUE) of 

~, is, under the added assumption of a multivariate 

normal distribution for the error vector~, the 

minimum variance unbiased estimator (MVUE) or 

maximum likelihood estimator ( MLE). 

The first source of this linearity requirement is no longer as 
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important as it was in the early 19th century - with the advent of 

high speed computers and programmable calculators ease of computation 

and even cost of computation are factors which can no longer limit 

the choice of an estimator to a class of linear functions of y. 

The second source of this linearity requirement does not have 

great impetus. That the linear least squares estimator is the 

minimum variance unbiased estimator when the error distribution 

is multivariate normal is a strong theoretical result , but the 

normality assumption is often difficult to meet in practice. 

It would seem to be desirable to be able to include nonlinear 

estimators in the search for an optimal estimator, particularly 

when the distribution of the error vector is far from normality. 

The most common kind of non-normal distribution for the error 

vector is a "long-tailed" distribution . When the error vector 

has this kind of distribution the least squares estimator is, of 

course, no longer minimum variance in the class of all unbiased 

estimators (it is still MVLUE or BLUE) and may be described as 

inefficient. Andrews (1974, 1975) and Beaton and Tukey (1974) 

have suggested robust regression techniques which are insensitive 

to the outliers thrown up by the long tailed error distributions. 

These fitting techniques preserve the large residuals usually 

associated with outly ing observations and therefore allow the 

detection of blunders and model inadequacies. The biweight 

regression technique of Beaton and Tukey is very similar to an 

iterative weighted least squares procedure. Whereas the usual 

least squares estimator is the one-step solution,~, of the 

equation, 

X
1

(y-XB) = 0 

the biweight solution i s the (t+1)th iteration of, 

where W(t) is a diagonal nxn weighting matrix whose elements are 

reset at each step in the manner, 

w = 
(t)( .. ) 

l. ,1. 
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where w(u) is some "robustifying" function which attaches small 

weights to large values of u and relatively large weights to small 

values of u, with B(t) the solution from the previous iteration 

and s(B(t)) some measure of scale based on the residuals from 

the previous fit. Beaton and Tukey reported that such an 

estimation procedure displays resistance or insensitivity to 

perturbations in the data as well as the planned for insensitivity 

to outliers and high efficiency over a wide range of error 

distributions. Thus the nonlinear biweight procedure would, 

it seems, also be useful in the errors in variables situation 

discussed in section 3.2. 

The robust regression procedures are not meant to replace the 

usual least squares estimator when the conditions of the Gauss­

Markov Theorem hold, although such replacement would not cost 

much in terms of loss in efficiency, but are more properly to be 

used as model building tools for detecting possible data irregularities 

which may prevent the application of the Gauss-Markov Theorem. 

Other nonlinear estimators have been proposed in the literature 

and not necessarily with the robust/resistant motivation described 

above. Least pth powers and estimation methods based on order 

statistics, for example, are referred to by Andrews (1974). The 

James-Stein estimator and the nonlinear operational variants of 

the minimum mean square error linear estimator ( MMSELE) are two 

more classes of nonlinear estimator which have desirable properties 

and outperform the least squares estimator with respect to certain 

optimality criteria. They are however introduced in Chapter 4. 

The restriction to estimators which are linear functions of y 

goes hand-in-hand with the third and sixth conditions of the Gauss-

Markov Theorem. The third condition of the Gauss-Markov Theorem 

only specifies the first and second order moments of the distribution 

of e and y and the sixth condition of the Gauss-Markov Theorem 

requires the estimator to be judged by its variance. Using a 

nonlinear estimator and the variance of the estimator to judge 

its quality requires knowledge or at least assumptions about 

higher-than-second-order moments of the distribution of e and y. 

In some ways the estimation problem begins to lose the little 



generality it had when higher order moments of e have to be 

assumed. Relaxing the linearity requirement may therefore 

necessitate modifying the sixth condition of the Gauss-Markov 

Theorem. 

3.5 Biased Estimation 

Although the word "biased" has unfortunate connotations 

(connotations which have been described by Lindgren (1968) as 

"un-American") biased estimators are not necessarily worse than 

or less preferable to unbiased estimators. An interesting 

introduction·to biased estimation is contained in Efron (1975). 

Efron points out that to arrange for an estimator of~ to be 

unbiased in mean, that is, 

E(B) = ~' 

does not guarantee that an estimate is close to~- The usual 
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means of illustrating this, for the univariate case, is to present 

a graph of the distribution of an efficient biased estimator 

versus a graph of the distribution of a relatively inefficient 

unbiased estimator. Such graphs are presented in Figure 3.1. 

Figure 3 .1 Hypothetical distributions of an 

efficient biased estimator and an 

inefficient unbiased estimator. 

B 



In Figure 3.1 the ' non-zero bias in the second estimator B is 
2 

a small fraction of the standard deviation of that estimator 

and an even smaller fraction of the standard deviation of the 

unbiased estimator B1 so that the preferred estimator would have 
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to be the biased estimator B2 . Choosing to use a biased estimator 

in preference to an unbiased estimator clearly requires knowledge 

of the value of the bias, the variance of the biased estimator, 

and the variance of the unbiased estimator. One criterion for 

choosing between two such competing estimators might involve 

comparison of the variance plus the squared bias of the biased 

estimator with the variance of the unbiased estimator (the bias 

has to be squared so that it has the same dimensionality as the 

variance). Thus if, 

( 3. 44) 

where B
1 

is unbiased then B
2 

might be regarded as a "better" 

estimator of~ than B1 . In the case where~ is a vector of 

parameters the variance terms in (3.44) may be replaced by the 

traces of the respective covariance matrices and the squared bias 

term by the square of the Euclidean distance from E(B2 ) to~-

The immediate problem with such a criterion and in fact with 

biased estimators themselves is that~ (the object of the estimation 

exercise) is generally not known so that the value of the bias 

is unknown. If however some bounds on the value of the bias are 

available then the criterion may be able to be used. 

It is of interest to note that Barnard (1963) has provided a 

development of the Gauss-Markov Theorem with the unbiasedness 

requirement replaced by a requirement of unboundedness for the 

components of~ and a requirement of a bounded mean square error 

(the left hand side of (3.44)) for the estimator. Such requirements 

lead to the unbiased least squares estimator. If the components 

of~ are bounded then there is a possibility that an alternative 

biased estimator may have a smaller mean square error. This is 

demonstrated for specific biased estimators in Chapters 4 and 5. 



3.6 Criteria for Estimation 

The sixth condition of the Gauss-Markov Theorem requires the 

quality of linear unbiased estimators of~ to be judged by their 

variance where the variance of such a linear unbiased estimator 

is given by, 

var(B) = E(B-E(B))(B-E(B))' 

= E(B-fj)(B-fj)' 

Thus for two linear unbiased estimators B
1 

and B
2

, if 

var(B 1 ) - var(B2 ) is non-negative definite then B
2 

is judged to 

outperform B
1 

and if var(B
1

) - var(B
2

) is negative definite then 

B
1 

is judged to outperform B
2

. The result of the Gauss-Markov 
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Theorem shows that for the least squares estimator~ var(B) - var(~) 

is always non-negative definite for any linear unbiased estimator 

B. Such an estimation criterion seems reasonable when the second 

condition of the Gauss-Markov Theorem only specifies the first 

and second order moments of the distribution of the error vector 

e. If other measures of spread were used to characterize the 

distribution of the error vector then other measures of spread 

would have to be used to judge the performance of a linear estimator. 

If the search for an estimator is widened and can take place 

outside the class of unbiased estimators then, as alluded to in 

section 3.5, some estimation criterion that combines variance of 

the estimator and bias, and allows them to be traded-off, is 

required. Several such criteria are possible: 

E IIB-fj!i2 = E(B-fj) I (B-fj) 

= tr var(B) + /E(B)-fj)' (E(B)-fj) (3.45) 

E(B-~)'H(B-~) = tr(HE(B-fj)(B-~)') 

= tr(H var(B)) + tr(H(E(B)-fj)(E(B)-~)') (3.46) 

where His any PxP non-negative definite matrix. 

The first criterion which is the expected value of the square of 

the Euclidean distance from B to~ is known as the mean square error 

of B. The second criterion is a weighted sum of component mean 



52. 

square errors and can be described as a generalized mean square 

error of B. Both criteria require knowledge of~ before they 

can be minimized with respect to B. In some situations 

knowledge of~ may not be strictly necessary as it may be possible 

to show that for all values of~ one estimator outperforms or 

dominates another with respect to one of these criteria, for 

example, the domination of least squares by the James-Stein 

estimator with respect to criterion (i) when~ is the unknown 

mean of a p-variate normal distribution with p ~ 3. However 

the usual procedure in developing alternative biased estimators 

has been to find a biased estimator B, evaluate the chosen 

criterion for Band the unbiased least squares estimator~ and 
- 2 

find conditions on the values of the unknown parameters~ and o 

which guarantee the outperformance of _~ by B. 

The use of the mean square error criterion (3.45) can be objected 

to. Suppose, 

(3.47) 

Then the estimator B1 is judged to outperform B2 , but the criterion 

used is an ensemble property which may not be true for a particular 

component of ~- The Euclidean norm has been used in (3.47) 

to measure the distance between the vector B
1 and ~- The 

distances between corresponding components of B
1 

and ~ have not 

been considered singly but have been coalesced in an unweighted 

sum. It is possible for (3.47) to be true and for the inequality, 

for some i 

to be true simultaneously. Use of the generalized mean square 

error criterion (3.46) allows attention to be focussed on particular 

components of~ for various choices of the weighting matrix H. 

3.7 The Utility of the Theorem. 

The first three conditions of the Gauss-Markov Theorem establish 
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a model for the observations and make assumptions about the 

structure and error content of the observations. The other three 

conditions define a class of estimators to be considered in the 

search for an estimator and a criterion for judging the quality 

of these estimators. The optimal estimator under all these 

conditions is the least squares estimator. The literature 

concerning the effect of relaxation of the first three conditions 

of the Gauss Markov Theorem on the least squares estimator is 

rich and vast, and much has been advertently and inadvertently 

omitted from the foregoing discussion. In retrospect the least 

squares estimator is surprisingly insensitive to lurking variables 

and errors in the variables except when the input matrix has a 

multicollinear structure. The estimator loses little efficiency 

when the wrong covariance matrix is assumed except in situations 

where the true unknown covariance matrix is composed of elements 

of different magnitudes. 



4. SOME BIASED ESTIMATION PROCEDURES 

One class of alternatives to the least squares estimator is the 

class of linear and nonlinear biased estimators. Within this 

broad class of alternatives are a class of shrinkage estimators 

which, in the phraseology of Dempster (1973), "pull-back" or 

shrink the least squares estimator to a chosen origin. Such 
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"pulled-back" estimators may differ in "degree" and "pattern" of 

pull-back. The preliminary test estimators and variable selection 

rules which lie at the heart of model building are "pulled-back" 

estimators whose "degree" of pull-back is set prior to the data 

analysis - the regression coefficients which correspond to the 

variables in the selected subset are estimated by least squares 

and not pulled back at all while the regression coefficients 

corresponding to the unselected variables are pulled back to zero -

but whose "pattern" of pull-back is generated by the data and 

the customary tests of significance. The estimators to be 

considered in this chapter have their pattern of pull-back chosen 

prior to the data analysis but their degree of pull back is 

dependent on the structure of the data. 

The motivation for considering such estimators originates from 

the multicollinearity problem discussed in subsection 3,131. 

When the structure of the input matrix is multicollinear, least 

squares estimation and prediction are very i mprecise in the 

directions of the minor principal components of X (see equation 

(3.15)). Another way of characterizing this inflation of the 

variance of least squares estimators in the presence of multi­

collinearity is through the mean square error criterion (3.45). 

The mean square error of the unbiased least squares estimator is, 

E ( ~-fs) I ( ~- fs) = E ( ~ I ~) - fs I fs 

= tr[var(~)J 

= 2 [ I -1] o tr (X X) 

2 p 
= 0 E 1/)... 

i=1 
l. 

> 
2 

0 /)..min (4.1) 



Thus, if Xis highly collinear then x'x is ill-conditioned and 

A . << 1 so that, from expression (4.1), the expected value of min 
the square of the Euclidean distance from~ to~ is much too 

long on average and~ is much too long on average, 
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Thus when multicollinearity is present in the input matrix, estimation 

procedures which pull back the too-long-on-average least squares 

estimator i and which correspondingly reduce. the mean square error 

by inducing a little bias and causing a reduction in the variance, 

may be of some worth. 

4.1 Best Linear Estimation - a unifying approach to biased 

Estimation. 

Rao (1971, 1973) has shown that the best linear estimator (BLE) 

of any linear combination t' ~ is, for a particular choice of the 
,~ 

symmetric matrix W, t 8 where, 

,._, I I -1 8 = WX (I+XWX) y (4.2) 

This best linear estimator T
1
y where T

1 
= t'wx'(r+xwx')-1 results 

from attempting to minimize with respect to T the mean square 
I 

error of Ty or the loss function, 

I I 2 2, I I I I 

E(T y-t e) = CJ T T + (X T-t) ee (X T-t). (4.3) 

Minimization of (4.3) with respect to Tis conceptually not possible 
2 as the parameters 8 and CJ are unknown. Rao suggested minimizing, 

S = T
1

T + (X
1
T-t)

1
W(X

1
T-t) (4.4) 

where Wis some approximation to ~8' /CJ
2 . Three stategies were 

suggested by Rao for arriving at the estimator (4.2): 

(i) Discover an a priori value of CJ-
1e and use it to form a 

W which may be placed in (4.4) and (4.2). Such an approach is 

probably beyond the capabilities of most data analysts. 

(ii) Adopt a Bayesian approach and assume e is a random variable 

with a prior distribution. The only information that needs to be 

specified about the prior distribution of 8 is, 
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E( i:li:l') 2 
= aw. 

A further expectation of (4.3) with respect to J:l produces a risk 

function in W which is a suitable candidate for minimization. 

Rao (1976) has called the estimator (4.2) which results from this 

strategy the "Bayes Homogeneous Linear Estimator (BHLE) of J:l with 

respect to W". 

(iii) Choose W simply on the grounds of how much weight should 

be attached to either term in (4.4). The first term in (4.4) is 

a variance term and the second term is a squared bias term so 

that choosing a W with, for example, large elements attaches more 

weight to the minimization of bias and less weight to the 

minimization of variance in the minimization of the mean square 

error. 

The matrix W, which results from the first strategy is of rank 

one. The W matrices which result from the second and third 

strategies may have rank greater than one. If Wis assumed to be 

of full rank some simple relationships between the best linear 

estimator fj, the least squares estimator J:l, and generalized ridge 

estimation can be displayed. Noting that, 

, -1 , -1 -1 , 
(I+XWX) = I-X(X x+w ) X 

the best linear estimator can be written as, 

i = wx'(I-x(x'x+w-1)-1x')y 

= w(x'x-x'x<x'x+w-1)-1x'x)~ 

= w((x'x)-1+w)-1~ (4.5) 

so that the best linear estimator is a linear transformation of the 

least squares estimator. The equation (4.5) is easily ~ewritten 

as, 

(4.6) 

,.._, 
so that the best linear estimator~ also has the form of a 

generalized ridge estimator (a result that eluded Farebrother 

(1975) but which has been established by Rao (1976)). 

Best linear estimation provides an important initial unifying 

approach to biased estimation. If the search for an estimator 
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is confined to linear estimators, equations (4.2) and (4.3) tell 

searchers that the "best" estimator can only be found if some 

prior knowledge is available. Thus the usual unbiased linear 

least squares estimator can only be bettered if some prior 

knowledge of~ can be found and incorporated into the estimation 

procedure or if a degree of arbitrariness can be tolerated in 

an explicit form of the alternative estimator. The equation 

(4.5) tells searchers that the best linear estimator for a 

particular full rank choice of Wis a linear transformation of 

the least squares estimator (an analogous result holds for W 

of less than full rank). Thus a search of pXp transformation 

matrices which are independent of y might produce useful biased 

estimators. The fact that the best linear estimator for a 

particular full rank Wis a generalized ridge estimator is also 

a powerful incentive to explore further the class of such generalized 

ridge estimators. 

4.11 The Minimum Mean Square Error Linear Estimator. 

The minimum mean square error linear estimator (MMSELE) results 

from the direct minimization of equation (4.3). Thus the 

minimum mean square error linear estimator of~ has the form, 

= ~'x'y ~ 
a2+~'x'x~ 

Such an estimator has been studied by Theil (1971), Farebrother 

(1975), Vinod (1976b), and of course Rao. The estimator is 
2 

quite useless as it depends on the unknown parameters~ and a. 

(4.7) 

Rao, as pointed out in the previous section, suggested replacing 

the unknown matrix~~' /a2 by some a priori valued matrix or a 

quite arbitrary matrix. Farebrother (1975), after showing that 

(4 . 7) looked a bit like a ridge estimator for the case p=1, that 

is, 

iMMSE 
a2 -1 I 

= (x'x + -) x y 
~2 

suggested making (4.7) operational by replacing the unknown 



parameters fs and cr2 with consistent estimators. 

operational variant of (4.7) might be, 

SSR 
RSS 
-- + SSR n-p 

A 

• fs 

One such 

where~ is the least squares estimator and SSR and RSS are 

respectively the regression sum of squares and the residual sum 

of squares for the least squares fit, Such an estimator is no 
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longer linear in y, which means extra assumptions have to be made 

about the higher order moments of the distribution of y to find 

the variance and mean square error of the estimator. 

Vinod (1976b) suggested replacing the unknowns in (4.7) with 

initial estimates, possibly least squares estimates and iterating 

until a fixed point is obtained, in the manner, 

't+1) = 't t) I x' y 

( a ( t) ) 2 +i< t), x' xi t) 
. ft) . 

Vinod found a closed form solution for the fixed point by 

minimizing with respect to B, 

The resulting fixed point has the form, 

(
k(p-n-1) + 2n-2p-2) A 

2k(p-n) + 2n-2p-2 fs (4.8) 

Such an estimator is a scalar shrinking of the least squares 

estimator and is a member of a class of estimators to be discussed 

in section 4.21. Vinod recommended replacing the scalar 

shrinkage factor in expression (4.8) by the expression, 

(4.9) 

where R
2 

is the squared multiple correlation coefficient from 

the least squares fit. Suen a procedure has close affinities 



with the James-Stein procedure which is discussed in section 4.4 

4.2 Linear Transformation of the Least Squares Estimator 

The impetus for considering biased estimators which are linear 

transformations of the least squares estimator comes from the 

result that the least squares estimator is too long on average 

for multicollinear X, that is, E(~'~) > ~,~ + o2 /A . , and min 
from equation (4.5) which demonstrates that the best linear 

estimator of~ is a linear transformation, involving an unknown 

matrix W, of the least squares estimator. In this section 

various strategies for determining such transformation matrices 

are reviewed. 
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Consider the class of estimators of~ which are linear transforms 

of~' that is estimators of the form C~ where C is any PxP matrix. 

Then such estimators are biased for C#I as 

E(C~) = C~ 

and have variance, 

and mean square error, 

The residual sum of squares associated with such estimators 

is given by, 

Rss(~~) = IIY-xc~ll2 

= IIY-x~IJ2 + llx<c-I)~jj2 

= RSS(~) + ~
1

(C-I)X
1
X(C-I)~ (4.10) 

The least squares estimator (C=I) minimizes this sum of squares 

(this is a direct consequence of the Gauss-Markov Theorem) so that 

any linear transform of~ has an increased residual sum of squares. 

If the second term in equation (4.10) is held constant at some 

amount it defines a hyperellipsoid in the p-dimensional parameter 

space (see section 4.3) so that whole classes of biased estimators 

are defined for given increases in lack of fit. Mayer and Willke 



(1973) suggested that particular biased estimators could be 

identified in these classes by considering particular~ 

minimizations of the estimators. 

the next two sections. 

4.21 Shrunken Estimators. 

This approach is followed in 

Mayer and Willke (1973) introduced a sub-class of the class of 

linear transformations of the least squares estimator indexed by 

the transformation matrix, 

with k E [O,ai). Such estimators they termed deterministically 

shrunken estimators. These estimators have variance, 

and mean square error 

2 
a cx'x)-1 

a2 tr(x' X)-1 + (1k+k )2 fs' fs 
(1+k)

2 

Thus the shrunken estimator has smaller mean square error than 

the least squares estimator if, 

or if, 

, 2 , -1 
f? fs-o tr( X X) 

, 2 , -1 
fs p+o tr ( X X) 

< 1. 

60. 

, 2 , -1 
Thus if p ~ < o tr(X X) any k > 0 guarantees the outperformance 

of least squares with respect to the mean square error criterion 
, 2 , -1 

(3.45). If p fs > o tr(X X) then, 

2a2tr(x'x)-1 
0 < k < --------

p' p-a2tr(x'x)-1 



guarantees the domination of least squares by the shrunken 

estimator with respect to (3.45). 

It is trivial to show that the shrunken estimators of Mayer and 

Willke result from minimizing: 

IIY-XB 11
2 

+ k llxB 11 2 
k ~ 0 

Thus the shrunken estimators constrain the squared length of XB 

while minimizing the residual sum of squares. Thus in a class 

of estimators with a fixed residual sum of squares the shrunken 

estimator is the unique estimator identified by the minimization 

of a "design dependent norm", llxB 11- The use of such a norm to 

pluck out an estimator from an equivalence class is open to 

criticism. Constraining the length of XB, while it does produce 

an estimation procedure which directly shrinks the least squares 

estimator, does not produce the estimator in the equivalence 

class with the smallest length. Constrain ing the length of B 
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may be more appropriate. The components of the shrunken estimator 

have the same relative magnitudes as the components of the least 

squares estimator. Such a simplistic, blanket shrink ing of 

all the components of~ ignores a fundamental aspect of the 

multicollinearity problem, namely, imprecise estimation in certain 

directions of the estimation space. It could be that some 

components of~ are estimated relatively precisely by least squares 

so that it may not be necessary to shrink them. 

shrunken estimators are reviewed in section 4.4. 

4.22 Ridge-type Estimators. 

Stochastically 

Hoerl and Kennard (1970a,b) proposed a biased estimation procedure 

based on a technique - relaxed least squares - given by Riley 

(1955) for solving ill-conditioned systems of linear equations. 

Instead of solving, 

x'XB = x'Y 

Riley suggested solving the perturbed system of linear equations, 

cx'x+kI)B = x'y 
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where k is a small 
I • XX to improve the 

of k between 102-s 

positive "constant" added to the diagonal of 

conditioning of x'x. Riley suggested values 
3-s 

and 10 , wheres is the number of decimal 

places being carried in the calculations, would be able to 

improve the conditioning problem without moving the result too 

far away from the minimum of IIY-XBjj
2

. Thus, the ridge estimator 

proposed by Hoerl and Kennard is of the form, 

(4.11) 

where k E (0, 00 ) and with x'x in correlation form and x'y the 

vector of correlations between the input variables and the 

dependent variable. The ridge estimator is clearly in the class 

of linear transforms of the least squares estimator as, 

Hoerl and Kennard (1970a) and Mayer and Willke (1973) showed 

that the ridge estimator resulted from minimizing with respect to 

B, 

IIY-XB 112 + k IIB 11
2 k ;a:: O. 

Thus ridge estimators constrain the length of the vector of 

regression coefficients while minimizing the residual sum of 

squares, so that in a class of estimators with constant residual 

sum of squares the ridge estimator is indexed by the minimization 

of the Euclidean norm of the estimators. 

Hoerl and Kennard showed that the mean square error of the ridge 

estimator could be written as, 

)... 
i 

2 
i=1 O,.+k) 

i 

+ 

where the A, are the p eigenvalues of x'x. 
i 

Consequently the 

ridge estimator has smaller mean square error than the least squares 

estimator if, . 

2 
(] 

p 
:E 

i=1 

A· i 

o ... +1<)2 
i 

+ 
2 ( , -2 , } 2 

k tr (X X+kI) ~~ < CJ 

p 
:E 

i=1 
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A sufficient condition for this is, 

2 2 
O<k<_£_ (4.12) 

fJ' fJ 

although other less strict bounds on k are possible. 

The ridge estimation technique has generated much interest and 

spawned a vast number of research papers. Indeed, the review 

articles by Marquardt and Snee (1975) and Hocking (1976) indicate 

a plethora of papers in this area. However, not all data 

analysts and researchers have endorsed the technique. 

(1975) p.1O7 has commented: 

Kendall 

"It is not plain to me that this admitted distortion of the 
data (the effect of which is to diminish the correlations 
among the variables) has any theoretical justification." 

Conniffe and Stone (1973, 1975) and Newhouse and Oman (1971) have 

presented critiques of the method. Some of their criticisms 

and the critici s ms of others are listed here: 

C(i) The existence of a k which guarantees a smaller mean 

square error for the ridge estimator than for the least squares 

estimator has been established. This does not, however, guarantee 

that a particular choice of k improves on the least squares 

estimator. Newhouse and Oman (1971) comment that it is not true 

that ridge estimators "will necessarily not be better than" 

least squares but it is true that they "will not necessarily be 

better than" least squares. 

C( ii) In deriving variances and mean square errors of ridge 

estimators, k is assumed to be a constant. But in practice k 

is "estimated" from the data. The moments of fJ,•: for fixed k are 

not the moments of the estimator being used in practice. What 

is the status of k and the reliability (mean square error) of 

the estimators used in practice? 

C(iii) Arguments based on average mean square error of the 

components, criterion (3.45), can be misleading. Some components 

of~ may be estimated quite precisely by least squares so that 

shrinkage of them is unnecessary distortion. 
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C(iv) Choosing to use ridge-type estimators means abandoning 

the useful techniques of hypothesis testing and confidence interval 

construction. No measure of reliability of the estimator is 

available. 

C(v) Multicollinearity means that there are either redundant 

input variables present or insufficient data for prediction. 

The remedies are, in the former case, subset selection or model 

respecification and, in the latter case, data augmentation. 

C(vi) Ridge regression encourages prediction for manipulated 

values of the variables in cases where the prediction equation 

is based on previous passive observation of the variables. 

C(vii) "Ridge analysis is an ad hoc procedure", Newhouse 

and Oman (1971) p.1. 

Clearly, Hoerl and Kennard have a lot to answer for. Curiously, 

most of the direct responses to these criticisms have not come 

from Hoerl and Kennard but from Theobald (1974), Smith and 

Goldstein (1975) and others. The usual kinds of responses by 

proponents of ridge-type estimation to these criticisms are 

listed point by point below: 

R(i) It is certainly true that while ridge estimation 

outperforms least squares estimation for certain values of k less 

than some function of the unknown parameters, there is no guarantee 

that a particular chosen ridge estimator has total mean square 

error smaller than the variance of the least squares estimator. 

This however is a property of all biased linear estimators. In 

section 4.11 it was shown that the minimum mean square error 

linear estimator depended on the unknowns~ and o2 . Rao, in 

his BLE formulation of the biased linear estimation problem, 

showed that "best" estimators were conditional upon some prior 

knowledge of o-
1

~, or some knowledge of the covariance matrix 

of a prior distribution for~, or the choice of a quite arbitrary 

weighting matrix. Uniform domination of least squares by any 

linear estimator requires prior knowledge of the parameters to 

be estimated. On the positive side inequality (4.12) indicates 

that in most situations very small values of k, possibly of the 

order of magnitude originally suggested by Riley, may safely 
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reduce the mean square error of the estimation procedure. 

R(ii) This criticism is probably the most telling of all 

the criticisms levelled at ridge-type estimators. Consequently 

much attention is being paid to devising algorithms fork and 

evaluating the performance of these algorithms in simulation 

studies (see, for example, Hoerl, Kennard and Baldwin (1975), 

Hoerl and Kennard (1976) and Lawless and Wang (1976)). Several 

methods for selecting k which do not depend on the random variable 

y have been suggested. Marquardt (1970) suggested that as a 

"rule of thumb" k should be chosen so that the maximum variance 

inflation factor, the largest diagonal element of (X1 X+kI)-
1x'x 

I -1 I 
(X X+kI) where XX is in correlation form, lies between one and 

ten. Obenchain (1975a) suggested choosing the k for which the 

Sum of ~quares of all p(p-1)/2 S:_orrelations .!?_etween the ridge 

Coefficients (SSCBC) is minimized. Another suggestion is to 

choose k less than or equal to the sma l lest eigenvalue of x' x. 
Such rules certainly produce a k which is independent of y so that 

the moments and mean square derived by Hoerl and Kennard are 

applicable. The rules do not, however, and can not guarantee 

mean square error domination of least squares, as pointed out in 

the response to the first criticism. 

Several criteria which depend on y, for choosing k, have been 

adopted by users of ridge regression. Indeed Hoerl and Kennard 

suggested choosing k by inspecting a ridge trace - a plot of the 

estimated coefficients for various values of k. Most of these 

criteria attempt to monitor goodness of fit or increases in 

residual sum of squares for values of k ~ 0. Such criteria do 

produce a k which is not constant with respect to expectation 

over the values of y and it is these criteria which indict the 

mean square error results of Hoerl and Kennard and others. These 

stochastic criteria fork have either complicated forms or are 

serendipitous in nature so that they are difficult to incorporate 

into expression (4.11). That they cannot be incorporated into 

(4.11) prevents the expection operator and mean square error 

criterion being applied to the ridge estimation procedure. This 
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stochastic choice of k can be partially rationalized by arguing 

that it is not k which is estimated from the data but an upper 

bound on k, say 2o
2
;~'~, which is estimated from the data. The 

"constant" k is then chosen to be less than or equal to this 

estimated upper bound. Thus k does have the status of a constant 

in the situations in which the expectation operator is applied. 

Such a rationalization is open to criticism but it seems to be 

at the basis of the algorithms fork which have been proposed and 

evaluated in the work cited earlier. Further discussion on the 

choice of k is postponed until Chapter 6. 

R(iii) Theobald (1974) has shown that a sufficient condition 

for the ridge estimator to outperform the least squares estimator 

with respect to any generalized mean square error criterion, 

expression (3.46), is, 

0 < k 

Extensions of this result have been given by Farebrother (1976) 

and Swindel (1976). More general forms of the ridge estimator 

in equation (4.11) have been proposed. Thes e forms, which 

shrink only certain components or linear comb~nations of the 

components of the least squares estimator, are discussed in 

following sections. 

R(iv) Obenchain (1975b) has suggested that tests of the 

general linear hypothesis, 

H: A~ = p (4.13) 

where A is a known rxp matrix and pis a known rx1 vector, can be 

recovered when least squares is forsaken. Under the hypothesis 

(4.13) the usual restricted least squares estimator for~ is, 

(4.14) 

where 

Ths usual F statistic for testing the hypothesis (4.13) is, 

(4.15) 



where s
2 

= RSS(~)/(n-p-1). The ridge estimator of~ is of the 

form, ~,•: = c§. If it can be assumed that the ridge estimator 

of~ under the hypothesis (4.13) is, 
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~,•:H = ct ( 4. 16) 

~H • 
then, Af:( is an unbiased estimator of E(A~,:) under the restriction 

Afj = p. 
... 

The F statistic for the hypothesis (4.13) using~" is 

the same as the F statistic in (4.15), provided C is positive 

definite, as, 

and 

So that under the key assumption in (4.16), ridge estimators 

supply the usual F statistics and confidence regions supplied by 

the least squares estimator§. 

R(v) Ridge-type estimators were designed primarily for use 

in situations where the model is assumed to be correctly specified 

but the data is multicollinear and a further collection of data is 

impossible. Smith and Goldstein (1975) have commented; 

"No one has ever claimed that Ridge Regression is preferable 
to more data; merely that it is preferable to least squares 
when more data is not available and x'x is ill-conditioned." 

R(vi) Despite the warnings of Box (1966), which were outlined 

in section 3.11 and which force experimenters to treat a fitted 

model as a "black box" when it is based on passive, unplanned, 

historical data, it was certainly one of the intentions of Hoerl 

and Kennard when they introduced ridge estimati?n to provide a 

method which would give suitable estimates, based on such passively 

observed data, of the partial derivatives of the expected responses 

so that control and optimization might proceed. Whether or not 

such an intention was statistically honourable is cause for 

debate, however, Obenchain (1975a), who may be classed as a 

proponent of ridge regression, has seen fit to remind users of 

ridge-type methods of Box's warnings. However, ridge regression 

drives the least squares estimates together so that if the warnings 

of Box are ignored and the regression coefficients from the 



passively observed system are interpreted as estimates of the 

partial derivatives of the expected responses with respect to 
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the regressors, such an interpretation is likely to withstand the 

changed circumstances in the controlled system better than in the 

case of ordinary least squares regression. 

also been expressed by Tukey (1975). 

Such a view has 

R(vii) The use of the phrase ad hoc to describe the ridge 

regression procedure suggests that the ridge technique is a 

hastily contrived improvisation with little foundation. This 

may well be so, but until a suitably well-founded method is proposed 

for estimating the parameters of a linear model in the presence 

of multicollinearity data analysts will probably continue to use 

ridge estimation in exploratory work. 

4.221 Other approaches to Ridge-type estimation. 

In attempts to overcome some of the resistance to ridge regression 

several authors have pointed out the similarities between ridge­

type estimators and techniques which exist in the literature 

and have already gained acceptance. Marquardt (1970) and Banerjee 

and Carr (1971) pointed out that ridge estimation is equivalent 

to least squares estimation with the actual data augmented by a 

fictitious set of data points in the manner, 

(4.17) 

The unbiased least squares estimate of~ in (4.17) is thus, 

when it is assumed that var(s) = o2I and the p components of 
PxP s are independent of then components of~. Thus ridge estimation, 

which is usually regarded as a last resort when augmentation of 

the actual data set is not possible, amounts to augmentation with 

an orthogonally designed artificial collection of data points. 

This fictitious augmentation has similarities with the "usual 
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constraints" method of handling the non-full rank linear model 

(see, for example, Searle (1971)). 

A reexamination of equation (4,6) indicates that ridge estimation 

is equivalent to best linear estimation with the assumption of 

a prior distribution for~ in which, 

2 
0 

= k I. 

Hoerl and Kennard (1970a) indicated that the ridge estimator 

could be viewed in a Bayesian context in which each component of 

the ridge estimator is a posterior mean based on a prior normal 

distribution for that component with mean zero and variance 

o~ . This gives an explicit expression fork of o2/o~. Lindley 

and Smith (1972), Goldstein and Smith (1974) and Goldstein (1976) 

have also discussed this approach to ridge estimation and Lindley 
2 2 

and Smith gave some discussion to the estimation of k = o /o~. 

Under this Bayesian approach the ridge estimator is unbiased 

with respect to the combination of the prior information and the 

information from the data set if the prior information is correct. 

4.22 2 Directed and Generalized Ridge Estimators 

A simple generalization of the ridge estimator in expression 

(4.11) is, 

where Q is any non-negative definite matrix. One choice of Q 

that has received some attention (see, for example, Goldstein 

and Smith (1974) and Guilkey and Murphy (1975)) but which was 

originally introduced by Hoerl and Kennard (1970a) is, 

Q = P
1

KP 

where K = diag(k
1

, ... ,kp) and p' is the orthogonal matrix whose 

colurrms are the normalized eigenvectors of x'x, introduced in 

section 3 .131. Such a generalized ridge estimator has been 

called a directed ridge estimator. The motivation for considering 

such estimators is discussed further in section 4.23. 



4.223 Robustness and Ridge Estimators 

Holland (1973) suggested combining the biweight regression 

procedure mentioned in section 3.4 with the ridge regression 
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procedure of Hoerl and Kennard. The "ridgified robust estimator" 

proposed by Holland has the form of a weighted ridge estimator, 

(4.18) 

where the diagonal matrix W comes from a robust biweight least 

squares fit. Holland claimed such an estimator would combine 

the benefits of a robust estimator - insensitivity to outliers 

and to non-normal error distributions - and the benefits of a 

ridge estimator - insensitivity to multicollinearity. Such a 

procedure may be wasteful in terms of computational time and the 

user's time. Finding the most useful weights for the robust 

fit may take several iterations and much monitoring of the residuals 

from each successive fit (see Beaton and Tukey (197 4)). Having 

chosen a suitable weighting matrix W the expression (4.18) has 

then to be evaluated over a range of values fork. Marquardt 

(1974) suggested tackling both robustness and stability 

simultaneously. If smoothed predictions are desired Marquardt's 

suggestion is to use a generalized ridge estimator with, 

where ~( 2
) is an n dimensional second central difference operator 

n 
matrix. It can be shown that such an estimation procedure 

results from minimizing the objective function, 

n 
I: 

i=1 

,. 2 
(y.-y.) + k 

l. l. 

or minimizing with respect to B, 

If smoothed coefficients are desired Marquardt's suggestion is to 

use a generalized ridge estimator with, 



It can be shown that such an estimation procedure results from 

minimizing the objective function, 

, or, 
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Another suggestion for forcing together the estimates of the 

regression coefficients might be to constrain not the mean square 

successive differences of the coefficients but constrain, 

p p 
E E 

i=1 j =1 
i<j 

2 (B.-B.) 
l. J 

The estimator which results from such an additional constraint 

has the form, 

•'• ✓ -1 I B~ = (XX+ k(pI-J)) X y (4.19) 

where J=11
1 

• A similar estimator to (4.19) has been proposed by 

Lindley and Smith (1972) in a Bayesian context in which all the 

components of~ are assumed to have prior normal distributions 

with equal non-zero means. The motivation for smoothing or 

forcing together estimates of the coefficients has been discussed 

by Tukey (1975). Briefly, there is a need, particularly in 

econometrics, for forecasting equations based on passively observed, 

historical data which provide some protection against possible 

catastrophic changes in the historical variance-covariance structure 

of the data. Forcing together the values of estimated coefficients, 

providing this does not increase the residual sum of squares too 

much, is one way of buying such protection, Tukey (1975) has 

suggested a modification of the estimator in (4.19). Instead of 

minimizing, 

llY-xBll
2 

+ kB' (pI-J)B 



Tukey has suggested minimizing with respect to B, 

where D 

and 

IIY-xBll2 + kB' (D-u-u' )B 

= diag(E c1J., E c2J., ••• , E c .) 
j j j PJ 

0 c12 

0 0 

u = 

0 0 

0 0 

c13 

c23 

0 C p-1,p 

0 

The constraint term, which may be written, kE E c .. ( B • - B • ) 
. . 1] 1 ] 
1 J 
i<j 

2 

contains P(P-1)/2 weights 

weights c .. to be, 

c ••• 
1 ] 

Tukey suggested choosing the 

1] 

{
~ (1+rij)}

2 

2 log 1_ 
r .. 

1] 

where r .. is the correlation between x. and x .. 
1] 1 ] 
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As yet there have been no published reports of comparisons among 

these robust ridge estimators. A simulation study comparing 

the performance of this class of alternatives under various degrees 

of non-normality and multicollinearity and the robust methods of 

section 3.4 is called for. 

4.224 Other Ridge-type Estimators 

The simple ridge estimator of Hoerl and Kennard constrains the 

squared Euclidean length of the estimated parameter vector and in 

so doing defines a trajectory through the parameter space from 

~ to O fork increasing without bound from zero. This is shown 

geometrically in section 4.3. Algebraically, 

lim ~* = lim (I+k(x'x)-1)-1 ~ = o 
k.._ k--
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I -1 -1 
as (I+k(X X) ) tends to the null matrix for k-oc:) (the 

eigenvalues of this matrix converge to zero). The angle between 

the ridge estimator and the vector x'y tends to zero ask__, 

(see, for example, Marquardt (1970)). Thus ask__, the ridge 

estimator of~ tends in Euclidean length to zero and tends in 

direction to that of x'y. As x'y is the least squares estimator 

of~ when Xis an orthogonal design (x'x is assumed to be in 

correlation form) then altering the direction of the estimated 

parameter vector in the direction of x'y seems, in the absence 

of any other information about the direction in which~ lies, to 

have some intuitive appeal. Allowing the length of the estimated 

parameter vector to shrink all the way to zero may however be a 

little naive. One suggestion may be to minimize, 

llY-xB 11
2 

+ k !Ix' y-B 11
2 

. (4.20) 

Such an objective function constrains the Euclidean distance from 

x'y to the estimated vector for a given fixed residual sum of 

squares. The estimator which results from the minimization with 

respect to B of expression (4.20) has the form of a 11 swollen" 

ridge estimator, 

I -1 I 
(1+k)(X X+kI) X y (4.21) 

Clearly ask__,, the estimator (4.21) tends to x'y both in length 

and direction as, 

• ( X
1 

X kI )-1 

~: \O+k) + (1+k) = I. 

It is possible to show that this "swollen" ridge estimator out­

performs ;the least squares estimator with respect to any generalized 

mean square error criterion of the form (3.46) if and only if the 

matrix, 

is positive definite. In the manner of equation (4.17) the 

"swollen" ridge estimator is equivalent to the least squares estimator 

of~ in the model, 
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+ 

Swindel (1975, 1976) has suggested that the objective function, 

IIY-XB 11
2 

+ k 11B-b 11
2 (4.22) 

be minimized in situations where there is some prior information, 

in the form of a vector b, available on~­

ridge estimator has the form, 

The resulting good 

I -1 I 
(X X+kI) (X y+kb). (4.23) 

In this estimation procedure the choice of k is seen to be a 

means of reaching a compromise between the prior information b 

and the least squares estimator based on the data§. The properties 

of this estimator are presented in Swindel (1976). Swindel 

argues that, intuitively, shrinking§ towards b makes more sense 
A I 

than shrinking~ towards O or for that matter X y. If no prior 

information on~ is available then shrinking§ towards O or x'y 

does seem rather capricious. The main aim is that the length of 

~ should be reduced when the data is ill-conditioned. This means 

that almost any shrinkage rule will effect some improvement. 

Shrinking and altering the direction of~ towards the direction 
I of X y, as achieved by (4.11) and (4.21), is chosen, in the 

absence of any prior information about~, simply because x'y is 

the only other known vector in the parameter space. The good 

ridge estimator of Swindel can also be regarded as an unbiased 

least squares estimator of~ for the contrived model, 

+ 

Vined (1976a) has suggested a rescaling of the ridge estimator. 

The "two-stage" procedure given by Vined consists of determining 
... 

the ridge estimator~" by choosing an appropriate value of kin 



expression (4.11), then minimising with respect toµ, 

The rescaled ridge estimator is µ~:•; where µ, which minimizes 

expression (4.24), is given by, 

~;•u x' y 

~:•,, x' x~i•, 

75. 

(4.24) 

The philosophy behind such an estimator is that ridge regression 

often supplies reliable estimates of the relative magnitudes of 

the components of~ but may overshrink the estimated parameter 

vector. Multiplying the estimated parameter vector by a scale 

factor blows the estimated parameter vector up to a more appropriate 

length and gives it the smallest residual sum of squares of all 

estimated parameter vectors in the same direction if criterion 

(4.24) is used to fix a value for the scale factor. 

ridge estimator of Vinod has the form, 

~:•,, x' Y 

~:~' x' xi:t 

The rescaled 

(4.25) 

and is not a linear estimator of~- Thus an investigation of 

the mean square error properties of this rescaled ridge estimator 

requires extra information about the distribution of e. 

Ridge regression and shrunken estimation were introduced originally 

for their mean square error improvement upon least squares 

estimation in the presence of multicollinearity. The fact that 

these estimators are least-squares-with-constraints estimators 

and linear transformations of the least squares estimator has 

stimulated researchers to look for other such estimators, not 

primarily with the motive of mean square error reduction but with 

more specific motives, robustness and prior knowledge incorporation 

for example. Some of the resulting estimators have been mentioned 

above and are represented in Table 4.1. Choosing to use a 

particular biased estimation procedure which is a linear 

transformation of the least squares estimator clearly requires 

consideration of robustness and the nature and extent of any prior 

knowledge which is available, as well as the detection of any 
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Table 4. 1. SOME LINEAR TRANSFORMATIONS OF THE LEAST SQUARES ESTIMATOR 

Estimator Transformation Objective Usual Form 
Matrix, C Function of the Estimator 

El£ 

LEAST SQUARES I IIY-XB 11
2 (x'x)-1x'y 

Gauss et alia, 
19th century 

SHRUNKEN 1 0 s k lly-XB ll
2

+k llxB 11
2 _1_ cx'x)-1x' 

Mayer and Willke 
1+k I, 1+k y 

(1973) 

RIDGE (I+k(x'x)-1)- 1 , lly-XB 112 +k IIB 11
2 <x'x+kI)-1x'y 

Riley (1955) 
0sks:1 Hoerl and Kennard 

(1970) 

GENERALIZED RIDGE (I+(x'x)-1Q)-1, IIY-XB 11
2 
+B' QB cx'x+Q)-1x'y 

Hoerl and Kennard Q n.n.d. (1970) 

DIRECTED RIDGE (I+(x'x)- 1P'KP)- 1 , lly-XB 11
2 

+ IIK~B 112 (x'x+P 1 KP)-1x'y 
Guilkey and Murphy 

K=diag(k1 , ... ,kp) (1975) 

(1+k)(I+k(X 1 X)- 1 )- 1 
lly-XB 11

2 
+k llx' y-B 112 ' -1 ' (1+k)(X X+kI) X y 

0:S:k:S:1 
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Table 4.1 (Continued) 

Estimator Transformation Objective Usual Form 
Matrix, C Function of the Estimator 

m 
GOOD RIDGE C=(I+k(X' X)- 1)- 1 

l!Y-XB 11
2 

+k IIB-b 11
2 "" I -1 I C~+d=(X X+kI) (X y+kb) 

Swindel (1975) d= (I-C)b 

PREDICTION SMOOTHER (I+k(x'x)-1x' A( 4 )x)- 1 jjy-XB 112 +k !IA ( 2 ) XB 112 [x'(I+kA( 4 ))x]-1x' 
Marquardt (1974) n n n y 

COEFFICIENT SMOOTHER (I+k(x'x)- 1A( 2))- 1 liy-XB 112 +k IIA ( 1 )B 11
2 (x'x+kA( 2 ))-1x'y 

Marquardt (1974) p p p 

[I+k(x'x)-1 (pI-J)]-1 jjy-XB 11
2 
+kB' (pI-J )B ' -1 ' (X X+k(pI-J)) X y 

Lindley and Smith 
(1972) 

[I+k(x'x)-1 (D-u-u')]- 1 IIY-XBll2+k ~ c .. (B.-B./ 
I I -1 I (X X+k(D-U-U )) X y 

Tukey (1975) 
. . l.J l. J 
l.<] 

or, 

jjy-XBii2 +kB' (D-u-u' )B 
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multicollinearity in the data set. As an aside, the complicated 

form of Tukey's robust generalized ridge estimator suggests that 

the threshold at which increased complexity means diminished 

returns is near. 

4.23 Shrinkage in the Canonical Form of the Model 

Consider the transformed linear model in equation (3.11) with the 

modification that the eigenvalues of x'x are relabelled in 

descending order of magnitude , 

so that the first colUITU1 of Z=XP
1 

now consists of n observations 

of the first principal component of X and the pth column of Z 

consists of n observations on the last or most minor principal 

component of X. From equation (3.12), 

&. = a. + z~e/A. 
1 1 1 1 

I 
= z.y/A. 

1 1 

I • where z. is the transpose of the ith column of z. 
1 

equations (3.14), 

var(a1) s var(a2) s ... s var(ap) 

as, 
2 2 

a ~ a 
A1 A2 

(4.26) 

Also from 

Thus as pointed out in section 3.131 the linear combination of 

' ub. h · ' 1 whi·ch 1·s estimated with ~' t p, s Ject tote constraint t t= , 

the least variance is, 

and the linear combination t'~ subject to the same constraint which 

is estimated with the largest variance is, 

I 

a = P ~ p p 
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,. ,. 
If AP<< 1 the variance of ap is very large and ap may well be some 

distance away from a. This is the familiar multicollinearity p 
problem. 

The ridge regression solution proposed by Hoerl and Kennard 

(1970a,b) adds a small positive constant value k to each of the 

eigenvalues of x'x so that equation (4.26) becomes, 

I 
= z.y/0 ... +k) 

1 l. 

I 

z.~ 
l. 

+ -­
A-+k 

l. 

(4.27) 

A comparison of equations (4.26) and (4.27) shows that a bias 

of (-k/A.+k)a. is the expense incurred by decreasing the weight 
l. l. 

given to the error term in the ridge estimator. 

to the decrease in weight given to the error term, 

which is less than 

var(a.) 
l. 

= 

2 
a A. 

l. 

2 
a 
~ 

l. 

Coresponding 

The reduction in the variance of estimates of coefficients is not 

great for those coefficients associated with the major principal 

components (they are estimated precisely enough by least squares 

anyway) but it is great for the coefficient associated with the 

smallest eigenvalue A of x'x, particularly if A << 1. The 
p p 

bias in the coefficients which are associated with the larger 

eigenvalues is not great but the bias in the estimated coefficient 

associated with AP may well be of a higher order of magnitude 

than ~ itself. 

The ridge estimation technique is clearly sensitive to the 

structure of x'x. It may however be made more sensitive to the 

eigenvalue structure of x'x by allowing different values of k to 
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be associated with different eigenvalues as Hoerl and Kennard 

(1970a) and Guilkey and Murphy (1975) have pointed out. 

directed ridge estimator has the form, 

Such a 

where K = diag(k
1

, ... ,kp) so that the analogue of equation 

(4.27) is, 

z ~ pl ( A . + k . ) 
l. l. 

= z~y/0, .. +k.) . 
l. l. l. 

(4.28) 

-c 
For the larger eigenvalues, say, Ai~ 10 A

1
, where c is some 

arbitrary constant, the k. may be set equal to zero as the 
l. 

corresponding a. are estimated relatively precisely by least 
l. 

-c 
squares. For the smaller eigenvalues, Ai< 10 A1 , the ki may 

be set equal to a small positive constant k or, as suggested by 

Hoerl and Kennard (1970a), Goldstein and Smith (1974) and Guilkey 

and Murphy (1975) each k. may be set equal to, 
l. 

... 2 

and an iterative procedure initiated with ki,t+1 = CJ /(a~: t)2 
l. , 

.,. 
until stability of the a·: is achieved. The justification for 

l. 

this iterative procedure arises from the result that the mean 
... 

square error of a:, which is of the form, 
l. 

z.y (
/ 

E i 
L+k. 

l. l. 

has a minimum at, 

= 

2 2 2 
k .a. + CJ L 

l. l. l. 

2 (>,..+k.) 
l. l. 

(4.29) 
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A2 
Thus the k. may be estimated initially by o /A2 , but as, 

i ai 

A2 
E(a.) 

l. 

2 2 
= a. + ~ 

l. I\.. 
l. 

and a2 /).i is 
A2 

large for the smaller eigenvalues, ai may over-
_,. • 2 estimate a. 

l. 
so that reestimation of k. using a~ and consequent 

l. l. 

reestimation of a. in an iterative manner may produce 
l. 

a k. close 
l. 

in value to (4.29). Guilkey and Murphy (1975) have illustrated 

the use of this technique. 

Transforming the model to its canonical form gives a clearer 

picture of the manner in which ridge and directed ridge estimators 

tackle the multicollinearity problem. The ridge-type estimators 

do attempt to overcome the imprecise estimation in certain 

directions of the estimation space which is the essential 

characteristic of the multicollinearity problem . The effect of 

scalar shrinkage of the least squares estimates is also more 

clearly discernible when the linear model is in canonical form. 

The deterministically shrunken estimators of Mayer and Willke 

(1973) can be written as, 

(4.30) 

Comparison of this estimation procedure with (4.26) and (4.27) 

reveals that the shrunken estimator does indeed ignore the relative 

precision of estimation in the directions of the various principal 

components of X and applies a crude blanket shrinkage to all 
A 

the estimates a .. 
l. 

/ 

The "swollen" ridge estimator in equation (4.21) can be written 

as, 

~ a. 
l. 

).. ( 1+k) 
l. = 0..+k) 

l. 

a. + 
J. 

= (1+k)z~y/()..+k). 
l. l. 

(1+k) 
0,.+k) 

l. 



With the estimator expressed in this form it can be seen quite 

clearly that for moderate to large eigenvalues, say A.> 1, 
l. 

the relatively precise least squares estimates are not shrunk 

but are swollen and have their variance increased. The least 
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squares estimates of the a. which correspond to small eigenvalues, 
l. 

say A. < 1 are shrunk and have their variance reduced. Thus 
l. 

this estimation procedure does not have good mean square error 

properties when Xis not highly multicollinear. If many of 

the A· are less than one then this procedure may be useful, 
l. 

otherwise its usefulness is limited only to situations in which 

prior knowledge suggests shrinkage towards x'y. 

The ridge-type and shrunken estimators proceed on the assumption 

that the original linear model is correctly specified and of 

full rank, and that the multicollinearity or small eigenvalues 

arise from a poor collection of data. It could be that the 

model is in fact misspecified and not of full rank. In this 

case the last p-r small eigenvalues should not be inf lated (by 

adding kin the case of ridge or multiplying by 1+k in the case 

of scalar shrinkage) but should perhaps be set equal to zero, 

reflecting the belief that X actually has colurrm rank r, 

1 s r s p. Such a procedure is equivalent to deleting the p-r 

minor principal components (selection criterion (a) of section 

3.131) in a principal components regression. Thus the matrix 

A= diag(A1 , . . ,,AP) is transformed to Ar= diag(A1 , ... ,Ar,O, ... ,O) 

so that a is now estimated by, 

+ ,. 
a(r) ':1 

= = A- 1z' y. ,. r 
0 

a r 
0 

0 

Deleting principal components in this fashion was first suggested 

by Kendall (1957). The method does have some appeal in that 

while components are dropped in the canonical estimation space, 

variables in the original estimation space are not deleted, that 

is, 



I [ I I / J 
where P = P( ) : P( ) • r , p-r 

83. 

There is a kind of "robustness" here 

in that the original variables are retained in the final prediction 

equation even though there are dependencies among them, and their 

estimated coefficients are arrived at by utilizing the directions 

in the canonical estimation space in which prediction is most 

precise. 

In fact it is shown geometrically in section 4.3, for the case of 

two predictors, that such a procedure is equivalent to the 

coefficient smoothing procedure in equation (4.19). The estimated 

coefficients are, of course, biased but the sum of their variances 

is less than the corresponding sum for least squares, 

2 
a 

r 
:E 

i=1 
< 

2 
a 

p 
I: 

i=1 
Vr < p. 

The warning in section 3.131 should however be noted. 

Marquardt (1970) proposed a modification to this principal 

component selection technique. Instead of assuming X has column 

rank r when the last p-r eigenvalues of x'x are close to zero, 

Marquardt suggested the assumption of a fractional rank for X 

of says wheres E (r,r+1). This allows for some margin of 

safety in the divination of the rank of X and in the assessment 

of which of the ordered eigenvalues of x'x are practically zero. 

Marquardt called this procedure generalized inverse regression. 

Properties of this estimator and its relationship to ;the principal 

components estimator and other component selection techniques are 

contained in Marquardt (1970, Goldstein and Smith (1974) and 

Hocking, Speed and Lynn (1976). These two component selection 

strategies (pri_ncipal components regression and generalized inverse 

regression) are linear transformations of the least squares 

estimator of a. To allow comparison with the ridge-type and 

shrunken techniques the transformation matrices of these shrinkage­

in-the-canonical-form techniques are presented in Table 4.2. 
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Table 4.2 SOME LINEAR TRANSFORMATIONS OF 

THE LEAST SQUARES ESTIMATOR 

OF a IN THE CANONICAL FORM OF 

THE LINEAR MODEL. 

Estimator 

Least Squares 

Shrunken 

Ridge 

Directed Ridge 

Principal 
Components 

Generalized 
Inverse or 
Fractional 
Rank 

Transformation 
Matrix, C 

I 
PxP 

_1_ I 
1tk PxP 

I 
rxr 

' 

0 
rx(p-r) 

---- - ---- --------- ---- ---
' 

0 (p-r)xr 0 (p-r)x(p-r) 

I ' 0 
rxr rx1 

- ------'- ---- --
0 
1xr 

' 
: s-r 
I 

- ·- -- - - - - . ,- - -- -- - - -
I 

0 0 

0 

I - - - - - - - - · -
I 

0 

0 (p-r-1) 
X 

(p-r-1) 

Usual form of 
the Estimator 

-1 I 
I\ z y 

1 -1 I 

1+k /\ Z y 

-1 I 
(/\+K) Z y 

-1 
"< r) I O 0 

- - - - I - - - - - - - ' - - -
I 

0 ~ ' 0 

' Ar+1 : 
-- ------- -- - -- · 

0 
I 

0 I 0 

z'y 
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From an inspection of Table 4.2 the ridge and shrunken estimators 

whose transformation matrices are always positive definite are 

quite different to the two component selection estimators whose 

transformation matrices are non-negative definite. This 

difference reflects the difference in assumed rank upon which the 

two types of estimator proceed. Both component selection 

procedures define unique generalized inverses of x'x. The 

principal components procedure defines the Moore-Penrose generalized 

inverse, so that, 

I + I (X X\r/ y. 

The generalized inverse or fractional rank estimator defines the 

unique generalized inverse, 

The canonical approach to regression problems and biased estimation 

exemplified in Goldstein and Smith (1974), Greenberg (1975), 

Obenchain (1975a) and Hocking, Speed and Lynn (1976) does seem to 

provide a deeper insight into the manner in which multicollinearity 

affects estimation techniques. It would seem, therefore, to be 

a useful strategy in any regression analysis to commence with a 

principal components analysis of the input matrix to determine 

whether significant multicollinearity is present and to enable an 

appropriate estimation technique to be selected. This has been 

suggested by Kendall (1957) but it seems that his suggestion has 

been overlooked by many data analysts (see, for example, Longley 

(1967)). 

4.24 General Observations 

A 1.1 the linear transformations of the least squares estimator 

studied in section 4.2 involve symmetric non-negative definite 

transformation .matrices. These matrices C, listed in Tables 4.1 

and 4.2 satisfy the general conditions, 
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(i) ccx'x)-1 is symmetric 

(l.·i·) ccx'x)-1 
- ccx'x)-1c' · · d f' · c ) is non-negative e inite,Rao 1976 

has shown that conditions (i) and (ii) are necessary and sufficient 

conditions (when X has full column rank) for the estimator C~ 

to be linear admissable with respect to criterion (3.46). Rao 

posits that a study of biased linear admissable estimators should 

start with the general class C~ where C satisfies conditions (i) 

and (ii) and then focus on subclasses defined by a particular 

choice of C. Such an approach has been taken here as the class 

of Bayes Linear estimators, equation (4.5) under assumption (ii) 

has been shown by Rao to be precisely the class of admissable 

linear estimators. 

The various biased linear estimators produce their possibly 

ethereal mean square error properties by distorting the data in some 

fashion. Such procedures, which have been anathematized by many 

statisticians are quite common in the physical and engineering 

sciences especially in situations without a stochastic error 

formulation . Lawson and Hanson (1974) for example state that 

since the data defining a least squares problem are uncertain the 

data can be changed within the bounds of that uncertainty to suit 

the needs of the data analyst. Such changes are motivated by the 

desire to achieve stability so that further small changes in the 

data do not produce large changes in the solution. It is not 

coincidental then that many of the biased estimation procedures 

have first appeared, in their statistical setting, in Technometrics. 

The impression gained is that the biased estimation procedures 

have been proposed not only with the multicollinearity problem 

in mind but also with the desire to place on a firmer statistical 

foundation some of the widely used perturbation methods for 

solving systems of linear equations. 

4.3 Geometric Representation of Some Biased Estimators. 

T11e geometrical interpretation of least squares estimation theory 

is contained in many textbooks on regression methods, e.g. Scheffe 

(1959), Draper and Smith (1966) and Theil (1971). The various 
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biased estimators introduced so far are modifications of the least 

squares estimator and thus have relatively simple but illuminating 

geometrical representations. 

The vector of observations of the dependent variable y and the p 

columns of the matrix of predictor variables X in the linear model, 

equation (3.1), may be represented by vectors in an n-dimensional 

vector space - the sample space. The p vectors of the independent 

variables define a hyperplane in then-dimensional sample space. 

This hyperplane is a p-dimensional subspace of the sample space 

and may be thought of as the estimation space. The method of 

least squares finds the vector (a linear combination of the p 

predictor-variable vectors) in the hyperplane which is closest 

to the vector y, i.e., 

min l[y-XB 11
2 

B 

The resulting vector, 

Y = x~ 

where~ is the pX1 vector satisfying the least squares criterion, 

is the projection of yon the hyperplane defined by the columns of 

X. The situation is illustrated in Figure 4.1 for the case in 

which the dimension of the sample space is 3 and the dimension of 

the estimation space is 2. 

Figure 4.1 

I 

I 
I 
I .. 
I y-y=e 
I 

y 

The plane 
defined by x1 
and x

2 
(the 

estimation space) 

Least squares estimation when p=2 and n=3. 
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From Figure 4.1 it can be seen that multiple regression using the 

method of least squares consists of splitting the vector yin 

the sample space into two orthogonal component vectors. One 

componentvector, the predicted value of the dependent variable, 

y, lies entirely in the p-dimensional estimation space or hyper­

plane and the other component vector, the vector of residuals, 

e, is the projection of yon the direction orthogonal to the 

estimation space hyperplane. 

If an estimation procedure other than least squares is used, 

the resulting predicted vector yin the estimation space will be 

further from the observed vector yin the sample space. This is 

a direct consequence of the least squares criterion which minimises 

the residual sum of squares or the squared length of the vector e. 

Algebraically the residual sum of squares for any estimator B 

of~ can be written as, 

RSS(B) = llY-xBll2 

= llY-x~ ll2 
+ llx(B-e) 11

2 

= RSS( ~) + lie 112 
(4.31) 

Thus a predetermined, tolerable increase in residual sum of 

squares, of say llcll2 
defines a whole family of predicted vectors 

in the estimation space and a corresponding family of estimators 

of~ which are alternatives to the least squares estimator~­

The alternative predicted vectors XB which arise from a given 

increase in lack of fit form a p-dimensional hypersphere centred 

on the least squares prediction vector yin the p-dimensional 

estimation space. This is illustirated in Figure 4. 2 for the 

case in which the sample space has 3 dimensions and the estimation 

space has 2 dimensions. 
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A particular 
predicted vector 
XB in the 
estimation space 

The family of predicted vectors in the estimation 

sp~ce with constant residual sum of squares 

RSS~) + llcll
2

. Note that jjfjj2 = llell
2 

+ llcll
2

. 

Further geometric characterization of the various alternative 

estimators with fixed residual sum of squares requires a consideration 

of the p-dimensional parameter space. The parameter space consists 

of p orthogonal directions along which estimates of each of the p 

components of~ are measured. 

shown in Figure 4,3. 

The parameter space when p=2 is 

The ellipses 

(B-~)'x'x(B-§) = K 

Figure 4.3 The parameter space when p=2. 



90. 

The least squares estimator§ has minimum residual sum of squares. 

All other estimators B have residual sums of squares greater 

than the residual sum of squares for the least squares estimator 

by an amount, from equation (4.31), (B-~)'x'x(B-§). A fixed 

increase in residual sum of squares of K gives a family of 

estimators defined by the hyperellipsoid, 

with centre point at~- Thus the concentric ellipses centred 

on_§ in Figure 4.3 are contours of lack of fit. 

The lack of fit hyperellipsoids in the p-dimensional parameter 

space have three important features: 

(i) Under the usual error distribution assumptions, 
2 e ~ N(O,o I), the hyperellipsoids are 100(1-a)% confidence regions 

for~' when the constant K is set equal to 

RSS(~)._E_ F
1 

(p,n-p) 
n-p -a 

(ii) The orientation of the hyperellipsoids is related to the 

orthogonality of the matrix of predictor variables X. If the p 

axes of the hyperellipsoids are parallel to the p orthogonal axes 

defining the parameter space then the least squares estimates of 

the p components of the vector~ are uncorrelated and the matrix 

Xis orthogonal. In Figure 4.3 the axes of the ellipses are not 

parallel to the axes defining the parameter space so that the 

estimates ~1 and ~2 are correlated and the vectors x1 and x2 in 

the estimation space are not orthogonal. 

(iii) The "shape" of the hyperellipsoids is an indication of 

the precision of the least squares estimates of each of the 

components of the parameter vector~- In the orthogonal case, 

the lengths of the paxes of a particular lack of fit hyperellipsoid 

are proportional to the variances of the least squares estimates 

of the components of~- In the non-orthogonal case the lengths 

of .the paxes are proportional to the variances of specific linear 

combinations of the least squares estimates. Thus, in Figure 4.3, 
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the variance of 

is greater than the variance of 

The various biased estimation procedures provide rules for 

plucking a particular estimated vector of parameters from a given 

family of estimators with common, fixed residual sum of squares 

RSS( ~)+K. The. simplest biased estimation procedure is provided 

by Mayer and Willke (1973). Their deterministically shrunken 

estimators result from minimizing 

IIY-xB 112 + k IIXB 11
2 

Thus for a given fixed residual sum of squares the deterministically 

shrunken estimator is the estimator which minimises the squared 

length of the predicted vector XB in the estimation space. 

Correspondingly, in the parameter space, the deterministically 

shrunken estimator is a scalar shrinking of the least squares 

estimator (see section 4.21). 

p=2 in Figure 4.4. 

This is shown for the case n=3, 

Estimation Space 

Figure 4.4(a) The estimation space hyperplane when p=2 and 
the deterministically shrunken estimator with 
given residual sum of squares. 



Figure 4,4(b) The deterministically shrunken estimator 

The ridge estimators of Hoerl and Kennard (1970a,b) result from 

minimising 

llY-XB 11
2 

+ k llB 11
2 
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Thus for a given fixed residual sum of squares the ridge estimator 

is the estimator with the smallest squared length. Thus the 

ridge estimator is the shortest vector from the origin of the 

parameter space to a particular lack of fit hyperellipsoid in the 

parameter space. Figure 4.5 shows a 2 dimensional parameter 

space and the uniquely determined ridge estimator with given 

residual sum of squares. 

Figure 4.5 The ridge estimator a*. 
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The "swollen" rescaled ridge estimator proposed by Vinod (1976a) 
... 

is a scalar multiple of a predetermined ridge estimator, µff', 

where µ is chosen to minimise RSS(µf:/'). Clearly µa~•: is the 

vector lying in the same direction as a* with the smallest 

residual sum of squares. The "swollen" ridge estimator therefore 

meets or cuts one of the axes of the concentric family of 

hyperellipsoids in the parameter space in the manner of Figure 

4.6(a). Depending on the general shape of the hyperellipsoids, 

or the structure of x'x, the rescaled ridge estimator may or may 

not pass through the axis concerned (see Figure 4.6(b)) . 

Figure 4.6(a) 
... 

The rescaled ridge estimator µB- where 

Figure 4.6(b) 

µ = <~*'x'y)/Ca*'x'xa*) 

axis 

Two possible intersections of the rescaled ridge 
estimator with a principal axis of the lack of 
fit ellipses. 
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The estimators in equations (4.21), (4.23) and (4.19) are presented 

in Figures 4.7, 4.8 and 4.9 respectively. In each figure the 

same lack of fit ellipsoid is shown, the same least squares 

parameter vector and the same ridge estimation vector are shown too. 

The estimator (4.21) which is represented in Figure 4.7 identifies 
I 

the estimate closest to the vector X y for a given family of 

estimators with the same residual sum of squares. The estimator 

(4.23) which is represented in Figure 4.8 plucks out the estimate, 

in the family of estimators with the same residual sum of squares, 

which is closest to the a priori vector b. The estimation rule 

(4.19) which is equivalent to Marquardt's coefficient smoother 

for the case p=2 and which is represented in Figure 4.9 identifies 

the estimate on the ellipse which is closest to the line ~
1

=~
2

. 

At first sight the three different estimates of~ may seem alarming 

(in this illustration all three estimates lie in different directions 

and have different lengths). However, the three estimates result 

from three different sets of a priori circumstances. The estimates 

in Figures 4.7 and 4.8 would be identical if b=X'y, that is if the 

prior knowledge in both cases was identical. The estimate in 

Figure 4.9 arises from a desire to achieve robustness for a given 

value of the residual sum of squares. Prior knowledge and the 

purpose for which an estimator is to be used are clearly important 

determinants in the choice of an estimation procedure. 

The generalized inverse estimator of Marquardt and the principal 

component estimator are identical when r=s. In the case when p=2 

end A
2 

is near zero the assumption that A2=o or that the rank of 

x'x is essentially one is equivalent to the constraint ~1=~2 (see, 

for example, Marquardt (1970) and Hocking (1976)). Thus Figure 4.9 

also shows a generalized inverse estimator with assigned rank 1 

for the case p=2. 

As a final visual aid the trajectories defined by the ridge 

estimator (4.11) and the good ridge estimator (4.23) for values of 

k increasing without bound from zero are shown in Figure 4.10. 

The intuitive appeal of Swindel's good ridge estimator, when the 

relevant prior information is available, is illustrated in this 

figure. 
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Figure 4.7 

The estimator ft resulting 

from the constraint !Ix' y-B 112 

Figure 4.8 
"-' 

A Good Ridge Estimator~ 
based on prior information b. 

Figure 4.9 

A smoothed coefficient, 
"-' 

generalised ridge estimator, ~-

~1 
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Figure 4.10 The ridge locus (R) and the good ridge locus (G). 

4,4 Other Biased Estimation Procedures. 

The discussion in this chapter has been limited to biased estimators 

which are linear in y. The main reason for this limitation is, 

as outlined in section 3.4, that the higher order moments of the 

error distribution and the form of the error distribution are 

generally unknown. If the form of the error distribution is known 

or its higher order moments are known then various biased nonlinear 

estimators may be shown to outperform the least squares estimator 

and the various biased linear estimators outlined in the preceding 

sections. One such biased, nonlinear, stochastically shrunken, 

estimator is the James-Stein estimator. In, for example, Stein 

(1966) it was shown that in the following situation, 

where y. = 
l. 

n 
.E 

j=1 

x .. 
l. J 

2 ~ N( 0. ,a ) 
l. 

y. 
l. 

X /n 
ij 

(12 ~ N( 0., -) 
i n 

or 
2 

Y ~ N( 0, a 
n 

least squares estimator of 0; 

i=1, ... ,p 
j =1, ..• ,n 
i=1, .•. ,p 

I) so that y is the usual 
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when p ~ 3 and where Sis distributed independently of y as 
2 2 

(o /n)\i. 

Thus with respect to the mean square error criterion (3.45) 

the estimator 

p-2 
n+2 

dominates the usual least squares estimator y for all values of the 

unknown 8 when p .?: 3. This result has been generalized to the 

usual regression situation so that Mayer and Willke (1973), for 

example, quote a result of Sclove's that the estimator, 

p-2 
(n-p+2) 

RSS( ~)] ,. 

11~112 f:s 
p ~ 3 

dominates the least squares estimator with respect to the criterion, 

min E jjX(B-f:s) 11
2 

B 

There are many variants of the James-Stein estimator of f:s in the 

linear model situation. That there are many variants is probably 

one reason why the estimator has not gained the popularity of the 

ridge estimator. Also, very little work has been published on 

the robustness of these estimators. It would be useful to know 

how rapidly the various James-Stein estimators lose their optimality, 

if indeed they do when the error distribution is far from being 

normal. 

A class of biased estimation procedures similar to the principal 

components regression estimator have been proposed by Gunst, 

Webster and Mason (1976) . These latent root regression estimators 

result from an eigenvalue analysis of the matrix A
1

A where, 

A = [y l xJ 

The interested reader is referred to the article cited above and 

Hawkins (1975). 
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5. A DOUBLY RIDGED ESTIMATOR 

5.1 Two-Parameter Ridge Estimators 

Goldstein and Smith (1974) and Obenchain (1975a) have suggested 

that an examination of two-parameter generalised ridge estimators 

might produce worthwhile estimation procedures. 

ridge estimators have the form, 

The two-parameter 

... 
a'.' (k ,q) 

l. 

= z~y/()..+k>.,9-) 1/ l. l. 

+ 

I 
z.e 

l. 

q 
>...+kL 

l. l. 

(5.1) 

when the linear model is in canonical form, equation (3.11). Two 

familiar special cases of the estimator in equation (5.1) are the 

estimators obtained when q=+1 and q=O, the deterministically 

shrunken estimators of Mayer and Willke (1973), equation (4.30), 

and the simple ridge estimators of Hoerl and Kennard (1970a,b), 

equation (4.27), respectively. Goldstein and Smith suggested 1-q 

should be an integer m ~ 0 so that their formulation of equation 

(5.1) looked like, 

+ 

= 

where O ~ k ~ 1 and m E (0,1,2, ..• J. 

m-1 I >... z .e 
l. l. 

m 
).,.+k 

l. 

Rewriting the estimator 

(5.2) in terms of the original model gives, 

a*(k,m) = [(X1 X)m + kI]- 1(x'x)m- 1x'y 

= [x'x + k((x'x)-1Jm-1 J-1x'y 

(5,2) 

(5.3) 



Goldstein and Smith claimed that such an estimator is "more 

sensitive to variation in the eigenvalue spectrum" of x'x for 

m ~ 2 (a comparison of equation (5.2) with equation (4.27) 

should satisfy the reader that this is so). One large 

disadvantage with this estimator is arriving at a choice of m. 

Opponents of ridge-type estimation who justifiably baulk at the 

task of choosing k would probably justifiably wilt when faced 

with the task of divining m. A suggestion may be to fix m 

quite arbitrarily at the value two since the estimators for m=O 

and m=1 are already well established. Then fixing m=2 gives, 
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"-' I I -1 -1 I 
~ = (XX+ k(X X) ) X y . (5.4) 

Using the estimator (5.4) requires the evaluation of (x'x)-l 

which may pose a numerical problem if x'x is ill-conditioned 

(which it almost certainly is as multicollinearity provides the 

motivation for considering these estimators). Evaluation of 
I -1 

(X X+kI) for some k E (0,1] may be less of a problem numerically 

so that possible alternative estimators to (5.4) could be, 

(5.5) 

•'-•'- I I -1 -1 I 
~---- = [X X + kI + k(X X+kI) ] X y . (5.6) 

The estimator in equation (5.6) may be described as a doubly 

ridged estimator. Equation (5.6) has been proposed by Rutishauser 

(1968) in a slightly different context. Rutishauser has called 

equation (5.6) the doubly relaxed least square solution of, 

XB = Y. 

Recall that the ridge estimator, equation (4.11) arises as the 

relaxed least squares solution of the same equation, and was 

proposed by Riley (1955) for solving ill-conditioned systems of 

linear equations. Similarly, the doubly relaxed least squares 

solution has been proposed by Rutishauser as a method for solving 

ill-conditioned systems of linear equations. Rutishauser 

favoured (5.6) doubly relaxed least squares over (4.11) relaxed 

least squares as a method for keeping cancellation under control 

in the evaluation of XB. The equation (5.6) may therefore be 



worthy of investigation and application in the linear statistical 

models area. 

5.2 Properties of the Doubly Ridged Estimator 

100. 

Some properties of the doubly ridged estimator are listed below. 

The close similarity between the ridge estimator and this estimator 

is readily perceived (the doubly ridged estimator is a generalized 

ridge estimator). 

(i) The doubly ridged estimator is a linear transformation 

of the least squares estimator, 

(ii) The doubly ridged estimator can be regarded as a 

constrained least squares estimator resulting from the minimization 

with respect to B of the objective function, 

(iii) The doubly ridged estimator is "shorter in length" than 

the least squares estimator, that is, 

ll~~•n-: II < Li~ ll for all k > 0. 

The proof of this is readily obtained in the manner of Riley (1955). 

(iv) For the same choice of k > 0, 

(v) In the canonical form of the usual linear model, the 

doubly ridged estimator of a. has the form, 
l. 

·l~-.'~ a. 
l. 

a. 
l. 

+ 

.I z.~ 
l. 

>... +k+k/ 0 .. +k) 
l. l. 

Comparing this expression with equation (4.27) it can be seen that 

the doubly ridged estimator takes a little more account of the 
I 

eigenvalue spectrum of XX than does the ridge estimator, in the 

reweighting of a. and the error vector, with the addition of the 
1. 

term k/(>.,.+k) in the denominator. 
l. 
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(vi) An important result concerning the generalized mean 

square error admissability of the doubly ridged estimator over 

the usual least squares estimator arises out of some work by 

Theobald (1974) on the admissability of the ridge estimator and 

extensions of Theobald's work by Farebrother (1976) and Gunst 

and Mason (1976). Theobald (1974) established the general 

result that for any two estimators 8
1 

and 8
2 

of a parameter vector 

8 the following conditions are equivalent: 

(a) M1-M2 is non-negative definite 

(b) m
1

-m2 ~ 0 for all non-negative definite H. 

where, 

M. = E(8.-8)(8.-8)' 
J J J 

, j=1,2 

and where, 

m. = E(8.-8)
1
H(8.-8) 

J J J 
j=1,2 

This means that an estimator 0
2 

can be considered better in 

generalized mean square error than an estimator 8
1 

if and only 

if the difference of their second order moment matrices M
1

-M
2 

is 

positive definite. Theobald applied this result to the ridge and 

least squares estimators of~ in the linear model (3.1) and found 

that a sufficient condition for ridge estimation to outperform 

least squares estimation with respect to generalized mean square 
2 I 

error was O < k ~ 2o /~ ~- A slight generalization of Theobald's 

result for the ridge estimator which ties together the results of 

Farebrother (1976), Theobald (1974) and to some extent Lowerre 

(1974) is as follows: 

Let C~ be a linear transformation of the least squares estimator 

~ such that C is non-negative definite, I-C is positive definite 

(this ensures that C shrinks all the components of the least 

squares estimates of the parameter vector in the canonical form 

of the model), and that C and x'x commute. If it is also assumed 

that the matrix X has full colunm rank then a theorem may be 

proved . 
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Theorem: M(B) - M(CB) is positive definite if and only if, 

< CJ 
2 

Proof: 

Thus 

which is positive definite if and only if, 

(5.7) 

is positive definite. 

definite, so that M(~)-M(t;j) is positive definite if and only if, 

2 < CJ • ( 5. 8) 

This result means that C~ outperforms 8 with respect to any 

generalized mean square error criterion if and only if equation 

(5.8) holds. Various sufficient conditions are available. Since 

(X 1 X)-l is positive definite a sufficient condition for (5.7) to 

be positive definite is, 

(5.9) 

is non-negative definite, or, 

2 
(J • 

2 -1 I -1 
The matrix 2o (I-C) C(X X) is non-negative definite so that a 

sufficient condition for (5.7) to be positive definite is, 

(5.10) 

is positive definite, or, 

f5
1 x' Xf5 < a2 



Applying these results to the doubly ridged estimator recall 

from property (i) that, 

C =[I+ k(x'x)-1 (r + (x'x + kI)- 1)J-1 

103. 

so that C is positive definite, commutes with ·x'x, and (I-C) is 

positive definite fork> 0. Thus by the theorem the doubly 

ridged estimator fl)h': outperforms the least squares estimator ~ 

with respect to any generalized mean square error criterion if 

and only if, 

The sufficient condition (5.9) becomes, 

A further sufficient condition for this 

k {1 + A _ 1 +k} 
m1.n 

< 

2 
~ a 

is, 

For the simple ridge estimator the sufficient condition (5.9) 

becomes, 
2 2 

k < ....£.... 
fl' fl 

Comparing these admittedly sufficient conditions it can be seen 

that the choice of k for the doubly ridged estimator is more 

closely linked to the conditioning or eigenvalue structure of x'x 

than for the ridge estimator. Of course, the choice of kin the 

doubly ridged procedure still depends as in the ridge estimation 
2 

procedure on the unknowns o and fl. Thus the doubly ridged 

estimator is open to the same kinds of objections as the ridge 

estimator (recall the criticisms presented in section 4.22). 

The problem of choosing a k for the doubly ridged estimation 

procedure could be approached in the various algorithmic, iterative 

ways currently being evaluated for ridge estimators (see, for 

example, Dempster, Schatzoff and Wermuth (1977) and the discussion 

following their article by Hoerl). 



Further comparison of the doubly ridged estimator and the ridge 

estimator is possible. 

k
1

, and let, 

-~ ~ 

fj" = C fs 
1 

Let, 

where c
1 

depends on the constant 
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where c2 depends on the constant k
2

. 

Then, 

2 , -1 
= a (C

1
+c

2
)(X X) (C

1
-c

2
) 

+ (C1-I)fsfj
1 

(C 1-I) 

- (C -I)fsfj
1

(C -I) 
2 · 2 

and a sufficient condition for this matrix to be positive definite 

is that the matrix (c
1
-c

2
) is positive definite. A sufficient 

condition for (c1-c2 ) to be positive definite is, 

.t..t,. 

Thus sufficient conditions for the doubly ridged estimator f$ 0

" -~ 
to outperform both the ridge estimator fj

0 

and the least squares 

estimator ~ with respect to the generalized mean square error 

criterion are, 

k < k2 + 
k2 

and k2 + 
k2 2a2 

>.. +k ~in +k2 
<--. 

1 max 2 fs, fl 

when the ridge estimator also outperforms the least squares 

estimator. 

The doubly ridged estimator is probably worth investigating further 

by way of simulation studies. 

is presented in Chapter 6. 

An application of the estimator 



6. AN APPLICATION 

6.1 The Longley Problem 

Longley (1967) used a particular set of data to investigate the 

accuracy of several different multiple regression programs on 

several different computers. 

observations on the variables; 

The data consisted of 16 
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y, 

x1, 

x2, 

x3, 

x4, 

xs, 

x6, 

Total derived employment in the U.S.A. (in thousands) 

Gross National Product Implicit Price Deflator (in tenths) 

Gross National Product (in millions) 

Unemployment (in thousands) 

Size of Armed Forces (in thousands) 

Noninstitutional Population 14 years and over (in thousands) 

Year. 

Langley's data, which can be found in either Longley (1967) or 

Beaton, Rubin and Barone (1976), features a highly ill-conditioned 

input matrix and has become quite popular as a test problem for 

illustrating the application of new techniques. Obenchain (1975b) 

has used Langley's data to illustrate the use of several solution 

selection criteria, Beaton, Rubin and Barone (1976) have used the 

data to illustrate the use of their perturbation index (see section 

3.22), and Cook (1977) has used the data to illustrate the use of 

his detector of influential observations in linear regression (see 

section 3.23). It was, therefore, decided to use the Longley 

problem to compare the performance of the ridge and doubly ridged 

estimators. The OMNITAB II, VERSION 5.00 computer package 

(see Hogben, Peavy and Varner (1971)), as implemented on the 

Massey University Burroughs B6700, was used for this purpose. 

The variables were rescaled so that x'x was in correlation form 
I • ann ~o that the vector X y was composed of the correlations between 

the dependent variable y and the variables x.. The resulting 
1 

matrix X was then transformed so that the model was in canonical 

form and a principal component analysis was carried out on the 

matrix of input variables (see Table 6.1). The first principal 

component accounts for about 77% of the variation in the input 
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Table 6.1 Principal Component Analysis of the Longley Data in Correlation Form 

Ei~envector Coefficients 

i Eigenvalues>... x1 x2 X x4 XS x6 1. 3 

1 4.6 0 3 3 8 .461835 .461504 .321317 . 201510 .462279 .464940 

2 1.1 7 5 3 4 -.0578428 -.0532123 .595 514 -.798193 .0455445 -.000618788 

3 .2 0 3 4 2 5 -.149120 -.277682 . 728306 .561608 -.195985 -.128116 

4 .o 1 4 9 2 8 3 -.792874 .121621 -.00764580 .0772550 .589745 .0522866 

5 .0 0 2 5 5 2 0 7 .337938 -.149573 .0092 3196 .0242525 .548578 -.749543 

6 .0 0 0 3 7 6 7 0 8 .135187 -.818481 -.107453 -.0179710 ,311571 .450409 

6,0 0 0 0 0 
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matrix, so that it appears that most of the observations on the 

six independent variables are arranged in a single direction, or 

arranged about a straight line in the estimation space. This is 

one indication of the multicollinearity in X. The first principal 

component seems to be a general weighted average of the six input 

variables. The weights are almost in the same proportions as 
I 

the components of X y since, 

x' Y = 

.9709 

.9836 

.5025 

.4573 

.9604 

.9713 

The second principal component accounts for 20% of the variation 

in X and is dominated by the variables x
3 

and x
4

, unemployment 

and size of armed forces respectively. This component might be 

interpreted as a measure of the level of non-paid, non-productive 

employment (the unemployed do not contribute to the GNP and are 

virtually unpaid while the armed forces, who do not contribute to 

the nation's production, are well paid - hence the negative sign). 

Such interpretations, like many in principal components analysis, 

are highly speculative, especially when it is remembered that 

principal components are not invariant to changes in scale. The 

transformation to principal components does however illuminate 
I 

the extent of the ill conditioning of XX; A4 ,A5 and A6 are 

all substantially less than one. Beaton et al (1976) comment 

that "most statisticians would advise a client not to fit a 

model" with such a conditioning problem. This is probably good 

advice but statisticians could at least point out to clients that 

least squares prediction in the direction of the first two or ; 

three principal components might nevertheless be quite precise 

(see section 3,131). 

In the present case a least squares fit was carried out for the 

full model in correlation form. The least squares estimates of the 

parameters are shown in the first row of Table 6.2 and Table 6.3. 

The value of R2 was 0.9955 indicating a very close fit. Several 

ridge regressions and doubly ridged regressions were performed 
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Table 6.2 Ridge Estimates for x'x in Correlation Form 

k ~1 ~2 ~3 ~4 ~5 ~6 RSS - - - - - -
o.o .04628 -1. 0137 -.5375 -.2047 -.1012 2.4797 .004521 

0.0001815 -.002501 - .5035 -.4669 -.1900 -.2375 2.1019 .004712 

0.02 .2554 .3390 -.2795 -.1027 .1714 .4314 .01267 

0.04 .2651 . 3298 -.2474 -.07848 .2177 .3481 .01464 

0.06 .2638 .3204 -.2216 -.05989 .2313 .3152 .01648 

0.08 .2606 .3119 -.1997 -.04460 .2359 .2965 .01837 

0.10 .2571 .3042 -.1808 -.03170 .2371 .2838 .02030 

0.20 .2412 .2758 -.1146 .0110 .2303 .2508 .02973 

0.30 .2294 .2568 -.07476 .03426 .2211 .2340 .03818 

0.40 .2202 .2429 -.04816 .04819 .2131 .2226 .04579 

0.50 . 2125 .2320 -.02924 .05698 .2061 .2138 .05286 
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Table 6.3 Doubly Ridged Estimates for x'x in Correlation Form 

k l:l1 ~2 ~3 ~4 ~5 ~6 RSS -- - - - - -
o.o .04628 -1. 0137 -.5357 -.2047 -.1012 2.4797 .004521 

0.001955 .2927 .3501 -.2884 -.1042 .2870 .2789 .01407 

0.02 .2628 .3058 -.1729 -.01803 .2635 .2542 .02101 

0.04 .2492 . 2824 -.1134 .02402 .2475 .2426 .02847 

0.06 .2412 .2687 -.07974 .04647 .2379 .2357 .03391 

0.08 .2357 .2595 -.05780 .06007 .2315 .2308 .03796 

0.10 .2314 .2527 -.04225 . 06898 .2267 .2270 .04114 

0.20 .2183 .2332 -.002670 .08664 .2126 .2153 .05120 

0.30 .2098 .2220 .01478 .09038 .2043 .2075 .05806 

0.40 .2031 .2136 • 02 49 3 .09058 .1977 .2012 .06424 

0.50 .1972 .2066 .03160 .08955 .1921 .1956 .07032 



for values of k ranging from Oto 0.6 in steps of 0.02. All 

calculations were carried out with the canonical form of the 

correlation form of the model and the resulting estimates of 

a transformed to estimates of~ in the correlation form of the 
I 

model by premultiplying the vector of estimates of a by P , the 
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transpose of the matrix in the last six colurrms of Table 6.1. 

The ridge estimation results are summarized in Table 6.2 and the 

doubly ridged estimation results are summarized in Table 6.3. 

A brief inspection of Table 6.2 and Table 6.3 indicates that the 

doubly ridged procedure shrinks the least squares estimates 

faster than the ridge procedure for the same values of k. 

Correspondingly the residual sum of squares for the doubly 

ridged estimator increases faster than the residual sum of squares 

for the ridge estimation procedure, for the same increasing values 

of k. There does not seem to be any great difference in pattern 

of shrinkage for both procedures in this example. 

6.2 Solution Selection 

Several methods for choosing a value of the biasing parameter k 

have been proposed in the literature (see, for example, Obenchain 

(1975a,b) and McDonald (1975)). In the present case visual 

inspection of ridge and doubly ridged traces suggested values of 

0.1 < k < 0.2 and 0.06 < k < 0.16 respectively. 

An iterative procedure for choosing k based upon, 

k(t+1) = 

--2 
2cr 

"' 2 · · f 
2 

f h 1 fi' t where cr is the usual estimate o a rom t e east squares 

and ~~O) =~,converged in eight steps to a four-significant­

figures value of k of 0.0001815 for ridge estimation of~ (the 

corresponding estimate of~ is shown in Table 6.2), A similar 

iterative procedure for choosing kin the doubly ridged regression 
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converged in five steps to a four-significant-figures value of 

k of 0,001955 (the corresponding estimate of~ is shown in 

Table 6,3). Whether or not these choices of k have produced 

an estimate of~ with smaller mean square error than the 

least squares estimator~ is essentially unknowable. Simulation 

studies in the manner of Hoerl and Kennard (1976) and Dempster, 

Schatzoff and Werrnuth (1977) may indicate whether or not the 

doubly ridged procedure possesses any great advantage over the 

simple ridge estimator. 
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7. SUMMARY 

The utility of the method of least squares has been subject to 

review. When the conditions of the Gauss-Markov Theorem obtain 

the method produces the MVLUE of~- If the noise or disturbance 

component of the dependent variable is normally distributed the 

method produces the MVUE of~- When the conditions of the 

Gauss-Markov Theorem do not obtain the method loses its minimum 

variance property and may in the case of the misspecified 

model and the errors in variables situation produce a badly 

biased estimator of~­

x'x is ill-conditioned. 

This is particularly so when the matrix 
I 

Ill-conditioning of XX or multi-

collinearity in X therefore provides a strong motive for 

searching for alternatives to least squares in the wider class 

of biased, non-linear estimators. One sub-class of this class 

of alternatives - linear transformations of the least squares 

estimator - has been reviewed. Several areas worthy of 

investigation have been proposed in the course of this review, 

namely, 

(i) A comparative study of robust generalized ridge estimators 

possibly in the form of a simulation study. 

(ii) A study of the robustness of the James-Stein estimator 

and the possibility of constructing robust variants of it. 

(iii) An investigation of two parameter ridge-type estimators 

for fixed values of the second parameter. 

(iv) A simulation study to discover the merits, if any, of 

the doubly ridged estimator over the ordinary ridge estimator. 

(v) A wider search for non-linear estimators of~ with good 

mean square error properties. 

starting point so far. 

The MMSELE has been used as a 

The method of least squares is still a useful estimation procedure 

but as Tukey (1975) has pointed out the least squares procedure 

has to be modified when the conditions usually assumed in its 

application are not met. In these situations "least squares 

embedded in modification processes" is called for. The robust 

weighted least squares estimators and ridge and shrunken estimators 

are only two classes of such modifications. 
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