
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

1

ZigBee-Based System for Remote Monitoring and Control of Switches

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Engineering

at Massey University, Albany,

New Zealand.

© Matthew Lyon

October 2010

2

Abstract

Home automation technology has existed for nearly four decades, but is nonetheless mostly

absent in the average home today. The systems that do exist are often highly customised and

expensive, catering to a very niche market, or overly sophisticated and complicated. Many of

these also require extensive, dedicated cabling as their communications backbone and as such

are only practical to install during the construction of a new house.

The core aims of this project are to develop a cheap and simple home automation system that

can be easily installed in new and existing houses. These aims are achieved by creating a

centralised system where most of the intelligence is managed by a PC server and the end

nodes are kept as simple as possible.

The server is responsible for basic security, maintaining awareness of the current system state

and providing the user interface. At the outer edge of the system is a ZigBee network of wall

switches and, in between, a home gateway provides a protocol translation service between the

two. The new, “smart” switches are designed to be entirely compatible with existing wall

switches in terms of their mounting and wiring requirements, and so ZigBee is chosen to

provide a reliable wireless communication channel between the end nodes and the gateway.

Development of the system is undertaken in three stages; design of the server software

(including the user interface and server processes), design of the home gateway embedded

software, and design of the hardware and embedded software of the switches.

The end result is an effective, entry-level system that provides the benefits of remote

management without the need for a costly or complex infrastructure.

3

Acknowledgements

A number of people have made a valuable contribution to this thesis through their support,

guidance and help with various technical problems.

Many thanks are extended to Jamie McIntyre for his assistance with the use of Altium, and

sound advice during the design and production of the switch hardware.

I also gratefully acknowledge Reece McCarthy, long-time friend and electrician, for lending

his knowledge and experience in mains wiring and existing smart house products.

To my parents, many thanks for your endless motivation and support, especially in the final

stages.

And finally, this project owes much of its success to the support and guidance of supervisor,

Dr Tom Moir, whose direction throughout the process of developing and writing has been

hugely appreciated.

4

Table of Contents

Abstract .. 2

Acknowledgements .. 3

List of Tables ... 8

List of Figures .. 9

1 Introduction .. 10

1.1 Project Overview ... 10

1.2 Design Specification ... 11

1.2.1 Requirements ... 11

1.2.2 Constraints ... 13

1.3 Thesis Outline ... 13

2 Literature Review ... 15

2.1 Problems Facing the Home Automation Industry ... 15

2.2 Existing Technologies ... 16

2.2.1 X10 and INSTEON .. 16

2.2.2 CEBus and C-Bus .. 16

2.2.3 Vantage .. 17

2.2.4 Control4 ... 17

2.2.5 KNX ... 18

2.3 Research Approaches .. 18

2.4 Standards ... 19

2.4.1 OSGi .. 19

2.4.2 ZigBee .. 20

2.5 Summary ... 21

3 System Design .. 22

3.1 Project Framework .. 22

5

3.1.1 Remote Switching Process ... 23

3.1.2 Local Switching Process .. 23

3.2 Communication Protocol... 24

3.2.1 Command Messages .. 25

3.2.2 Data Messages ... 25

3.2.3 Notification Messages .. 25

3.2.4 Acknowledgement Messages ... 26

3.2.5 Server Disconnect Signal ... 26

3.2.6 Command Mode Protocol .. 26

3.2.7 Communication Overview ... 27

4 Server Design ... 28

4.1 User Interface .. 28

4.1.1 Security .. 28

4.1.2 User Authentication ... 29

4.1.3 Control Centre .. 30

4.1.4 Switchboard ... 31

4.1.5 Alert Boxes .. 33

4.1.6 System Management .. 33

4.1.7 Event History ... 36

4.2 Database .. 37

4.2.1 Users Table .. 37

4.2.2 Devices Table... 38

4.2.3 History Table ... 40

5 Home Gateway Design ... 42

5.1 Programming the Microcontroller ... 42

5.1.1 Microchip TCP/IP Stack .. 42

5.2 TCPHandler Module ... 42

6

5.2.1 Handler States .. 43

5.2.2 Managing Error Situations ... 43

5.3 UHandler Module .. 45

5.3.1 Handler States .. 45

5.3.2 Receiving Serial Data .. 45

5.3.3 Notifying the Server ... 46

5.4 LCD Display ... 46

5.5 Gateway Architecture .. 47

6 Switch Design ... 49

6.1 First Switch: Hardware Design ... 49

6.1.1 Power Supply ... 50

6.1.2 LED Indicators ... 51

6.1.3 Programming Header ... 51

6.1.4 Reset Button ... 52

6.1.5 ZigBee Module Pin Connections ... 52

6.1.6 PIC18F1220 Microcontroller Pin Connections ... 52

6.2 First Switch: Software Design... 53

6.2.1 Initialisation ... 53

6.2.2 Interrupt Service Routines ... 54

6.2.3 Main Software Loop .. 55

6.2.4 Design Shortcomings ... 56

6.3 Switch Two: Hardware and Software Refinements .. 57

6.3.1 Power Supply ... 58

6.3.2 Switch Button as External Interrupt ... 60

6.3.3 Switch Announcement ... 61

7 Development and Testing ... 62

7.1 High Level Overview .. 62

7

7.2 System Development and Testing ... 64

7.3 ZigBee Performance Testing ... 65

8 Conclusions and Future Work .. 67

8.1 Conclusions ... 67

8.2 Future Work .. 68

References .. 71

Appendix .. 74

A. Circuit Schematics .. 74

B. Web Server Source Code .. 76

B.1 login.html ... 76

B.2 login.php .. 78

B.3 mainpage.php ... 79

B.4 switchboard.php ... 80

B.5 manage_system.php ... 83

B.6 add_device.php .. 87

B.7 add_user.php .. 89

B.8 show_history.php ... 91

C. Server Processes Source Code .. 94

C.1 server_actioner_cgi.c ... 94

C.2 server_listener.c ... 100

D. Gateway Source Code ... 106

D.1 TCPHandler (TCPH.c) .. 106

D.2 UHandler.c ... 112

E. Switch Firmware Source Code ... 115

E.1 Switch 1 (End_device/ex1.c) ... 115

E.2 Switch 2 (End_device2/ex1.c) ... 119

8

List of Tables

Table 4.1: MySQL description of auth_users table ... 37

Table 4.2: MySQL description of devices table ... 38

Table 4.3: MySQL description of history table .. 41

Table 5.1: LED variable assignments .. 44

9

List of Figures

Figure 3.1: Project framework ... 22

Figure 3.2: server_listener output .. 24

Figure 3.3: Space-time diagram of system communications .. 27

Figure 4.1: Main MAMP window... 28

Figure 4.2: Certificate Warning (Internet Explorer 8) .. 29

Figure 4.3: Address bar indications for certificate error and secure browsing (Internet Explorer 8) 29

Figure 4.4: Login window .. 30

Figure 4.5: Control centre options for admin user .. 31

Figure 4.6: Typical switchboard display .. 32

Figure 4.7: Offline switch indication ... 32

Figure 4.8: JavaScript alert box ... 33

Figure 4.9: System management page .. 34

Figure 4.10: Devices table with completed form data ... 34

Figure 4.11: JavaScript confirmation box ... 35

Figure 4.12: Users table ... 35

Figure 4.13: Event history page ... 36

Figure 5.1: LEDs located below the LCD display ... 44

Figure 5.2: LCD display at start-up ... 47

Figure 5.3: Gateway architecture .. 48

Figure 6.1: Mounting box ... 49

Figure 6.2: PCB layout of first switch .. 50

Figure 6.3: Completed hardware assembly of first switch ... 53

Figure 6.4: General architecture of second switch .. 57

Figure 6.5: PCB layout of second switch ... 58

Figure 6.6: Circuitry removed from PowerTech Plus Plugpack.. 58

Figure 6.7: Various assemblies of the second switch ... 59

Figure 7.1: Logical system architecture... 62

Figure 7.2: Physical system architecture ... 63

Figure 7.3: Project setup .. 64

10

1 Introduction
1.1 Project Overview
Home automation has been around for a while. Since the arrival of X-10 in 1975 [1], there

have been numerous developments and sophisticated modern systems incorporate features to

manage comfort, security and entertainment. Unfortunately, along the way, the technology

has not been widely embraced by consumers. The average home today contains few, if any,

'smart' features for automated or remote management.

One of the major reasons for this is that most developments have been undertaken

independently. The end result is the availability of a wide variety of smart systems and

products that are unable to work together, and integrating them becomes the domain of

specialists who in turn must design custom, integrated solutions. This increases the

complexity of the systems and drives the cost up to a level most cannot afford. As such, they

are largely to be found in only a handful of “upscale” new properties [2].

The focus of this master thesis is to develop and demonstrate a much simpler home

automation system that provides the convenience of remote monitoring and switching at a

price point that might attract more consumers to the technology. Cost and complexity are

minimised by basing as much of the system as possible on infrastructure that already exists in

most homes, such as a PC and Wi-Fi/LAN network, and developing the software on a free,

open-source platform. ZigBee is chosen as the communication medium for switches since it

provides a robust networking solution without the need for additional wiring.

The major components of the project are a web server, home gateway and a set of switches

containing ZigBee modules. Development was undertaken in three key stages, reflecting the

work on each of these components. The server was originally set up on a home desktop PC,

running a particular flavour of the Ubuntu operating system with LAMP installed. LAMP

stands for Linux-Apache-MySQL-PHP and provides the key elements necessary to create a

functional web server. Towards the end of the project, the server was shifted to an Apple

MacBook provided by the university, where the equivalent platform for Mac OSX is MAMP.

Development kits for the home gateway and ZigBee network were purchased online from the

United States; from Microchip and Digi respectively.

11

During the first stage, work focused on the PC server, which provides the intelligence for the

overall system and is thus the most critical component. It was also necessary at this stage to

consider the wider project framework and establish a protocol for communication between

devices. This framework was then tested and validated in software, using a small sockets

program to emulate end devices.

The second stage involved writing embedded software for the home gateway and interfacing

this with the server and ZigBee coordinator. The PICDEM.net2 development kit was chosen

as the hardware platform because it sports both Ethernet and serial (USART) interfaces and is

largely designed around the PIC18F97J60, which has an integrated Ethernet controller.

Networking tasks are facilitated by Microchip's TCP/IP stack.

The final stage focused on the hardware and software design of the wall switches. Aside from

the ZigBee module, each switch contains a PIC18F1220 microcontroller to perform the

limited amount of processing necessary to respond to inputs, effect switching and

communicate with the gateway. It is intended that each new switch should look and operate

similarly to an ordinary wall switch, but provide the additional convenience of remote

connectivity.

1.2 Design Specification
The principal aim of this project is to produce an entry-level system that might attract

consumers to home automation technology through low cost and simplicity. In keeping with

this philosophy, the system should require the minimum of additional infrastructure or

expertise to install and use. The project is specifically designed so that the two main

interfaces to the system - namely, the web interface and the switches themselves - are

intuitively familiar to an average user.

1.2.1 Requirements
The server should operate independently of any particular computer or operating system. The

web server platform is available in a number of versions for common operating systems;

WAMP for Windows, MAMP for Mac OSX and LAMP for Linux. Moreover, the platform is

open source and can be freely downloaded and installed from the internet, reducing cost.

12

The web interface should be intuitive. This means that switches should look and function on-

screen the same way as they would in the real world. However, the user experience can be

enhanced by providing additional visual cues as to the current state of devices. Also, the web

interface should offer only those features that are of functional importance to the user. For a

typical user, this is limited to viewing and operating switches. An administrative user benefits

from the ability to add and remove devices and users from the system as necessary.

The network infrastructure should be reusable. With many homes now equipped with

broadband access to the internet, it makes sense to use the same home network infrastructure

to connect the PC server and home gateway. This also helps to reduce the overall cost.

Similarly, there should be no additional wiring necessary to connect switches in the home.

Rather, communication between switches and the gateway should be over a suitable wireless

channel and the switch control circuitry should derive its power from the mains supply

already available at the wall. Equivalently, the switch should provide wiring connections

similar to a standard switch.

The system should be secure. Eavesdropping and 'man-in-the-middle' attacks can be

prevented by providing a secure connection to the server from the internet. ZigBee

communications should also be encrypted.

The specific tasks of the project are:

• Developing the web pages for the user interface

• Designing and implementing the database

• Developing the software interfaces between the server and the home gateway

• Developing the embedded software for the PIC18F97J60, which provides the

intelligence for the home gateway

• Interfacing the PIC18F97J60 with the ZigBee coordinator

• Designing and assembling the switch hardware

• Designing the embedded software for the switch microcontroller

• Integrating the various components into a reliable, working system

• Debugging and improvement

13

1.2.2 Constraints
To fulfil the requirements previously set out, elements of the project are subject to certain

important design constraints.

Firstly, using the TCP/IP stack within the limited resources of the microcontroller, and

especially keeping it abstract from the main program, requires a carefully considered

programming approach. That approach is termed cooperative multitasking and facilitates the

coordinated and timely execution of asynchronous tasks. Not only does the stack use this

approach, but the main program must as well in order for the system to work effectively [3].

Secondly, with regard to the switches, the control circuitry must be safely and suitably

housed, but still be compatible with a standard switch plate. Most often the switch plates are

screwed to a flush box inside the wall. However, they can be screwed on top of mounting

boxes of various depths, with the mounting box screwed to the wall. The mounting box

chosen for the project has usable internal dimensions of 75mm x 58mm x 30mm. Thus, the

printed circuit board (PCB) is restricted in size to 75mm x 58mm and the maximum height of

any component mounted on it is approximately 28mm, taking into account the thickness of

the PCB.

Finally, various components – namely the microcontroller, the ZigBee module and the relay –

have specific power supply requirements. The PIC18F1220 operates ideally with a supply

voltage between +4.2V and +5.5V [4]. The ZigBee module, on the other hand, requires only

+2.8V to +3.4V [5] while the relay demands +12V. With limited circuit area available, a

trade-off is made between satisfying each component's ideal requirement and reducing circuit

complexity to a minimum.

1.3 Thesis Outline
Chapter 1 has provided a brief background to the current state of home automation

technology and set out the purpose of this research project. It has also briefly discussed the

key components of the proposed system and the design steps taken in developing it.

Chapter 2 presents information on other research work in the field of home automation. In

doing so, it provides a context for this project and how it contributes to the work already

done.

14

Chapter 3 outlines the framework of the project. It discusses the relationship between

components in the system and how they interact with one another by providing a walk-

through of the switching process. The chapter concludes with a description of the

communication protocol used.

Chapter 4 provides details about the PC server. All aspects of the user interface are covered,

including a description of the background software processes and the database structure.

Chapter 5 describes the software modules written for the home gateway and discusses how

various error situations are managed.

Chapter 6 describes two iterations of the design of a wall switch prototype. The key

hardware and software elements of each switch are detailed, with emphasis on how the later

design improves on the first.

Chapter 7 outlines the process followed in developing each major component, as well as the

integration and testing of the system.

Chapter 8 summarises the key findings of the project and examines opportunities for

improvement and future development.

15

2 Literature Review
2.1 Problems Facing the Home Automation Industry
Home automation is not a new concept. The emergence of microprocessors in the 1970s gave

rise to a new realm of possibility in this area and the first steps were taken on the path to the

intelligent home of the future [6]. Yet, four decades on, the average household seems little

closer to realising this dream.

A variety of reasons have been put forward for the lack of widespread smart housing. Some

are valid observations about the current solutions in the market, whereas others address

elements of the underlying technology itself. [7] provides an excellent summary of the first

type, identifying five problem areas; cost and complexity, intrusive installation, lack of

network interoperability, interface inflexibility, and safety and security. Most of these are

echoed in the other literature. [2, 8-10] all observe in one way or another that existing

systems offer comprehensive control options, but that these come at considerable expense

and are difficult to install, especially in legacy homes. Extending these ideas, it is suggested

that the cost far outweighs the features available [11] and that there is limited appreciation of

the benefits that can be offered [12, 13].

Since its inception, home automation technology has progressed along independent lines.

Developments in different parts of the world have led to a number of regional standards and

individual systems, yet none of these has emerged as an industry leader. Consequently, the

various systems available are not compatible with one another and products from different

vendors are difficult to integrate. The adoption of a single, unifying standard is widely

recognised as crucial for home automation to evolve and gain wider acceptance [6, 11, 14].

It is easy to infer a causal relationship between these two sets of reasons; that a lack of

cooperation between industry players from the outset has resulted in a diverse offering of

products that have little or no ability to interact with one another, and uniting them under a

single, customised interface has become the domain of professionals, driving up the cost and

complexity. Because “technology evolves very fast and solutions not well established can be

supplanted by newer ones rapidly and easily” [6], perhaps this is the reason that consumers

have so far been reluctant to embrace home automation technology. For most people, buying

or building a home represents a significant, long-term investment. Therefore, making it

16

reliant on expensive technology with a potentially uncertain future is an unattractive

proposition.

2.2 Existing Technologies

2.2.1 X10 and INSTEON
The earliest home automation technology appears to be X10, developed in 1975 by Pico

Electronics in Scotland. X10 uses power-line signalling to link and control devices; a system

whereby the home’s existing mains wiring provides the communications medium and data is

sent in short bursts at the zero crossing of the AC signal. This provides advantages of low

cost and easy installation, plus the fact that the medium is already in place supplying power

to the devices that one might wish to control. Unfortunately, the mains provides an

inhospitable environment for information signals due to noise from the grid and local

interference caused by devices being switched on and off. Also, in instances where not all of

a premises’ power is supplied in phase, X10 cannot communicate over this phase gap without

additional equipment. In an effort to overcome the noise problem, the bandwidth of the signal

is restricted, but this results in a very low effective data rate of ~20bps and limits the

usefulness of the technology to basic control functions [1]. Furthermore, X10 is considered

unreliable, labelled “plug and pray” technology on account of there being no

acknowledgment of commands [15]. To that end, it has been largely succeeded by

INSTEON, although X10 devices are still in use and available today.

INSTEON provides compatibility with existing X10 devices, but improves communications

by providing an additional network medium (RF), increasing the data rate to 2880bps and

adding reliability mechanisms like acknowledgments and retries. It also supports a much

larger set of devices (65536 vs. 256) and commands (65536 vs. 16) [15].

2.2.2 CEBus and C-Bus
CEBus (Consumer Electronics Bus) was born in 1984 out of a standards movement in the US

to get various devices communicating using a common language over various media,

including power-line, twisted pair, infra-red and RF [1]. In the mid-90’s, it began to show

some promise [6], although support for the standard subsequently waned [1].

17

In Australia and New Zealand, an equivalent system is C-Bus, developed by Clipsal

Integrated Systems. It is a distributed system where devices are individually intelligent and

can communicate with every other device on the network to share status information.

Although wireless (RF) options are available, a wired C-Bus network requires extensive Cat-

5 cabling to link devices, which needs to be integrated into the home during construction

[16]. This combination of features contributes to a high overall cost, although performance

and capability is greatly improved over X10 and INSTEON.

2.2.3 Vantage
The Vantage home automation system is a product of Vantage Controls, Inc., based in Orem,

Utah. Vantage offers both wired and wireless solutions, but, unlike C-Bus, the system is

managed by a powerful central controller. Each controller supports a limited – albeit

reasonable – number of devices and controllers can be linked to extend the system if

necessary. They also provide Ethernet connectivity; however, a remote interface to the

system from the internet is only provided with the addition of specific software, running on a

dedicated PC connected to the controller. Ultimately, Vantage caters to the luxury market

[17].

In Auckland, AudioVisual Solutions promotes and sells the wired Vantage system, as well as

developing their own equipment to complement it. Examples include touch-screen wall plates

and control panels, which are priced around $900 and $4000-$6000 respectively.

2.2.4 Control4
Control4 was established in 2003 and is also based in Utah. Like Vantage, it is a centralised

system with various controllers available, but whereas Vantage caters to a niche, affluent

market, Control4 have capitalized on existing IP technology and focused on wireless

solutions to make home automation more accessible to the average homeowner. The result is

a system that combines ZigBee mesh networking for home control and Ethernet/Wi-Fi to

deliver multimedia content [13].

18

2.2.5 KNX
KNX was formed in 1999 out of the convergence of three previous systems; the European

Installation Bus (EIB), European Home Systems (EHS) and BatiBUS. Devices are either

sensors or actuators, but all use a common language to communicate. Since each of its

predecessors was designed around different communication media, KNX is able to

incorporate them all and thus supports twisted pair, power-line, RF and IP/Ethernet. It is also

now an international standard (ISO/IEC 14543-3) [18].

This is by no means an exhaustive list of all of the systems available, but provides an

overview of those relevant to the research and work done for this project. Other systems

include LonWorks, BACNet, HomePlug, ModBus, Z-Wave and EnOcean [19]. What this

intends to show is the diversity of the systems available, in terms of architecture,

functionality and target market, and reinforces some of the reasons suggested for limited

adoption of the technology.

2.3 Research Approaches
How best to overcome these barriers is still a matter for debate and research projects have

attempted to address the various shortcomings of existing technology in a variety of ways.

Since each of the established systems has its own advantages and disadvantages, it is

desirable to be able to combine elements of each. As a result, much focus is placed on how

best to integrate these systems and still provide a simple, generic interface to the user for

controlling them all.

[20] argues that a centralised architecture is problematic when trying to provide high level

management for multiple heterogeneous systems because of the number of protocols and

interfaces that must be handled by the central server. Instead, it promotes the use of protocol

gateways that are connected by a home network backbone. Mobile software agents are

dispatched throughout the network to gather status information and perform various

functions, under the control of a software platform known as the agent host. [9] presents a

similar approach, whereby end devices interact with “room bridges” and the bridges are in

turn connected via a home LAN. Clients can access the LAN and interact with the bridges to

obtain information about the sub-networks and interact with end devices.

19

The advantage to these approaches is that a failure of one of the gateways has no effect on the

rest of the system. Indeed, another criticism of centralised solutions is that they provide a

“single point of failure” [9]. However, a major disadvantage of distributed systems lies in the

amount of extra equipment required, which adds to expense, and their inherent complexity.

In the articles surveyed, centralised solutions were much more common and fairly consistent

in terms of their general architecture. [11] provides a typical example of a centralised system,

both in terms of the overall framework and the internal structure of the server. A home PC

hosts the server functions, including a web interface, hardware interface and a database to

maintain state and configuration information. All of these are then linked and supervised by a

management application. Thus, despite the arguments against a centralised architecture, it

would appear to be the much simpler option for implementing a home automation system in

terms of infrastructure, management, maintenance and hardware.

Such systems are often differentiated by the back-end network infrastructure employed or,

alternatively, whether they attempt to support and integrate a variety of network types.

Another point of differentiation is the user interface provided. [21] suggests that the “lack of

alternative control mechanisms” is a major weakness of many systems and so provides three

methods of control; remotely, via the internet or a GSM mobile phone, and locally by way of

speech recognition. Some research systems have very specific interfaces. [22] requires the

installation of client side software, called SMARTPC, in order to interact with end devices,

and [2] provides remote control via REMOTILE, an application designed for Java-enabled

mobiles only. Such targeted applications are examples of interface inflexibility, which was

highlighted as a problem earlier. With the internet now a mainstay of modern life, and the

rapid convergence of internet and mobile platforms, it makes much more sense to provide a

standard web interface instead.

2.4 Standards

2.4.1 OSGi
The Open Systems Gateway initiative is a middleware platform intended to facilitate

interoperability between applications and devices on heterogeneous networks. It is a

component-based, service-oriented architecture built upon a Java Virtual Machine. The idea

is to allow manufacturers, vendors, service providers and the like to develop software bundles

20

independently of one another, which are then able to interact by sharing details about the

interfaces and services they provide. By checking the platform register, a bundle can

dynamically discover other bundles that offer services it may wish to consume. Components

can also be reused and combined to form larger applications. To differentiate it from other

standards, the OSGi Alliance claims that this framework complements them, rather than

competing with them [23].

Research projects incorporating OSGi provide insight into the benefits of OSGi from

different angles. [14] focuses on providing remote access to e-Services offered by home

automation systems. It uses OSGi to deliver these via a residential gateway between the home

network and the internet. [24] proposes an integrated home server that combines the functions

of a PC, home gateway and set-top box into a single unit. The unit contains interfaces to a

variety of other systems as well as processing hardware to manage and deliver broadcast and

entertainment media. OSGi is suggested as the server's service gateway to allow modular

installation and replacement of software. [8] proposes a flexible system infrastructure to

allow the creation of smart, assistive environments for people with special needs. Focus is

placed on the software representation of devices so that smart spaces can be set up

programmatically. By using OSGi for its middleware, the wider system can be implemented

by developing OSGi bundles.

However, OSGi is not necessarily suitable in all situations. [25] notes that "platform

specificity" can be a problem, since OSGi is based on Java, and that inclusion of the Java

Virtual Machine imposes code space requirements that can limit its suitability for inclusion in

embedded devices.

2.4.2 ZigBee
The ZigBee Alliance is a worldwide group of companies that develops and promotes the

ZigBee standard. This standard aims to simplify the integration of wireless networking

capability into embedded devices and is particularly suited to home automation applications.

It is based on the 802.15.4 physical radio standard and ZigBee devices generally operate

within the unlicensed 2.4GHz band. Since this band is shared by a number of other wireless

systems, there is potential for interference with other devices. ZigBee inherently transfers a

low volume of packets, which minimises the potential for clashes in the first place, but

additionally is able to operate on 16 distinct channels and employs collision avoidance

21

techniques (CSMA-CA) to further ensure reliability. Altogether, it provides a cost-effective

way to wirelessly network everyday devices and, compared to other wireless standards such

as GSM, Wi-Fi and Bluetooth, it is able to offer significantly longer battery life and supports

much larger networks. However, it has a raw data throughput of 250Kbps, which is more than

adequate for home control applications, but is slower than Bluetooth and significantly slower

than Wi-Fi [26].

As an example of how ZigBee can complement and extend a wired home automation system,

[27] proposes a KNX-ZigBee gateway that performs address and data translation between the

two network types. This approach allows each network, as well as the gateway, to be

individually maintained. Similarly, [7] demonstrates a completely wireless home automation

system based on ZigBee and Wi-Fi, with a gateway to integrate those two networks. ZigBee

satisfies the low data rate requirements for home control while Wi-Fi is able meet the

demands for high-speed streaming of multimedia content. [7] also cites other key advantages

such as non-intrusive installation, the widespread deployment of Wi-Fi in homes1

 already,

and the coexistence of ZigBee and Wi-Fi networks with minimal interference.

2.5 Summary
The literature provides a number of possible reasons for the stifled acceptance of home

automation technology. Two key factors identified are the cost and complexity of available

systems. Researchers have tried to address these issues using a variety of approaches;

however, a centralised architecture appears to be the most common and the most favourable.

Generally, this consists of a home server and/or gateway, which comprises a web server and

other elements to manage the system. Given the ubiquity and popularity of the internet, it is

the logical platform for the user interface. Additionally, wireless technologies such as Wi-Fi

and ZigBee provide a highly effective and cost-effective network backbone over which to

deliver home automation services with minimal installation difficulty. Consequently, these

features form the basis of this Masters project.

1 The article refers specifically to UK homes

22

3 System Design
3.1 Project Framework
As just discussed, the project framework is built upon a central server platform. Each of the

end devices communicates with a central hub, or “home gateway”, which is comprised of a

ZigBee coordinator and Ethernet-enabled microcontroller. The user interface to the system is

provided by an Apache web server, closely coupled with a MySQL database to maintain

current state and history information. Lastly, the interface between the web server and the

system hub is provided by two programs that run on the server; server_actioner.cgi and

server_listener. Figure 3.1 provides a pictorial overview of the entire system.

Figure 3.1: Project framework

For the project, the home gateway is made up of a Microchip PICDEM.net2 development

board and a Maxstream development board connected via null-modem cable. The

PICDEM.net2 board is designed around the PIC18F97J60 microcontroller, with an Ethernet

connection, LCD display and various other inputs and outputs, and the Maxstream board

holds the ZigBee coordinator module. Together they provide a data relay service, forwarding

TCP/IP data from the web server to the ZigBee nodes and vice versa. The process for

controlling an end device remotely is as follows.

23

3.1.1 Remote Switching Process
Each switch displayed on screen is actually a web form where the form data is hidden and the

switch image is the submit button. The form’s target is a common gateway interface (CGI)

program, server_actioner.cgi – an executable file located in the cgi-bin directory on the web

server. The program, written in C, uses UNIX sockets to communicate with the home

gateway over TCP/IP and also uses a C API to give it access to the database. It extracts the

device id from the form data and looks up the address of the ZigBee module for the

corresponding device in the database.

That address is sent to the home gateway as part of a control message, instructing the

gateway microcontroller to place the ZigBee coordinator in command mode and set the

coordinator’s destination address. Once this has been completed successfully, an

acknowledgment message is sent by the home gateway back to the server program.

Upon receipt of the acknowledgment, the server program replies with a data message

containing the command to switch and the new setting, 1 for ON or 0 for OFF. No longer in

command mode, the ZigBee module simply forwards the data over-the-air to the destination

device where the command is carried out.

The end node responds in turn with an acknowledgment of the new state of the switch, which

is picked up by the home gateway and forwarded to the server. Server_actioner.cgi continues

by updating the database with the new switch state, recording an entry in the history table and

finally redirecting the browser to the previous web page. Each time the web page loads or

refreshes, it reads the current state of all devices from the database, so the new state of the

switch is displayed to the user. At this point, the program has run to completion and exits.

3.1.2 Local Switching Process
So what happens if one of the switches themselves is operated by somebody at home? As

mentioned at the beginning, there is a second program running on the server, server_listener.

This program is very similar to the first, although it runs constantly in the background rather

than being called by a web page. It communicates on a different port to server_actioner.cgi

and its job is simply to listen for incoming connections from the home gateway.

24

Figure 3.2: server_listener output

When a switch button is pressed, that switch sends a notification message to the home

gateway containing the switch id, the action performed and the new state of the switch, which

can be seen in the console output in Figure 3.2. The gateway recognises this message as a

notification and forwards the data on the correct port to server_listener. Like the CGI

program, server_listener has access to the database and updates the devices table and the

history table. However, unlike before, no acknowledgment is sent.

The reason for this is to keep the switch firmware as simple as possible. If the switch were to

expect an acknowledgment, allowances would have to be made in the microcontroller code

for situations where communication between the switch and the server fails. Getting data

from the USART is a blocking operation, meaning that nothing else is executed in the code

until the required data is received. If the server happens to be offline when the notification is

sent, the switch will wait indefinitely for incoming serial data. In the meantime, it is likely to

remain unresponsive.

Notifications serve the purpose of keeping the database up-to-date for remote users, but they

are not critical to the functioning of the system. A person who presses the switch to turn on a

light is only interested in having the light actually come on and being able to maintain manual

control over that light, regardless of the state of the rest of the home network. It is possible to

program in a timeout or other mechanism for dealing with a lost acknowledgment, but again

the emphasis is on keeping the switch as simple as possible.

3.2 Communication Protocol
The protocol used for communications between the server, home gateway and end devices is

not based on any standard. Instead, a simple protocol was established and implemented by the

author to meet the basic demands of the system.

25

3.2.1 Command Messages
Command messages have the format “C-XXXXXXXXXXXXXXXX”, where the Xs

represent a destination address to be written to the ZigBee coordinator. The address is a 16-

character hex string, representing a 64-bit address that the coordinator stores in two separate

fields; Destination Address High and Destination Address Low. The gateway microcontroller

recognises the “C-” prefix as address data for the coordinator, rather than data for an end

device. Consequently, it takes care of splitting the address string into its high and low

components, and places the coordinator in command mode. Any serial data that the

coordinator receives while in command mode is interpreted as such – a command – and not

as data to be transmitted.

3.2.2 Data Messages
Data messages have the format “D-AA-V”, where AA represents an action instruction and V

a value. Only two instructions have been implemented for the project; “SW”, the command to

“switch”, and “ID”, the command to load a switch with its database id. Possible switch

values during normal operation are 1 and 0, although 2 is used in other instances to denote a

fault or “undefined” state. The valid range of ID values is 0 to 255. This requires special

consideration because end devices are programmed to accept only one value character. In

binary, values over this range can be represented by 8 bits, the same number of bits used to

represent a single ASCII character, so the solution is to cast the id value to a character before

sending it.

The gateway microcontroller strips away the “D-” prefix and hands off the data to the ZigBee

coordinator. At this point, the coordinator is no longer in command mode and completely

transparent to the PIC. Any serial data it receives is transmitted over-the-air to the destination

ZigBee module.

3.2.3 Notification Messages
Notifications follow the format “N-I-AA-S”, where I is the device id, AA is the action code

and S is the new state of the switch. There is one type of notification, however, that doesn’t

follow this format. When a device comes online, it sends an advertisement message to the

26

server. This feature was added as an afterthought, when the wider project framework was

already well established, and thus it is somewhat clumsily implemented. The advertisement

message contains the device address, which is really the address of the ZigBee module

contained in that device, except that the first two digits of the address, which are generally

“00”, are overwritten with the characters “AD” instead. The server program, server_listener,

recognises this and replaces the zeroes when receiving the message.

3.2.4 Acknowledgement Messages
All communications are generally acknowledged by an “OK” message, indicating successful

receipt of the previous message and any tasks associated with it. “ER” is used to signal a

negative acknowledgement, or nACK, when an action fails. A nACK might be expected

when a switch has gone offline. If a remote user commands a switch via the web page, the

home gateway blindly forwards the request to the end node and waits a short amount of time

for it to acknowledge. If the acknowledgment from the switch times out, the home gateway

will respond to the server with “ER”. There are, of course, numerous other situations that can

result in errors.

End nodes actually acknowledge with one extra piece of information – the new state of the

switch. To confirm that a switch has been turned off, the acknowledgement message is

“OK0”. Similarly, “OK1” confirms that a switch has been turned on. The home gateway

passes on this extra information in its acknowledgement to the server.

3.2.5 Server Disconnect Signal
The final element of the protocol is the character combination “^Z”. It is used by the server to

signal to the home gateway that it is about to close the TCP/IP connection. In practice, it

serves no real purpose since the home gateway automatically detects when the socket is

disconnected, but it is included as a kind of “goodbye” message to conclude the dialogue.

3.2.6 Command Mode Protocol
Where it is necessary to communicate directly with the ZigBee module (i.e. in command

mode), those interactions are governed by a protocol outlined in the module’s datasheet. To

27

place the module in command mode, the required character sequence is “+++” with no other

characters transmitted before or after within a specified guard time. All commands are

prefixed with AT, followed by a 2-character combination denoting a particular command.

These are followed by an optional space and hex value, to set a parameter, and terminated

with a carriage return, ‘\r’ [5].

3.2.7 Communication Overview
Figure 3.3 illustrates the typical dialogue between system elements when turning on a switch.

‘\0’ should be interpreted as the null character.

Figure 3.3: Space-time diagram of system communications

28

4 Server Design
4.1 User Interface
The user interface to the system is provided over the internet or a local area network (LAN)

by a web server. Any user with a computer or web-enabled handheld device, like an iPhone,

can access the system remotely. The server platform is provided by MAMP, shown in Figure

4.1, which stands for Mac-Apache-MySQL-PHP. Indeed, the project web site is hosted on an

Apache server, running under the Mac OSX Leopard operating system on an Apple

MacBook. All of the web pages are written in PHP and all data is stored in a MySQL

database.

Figure 4.1: Main MAMP window

4.1.1 Security
The web server offers full management and control of the entire system, which requires a

number of steps to safeguard its integrity. It is beyond the scope of the project to implement

all of the measures necessary to guarantee system security, but the web interface does include

some basic security features to protect against misuse by unauthorized or malicious users.

Firstly, the site is secured using SSL to deliver the pages over an encrypted link. Secure sites

communicate on port 443, instead of port 80, and are identified by the URL prefix https:// and

a padlock symbol. They use certificates to guarantee their authenticity, which would normally

be issued by a trusted certificate authority for a fee, but the Mac OSX operating system has

the facilities to create certificates as well. Since the issuer in this case is not trusted by

default, on a user’s initial visit to the site they are presented with the screen in Figure 4.2.

29

Figure 4.2: Certificate warning (Internet Explorer 8)

In the context of the project, it is safe to continue. The browser address bar continues to

indicate a problem with the certificate, although this can be worked around by installing it in

the browser so that the issuer is trusted. Figure 4.3, below, shows how the address bar is

displayed in each of these situations.

Figure 4.3: Address bar indications for certificate error and secure browsing (Internet Explorer 8)

4.1.2 User Authentication
The next level of security is a login screen. Authorized users can access the system with a

username and password. The details for each user are stored in the database, although as a

further security measure the hash value of the password is stored and not the plaintext

version. Even an administrator who has direct access to the database would be unable to read

it. Likewise, the password is masked on screen when the user types it in, as shown in Figure

4.4.

30

Figure 4.4: Login window

The system authorizes users and enforces user privileges through a combination of sessions

and cookies. A session is created as part of the login process and a unique session id is

generated that is stored in a session cookie on the remote machine. If the remote user

provides valid login credentials, the same id is assigned as the value of an authorization

cookie, also stored on the remote machine. All protected pages compare the current session id

with that stored in the authorization cookie and deny access where there isn’t a match.

A failed login attempt causes the user to be returned to the login page, where they can try

again. Any attempt to circumvent the login process by calling a protected page directly from

the address bar also redirects the user to login, since the remote user won’t have a valid

authorization cookie.

4.1.3 Control Centre
The Control Centre page offers switchboard access to all users, and additional management

options to users with administrative privileges.

31

Figure 4.5: Control centre options for admin user

The Control button in Figure 4.5 links users to the switchboard page, which is discussed next.

Standard users see only this and the logout button. The Manage button links to a page that

allows administrative users to add and remove devices and users. Finally, the History button

links to a page showing a table of past actions.

4.1.4 Switchboard
The Switchboard page presents users with a table of all devices in the system. Figure 4.6

shows the switchboard page for the project setup, with two available switches. At this time,

the only device type is a switch and each switch is represented by a clickable image that

reflects its current state. In normal use, the image changes to mimic the appearance of an

actual switch as it is turned on and off, although the change is somewhat subtle. The current

state is also shown below the image in plain, colour-coded text for extra clarity, and the

number displayed above each switch is its database id.

32

Figure 4.6: Typical switchboard display

4.1.4.1 Offline Switches

When a switch is first connected or added to the system, its status appears as OFFLINE and is

depicted by a stop hand graphic, as in Figure 4.7. This indicates that the system is aware of

the switch – there is an entry for it in the database – but it has not yet communicated with it to

determine its current state. A switch will also appear offline if it has previously failed to

acknowledge a remote request and serves as a warning to the user that there may be a fault.

Figure 4.7: Offline switch indication

An attempt to establish communications with the switch is made by clicking the image. The

server sends a message confirming the device id so that the switch can save it in memory, and

33

the switch responds with its current state. If no response is received, the status remains as

OFFLINE and the process can be repeated.

4.1.5 Alert Boxes
Another failure scenario could be that the home gateway goes offline, or there may be a

problem accessing the database. The server_actioner.cgi program is able to detect many of

these situations and present the user with a JavaScript alert box containing information about

the nature of the problem, which can aid in troubleshooting.

Figure 4.8: JavaScript alert box

4.1.6 System Management
The System Management page, in Figure 4.9, displays a list of the current devices in the

system and a list of authorized users. The lists are presented as tables and the last row of each

table contains a form where data for a new entry can be added.

34

Figure 4.9: System management page

4.1.6.1 Adding/Removing Devices and Users

If a new device or new user is added, the actual addition to the table is performed by a

separate PHP page – add_device.php or add_user.php as the case may be. Figure 4.10 shows

the form fields in the third table row filled out, ready for a new device to be added. The form

is checked to ensure that all of the required data has been entered and failure to complete a

field results in a JavaScript alert, similar to that shown in Figure 4.8. However, at the time of

writing, the fields are not yet checked to see if the data they contain is valid for that particular

field, something that is equally important.

Figure 4.10: Devices table with completed form data

Each table entry has an icon in the last column, which is actually a button that can be clicked

to remove that entry. Again, add_device.php and add_user.php are called to perform this

35

action. As a guard against unintentional deletion, a JavaScript confirmation box appears that

allows the user to confirm or cancel the action before it is committed, like that in Figure 4.11.

Figure 4.11: JavaScript confirmation box

4.1.6.2 Managing Users

The Users table shows an icon in the password column. No feature is currently attached to

this icon; rather, it is used as an indication that the password is hidden or protected. The

Admin column displays whether or not a user can make management changes to the system

and a new user is provided with administrative privileges by checking the box in the form

field. Leaving it blank adds them as a standard user who can control switches via the

switchboard, but not make any other changes.

Figure 4.12: Users table

A final point of note about the Users table is that the “admin” entry lacks a button to remove

it, as Figure 4.12 shows. This administrative user is included as a default, master user, with

the intention of preventing any other administrative user from accidentally (or otherwise)

deleting all users from the table and rendering the system inaccessible. Unfortunately, this

approach creates a security issue. Since the “admin” user exists by default and with a default

password, anybody can simply log in to the system and gain full control. One obvious

36

solution to this problem is to allow the default password to be changed. This remains to be

implemented.

4.1.7 Event History
The History page simply replicates the contents of the history table in the remote user’s web

browser.

Figure 4.13: Event history page

The screenshot in Figure 4.13 shows only a few entries as an example, but there are currently

no limits imposed on the amount of data that can be stored. As a result, the table can become

quite large very quickly, requiring the user to scroll down to the bottom of the table to view

the most recent entries. This issue will be touched upon again in a later section, but the

problem is at least addressed to some degree on the web page in its present form. The back

button, originally displayed only at the bottom of the page, is now included at the top as well,

making it easier to navigate away from the page without having to scroll down. Also, the

entire history can be deleted by pressing the Clear history button.

When a remote user makes a request, their username is passed to server_actioner.cgi. It and

the other details of the request are recorded in the History table once the action is completed.

37

When a person physically operates the switch, the notification is handled by server_listener

and recorded, though it can’t be known who has actually pressed the button. In such cases,

the user is recorded as UNKNOWN.

4.2 Database
The database contains three tables; one for authorized users, one for devices and one for

recording the event history.

4.2.1 Users Table
Relevant information about users that can access the system is stored in the auth_users table.

Table 4.1: MySQL description of auth_users table

Field Type Null Key Default Extra

id tinyint(3) unsigned NO PRI NULL auto_increment

f_name varchar(50) NO NULL

l_name varchar(50) NO NULL

username varchar(25) NO UNI NULL

password varchar(75) NO NULL

admin tinyint(1) NO 0

The user id in Table 4.1 is the table’s primary key. It is of type unsigned tinyint, which stores

8-bit values over the range 0-255 and is the smallest practical data type available. Since the

primary key must be unique, this should limit the number of users in the system to 256, but

the effective limit is actually 255 because the first entry is always assigned a value of 1. Each

time a new user is added, MySQL will automatically assign the next available value courtesy

of the auto_increment parameter.

It should be pointed out, though, that auto_increment only ever increases the value

monotonically, so that when users are deleted from the table their id numbers are not

reassigned. This could prove problematic if the turnover of users is high; once the numerical

38

limit is reached, attempting to add further users results in an error. It is also a highly wasteful

use of a limited database resource.

Id numbers can be reused if they are manually assigned, but this adds an unnecessary

additional complexity for the user as well as introducing other potential problems. Indeed, it

can be argued that the id column is completely redundant in this context, since the username

column must also be unique and therefore serves quite adequately as a primary key in its own

right. The table structure and the way logins are processed by the server borrows heavily

from [28], which includes an id as primary key, but does not impose the unique constraint on

the username. In retrospect, the id column could (and probably should) be removed from here

entirely.

The password field is noticeably longer than the other fields, able to take up to 75 characters.

It is not anticipated that any user would ever create a password even nearly that long, but it

must be remembered that the stored password is actually a cryptographic hash of the user’s

chosen plaintext password. Under current versions of MySQL, the password function

generates 41-byte values [29]. The varchar data type is stored as one or two length bytes

followed by the data [30] and so it doesn’t make any appreciable difference in terms of

optimization to specify varchar(75) as opposed to, say, char(41).

The admin column is the only one that specifies a default value. In the add_user.php code,

this value is explicitly provided in the query to add a user, regardless of whether the value is

0 or 1. The default value is there only as a reminder that, in most cases, new users should be

given only standard privileges.

4.2.2 Devices Table
The devices table stores information about each overall end device as well as the

communication parameters of the ZigBee module contained within it.

Table 4.2: MySQL description of devices table

Field Type Null Key Default Extra

id tinyint(3) unsigned NO PRI NULL auto_increment

address varchar(16) NO UNI NULL

39

pan_id varchar(4) NO 3332

channel varchar(2) NO C

node_id varchar(20) NO NULL

type_id tinyint(3) NO 0

state tinyint(3) NO 2

Table 4.2 shares some properties with the auth_users table, such as the id field as primary

key. It also prescribes a second unique field for the 64-bit address of the ZigBee module.

Unlike previously, the existence of the address field does not render the id field unnecessary

in this case. Each end device is made aware of its corresponding database id and stores this in

memory. The id is also included in all notifications to the server. Since the device id requires

only one byte, as opposed to eight for the address, it is much smaller and easier to store in

memory, and reduces communication overhead.

4.2.2.1 ZigBee Communication Parameters

ZigBee modules will only communicate with one another if they are on the same channel and

have the same PAN ID. ZigBee devices in New Zealand operate in the 2.4GHz band, which

is shared with many other RF devices, such as Wi-Fi networks and some cordless phones.

Interference from such devices is always a possibility and changing channels is one way of

mitigating this problem. The PAN (Personal Area Network) ID is a way of further confining

the communication to a select group of devices, akin to a SSID for wireless networks.

In a typical residential installation, a homeowner would select a PAN ID for the household. A

neighbouring house, if installed with the same system, would have its own household

network with a different PAN ID, so there is no conflict between devices in either location.

For the purposes of demonstrating the project, default values have been set of channel C and

3332 for the PAN ID.

4.2.2.2 Node Identifier

The node_id field is intended to store a human-friendly name for each end node that would

make it readily identifiable to the user. If a switch is one of two deployed in a living room,

40

for example, then its node_id might be “LivingRm SW 1”. A user is free to give any name

they please to a device, provided it is 20 characters or less. This restriction is in line with the

ZigBee module parameter, Node Identifier, which holds a 20-character ASCII string. The

intended purpose of this parameter is to be able to look up a node using its identifier and

obtain its 64-bit address [5], similar to obtaining an IP address from a domain name via DNS

resolution. This feature isn’t utilized in the current project framework, but may prove useful

in future development of the system.

4.2.2.3 Device Type

The type_id is used to identify the type of device being controlled. The only device type

developed and tested for the project is a simple switch, with value 1, but as more devices are

created they can be assigned their own type_id. Ultimately, each end device should have its

type_id in read-only memory and send this data as part of its advertisement to the server so

that the system is made aware of its capabilities. At the time of writing, however, the only

manner in which this id is used is to group devices by type in a single table row on the

Switchboard page of the web interface. 256 device types are possible, given the data type,

and the default value is 0, for an “undefined” device.

4.2.2.4 Device State

The default state when a switch is added to the system is 2. During normal operation, a

switch can be either OFF (0) or ON (1), and any other value indicates a fault or error of some

kind. The value 2 was arbitrarily chosen to represent an unknown or OFFLINE state, largely

because it is the next number after 1. As the data type is not unsigned on this occasion, it is

possible to have negative state values and -1 could just as easily be used.

Future devices may make use of the full numerical range of the data type, from -128 to 127,

to control analogue settings like temperature, dimming, or the drawing of curtains or blinds.

4.2.3 History Table
When an event occurs, a record is saved in the History table of the database. The table

records the id of the switch affected, the two-letter code of the action performed, the new

state of the switch and, where the action is performed remotely, which user made the request.

41

Each data type in Table 4.3 obviously reflects that of the corresponding field in one of the

previous tables.

Table 4.3: MySQL description of history table

Field Type Null Key Default Extra

time timestamp NO CURRENT_TIMESTAMP

id tinyint(3) unsigned NO NULL

action varchar(2) NO NULL

state tinyint(3) NO NULL

user varchar(25) NO NULL

4.2.3.1 Timestamps

The time field records the date and time at which the action was performed. More precisely, it

is the timestamp of the exact moment at which the database query is made that records the

event in the History table. Since this coincides with the performance of the action, or with the

receipt of a notification immediately following an action, it is essentially the same time. The

system itself has no concept of time and no value is passed for this field in the query. Instead,

MySQL takes care of the timestamp automatically, hence the default.

42

5 Home Gateway Design
5.1 Programming the Microcontroller
At the core of the home gateway is the PIC18F97J60 microcontroller, whose sole

responsibility is to interpret the information it receives and forward it to the correct

destination. In doing so, it must translate between TCP/IP data coming from the server and

serial data going to the ZigBee coordinator, and vice versa.

5.1.1 Microchip TCP/IP Stack
Critical to achieving this functionality is the Microchip TCP/IP Stack, “a suite of programs

that provides services to... or can be used in a custom TCP/IP-based application”. The various

services are layered in accordance with the TCP/IP Reference Model, where functions

available at the top layer rely on the services provided by the layers below. Tasks are called

upon in turn to perform whatever processing they need to in as quick a time as possible and

larger tasks are subdivided so that the system is not held up for too long [3].

The PICDEM.net2 development kit shipped with stack version 3.75, which has been

upgraded for the project to version 5.10. An example application is included with the

software suite that demonstrates many of the features offered by the TCP/IP stack and allows

various stack modules to be easily enabled and disabled from within the code. This demo

application forms the basis of the home gateway software.

Two additional software modules have been created for the project, making use of the

TCP/IP stack and also some of the other output features of the development board to

implement the required functionality of the home gateway.

5.2 TCPHandler Module
The first of these, TCPHandler, is responsible for communicating with the server. It listens

for connections on port 3456 and handles remote requests that come from the server via the

Ethernet connection. In keeping with the cooperative multitasking paradigm, the TCPHandler

function is set up as a finite state machine. The three possible states – home, listening and

43

processing – are contained within in an enumerated type, _TCPHandlerState, which is static

so that the current state persists between calls to the function.

5.2.1 Handler States
The handler begins in the home state when called for the first time and creates a socket on

which to listen for incoming connections. Once initialized, the state is changed to listening

and the function returns.

On subsequent calls to the function, the handler remains in the listening state until a

connection is made. In fact, even after a connection is established, the listening state persists

until some TCP/IP data is received and buffered. Only then is it advanced to the processing

state.

Much of what happens during processing is covered in the earlier section dealing with

protocol. The handler examines the two-character prefix of the received message to

determine what kind of data it contains and then proceeds as necessary.

After a particular communication from the server has been processed and acknowledged,

TCPHandler returns to the listening state. A single request to switch involves three separate

communications from the server and each communication requires two calls to the handler –

one to receive the message and one to process it. Thus, the relatively large task of operating

the switch is broken into a number of smaller tasks that take less time. The entire operation

requires six calls to the handler and control is returned to the main function after each one.

5.2.2 Managing Error Situations
Along the way, there are a number of situations possible that can give rise to errors and the

handler must be able to recover from these and respond accordingly.

One easy way of signalling an error is to raise an error flag. The PICDEM.net2 development

board has eight LEDs connected to various microprocessor outputs and each of these is

represented by a variable in the code. An LED is controlled by setting the corresponding

variable to 1 or 0, for on and off respectively. Using these variables as error or condition flags

makes the job of development and debugging much easier, since the LEDs provide a visual

indication of the current situation.

44

Figure 5.1: LEDs located below the LCD display

Figure 5.1 shows the eight LEDs arranged in a row below the LCD and, treated as a byte, the

leftmost LED is bit 7 and the rightmost is bit 0. The variable names follow the format

LEDx_IO, where x is the bit position. LED0 is already in use by the demo’s main function,

flashing on and off every half second when the system is operating normally. Should the

program become stuck somewhere, this LED stops flashing and in doing so provides a

critical error indication. Table 5.1 summarises the specific conditions indicated by LEDs 1, 2,

3 and 4.

Table 5.1: LED variable assignments

LED1 Connection flag 1 = TCP/IP connection active
LED2 Command mode flag 1 = Coordinator is in command mode
LED3 Coordinator error 1 = Error while communicating with coordinator
LED4 End device error 1 = Acknowledgement from end device timed out

The connection flag is set whenever the socket accepts a connection from the server and is

cleared again when the server ends the connection, or if the connection is dropped.

The character sequence “+++” must be entered within certain time constraints to place the

coordinator in command mode [5]. When successful, the coordinator replies with an OK

message. At this point, the command mode flag is set. It is cleared when the coordinator

responds OK to the Exit Command Mode (ATCN) command.

If at any point during the command mode dialogue the coordinator responds with an ERROR

message, or if the coordinator fails to respond at all to the “+++” sequence, the coordinator

error flag is set.

45

The error flag is used in if-else conditional statements to halt further processing where

appropriate. For example, there is little point in sending address information to the

coordinator if it has failed to enter command mode. Similarly, it is expected that neither the

command mode nor coordinator error flags will be set at the point where the gateway

acknowledges the server. If either is set, the gateway returns an “ER” message.

After the gateway relays data to a switch, it expects to receive an acknowledgment within two

seconds. TCPHandler actually stops listening after this time and raises the end device error

flag. Again, this results in an “ER” reply to the server.

It should be emphasized that some of these flags are set and cleared very quickly, both during

normal operation and when there is a problem. Once the handler has acknowledged the

server, there is no need to keep any flags set and they are indeed cleared in the process. Thus,

although it is said that the choice of variables to coincide with the LED outputs is a deliberate

one, the visual indications provided by the LEDs is mostly beneficial during development

only. The flags are for the benefit of the handler and not the user.

5.3 UHandler Module
The second software module, UHandler, is also implemented as a finite state machine. Its

purpose is to listen for notifications, which come via the coordinator through to the USART

interface. The handler then opens a connection to server_listener on port 3490 and passes on

the data using TCP/IP.

5.3.1 Handler States
There are four states, enumerated as SM_LISTENING, SM_NOTIFYING1, SM_NOTIFYING2

and SM_NOTIFYING3. Most time is spent in the listening state, where the handler queries the

USART to see if there is any data waiting. If there is, it allows one quarter second to read in

the data one character at a time.

5.3.2 Receiving Serial Data
The reason for this approach, as opposed to simply reading n characters at a time, is that the

length of the incoming string is not known in advance. A notification from a switch generally

46

contains 8 characters, but an advertisement message has 17, including the null character. If

the getsUSART function looks for 17 characters and receives only 8, UHandler will wait

indefinitely for the remaining characters to arrive, effectively locking up the gateway.

Conversely, if it requests only 8 characters and receives an advertisement message, that

message will be treated as three separate notifications, confusing the server.

The UHandler routine must also adhere to the guidelines for cooperative multitasking, hence

the need to impose a time limit on acquiring the message data. One quarter second is more

than enough to receive either type of message and still short enough so as not to hold up the

other gateway processes unnecessarily. When data is received, the state advances to

SM_NOTIFYING1.

5.3.3 Notifying the Server
In this state, the handler sets up the socket to connect to the server and then sets state

SM_NOTIFYING2. The connection is not completed yet because a number of other stack

processes must also take place to help establish it. These are completely abstracted from the

user and are another example of cooperative multitasking at work.

UHandler will persist in the SM_NOTIFYING2 state over however many calls to the function

it takes to complete the connection, up to a maximum of 5 seconds. Once established, the

handler transfers the received serial data to the TCP/IP socket and sends it to the server.

When this is finished, or if the pending connection times out, the handler changes state to

SM_NOTIFYING3 and the socket is disconnected. The state then returns to SM_LISTENING,

ready to accept more notifications.

5.4 LCD Display
One final aspect of the two handler routines is that they both update the LCD display on the

PICDEM.net2 board. The most recent event is displayed on the top line with the event before

it displayed on the bottom line. As new events take place, the top line is copied to the bottom

and then overwritten by the new message. Five different event types are displayed.

When an instruction comes from the server and is executed without any problem, the LCD

shows “TCP Request”. If, on the other hand, the gateway does not recognise the prefix of the

47

message data, it cannot act on any information contained in the rest of the message and so

discards it. In this case, the LCD indicates that “Invalid data” was received. These messages

are generated by the TCPHandler routine since they pertain to data coming from the server.

UHandler is responsible for echoing notifications to the display. Both general notifications

and advertisement messages from an end device are displayed in the same format as they are

received (see Protocol section). In the event that the handler cannot recognise the notification

type from the prefix, it does not pass the information on to the server. Instead, it writes

“Unhandled notif.” to the LCD.

Figure 5.2: LCD display at start-up

Figure 5.2 shows the text displayed on the LCD when the gateway is powered on or reset.

The top line shows the version of the TCP/IP stack in use and the second line displays the

gateway’s current IP address. While the stack software supports Dynamic Host Configuration

Protocol (DHCP), this address has been statically assigned and is hard-coded into the

server_actioner program in order to keep the code and the setup as simple as possible.

5.5 Gateway Architecture
Finally, Figure 5.3 illustrates the overall architecture of the home gateway in terms of the

functional components described in this chapter. In summary, the Microchip PIC18F97J60

and ZigBee provide the key hardware platforms. Residing on the next level are the various

interfaces. The Microchip controller hosts the TCP/IP stack, which in turn provides a

software interface for the two handler routines. The rest are hardware and communication

interfaces, of which the serial (RS232) link is key. It bridges the communications between the

server over Ethernet and the end devices over RF, and it provides a means of integrating the

two hardware platforms into a single product – the home gateway.

48

Figure 5.3: Gateway architecture

49

6 Switch Design
6.1 First Switch: Hardware Design
The overriding design constraint for the wall switch is that it must be compatible with

existing mainstream switches. That way it would simply replace an existing switch without

the need for any changes to the wall fittings or to the wiring. To accommodate the circuitry, a

mounting box was purchased, which provides an extra 36mm space between the wall and the

switch plate.

Figure 6.1: Mounting box

The internal dimensions of the mounting box, shown in Figure 6.1, are 73x58mm. These

dimensions were used for the printed circuit board, the design of which was undertaken first

on paper, then finalized using Altium. Figure 6.2 shows the completed Altium design.

Additionally, the circuit schematic can be found in Appendix A.

50

Figure 6.2: PCB layout of first switch

Some key features of the original design are:

• Red power indicator

• Green multi-purpose indicator

• IC programming header

• Reset button

6.1.1 Power Supply
The original design was intended as a prototype, to prove the concept as well as to provide a

starting point from which to refine and further develop the design. This intention is evident

by the inclusion of a 12VDC header. Power to the board is provided by a standard plug-in

power supply, which would not be practical for a final product and strays from the objective

of requiring only existing mains wiring to operate.

51

6.1.1.1 Supply Voltages

As mentioned in the introduction, the minimum supply voltage for the PIC18F1220 exceeds

the upper limit specified for the ZigBee module. Fortunately, testing and practice have

revealed that the PIC will still operate reliably at voltages below the recommended value and

the decision was made to supply the circuit with ~3.4V in line with the ZigBee maximum.

The PIC’s supply voltage also determines the maximum output voltage on any of the IO pins,

which is VDD+0.3V, with the ability to source up to 25mA of current. Unfortunately, these

parameters are not sufficient to drive the relay, which has a 12V coil and requires

approximately 40mA of current.

This problem is solved by supplying the board with 12V and using a voltage regulator to

reduce this to 3.35V to supply the PIC and the ZigBee. A single transistor – in this case, a

2N3904 NPN general purpose amplifier – is used to allow the smaller voltage from the output

pin of the PIC to switch on the higher voltage to the relay. The output pin is connected to the

gate of the transistor via a 10kΩ resistor and negligible current is drawn from the PIC.

6.1.2 LED Indicators
The red power indicator does what its name implies; it lights as soon as power is supplied to

the control circuit. If this light is off, it could indicate a blown fuse or tripped circuit breaker,

a power cut, a fault with the home’s internal wiring, or a fault with the switch circuitry itself.

The green indicator is connected to one of the IO pins on the microcontroller, so its function

can change depending on how the microcontroller is programmed. During development of

the switch firmware, this indicator was made to toggle on and off to show that the

microcontroller was operating normally. Alternatively, the green indicator could be used to

provide visual feedback to the user of the current state of the switch.

6.1.3 Programming Header
The programming header is interfaced with the programming pins, PGC and PGD, on the

microcontroller. This allows reprogramming of the microcontroller in-situ, using an In-

Circuit debugger, such as Microchip’s ICD2. Since this circuit design is based around a dual

inline package (DIP) microcontroller, which can be easily removed and reinserted, being able

to program the chip directly on the board is not essential. Indeed, the programming header

52

also takes up valuable space and complicates the circuit design. If a surface-mount IC were to

be used, the programming header would become a much more valuable addition, especially

in the absence of some mechanism to reprogram the IC remotely. At this stage in the

development, the presence of the programming header further reinforces the circuit’s position

as a prototype rather than a final design.

6.1.4 Reset Button
The reset button is a small momentary push-button switch that pulls the 𝑀𝐶𝐿𝑅�������� (master clear)

input on the microcontroller to ground potential, thus returning the microcontroller to its

power-on configuration and restarting execution of the firmware from the beginning.

6.1.5 ZigBee Module Pin Connections
The ZigBee module is connected to power and ground, and the DIN and DOUT pins are

connected to the PIC for serial communication between the two devices. Provision has been

made on the board to jumper a connection to the ZigBee’s 𝑅𝐸𝑆𝐸𝑇��������� pin so that pressing the

reset button causes both the microcontroller and the ZigBee to be reset at the same time. This

feature remains unimplemented, though, since it was only necessary to reset the

microcontroller while testing iterations of the firmware. The ZigBee module is configured

using a program called X-CTU, which allows changes to various settings, but it was not

(re)programmed in any way for the project.

6.1.6 PIC18F1220 Microcontroller Pin Connections
Similarly, the PIC microcontroller is also connected to power and ground, and to the ZigBee

via pins 9 and 10, which are the USART transmit and receive pins respectively. Pin 1 (RA0)

is configured as an input and is connected to the wall switch, which is a low-voltage

momentary push-button type. The input is normally high and pressing the switch pulls the

input low.

Pin 2 (RA1) is configured as an output and drives the relay via a transistor as described

above. Pin 4 is the 𝑀𝐶𝐿𝑅�������� pin, an active low input, and connected to the reset push-button as

53

described previously also. Pin 6 (RA2) is configured as an output and connected to the green

LED.

Figure 6.3 shows the completed circuitry based on this design, with each of the main

components clearly visible. The reset button is located next to the blue header, which

provides a connection point for low-voltage wiring coming from the wall switch. The green

header provides the connection point for the mains wiring.

Figure 6.3: Completed hardware assembly of first switch

6.2 First Switch: Software Design
The PIC18F1220 has an 8MHz internal oscillator block [4]. The first few lines of firmware

code define some of the operating parameters of the microcontroller, including selection of

this internal oscillator as the system clock. Two interrupt service routines are defined next;

one high-priority ISR for the UART receive interrupt and one low-priority ISR for the timer

interrupt, though these will be covered in more detail later. A complete listing of the code can

be found in the Appendix.

6.2.1 Initialisation
Since the internal oscillator can be configured for a number of different frequencies, the first

two lines of the main function set it at 8MHz. Next, the PORTA register is zeroed and the

various microcontroller pins that make up PORTA are configured for either input or output.

All of the inputs and outputs discussed previously exist on pins that are part of PORTA and

all of these pins are set up as outputs, except for RA0 and RA5. RA0 is the input from the

54

wall switch and RA5 is on the same pin as 𝑀𝐶𝐿𝑅��������, which must always be an input [4]. An

output pin is set (high) by writing a value of one to its corresponding PORTA bit, or cleared

(set low) by writing a zero. An input value is obtained by reading the value of the

corresponding bit. Since we are dealing with digital signals, either ON or OFF, the ADCON1

register is set to treat all PORTA inputs accordingly.

The OpenUSART function configures the PIC’s serial interface. It is configured for 8-bit

asynchronous communication at a baud rate of 19200 to match the communication

parameters of the UART interface on the ZigBee module. Additionally, the receive interrupt

is enabled. This allows the program loop to be interrupted whenever any serial data is

received so that it can be acted upon immediately.

The next few lines of code are responsible for configuration of the interrupts. Since we are

using more than one interrupt, one for the reception of serial data and one for the timer, the

interrupt priority bit is enabled. The receive interrupt is given a high priority while the timer

is given a low priority. This is important since the timer is only being used to flash the green

LED to indicate that the microcontroller is working properly and is not critical to the actual

switch function. In the event that the timer interrupt occurs and serial data is received, the

latter will take precedence.

6.2.2 Interrupt Service Routines
At this point, the interrupt service routines will be looked at in more detail. The low priority

interrupt deserves only a passing mention. When Timer0 overflows, control passes to the low

priority ISR, which invokes the function, tmr_handler. The function causes the green

indicator LED to be toggled either on or off via the output bit, RA2. It then clears the Timer0

interrupt flag before control is returned to the main program loop.

The high priority ISR invokes the function, rx_handler, whose first task is to capture the

incoming serial data. The data is then parsed for an action command and a value. During

normal operation, the expected command would be the switch command, SW, with a value of

either 1 or 0 to switch the light on or off. Once the output has been switched accordingly, the

program then responds with an acknowledgment reflecting the new switch state, or an error if

the received value is not valid.

55

Another valid command is ID to set or update the switch’s ID. The value corresponds to the

id entry for that switch in the devices table in the database and is stored in FLASH memory at

location 0x000FF0. Since FLASH memory is non-volatile, the microcontroller ‘remembers’

the ID even if the switch loses power. Again, the program responds with an acknowledgment

of the current switch state, obtained by reading the current value of RA1. Finally, the

interrupt flag is cleared and control returned to the main program loop.

It is important to note that when an interrupt occurs, further interrupts are disabled. An

exception is that a high priority interrupt will interrupt a low priority interrupt, but that high

priority interrupt then disables all further interrupts until it is finished. If a second high

priority event occurs (i.e. more serial data is received) while the high priority ISR is being

executed, the second incidence will be ignored.

6.2.3 Main Software Loop
The last element of the code is an infinite loop that polls for a change in the value of RA0. If

RA0 is not set, this is an indication that the switch button has been pressed. The immediate

response to this is to toggle the output to the relay. If the light is currently switched off, the

RA1 output will be set and the relay coil energised so that the light comes on. Conversely, if

the light is currently on, the output bit is cleared and both the relay and light will be turned

off.

Following the change, a notification is sent via the USART to the server, announcing the ID

of the switch and the new state of the switch so that the database can be updated. The ID is

read from address 0x000FF in FLASH memory, where it has been previously stored.

6.2.3.1 Delay Function

The very last line of code invokes a delay of one million clock cycles following the

notification. This serves two similar, although distinct, purposes. The primary purpose is to

combat the effect of switch bounce. When the push-button is pressed, for a very brief period

as the switch closes, the electrical connection is made and broken a number of times very

quickly. The same thing happens when the switch is released. In normal situations, this is

inconsequential since the transient connections occur far quicker than a human being can

perceive them. However, the microcontroller is fast enough to be able to detect and react to

56

these rapid changes. The result is that the PIC may toggle the output a number of times as a

result of a single press of the button, with little actual control over the final state.

The second reason for the delay reinforces the first. Assuming that an average press of the

push-button switch lasts for one tenth of a second, the PIC is able to poll and respond to the

input a number of times in that period of time. Including a reasonable delay prevents the PIC

from polling the switch input again while it is likely to still be depressed by the user.

6.2.4 Design Shortcomings
This switch design, ignoring the requirement for a separate power supply, has one major

shortcoming. Polling the switch input within an infinite loop is not a good way of doing

things and has one undesirable side-effect. Even with the delay, eventually the switch input

will be polled again and if the switch is still depressed the output will be toggled once again.

Keeping one’s finger on the button will cause the output to alternate on and off constantly.

There is also the potential for a race condition. However unlikely it may be, it is still possible

for somebody to send a remote command to the switch at the exact same time that a local user

presses the button. Such a scenario may play out as follows.

While the light is off, the switch input is polled and a button-press detected. At that same

instant, a remote user issues a command to turn on the light, which causes the main program

to be interrupted. The interrupt service routine is executed, the light is switched on, and an

acknowledgment is sent, confirming the on state of the switch. Finally, the interrupt flag is

cleared and program flow returns to the point at which the interrupt occurred. As soon as this

happens, the output is toggled once again as part of the main program loop, in response to the

button having been pressed. The local user, who expects the light to be turned on, sees that it

is still turned off. At the same time, the remote user is led to believe that the light has been

switched on successfully, which is not the case.

Ideally, the infinite loop inside the main function of the firmware should do nothing and all

actions should instead be interrupt-driven. Implementing this eliminates both problems.

57

6.3 Switch Two: Hardware and Software Refinements
The second switch prototype is a refinement of the first, attempting to address some of the

shortcomings identified. Some design features remain unchanged, such as the voltage

regulator sub-circuit to supply 3.35V to the microcontroller and the ZigBee module. The

relay is also controlled the same way, using a transistor to switch on the supply voltage to the

coil.

Figure 6.4 provides an abstracted view of the switch, showing the distribution of voltages and

the interactions between major components. The PIC is central to the architecture, since this

is where all of the firmware resides and where all inputs and outputs are handled. Manual

inputs are provided by the two buttons (the wall and reset buttons) whereas data inputs are

received via the ZigBee. The key outputs are to the ZigBee again, and to the relay.

Figure 6.4: General architecture of second switch

Figure 6.5 shows the updated PCB layout produced using Altium. The circuit schematic is

provided in Appendix A.

58

Figure 6.5: PCB layout of second switch

6.3.1 Power Supply
The design objective for this prototype was to make the switch circuitry fully self-contained

and free from the need for an external power supply. To that end, it has a 2-terminal header in

place of a DC socket (P1 in Figure 6.5) so that the 12V supply can be easily added in

whatever form it takes. One idea is to use the innards of a switched-mode regulated plug-pack

and one such plug-pack is the PowerTech Plus brand, which has a regulated output of 12VDC

rated up to 400mA. The internal components of the plug-pack, shown in Figure 6.6, are small

enough to fit neatly alongside the rest of the switch circuitry inside the wall mounting block,

and the voltage and current ratings are more than adequate for the demands of the prototype.

Figure 6.6: Circuitry removed from PowerTech Plus Plugpack

59

It is also possible to accommodate a 9V battery. 9V is sufficient to drive the relay and the

voltage regulator still produces 3.35V at its output despite the lower input voltage. This was

done for testing and demonstration purposes, since it was safer and easier to implement than a

mains connection to the plug-pack circuitry. In the long term, however, using a battery is

problematic since the relay places quite a large power demand on it. To be practical, there

must be a suitable means of keeping the battery charged up, which is outside the scope of this

design.

In the project’s current form, the plug-pack provides the best solution by taking power from

the existing mains wiring in the wall and converting that to a reliable, constant 12V supply

for the switch circuit.

To make room for either a battery or the plug-pack innards, all features of the original design

not critical to the switching function have been removed and the components packed more

tightly together in the second design. Most notably, the two LEDs have been removed along

with the programming header.

Figure 6.7 shows the final assembled circuit (left) and two possible configurations in terms of

the type of power supply incorporated; plug-pack (centre) and 9V battery (right). These

clearly show how each configuration fits neatly within the confines of the mounting box,

although it should be noted that for practical purposes the plug-pack requires a more suitable

housing so as not to leave the mains-level components exposed.

Figure 6.7: Various assemblies of the second switch

60

6.3.2 Switch Button as External Interrupt
One of the most important departures from the first design is in the way the wall switch is

connected to the PIC. Instead of connecting to the input, RA0, the switch is connected to the

input, RB2, on pin 17. This input doubles as an external interrupt, INT2, so that a signal

change on that pin can trigger an interrupt in just the same way as a timer overflow or the

receipt of a character by the USART. This approach addresses some of the problems with the

original design.

6.3.2.1 Handling the Interrupt in Software

The interrupt is configured in the code as high priority, just the same as the receive interrupt.

Additionally, it is configured to interrupt when a falling edge is detected at the input. Since

the input is normally high and pressing the switch pulls the input low, this is the most

appropriate setting. As an aside, setting the interrupt on a rising edge would also work; the

interrupt would simply be triggered when the switch is released again, rather than when it is

pressed. It is now no longer necessary to poll the input and the main program loop is empty

as recommended.

6.3.2.2 Advantages

As mentioned previously, a high priority interrupt disables further interrupts from occurring

while the interrupt service routine is running. This solves the problem of a potential race

condition as discussed earlier because neither of the two situations can occur simultaneously.

Either the switch will be pressed slightly before and block the remote request, or the remote

request will occur first and the button-press will be ignored.

Another problem solved is that of the alternating output if the switch is held down. When the

switch is first pressed, the falling edge at the input triggers the interrupt. Like before, a delay

is included within the interrupt service routine to combat switch bounce. By the end of the

delay, the ISR has run its course, switching the output, and the input has settled at the lower

potential. Execution returns to the infinite loop, which does nothing. The input signal

remains low as long as the switch is held down, preventing another falling edge from

occurring and thereby preventing another external interrupt that would switch the output

61

again. Also, since the ISR has completed, the receive interrupt is not blocked and an online

user can still operate the switch remotely with no adverse effects.

As there are now two high priority interrupts, it is necessary to discover which has occurred

so that the appropriate action can be taken. This is easily achieved by adding a conditional

statement to the interrupt service routine that checks which interrupt flag has been set.

6.3.3 Switch Announcement
The code for the second switch is largely identical to the first, but contains an additional

feature. When the switch first receives power or is reset, and once the USART has been

configured, it announces its presence to the server. The microcontroller first puts the ZigBee

module into command mode and then queries the module’s address. This address is then

passed on to the server in an advertisement message as discussed earlier.

When an advertisement message is received, the server queries the database for that address.

If it exists, the state of that device is updated to 2, or “undefined”. If a matching address is not

found, a new entry is created in the devices table, again with state set to 2. This is effectively

an auto-configuration mechanism, removing the need for the end user to manually add

devices to the home network.

6.3.3.1 USART Anomaly

During testing, it was observed that the USART would frequently transmit a single character,

0xFF, when the switch was powered up, which proved problematic when attempting to

implement the announce feature. The reason for the anomaly appears to be in the way the

ports are configured when the microcontroller comes out of reset and particularly its impact

on the TXD pin when the USART is initialized in the code. To prevent the pin level from

manifesting itself as a transmitted character, a delay is introduced following the initialization

of the IO ports and before the initialization of the USART, giving the signal levels on all pins

time to stabilize [31].

62

7 Development and Testing
7.1 High Level Overview
The previous chapters have provided a detailed description of the design and working of each

major component of the project. This chapter takes a step back, describing the setup of the

project at the system level, and discussing the process of development and integration of the

various components.

As previously described, the major components of the system are the server, the gateway and

the end devices. The server is connected to the internet via a standard ADSL (broadband)

modem router, providing always-on, high speed remote access from anywhere in the world.

Commands are forwarded to the home gateway over a local TCP/IP connection and then

transmitted wirelessly to the appropriate end device. Figure 7.1 shows the logical connections

and the logical flow of information between system elements.

Figure 7.1: Logical system architecture

In reality, the server and gateway are connected over a home network, which can be either

wired or wireless. Figure 7.2 provides a more accurate illustration of how the system is

physically connected.

63

Figure 7.2: Physical system architecture

When viewed in this way, a number of possibilities become apparent. Firstly, it should be

noted that the internet is not at all a necessary component of the system. A homeowner may

wish to isolate their installation from the internet for security reasons, or maybe just limit

accessibility and control to users within the home. Secondly, it would be equally valid from

an abstract standpoint to simply shift the internet cloud over the router. In that case, the server

and home gateway can be completely separated in space. This is an important consideration.

It now becomes possible to outsource the server component to an external provider. It also

becomes possible to control and manage multiple installations from a single server. Such

considerations are, however, beyond the scope of this thesis.

This project makes use of a wireless router with no internet connection. An Apple MacBook

hosts the server software and connects to the router wirelessly. In contrast, the home gateway

is connected to the router via a Cat5 Ethernet cable. It is intended that the home gateway

should be a single device, although for project demonstration it is comprised of the

PICDEM.net2 development board and a separate ZigBee coordinator mounted on its own

development board. These are then linked via serial cable. Figure 7.3 shows the final setup

with a wall switch being the end device. For practicality and reliability while testing, a

laboratory power supply is used to power the switch, rather than a battery.

64

Figure 7.3: Project setup

7.2 System Development and Testing
One of the first tasks carried out for this project was to create a software emulation of an end

device. Each device was represented by a simple TCP server running as a console

application. Multiple instances of this application could be run concurrently, each provided

with a different ID number from the command line in order to distinguish it, and each

listening on a different port. Manual switching was simulated by pressing the spacebar, in

which case the active window would respond to the key-press. For remote switching, each

device could be individually addressed via its port number. Either way, it would output its

current state and other important debugging information to the console window.

A great deal of time and effort was spent on this phase of development. It allowed many

aspects of the web interface, database and communication protocol to be fine-tuned and

finalised before embarking on the design of the home gateway or any of the switches. By that

time, it was well understood what role each component would play and, more importantly,

65

how it should react and communicate. It also allowed the intended working of the system to

be demonstrated before committing further resources, namely money.

Once satisfied with the outcome of this phase, the PICDEM.net2 development kit was

purchased and work begun on writing the software for the home gateway. As before, it was

possible to simulate device responses and notifications from within the gateway code, and to

properly test the communication between the gateway and the server before continuing.

The next step was to begin development on the interface between the PICDEM.net2 and the

ZigBee coordinator. This task was assisted by the X-CTU utility, which provides a means of

configuring and interacting with a ZigBee module on a development board. Furthermore, it is

possible to test the interaction between a terminal and a ZigBee module in command mode as

well as test communication between two modules. X-CTU was used extensively to view

commands coming from the PICDEM.net2 and to provide manual responses.

Development of the switch software was undertaken using a PIC18F452 microcontroller on a

QuikFlash development board, readily available in the university lab. Testing was performed

in much the same manner as previously described. Commands to a switch could be provided

manually via the X-CTU console and the responses from the switch could be viewed using

the same. The QuikFlash board also has a variety of peripherals connected to the

microcontroller with which to simulate the correct operation of the switch. An LED was

turned on and off to observe proper switching, and a push-button provided a means of

manually switching so as to generate a notification.

This point represented an important milestone in the project, since all of the individual

elements of the system were now present and able to interact, and only the actual switch

hardware was left to design. This final component was integrated into the rest of the system

without any major difficulties. For the remainder of the project, ad hoc testing was carried out

on the system as a whole. Various scenarios were investigated, such as how the system would

respond to simultaneous manual and remote inputs, and how various components would cope

with communication failures.

7.3 ZigBee Performance Testing
In its current configuration, where the ZigBee network has a star topology, the optimal

physical arrangement is for the coordinator to be at the centre of the network. In real terms,

66

this means that the home gateway should be located as near to the centre of a house as is

practical. Since all nodes communicate directly with the coordinator, the placement of nodes

is restricted by the effective range between two ZigBee devices.

The performance of this RF link was tested using the X-CTU utility once again, which

includes a feature for qualitatively measuring the effective range in terms of received signal

strength and the incidence of data errors. This is achieved by connecting a null modem

terminator to the serial port on one of the ZigBee development boards. When RF data is

received by this station, it is looped back via the adaptor and sent back over the air to the

source. The source station then measures the signal strength of the returned data and detects

errors between what was sent and what was received. In this case, the loopback adaptor was

connected to the coordinator and a second development board was connected to a laptop with

X-CTU running, providing a mobile test platform.

In clear, outdoor, line-of-sight conditions, few or no errors were observed up to

approximately 50 metres. Indoors, the range drops significantly. As a guide to how the

system might perform in an average home, the coordinator was situated in an upstairs room at

one end of the house and readings taken at the location of switch plates throughout the rest of

the house. Only at the point located furthest from the coordinator were a significant number

of errors observed. Had the coordinator been more centrally located, it is likely that all points

would have performed satisfactorily.

Another type of networking exists for ZigBee devices, called mesh networking, and it holds

the key to solving the problem just discussed. In a mesh network, each of the ZigBee nodes is

able to assist in routing data from one station to another where no direct path exists between

them. This is just like routers in the internet. Mesh networks have many useful advantages,

such as dynamic routing and the ability to “self-heal”, as well as the ability to broadcast a

message to all nodes [5]. The improved range, reliability and flexibility ideally suits this type

of application and so mesh networking is suggested as a focus of further research and

development of this project.

67

8 Conclusions and Future Work
8.1 Conclusions
Home automation technology has been developing in different directions over the past few

decades. Numerous smart products and systems exist, though most are unable to work

together and creating complete, integrated solutions is still the domain of industry

professionals. Many of these solutions have specific infrastructure requirements that can only

be met when building a new house and are priced well out of reach of most people.

The focus of this project has been to produce a complete system for remotely monitoring and

controlling switches within the home, with particular emphasis on minimising both the cost

and complexity. These aims are best achieved using a centralised system framework.

The resulting system comprises a PC server, a home gateway and a network of ZigBee-

enabled switches. Overall cost is reduced by confining as much of the system intelligence as

possible to the server, so the end nodes require only basic processors to manage switching

and communication. Also, many households nowadays have a broadband connection to the

internet and, by extension, a computer on a home network. Thus, the fixed network

infrastructure required to implement the system is already in place and can be reused to

further reduce cost.

The home gateway is necessary to provide a TCP/IP interface to the ZigBee network. ZigBee

is a natural choice for back-end connectivity because it provides reliable wireless networking

for embedded devices. As a result, the system can be deployed in new and existing homes

without the requirement for additional wiring. Also, for households that use Wi-Fi, there is

little interference between the two network types [7].

In order to make the system as simple as possible, the interfaces are designed to be intuitive

and familiar to a user. The system is accessed remotely via a standard web browser so that the

experience of operating switches is no different to that of simply surfing online and, internet

delays notwithstanding, the system responds quickly so that a remote user receives near-

instant feedback about the outcome of a particular action. The switches themselves are also

barely different to the common type, except that a low-voltage tactile push-button is fitted in

place of the toggle variety, but it should be no less obvious to a user how these work.

68

It would have been possible, as has been done in earlier research projects, to write a custom

client application to control and manage the system remotely, however this approach has

disadvantages. Firstly, the software would have to be installed on every machine that a user

would want remote access from and in many cases this would be impractical, as in the case of

a work or public computer. Different versions of the software would be needed for different

operating systems and it would also be more difficult to port to a different platform, such as a

PDA. Changes to the system might require an update to the client software and this update

would then have to be pushed out to each client device. The web-based approach solves all of

these problems in one and fits better with the centralised framework model.

[9] argues that PC level gateways have not been widely accepted and that centralised systems

suffer from the single-point-of-failure problem. This system is flexible in that a customer can

opt to manage the server themselves on their home PC, or this element can be outsourced to a

service provider. Remote access to the home is then provided by the gateway's TCP/IP

interface. In fact, this approach is likely to offer advantages in terms of improved reliability,

better security and technical support. The opportunity exists, then, for different companies to

provide professional system management services, the same way that a different security

companies can provide alarm monitoring services, and much like Honeywell's Global Home

Server [4]. Since the server and database setup is the most complex element of the system, it

makes sense to remove it from the hands of the user.

8.2 Future Work
Although the system has been reliably demonstrated, the implementation is by no means

complete. One of the most complex and comprehensive tasks in developing the system is

foreseeing all the possible ways in which the system can break down. In its current form, the

system contains a number of bugs and some redundancies. Simply stated, there is much room

for improvement.

The following is a brief list of current known issues.

• The id column in the auth_users table is redundant
• The type_id in the devices table should be of type unsigned tinyint
• The LCD currently does not display the correct device id when a notification is received
• Two devices switched together cause a notification clash

69

• The switch controller crashes when a switch is pressed and a remote request received at

the same time - requires reset at the switch
• The server doesn't react to nACKs from the gateway
• When the home gateway nACKs an ID command, the switch state is set to -48 because

the server reads the state of the switch from the 3rd character of the acknowledgement

message, which in the case of a nACK is the null character
• The gateway should only send the ATCN command to the ZigBee coordinator if there

is no error flag

The current hardware design of the switch is not compliant with any electrical standard. In

actuality, it fails to comply with guidelines regarding isolation of mains and low-voltage

circuits [32]. This is a critical safety concern as well as a legal constraint and issues relating

to compliance should be further investigated.

This prototype system performs only switching, but additional devices could be introduced to

perform other useful functions, such as dimming. The system could also incorporate pure

sensing devices, such as motion detectors and temperature sensors, to provide information

about the home environment. Based on this information, a user might choose to switch on a

fan or a heater, or even notify police if a break-in is suspected. Even more likely, the system

could apply its own intelligence, in line with user preferences, to automatically make control

decisions. However, at all times the focus should be on adding value rather than complexity.

An obvious area for further development is the home gateway. Aside from moving away

from development kits to a more dedicated hardware solution, the software could be

upgraded so that the gateway plays a greater role in the operational stability of the system.

For example, it could maintain a buffer of recent notifications in the event that

communication with the server breaks down. Also on the subject of notifications, these could

perhaps be better handled by the Uhandler module if each message contained information

about its length. That way the handler would know how many bytes to expect rather than

listening for individual characters over a fixed period, which can lead to errors when

messages arrive simultaneously.

Such a situation is likely following a power outage. The feature of sending advertisement

messages when a switch comes online is intended to demonstrate the potential for auto-

configuration of devices, but in its current implementation is problematic. When power is

restored, the gateway and all switches would come online at the same time and there would

70

be a flood of advertisement messages to the gateway. A more organised approach to

registering devices is recommended to address this.

In terms of the server, the web interface would benefit from improvements to make it more

compatible with mobile devices and the history page could be improved by including

functions to group or filter event data so that it is presented in a more manageable format.

The server could also be made to periodically poll the state of devices to help maintain

overall awareness of the system. Finally, in line with the earlier point about out-sourcing

management of the server, work would need to be done, particularly in terms of the database

design, to extend the system for multiple houses.

Ultimately, one cannot ignore the literature and repeated calls for cooperation towards a

common, open standard. The possibilities presented by home automation technology are

endless and can provide enormous benefits to society. It is hoped that this project will provide

a springboard for further development in this area.

71

References

[1] Quinnell, R.A. Networking moves to home automation. 2007, EDN: Electronics
Design, Strategy, News, 41-50.

[2] Rosendahl, A. and G. Botterweck. Mobile Home Automation - Merging Mobile Value
Added Services and Home Automation Technologies. in Management of Mobile
Business, 2007. ICMB 2007. International Conference on the. 2007.

[3] N. Rajbharti. Microchip TCP/IP Stack Application Note.
http://ww1.microchip.com/downloads/en/AppNotes/00833c.pdf, 2008.
Last accessed September 2009.

[4] Microchip Technology Inc. PIC18F1220/1320 Data Sheet.
http://ww1.microchip.com/downloads/en/DeviceDoc/39605F.pdf,
2004. Last accessed November 2009.

[5] Digi International Inc. XBee/XBee-PRO DigiMesh 2.4 OEM RF Modules.
http://ftp1.digi.com/support/documentation/90000991_B.pdf, 2008.
Last accessed July 2009

[6] Nunes, R. and J. Delgado. An architecture for a home automation system. in
Electronics, Circuits and Systems, 1998 IEEE International Conference on. 1998.

[7] Gill, K., et al., A zigbee-based home automation system. Consumer Electronics, IEEE
Transactions on, 2009. 55(2): p. 422-430.

[8] Abdulrazak, B. and A. Helal. Enabling a Plug-and-play integration of smart
environments. in Information and Communication Technologies, 2006. ICTTA '06.
2nd. 2006.

[9] Torbensen, R. OHAS: Open home automation system. in Consumer Electronics, 2008.
ISCE 2008. IEEE International Symposium on. 2008.

[10] Lili, Y., Y. Shuang-Hua, and Y. Fang. Safety and Security of Remote Monitoring and
Control of intelligent Home Environments. in Systems, Man and Cybernetics, 2006.
SMC '06. IEEE International Conference on. 2006.

[11] Nunes, R.J.C. and J.C.M. Delgado. An Internet application for home automation. in
Electrotechnical Conference, 2000. MELECON 2000. 10th Mediterranean. 2000.

[12] Corcoran, P.M. and J. Desbonnet, Browser-style interfaces to a home automation
network. Consumer Electronics, IEEE Transactions on, 1997. 43(4): p. 1063-1069.

[13] Sangani, K., Home automation - It's no place like home. Engineering & Technology,
2006. 1(9): p. 46-48.

72

[14] Topalis, E., et al., A novel architecture for remote home automation e-services on an
OSGi platform via high-speed Internet connection ensuring QoS support by using
RSVP technology. Consumer Electronics, IEEE Transactions on, 2002. 48(4): p. 825-
833.

[15] Smarthome Technology. INSTEON The Details. http://www.insteon.net/df/
insteondetails.pdf, 2005. Last accessed March 2010.

[16] Clipsal Australia Pty Ltd. C-Bus Product Overview.
http://updates.clipsal.com/ClipsalOnline/Files/Brochures/C0000
210.pdf, 2009. Last accessed March 2010.

[17] Vantage Controls. Vantage. http://www.vantagecontrols.com. Last accessed
March 2010.

[18] KNX. What is KNX?. http://www.knx.org/knx/what-is-knx/, 2009. Last
accessed March 2010.

[19] Patricio, G. and L. Gomes. Smart house monitoring and actuating system
development using automatic code generation. in Industrial Informatics, 2009. INDIN
2009. 7th IEEE International Conference on. 2009.

[20] Chao-Lin, W., W. Wei-Chen, and F. Li-Chen. Mobile agent based integrated control
architecture for home automation system. in Intelligent Robots and Systems, 2004.
(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on. 2004.

[21] Yuksekkaya, B., et al., A GSM, internet and speech controlled wireless interactive
home automation system. Consumer Electronics, IEEE Transactions on, 2006. 52(3):
p. 837-843.

[22] Juing-Huei, S., L. Chyi-Shyong, and W. Wei-Chen, The design and implementation of
a low-cost and programmable home automation module. Consumer Electronics, IEEE
Transactions on, 2006. 52(4): p. 1239-1244.

[23] OSGi Alliance. About the OSGi Alliance. http://www.osgi.org/About/
HomePage. Last accessed March 2010.

[24] Intark, H., et al., An integrated home server for communication, broadcast reception,
and home automation. Consumer Electronics, IEEE Transactions on, 2006. 52(1): p.
104-109.

[25] Bergstrom, P., K. Driscoll, and J. Kimball, Making home automation communications
secure. Computer, 2001. 34(10): p. 50-56.

[26] ZigBee Alliance. ZigBee Alliance. http://www.zigbee.org/. Last accessed March
2010.

[27] Woo Suk, L. and H. Seung Ho. KNX — ZigBee gateway for home automation.
in Automation Science and Engineering, 2008. CASE 2008. IEEE International
Conference on. 2008.

73

[28] Meloni, J.C., Sams Teach Yourself PHP, MySQL and Apache All in One. 2004,
Indianapolis: Sams Publishing.

[29] Oracle Corporation. MySQL :: MySQL 5.1 Reference Manual :: 5.3.2.3 Password
Hashing in MySQL. http://dev.mysql.com/doc/refman/5.1/en/
password-hashing.html. Last accessed February 2010.

[30] Oracle Corporation. MySQL :: MySQL 5.5 Reference Manual :: 10.4.1 The CHAR
and VARCHAR Types. http://dev.mysql.com/doc/refman/5.5/en/
char.html. Last accessed February 2010.

[31] The PNphpBB Group. How to initialize a USART? AVR sends 1 character
immediately :: AVR Freaks. http://www.avrfreaks.net/index.php?name=
PNphpBB2&file=viewtopic&p=657588. Last accessed January 2010.

[32] Dick Smith Electronics. Mains Wiring & Handling Safety Guide.
http://www.dse.co.nz/dse.shop/en/catalog/LRN0002208, 1996. Last
accessed March 2010.

74

Appendix
A. Circuit Schematics

Circuit schematics for the Switch 1 and Switch 2 are presented on the following two pages.

75

76

B. Web Server Source Code

B.1 login.html

<html>
<head>
 <title>User Login</title>
</head>

<body>
<div style="position:absolute;top:50%;left:0px;width:100%;height:1px">
 <div style="position:absolute;top:-100px;left:50%;width:200px;

height:200px;margin-left:-100px">
 <fieldset style="width:200px;height:200px;text-align:center">
 <form method="post" action="./login.php">

 <p>
 User:

 <input type="text" name="username"

style="text-align:center" />

 </p>
 <p>
 Password:

 <input type="password" name="password"

style="text-align:center" />

 <p>
 <input type="submit" name="submit"

value="Submit" />

77

 </p>
 </form>
 </fieldset>
 </div>
</div>

</body>
</html>

78

B.2 login.php

<?php
session_start();
$sid = session_id();

function cleanup()
{
 // Clear all session variables
 $_SESSION = array();
 // Destroy session
 session_destroy();
 // Delete session cookie
 setcookie('PHPSESSID', '', time()-42000, '/');
 // Delete authorization cookie
 setcookie('auth', '', time()-42000, '/');

 // Redirect to login page
 header("Location: login.html");
 exit;
}

if (isset($_POST[logout]) || (!$_POST[username]) || (!$_POST[password]))
{
 cleanup();
}

// Connect to MySQL server and select database
$conn = mysql_connect("localhost", "root", "root") or die(mysql_error());
mysql_select_db("db1", $conn) or die(mysql_error());

// Create and issue the query
$sql = "SELECT f_name, l_name, admin FROM auth_users WHERE username =
 '$_POST[username]' AND password = password('$_POST[password]')";
$result = mysql_query($sql, $conn) or die(mysql_error());

// Get the number of rows in the result set; should be 1 if a match
if (mysql_num_rows($result) == 1)
{
 $result_array = mysql_fetch_array($result);

 // Set authorization cookie
 setcookie('auth', $sid, 0, '/', '', 0);
 $_SESSION['f_name'] = $result_array['f_name'];
 $_SESSION['l_name'] = $result_array['l_name'];
 $_SESSION['username'] = $_POST[username];
 $_SESSION['admin'] = $result_array['admin'];

 // Continue to main page
 header("Location: mainpage.php");
 exit;
}
else
{
 // Unauthorized user
 cleanup();
}
?>

79

B.3 mainpage.php

<?php
session_start();
$sid = session_id();

// Redirect to login form if not authorized
if ($_COOKIE[auth] != $sid)
{
 header("Location: login.php");
 exit;
}
?>

<html>
<head>
<title>Control Centre</title>
</head>

<body>
<h1 align="center">Control Centre</h1>

<div align="center">

<!-- Display control option to all users -->
<fieldset style="width:40%;text-align:center">

<form method="link" action="switchboard.php">
<input type="submit" name="submit" value="Control" />
</form>

<?php
// Display management options to admin users only
if ($_SESSION['admin'] == '1')
{
 echo '
';
 echo '<form method="link" action="manage_system.php">';
 echo '<input type="submit" name="submit" value="Manage" />';
 echo '</form>';

 echo '
';
 echo '<form method="link" action="show_history.php">';
 echo '<input type="submit" name="submit" value="History" />';
 echo '</form>';
}
?>

<!-- Display logout option to all users -->

<form method="post" action="login.php">
<input type="hidden" name="logout" value="logout" />
<input type="submit" name="submit" value="Logout" />
</form>
</fieldset>

</div>

</body>
</html>

80

B.4 switchboard.php

<?php
session_start();
$sid = session_id();

// Redirect to login form if not authorized
if ($_COOKIE[auth] != $sid)
{
 header("Location: login.php");
 exit;
}
?>

<html>
<head>
<title>Switchboard</title>
<meta http-equiv="pragma" content="no-cache" />
<meta http-equiv="expires" content="-1" />
<meta http-equiv="refresh" content="60" />
</head>
<body>

<?php
$conn = mysql_connect("localhost", "root", "root") or die(mysql_config());
mysql_select_db("db1", $conn) or die(mysql_error());
?>

<h1 align="center">Switchboard</h1>
<hr />

<table border="1" cellpadding="4" align="center">
<thead>
<tr style="background-color:#99CCFF">

<?php
$sql = "SELECT * FROM devices WHERE type_id = '1'";
$result = mysql_query($sql, $conn) or die(mysql_error());

while ($result_array = mysql_fetch_array($result))
{
 print '<th style="text-align:center">'.$result_array['id'].'</th>';
}
?>

</tr>
</thead>
<tbody align="center">
<tr>

<?php
$result = mysql_query($sql, $conn) or die(mysql_error());

while ($result_array = mysql_fetch_array($result))
{
 if ($result_array['state'] == '0')
 {
 print '<td align="center">';

81

 print '<form method="POST"
 action="./cgi-bin/server_actioner.cgi">';

 print '<input type="hidden" name="id"
 value="'.$result_array['id'].'" />';

 print '<input type="hidden" name="action" value="SW" />';
 print '<input type="hidden" name="nss" value="1" />';
 print '<input type="hidden" name="user"

 value="'.$_SESSION['username'].'" />';
 print '<input type="image" name="submit"

src="./images/wall_switch_OFF.jpg"
style="width:37;height:55" alt="Switch" />';

 print '</form>';
 print '</td>';
 }
 else if ($result_array['state'] == '1')
 {
 print '<td align="center">';
 print '<form method="POST"

 action="./cgi-bin/server_actioner.cgi">';
 print '<input type="hidden" name="id"

 value="'.$result_array['id'].'" />';
 print '<input type="hidden" name="action" value="SW" />';
 print '<input type="hidden" name="nss" value="0" />';
 print '<input type="hidden" name="user"

 value="'.$_SESSION['username'].'" />';
 print '<input type="image" name="submit"

 src="./images/wall_switch_ON.jpg"
 style="width:37;height:55" alt="Switch" />';

 print '</form>';
 print '</td>';
 }
 else
 {
 print '<td align="center">';
 print '<form method="POST"

 action="./cgi-bin/server_actioner.cgi">';
 print '<input type="hidden" name="id"

 value="'.$result_array['id'].'" />';
 print '<input type="hidden" name="action" value="ID" />';
 print '<input type="hidden" name="nss"

 value="'.$result_array['id'].'" />';
 print '<input type="hidden" name="user"

 value="'.$_SESSION['username'].'" />';
 print '<input type="image" name="submit"

 src="./images/dont_walk_light_red.png"
 style="width:55;height:55" alt="Activate" />';

 print '</form>';
 print '</td>';
 }
}
?>

</tr>
<tr>

<?php
$result = mysql_query($sql, $conn) or die(mysql_error());

while ($result_array = mysql_fetch_array($result))
{
 if ($result_array['state'] == '0')

82

 {
 print '<td style="text-align:center;color:red">OFF</td>';
 }
 else if ($result_array['state'] == '1')
 {
 print '<td style="text-align:center;color:green">ON</td>';
 }
 else
 {
 print '<td style="text-align:center;color:black">OFFLINE</td>';
 }
}
?>

</tr>
</table>

<!-- Provide link to main page -->
<hr />
<p align="center">
<img src="./images/left_arrow.gif" alt="Back"
 border="0" style="width:30;height:30" />
</p>

</body>
</html>

83

B.5 manage_system.php

<?php
session_start();
$sid = session_id();

// Redirect to login form if not authorized
if ($_COOKIE[auth] != $sid)
{
 header("Location: login.php");
 exit;
}

function handle_error($msg)
{
 echo '<script type="text/javascript">alert("'.$msg.'")</script>';
 echo '<meta http-equiv="REFRESH" content="0;url=./mainpage.php">';
 exit;
}

// Show alert and redirect to main page if non-admin user
if ($_SESSION[admin] != '1')
{
 handle_error("Only a user with admin privileges can view this page");
}

// Connect to MySQL server and select database
if (!($conn = mysql_connect("localhost", "root", "root")))
{
 handle_error("Cannot connect to database: mysql_connect failed");
}

if (!mysql_select_db("db1", $conn))
{
 handle_error("Cannot connect to database: mysql_select_db failed");
}
?>

<html>

<head>
<title>System Management</title>
<meta http-equiv="pragma" content="no-cache" />
<meta http-equiv="expires" content="-1" />

<script type="text/javascript">
function show_confirm()
{
 return confirm("Are you sure?");
}
</script>
</head>

<body>
<h1 align="center">System Management</h1>

<!-- Provide link to main page -->
<p align="center">

84

<img src="./images/left_arrow.gif" alt="Back"
 border="0" style="width:30;height:30">
</p>
<hr />

<?php
// Create and issue database query for devices
$sql = "SELECT * FROM devices";
if (!($result = mysql_query($sql, $conn)))
{
 handle_error("Cannot query database: mysql_query failed");
}
?>

<h2 align="center">Devices</h2>

<!-- Display device table -->
<table border="1" cellpadding="4" style="width:90%" align="center">
<thead>
<tr style="background-color:#99CCFF">
<th width="17%">Address</th>
<th width="17%">PAN ID</th>
<th width="16%">Channel</th>
<th width="16%">Node ID</th>
<th width=17%">Type ID</th>
<th />
</tr>
</thead>
<tbody align="center">

<?php
while ($result_array = mysql_fetch_array($result))
{
 $address = $result_array['address'];
 $pan_id = $result_array['pan_id'];
 $channel = $result_array['channel'];
 $node_id = $result_array['node_id'];
 $type_id = $result_array['type_id'];

 echo '<tr><td>'.$address.'</td><td>'.$pan_id.'</td><td>'.$channel.

 '</td><td>'.$node_id.'</td><td>'.$type_id.'</td>';

 // Display option to remove device
 echo '<form method="post" action="./add_device.php"

onsubmit="return show_confirm();">
 <td>
 <input type="hidden" name="remove" value="remove" />
 <input type="hidden" name="address" value="'.$address.'" />
 <input type="image" name="submit" src="./images/trash.gif"

alt="Remove" style="width:30;height:30" />
 </td>
 </form>
 </tr>';
}
?>

<!-- Last row of table contains form for adding a new device -->
<tr>
<form method="post" action="./add_device.php">
<td><input type="text" name="address" style="text-align:center" /></td>
<td><input type="text" name="pan_id" style="text-align:center" /></td>

85

<td><input type="text" name="channel" style="text-align:center" /></td>
<td><input type="text" name="node_id" style="text-align:center" /></td>
<td><input type="text" name="type_id" style="text-align:center" /></td>
<td><input type="submit" name="submit" value="Add" /></td>
</form>
</tr>
</tbody>
</table>

<?php
// Create and issue database query for users
$sql = "SELECT * FROM auth_users";
if (!($result = mysql_query($sql, $conn)))
{
 handle_error("Cannot query database: mysql_query failed");
}
?>

<h2 align="center">Users</h2>

<!-- Display user table -->
<table border="1" cellpadding="4" style="width:90%" align="center">
<thead>
<tr style="background-color:#99CCFF">
<th width="17%">First Name</th>
<th width="17%">Last Name</th>
<th width="16%">Username</th>
<th width="16%">Password</th>
<th width="17%">Admin</th>
<th />
</tr>
</thead>
<tbody align="center">

<?php
while ($result_array = mysql_fetch_array($result))
{
 $f_name = $result_array['f_name'];
 $l_name = $result_array['l_name'];
 $username = $result_array['username'];

 echo '<td>'.$f_name.'</td><td>'.$l_name.'</td><td>'.$username.

 '</td>';
 echo '<td></td><td>';

 if ($result_array['admin'] == '1')
 {
 echo 'Yes</td>';
 }
 else
 {
 echo 'No</td>';
 }

 // Display option to remove user - the admin user cannot be removed
 if ($username != "admin")
 {
 echo '<form method="post" action="./add_user.php"

onsubmit="return show_confirm();">
 <td>
 <input type="hidden" name="remove" value="remove" />

86

 <input type="hidden" name="username"
value="'.$username.'" />

 <input type="image" name="submit"
src="./images/trash.gif" alt="Remove"
style="width:30;height:30" />

 </td>
 </form>';
 }

 echo '</tr>';
}
?>

<!-- Last row of table contains form for adding a new user -->
<tr>
<form method="post" action="./add_user.php">
<td><input type="text" name="f_name" style="text-align:center" /></td>
<td><input type="text" name="l_name" style="text-align:center" /></td>
<td><input type="text" name="username" style="text-align:center" /></td>
<td><input type="password" name="password" style="text-align:center" />
</td>
<td><input type="checkbox" name="admin" /></td>
<td><input type="submit" name="submit" value="Add" /></td>
</form>
</tr>
</tbody> <title>System Management</title>
</table>

<!-- Provide link to main page -->

<hr />
<p align="center">
<img src="./images/left_arrow.gif" alt="Back"
 border="0" style="width:30;height:30">
</p>

</body>
</html>

87

B.6 add_device.php

<?php
session_start();
$sid = session_id();

if ($_COOKIE[auth] != $sid)
{
 // Redirect to login form if not authorized
 header("Location: login.php");
 exit;
}

// Show alert and redirect to main page if non-admin user
if ($_SESSION[admin] != '1')
{
 echo '<script type="text/javascript">

alert("Only a user with admin privileges can do this")
</script>';

 echo '<meta http-equiv="REFRESH" content="0;url=./mainpage.php">';
 exit;
}

function handle_error($msg)
{
 echo '<script type="text/javascript">alert("'.$msg.'")</script>';
 echo '<meta http-equiv="REFRESH" content="0;

url=./manage_system.php">';
 exit;
}

if (!isset($_POST[remove]))
{
 // If adding a new device, check that all the required information

 has been provided
 if ((!$_POST[address]) || (!$_POST[pan_id]) || (!$_POST[channel]) ||

(!$_POST[node_id]) || (!$_POST[type_id]))
 {
 // If information is missing, show javascript alert and

 redirect to system management page
 handle_error("One or more fields was left blank");
 }

 // Load POST data into variables (not necessary, but makes code more

 readable)
 $address = $_POST[address];
 $pan_id = $_POST[pan_id];
 $channel = $_POST[channel];
 $node_id = $_POST[node_id];
 $type_id = $_POST[type_id];
}

// Connect to MySQL server and select database
if (!($conn = mysql_connect("localhost", "root", "root")))
{
 handle_error("Cannot connect to database: mysql_connect failed");
}

88

if (!mysql_select_db("db1", $conn))
{
 handle_error("Cannot connect to database: mysql_select_db failed");
}

// Create and issue the query
if (isset($_POST[remove]))
{
 $sql = "DELETE FROM devices WHERE address='$_POST[address]'";
}
else
{
 $sql = "INSERT INTO devices VALUES ('', '$address', '$pan_id',

 '$channel', '$node_id', '$type_id', '2')";
}

if (!($result = mysql_query($sql, $conn)))
{
 handle_error("Cannot update database: mysql_query failed");
}

// Return to system management page
header("Location: manage_system.php");
exit;
?>

89

B.7 add_user.php

<?php
session_start();
$sid = session_id();

$domain = parse_url($_SERVER[HTTP_REFERER]);

if ($_COOKIE[auth] != $sid)
{
 // Redirect to login form if not authorized
 header("Location: login.php");
 exit;
}

// Show alert and redirect to main page if non-admin user
if ($_SESSION[admin] != '1')
{
 echo '<script type="text/javascript">alert("Only a user with admin

privileges can do this")</script>';
 echo '<meta http-equiv="REFRESH" content="0;url=./mainpage.php">';
 exit;
}

function handle_error($msg)
{
 echo '<script type="text/javascript">alert("'.$msg.'")</script>';
 echo '<meta http-equiv="REFRESH" content="0;

url=./manage_system.php">';
 exit;
}

if (!isset($_POST[remove]))
{
 // If adding a new user, check that all the required information has

 been provided
 if ((!$_POST[f_name]) || (!$_POST[l_name]) || (!$_POST[username]) ||

(!$_POST[password]))
 {
 // If information is missing, show javascript alert and

 redirect to system management page
 handle_error("One or more text fields was left blank");
 }

 // Load POST data into variables (not necessary, but makes code more

 readable)
 $f_name = $_POST[f_name];
 $l_name = $_POST[l_name];
 $username = $_POST[username];
 $password = $_POST[password];

 // When admin is checked in the form, it is posted as 'on', otherwise

 it is not sent at all
 // Change to format used in the database (0/1)
 if ($_POST[admin] == "on")
 {
 $admin = 1;
 }

90

else
 {
 $admin = 0;
 }
}

// Connect to MySQL server and select database
if (!($conn = mysql_connect("localhost", "root", "root")))
{
 handle_error("Cannot connect to database: mysql_connect failed");
}

if (!mysql_select_db("db1", $conn))
{
 handle_error("Cannot connect to database: mysql_select_db failed");
}

// Create and issue the query
if (isset($_POST[remove]))
{
 $sql = "DELETE FROM auth_users WHERE username='$_POST[username]'";
}
else
{
 $sql = "INSERT INTO auth_users VALUES ('', '$f_name', '$l_name',

 '$username', password('$password'), '$admin')";
}

if (!($result = mysql_query($sql, $conn)))
{
 handle_error("Cannot update database: mysql_query failed");
}

// Return to system management page
header("Location: manage_system.php");
exit;
?>

91

B.8 show_history.php

<?php
session_start();
$sid = session_id();

if ($_COOKIE[auth] != $sid)
{
 // Redirect to login form if not authorized
 header("Location: login.php");
 exit;
}

// Show alert and redirect to main page if non-admin user
if ($_SESSION[admin] != '1')
{
 echo '<script type="text/javascript">alert("Only a user with admin

privileges can do this")</script>';
 echo '<meta http-equiv="REFRESH" content="0;url=./mainpage.php">';
 exit;
}

function handle_error($msg)
{
 echo '<script type="text/javascript">alert("'.$msg.'")</script>';
 echo 'meta http-equiv="REFRESH" content="0;

url=./manage_system.php">';
 exit;
}

// Connect to MySQL server and select database
if (!($conn = mysql_connect("localhost", "root", "root")))
{
 handle_error("Cannot connect to database: mysql_connect failed");
}

if (!mysql_select_db("db1", $conn))
{
 handle_error("Cannot connect to database: mysql_select_db failed");
}

if (isset($_POST[clr]))
{
 $sql = "DELETE FROM history";

 if (!($result = mysql_query($sql, $conn)))
 {
 handle_error("Cannot query database: mysql_query failed");
 }
}

// Create and issue the query
$sql = "SELECT * FROM history";

if (!($result = mysql_query($sql, $conn)))
{
 handle_error("Cannot query database: mysql_query failed");
}
?>

92

<html>
<head>
<title>History</title>
<meta http-equiv="pragma" content="no-cache" />
<meta http-equiv="expires" content="-1" />
<meta http-equiv="refresh" content="60" />
</head>
<body>

<h1 align="center">History</h1>

<!-- Provide link to main page -->
<p align="center">
<img src="./images/left_arrow.gif" alt="Back"
 border="0" style="width:30;height:30">
</p>
<hr />

<table border="1" cellpadding="4" style="width:90%" align="center">
<thead>
<tr style="background-color:#99CCFF">
<th width="30%">Time</th>
<th width="10%">ID</th>
<th width="10%">Action</th>
<th width="10%">State</th>
<th width="30%">User</th>
</tr>
</thead>
<tbody>

<?php
while ($result_array = mysql_fetch_array($result))
{
 print '<tr>';
 print '<td align="center">'.$result_array['time'].'</td>';
 print '<td align="center">'.$result_array['id'].'</td>';
 print '<td align="center">'.$result_array['action'].'</td>';
 print '<td align="center">'.$result_array['state'].'</td>';
 print '<td align="center">'.$result_array['user'].'</td>';
 print '</tr>';
}
?>

</tbody>
</table>

<div align="center">
<form method="POST" action="./show_history.php">
<input type="hidden" name="clr" value="clr" />
<input type="submit" name="submit" value="Clear history" />
</form>
</div>

<!-- Provide link to main page -->
<hr />
<p align="center">
<img src="./images/left_arrow.gif" alt="Back"
 border="0" style="width:30;height:30">

93

</p>

</body>
</html>

94

C. Server Processes Source Code

C.1 server_actioner_cgi.c

/*
** server_actioner_cgi.c
*/

#include <arpa/inet.h>
#include <errno.h>
#include <mysql.h>
#include <netdb.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>

#define HUB_ADDRESS "10.1.1.5"
#define HUB_PORT "3456"
#define MAXDATASIZE 21
#define MAXLEN 80

void *get_in_addr(struct sockaddr *sa);
int connect_to_hub();

int main(void)
{
 // User variables
 char username[26] = ""; // varchar(25) + nul character

 // Device variables
 int id = 0; // tinyint(3)
 char address[17] = ""; // varchar(16) + nul character
 int state = 0; // tinyint(1)
 int new_state = 0;

 char action[3] = "\0\0\0";

 // Get environment variables from the URL
 char formdata[MAXLEN];
 char *lenstr;
 long len;

 printf("%s%c%c\n", "Content-Type:text/html;charset=iso-8859-1",

 13,10);
 printf("<TITLE>Server actioner</TITLE>\n");

 lenstr = getenv("CONTENT_LENGTH");
 if (lenstr == NULL || sscanf(lenstr, "%ld", &len) != 1 ||

len > MAXLEN)
 {
 free(lenstr);
 printf("<script type=\"text/javascript\">alert(\"There was a

 problem with the form data\");</script>");

95

 printf("<meta http-equiv=\"REFRESH\" content=\"0;
 url=../switchboard.php\">\n");

 exit(1);
 }
 else
 {
 fgets(formdata, len+1, stdin);
 if (sscanf(formdata, "id=%d&action=%c%c&nss=%d&user=%s",
 &id, &action[0], &action[1], &new_state, username) != 5)
 {
 // Invalid variable data - clean up and redirect to

 calling webpage
 free(lenstr);
 printf("<script type=\"text/javascript\">alert(\"There

 was invalid GET data\");</script>");
 printf("<meta http-equiv=\"REFRESH\" content=\"0;

 url=../switchboard.php\">\n");
 exit(1);
 }
 }

 // Parse username string to remove submit data
 int i;
 for (i=0; i<26; i++)
 {
 if (username[i] == '&')
 {
 username[i] = '\0';
 break;
 }
 else if (username[i] == '\0')
 {
 break;
 }
 }

 // Database variables
 MYSQL *conn;
 MYSQL_RES *res;
 MYSQL_ROW row;
 char query_string[255];

 conn = mysql_init(NULL);

 if (!mysql_real_connect(conn, "localhost", "root", "root", "db1",

8889, "/Applications/MAMP/tmp/mysql/mysql.sock", 0))
 {
 printf("<script type=\"text/javascript\">alert(\"%s\");

 </script>", mysql_error(conn));
 printf("<script type=\"text/javascript\">alert(\"There was a

 problem accessing MySQL\");</script>");
 printf("<meta http-equiv=\"REFRESH\" content=\"0;

 url=../switchboard.php\">\n");
 }

 sprintf(query_string, "SELECT address FROM devices WHERE id = '%d'",

 id);

 if (mysql_query(conn, query_string))
 {
 fprintf(stderr, "%s\n", mysql_error(conn));

96

 printf("<script type=\"text/javascript\">alert(\"There was a
 problem executing a MySQL query\");</script>");

 printf("<meta http-equiv=\"REFRESH\" content=\"0;
 url=../switchboard.php\">\n");

 exit(1);
 }

 res = mysql_store_result(conn);
 row = mysql_fetch_row(res);

 strcpy(address, row[0]);

 // Communication variables
 int data_socket;
 char send_buffer[MAXDATASIZE];
 char recv_buffer[MAXDATASIZE];
 int numbytes = 0;

 // Establish connection to hub
 data_socket = connect_to_hub();

 // Send control message to device
 sprintf(send_buffer, "C-%s", address);
 if (send(data_socket, send_buffer, strlen(send_buffer), 0) == -1)
 {
 perror("actioner: send");
 printf("<script type=\"text/javascript\">alert(\"There was a

 problem sending data to the device server\");
 </script>");

 printf("<meta http-equiv=\"REFRESH\" content=\"0;
 url=../switchboard.php\">\n");

 exit(1);
 }

 // Listen for acknowledgement from device
 numbytes = recv(data_socket, recv_buffer, MAXDATASIZE-1, 0);
 switch (numbytes)
 {
 case -1:
 case 0:
 perror("actioner: recv");
 printf("<script type=\"text/javascript\">alert(\"There

was a problem receiving data from the device
server\");</script>");

 printf("<meta http-equiv=\"REFRESH\" content=\"0;
 url=../switchboard.php\">\n");

 exit(1);
 default:
 recv_buffer[numbytes] = '\0';
 break;
 }

 // Send data message to device
 if (action[0] == 'I' && action[1] == 'D')
 {
 sprintf(send_buffer, "D-%s-%c", action, (char)id);
 }
 else
 {
 sprintf(send_buffer, "D-%s-%d", action, new_state);
 }

97

 if (send(data_socket, send_buffer, strlen(send_buffer), 0) == -1)
 {
 perror("actioner: send");
 printf("<script type=\"text/javascript\">alert(\"There was a

 problem sending data to the device server\");
 </script>");

 printf("<meta http-equiv=\"REFRESH\" content=\"0;
 url=../switchboard.php\">\n");

 exit(1);
 }

 // Listen for acknowledgement from device
 numbytes = recv(data_socket, recv_buffer, MAXDATASIZE-1, 0);
 switch (numbytes)
 {
 case -1:
 case 0:
 perror("actioner: recv(0)");
 printf("<script type=\"text/javascript\">alert(\"There

 was a problem receiving data from the device
 server\");</script>");

 printf("<meta http-equiv=\"REFRESH\" content=\"0;
 url=../switchboard.php\">\n");

 exit(1);
 default:
 recv_buffer[numbytes] = '\0';
 break;
 }

 //Update the devices table with the new state and place an entry in

 the history table
 sprintf(query_string, "UPDATE devices SET state='%d' WHERE id =

 '%d'", recv_buffer[2]-48, id);

 if (mysql_query(conn, query_string))
 {
 fprintf(stderr, "%s\n", mysql_error(conn));
 printf("<script type=\"text/javascript\">alert(\"There was a

 problem executing a MySQL query\");</script>");
 printf("<meta http-equiv=\"REFRESH\" content=\"0;

 url=../switchboard.php\">\n");
 exit(1);
 }

 sprintf(query_string, "INSERT INTO history VALUES (NULL, '%d', '%s',

 '%d', '%s')", id, action, new_state, username);

 if (mysql_query(conn, query_string))
 {
 fprintf(stderr, "%s\n", mysql_error(conn));
 printf("<script type=\"text/javascript\">alert(\"There was a

 problem executing a MySQL query\");</script>");
 printf("<meta http-equiv=\"REFRESH\" content=\"0;

 url=../switchboard.php\">\n");
 exit(1);
 }

 strcpy(send_buffer, "^Z");
 if (send(data_socket, send_buffer, strlen(send_buffer), 0) == -1)
 {

98

 perror("actioner: send");
 printf("<script type=\"text/javascript\">alert(\"There was a

 problem sending data to the device server\");
 </script>");

 printf("<meta http-equiv=\"REFRESH\" content=\"0;
 url=../switchboard.php\">\n");

 exit(1);
 }

 // Finished with this connection - close it
 close(data_socket);

 // Finished with database - clean up
 mysql_free_result(res);
 mysql_close(conn);

 // Return to webpage
 printf("<meta http-equiv=\"REFRESH\" content=\"0;

 url=../switchboard.php\">\n");

 free(lenstr);
 return 0;
}

void *get_in_addr(struct sockaddr *sa)
{
 if (sa->sa_family == AF_INET)
 {
 return &(((struct sockaddr_in*)sa)->sin_addr);
 }

 return &(((struct sockaddr_in6*)sa)->sin6_addr);
}

int connect_to_hub()
{
 int data_socket, rv;
 struct addrinfo hints, *servinfo, *p;
 char s[INET6_ADDRSTRLEN];

 memset(&hints, 0, sizeof hints);
 hints.ai_family = AF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;

 if ((rv = getaddrinfo(HUB_ADDRESS, HUB_PORT, &hints, &servinfo)) !=

 0)
 {
 fprintf(stderr, "actioner getaddrinfo: %s\n",

gai_strerror(rv));
 printf("<script type=\"text/javascript\">alert(\"There was a

 problem with getaddrinfo\");</script>");
 printf("<meta http-equiv=\"REFRESH\" content=\"0;

 url=../switchboard.php\">\n");
 exit(1);
 }

 for (p = servinfo; p != NULL; p = p->ai_next)
 {

99

if ((data_socket = socket(p->ai_family, p->ai_socktype,
 p->ai_protocol)) == -1)

 {
 perror("actioner: socket");
 continue;
 }
 if (connect(data_socket, p->ai_addr, p->ai_addrlen) == -1)
 {
 close(data_socket);
 perror("actioner: connect");
 continue;
 }
 break;
 }

 if (p == NULL)
 {
 fprintf(stderr, "actioner: failed to connect\n");
 printf("<script type=\"text/javascript\">alert(\"There was a

 problem connecting to the device server\");</script>");
 printf("<meta http-equiv=\"REFRESH\" content=\"0;

 url=../switchboard.php\">\n");
 exit(1);
 }

 inet_ntop(p->ai_family, get_in_addr((struct sockaddr *)p->ai_addr),

 s, sizeof s);
 freeaddrinfo(servinfo);

 return data_socket;
}

100

C.2 server_listener.c

/*
** server_listener.c
*/

#include <arpa/inet.h>
#include <errno.h>
#include <mysql.h>
#include <netdb.h>
#include <netinet/in.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

#define BACKLOG 10 // How many pending connections queue will hold
#define MAXDATASIZE 21 // How many bytes we can send or receive at one

 time
#define PORT "3490" // The port users will be connecting to

void sigchld_handler(int s);
void *get_in_addr(struct sockaddr *sa);

int main(void)
{
 int i;

 // Communication variables
 int listening_socket, data_socket; // Listen on

listening_socket, new connection on data_socket
 socklen_t sin_size;
 struct addrinfo hints, *servinfo, *p;
 struct sockaddr_storage their_addr; // Connector's address info
 struct sigaction sa;
 char s[INET6_ADDRSTRLEN];
 char buffer[MAXDATASIZE]; // Communication buffer
 int rv, yes=1, numbytes;

 // Device variables
 int id = 0;
 unsigned char idh = 0;
 char address[17] = "";
 char action[3] = "";
 int state = 0;

 action[2] = '\0';

 // Set up server listener
 memset(&hints, 0, sizeof hints);
 hints.ai_family = AF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;
 hints.ai_flags = AI_PASSIVE; // Use own IP

101

if ((rv = getaddrinfo(NULL, PORT, &hints, &servinfo)) != 0)
 {
 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
 return 1;
 }

 for (p = servinfo; p != NULL; p = p->ai_next)
 {
 if ((listening_socket = socket(p->ai_family, p->ai_socktype,

 p->ai_protocol)) == -1)
 {
 perror("server: socket");
 continue;
 }
 if (setsockopt(listening_socket, SOL_SOCKET, SO_REUSEADDR,

 &yes, sizeof(int)) == -1)
 {
 perror("setsockopt");
 exit(1);
 }
 if (bind(listening_socket, p->ai_addr, p->ai_addrlen) == -1)
 {
 close(listening_socket);
 perror("server: bind");
 continue;
 }
 break;
 }

 if (p == NULL)
 {
 fprintf(stderr, "server: failed to bind\n");
 return 2;
 }

 freeaddrinfo(servinfo);

 if (listen(listening_socket, BACKLOG) == -1)
 {
 perror("listen");
 exit(1);
 }

 // Reap all dead processes
 sa.sa_handler = sigchld_handler;
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = SA_RESTART;
 if (sigaction(SIGCHLD, &sa, NULL) == -1)
 {
 perror("sigaction");
 exit(1);
 }

 // Feed back status information to the user
 printf("server: waiting for connections...\n");

 // Main accept() loop
 while(1)
 {
 // Accept incoming connection
 sin_size = sizeof their_addr;

102

 data_socket = accept(listening_socket, (struct sockaddr *)
 &their_addr, &sin_size);

 if (data_socket == -1)
 {
 perror("accept");
 continue;
 }
 inet_ntop(their_addr.ss_family, get_in_addr((struct sockaddr *)

 &their_addr), s, sizeof s);
 printf("server: got connection from %s\n", s);

 if (!fork())
 {
 // This is the child process
 // The child doesn't need the listener
 close(listening_socket);

 // Database variables
 MYSQL *conn;
 MYSQL_RES *result;
 char temp[255];

 // Connect to database
 conn = mysql_init(NULL);
 if (!mysql_real_connect(conn, "localhost", "root",

 "root", "db1", 8889, "/Applications/MAMP/tmp/mysql/
 mysql.sock", 0))

 {
 fprintf(stderr, "%s\n", mysql_error(conn));
 exit(1);
 }

 // Receive notification data
 if ((numbytes = recv(data_socket, buffer, MAXDATASIZE-1,

 0)) == -1)
 {
 perror("recv");
 exit(1);
 }
 buffer[numbytes] = '\0';

 // Check the received data
 if (numbytes == 0)
 {
 // No data was received
 // The remote terminal may have closed the

 connection unexpectedly
 printf("server: received nothing\n");
 }
 else
 {
 // Check for advertisement message
 if (buffer[0] == 'A' && buffer[1] == 'D')
 {
 address[0] = '0';
 address[1] = '0';
 for (i=2; i < 16; i++)
 {
 address[i] = buffer[i];
 }
 address[16] = '\0';

103

 sprintf(temp, "SELECT id FROM devices WHERE

 address = '%s'", address);
 if (mysql_query(conn, temp))
 {
 fprintf(stderr, "%s\n",

 mysql_error(conn));
 return 3;
 }

 result = mysql_store_result(conn);
 if (mysql_num_rows(result))
 {
 sprintf(temp, "UPDATE devices SET

 state='2' WHERE address =
 '%s'", address);

 }
 else
 {
 sprintf(temp, "INSERT INTO devices

 VALUES ('', '%s', '3332', 'C',
 'SW', '1', '2')", address);

 }

 if (mysql_query(conn, temp))
 {
 fprintf(stderr, "%s\n",

 mysql_error(conn));
 return 3;
 }
 }

 // Parse notification data
 else if (sscanf(buffer, "N-%c-%c%c-%d", &idh,

 &action[0], &action[1], &state) == 4)
 {
 id = (int)idh;

 // Data ok - update database
 // Update devices table with new device

 device_state
 sprintf(temp, "UPDATE devices SET state='%d'

 WHERE id = %d", state, id);

 // DEBUG
 printf("Notification: id=%d action=%s

 state=%d\n", id, action, state);

 if (mysql_query(conn, temp))
 {
 fprintf(stderr, "%s\n",

 mysql_error(conn));
 return 3;
 }

 // Update history table with event
 sprintf(temp, "INSERT INTO history VALUES

 (NULL, '%d', '%s', '%d', 'UNKNOWN')",
 id, action, state);

104

 if (mysql_query(conn, temp))
 {
 fprintf(stderr, "%s\n",

 mysql_error(conn));
 return 3;
 }
 }
 else
 {
 // Received invalid data
 printf("Invalid data received: ");
 i = 0;
 while (buffer[i] != '\0')
 {
 if (buffer[i] == '\r')
 {
 printf("\\r");
 }
 else if (buffer[i] == '\n')
 {
 printf("\\n");
 }
 else
 {
 printf("%c", buffer[i]);
 }
 i++;
 }
 printf("\n");
 }
 }

 // Finished with this connection - close it
 close(data_socket);

 // Close connection to database
 mysql_close(conn);

 // Terminate thread
 _exit(0);
 }

 // This is the parent process
 // The parent doesn't need the data socket
 close(data_socket);
 }

 return 0;
}

void sigchld_handler(int s)
{
 while(waitpid(-1, NULL, WNOHANG) > 0);
}

void *get_in_addr(struct sockaddr *sa)
{
 if (sa->sa_family == AF_INET)
 {
 return &(((struct sockaddr_in*)sa)->sin_addr);
 }

105

 return &(((struct sockaddr_in6*)sa)->sin6_addr);
}

106

D. Gateway Source Code

D.1 TCPHandler (TCPH.c)

#define __TCPH_C

#include "TCPIPConfig.h"
#include "TCPIP Stack/TCPIP.h"

#define SERVER_PORT 3456
#define MAX_DATA_LENGTH 21

void TCPHandler(void)
{
 static TICK Timer;
 static TCP_SOCKET server_socket = INVALID_SOCKET;
 static BYTE state;
 BYTE TCPBuffer[MAX_DATA_LENGTH];
 WORD data_length;
 BYTE DAH[9];
 BYTE DAL[9];
 BYTE UBuffer[15];
 BYTE UReply[7];
 BYTE temp[16];
 WORD i;
 BYTE j;

 static enum _TCPHandlerState
 {
 SM_HOME = 0,
 SM_LISTENING,
 SM_PROCESSING
 } TCPHandlerState = SM_HOME;

 switch (TCPHandlerState)
 {
 case SM_HOME:
 // Allocate a socket for this server to listen and accept

 connections on
 server_socket = TCPOpen(0, TCP_OPEN_SERVER, SERVER_PORT,

 TCP_PURPOSE_GENERIC_TCP_SERVER);
 if (server_socket == INVALID_SOCKET)
 return;

 TCPHandlerState = SM_LISTENING;
 break;

 case SM_LISTENING:
 // See if anyone is connected to us
 if (!TCPIsConnected(server_socket))
 {
 // No-one is connected; clear connection flag
 LED1_IO = 0;
 return;
 }

 // Set connection flag
 LED1_IO = 1;

107

 // Check for incoming data
 if (data_length = TCPIsGetReady(server_socket))
 {
 TCPGetArray(server_socket, TCPBuffer, data_length);
 TCPBuffer[data_length] = '\0';
 TCPDiscard(server_socket);

 TCPHandlerState = SM_PROCESSING;
 }
 break;

 case SM_PROCESSING:
 if (TCPBuffer[0] == 'C' && TCPBuffer[1] == '-')
 {
 // C- signals an XBee AT command

 // Extract DESTINATION ADDRESS HIGH
 j = 0;
 for (i = 2; i < 10; i++)
 DAH[j++] = TCPBuffer[i];
 DAH[j] = '\0';

 // Extract DESTINATION ADDRESS LOW
 j = 0;
 for (i = 10; i < 18; i++)
 DAL[j++] = TCPBuffer[i];
 DAL[j] = '\0';

 // Send AT command mode sequence to coordinator

 XBee
 WriteUSART('+');
 while (BusyUSART());
 WriteUSART('+');
 while (BusyUSART());
 WriteUSART('+');

 // Wait 1/4 second for acknowledgement
 Timer = TickGet();
 do
 {
 if (DataRdyUSART())
 {
 getsUSART(&UReply, 3);

 // Set command mode flag
 LED2_IO = 1;
 break;
 }
 } while (TickGet()-Timer < TICK_SECOND/4);

 // If command mode flag is not set, halt further

 processing
 if (!LED2_IO)
 {
 // Set error flag
 LED3_IO = 1;
 }
 else
 {
 // In command mode...

108

 // Pass DESTINATION ADDRESS HIGH to

 coordinator XBee
 sprintf(UBuffer, "ATDH %s\r", DAH);
 putsUSART(UBuffer);

 // Set error flag - it will be cleared if the

 XBee returns OK
 LED3_IO = 1;

 // Wait 1 second for acknowledgement
 Timer = TickGet();
 do
 {
 if (DataRdyUSART())
 {
 if (ReadUSART() == 'O')
 {
 // OK - clear error flag
 getsUSART(&UReply, 2);
 LED3_IO = 0;
 }
 else
 {
 // ERROR
 getsUSART(&UReply, 5);
 }
 break;
 }
 } while (TickGet()-Timer < 1*TICK_SECOND);

 // Continue processing only if there was no

 error
 if (!LED3_IO)
 {
 // Pass DESTINATION ADDRESS LOW to

 coordinator XBee
 sprintf(UBuffer, "ATDL %s\r", DAL);
 putsUSART(UBuffer);

 // Set error flag - it will be cleared

 if the XBee returns OK
 LED3_IO = 1;

 // Wait 1 second for acknowledgement
 Timer = TickGet();
 do
 {
 if (DataRdyUSART())
 {
 if (ReadUSART() == 'O')
 {
 // OK - clear error

 flag
 getsUSART(&UReply,

 2);
 LED3_IO = 0;
 }
 else
 {
 // ERROR

109

 getsUSART(&UReply,

5);
 }
 break;
 }
 } while (TickGet()-Timer <

 1*TICK_SECOND);
 }

 // Send command mode exit sequence to XBee
 // Sending individual characters stops a nul

 char being sent to the destination XBee
 //
 // If exit command fails, command mode will

 eventually timeout anyway
 //
 WriteUSART('A');
 while (BusyUSART());
 WriteUSART('T');
 while (BusyUSART());
 WriteUSART('C');
 while (BusyUSART());
 WriteUSART('N');
 while (BusyUSART());
 WriteUSART('\r');

 // Set error flag - it will be cleared if the

 XBee returns OK
 LED3_IO = 1;

 // Wait 1 second for acknowledgement
 Timer = TickGet();
 do
 {
 if (DataRdyUSART())
 {
 if (ReadUSART() == 'O')
 {
 getsUSART(&UReply, 2);

 // Clear command mode and

 error flags
 LED2_IO = 0;
 LED3_IO = 0;
 }
 else
 {
 getsUSART(&UReply, 5);
 }
 break;
 }
 } while (TickGet()-Timer < 1*TICK_SECOND);

 } // endif (LED1_IO)

 // Prepare TCP reply
 if (LED2_IO || LED3_IO)
 {
 // There was an error
 TCPPut(server_socket, 'E');

110

 TCPPut(server_socket, 'R');

 // Clear the flags
 LED2_IO = 0;
 LED3_IO = 0;
 }
 else
 {
 // Command procedure was successful
 TCPPut(server_socket, 'O');
 TCPPut(server_socket, 'K');
 }

 // Send reply
 TCPFlush(server_socket);
 }
 else if (TCPBuffer[0] == 'D' && TCPBuffer[1] == '-')
 {
 // D- signals RF data

 // Forward message to destination XBee
 putsUSART(TCPBuffer+2);

 // Set error flag - it will be cleared if the

 destination XBee returns OK
 LED4_IO = 1;

 // Wait 5 seconds for acknowledgement
 Timer = TickGet();
 do
 {
 if (DataRdyUSART())
 {
 getsUSART(&UReply, 4);
 UReply[3] = '\0';

 // Forward reply to server_socket

 buffer
 for (j = 0; j < 3; j++)
 {
 TCPPut(server_socket, UReply[j]);
 }
 state = UReply[2];

 for (i=0; i<16; i++)
 {
 temp[i] = LCDText[i];
 }
 strcpypgm2ram(LCDText, "TCP Request");
 for (i=0; i<16; i++)
 {
 LCDText[i+16] = temp[i];
 }
 LCDUpdate();

 // OK - clear the flag
 LED4_IO = 0;

 break;
 }
 } while (TickGet()-Timer < 2*TICK_SECOND);

111

 if (LED4_IO)
 {
 // The XBee response timed out - prepare

 error reply
 TCPPut(server_socket, 'E');
 TCPPut(server_socket, 'R');

 // Clear the flag
 LED4_IO = 0;
 }

 // Send reply
 TCPFlush(server_socket);
 }
 else if (TCPBuffer[0] == '^' && TCPBuffer[1] == 'Z')
 {
 // ^Z signals remote host disconnect
 //
 // Controller will automatically detect remote

 disconnect
 // Nothing to do here
 }
 else
 {
 // Invalid data was received
 strcpypgm2ram(LCDText, "Invalid data");
 LCDUpdate();
 }

 TCPHandlerState = SM_LISTENING;
 break;
 }
}

112

D.2 UHandler.c

#define __UHANDLER_C

#include "TCPIPConfig.h"
#include "TCPIP Stack/TCPIP.h"

#define CLIENT_PORT 3490
#define ERRMSG "Unhandled Notif."

static BYTE NotifyAddr[] = "10.1.1.4";

void UHandler(void)
{
 static TICK Timer;
 static TCP_SOCKET client_socket = INVALID_SOCKET;
 static BYTE UBuffer[17];
 BYTE temp[16];
 BYTE i;

 static enum _UHandlerState
 {
 SM_LISTENING = 0,
 SM_NOTIFYING1,
 SM_NOTIFYING2,
 SM_NOTIFYING3
 } UHandlerState = SM_LISTENING;

 switch (UHandlerState)
 {
 case SM_LISTENING:
 if (DataRdyUSART())
 {
 Timer = TickGet();

 i = 0;
 do
 {
 if (DataRdyUSART())
 getsUSART(&UBuffer[i++], 1);
 } while (TickGet()-Timer < (TICK_SECOND/4));
 UBuffer[i] = '\0';

 if (UBuffer[0] == 'N' && UBuffer[1] == '-')
 {
 // N- signals an incoming notification
 UHandlerState = SM_NOTIFYING1;
 }
 else if (UBuffer[0] == 'A' && UBuffer[1] == 'D')
 {
 // AD signals a switch advertisement
 UHandlerState = SM_NOTIFYING1;
 }
 else
 {
 for (i=0; i<16; i++)
 {
 temp[i] = LCDText[i];
 }

113

 strcpypgm2ram(LCDText, ERRMSG);
 for (i=0; i<16; i++)
 {
 LCDText[i+16] = temp[i];
 }
 LCDUpdate();
 }
 }
 break;

 case SM_NOTIFYING1:
 client_socket = TCPOpen((DWORD)&NotifyAddr[0],

 TCP_OPEN_RAM_HOST, CLIENT_PORT,
 TCP_PURPOSE_GENERIC_TCP_CLIENT);

 if (client_socket == INVALID_SOCKET)
 break;

 Timer = TickGet();

 UHandlerState = SM_NOTIFYING2;
 break;

 case SM_NOTIFYING2:
 if (!TCPIsConnected(client_socket))
 {
 if (TickGet()-Timer > 5*TICK_SECOND)
 {
 TCPDisconnect(client_socket);
 client_socket = INVALID_SOCKET;

 UHandlerState = SM_LISTENING;
 }
 break;
 }

 if (!TCPIsPutReady(client_socket))
 break;

 i = 0;
 while (UBuffer[i] != '\0')
 {
 TCPPut(client_socket, UBuffer[i++]);
 }
 TCPFlush(client_socket);

 for (i=0; i<16; i++)
 {
 temp[i] = LCDText[i];
 }
 strcpy(LCDText, UBuffer);
 for (i=0; i<16; i++)
 {
 LCDText[i+16] = temp[i];
 }
 LCDUpdate();

 UHandlerState = SM_NOTIFYING3;
 break;

 case SM_NOTIFYING3:
 TCPDisconnect(client_socket);

114

 client_socket = INVALID_SOCKET;

 UHandlerState = SM_LISTENING;
 break;
 }
 return;
}

115

E. Switch Firmware Source Code

E.1 Switch 1 (End_device/ex1.c)

#include <p18f1220.h>
#include <usart.h>
#include <delays.h>

/* Set configuration bits for use with ICD2 / PIC18F1220:
 * - set internal oscillator with I/O on RA6 and RA7
 * - disable watchdog timer
 * - disable low voltage programming
 * - enable background debugging
 */
#pragma config OSC = INTIO2
#pragma config WDT = OFF
#pragma config LVP = OFF
#pragma config DEBUG = ON

/* Interrupt routines */
void rx_handler(void);
void tmr_handler(void);

/* High priority ISR */
#pragma code rx_interrupt = 0x8
void rx_int(void)
{
 _asm goto rx_handler _endasm
}
#pragma code

/* Low priority ISR */
#pragma code tmr_interrupt = 0x18
void tmr_int(void)
{
 _asm goto tmr_handler _endasm
}
#pragma code

#pragma interrupt rx_handler
void rx_handler(void)
{
 unsigned char comm[5];

 /* Get data received from the USART */
 getsUSART((char*)&comm, 5); // Expect SW-X\0 ([action]-

 [state][nul])

 if (comm[0] == 'S' && comm[1] == 'W')
 {
 if (comm[3] == '0')
 {
 /* Turn relay OFF */
 PORTAbits.RA1 = 0;
 /* Device server expects 4 characters in ACK (3 + nul) */
 putrsUSART((const far rom char*)"OK0");
 }
 else if (comm[3] == '1')

116

 {
 /* Turn relay ON */
 PORTAbits.RA1 = 1;
 /* Device server expects 4 characters in ACK (3 + nul) */
 putrsUSART((const far rom char*)"OK1");
 }
 else
 {
 /* Invalid switch state - do nothing and ACK with error

 */
 putrsUSART((const far rom char*)"ERR");
 }
 }
 else if (comm[0] == 'I' && comm[1] == 'D')
 {
 /* Store device id in FLASH memory (0x000FF0).
 * This corresponds to the device id in the database
 * and ensures that the correct entry is updated
 * following a notification.
 * The id remains stored even if the device is reset.
 */

 /* Disable interrupts */
 INTCONbits.GIE = 0;
 /* Load TBLPTR with address 0x000FF0 */
 TBLPTRU = 0x00;
 TBLPTRH = 0x0F;
 TBLPTRL = 0xF0;
 /* Point to FLASH program memory */
 EECON1bits.CFGS = 0;
 EECON1bits.EEPGD = 1;
 /* Enable write to memory */
 EECON1bits.WREN = 1;
 /* Enable row erase operation */
 EECON1bits.FREE = 1;
 /* Write sequence (CPU stall) */
 EECON2 = 0x55;
 EECON2 = 0xAA;
 EECON1bits.WR = 1;
 Nop();
 /* Load TABLAT with device id (hex) */
 TABLAT = comm[3];
 _asm TBLWT _endasm
 /* Write sequence (CPU stall) */
 EECON2 = 0x55;
 EECON2 = 0xAA;
 EECON1bits.WR = 1;
 Nop();
 /* Disable write to memory */
 EECON1bits.WREN = 0;
 /* Re-enable interrupts */
 INTCONbits.GIE = 1;

 /* ACK with current switch state */
 if (PORTAbits.RA1)
 {
 putrsUSART((const far rom char*)"OK1");
 }
 else
 {
 putrsUSART((const far rom char*)"OK0");

117

 }
 }
 else
 {
 /* Invalid command - do nothing and ACK with error */
 putrsUSART((const far rom char*)"ERR");
 }

 /* Clear interrupt flag */
 PIR1bits.RCIF = 0;
}

#pragma interrupt tmr_handler
void tmr_handler(void)
{
 /* Toggle LED */
 PORTAbits.RA2 ^= 1;
 /* Clear interrupt flag */
 INTCONbits.TMR0IF = 0;
}

void main(void)
{
 /* Configure the internal oscillator as system clock (8MHz) */
 OSCCON = 0x72;
 OSCTUNE = 0x00;

 /* Configure PORTA - set RA2 and RA5 as inputs */
 PORTA = 0x00;
 TRISA = 0x21;

 /* Configure A/D for digital inputs */
 ADCON1 = 0x7F;

 /*
 * Open the USART configured as
 * 8N1, 19200 baud, in polled mode.
 * Note that 25 is the appropriate
 * value for BRGH=1 and Fosc=8MHz.
 */
 OpenUSART(USART_TX_INT_OFF &
 USART_RX_INT_ON &
 USART_ASYNCH_MODE &
 USART_EIGHT_BIT &
 USART_CONT_RX &
 USART_BRGH_HIGH, 25);

 /* Enable interrupt priority */
 RCONbits.IPEN = 1;
 /* Make receive interrupt high priority */
 IPR1bits.RCIP = 1;
 /* Enable all high priority interrupts */
 INTCONbits.GIEH = 1;

 /* Configure Timer0 - 16-bit, 1:16 prescaler, internal clock source

 */
 T0CON = 0x93;
 /* Enable Timer0 interrupt */
 INTCONbits.TMR0IE = 1;
 /* Make Timer0 interrupt low priority */
 INTCON2bits.TMR0IP = 0;

118

 /* Enable all low priority interrupts */
 INTCONbits.GIEL = 1;

 /* Loop forever */
 while (1)
 {
 if (!PORTAbits.RA0)
 {
 /* The switch button was pressed - toggle the relay */
 PORTAbits.RA1 ^= 1;

 /* Notify server of change */
 putcUSART('N');
 while (BusyUSART());
 putcUSART('-');
 /* Read device id from FLASH memory */
 TBLPTRU = 0x00;
 TBLPTRH = 0x0F;
 TBLPTRL = 0xF0;
 _asm TBLRD _endasm
 while (BusyUSART());
 putcUSART((char)TABLAT);
 while (BusyUSART());
 putcUSART('-');
 while (BusyUSART());
 putcUSART('S');
 while (BusyUSART());
 putcUSART('W');
 while (BusyUSART());
 putcUSART('-');
 while (BusyUSART());
 if (PORTAbits.RA1)
 {
 putcUSART('1');
 }
 else
 {
 putcUSART('0');
 }

 /* Delay to combat switch bounce */
 Delay10KTCYx(100);
 }
 }
}

119

E.2 Switch 2 (End_device2/ex1.c)

#include <p18f1220.h>
#include <delays.h>
#include <string.h>
#include <usart.h>

/* Set configuration bits for use with ICD2 / PIC18F1220:
 * - set internal oscillator with I/O on RA6 and RA7
 * - disable watchdog timer
 * - disable low voltage programming
 * - enable background debugging
 */
#pragma config OSC = INTIO2
#pragma config WDT = OFF
#pragma config LVP = OFF
#pragma config DEBUG = ON

/* Interrupt routines */
void rx_handler(void);

/* High priority ISR */
#pragma code rx_interrupt = 0x8
void rx_int(void)
{
 _asm goto rx_handler _endasm
}
#pragma code

#pragma interrupt rx_handler
void rx_handler(void)
{
 if (INTCON3bits.INT2IF)
 {
 /* This interrupt sometimes spontaneously occurs.
 * Check that the button is indeed pressed to combat this.
 */
 if (!PORTBbits.RB2)
 {
 /* The switch button was pressed - toggle the relay */
 PORTAbits.RA0 ^= 1;

 /* Notify server of change */
 putcUSART('N');
 while (BusyUSART());
 putcUSART('-');
 /* Read device id from FLASH memory */
 TBLPTRU = 0x00;
 TBLPTRH = 0x0F;
 TBLPTRL = 0xF0;
 _asm TBLRD _endasm
 while (BusyUSART());
 putcUSART((char)TABLAT);
 while (BusyUSART());
 putcUSART('-');
 while (BusyUSART());
 putcUSART('S');
 while (BusyUSART());
 putcUSART('W');

120

 while (BusyUSART());
 putcUSART('-');
 while (BusyUSART());
 if (PORTAbits.RA0)
 {
 putcUSART('1');
 }
 else
 {
 putcUSART('0');
 }
 }

 /* Delay to combat switch bounce */
 Delay10KTCYx(100);

 /* Clear interrupt flag */
 INTCON3bits.INT2IF = 0;
 }
 else if (PIR1bits.RCIF)
 {
 unsigned char comm[5];

 /* Get data received from the USART */
 getsUSART((char*)&comm, 5); // Expect SW-X\0 ([action]-

 [state][nul])

 if (comm[0] == 'S' && comm[1] == 'W')
 {
 if (comm[3] == '0')
 {
 /* Turn relay OFF */
 PORTAbits.RA0 = 0;
 /* Device server expects 4 characters in ACK (3 +

 nul) */
 putrsUSART((const far rom char*)"OK0");
 }
 else if (comm[3] == '1')
 {
 /* Turn relay ON */
 PORTAbits.RA0 = 1;
 /* Device server expects 4 characters in ACK (3 +

 nul) */
 putrsUSART((const far rom char*)"OK1");
 }
 else
 {
 /* Invalid switch state - do nothing and ACK with

 error */
 putrsUSART((const far rom char*)"ERR");
 }
 }
 else if (comm[0] == 'I' && comm[1] == 'D')
 {
 /* Store device id in FLASH memory (0x000FF0).
 * This corresponds to the device id in the database
 * and ensures that the correct entry is updated
 * following a notification.
 * The id remains stored even if the device is reset.
 */

121

 /* Disable interrupts */
 INTCONbits.GIE = 0;
 /* Load TBLPTR with address 0x000FF0 */
 TBLPTRU = 0x00;
 TBLPTRH = 0x0F;
 TBLPTRL = 0xF0;
 /* Point to FLASH program memory */
 EECON1bits.CFGS = 0;
 EECON1bits.EEPGD = 1;
 /* Enable write to memory */
 EECON1bits.WREN = 1;
 /* Enable row erase operation */
 EECON1bits.FREE = 1;
 /* Write sequence (CPU stall) */
 EECON2 = 0x55;
 EECON2 = 0xAA;
 EECON1bits.WR = 1;
 Nop();
 /* Load TABLAT with device id (hex) */
 TABLAT = comm[3];
 _asm TBLWT _endasm
 /* Write sequence (CPU stall) */
 EECON2 = 0x55;
 EECON2 = 0xAA;
 EECON1bits.WR = 1;
 Nop();
 /* Disable write to memory */
 EECON1bits.WREN = 0;
 /* Re-enable interrupts */
 INTCONbits.GIE = 1;

 /* ACK with current switch state */
 if (PORTAbits.RA0)
 {
 putrsUSART((const far rom char*)"OK1");
 }
 else
 {
 putrsUSART((const far rom char*)"OK0");
 }
 }
 else
 {
 /* Invalid command - do nothing and ACK with error */
 putrsUSART((const far rom char*)"ERR");
 }

 /* Clear interrupt flag */
 PIR1bits.RCIF = 0;
 }
}

unsigned char UReply[17];
unsigned char UBuffer[17];

void main(void)
{
 /* Configure the internal oscillator as system clock (8MHz) */
 OSCCON = 0x72;
 OSCTUNE = 0x00;

122

 /* Configure PORTA - set RA5 as input, RA0 as output */
 PORTA = 0x00;
 TRISA = 0x20;

 /* Configure PORTB - set RB2 and RB4 as inputs, RB1 as output */
 PORTB = 0x00;
 TRISB = 0x14;

 /* Configure A/D for digital inputs */
 ADCON1 = 0x7F;

 Delay10KTCYx(100);

 /*
 * Open the USART configured as
 * 8N1, 19200 baud, in polled mode.
 * Note that 25 is the appropriate
 * value for BRGH=1 and Fosc=8MHz.
 */
 OpenUSART(USART_TX_INT_OFF &
 USART_RX_INT_ON &
 USART_ASYNCH_MODE &
 USART_EIGHT_BIT &
 USART_CONT_RX &
 USART_BRGH_HIGH, 25);

 WriteUSART('+');
 while (BusyUSART());
 WriteUSART('+');
 while (BusyUSART());
 WriteUSART('+');

 while (!DataRdyUSART());
 getsUSART((char*)&UReply, 3);
 UReply[3] = '\0';

 WriteUSART('A');
 while (BusyUSART());
 WriteUSART('T');
 while (BusyUSART());
 WriteUSART('S');
 while (BusyUSART());
 WriteUSART('H');
 while (BusyUSART());
 WriteUSART('\r');

 while (!DataRdyUSART());
 getsUSART((char*)&UBuffer+2, 7);

 WriteUSART('A');
 while (BusyUSART());
 WriteUSART('T');
 while (BusyUSART());
 WriteUSART('S');
 while (BusyUSART());
 WriteUSART('L');
 while (BusyUSART());
 WriteUSART('\r');

 while (!DataRdyUSART());
 getsUSART((char*)&UBuffer+8, 9);

123

 UBuffer[0] = 'A';
 UBuffer[1] = 'D';
 UBuffer[16] = '\0';

 WriteUSART('A');
 while (BusyUSART());
 WriteUSART('T');
 while (BusyUSART());
 WriteUSART('C');
 while (BusyUSART());
 WriteUSART('N');
 while (BusyUSART());
 WriteUSART('\r');

 while (!DataRdyUSART());
 getsUSART((char*)&UReply, 3);
 UReply[3] = '\0';

 putsUSART((char*)&UBuffer);

 /* Clear interrupt flag */
 PIR1bits.RCIF = 0;

 /* Enable interrupt priority */
 RCONbits.IPEN = 1;
 /* Make receive interrupt high priority */
 IPR1bits.RCIP = 1;

 /* Enable INT2 external interrupt */
 INTCON3bits.INT2IE = 1;
 /* Interrupt on falling edge */
 INTCON2bits.INTEDG2 = 0;
 /* Make interrupt high priority */
 INTCON3bits.INT2IP = 1;
 /* Enable peripheral interrupts */
 INTCONbits.PEIE = 1;

 /* Enable all high priority interrupts */
 INTCONbits.GIEH = 1;

 /* Loop forever */
 while (1);
}

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	1 Introduction
	1.1 Project Overview
	1.2 Design Specification
	1.2.1 Requirements
	1.2.2 Constraints

	1.3 Thesis Outline

	2 Literature Review
	2.1 Problems Facing the Home Automation Industry
	2.2 Existing Technologies
	2.2.1 X10 and INSTEON
	2.2.2 CEBus and C-Bus
	2.2.3 Vantage
	2.2.4 Control4
	2.2.5 KNX

	2.3 Research Approaches
	2.4 Standards
	2.4.1 OSGi
	2.4.2 ZigBee

	2.5 Summary

	3 System Design
	3.1 Project Framework
	3.1.1 Remote Switching Process
	3.1.2 Local Switching Process

	3.2 Communication Protocol
	3.2.1 Command Messages
	3.2.2 Data Messages
	3.2.3 Notification Messages
	3.2.4 Acknowledgement Messages
	3.2.5 Server Disconnect Signal
	3.2.6 Command Mode Protocol
	3.2.7 Communication Overview

	4 Server Design
	4.1 User Interface
	4.1.1 Security
	4.1.2 User Authentication
	4.1.3 Control Centre
	4.1.4 Switchboard
	4.1.4.1 Offline Switches

	4.1.5 Alert Boxes
	4.1.6 System Management
	4.1.6.1 Adding/Removing Devices and Users
	4.1.6.2 Managing Users

	4.1.7 Event History

	4.2 Database
	4.2.1 Users Table
	4.2.2 Devices Table
	4.2.2.1 ZigBee Communication Parameters
	4.2.2.2 Node Identifier
	4.2.2.3 Device Type
	4.2.2.4 Device State

	4.2.3 History Table
	4.2.3.1 Timestamps

	5 Home Gateway Design
	5.1 Programming the Microcontroller
	5.1.1 Microchip TCP/IP Stack

	5.2 TCPHandler Module
	5.2.1 Handler States
	5.2.2 Managing Error Situations

	5.3 UHandler Module
	5.3.1 Handler States
	5.3.2 Receiving Serial Data
	5.3.3 Notifying the Server

	5.4 LCD Display
	5.5 Gateway Architecture

	6 Switch Design
	6.1 First Switch: Hardware Design
	6.1.1 Power Supply
	6.1.1.1 Supply Voltages

	6.1.2 LED Indicators
	6.1.3 Programming Header
	6.1.4 Reset Button
	6.1.5 ZigBee Module Pin Connections
	6.1.6 PIC18F1220 Microcontroller Pin Connections

	6.2 First Switch: Software Design
	6.2.1 Initialisation
	6.2.2 Interrupt Service Routines
	6.2.3 Main Software Loop
	6.2.3.1 Delay Function

	6.2.4 Design Shortcomings

	6.3 Switch Two: Hardware and Software Refinements
	6.3.1 Power Supply
	6.3.2 Switch Button as External Interrupt
	6.3.2.1 Handling the Interrupt in Software
	6.3.2.2 Advantages

	6.3.3 Switch Announcement
	6.3.3.1 USART Anomaly

	7 Development and Testing
	7.1 High Level Overview
	7.2 System Development and Testing
	7.3 ZigBee Performance Testing

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	References
	Appendix
	A. Circuit Schematics
	B. Web Server Source Code
	B.1 login.html
	B.2 login.php
	B.3 mainpage.php
	B.4 switchboard.php
	B.5 manage_system.php
	B.6 add_device.php
	B.7 add_user.php
	B.8 show_history.php

	C. Server Processes Source Code
	C.1 server_actioner_cgi.c
	C.2 server_listener.c

	D. Gateway Source Code
	D.1 TCPHandler (TCPH.c)
	D.2 UHandler.c

	E. Switch Firmware Source Code
	E.1 Switch 1 (End_device/ex1.c)
	E.2 Switch 2 (End_device2/ex1.c)

