Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Massey University Library. Thesis Copyright Form

TIthe of thesis: Genotypic Variability in Torkshice Fog Grass

I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.
(b) I do not wish my thesis to be made available to readers
 without my written consent for \qquad months.

I agree that my thesis, or a copy, may be sent to another institution under conditions detemmed by the librarian.
(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for \qquad months.

I agree that my thesis may be copied for library use.
(b) I do not wish my thesis to be copied for Library use for
. \qquad 'months.
 Dace \qquad

The copyright of this thesis belongs to the author. Readers muse sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NATE AMD ADDRESS
\qquad
\qquad
\qquad

Genotypic Variability in Yorkshire Fog Grass

(Holcus lanatus L.)

A thesis
presented in partial fulfilment of the requirements
for the degree of
Master of Agricultural Science
in Agronomy
at
Massey University

Muangthong Thuantavee
1989

Abstract

Plant to plant genotypic variation in New-Zealand Yorkshire-Fog grass was examined in order to quantify the relative importance of average gene effects, dominance, epistasis and environment. The plant variability was contrasted also against topodeme variation.

Plants were grown under glasshouse conditions ($20^{\circ}-25^{\circ} \mathrm{C}$), using vernalization and sixteen hour daylight to encourage growth and flowering. The confounding effect of bench position was removed by regression adjustment.

Fifty half-sib lines representing ten diverse New Zealand topodemes were examined in a one-way mating design, laid out as a randomized complete block experiment.

In general, half-sib and plant variances were much larger than the topodeme variance. This supports earlier findings that there are no major topodeme differences in New Zealand Yorkshire Fog grass germplasm.

The broad-sense heritability estimates which indicated total genotypic contribution varied from low to high. Most botanical, flowering and tillering characters had a medium to high values while the agronomic characters had medium to low estimates.

The attributes with medium to high narrow-sense heritability are several measures of leaf size, tiller development, purple colour, plant height and erectness, flavanols and panicle width. Breeding methods, such as mass selection, line selection, line breeding or simple recurrent selection should ,therefore, be appropriate for these.

The attributes with medium to high heterotic-sense heritability are leaf tensile strength, leaf hairiness, old disease, flowering period, panicle length and compactness and several aspects of tiller production. Breeding methods, such as recurrent selection with progeny testing or top cross progeny tests for high specific
combining ability should be useful, including synthetic cultivars and some kinds of recurrent bulks.

Of particular interest was the finding that there was more genetic variability for the duration of tillering and flowering periods than for tiller numbers or flower initiation. There was also evidence that the genetic activity controlling tiller number changed as the tillers aged.

ACKNOWLEDGEMENT

I am deeply indebted to my supervisor, Dr I.L.Gordon, for his excellent guidance and assistance.

I wish to thank Mr A.G. Robertson of Agronomy Department and Dr M.J. Hill of Seed Technology Centre for their advice in grass physiology, Mr D.C. Havell of D.S.I.R. Grassland Division for the assistance on leaf tensile strength measurement, Mr D.T. Sollitt of Agronomy Department for his general technical assistance.

Thanks to Professor J. Hodgson and all the staff members of Agronomy Department for their advice and encouragement.

My special gratitude is to my dad and mum in Thailand who always give me a great support.

The awards of Helen E. Akers and D.J. McGowen scholarships to partially finance my study are gratefully acknowledged.

Lastly, my great appreciation is to my wonderful wife for her patience and invaluable help.

TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGEMENT iv
TABLE OF CONTENTS v
LIST OF TABLES viii
LIST OF FIGURES ix
LIST OF PLATES x
INTRODUCTION 1

1. LITERATURE REVIEWS 3
1.1 Yorkshire Fog Grass 3
1.1.1 Agro-botany and Agronomy 3
1.1.2 Plant Breeding 6
1.1.3 Germplasm Variability 7
1.1.4 Phynotypic and Genotypic Variability 7
1.1.5 Heritability 9
1.2 Quantitative Genetics 9
1.2.1 Partition Genetic Variance 11
1.2.2 Genetic Experimental Designs 12
1.2.3 Heritability and Its Standard Error Estimate 14
2. MATERIALS AND METHODS 17
2.1 Objectives 17
2.2 Source of Materials 17
2.3 Experimental Design and Bench Layout 17
2.4 Experimental Crop Management 19
2.5 Data Collection and Measurement 22
2.5.1 Leaf Blade Attributes 22
2.5.2 Tiller Numbers 22
2.5.3 Leaf Axil Purple Colour 25
2.5.4 Leaf Flavanol and Tannin Content 25
2.5.5 Leaf Tensile Strength 25
2.5.6 Leaf Hair 28
2.5.7 Clump Erectness 28
2.5.8 Flowering Day 30
2.5.9 Anthesis Time and Position 30
2.5.10 Panicle Size and Compactness 30
2.5.11 Plant Height 32
2.6 Statistical Analysis 32
2.6.1 Regression Analysis of Tiller Development 32
2.6.2 Analysis of Variance 32
2.6.3 Estimation of Genetic Variance 34
2.6.4 Heritability 38
3. RESULTS 39
3.1 Topodeme, Half-sib and Plant Variance Analysis 39
3.2 Genotypic Variance Analysis and Heritability Estimation 45
4. DISCUSSION 57
4.1 Comparison Among Topodeme, Half-sib and Plant Variations 57
4.2 Genotypic Variance and Heritability 58
4.2.1 Botanical Characters 59
4.2.2 Flowering Characters 60
4.2.3 Agronomic Characters 61
4.3 Genetic Variance on Tiller Development 63
4.4 Implication for Plant Breeding 66
REFERENCES 70
APPENDIX 84

LIST OF TABLES

| 1.1 Broad-sense beritability estimates from split-plot- | |
| :--- | :--- | :--- |
| in-time model (Cameron, 1979) | 10 |

1.2 Heritability estimates from polycross data and the North Carolina model-2 experiment, both using REML (Billington, et al. 1988) 10
2.1 Expected Mean Square (Model 1) 35
2.2 Expected Mean Square (EMS) (Model 2) 35
3.1 The grand means, their coefficients of variation and maxima and minima over all half-sib families 40
3.2 Block, Error(a), Error(b) variance components and their standard error and F -significance, together with position F-significance (model 1) 42
3.3 Topodeme, half-sib, within-plot variance component with their standard error and the F-significance (Model 1) 46
3.4 Genotypic variance from half-sib $\left(\mathrm{V}_{\mathrm{H}}\right)$ and Plot variance (V_{HB}) with their standard errors (Model 2) 49
3.5 Genetic variance components repartitioned into additive variance $\left(\mathrm{V}_{\mathrm{A}}\right)$ and heterotic variance $\left(\mathrm{V}_{\mathrm{h}}\right)$, together with phenotypic-variance (V_{P}) 52
3.6 Heritability estimates for narrow-sense $\left(h^{2} N\right)$, heterotic-sense $\left(h^{2}\right)$ and broad-sense ($h^{2} B$) 55

TABLE OF FIGURES

2.1 Origins of the 50 half-sib families from the 10 topodemes in 5 clusters defined by Teow (1978), the numbers refer to the seed catalogue 18
2.2 Experimental layout in the glasshouse 20
2.3 Leaf hair standards for ordinal score (Cameron, 1979) 29
4.1 Genotypic variance of tiller number development from sowing to flowering stage 64
4.2 Genotypic variance of tiller number after main tiller flowering stage (33 weeks) 65
4.3 Genotypic variance of tiller dry matter after main tiller flowering stage (33 weeks) 67

TABLE OF PLATES

2.1 Experimental layout 21
2.2 Stage of seedlings when the tiller counting started 23
2.3 Green tillers and aerial tillers 24
2.4 Leaf sheath colour score standard 26
2.5 Burn's spot test on flavanol standard 27
2.6 Panicle compactness standard 31

INTRODUCTION

Yorkshire Fog grass has been judged as one of the significant grasses for farm productivity (Basnyat, 1957; Munro, 1961). It has always been valuable as a pioneer grass in drained peat swamp areas (Basnyat, 1957). It is also useful in infertile, unstable, poorly drained soil (Munro, 1961; Davies et al., 1971; Morrison and Idle, 1972; Rumball, 1983). It is capable of establishing well in humid hill county, and on unploughable steep hills (Basnyat, 1957; Hughes and Nicholson, 1961;). On such area, H. lanatus is one of the earliest grasses to start growth in the spring and its subsequent growth was also notable (Herriot, 1975). It has been proposed as a 'nurse' species for sown L. perenne and Trifolium rapens, for which it would consolidate the soil, protect over grazing, and speed up the fertility cycle (Thomas, 1936; Davies, 1940). Furthermore, its good persistence has been used to control erosion (Dunbar, 1974; Hornung, 1976).

Yorkshire Fog grass is more suitable for less intensive farming system, typically dairy pasture and upland sheep farms (Munro, 1961). Its growth habit and vegetativereproductive cycle make it a good candidate for a lenient system of defoliation (Levy, 1955; Beddows, 1961). Its grazing tolerance lies between perennial ryegrass and cocksfoot (Mitchell, 1956). In mixed swards and under infrequent grazing regime, H. lanatus dominated L.perenne (Watt, 1987) and its ground cover over 4 year in Oxford has increased from 18% to 43% (Haggars and Ellliot, 1978).

Yorkshire Fog grass is believed to have been introduced into New Zealand either as a seed impurity or a hay grass in eighteenth century (Cheeseman, 1923), and since then as a volunteer, it contributed much of New Zealand's pasture production (Munro, 1961). Massey University has been interested in Yorkshire Fog grass since 1950 (Basnyat, 1957). The first synthetic variety "Massey Basyn" was released and proved to be prominent in several areas (Robinson et al., 1980; McAdam, 1984; Watt, 1987). Evaluation on Yorkshire Fog grass germplasm of New Zealand collection was carried on by Teow (1978). In addition, factors involving sheep palatability were determined by Cameron (1979). The broad-sense heritability estimates were also initially figured out pertinent to topodeme basis.

Following previous studies, this investigation has been set up to increase the genetical knowledge of Yorkshire Fog grass. An attempt has been made to unravel the heritabilities pertinent to individual plant basis. Comparison between plant variation and topodeme variation was also carried out.

CHAPTER 1

LITERATURE REVIEWS

1.1 Yorkshire Fog Grass

1.1.1 Agro-botany and Agronomy

Yorkshire Fog grass or velvet grass (Holcus lanatus) is probably a native of the Iberian Peninsular (Spain and Portugal) (Vinal and Hein, 1937). It is a tufted, softly hairy perennial which can adapt to a wide range of environmental conditions, but predominates in moist and low-fertility soil (Hubbard, 1968). H. lanatus is widespread in the temperate region around the world from the limits of Northern Scandinavia and Iceland to the Caucasus mountains, North and West Africa, North America, South America, Australia, New Zealand and several sub-antarctic islands (Hulten, 1950; Bocher and Larsen, 1958; Beddows, 1961; Munro, 1961; Watton, 1975).

Although its distribution is by accident rather than design, and has caused certain weed problems (Harkess and Hope, 1974), several workers have claimed its considerable contribution to fodder production; for example, in England and Wales (Forbes et al., 1980; Watt, 1987), in Scotland (Swift, et al., 1983), in Chile, Southern Brazil, and Hawaii (Whyte, Moir and Cooper, 1959), and in Falkland Islands (Davies, et al., 1971).
H. lanatus can germinate over a wide range of soil temperature (Watt, 1976). Seedling emergence, however, is progressively delayed in accordance with decrease in mean soil temperature (Hart, 1961). It germinates well either at $22^{\circ} \mathrm{C}$. under continuous light or in diurnal fluctuating temperature ($10^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$) under dark condition (Thompson, Grime and Mason, 1977). It also germinates readily in the light at normal room temperature (Grime and Jarvis, 1975). Moist soil condition is indispensable for optimum germination (Watt, 1976). Most freshly collected seeds germinate rapidly in moist conditions (Watt, 1977).
H. lanatus thrives well at temperature between $12.8^{\circ} \mathrm{C}$ and $29.4^{\circ} \mathrm{C}$ (Mitchell and Lucanus, 1962). However, growth is poor at $35^{\circ} \mathrm{C}$ (Mitchell, 1956) and leafy shoot ceases development at $5^{\circ} \mathrm{C}$ (Beddows, 1961). Because it grows relatively well at low temperature, many workers regard it as a good winter grower (Munro, 1961; Hubbard, 1945; Watkin and Robinson, 1974). It is able to establish over a wide altitude range (Basnyat, 1957) and spread evenly over altitudes up to 400 m . and on all slopes up to 50° (Watt, 1976).

It can inhabit on a wide light regime ranging from dense shade to open and sunny (Levy, 1970). The broader leaves are likely to intercept more light per unit area than L. perenne (Riveros, 1963) and also are more efficient than D. glomerata (Remison, 1976).

Yorkshire Fog grass can grow in most soil types, from heavy loams to sands (Hubbards, 1945). Its optimum soil pH is 5.0 to 7.5 (Davies, 1944; Watt, 1977; Kruijne and de Vries, 1963). However, it also becomes prevalent in acidic soil (Davies, 1944; Hart and McGuire, 1963). It requires a moderate to low fertility. At low nitrogen level, it has yielded equally to L. perenne under cutting regimes (Haggars, 1976; Hayes, 1976; Haggars and Standell, 1982). The application of phosphorus did not change the amount of H. lanatus presence in a mixed sward in Oregon (Hart and McGuire, 1963). It tends to perform best on soil low in potassium, as noted in a survey in the Netherlands (Kruije and de Vries, 1963) and in United Kingdom (Castle and Holmes, 1960). The capability to grow in such poor nutrient conditions has been ascribed to various properties. One of these is its cation exchange capacity of the root systems, which provides it with an advantage over other grasses during a resource constraint (Jackman, 1960). Also, it has been noted that the root system absorbs nutrients in the surface layers of soil (Boggie et al., 1958; Beddows, 1961). Lastly, a symbiosis of endotrophic mycorrhiza in the root has been described (Hatch, 1937; Nye, 1966).

Its growth becomes prevalent where the soil moisture content is adequate. H.lanatus seems to tolerate wet soil conditions, commonly appearing in swamp, flooded or waterlogged areas (Basnyat, 1957 ; Morrison and Idles, 1972; Watt and Haggars, 1980), but it cannot tolerate a moderately dry or dry soil (Levy, 1970). The
flooding tolerant feature is possibly attributable to the anatomy of the root, which incorporates a radial cortex and many small irregular air spaces, thereby increasing the respiratory efficiency in low aeration (Soper, 1959; Jacques and Munro, 1963). Under such conditions, the plant also tends to produce more fine roots at soil surfaces and more adventitious roots around the edge of its clump (Watt, 1977).

Growth of Yorkshire Fog grass is centered on leaf expansion on a moderate number of large tillers (Munro, 1961). According to Protich (1977), formation of tillers in Holcus lanatus can be subdivided into the following four periods: (a) "onestem plant- formation period", when a plant is in the form of a covered bud from the time of development of first green leaf to the initiation of first of the lateral buds in the tillering zone; (b) "tillering period", when tillers of the second, third and fourth order are formed; (c) the "spring development and inflorescence period", when tillering ceases and the apical buds rapidly enter into the inflorescence period and the successive ontogenetic stages (d) "spring tillering period" when formation of inflorescences on the first, second and third tillers are completed and enlargement of internodes begins; new tillers of third and fourth orders and buds of the third, fourth and fifth order are formed.

Equivalent growth is yielded from 50 tillers of Yorkshire Fog grass or cocksfoot, 80 tillers of short rotation ryegrass, 100 tillers of perennial ryegrass, or 350 tillers of browntop, at temperature $65^{\circ} \mathrm{F}$ (Munro, 1961). Tiller number and shoot dryweight in H. lanatus grown at $7-35^{\circ} \mathrm{C}$. followed a course similar to that in L. perenne and D. glomerata (Mitchell and Lucanus, 1962). However, H.lanatus can give greater yield of shoot dry weight in early spring than does L.perenne (cv. S23) (Haggar, 1976). This is possibly due to its early growth at low temperature (Watt, 1983). Comparison among weed grasses, i.e. rough stalked meadow grass, Agrotis spp. and H. lanatus with ryegrass, they were lower yielding than the best ryegrass line. However, there was one exceptional population of Yorkshire Fog (BS 3639) which showed higher mass than ryegrass (Twigg, 1978).

Yorkshire Fog grass is useful in infertile, unstable, poorly drained soil (Munro, 1961; Davies et al., 1971; Morrison and Idle, 1972; Rumball, 1983). It is capable of establishing well in humid hill county, and on unploughable steep hills
(Basnsyat, 1957; Hughes and Nicholson, 1961). Despite some of its usefulness, several drawbacks have limited its generalized utilization in pasture production. These include the low palatiblity commonly attributed to excessive flower heads, basal dead matters', rust infestation, hairiness (Munro, 1961; Rumball, 1983). However, Cameron (1979) had pointed out that hairiness was considered an unimportant factor determining sheep preference. It is very susceptible to damage by tramping and treading (Brown and Evans, 1973; Watt, 1977). H. lanatus also restricted the establishment of sown T. repens more than did L. perenne (Jacques, 1974; Smith and Allcolk, 1985), and the clover transplants grew twice as much in ryegrass swards as in Yorkshire Fog swards (Turkington et al., 1979). This is possibly due to either its greater shading (Jaques, 1974), the allelopathic effects from its root leachates towards its neighbouring plants (Newman and Rovira, 1975), or its aggressive root competition (Remison, 1976).

The onset of numerous flower heads have caused a rapid decline in acceptability (Cowlishaw \& Alder, 1960; Garner, 1963; Jacques, 1974). The density of inflorescences was one of the most important factors determining lack of sheep acceptability (Cameron, 1979).

1.1.2 Plant Breeding

To improve the grass, Massey Agricultural college initiated its improvement project in 1953 with collection of 151 seed samples from most districts of New Zealand (Basnyat, 1957). Spaced plants underwent evaluation for two years combined with selection to improve utilization and palatability. The criteria used were: habit of growth, the extent of leaf pubescence, the propagation of dead basal tissue, resistance to crown rust, competitivity with legumes in the sward (Jaques, 1962; Munro, 1961).

A group of promising plants were selected for progeny testing by the polycross techniques in 1959-1960 resulting in selection of 10 lines showing high general combining ability in term of maintained production, adaptability to three different soil type, limited heading and rust resistance (Basnyat, 1957; Munro, 1961). The performance of elite line was tested against ryegrass showing that its winter yield
sustained vigour throughout the year, and a high tolerance to crown rust (Munro, 1961). The cultivar was released as "Massey Basyn " in 1977 (Rumball, 1983)

Massey Basyn performance was evaluated in several temperate countries. At Glen Innes, Australia, comparison with P. aquatica cv.Sirosa, cv.Commercial and Festuca arundina cv.Demeter under mixed sward with white clover, showed that mean pasture availability was greatest initially on Massey Basyn but finally on Commercial Phalaris (Robinson, May and Scarsbrick, 1980). It established and grew well by direct drilling following burning of native grassland in the Falkland Islands (McAdam, 1984). In the uplands of Britain, Massey Basyn with 130 kg .N/ha showed similar dry matter yields to that of L. perenne (Smith and Allcock, 1985). However, L. perenne responded better than L. lanatus to high levels of nitrogen fertilizer ($200-250 \mathrm{~kg} . \mathrm{N} / \mathrm{h}$ annually) (Watt, 1984). Similar results was affirmed at the Oxford University Field Station and additionally indicated that Massey Basyn and German Commercial had no difference in terms of yield but Massey Basyn was affected less by rust infection (Watt, 1987).

1.1.3 Germplasm Variability

An outcrossing species Yorkshire Fog grass may be subjected to a wide range of adaptive pressures. Its large phenotypic variability in New Zealand has been described as a secondary centre of diversity for the species (Munro, 1961; Jacques, 1962; 1974). A cluster analysis study of the phenotypic variability in several characters was conducted by Teow (1978). Based on Ward's clustering method, the 161 local populations (topodemes) were grouped into five distinct clusters.

1.1.4 Phenotypic and Genotypic Variability

Phenotypic variation of some characters (related to sheep acceptability) was estimated by Cameron (1979). The investigation was based on topodeme level. It is also notable that a high degree of plant variation within the topodeme prevails (the residuals of the previous two studies).

Besides the topodeme variability just discussed, several workers have made observation on specific characters in Holcus lanatus.

Phenotypic variation in leaf pubescence, in terms of hair density and hair length, is apparent. The inheritance of this character was believed to be quantitative by Beddows (1961). The genetic variation relative to phenotypic variation was low (0.2) (Cameron, 1979).

Plant form is variable in Yorkshire Fog grass. Commonly, Yorkshire Fog grass plants have an extremely prostrate growth habit (Jacques, 1974). However, it tends to grow in clumps in established swards (Beddows, 1961; Hubbard, 1968; Turkington and Harper, 1979). Its growth habit can be due to the formation of decumbent tillers in the late summer which subsequently produce roots and shoots at the nodes (Watt, 1983) Conversely, predominantly erect and semi-erect plants were available in the early selection program (Munro, 1961). Clump erectness was found to be one of most discriminating characters among groups in clustering analysis (Teow, 1978). However, the genetic variation relative to phenotypic variation was very low (0.1) (Cameron, 1979).

The major disease is crown rust (Puccinia coronata var.holci) which commonly infests old leaves during summer (Corkill, 1956; Jacques \& Munro, 1963). The phenotypic variation on disease appearance was high both among and within population (Munro, 1961). The genetic variation relative to phenotypic variation was low (0.1-0.3) (Cameron, 1979).

Panicle variation is observable. Panicle shapes are varied from lanceolate to oblong or ovate, very dense to rather loose, erect and nodding, whitish, pale green, pinkish or with a tinge of purple. The panicle size ranges from 3 to 20 cm .(Hubbard, 1968).

Yorkshire Fog grass tends to develop its maximum number of panicles during summer (October - November) in New Zealand. Flowering duration is about 3 months and varies widely over the groups of plants (Basnyat, 1957). However, time of flowering is also influenced by micrograzing pressure, soil moisture, exposure and the recurrence of annual period of moisture stress (McMillan, 1959; Cooper, 1954). The flowering date was also one of the most discriminating characters amongst groups in
the clustering study (Teow, 1978). The genotypic variation relative to phenotypic variation of flowering day was medium (0.3) (Cameron, 1979).

Yorkshire Fog grass can attain the height of $20-100 \mathrm{~cm}$.(Hubbard, 1968). The genetic variation relative to phenotypic variation in clump height was very low (0.004-0.03) (Cameron, 1979).

1.1.5 Heritability

Until recently, the relative contribution of genetics and environments to this variability were estimated. The heritability estimates were presented by Cameron (1979), using the split-plot-in-time model. These estimates on some of botanic and flowering characters are shown in Table 1.1. These estimates are for topodeme differences, not plant variation.

Heritability estimates based on plant to plant variation were studied recently on two adjacent populations in North Wales. Billington et al. (1988) revealed the heritability of several morphological and tillering characters (see Table 4.2). Two different quantitative genetic methods were employed in the study using maximumlikelihood technique. The populations were derived from fields with different management backgrounds. The improved field was also applied with fertilizer preceding the hay cut while the traditional field was not fertilized.

1.2 Quantitative Genetics

Quantitative genetics is the inheritance of those phenotypic characters between individuals that are continuously variable (quantitative) rather than due to simple segregating major gene system (qualitative) (Falconer, 1981) The same genetic principles underlie these attributes, but many genes are involved (polygenic) and the role of environment is much more pronounced. East (1910) was one of the early workers to demonstrate the relationship between classical genetics and quantitative variation. The procedures need some modified terminology and more biometrics than classical "segregating" genetic (Sprague, 1966).

Table 1.1 Broad-sense heritability estimates from split-plot-in-time model (Cameron,1979)

Characters	Single harvest		Pooled harvest	
	h^{2}	se.	h^{2}	se.
Leaf tensile strength	0.04	(0.07)	0.01	(0.01)
Leaf pubescence	0.20	(0.08)	-	
Leaf flavanols	0.01	(0.08)	-	
Leaf width	0.08	(0.04)	-	
Clump erectness	-		0.10	(0.05)
Clump height	-		0.004	(0.006)
Clump diameter	-		0.06	(0.03)
Clump rust	0.10	(0.08)	-	
Green material	-		0.02	(0.02)
Flowering date	0.34	(0.09)		

Table 1.2 Heritability estimates from polycross data and the North Carolina model-2 experiment, both using REML (Billington, et al. 1988)
\qquad

Characters

	Polycross	North Carolina 2
Impr Fld.	d. Trd Fld.	Impr Fld. Trd Fld.

Tiller number	0.08	-0.17	0.03	-
Tiller dryweight (gm)	0.19	0.19	0.01	0.24
Stolon number	-0.29	0.28	-0.10	0.17
Stolon dryweight (gm)	-0.16	0.23	-0.22	0.15
Leaf width (mm)	-0.27	-0.29	0.10	0.17
Leaf length (mm)	0.17	-	-	-
Plant height (mm)	0.18	-	-	-
Plant diameter (mm)	-0.20	0.18	-	-
Tiller number after cut	0.22	0.19	-	-
Flowering time (days)	0.24	0.14	0.23	0.10
Inflorescence number	0.01	0.19	0.14	0.18
Panicle length(mm)	0.27	0.01	-	-
Flag-leaf length (mm)	0.04	0.11	-	-

Impr Fld. = Improved Field
Trd Fld. = Traditional Field

1.2.1 Partitioning Genetic Variance

The phenotypic value of a character for an individual can be partitioned into two main components that due to the genetic effect and that to the environmental effect (Mather and Jink, 1971; Falconer, 1981; Becker, 1984; Baker, 1986).

$$
P=G+E
$$

where: P is the phenotypic value
G is the genotypic value
E is the environmental effect

The genotypic value can be partitioned into three components, i.e.

$$
G=A+D+I
$$

where: A is the average allele effect ("additive")
D is the heterozygote effect ("dominance")
I is the interaction between A and D ("epistasis")

The average effect is the sum of the "additive" (average) effects of alleles across all their backgrounds (Falconer, 1981).

The dominant effect or intra-locus effect is the sum, across loci, of heterozygote deviates within each locus (Falconer, 1981).

The epistatic effect or inter-locus effect or non-allelic effect, is the sum of main gene-effect inconsistencies among the loci (Falconer, 1981). It can be partitioned further into three parts, as follows:

$$
I=A A+A D+D D
$$

where: AA is the additive x additive interaction
AD is the additive x dominant interaction
DD is the dominant x dominant interaction

The environmental variance can also be partitioned according to the experimental model and assumptions (Cockerham, 1954). For example, in Randomized Complete Block design, the environmental variance is partitioned into the block variance and the residual (error) variance.

1.2.2 Genetic Experimental Designs

The experimental designs mostly employed to estimate genetical components are generations mean analysis and mating designs for variance component analysis (Spragues, 1966).

The basic generation mean model comprises $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \mathrm{BC}$ to $\mathrm{P}_{1}\left(\mathrm{BC}_{1}\right)$, and BC to $\mathrm{P}_{2}\left(\mathrm{BC}_{2}\right)$ generation (Hayman, $1958 \mathrm{a} ; \mathrm{b}$). Other models have been developed to suit the nature of crop and decrease workloads. For example, model comprising $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{~F}_{2}, \mathrm{~F}_{3}, \mathrm{BC}_{1} \mathrm{~S}_{1}, \mathrm{BC}_{2} \mathrm{~S}_{1}$ generation is rather convenient for selfpollinated crop with a small amount of seed production (Hayman 1958b; Snape, 1987). The utilisation of generation mean analysis permits direct estimation of all epistatic parameters, but preparation of crosses usually limits the breadth of germplasm which can be studied.

The mating designs for variance component analysis are generally used much more than the former. The foundation of this procedure is due to Fisher (1918). The advancement in this area was developed by Wright (1921), Comstock and Robinson (1948) and Mather and Jink (1971), Hayman (1958a; b), Kempthorne (1957) ,Becker (1984) and Baker (1986).

Any models developed for the estimation of genetic variances involve a series of biological assumptions. The common ones are: normal diploid behaviour at meiosis; no maternal or cytoplasmic effects; no multiple alleles; linkage equilibrium; no selection; no epistasis.

Under some conditions, however, one or some of these assumptions can be exempted; but these may not be any needs to suppose relation of these assumptions, as they may be reasonable under population equilibria conditions.

The simplest mating designs are biparental mating design (BIP) and one-way mating design. The former involves crossing parents pairwise to produce full-sib family (Kearsey, 1965). And the latter involves crossing of one parent with an unknown parent to produce half-sib families (Becker, 1964). Both designs are confined to only two kinds of relationship among progenies, either sibling (full-sib / half-sib) or unrelated. However, under proper experimental design and appropriate assumptions, it can supply well-defined genetical variance components. An example of one-way mating design was showed in studying genetic components of morphological variation in Salix repens (Fowler et al., 1983).

Other designs utilize both half-sib and full-sib relationships. These are hierarchical design (North Carolina I) and factorial design (North Carolina II) (Comstock and Robinson, 1948). In the hierarchical design, each of a series of random males (m) is mated to each of f random females. The offsprings of the $m f$ matings comprise the relationship of half-sib (Vm) and full-sib - half-sib $(\mathrm{Vf}(\mathrm{m})$) and the unrelated $\left(\mathrm{V}_{\mathrm{e}}\right)$ (comstock and Robinson, 1948; 1952).

For the factorial design, each of a different series of males (m) and females (f) are mated to each other. The offsprings of $m f$ are related in the form of half-sib to males (Vm), half-sib to females (Vf), full-sib - both half-sibs, and the related (V_{e}) (Comstock and Robinson 1948; 1952).

One of modifications of factorial designs which is popular and mostly applied in plant genetical analysis is diallel analysis (Cockerham, 1963; Kempthorne, 1957). The design involves the same series of males and females mating to one another. Due to its use of common parent group, the design can be modified further to several types (Griffings, 1956a; b).

1. Full diallel, offsprings derived from all full combinations of parents.
2. Partial diallels, offsprings derived from incomplete combinations which can be with or without parents and with or without reciprocal. They are used to overcome constraints from a large numbers of crosses. (Gilberts, 1958; Kempthorne and Curnow, 1961; Curnow, 1963; England, 1974).
3. Triallels (Rawlings and Cockerham, 1962a).
4. Partial triallels (Hinkelmann, 1965).
5. Tetra-allele cross designs (Rawlings and Cockerham, 1962b).

1.2.3 Heritability and Its Standard Error Estimates

Heritability is defined as proportion of genotypic variance to phenotypic variance (Falconer, 1981).

$$
h^{2}=v_{G} / v_{P}
$$

where: $\quad V_{G}$ is genotypic variannce
V_{P} is phenotypic variance

One basic method to determine the heritability is the linear regression of genotypic values on phenotypic values (Baker, 1986). By definition;

$$
\mathrm{b}_{\mathrm{GP}}=\mathrm{v}_{\mathrm{GP} /} \mathrm{v}_{\mathrm{P}}
$$

where: $\quad \mathrm{V}_{\mathrm{GP}}$ is the covariance between genotypic and phenotypic value V_{P} is the phenotypic variance

Since, $P=G+E$

$$
\mathrm{V}_{\mathrm{GP}}=\mathrm{V}_{(\mathrm{G})(\mathrm{G}+\mathrm{E})}=\mathrm{V}_{\mathrm{G}}+\mathrm{V}_{\mathrm{GE}}
$$

If G and E are independent, $\mathrm{V}_{\mathrm{GE}}=0, \mathrm{~V}_{\mathrm{GP}}=\mathrm{V}_{\mathrm{G}}$
Hence;

$$
\mathrm{b}_{\mathrm{GP}}=\mathrm{V}_{\mathrm{G} /} \mathrm{V}_{\mathrm{P}}
$$

Based on similar concept, parent-offspring relationship is also used to estimate the heritability. In this case, the phenotypic value of progeny $\left(\mathrm{P}_{\mathrm{i}}\right)$ is one-half maternal genetic value (G_{i}), one-half paternal genetic value $\left(\mathrm{G}_{\mathrm{j}}\right)$ and an environmental deviation (E_{j});

$$
\mathrm{P}_{\mathrm{i}}=0.5 \mathrm{G}_{\mathrm{i}}+0.5 \mathrm{G}_{\mathrm{j}}+\mathrm{E}_{\mathrm{i}}
$$

Under random mating situation, G_{i} and G_{j} will be uncorrelated. Hence;

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{GP}}=\mathrm{V}_{\mathrm{Gi}(0.5 \mathrm{Gi}+0.5 \mathrm{Gj}+\mathrm{Ei})}=0.5 \mathrm{~V}_{\mathrm{G}} \\
& \mathrm{~h}^{2}=0.5 \mathrm{~V}_{\mathrm{G}} / \mathrm{V}_{\mathrm{P}}
\end{aligned}
$$

Furthermore, there is another viewpoint on heritability by considering the coefficient of determination of the regression of genotypic value on phenotypic value.

$$
\text { If } P_{i}=G_{i}+E_{i} \text { and }\left(G_{i}-\bar{G}\right)=b_{G P}\left(P_{i}-\bar{P}\right)
$$

The coefficient of determination for the regression of genotypic value is ;

$$
\mathrm{r}^{2}=\mathrm{V}_{\mathrm{GP}} / \mathrm{V}_{\mathrm{G}} \cdot \mathrm{~V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{G}} / \mathrm{V}_{\mathrm{G}} \cdot \mathrm{~V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{G}} / \mathrm{V}_{\mathrm{P}}=\mathrm{h}^{2}
$$

Heritability can be also estimated indirectly from differences between phenotypic and environmental variances or from the covariances between relatives. Partitioning genotypic variances into additive and non-additive portions can yield at least two common kinds of heritabilities. The broad-sense heritability considers total genetic variability in relation to the phenotypic variability ($\mathrm{V}_{\mathrm{G}} / \mathrm{V}_{\mathrm{P}}$) while the narrowsense considers only the additive portion of the genetic variability in relation to phenotypic variation ($\mathrm{V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{P}}$)(Hanson, 1963; Falconer, 1981). The proper application of these estimates in plant breeding exercise depends on mating practice. The former is appropriate for the inbred or clonal genotypes while latter is more appropriate in random mating population (Baker, 1986).

Its precision is indicated by its standard error (Falconer, 1981). A conventional way to derive the standard error of heritability is using the intra-class correlation coefficient (Robertson and Lerner, 1949). For a one-way mating design, Becker (1984) has described it as:

$$
\text { se. } h^{2}=\sqrt[4]{\frac{2(1-t)^{2}[1+(k-1) t]^{2}}{k(k-1)(s-1)}}
$$

where: t is the intra-class correlation
k is the coefficient of variance component being estimated

In addition, standard error of heritability can also be derived from the variance of a ratio, using ratios of variance components (Osborne and Paterson, 1952) This procedure can be used with phenotypic and genotypic variances from any experimental models. Solutions for more complicated models were demonstrated by Gordon, et al. (1972) and Gordon (1979).

CHAPTER 2

MATERIALS AND METHODS

2.1 Objectives

1. Partition genetic variance and estimate heritability.
2. Estimate the plant genetic variance and compare with topodeme variance.
3. Describe the species variation, identify those characters useful in selection and also develop guidelines for future plant breeding.
4. Elaborate tiller development and growth from the genetic point of view.

2.2 Source of Materials

Seeds of each line were collected from individual mother plants in an openpollination field. The offsprings of each plant therefore have one common parent (female) and many different male parents, making them half-sibs. Observations on an individual plant basis from these sibling groups make it possible to study the underlying genetic components. These lines will be called 'half-sib families' in this study.

Furthermore, the half-sib mother-plants were random individuals from several wild populations (topodemes) which previously had been grouped into clusters (Teow, 1978). This knowledge was used to define stratified samples, representing the phenotypic variation throughout New Zealand Yorkshire Fog grass. Stratified random sampling provided fifty half-sib families, five from each of ten topodemes, two of which came from each of the five clusters of Teow (see Fig.2.1). Comparison between the topodeme variation and half-sib family variation could therefore be done, in addition to the half-sib genetic analysis referred to earlier.

2.3 Experimental Design and Bench Layout

The experimental design was a grouped treatment Randomized Complete Block design. Nine individual plants from each half-sib family were used, arranged in three blocks, with three plants per experimental unit.

Figure 2.1 Origins of the 50 half-sib families from the 10 topodemes in 5 clusters defined by Teow (1978), the numbers refer to the seed catalogue

The experiment was set up in a glasshouse. Plants were placed in a fixed position across benches, without relocation. In this way, it was intended to used "position" as a concomitant variable in order to remove and quantify any position effect (e.g. from shading, etc.).(see Fig.2.2 and plate 2.1)

2.4 Experimental Crop Management

Seeds were sown in autumn (early April 1988). They were germinated in fluctuating temperature (8 hrs . in $10^{\circ} \mathrm{C}$ and 16 hrs .in $20^{\circ} \mathrm{C}$) and under continuous light conditions in a germinator. After 5 to 7 days, seedlings were removed to the glasshouse and transplanted into plastic planter bags (1.6 litres). The media used was sand and peat at the ratio of $3: 1$ with 250 g . of 3 -month Osmocote- R^{R} for every 70 litres of mixed media.

At the early stages of vegetative growth, starting from the 4-5 leaf stage, plants were subjected to the ambient winter temperature of Palmerston North (heating unit was switched off) for almost 6 weeks (6 -th May to 17 - $^{\text {th }}$ June), in case vernalization was required. Previous studies and speculations indicated that low temperature in winter and long-day photoperiod may be a requirement for flower induction of Yorkshire Fog grass (Hill, 1988; Robertson, 1988 pers.comm.). Flowering induction and initiation were chiefly determined by a photoperiod more than 15.5 hours (Montaldo and Paredes, 1981) or between 1430 and 1845 hours (Prokudin; Kalenichenko; Mamro, 1983). Subsequently, plants were provided with artificial photosynthetic light to extend the active daylength to 16 hours a day starting from 0400 to 2000 hrs . Temperature in the glasshouse was controlled between $20-25^{\mathrm{O}} \mathrm{C}$. The aim was to provide a semblance of spring/ summer in the out-of-season glasshouse. The vernalizing treatments seemed to be effective, as the plants started their booting and heading on the first and second weeks of July.

Plants were watered by drip irrigation onto bench mats twice a day with each watering lasting about 30 minutes. Few aphids appeared, but were kept in check by pyrethroid chemical (rate 0.02%) when necessary. Caging of individual plants with chicken-wire columns was practiced to hold up the plants because of the limited space in the glasshouse (Plate 2.3).

Door

Figure 2.2 Experimental layout in the glasshouse

Plate 2.1 Experimental layout at 4-th week (above) and at 7-th week (below).

2.5 Data Collection and Measurement

2.5.1 Leaf Blade Attributes

Seedling leaf blade width and seedling leaf blade length of the $2-$ nd and 3 -rd leaves from the ground level were measured (in millimetres) on the vegetative seedling (about one month from sowing). The leaf blade width was measured at the widest part of the leaf blade. Length was measured from the ligule to the tip. Most plants had 4 5 leaves at this stage.

Mature leaf blade width was measured (in millimetres) on the 3-th and the 4 th leaf blade from the top at two different growth stages. Firstly, at the stem elongation stage (about 15-16 weeks after sowing), being the same time as leaf tensile strength, was measured; and secondly, at post-ripe-seed stage of the first tiller (about $30-35$ weeks and also being the end of the experiment). The latter measurement virtually coincided with the stem elongation stage of the secondary tillers. Three samples per plant were recorded in the first occasion, and only one sample per plant was recorded in the second measurement.

2.5.2 Tiller Numbers

Total tiller numbers of individual plant were counted every 7-10 days for two months, during vegetative stages from seedling to stem elongation (from $4^{\text {th }}$ wk. to $11^{\text {th }}$ wk. after sowing) (Plate 2.2).

At the end of experiment, tillers were classified into four groups namely: (1) dead tillers (post-flowering main tillers) (2) green tillers (secondary and tertiary tillers) (3) young tillers under 15 cm . tall and (4) aerial tiller (see Plate 2.3 and Fig 4.1 in Discussion).

After counting, each group of tillers was dried out in oven (at $75^{\circ} \mathrm{C}$) for 3 days and weighed separately giving tiller mass (in grams) for each group of tillers for each plant.

Plate 2.2 Stage of seedlings when the tiller counting started

Plate 2.3 Green tillers and aerial tillers

2.5.3 Leaf Sheath Purple Colour

Degrees of purple colour at the leaf sheath were scored three times : (1) at the vegetative stage of older plant just prior to stem elongation (about 12 wks . from sowing), (2) at stem elongation stage (about 14 wks . from sowing), and at stem elongation stage of the secondary tiller (about 33 wks . from sowing). Standard colour specimens were established, and an ordinal score from 1 to 5 was based on these scores (increasing with the increasing purple colour) (Plate 2.4). Increment of half-scores were used for border-line assessments.

2.5.4 Leaf Favanol and Tannin Content

The flavanoid precursors of condensed tannins in the leaf sheath were evaluated semi-quantitatively by Burn's spot test, based on the vanillin-hydrochloric acid method. The procedure, described extensively by Burn's (1963) and Jones et al. (1973) was relatively rapid and inexpensive. The test was carried out twice at the early stem elongation stage (firstly about 13 wks. and secondly about 15 wks. from sowing). An approximate 5 cm . piece of the outermost part of the leaf sheath was sampled from each plant. The sample was squeezed between two layers of Whatman ${ }^{R}$ No. 1 filter papers. The plant residual was discarded and its imprint on the paper was wetted with a few drops of test reagent. The reagent comprised two volumes of $10 \% \mathrm{w} / \mathrm{v}$ vanillin in ethanol mixed with one volume of concentrated hydrochloric acid. The reagent was normally kept on ice to keep it cool. The reaction paper was left for drying under ambient temperature ($15^{\circ}-20^{\circ} \mathrm{C}$) inside a dark chamber for about 30-40 minutes. Development of a red to violet colour was scored against standards on a photograph (Plate 2.5). Ordinal scores of 1 to 5 (increasing with degree of red / violet) with half increments were based on these standards. The imprints with red and violet indicated the presence of flavan materials, while blue or green spots indicated lack of them.

2.5.5 Leaf Tensile Strength

Leaf tensile strength was tested during the middle-stem elongation stage (about $15-16 \mathrm{wks}$. of sowing) on the third and fourth leaf blade from the top. The

score $=1$

score $=3$

score $=2$

score $=4$
score $=5$

Plate 2.4 Leaf sheath colour score standard

Plate 2.5 Burn's spot test on flavanol standard
machine and technique were developed by Evans (1967 a; b). Three mature leaf blades were sampled from each plant during the morning. Water-soaked cotton wool was wrapped over the cut-end, and the leaves were put into a moist plastic bag until the testing period in the afternoon and evening. A 5 cm . piece was cut from about the middle of the lamina. This was inserted and held between two clamps. A motordriven spring applied load to a beam until the leaf specimens broke. A calibrated dial converted the breaking load into grams, using the regression equation of $\mathrm{Y}=-92.5+$ 5.5 $\mathrm{X}\left(\mathrm{R}^{2}=97.2 \%\right)$, where $\mathrm{Y}=$ estimate of breaking load (gms.), $\mathrm{X}=$ dial reading (Evans, 1964). The dry weight (mg.) of the tested specimens, (found after drying for 3 days at $70^{\circ} \mathrm{C}$) was also recorded after the break. The index of strength was estimated as:

$$
\text { Index of Strength }=\frac{\text { breaking load (gms.) }}{\text { dry weight (mg.) }}
$$

2.5.6 Leaf Hair

A mature leaf blade sampled at the stem elongation stage of the secondary tiller (about 30-35 wks. from sowing) was chosen randomly to examine the degree of hair intensity under a stereo-microscope. Ordinal scores 1 to 5 with a half increments were applied using the standard of Cameron(1979) (Plate 2.6).

2.5.7 Clump Erectness

Plant erectness scores were recorded at the older vegetative stage (about 7 wks. of sowing), this being prior to stem elongation for flowering. Ordinal scores of 1 to 5 with half increments were applied using the following definitions of angles from horizontals: (1) $0^{\circ}-15^{\circ}$; (2) $15^{\circ}-30^{\circ}$; (3) $30^{\circ}-45^{\circ}$; (4) $45^{\circ}-68^{\circ}$; (5) $68^{\circ}-90^{\circ}$. In allotting these scores, the general impression of the leaf-sheath angles of the plant were used.

Figure 2.3 Leaf hair standards for ordinal score (Cameron, 1979)

2.5.8 Flowering Day

Peeping day, the first anthesis day, the last flowering day were recorded (in number of days from sowing) on individual plant basis.

The peeping day was the first day when the terminal leaf-sheath showed a longitudinal split because of an enlarging inflorescence.

The first anthesis day was the first day when the first flower started to anthise.

And the last flowering day was the day when the last anthesis occurred.

The day lying half-way between the first anthesis day and the last flowering day was estimated also as the median flowering day.

2.5.9 Anthesis Time and Position

Anthesis time of day and anthesis position in the inflorescence on the first panicle have been recorded by ordinal scores, at the first anthesis day. For anthesis time, the scores of 1 to 4 were allocated for the time periods of $0400-0900 ; 0900-$ $1200 ; 1200-1400 ; 1400-1600$ hours, respectively. For anthesis position, the scores 1 to 3 were assigned to: top end portion, mid portion and bottom portion, respectively. Increments of half were used, also, for intermediate positions.

2.5.10 Panicle Size and Compactness

Panicle width and length were measured on a fully dehiscing inflorescence at the main anthesis stage (about 20 wks. from sowing). The degree of compactness was rated against ordinated standard specimens (Plate 2.7). The scores were 1 to 5 from dense to loose, with half increments.

score $=1$
score $=2$
score $=3$

score $=4$
score $=5$

Plate 2.6 Panicle compactness standard

2.5.11 Plant Height

Plant height was measured (in centimetres) from the soil level to top-end of panicle at late milk stage of the seed (about 25 wks . from sowing).

2.6 Statistical Analyses

2.6.1 Regression Analysis of Tiller Development

The functional relationship between tiller numbers and days was examined for each individual plant, using the "Sigmoid 2 Program" (Smith, unpubl.). The logistic function provided consistently the best fit (The other function examined was gompert). Best-fit was judged by high coefficient of determination, and by inspection of the fitted plots). Several estimates were obtained from the logistic fits namely : number of tillers at $5 \%, 50 \%, 95 \%$ of the upper asymptote, and at flowering time; also the number of days to attain $5 \%, 50 \%, 95 \%$ of upper asymptote of tiller number; the relative growth rate of tiller numbers at $5 \%, 50 \%, 95 \%$ of the upper asymptote. These calculations were assisted by an auxiliary program "Sigfits" (Smith, unpubl.). These estimates were used as data in ANOVA. These estimates provide data on firsttiller development, being estimated separately for each observational unit (plant).

2.6.2 Analysis of Variance

Due to some experimental units having one or two missing plants, the analysis of variance was carried out by generalized linear model procedure. The ANOVA was based on the following two models :

Model 1 (for Topodeme/Sib Families comparisons)

$$
X_{\mathrm{ijkl}}=\mu+T_{\mathrm{i}}+B_{\mathrm{j}}+T B_{\mathrm{ij}}+H_{\mathrm{k}(\mathrm{i})}+H B_{\mathrm{k}(\mathrm{i}) \mathrm{j}}+\varepsilon_{\mathrm{ijkl}}
$$

where: $X_{\mathrm{ijkl}}=$ the $i j k l-{ }^{\text {th }}$ phenotypic variate of individual plant.

$$
\begin{aligned}
& \mathrm{i}=1, \ldots \mathrm{t} \text { (no.of topodemes). } \\
& \mathrm{j}=1, \ldots \ldots \mathrm{~b} \text { (no.of blocks). } \\
& \mathrm{k}=1, \ldots \mathrm{~h} \text { (no.of half-sib families) } \\
& \mathrm{l}=1, \ldots \ldots . . \mathrm{p} \text { (no. of plants) }
\end{aligned}
$$

$\mu=$ the grand mean;
$T_{\mathrm{i}}=$ the i - th topodeme effect,
$B_{\mathrm{j}}=$ the j - - block effect;
$H_{\mathrm{k}(\mathrm{i})}=$ the k - ${ }^{\text {th }}$ halfsib effect, nested within topodemes(error (a));
$T B_{\mathrm{ij}}=$ the interaction between topodeme and block effect;
$H B_{\mathrm{k}(\mathrm{i}) \mathrm{j}}=$ the interaction between half-sib and block
effect(error(b));
$\varepsilon_{\mathrm{ijkl}}=$ the residual variation associated with the ijkl- $^{\text {th }}$ plant.

This is a grouped treatment Randomized Complete Block design, which is analogous to a split-block design in its definition of error terms (Gomez and Gomez, 1984). Its main purpose was to compare the relative sizes of the three genotypic partitions: topodeme, half sib family and individual plant (Table 2.1).

Model 2 (for genetic analysis)

$$
X_{\mathrm{ijk}}=\mu+H_{\mathrm{i}}+B_{\mathrm{i}}+H B_{\mathrm{ij}}+\varepsilon_{\mathrm{ijk}}
$$

where: $\quad X_{\mathrm{ijk}}=$ the $i j k{ }^{-}$th phenotypic variate of individual plant; $\mathrm{i}=1, . . \mathrm{h}$ (no.of half-sib families); $j=1, \ldots b$ (no.of blocks); $\mathrm{k}=1$,.........p (no.of plants);
$\mu=$ the grand mean;
$H_{\mathrm{i}}=$ the i - ${ }^{\text {th }}$ halfsib genotype effect;
$B_{\mathrm{j}}=$ the j - th block effect;
$H B_{\mathrm{ij}}=$ the interaction between half-sib and block (experimental error);
$\varepsilon_{\mathrm{ijk}}=$ the residual variation associated with the $i j k-$ th plant.

This is an Randomized Complete Block design, with plant subsamples, intended to give a pooled genetic analysis (Table 2.2).

Both analyses of variance have been adjusted with the concomitant variable of plant bench-position to eliminate possible confounded effects due to plant position (such as shading, disease incidence, etc.). The plants of each half-sib were coded from one to three, starting from the outer edge towards the middle of the bench. These codes provided the concomitant variable.

F-tests for significance were constructed in the usual manner using randomeffect expectations of Mean Squares (Steel and Torrie, 1981; Crump, 1951; Satterthwaite, 1946).

Variance components for each effect were estimated together with their standard errors, using the program "Thwaite" (Gordon, unpubl.).

The estimator for the standard errors of the component 's estimates $\left(s^{2}\right)$ was

$$
\widehat{\operatorname{Var}}\left(\mathrm{s}^{2}\right)=2 \sum \mathrm{a}_{\mathrm{i}}^{2} \mathrm{M}_{\mathrm{i}}^{2} /\left(\mathrm{f}_{\mathrm{i}}+2\right)
$$

where: $\quad a_{i}$'s are the linear mean-square coefficients used in computing s^{2};
M_{i} 's are the mean squares used in estimating s^{2};
f_{i} 's are the degrees of freedom of those mean-squares.
(Anderson and Bancroft, 1952 ; Crump, 1951).

Program "Thwaite" (Gordon, unpubl.) was used to effect these estimates.

2.6.3 Estimation of Genetic Variance

The biometrical variance estimates and the genetic variances were interrelated via the intra-class correlation (Falconer, 1981). The present experiment represents a one-way mating design (Falconer, 1981), and relates the model-2 experimental (biometrical) variances to the covariance between individuals within a progeny group (Baker, 1984; Falconer, 1981). As these progeny individuals were half-sibs, the

Table 2.1 Expected Mean Squares (EMS) (Model 1)

Source

EMS

Block
Topodeme
Topodeme \times Block

$$
\begin{array}{ll}
V_{w}+\tilde{p} V_{H B}+\tilde{p} h V_{T B}+\tilde{p} h T_{V B} & M S 6 \\
V_{W}+\tilde{p} V_{H B}+\tilde{p} h V_{T B}+\tilde{p} h b V_{T} & M S 5 \\
V_{W}+\tilde{p} V_{H B}+\tilde{p} V_{H B}+\tilde{p} h V_{T B} & M S 4
\end{array}
$$

Half-sib(Topodeme)
$\begin{array}{lr}V_{w}+\tilde{p} V_{H B}+\tilde{p} b V_{H(T)} & M S 3 \\ V_{W}+\tilde{p} V_{H B} & M S 2 \\ V_{W} & M S 1\end{array}$

Table 2.2 Expected Mean Squares (EMS) (Model 2)

Source

EMS

Block	$V_{w}+\tilde{p} V_{H B}+\tilde{p} g V_{B}$	$M S 4$
Half-sib	$V_{w}+\tilde{p} V_{H B}+\tilde{p} b V_{H}$	$M S 3$
Block x Half-sib	$V_{w}+\tilde{p} V_{H B}$	$M S 2$
Residual (Within Plot)	V_{w}	$M S 1$

These are the balanced expectation ($\hat{p}=c_{1} c_{2} c_{3}$ etc.)
variance amongst progeny group is equivalent to covariance between half-sib individuals.

Therefore,the genetical model in this one-way mating design is as follows :
$\mathrm{V}_{\mathrm{H}}=\operatorname{cov} .(\mathrm{HS})=1 / 4 \mathrm{~V}_{\mathrm{A}}+1 / 16 \mathrm{~V}_{\mathrm{AA}} \ldots \ldots . . .(1)$
$\mathrm{V}_{\mathrm{W}}=\mathrm{V}_{\mathrm{Tot} .} . \operatorname{cov} .(\mathrm{HS})=3 / 4 \mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{D}}+15 / 16 \mathrm{~V}_{\mathrm{AA}}+\mathrm{V}_{\mathrm{AD}}+\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{e}} . .(2)$
(Baker, 1984)
where: $\quad \mathrm{V}_{\mathrm{A}}=$ "additive" variance (average allele effect variance);
$\mathrm{V}_{\mathrm{D}}=$ "dominance" variance (heterozygote variance);
$\mathrm{V}_{\mathrm{AA}}=$ "additive x additive" variance (epistatic inconsistencies across genes when additive effects are combined);
$\mathrm{V}_{\mathrm{AD}}=$ "additive x dominant" variance (epistatic inconsistencies from additive x dominance combination);
$\mathrm{V}_{\mathrm{DD}}=$ "dominant x dominant" variance (epistatic inconsistencies from dominance x dominance combination);
$\mathrm{V}_{\mathrm{e}}=$ "environmental" variance.

The model 2 plot residual $\left(\mathrm{V}_{\mathrm{BH}}=\mathrm{V}_{\mathrm{EXG}}\right)$ represents an "environmental" variance for experimental-units, each consisting of (notionally) three plants (the harmonic mean of actual plants per plot, after allowing for misses, was used in some characters). Therefore, on an individual plant basis,

$$
\begin{align*}
\mathrm{V}_{\mathrm{BH}} & =\mathrm{V}_{\overline{\mathrm{x}}}(\mathrm{plt}) \\
& =\mathrm{V}_{\mathrm{e}} / \mathrm{p} \\
\text { From which } \mathrm{V}_{\mathrm{e}} & =\mathrm{p} \mathrm{~V}_{\mathrm{BH}} \ldots(3) \tag{3}\\
& =\text { environmental variance for plant within plots }
\end{align*}
$$

This assumption of homogeneity of environmental variances has made it possible to remove the environmental confounding within V_{w}.

The links between the biometrical variance components and the genetic variance components were as followed:
(From 1)

$$
\mathrm{V}_{\mathrm{H}} \quad=(\mathrm{MS} 3-\mathrm{MS} 2) / \mathrm{pb}
$$

$$
=1 / 4 \mathrm{~V}_{\mathrm{A}}+1 / 16 \mathrm{~V}_{\mathrm{AA}}
$$

$$
\begin{equation*}
4 \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{A}}+1 / 4 \mathrm{~V}_{\mathrm{AA}} \tag{4}
\end{equation*}
$$

and $\quad 3 \mathrm{~V}_{\mathrm{H}} \quad=3 / 4 \mathrm{~V}_{\mathrm{A}}+3 / 16 \mathrm{~V}_{\mathrm{AA}}$

The phenotypic variance was defined as:

$$
\begin{align*}
\mathrm{V}_{\mathrm{p}}, \quad & =\mathrm{V}_{\mathrm{H}}+\mathrm{V}_{\mathrm{w}} \ldots \ldots .(6) ~ \\
& =\mathrm{V}_{\mathrm{H}}+\mathrm{V}_{\mathrm{g}}+\mathrm{V}_{\mathrm{e}} \\
& =\mathrm{V}_{\mathrm{G}}+\mathrm{V}_{\mathrm{e}} \\
& =\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{AA}}+\mathrm{V}_{\mathrm{D}}+\mathrm{V}_{A D}+\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{e}} . \tag{7}
\end{align*}
$$

The within- family genetic variance is, using (2) and (3),

$$
\begin{equation*}
\mathrm{V}_{\mathrm{g}} \quad=\mathrm{V}_{\mathrm{w}}-\mathrm{V}_{\mathrm{e}} \tag{8}
\end{equation*}
$$

From V_{W} and (5),

$$
\begin{equation*}
\mathrm{V}_{\mathrm{w}}-3 \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{D}}+3 / 4 \mathrm{~V}_{\mathrm{AA}}+\mathrm{V}_{\mathrm{AD}}+\mathrm{V}_{\mathrm{DD}}+\mathrm{Ve}^{2} \tag{9}
\end{equation*}
$$

and (9)-(3),

$$
\begin{equation*}
\mathrm{V}_{\mathrm{h}} \quad=\mathrm{V}_{\mathrm{D}}+3 / 4 \mathrm{~V}_{\mathrm{AA}}+\mathrm{V}_{\mathrm{AD}}+\mathrm{V}_{\mathrm{DD}} \tag{10}
\end{equation*}
$$

2.6.4 Heritability

Various heritability estimates were made, following standard principles (Falconer, 1981; Comstock, 1952). The definitions used were as follows.

h^{2} (broad sense) \quad	$=$ heritability of all gene effects (genotype);
	$=\left(V_{H}+V_{g}\right) /\left(V_{H}+V_{W}\right)$
	$=\left(V_{A}+V_{D}+V_{A A}+V_{A D}+V_{D D}\right) / V_{P}$

h^{2} (narrow sense) $\quad=$ heritability of average allele effects;

$$
=4 \mathrm{~V}_{\mathrm{H}} /\left(\mathrm{V}_{\mathrm{H}}+\mathrm{V}_{\mathrm{w}}\right)
$$

$$
=\left(\mathrm{V}_{\mathrm{A}}+1 / 4 \mathrm{~V}_{\mathrm{AA}}\right) / \mathrm{V}_{\mathrm{P}}
$$

h_{2} (heterotic sense) $=$ heritability of non-average allele effects;

$$
\begin{aligned}
& =\left(\mathrm{V}_{\mathrm{w}}-3 \mathrm{~V}_{\mathrm{H}}\right) /\left(\mathrm{V}_{\mathrm{H}^{+}} \mathrm{V}_{\mathrm{W}}\right) \\
& =\left(\mathrm{V}_{\mathrm{D}}+3 / 4 \mathrm{~V}_{\mathrm{AA}}+\mathrm{V}_{\mathrm{AD}}+\mathrm{V}_{\mathrm{DD}}\right) / \mathrm{V}_{\mathrm{P}}
\end{aligned}
$$

CHAPTER 3

RESULTS

There were forty seven characters under investigation in this experiment. They were divided into three main categories: botanical characters, agronomic characters and tillering characters. The model 1 analysis (see methods) was used to compare the magnitude in variation between topodemes and half-sib families. The model 2 analysis was the basis for the plant genetic analyses, from which the heritability estimates were obtained.

The general value of each attribute is indicated by the grand means given in the Table 3.1. This table also summarized the overall variability in two ways: the coefficient of variation and the range (minimum and maximum). Several attributes have a high level of the coefficient of variation. These include 12 wks . and 15 wks . leaf sheath purple, anthesis time, anthesis position, panicle width and compactness, clump erectness, old disease and new disease, flavanoid at leaf sheath and almost all attributes of tillering except for the number of days to tillering. Mean differences among the fifty half-sib families accounting for each attribute are exhibited in Appendix I.

3.1 Topodeme, Half-sib and Plant Variance Analysis

The environmental variance, including block variance $\left(V_{B}\right)$, error (a) variance or topodeme by block interaction (V_{TB}) and error (b) variance or half-sib by block interaction $\left(\mathrm{V}_{\mathrm{HB}}\right)$ is shown in Table 3.2. Most attributes was significantly influenced to some degrees by the environmental effects. The attributes which show significance on those three environmental effects simultaneously include 15 wks . leaf sheath purple, flowering peeping day, first anthesis day, median flowering day, clump erectness, flavanoid at leaf sheath, tillering number at 5% tillering, numbers of dead tillers, and numbers of days for $50 \%, 95 \%$ tillering.

Table 3.1 The grand means, their coefficients of variation and maxima and minima over all half-sib families
\qquad

Botanic characters

1. Juvenile leaf width	mm	25.51	14.12	21.9	32.1
2. Juvenile leaf length	mm	72.83	15.94	59.4	92.9
3. Mature leaf width (15 wks)	mm	10.31	11.13	9.1	11.5
4. Mature leaf width (33 wks)	mm	9.49	11.75	8.5	10.7
5. Leaf sheath purple (12 wks)	score	6.20	22.53	4.2	7.8
6. Leaf sheath purple (15 wks)	score	4.32	35.14	3.0	6.7
7. Leaf sheath purple (33 wks)	score	9.07	15.19	7.4	10.0
8. Plant height	cm	107.82	9.47	97.6	121.4

Flowering characters

9. Flower peeping day
10. First anthesis day
11. Median flowering day
12. Last flowering day
13. Anthesis time
14. Anthesis position
15. Panicle width
16. Panicle length
17. Panicle compactness

days	112.83	3.53	108.44	122.00
days	120.58	3.55	115.22	129.60
days	134.16	7.07	128.21	145.31
days	147.75	12.40	135.71	169.63
score	2.18	100.86	1.00	4.00
score	3.78	33.88	2.78	4.89
cm.	55.75	31.79	37.68	80.68
cm.	134.03	18.96	107.79	157.42
score	5.36	34.86	3.75	6.80

Agronomic characters

18. Clump erectness
19. Old diseases
20. New diseases
21. Leaf hairiness
22. Leaf tensile strength
23. Flavanoid at leaf sheath

score	4.33	35.15	2.1	5.9
score	7.12	22.87	5.1	8.5
score	4.21	40.89	1.9	6.6
score	8.76	12.10	7.6	9.6
mm.	95.70	15.13	80.5	115.7
score	4.62	37.07	2.7	21.02

Table 3.1 (continued)
\qquad

Tillering characters

24. Tiller No.at 5\% tillering	no.	2.34	99.72	1.40	10.18
25. Tiller No.at 50\% tillering	no.	21.44	63.58	13.91	48.81
26. Tiller No.at 95\% tillering	no.	41.46	67.33	28.03	102.56
27. Tiller No.at flowering time	no.	41.86	34.91	29.88	62.75
28. No.of dead tillers at end	no.	18.08	46.00	8.67	30.56
29. No.of green tillers at end	no.	28.18	53.83	18.00	41.25
30. No.of young tillers at end	no.	11.37	86.59	2.44	26.83
31. No.of aerial tillers at end	no.	73.77	47.24	49.89	108.11
32. No.of total tillers at end	no.	132.65	33.62	101.89	117.14
33. No.of base tillers at end	no.	57.67	40.31	34.67	91.22
34. No.of base green tiller	no.	39.53	50.78	21.33	64.86
35. Dead tiller dry weight	gm.	8.83	64.80	2.80	15.06
36. Green tiller dryweight	gm.	19.43	66.94	11.66	35.67
37. Young tiller dryweight	gm.	1.33	106.22	0.24	3.62
38. Aerial tiller dryweight	gm.	27.92	53.07	15.84	45.37
39. Total tiller dryweight	gm.	56.81	44.99	38.10	78.24
40. Base tiller dryweight	gm.	55.94	44.31	17.93	46.51
41. Base green tiller dry weight	gm.	20.82	64.76	12.61	35.91
42. No.of days for 5\% tillering	days	28.98	14.49	24.16	34.88
43. No.of days for 50\% tillering	days	63.63	11.78	54.39	77.56
44. No.of days for 95\% tillering	days	98.49	12.74	83.85	120.63
45. RGR at 5\% tillering	-	35.94	162.34	-21.68	246.12
46. RGR at 50\% tillering	-	87.34	74.67	69.13	284.41
47. RGR at 95\% tillering	-	91.10	78.58	70.58	286.40

[^0]Table 3.2 Block, Error(a), Error(b) variance components and their standard error and F-significance, together with position F-significance (model 1)

Characters	Block		Error(a)		Error(b)		Position
	Var. (se.)	F-sig.	Var. (se.)	F-sig.	Var. (se.)	F-sig.	Fsig.

Botanic characters

1. Juvenile leaf width	$\begin{gathered} 0.07 \\ (0.12) \end{gathered}$	ns	$\begin{gathered} 0.02 \\ (0.33) \end{gathered}$	ns	$\begin{gathered} 0.26 \\ (0.81) \end{gathered}$	ns	ns
2. Juvenile	0.26	ns	2.48	ns	-4.76	ns	ns
leaf length	(0.79)		(3.57)		(7.32)		
3. Mature leaf	-0.004	ns	0.02	ns	-0.06	ns	ns
width (15 wks)	(0.004)		(0.03)		(0.08)		
4. Mature leaf	0.35	**	-0.01	ns	0.16	*	ns
width (33 wks)	(0.26)		(0.04)		(0.10)		
5. Leaf sheath	0.05	**	0.04	*	-0.15	ns	ns
purple(12 wks)	(0.05)		(0.05)		(0.10)		
6. Leaf sheath	0.05	**	0.08	**	0.45	**	**
purple(15 wks)	(0.05)		(0.11)		(0.20)		
7. Leaf sheath	0.29	**	-0.04	ns	0.35	**	ns
purple(33 wks)	(0.22)		(0.06)		(0.17)		
8. Plant height	9.35	**	10.92	**	11.32	ns	ns
	(7.47)		(6.72)		(8.27)		

Flower characters

9. Flower peeping day	$\begin{gathered} 1.26 \\ (1.02) \end{gathered}$	**	$\begin{gathered} 1.72 \\ (1.06) \end{gathered}$	**	$\begin{gathered} 1.93 \\ (1.29) \end{gathered}$	*	ns
First anthesis day	1.32	**	2.40	**	4.48	**	ns
	(1.13)		(1.50)		(1.82)		
11. Median flowering	3.49	**	6.08	**	4.04	**	*
day	(3.06)		(4.38)		(6.33)		
12. Last flowering day	5.63	*	19.14	*	11.36	ns	**
13. Anthesis time	-0.03	ns	-0.17	ns	0.36	ns	ns
	(0.01)		(0.10)		(0.36)		
14. Anthesis position	0.03	*	0.004	ns	0.09	ns	ns
	(0.03)		(0.05)		(0.12)		
15. Panicle width	1.80	ns	-2.43	ns	68.61	**	**
	(3.78)		(12.15)		(30.05)		
16. Panicle length	83.17	**	14.92	ns	-17.47	ns	*
	(62.12)		(19.67)		(39.49)		
17. Panicle	-0.03	ns	-0.06	ns	0.73	**	ns
compactness	(0.01)		(0.12)		(0.33)		

Table 3.2 (continued)

Characters	Block		Error(a)		Error(b)		Position
	Var. (se.)	F-sig.	Var. (se.)	F-sig.	Var. (se.)	F-sig.	Fsig.

Agronomic characters

18.	Clump erectness	$\begin{gathered} 0.19 \\ (0.15) \end{gathered}$	**	$\begin{gathered} 0.24 \\ (0.15) \end{gathered}$	**	$\begin{gathered} 0.29 \\ (0.18) \end{gathered}$	*	**
19.	Old diseases	-0.02	ns	0.21	**	0.38	*	ns
		(0.01)		(0.16)		(0.22)		
	New diseases	0.38	ns	0.33	**	0.54	**	ns
		(0.29)		(0.21)		(0.26)		
21.	Leaf hairiness	8.11	**	-0.04	ns	0.20	**	ns
		(0.08)		(0.03)		(0.10)		
22.	Leaf tensile strength	34.52	**	-6.44	ns	50.20	**	ns
		(26.11)		(7.22)		(21.03)		
23.	Flavanoid at	0.25	**	0.05	**	0.72	**	**
	leaf sheath	(0.20)		(0.14)		(0.28)		

Tillering characters

24.	Tiller No.at 5\% tillering	$\begin{aligned} & -0.03 \\ & (0.06) \end{aligned}$	ns	$\begin{gathered} 0.15 \\ (0.04) \end{gathered}$	**	$\begin{gathered} 3.13 \\ (0.81) \end{gathered}$	**	**
25.	Tiller No.at 50% tillering	$\begin{gathered} 4.0 \\ (3.88) \end{gathered}$	*	$\begin{aligned} & -1.33 \\ & (4.90) \end{aligned}$	ns	$\begin{gathered} 9.54 \\ (12.89) \end{gathered}$	ns	**
26.	Tiller No.at 95% tillering	$\begin{gathered} 14.88 \\ (14.92) \end{gathered}$	*	$\begin{aligned} & -13.28 \\ & (18.85) \end{aligned}$	ns	$\begin{gathered} 46.00 \\ (54.90) \end{gathered}$	ns	**
27.	Tiller No.at flowering time	$\begin{gathered} 0.81 \\ (1.92) \end{gathered}$	ns	$\begin{gathered} 3.84 \\ (7.46) \end{gathered}$	ns	$\begin{gathered} 15.05 \\ (15.40) \end{gathered}$	ns	**
28.	No.of dead tillers at end	$\begin{gathered} 1.39 \\ (1.53) \end{gathered}$	**	$\begin{gathered} 2.95 \\ (3.36) \end{gathered}$	**	$\begin{gathered} 3.56 \\ (1.97) \end{gathered}$	*	**
29.	No.of green tillers at end	$\begin{array}{r} 33.89 \\ (25.50) \end{array}$	**	$\begin{gathered} 31.90 \\ (15.33) \end{gathered}$	**	$\begin{gathered} 1.93 \\ (14.24) \end{gathered}$	ns	**
30.	No.of young tillers at end	$\begin{aligned} & 10.48 \\ & (8.06) \end{aligned}$	**	$\begin{gathered} 5.27 \\ (4.44) \end{gathered}$	**	$\begin{aligned} & -5.19 \\ & (5.17) \end{aligned}$	ns	**
31.	No.of aerial tillers at end	$\begin{gathered} 60.59 \\ (48.09) \end{gathered}$	**	$\begin{gathered} 46.21 \\ (36.90) \end{gathered}$	ns	$\begin{aligned} & -83.72 \\ & (61.72) \end{aligned}$	ns	**
32.	No.of total tillers at end	$\begin{gathered} 76.61 \\ (65.26) \end{gathered}$	**	$\begin{aligned} & 156.72 \\ & (92.31) \end{aligned}$	**	$\begin{gathered} -51.91 \\ (115.96) \end{gathered}$	ns	**
33.	No.of base tillers at end	$\begin{gathered} 1.81 \\ (5.23) \end{gathered}$	ns	$\begin{gathered} 68.25 \\ (35.73) \end{gathered}$	**	$\begin{gathered} 22.08 \\ (37.14) \end{gathered}$	ns	**
34.	No.of base green tiller at end	$\begin{gathered} 7.08 \\ (7.91) \end{gathered}$	*	$\begin{gathered} 60.83 \\ (29.15) \end{gathered}$	**	$\begin{gathered} 7.83 \\ (26.49) \end{gathered}$	ns	**
35.	Dead tiller dryweight at end	$\begin{gathered} 1.48 \\ (1.28) \end{gathered}$	**	$\begin{gathered} 4.08 \\ (2.12) \end{gathered}$	**	$\begin{gathered} 7.57 \\ (2.16) \end{gathered}$	ns	**
36.	Green tiller dryweight at end	$\begin{gathered} 38.07 \\ (27.73) \end{gathered}$	**	$\begin{gathered} 4.38 \\ (5.12) \end{gathered}$	ns	$\begin{aligned} & -3.94 \\ & (9.79) \end{aligned}$	ns	**

Table 3.2 (continued)

Tillering characters

37	Young tiller dry weight	$\begin{gathered} 0.17 \\ (0.13) \end{gathered}$	**	$\begin{gathered} 0.06 \\ (0.08) \end{gathered}$		$\begin{gathered} 0.17 \\ (0.15) \end{gathered}$	ns	**
38	Aerial tiller dry weight	$\begin{aligned} & -0.85 \\ & (0.56) \end{aligned}$	ns	$\begin{gathered} 6.90 \\ (7.01) \end{gathered}$	ns	$\begin{gathered} -7.47 \\ (12.83) \end{gathered}$	ns	**
39	Total tiller dry weight	$\begin{gathered} 18.03 \\ (16.78) \end{gathered}$	**	$\begin{gathered} 22.71 \\ (20.21) \end{gathered}$	ns	$\begin{aligned} & -40.80 \\ & (35.86) \end{aligned}$	ns	**
40	Base tiller dry weight	$\begin{gathered} 21.87 \\ (16.78) \end{gathered}$	**	$\begin{aligned} & 12.49 \\ & (9.52) \end{aligned}$		$\begin{gathered} 1.50 \\ (14.64) \end{gathered}$	ns	**
41	Base green tiller dryweight	$\begin{gathered} 35.56 \\ (26.05) \end{gathered}$	**	$\begin{gathered} 6.28 \\ (6.04) \end{gathered}$	ns	$\begin{gathered} -5.06 \\ (10.80) \end{gathered}$	ns	**
42	No.of days for 5% tillering	$\begin{gathered} 0.14 \\ (0.19) \end{gathered}$	ns	$\begin{gathered} 0.29 \\ (0.50) \end{gathered}$	ns	$\begin{gathered} -0.22 \\ (1.07) \end{gathered}$	ns	**
43	No.of days for 50% tillering	$\begin{gathered} 4.18 \\ (3.37) \end{gathered}$	**	$\begin{aligned} & 1.39 \\ & (2.34) \end{aligned}$	*	$\begin{gathered} 7.81 \\ (4.60) \end{gathered}$	*	**
44	No.of days for 95% tillering	$\begin{gathered} 18.52 \\ (14.18) \end{gathered}$	**	$\begin{gathered} 3.45 \\ (6.14) \end{gathered}$	*	$\begin{gathered} 17.69 \\ (12.30) \end{gathered}$	*	**
45	RGR at 5% tillering	$\begin{aligned} & -33.59 \\ & (22.50) \end{aligned}$	ns	$\begin{gathered} -95.43 \\ (199.12) \end{gathered}$	**	$\begin{aligned} & 2005.46 \\ & (509.82) \end{aligned}$	**	**
46	RGR at 50% tillering	$\begin{aligned} & -43.51 \\ & (17.15) \end{aligned}$	ns	$\begin{gathered} 103.74 \\ (245.58) \end{gathered}$	**	$\begin{aligned} & 1565.67 \\ & (493.79) \end{aligned}$	**	ns
47	RGR at 95% tillering	$\begin{aligned} & -52.11 \\ & (15.74) \end{aligned}$	ns	$\begin{gathered} 167.65 \\ (277.71) \end{gathered}$	**	$\begin{aligned} & 1450.78 \\ & (529.38) \end{aligned}$	**	ns

[^1]The significance of the position effect is also shown in Table 3.2. Position effects were not significant in about half of the attributes, namely juvenile leaf width and leaf length, mature leaf width, leaf tensile strength, 12 wks . and 33 wks . leaf sheath purple, plant height, flower peeping day, first anthesis day, anthesis time, anthesis position, panicle compactness, old disease, new disease and leaf hairiness. Surprisingly, plant height was not affected by position in this study. It was noteworthy that nearly all tiller attributes were affected.

The half-sib family variance had more characters with significant variance than the topodeme component (in ratio of 5 to 4). This indicated that more variability existed at the half-sib family level. Comparison of the topodeme and half-sib variances and also within plot variance can be made directly in Table 3.3. The halfsib variances had a higher value than the topodeme variances in almost all the characters, except in 33 wks . mature leaf width, 15 wks . leaf sheath purple, flavanoid at leaf sheath and panicle compactness. In addition, the within plot variance has the higher value than the half sib variance in every characters. This indicated that variability level of plant to plant variation within half sib lines was also predominant.

3.2 Genotypic Variance Analysis and Heritability Estimation

From model 2 analysis, the overall genotypic variances (half-sib families or lines) are given in Table 3.4. The block and within-plot variances are the same as in the model 1. The biometrical variance was subsequently repartitioned into genetic variances. The plot variance $\left(\mathrm{V}_{\mathrm{HB}}\right)$ and within plot variance $\left(\mathrm{V}_{\mathrm{W}}\right)$ are also presented in the same table. Most of the half-sib variance were significant (39 out of 47) except in median and last flowering days, anthesis time and anthesis position, numbers of green tillers and total tillers. However, the plot variance showed less numbers of significant attributes (27 out of 47).

The genotypic variance was repartitioned into additive variance $\left(V_{A}\right)$ and heterotic variance $\left(\mathrm{V}_{\mathrm{h}}\right)$. The phenotypic was also obtained from the overall genotypic variance and environmental variance combination. These estimates are shown in Table 3.5. About half of total characters had higher value of additive variance than heterotic variance and vice versa.

Table 3.3 Topodeme, half-sib, within-plot variance component with their standard error and the F-significance (Model 1)

Characters	Topodeme		Half-sib		Within-plot Var. (se.)
	Var. (se.)	F-sig.	Var. (se.)	F-sig.	

Botanic characters

1. Juvenile leaf width
2. Juvenile leaf length
3. Mature leaf width (15 wks)
4. Mature leaf width (33 wks)
5. Leaf sheath purple (12 wks)
6. Leaf sheath purple (15 wks)
7. Leaf sheath purple (33 wks)
8. Plant height

Flower characters

9. Flower peeping day	$\begin{gathered} 0.59 \\ (0.79) \end{gathered}$	**	$\begin{gathered} 0.84 \\ (0.84) \end{gathered}$	**	$\begin{gathered} 15.90 \\ (12.98) \end{gathered}$
10. First anthesis day	-0.30	**	1.10	**	18.36
	(0.72)		(1.20)		(14.99)
11. Median flowering day	-2.52	ns	-0.43	ns	90.00
	(1.63)		(3.18)		(73.48)
12. Last flowering day	-7.00	ns	-0.34	ns	335.78
	(5.94)		(11.76)		(28.74)
13. Anthesis time	0.03	ns	-0.18	ns	4.83
	(0.05)		(0.16)		(3.94)
14. Anthesis position	0.01	ns	-0.03	ns	1.64
	(0.03)		(0.06)		(1.34)
15. Panicle width	10.59	ns	19.05	**	314.03
	(10.01)		(19.81)		(256.40)
16. Panicle length	-9.92	ns	76.87	**	645.54
	(7.38)		(34.49)		(527.08)
17. Panicle compactness	0.08	**	0.06	**	3.49
	(0.09)		(0.19)		(2.85)

Table 3.3 (continued)

Characters	Topodeme		Half-sib		Within-plot Var. (se.)
	Var. (se.)	F-sig.	Var. (se.)	F-sig.	

Agronomic characters

18. Clump erectness	$\begin{gathered} 0.08 \\ (0.11) \end{gathered}$	**	$\begin{gathered} 0.35 \\ (0.16) \end{gathered}$	**	$\begin{array}{r} 2.13 \\ (0.19) \end{array}$
19. Old diseases	0.03	**	0.05	*	2.65
	(0.09)		(0.13)		(0.22)
20. New diseases	0.30	**	-0.06	ns	2.96
	(0.23)		(0.13)		(2.42)
21. Leaf hairiness	0.02	ns	0.005	*	1.12
	(0.02)		(0.05)		(0.91)
22. Leaf tensile strength	-3.33	ns	15.55	**	209.46
	(2.39)		(14.30)		(18.34)
23. Flavanoid at	0.31	**	0.09	**	2.94
leaf sheath	(0.19)		(0.17)		(2.40)

Tillering characters
24. Tiller No.at 5%
tillering
25. Tiller No.at 50% tillering
26. Tiller No.at 95% tillering
27. Tiller No.at flowering time
28. No.of dead tillers at end
29. No.of green tillers at end
30. No.of young tillers at end
31. No.of aerial tillers at end
32. No.of total tillers at end
33. No.of base tillers at end
34. No.of base green tillers at end

-0.11	$*$	0.12	$* *$	5.46
(0.17)		(0.47)		(0.46)
2.21	ns	14.08	$* *$	185.81
(2.05)		(9.36)		(15.59)
15.18	ns	42.26	$* *$	779.09
(14.67)		(36.46)		(636.12)
4.16	$*$	39.73	$* *$	213.65
(5.39)		(15.92)		(17.93)
2.74	$* *$	13.74	$* *$	69.98
(2.80)		(5.87)		(5.91)
-8.20	ns	-1.49	ns	230.13
(6.03)		(6.86)		(19.55)
1.00	$*$	11.90	$* *$	96.91
(2.73)		(5.96)		(79.13)
31.32	$* *$	55.73	ns	1214.34
(31.58)		(39.98)		(100.33)
-19.62	ns	54.05	ns	1989.22
(43.99)		(67.30)		(1677.82)
-6.21	$*$	33.99	$* *$	50.38
(17.58)		(25.51)		(45.92)
-13.13	ns	17.31	$*$	402.96
(12.18)		(16.70)		(329.02)
-0.58	$*$	4.68	$* *$	30.57
(0.98)		(2.04)	$*$	(24.96)
1.46	ns	11.64	$*$	169.17
(3.22)		(7.09)		(138.13)

Table 3.3 (continued)

Characters	Topodeme		Half-sib		Within-plot Var. (se.)
	Var. (se.)	F-sig.	Var. (se.)	F-sig.	

Tillering characters

37.	Young tiller dryweight at end	$\begin{aligned} & -0.02 \\ & (0.04) \end{aligned}$	ns	$\begin{gathered} 0.28 \\ (0.13) \end{gathered}$	**	$\begin{gathered} 2.00 \\ (0.17) \end{gathered}$
38.	Aerial tiller dryweight at end	$\begin{aligned} & -0.08 \\ & (3.69) \end{aligned}$	ns	$\begin{aligned} & 10.19 \\ & (8.23) \end{aligned}$	ns	$\begin{gathered} 219.53 \\ (14.09) \end{gathered}$
39.	Total tiller dryweight at end	$\begin{aligned} & -9.17 \\ & (8.01) \end{aligned}$	ns	$\begin{gathered} 15.17 \\ (19.93) \end{gathered}$	ns	$\begin{aligned} & 653.09 \\ & (55.49) \end{aligned}$
40.	Base tiller dryweight at end	$\begin{aligned} & -5.52 \\ & (7.91) \end{aligned}$	ns	$\begin{gathered} 17.24 \\ (10.66) \end{gathered}$	**	$\begin{aligned} & 228.33 \\ & (19.65) \end{aligned}$
41.	Base green tiller dryweight at end	$\begin{aligned} & 1.04 \\ & (3.59) \end{aligned}$	ns	$\begin{aligned} & 11.92 \\ & (7.58) \end{aligned}$	*	$\begin{aligned} & 181.84 \\ & (15.56) \end{aligned}$
42.	No.of days for 5% tillering	$\begin{gathered} 0.70 \\ (0.53) \end{gathered}$	**	$\begin{gathered} 2.46 \\ (1.02) \end{gathered}$	**	$\begin{gathered} 17.64 \\ (1.49) \end{gathered}$
43.	No.of days for 50% tillering	$\begin{gathered} 2.21 \\ (2.05) \end{gathered}$	**	$\begin{gathered} 4.22 \\ (3.26) \end{gathered}$	**	$\begin{gathered} 56.16 \\ (45.85) \end{gathered}$
44.	No.of days for 95% tillering	$\begin{gathered} 9.20 \\ (6.76) \end{gathered}$	**	$\begin{aligned} & 10.53 \\ & (8.50) \end{aligned}$	**	$\begin{gathered} 157.50 \\ (128.60) \end{gathered}$
45.	RGR at 5\% tillering	$\begin{aligned} & -18.38 \\ & (90.19) \end{aligned}$	*	$\begin{array}{r} 210.62 \\ (324.72) \end{array}$	**	$\begin{aligned} & 3404.53 \\ & (287.22) \end{aligned}$
46.	RGR at 50% tillering	$\begin{gathered} -1.23 \\ (126.18) \end{gathered}$	**	$\begin{array}{r} 56.49 \\ (283.68) \end{array}$	**	$\begin{aligned} & 4254.19 \\ & (357.00) \end{aligned}$
47.	RGR at 95\% tillering	$\begin{gathered} -5.03 \\ (142.94) \end{gathered}$	**	$\begin{array}{r} 54.08 \\ (300.30) \end{array}$	**	$\begin{aligned} & 5124.98 \\ & (430.08) \end{aligned}$

* Significant at 5\% probability level
** Significant at 1% probability level

Table 3.4 Genotypic variance from half-sib $\left(\mathrm{V}_{\mathrm{H}}\right)$ and Plot variance $\left(\mathrm{V}_{\mathrm{HB}}\right)$ with their standard errors (Model 2)

Characters	Half-sib		Plot	
	$\begin{gathered} V_{H} \\ \text { (se.) } \end{gathered}$	F-sig.	$\begin{gathered} \mathrm{V}_{\mathrm{HB}} \\ (\mathrm{se} .) \end{gathered}$	F-sig.

Botanic characters

1. Juvenile leaf width	3.63	**	0.28	ns
	(1.05)		(0.75)	
2. Juvenile leaf length	30.95	**	-2.62	ns
	(9.17)		(7.07)	
3. Mature leaf width (15 wks)	0.20	**	-0.06	ns
	(0.07)		(0.07)	
4. Mature leaf width (33 wks)	0.12	**	0.15	*
	(0.07)		(0.09)	
5. Leaf sheath purple	0.40	**	-0.11	ns
(12 wks)	(0.12)		(0.09)	
6. Leaf sheath purple	0.46	**	0.53	**
(15 wks)	(0.19)		(0.19)	
7. Leaf sheath purple	0.09	**	0.31	**
(33 wks)	(0.09)		(0.15)	
8. Plant height	10.58	**	22.86	**
	(6.71)		(9.12)	

Flower characters

9. Flower peeping day	$\begin{gathered} 0.99 \\ (0.92) \end{gathered}$	**	$\begin{gathered} 3.59 \\ (1.40) \end{gathered}$	**
First anthesis day	0.42	**	6.74	**
	(1.15)		(1.97)	
11. Median flowering day	-2.60	ns	9.39	ns
	(2.98)		(6.52)	
12. Last flowering day	-6.50	ns	27.87	ns
	(11.02)		(23.43)	
13. Anthesis time	-0.13 (0.38)	ns	0.21	ns
14. Anthesis position	-0.02	ns	0.10	ns
	(0.05)		(0.11)	
15. Panicle width	23.17	**	61.81	**
	(18.12)		(26.63)	
16. Panicle length	49.54	**	0.79	ns
	(27.66)		(38.96)	
17. Panicle compactness	0.13	**	0.67	**
	(0.18)		(0.29)	

Table 3.4 (continued)

Characters	Half-sib		Plot	
	$\begin{gathered} v_{H} \\ \text { (se.) } \end{gathered}$	F-sig.	$\begin{aligned} & \mathrm{v}_{\mathrm{HB}} \\ & (\mathrm{se} .) \end{aligned}$	F-sig.

Agronomic characters

18. Clump erectness
19. Old diseases
20. New diseases
21. Leaf hairiness
22. Leaf tensile strength
23. Flavanoid at leaf sheath

Tillering characters

24. Tiller No.at 5% tillering	$\begin{aligned} & -0.01 \\ & (0.42) \end{aligned}$	**	$\begin{gathered} 3.33 \\ (0.76) \end{gathered}$	
Tiller No.at 50% tillering	14.21	**	8.74	ns
	(8.45)		(11.80)	
26. Tiller No.at 95% tillering	49.69	**	35.72	ns
27. Tiller No.at flowering time	36.07	**	18.77	ns
	(14.04)		(14.67)	
28. No.of dead tillers at end	13.35	**	13.43	**
	(5.46)		(5.79)	
29. No.of green tillers at end	-8.75	ns	26.59	
	(7.45)		(16.80)	
30. No.of young tillers at end	10.59	**	12.14	,
	(5.52)		(6.98)	
31. No.of aerial tillers	76.45	*	-43.04	ns
at end	(43.27)		(62.47)	
32. No.of total tillers at end	32.07	ns	87.67	ns
	(68.67)		(124.95)	
33. No.of base tillers at end	22.16	**	82.91	**
	(25.99)		(42.10)	
34. No.of base green tillers	2.53	*	60.96	**
at end	(16.97)		(31.28)	
35. Dead tiller dryweight	3.30	**	5.17	**
at end	(1.87)		(2.46)	
36. Green tiller dryweight	11.25	**	-0.98	ns
at end	(6.59)		(9.46)	

Table 3.4 (continued)

Characters	Half-sib		Plot	
	$\begin{gathered} \mathrm{v}_{\mathrm{H}} \\ \text { (se.) } \end{gathered}$	F-sig.	$\begin{gathered} \mathrm{v}_{\mathrm{HB}} \\ (\mathrm{se} .) \end{gathered}$	F-sig.

Tillering characters

37. Young tiller dryweight at end	$\begin{gathered} 0.21 \\ (0.11) \end{gathered}$	**	$\begin{gathered} 0.22 \\ (0.14) \end{gathered}$	
38. Aerial tiller dryweight at end	$\begin{gathered} 8.12 \\ (7.78) \end{gathered}$	ns	$\begin{gathered} 0.90 \\ (13.00) \end{gathered}$	ns
39. Total tiller dryweight at end	$\begin{array}{r} 3.52 \\ (18.08) \end{array}$	ns	$\begin{aligned} & -16.54 \\ & (36.36) \end{aligned}$	ns
40. Base tiller dryweight at end	$\begin{gathered} 14.59 \\ (10.03) \end{gathered}$	**	$\begin{gathered} 11.08 \\ (14.85) \end{gathered}$	ns
41. Base green tiller dryweight	$\begin{aligned} & 11.21 \\ & (7.14) \end{aligned}$	*	$\begin{gathered} -0.25 \\ (10.63) \end{gathered}$	ns
42. No.of days for 5% tillering	$\begin{gathered} 2.61 \\ (0.98) \end{gathered}$	*	$\begin{gathered} 0.42 \\ (1.01) \end{gathered}$	ns
43. No.of days for 50% tillering	$\begin{gathered} 5.89 \\ (3.37) \end{gathered}$	**	$\begin{gathered} 9.30 \\ (4.42) \end{gathered}$	**
44. No.of days for 95% tillering	$\begin{aligned} & 17.95 \\ & (9.33) \end{aligned}$	**	$\begin{gathered} 21.27 \\ (11.78) \end{gathered}$	*
45. Relative growth rate at 5% tillering	$\begin{gathered} 155.42 \\ (280.41) \end{gathered}$	**	$\begin{aligned} & 1942.37 \\ & (455.59) \end{aligned}$	**
46. Relative growth rate at 50% tillering	$\begin{gathered} 42.63 \\ (266.84) \end{gathered}$	**	$\begin{aligned} & 1711.72 \\ & (470.17) \end{aligned}$	**
47. Relative growth rate at 95% tillering	$\begin{array}{r} 33.04 \\ (287.16) \end{array}$	**	$\begin{aligned} & 1676.03 \\ & (513.99) \end{aligned}$	**

* Significant at 5% probability level
** Significant at 1% probability level

Table 3.5 Genetic Variance components repartitioned into additive variance (V_{A}) and heterotic variance $\left(V_{h}\right)$, together with phenotypic-variance $\left(V_{P}\right)$
Characters

Botanic characters

1. Juvenile leaf width	14.5	21.23	16.59
2. Juvenile leaf length	123.80	49.72	165.71
3. Mature leaf width (15 wks)	0.80	0.88	1.52
4. Mature leaf width (33 wks)	0.44	-1.91	-1.04
5. Leaf sheath purple (12 wks)	1.60	1.08	2.35
6. Leaf sheath purple (15 wks)	1.84	-0.65	2.76
7. Leaf sheath purple (33 wks)	0.36	0.74	1.99
8. Plant height	42.32	8.98	114.85

Flowering characters

9. Flower peeping day

3.96	2.97	16.89
1.68	-0.95	18.78
-10.40	71.71	87.40
26.00	277.80	329.28
0.52	4.64	4.70
-0.08	1.42	1.62
92.68	73.29	337.20
198.16	494.73	695.08
0.52	1.24	3.62

Agronomic characters

18. Clump erectness
1.44
-0.26
2.67
19. Old diseases
20. New diseases
21. Leaf Hair
0.92
0.87
2.72
0.04
0.61
3.19
22. Leaf tensile strength
41.84
63.12
1.13
23. Flavanoid at leaf sheath
1.44
-0.42
219.92
$\begin{array}{llll}\text { 23. Flavanoid at leaf sheath } & 1.44 & -0.42 & 3.30\end{array}$

Table 3.5 (continued)

Tillering characters

24. Tiller No.at 5\% tillering	-0.04	-3.37	5.45
25. Tiller No.at 50\% tillering	56.84	118.27	200.02
26. Tiller No.at 95\% tillering	198.76	528.22	828.78
27. Tiller No.at flowering time	144.28	51.95	249.72
28. No.of dead tillers at end	53.40	-8.07	83.33
29. No.of green tillers at end	-35.00	181.40	221.38
30. No.of young tillers at end	42.36	29.70	107.50
31. No.of aerial tillers at end	305.80	1111.52	1290.79
32. No.of total tillers at end	128.28	1641.41	2021.29
33. No.of base tillers	88.64	240.09	562.54
34. No.of base green tillers	10.12	223.46	405.49
35. Dead tiller dry weight at end	13.20	6.19	33.87
36. Green tiller dryweight at end	45.00	138.25	180.42
37. Young tiller dryweight at end	0.84	0.76	2.21
38. Aerial tiller dryweight at end	32.48	192.63	227.67
39. Total tiller dryweight at end	14.08	689.02	656.61
40. Base tiller dryweight	58.36	151.28	242.92
41. Base green tiller dry weight	44.84	148.91	193.05
42. No.of days for 5\% tillering	10.40	8.65	20.24
43. No.of days for 50\% tillering	23.56	11.98	62.05
44. No.of days for 95\% tillering	71.80	43.02	175.45
45. RGR at 5% tillering	621.68	-2578.06	3559.95
46. RGR at 50% tillering	170.52	-752.10	4296.82
47. RGR at 95\% tillering	132.16	249.17	5158.02

[^2]The relative contribution of genetic variance to the phenotypic variance was viewed in the forms of narrow-sense heritability (average allele), heterotic-sense heritability (non-additive) and broad-sense heritability, (general genotypic) respectively. The comparison among these three estimates can be done in Table 3.6. The characters which have high narrow-sense heritability include juvenile leaf width and length, 12 wks . and 15 wks . leaf sheath purple, tiller numbers at flowering and numbers of dead tillers. The high heterotic heritability estimates include 15 wks . and 33 wks. mature leaf width, median and last flowering day, anthesis time and position, panicle length, tiller numbers at 95%, numbers of green tiller, numbers of aerial tiller, and numbers of total tiller, green tiller dry-weight, aerial tiller dry-weight, base tiller dry-weight and total tiller dry-weight. Finally, the broad-sense heritability estimates are high in most characters especially in flowering and tillering characters.

Table 3.6 Heritability estimates for narrow sense $\left(h^{2} N\right)$, heterotic sense $\left(h^{2} h\right)$ and broad sense $\left(h_{B}{ }_{B}\right)$
\qquad

Botanic characters

1. Juvenile leaf width	0.88	0.07	0.95
2. Juvenile leaf length	0.75	0.30	1.05
3. Mature leaf width $(15 \mathrm{wks})$	0.53	0.58	1.11
4. Mature leaf width $(33 \mathrm{wks})$	-0.42	1.84	1.41
5. Leaf sheath purple $(12 \mathrm{wks})$	0.68	0.46	1.14
6. Leaf sheath purple $(15 \mathrm{wks})$	0.66	-0.24	0.43
7. Leaf sheath purple $(33 \mathrm{wks})$	0.18	0.37	0.55
8. Plant height	0.37	0.08	0.45

Flowering characters

9. Flower peeping day

0.23	0.18	0.41
0.09	-0.05	0.04
-0.12	0.82	0.70
-0.08	0.84	0.76
0.11	0.98	0.88
-0.05	0.88	0.83
0.27	0.22	0.49
0.29	0.71	1.00
0.14	0.34	0.49

Agronomic characters

18. Clump erectness
0.54
19. Old diseases (Rust)
20. New diseases (other)
21. Leaf hairiness
22. Leaf tensile strength
23. Flavanoid at leaf sheath
0.10
0.29
0.04
0.19
0.44

-0.10	0.44
0.32	0.42
-0.02	0.27
0.54	0.58
0.29	0.48
-0.13	0.31

Table 3.6 (continued)

Tillering characters

24. Tiller No.at 5% tillering	-0.007	-0.62	-0.63
25. Tiller No.at 50% tillering	0.28	0.59	0.88
26. Tiller No.at 95% tillering	0.24	0.64	0.88
27. Tiller No.at flowering time	0.58	0.21	0.79
28. No.of dead tillers at end	0.64	-0.10	0.54
29. No.of green tillers at end	-0.16	0.82	0.66
30. No.of young tillers at end	0.39	0.28	0.67
31. No.of aerial tillers at end	0.24	0.86	1.10
32. No.of total tillers at end	0.06	0.81	0.88
33. No.of base tillers at end	0.16	0.43	0.58
34. No.of base green tiller at end	0.03	0.55	0.58
35. Dead tiller dry weight at end	0.39	0.18	0.57
36. Green tiller dryweight at end	0.25	0.77	1.02
37. Young tiller dryweight at end	0.38	0.34	0.72
38. Aerial tiller dryweight at end	0.14	0.85	0.99
39. Total tiller dryweight at end	0.13	1.07	1.21
40. Base tiller dryweight at end	0.24	0.62	0.86
41. Base green tiller dry weight	0.23	0.77	1.00
42. No.of days for 5% tillering	0.51	0.43	0.94
43. No.of days for 50% tillering	0.38	0.19	0.57
44. No.of days for 95% tillering	0.41	0.25	0.65
45. RGR at 5% tillering	0.17	-0.72	-0.55
46. RGR at 50% tillering	0.04	-0.18	-0.14
47. RGR at 95% tillering	0.03	0.05	0.07

* Significant at 5% probability level
** Significant at 1% probability level

CHAPTER 4

DISCUSSION

4.1 Comparison Among Topodeme, Half-sib and Plant Variations

The topodeme variation is derived from the differentiation among means of local populations, the open-pollinated seeds were collected from several locations throughout New Zealand. Whereas the half sib variation is confined to among plants within each topodeme. In the other word, the half sib variation is the allele effects amongst single plants within topodemes originally used as self mother plants. The within plot variation is the plant to plant variation within half sib families or lines. Hence, the total plant to plant variation within topodemes is the half sib variance and within variance combined.

In this study, the half-sib family variance has a higher value than topodeme variance in most characters (39 out of 47 characters) The exception were: 33 wks . mature leaf blade width, 15 wks . leaf sheath purple ,flavanoid, anthesis time, anthesis position, panicle compactness, new disease and leaf hairiness. And plant-to-plant within half sib variance has a higher value than topodeme variance in every character. This has affirmed the speculation from the previous work conducted by Cameron (1979)

It is of some interest to compare this result with those from other species. The within-population of Trifolium repens from a uniform pasture found a great deal of variation in several characters; and even as great as that between populations from different environments in some cases (Burdon and Harper, 1980). The breeding system of a species could affect on the amount of genetic variation within and between populations (Levin, 1978). The population of cross-fertilizng species was less differentiated inter se than the population of self-fertilizing species. In Trifolium spp., outbreeders had more within population heterogeneity for quantitative characters and less between-population heterogeneity than inbreeder (Katznelson, 1969 cited from

Levin,1978). However, other workers found a great deal variation in predominantly selfing-species and concluded that patterns of variation was not confined to one group of species or the others (Allard 1975; Jain, 1976).

In practice, selection could be more effective on the half-sib family level than the topodeme level. The germplasm collection and maintenance would be more benefitial to pay attention on subsamples within topodemes or half-sib families than among samples of topodemes.

The ecotypes of Holcus spp. in New Zealand was proposed by earlier workers (Munro, 1961). The high level of half-sib and plant variations (and much higher than the topodeme in some traits) in the present finding may suggest that there are no ecotype nor major topodeme differences in New Zealand. The situation was quite similar to Phalaris tuberosa in Australia where Trumble and Cashmore (1934) found no evidence of ecotypic differentiation among samples from various parts of Australia, despite the fact that the species had at that time been established in relatively small but widespread areas for long time.

4.2 Genetic Variance and Heritability

Significant genetic variation is detected among half sib progenies for numerous Yorkshire Fog grass characteristics. These results concur with earlier reports in Yorkshire Fog grass for several characters (Cameron,1979; Billington et al.,1988).

In the analysis of quantitative variability and heritability in predominantly cross-fertilized forage species, it is convenient to make use of family groups produced by natural crossing. The offspring is often derived from the ovules of a maternal plant which has been pollinated without control of male parentage (pollen), and these form half-sib progenies or lines. For the analysis, it is assumed that the offspring were produced under random mating (no inbreeding). However, some traits may be also under the influence of maternal effect and phenotypic assortive mating. The maternal effect might cause bias estimates of heritability if they were ignored. From such fact, the use of field collected maternal sibships needs to be cautious. Paternal analysis
indicated that these progeny were not likely to be half-sibs (Ellstrand,1984), which could cause overestimates of heritability.

Some estimates of phenotypic and genotypic variances are negative. And they, in turn, have caused the inflated or negative heritability estimates in some attributes. This is possible because of the sampling distribution of trivial parameters or non-random sampling of genotypes from the natural population (Falconer,1981) It is also possible that estimates of narrow-sense heritabilities may be biased by the confounding of nonadditive genetic variance (Mitchell-Olds and Rutledge, 1986).

These heritability estimates are on an individual plant basis, and vary from low to high. The broad-sense heritability estimates are low (0.04) for the first day of anthesis to very high (1.0) for juvenile leaf-width, mature leaf width at 15 and 30 weeks, the panicle length and purple leaf sheath at 12 weeks. The narrow-sense heritability estimates are relatively high to medium in most of the botanical and tillering attributes. But most of agronomic traits showed medium to low narrow-sense heritability. Although, Moll and Stuber (1974) concluded that the genetic variability of many important agronomic traits of forage crops had been found to be predominantly additive.

4.2.1 Botanical Characters

The heritability estimates for the most botanical characters are similar to those of other workers with other grasses. The broad-sense and narrow-sense heritability estimates for juvenile leaf width and leaf length of Yorkshire Fog grass are relatively high while the heritability estimates of Italian ryegrass seedlings for leaf width and leaf length were medium, (0.38 and 0.42 , respectively)(Cooper and Edwards, 1961).

The broad-sense heritability estimates of mature leaf blade width both at 15 and 30 weeks are high and the narrow-sense one is medium at 15 weeks and high at 30 weeks. Similar result was shown in Bermudagrass (Cynodon dactylon) whose broadsense and narrow-sense heritability estimates of leaf blade width were high and medium (0.83 and 0.62 , respectively). However, Cameron (1979) and Billington (1988) had found that the broad-sense and narrow-sense heritability for this attributes was relatively low (0.08 and 0.17 ,respectively). Furthermore, the leaf width mean
tended to change with time. This study has unraveled some genetic variance pattern on it. At 15 weeks, there are almost half additive variance and heterotic variance, but at 30 weeks, it alters to become all heterotic. The leaf-width grand mean towards the narrowness indicates that the leaf narrowness is under the heterotic heritability.

There are some contrasting patterns in broad-sense and narrow-sense heritabilities for leaf sheath purple of different time periods. The difference possibly indicates that there has been a trigger, or change of genetic control. A possible external trigger may have been the caging, which occurred between the two measuring periods. Further research should resolve this issue.

The broad-sense and narrow-sense heritability estimates of plant height in Yorkshire Fog grass are medium and low in value, respectively. The pattern was very similar to other grasses. In the following examples, the broad-sense heritability estimates were ranged from 0.4-0.6 namely: for Nebraska populations Indiangrass (Sorghastrum nutans) was 0.4 (Vogel, et al., 1980), for reed canarygrass (Phalaris arundizacea) in Eastern Canada population was 0.54 (Sachs and Coulman, 1983), for sand bluestem (Andropogon halhi) was 0.62 (Riley,1982), for Rhodes grass (Chloris gayana) was 0.66 (Quesenberry et al.,1978). The narrow-sense heritability was also very similar to guineagrass (Panicum maximum) which was rather low (0.2) (Usberti and Jain, 1978).

4.2.2 Flowering Characters

Most of these flowering characters have medium to high broad-sense heritability with heterotic variances prevailing. There are some variations amongst different flowering measurements. The first day and the median day of flowering may be under different sets of gene control. The first anthesis day has very small additive genetic variance, only 4 percent and very large environmental variance, about 96 percent. This suggests an invariant mechanism for flowering initiation. In contrast, later flowering controls have stronger genetic variability. Both the median flowering day and last flowering have a very high genetic variance and all of which is heterotic. (as shown by h_{h}^{2}). But they have fewer environmental variance, only about 30 percent.

It shows the same trend in this study. Billington (1988) found that the narrowsense heritability of flowering time in Yorkshire Fog grass was relatively low in traditional field and medium in improved field population, respectively. In general, the heritability estimates for median flowering or heading day are quite similar to other grasses. In Indiangrass (Sorghastrum nutans) of Nebraska populations was 0.5-0.7 (Vogel, et al.,1980), in (Lolium perenne) was 0.94, in canarygrass (Phalaris arundizacea) was 0.94 (Sachs and Coulman, 1983) and in sand bluestem was 0.73 (Riley,1982).

The panicle length had nearly the same amount of narrow-sense heritability as Billington (1988) had found, but the broad-sense heritability was considerably larger.

4.2.2 Agronomic Characters

For agronomic characters, most have a medium broad-sense heritability and low to medium for broad-sense heritability.

Clump erectness at vegetative stage, just prior to stem elongation, had a relatively medium (0.44) estimate for narrow-sense heritability. This was different to a previous study by Cameron (1979) which reported a low estimate (0.10). The differences in the two results arise from this: Cameron's material was a different sample from the same germplasm but it could also be due to scoring at different stages of growth.

Sheep performance has been associated with leaf cellulose content which may be positively correlated with leaf tensile strength in ryegrass (Lolium spp.). Weight gains have been reported highest on the grasses with the lowest strengths (Wilson,1965; Evan,1967b). The present study reveals significant genetic differences in leaf tensile strength. This has been reported also amongst lines of weeping lovegrass (Eragrostis curvala) and amongst clones of Bermudagrass (Cynodon dactylon), sideoats grama (Bouteloua curtipendula) and sand bluestem (Andropogon hallii) (Kneebone, 1960). In this study, a medium level of broad-sense heritabilty was found which was different from Cameron's result which showed a very low value (0.01-0.04). It was also different from other grasses. The broad-sense heritability estimates for leaf tensile strength in tall fescue (Festuca arundinacea) were relatively
high, ranking from 0.83 in June to 0.93 in August to 0.85 in October. The narrowsense heritability estimates were also high (0.7-0.8) (Nguyen,et al.,1982). The genetic control mechanism might change according to the seasonal cycle or growth stages. Further investigation is needed to resolve the issue.

The flavanol level had a relatively medium narrow-sense heritability. The pattern was rather similar to leaf sheath purple at 12 weeks. It has been summarized that the purple colour is flavanoid in nature and the similarity of the two heritabilities may support this possibility.

Leaf hair has both high broad-sense and narrow-sense heritability. It contrasted to Cameron's (1979) result which indicated a low broad-sense heritability (0.2). The result was similar to that for Medicago where the narrow-sense heritability of hair density was medium (0.55)(Kitch, et al.,1985).

Leaf diseases are categorized into old disease,i.e. mostly rust, and new diseases, i.e. leaf spot (symptom similar to Helminthosporium leaf spot). Both have relatively low to medium broad-sense heritabilities and low narrow-sense heritabilities. These results are similar to those of other grasses. The realized heritabilities for rust resistance on eight cultivars of tall fescue (Festuca arundinacea) ranked from 0.07, $0.08,0.16,0.18,0.36,0.45,0.49$ and 0.52 , respectively. It was concluded that there might. be different gene system for rust resistance in different population. Also, the low heritability one might be the result of some non-additive gene action for rust resistance (Wofford and Watson, 1982). In this study, plants have a low narrow-sense heritability on rust resistance, while the heterotic variance is three time higher than the additive variance. The high non-additive variance indicated it might not be easy to select for in traditional selection nursery methods. This contrasted to Munro's (1961) recommendation for rust resistance relating to easily selected major genes. In case of leaf spot, in meadow fescue (Festuca pratensis), the narrow-sense heritability for Helminthosporium was medim (0.49) (Frandsen et al.,1981). This indicated that it might be easier to select for leaf spot disease resistance in the traditional selection nursery methods.

4.3 Genetic Variance on Tiller Development

Tiller development starting from sowing till flowering observed by tiller numbers has expressed virtually in a logistic function (Fig.4.1). Growth analysis of a permanent pasture in Normandy in spring revealed that Holcus lanatus growth followed a sigmoid curve (Lemaire, et al.,1982). In Lolium, however, the tiller number in the early stage were increasing exponentially (Cooper and Edwards, 1961). It is interesting to note that the lower half of a logistic is exponential (Causton, 1977)

Grasses are likely to developed the tillers successively and continuously without any distinct termination of the whole tillering process. This complies very well to Protich's (1977) descriptive work. Although flowering tillers died soon after seed maturity, the new young tillers emerged from the ground thereafter. During the heading and seed development periods, grasses had possessed a great number of elongated green tillers and aerial tillers directly from their green tillers.

For tiller number, the broad-sense heritability estimates across time are from zero to very high (0.88). The narrow-sense estimates are from zero to medium (0.28) and then low (0.07)(Fig.4.1 and Fig.4.2). Billigton et al. (1988) unraveled the same pattern of medium broad-sense heritability and low narrow-sense heritability for ten week growth of Yorkshire Fog grass. Similar trend also occurs in the other grasses. The broad-sense heritability estimates of tillers on two month-old Lolium from sowing were medium to high (0.4-0.8) (Cooper and Edwards, 1961). In reed canary grass, both broad-sense and narrow-sense heritability were high for tiller number (Casler, 1984). In guineagrass, heritability estimates based on parent-offspring regression for total tiller number were relatively low to medium (0.3) (Usberti and Jain, 1978). In maize, however, the genetic component of variation for tillering was believed due to general combining ability (Rood and Major, 1981)

Both broad-sense and narrow-sense heritabilities for flowering tillers are high and medium, respectively. This was somewhat comparable to what Billington et al. (1988) finding which revealed a medium to low heritabilities for both improved-field and traditional field population. The young tillers which have emerged after flower tiller died, show the same pattern of genetic and environment variation. This might indicate the recycle of genetic control in Yorkshire Fog grass.

Figure 4.1 Genotypic variance of tiller number development from sowing to flowering stage

No. of
Tillers

Figure 4.2 Genotypic variance of tiller number after main tiller flowering stage (33 weeks)

For dry matter, a high broad-sense and medium to low narrow-sense heritabilities are obtained for every type of tiller at old plant stage (33 wks .)(Fig.4.3). That basal tiller mass (which included dead (post-flowering) tillers, green tillers and young tillers) represents the mass in pasture, and is of particular interest. It has a medium broad-sense heritability (0.43) and low narrow-sense heritability (0.16), which are somewhat comparable to other grass species. The broad-sense heritability of mass (yield) in several grasses was medium to low (Clements,1969; Marum et al,1979; Oram, et al.,1974, Shenk and Westerhaus,1982). Dry matter/plant in Lolium multiforum had medium broad-sense heritability (0.48)(Bugge,1984). Also, in reed canary grass, for the tiller dry weight per plant, broad-sense heritabilities were relatively medium (0.3-0.6) (Casler, 1981); as it was in Lolium perenne (0.53) (Utz and Oettler, 1978).

Similar results of heritability estimates for dry matter with respect to variability within established genotypes of crossed fertilized species have been drawn by Cooper(1959) on Lolium, Gardner (1963) on yield of maize and by Kehr and Gardner (1960) on forage yield in lucern

The relative growth rate at $5 \%, 50 \%$ and 95% asymptote show quite a similar patterns in their variance components (Fig.4.1). At very young stages, the plant has only environmental variances in action. The 95% stage has 92 percent of environmental variance with only 3 percent additive and 5 percent heterotic variance. The timing to reach $5 \%, 50 \%$, and 95% of growth have results very different to those of relative growth rate and tiller numbers. These generally are high and medium broad-sense heritabilities and relatively medium narrow-sense heritabilities. This showed, clearly, the different genetic perspectives represented by growth rate and timings. As for the flowering attributes, the duration of events was shown to have greater genetic variabilities than either their initiation (for flowering) or the rates of change (for tillering).

4.4 Implication for plant breeding

The detailed genetic analysis of a locally populations is of practical interest in setting up a effective plant breeding programme. The initial step in any of them is the

Tiller
Dry weighl
(gmi.)

Figure 4.3 Genotypic variance of tiller dry matler after main tiller flowering stage
choice of a suitable base population. The alternatives, in the case of cross-fertilized species, will often include:

1. the improvement of an established populations by intra-population selection, or
2. the formation of a more widely based genetic population by the incorporation of introduced materials (wide crosses).

The useful genetic variation presented in the local New Zealand populations of Holcus has been found to be quite appreciable for most of the characters studied. The genetic advance under selection for these characters depends on the amount of genetic variation available and on its heritability.

These results indicate that genetic advance for the characters: juvenile leaf blade width and length, 15 weeks mature leaf blade width, purple leaf sheath, plant height, clump erectness, flavanol, panicle width, number of dead tillers and young tillers, dead tiller mass, young tiller mass, number of days to reach $5 \%, 50 \%$ and 95% of growth stage should be possible using breeding methods which utilize additive genetic variation. The traditional breeding methods such as mass selection, line selection, line breeding or simple recurrent selection should be efficient methods for the improvement of these attributes.

Many characters exhibit low narrow-sense heritability but high heterotic heritability, are included : 30 wks . mature leaf blade width, leaf tensile strength, leaf hair, old disease, median and last flowering day, panicle length and compactness, total tiller number, green tiller number, number of tiller at 50% and 95% of growth stage, basal tiller number, total tiller mass, basal tiller mass and green tiller mass. These require some combination of progeny testing and recurrent selection or top cross progeny tests for high specific combining ability for development of synthetic cultivars or special forms of recurrent selection bulks.

Some further research would be desirable. For example, estimates of correlation was needed because it would assist in estimating the relative efficiency of direct and indirect selection for characters which were easier to evaluate than others.

For instance, a high total genetic contribution in juvenile leaf size criteria might be used as indirect selection for some other high genetic correlated responses.

For those characters which had different genotypic variances across time (eg. purple leaf sheath, flowering day and tiller number development), it would be good practice to select at the period with a higher level of genotypic variance. For instance, amongst the flowering characters, selection would be more effective on the median flowering day, than on the first day of flowering. Also, the number of tillers would best be selected in the later stages of development (50% and 95% of growth stages).

REFERENCES

Allard, R.W. 1975. The mating system and microevolution. Genetics, 79 : 115 126.

Anderson, R.L. and T.A. Bancroft 1952. Statistical Theory in Research. McGrawHill. New York.

Baker, R.J. 1986. Selection Indices in Plant Breeding. CRC Press Inc. Boca Raton Florida 218 pp .

Basnyat, M.B. 1957. A study of the growth form and behaviour of Yorkshire Fog(Hocus lanatus) and of its dry matter production compared with perennial ryegrass (Lolium perenne) both with and without fertilizers. Master Thesis, Massey Agricultural college. New Zealand. 98 pp.

Becker, W.A. 1984. Manual of Quantitative Genetics. 4-th edition, Academic Enterprises, Pullman, U.S.A. 195 pp.

Beddows, A.R. 1961. Holcus lanatus L. in biological flora British Island. J. Ecol., 49: 421-430.

Billington, H.L., A.M. Mortimer and T. McNeilly 1988. Divergence and genetic structure in adjacent grass populations I. Quantitative Genetics. Evolution, 42 (6) : 1267-1277.

Bocher, T.W. and K. Larsen 1958. Geographical distribution of initiation of flowering, growth habit, and other characters in Holcus lanatus L. Bot. Notiser., 111:289-300.

Boggie, R., R.F. Hunter and A.H. Knight 1958. Studies of the root development of plants in the field using radioactive tracers. J. Ecol., 46:621-639.

Bugge, G. 1984. Heritability estimates for forage yield, ear emergence and quality characteristics of the dry matter in Lolium multiflorum Lam. Zeitschrift fur Pflanzenzuchtung, 92(4) : 321-327 (PB.Abst. Vol. 54 : 6010).

Burns, R.E. 1963. Methods of tannin analysis for forage crop evaluation. Ga. Agric. Exp. Stn. tech. Bull. NS., 32:5-14.

Brown, K.R. and P.S. Evan 1973. Animal treading : A review of the work of the late D.B. Edmond. NZ J. of Exp. Agric., 1:217-226.

Burdon, J.J. and J.L.Harper 1980. Relative growth rates of individual members of a plant population. J Ecol., 68: 953-957.

Cameron, N.E. 1979. A study of the acceptability of Hocus spp. to perendale sheep. Master Thesis, Massey University, New Zealand. 106 pp.

Casler, M.D. 1984. An analysis of forage yield in reed canary grass: heritability of stability parameters, factors influencing stability and yield prediction from morphological characters. Dissertation Abstracts International B, 41(11) : 3968B - 3969B.

Castle, M.E. and W. Holmes 1960. The intensive production of herbage for cropdrying. 7. The effect of further continued massive applications nitrogen with and without phosphate and potash on the yield of grassland herbage. J. Agric.Sci., 55:251-260.

Causton, D.R. 1977. A biologists' Mathematics Contemporary Biology Series. Edward Arnold, London. 326 pp.

Cheeseman, T.F. 1923. Manual of the New Zealand Flora. 2-th ed. Government Printer Wellington 1163 pp .

Clements, R.J. 1969. Selection for crude protein in Phalaris tuberosa L. I. Response to selection and preliminary studies on correlated response. Aust.J. Agric. Res., 20:643-652.

Cockerham, C.C. 1954. An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics, $39: 859-882$.

Cockerham C.C. 1963. Estimation of genetic variances. pp. 53-94 In Statistical and Plant Breeding. W.D.Hanson and H.F. Robinson (Eds.) National Academy of Sciences, National Research Council Washington D.C. Publication 982.

Comstock, R.E. and H.F. Robinson 1948. The components of genetic variance in populations of biparaental progenies and their use in estimating the average degree of dominance. Biometrics, 4:254-266.
------------ 1952. Estimation of average dominance of genes. pp. 494-516 In Heterosis J.W. Gowen (ed). Iowa State College Press.

Cooper, J.P. 1954. Studies on growth and development in Lolium IV. Genetic control of heading responses in local population. J. Ecol., 42: 521-556.
------------ 1959. Selection and population structure in Lolium I. The initial populations. Heredity, $13: 317-340$.

Cooper, J.P. and K.J.R. Edwards 1961. The genetic control in leaf development in Lolium 1. Assessment of genetic variation. Genetics, 46:63-82.

Corkill, L. 1956. The basis of synthetic strains of cross-pollinated grasses. Proc. Seventh Inter.Grassl. Congres : 427.

Cowlishaw, S.J., and F.E. Alder 1960. The grazing preferences of cattle and sheep. J. Agric. Sci.(Camb.), 54:257-265.

Crump, S.L. 1951. The present status of variance component analysis. Biometrics, 7:1-16.

Curnow, R.N. 1963. Sampling the diallel cross. Biometrics, 19:287-306.

Davies, E.B. 1944. The lime requirement of soils. New Zealand J. Agric. 69 : 529 534.

Davies, T. H., I.A. Dickson, C.T. McCrea, H. Mead and W.W. Williams 1971. The sheep and cattle industries of the Falkland Islands. A report Foreign and Commonwealth office, Overseas Development Administration London UK. 152 pp.

Dunbar, G.A. 1944. Yorkshire Fog in mountain revegetation. Proc. of the NZ Grassl Assoc., 35 : 284-287.

East, E.M. 1910. A mendellian interpretation of variation that is apparently continuous. Am. Nat., Vol. XLIV No.518: 65-82.

Ellstrand, N.C. 1984. Multiple paternity within fruits of wild radish, Rhaphanus sativus. Amm.Nat., 123:819-828.

England, F. 1974. A general appropriate method for fitting additive and specific combining abilities to the diallel cross with unequal numbers of observations in the cells. TAG, 44:378-380.

Evans, P.S. 1964. A study of leaf strength in four ryegrass varieties New Zealand J. Agric. Res., 7: 508-513.
--------- 1967a. Leaf strength studies of pasture grasses I. Apparatus techniques, and some factors affecting strength. J. Agric.Sci. (Camb.), 69 : 171-174.
----------- 1967b. Leaf strength studies of pasture grasses II. Strength, cellulose content and sclerenchyma tissue proportions of eight grasses grown as single plants J. Agric.Sci. (Camb.), 69:175-181.

Falconer, D.S. 1981. Introduction to Quantitative Genetics. 2-nd ed. Longman London and New York 340 pp.

Frandsen, K.J.,B.I. Honne, G. Julen 1981. Observations on the inheritance of resistance to Dreschlera dictyoides (Helminthosporium/dict.Dreschl.) in a population of meadow fescue (Festuca pratensis Huds.). Acta Agriculturae Scandinavica, 31 (1) : 91-99 (PB Abstr.52).

Fisher, R.A. 1918. The correlation between relatives on the supposition of mendellian inheritance Trans. of the Roy. Soc. of Edinb., 52: 399-433.

Forbes, T.J., C. Dibb, J.O. Green, A. Hopkins and S. Peel 1980. Factors affecting the productivity of permanent grassland. pp. 141 Hurley : Joint GRI - Adas Permanent Pasture Group.

Fowler, N., J. Zasada and J.L. Harper 1983. Genetic components of morphological variation in Salix rapens New Phytol., $95: 121-131$.

Gardner, C.O. 1963. Estimates of genetic parameters in cross-fertilizing plants and their implications in plant breeding pp. 225-25. In Statistical Genetics and Plant Breeding W.D. Hanson and H.F. Robinson (ed.) National Academy of Science - NRC. Pub.982.

Garner, F.H. 1963. The palatability of herbage plants. J. Br. Grassl. Soc., 18:7989.

Gilberts, N.E.G. 1958. Diallel cross in plant breeding. Heredity, 12:477-492.

Griffings, 1956a. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci., 9: 463-493.
---------- 1956b. A generalized treatment of the use of diallel cross in quantitative inheritance. Heredity, $10: 31-50$

Gomez, K.A. and A.A. Gomez 1984. Statistical Procedures for Agricultural Research. 2-nd ed. 680 pp.

Gordon, I.L. 1979. Standard errors of heritabilities based on perennial observations, with application to Yorkshire Fog grass. Euphytica, $28: 81$ 88.

Gordon, I.L., D.E.Byth and L.N. Balaan 1972. Variance of heritability ratios estimated from phenotypic variance components. Biometrics, 28 : 401 415.

Grime, J.P. and B.C. Jarvis 1975. Shade avoidance and shade tolerance in flowering plants 2. Effects of light on the germination of species of contrasted ecology. pp. 525-532 In Height as an ecological factor. B.E.S. Symposium 16 G.C. Evans, R. Bainbridge, O. Rackham (ed.) UK. Blackwell Scientific Pub. Oxford.

Haggars, R.J. 1976. The seasonal productivity, quality and response to nitrogen of four indigenous grasses compared with Lolium perenne. J. of the Bri. Grassl. Soc. 31: 197-207.

Haggars, R.J. and C.J. Standell 1982. The effect of mefluidide on yield and quality of eight grasses. Proc. of the 1982 British Crop Protection Conference Weeds : 395-399.

Hanson, W.D. 1963. Heritability. pp.125-140. In Statistical Genetics and Plant Breeding. W.D. Hanson and H.F. Robinson (ed.) National Academy of Science-NRC. Pub. 982.

Harkess, R.F. and R.A. Hope 1974. The control of Yorkshire Fog (Holcus lanatus L.) in timothy swards. Proc. of the $12^{\text {th }}$ British Weed Control Conference : 733-736.

Hart, R. H. 1961. An economic and ecological evaluation of velvet grass, Holcus lanatus L. PhD. Thesis Oregon State Univ. U.S.A. 88 pp.

Hart, R. H. and W.S. McGuire 1963. Effects of fertilization on the growth of velvet grass in a grass pasture. Agron. J., 55: 414-415.

Hatch, A. B. 1937. The physical basis of mycotrophy in the genus pinus. Black Rock Forest Bulletin, 6:1-168.

Hayes, P. 1976. Seedling growth of four grasses. J. of the Bri. Grassl.Soc., $31: 59$ 64.

Hayman, B.I. 1958(a). The theory and analysis of diallel crosses II. Genetics 43 : 63-85.

1958(b). The separation of epistatic from additive and dominance variation in generation means. Heredity, 12:371-390.

Hill, M.J. 1988. Pers.comm.

Hinkelmann, K. 1965. Partial Triallel crosses. Sankhya 27 A: 173-196.

Hubbard, C.E. 1945. Grasses. Pelican Books.
\qquad 1968. Grasses : A guide to their structure, identifiction, uses and distribution in the British Isles. Penguin London UK. 263 pp.

Hughes, R. and I.A. Nicholson 1961. Comparison of grass varieties for surface seeding uplands pasture types 1. Molinia and Nardus pastures. J. of the Bri. Grassl. Soc. 16:210-221.

Hulten, E. 1950. Atlas of the distribution of vascular plants in N.W.Europe Stockholm : General stabens Lito grafiska Anstalts. Forlag.

Jackman, R. H. 1960. Sheep farming manual. Massey Agricultural College New Zealand.

Jacques, W. 1962. Yorkshire Fog (Holcus lanatus). Proc. of the New Zealand Grassland Association 24 : 139-150.
1974. Yorkshire Fog (Holcus lanatus) : Its potential as a pasture species. Proc. of the New Zealand association, 35 (2) : 249-257.

Jacques W.A. and M.M. Munro 1963. Investigations into ecotypic variations in New Zealand populations of Yorkshire Fog (Holcus Lanatus). Proc. for the advancement of science and culture New Delhi India, 4:27-37.

Jain, S.K. 1976. Population structure and the effects of breeding system. pp. 15 36, In O.H. Frankel and J.G. Hankes (eds.) Plant Genetic Resources : Today and Tomorrow. Cambridge University Press London.

Jain, S.K. and D.R. Marshall and K. Wu 1970. Genetic variability in natural population of softchess (Bromus mollis L.). Evol., 24 : 649-659.

Jones, W.T.; L.B. Anderson and M.D. Ross 1973. Bloat in cattle XXXIX. Detection of protein precipitants (flavolans) in legumes. N.Z.J. Agric. Res., 16: 441-446.

Kannenberg, L.W. and R.W. Allard 1967. Population studies in predominantly self-pollinated species VIII. Genetic variability in the Festuca microstachys complex. Evol., 21 : 227-240.

Katzneson, J. 1969. Population studies and selection in berseem clover (Trifolium alexandrinum L.) and the closely related texa. Third Ann. Rep. Volcani Insti Agri Res., Israel 65 pp.

Kearsey, M. J. 1965. Biometrical analysis of a random mating population : a comparison of five experimental designs. Heredity, 20:205-235.

Kehr, W.R. and C.O. Gardner 1960. Genetic variability in Ranger alfalfa. Agro. J., 52: 41-44.

Kempthorne, O. 1957. Introduction to genetic statistics. John Wiley New York.

Kempthorne, O. and R. N. Curnow 1961. The partial diallel cross. Biometrics, 17 : 229-250.

Kitch, L.W.; R.E.Shade; W.E. Nyquist and J.D. Axtell 1985. Inheritance of density of erect glandular trichomes in the genus Medicago. Crop Sci., 25 : 607611.

Kneebone, W.R. 1960. Tensile strength variation in leaves of weeping lovegrass (Eragrostis curvula (Shrad.) Nees.) and certain other grasses. Agron. J., 52 : 539-542.

Kruijne, A. A. and D. M. de Vries 1963. Data concerning important herbage plants. Mededeling instituut voor Biologisch en Scheikundig Onderzock van Landbouwege Wassen Wageningen 225:1-45.

Lemaire, G., J. Salette and R. Laissus 1982. Growth analysis of a permanent pasture in Normandy in spring I. Production and its variability. Forages, 91:3-16 (Fr.) (From Herb.Abst. 54 (5) : 161.

Levin, D.A. 1978. Genetic Variation in animal phox : self compatible versus self incompatible species. Evolution, $32: 245-263$.

Levy, E.B. 1970. Grasslands of New Zealand. A.R. Shearer (Pub.) Wellington.

Marum, P.; A.W. Hovin; G.C.Marten and J.S.Shenk 1979. Genetic variability for cell wall constituents and associated quality traits in reed canary-grass. Crop sci., 19:355-360

Mather, K. and J.L. Jink 1971. Biometrical Genetics: The study of continuous variation. 2-nd ed. Chapman and Hall Ltd. 382 pp .

McAdam, J.H. 1984. The introduction of Holcus lanatus by direct drilling following burning of native grassland in the Falkland Islands. Research and development in Agriculture, 1 (3): 165-169.

Mcmillan, C. 1959. The role of ecotypic variation in the distribution of the central grassland of North America. Ecol. Monogr., 29:285-308.

Mitchell, K. J. 1956. Growth of pasture species in controlled environment I. Growth at various levels of constant temperature. New Zealand J. Sci. Tech. A, 38: 203-216.

Mitchell, K. J. and R. Lucanus 1960. Growth of pasture species in controlled environment II. Growth at low temperatures. New Zealand J. Agric. Res., 3: 647-655.

Mitchell-Olds T. and J.J. Rutledge 1986. Quantitative genetics in natural populations A review of the theory. Am. Nat., 127 (3) : 379-402.

Moll, R.H. and C.W. Stuber 1974. Quantitative genetics empirical results relevant to plant breeding. Adv.Agro. 26:277-313.

Munro, J. M. M. 1961. Breeding and selection in Yorkshire Fog (Holcus lanatus L.). Master Thesis Massey Agricultural College New Zealand 63 pp .

Montaldo, B.P., S.F.Paredes 1981. Phenological observatons on man made pastures in two localities of the province of Valdivia, Chile. Agro Sur, 9(1) : 43-54 (Plant Breeding Abstract 52 (6): 308).

Morrison J. and A. A. Idles 1972. A pilot survey of grassland in Southeast England. Grassland Research Institute Technical Report No. $10,77 \mathrm{pp}$.

Newman, E. I. and A. D. Rovira 1975, Allelopathy among some British grassland species. J. of Ecol. 63:727-737.

Nguyen, H.T.; D.A. Sleper and A.G.Matches 1982. Inheritance of forage quality and its relationship to leaf tensile strength in tall fescue. Crop Sci., $22: 67-$ 72.

Nye, P. H. 1966. The efects of the nutrient intensity and buffering power of a soil and the absorbing power size and root hairs of a root, on nutrient absorption by diffusion. Plant and Soil, 25:81-105.

Oram, R.N.; R.J. Clements and J.R. McWilliam 1974. Inheritance of nutritive quality of summer herbage in Phalaris tuberosa L. Aust.J.Agric.Res., 25 : 265-274.

Osborne, R. and W.S.B. Paterson 1952. On the sampling variance of heritability estimates derived from variance analysis. Proc. Roy. Soc. Edinburgh B, 64 : 456-61.

Prokundin, YU. M., M.G.Kalenichenko, T.F. Mamro 1983. Flowering rhythm of Brachypodium, Holcus and Bothriochloa species. Ukrains'kii Botanichnii Zhurnal 40(3): 15-18 (Plant Breeding Abstract 55 (6) : 177).

Protich, N. 1977. Formation of tillers in six grass species. Rasteriev"dni Nauki 14 (3) : 114-122 (Bg.) (From Herb.Abst. 48 (9) : 375)

Quesenberry, K.H. ; D.A. Sleper and J.A. Cornell 1978. Heritability and Correlations of IVOMD, Maturity and plant height in Rhodes grass. Crop Sci., 18: 847-850.

Rawlings, J. O. and C. C. Cockerham 1962a. Triallel analysis. Crop Sci., $2: 228$ 231.

Rawlings, J.O. and C. C. Cockerham 1962b. Analysis of double cross hybrid populations. Biometrics, 18 : 229-244.

Remison, S. U. 1976. Root interactions among grass species. PhD. Thesis Univ. of Reading, U.K.

Riley, R.D. 1982. Heritability of mature plant traits in sand bluestem. Dissertation Abstracts International, B 42(9) : 3529B.

Riveros, F. 1963. A study to ascertain the mode of operation of competition between perennial ryegrass, Yorkshire Fog and white clover. Master Thesis Massey Agricultural College New Zealand.

Robertson, A.G. 1988 pers. comm.

Robertson, A. and I.M. Lerner 1949. The heritability of all-or-non traits viability in poultry. Genetics, 34:395-411.

Robinson, G. G., T. J. May and B. D. Scarsbrick 1980. Evaluation of four introduced temperate grass species under grazing at Glen Innes, NSW. In Proc. of the Australia Agronomy Conference 'Pathways to productivity'. I.M. Wood (ed.) Lanes Australia 267 pp.

Rood, S.B. and D.J. Major 1981. Inheritance of tillering and flowering time in early maturity maize. Euphytica, 30:327-334.

Rumball, W. 1983. Pastures / Other grasses. pp. 268-269 In Plant Breeding in New Zealand. G.S. Wratt and H. C. Smith (eds.) Butterworth of New Zealand / D.S.I.R. Wellington New Zealand 309 pp.

Sachs, A.P. and B.E. Coulman 1983. Variability in reed canarygrass collections from eastern Canada. Crop Sci, 23:1041-1044.

Satterthwaite, F.E. 1946. An approximate distribution of estimates of variance components. Biometrics, $2: 110-114$.

Shenk, J.S. and M.O. Westerhaus 1982. Selection for yield and quality in Orchardgrass. Crop Sci., 22: 422-425.

Smith, A. and P. J. Allcock 1985. The influence of species diversity on sward yield and quality. J. Appl. Ecol., 22: 185-198.

Snape, J.W. 1987. Conventional methods of genetic analysis in wheat pp. 109 128 In Wheat Breeding, its scientific basis. F.G.H. Lupton (ed.) Chapman and Hall, London and New York.

Soper, K. 1959. Root anatomy of grasses and clovers of New Zealand. J. of Agric. Res., 2 : 329-341.

Sprague, G. F. 1966. Quantitative genetics in plant improvement. pp. 315-354 In Plant Breeding: A symposium K.J. Frey (ed.) The Iowa State Ames. Iowa U.S.A.

Steel, R.G.D. and J.H. Torrie 1981. Principles and Procedures of Statistics : A biometrical approach. 2-nd ed. McGraw - Hill Book Company Auckland 633 pp.

Swift, G., J. C. Holmes, A. T. Cleland, D. Fortune and J. Wood 1983. The grassland of East Scotland - A survey 1976-78. Bulletin East of Scotland College of Agriculture No. 2941 pp.

Teow, S. H. 1978. Evaluation of variability in a Fog Grass (Holcus spp.) gene pool. Master Thesis Massey University New Zealand. 229 pp.

Thompson, K., J.P. Grime and G. Mason 1977. Seed germination in response to diurnal fluctuations of temperature. Nature, 267: 147-149.

Trumble, H.C. and A. B. Cashmore 1934. The variety concept in relation to Phalaris tuberosa and allied form. Herb.Rev., 2:1-4.

Turkington, R. and J. L. Harper 1979. The growth, distribution and neighbour relations of Trifolium rapens in a permanent pasture II. Inter - and intra specific contacts. J. Ecol. 67:219-230.

Turkington, R., M. A. Cahn, A. Vandy and J. L. Harper 1979 The growth, distribution and neighbour relations of Trifolium repens in a permanent pasture II. The establishment and growth of Trifolium repens in natural and perturbed sites. J. Ecol., 67:231-243.

Twigg, P. 1978. Breeding for grassland improvement. ARC. Research Review, 4 (2) : $55-58 \mathrm{pp}$.

Usbertij, J.A. and S.K. Jain 1978. Variation in Panicum maximum : A comparison of sexual and asexual populations. Bot. Gaz., 139 (1) : 112-116.

Utz, H.F. and G. Oettler 1978. Performance of inbred lines and their top cross in perennial ryegrass (Lolium perenne L.). Zeitschrift fur Planzenzuchtung 80 (3) : 223-229 (PB Abstr. 49, No.4).

Vinal, H.N. and M. A. Hein 1937. USDA Yearbook. 1032 pp.

Vogel, K.P. ; F.A. Haskinss and H.J. Gorz 1980. Parent-progeny regression in indiangrass: inflation of heritability estimates by environmental covariances. Crop Sci., 20:580-582.

Watkin, B. R. and G. R. Robinson 1974. Dry matter production of "Massey Basyn" Yorkshire Fog (Holcus lanatus). Proc. of the New Zealand Grassl. Assoc., 35 (2) : 278-283.

Watson, P.J. 1969. Evolution in closely adjacent plant populations VI. An entomophilous species Potentilla erecta in two contrasting habitats. Heredity, 24:407-422.

Watt, T.A. 1976. The emergence, growth, flowering and seed production of Holcus lanatus L. sown monthly in the field. Proc. of the 1976 British Crop Protection Conference - Weeds, 567-574 pp.
1977. Aspects of the ecology of Holcus lanatus L. alone and in mixture with Lolium perenne L. PhD.Phil. Thesis Oxford Univ. UK. 256 pp.
\qquad 1983. The effects of salt water and soil type upon the germination, establishment and vegetative growth of Holcus lanatus L. and Lolium perenne L. New Phytol., 94:275-291.
1984. The post emergence selectivity of eight herbicides between perenial ryegrass and Holcus lanatus L. Ann. Appl. Biol., 104 (Supplement : Tests of Agrochemicals and cultivars, 51:74-75.
1987. A comparison of two cultivars of Holcus lanatus with Lolium perenne under cutting. Grass and Forage Sci., 42: 43-48.

Watt, T.A. and R.J. Haggars 1980. The effect of height of water table on the growth of Holcus lanatus with reference to Lolium perenne. J. Appl. Ecol., 17: 423-430.

Watton, D.W.H. 1975. European weeds and other alien species in the subantractic. Weed Research $15: 271-282$.

Whyte, R.O., T.R.G. Moir and J.P. Cooper 1959. Grasses in agriculture. FAO Agricultural studies No. 42 Rome Italy 341 pp.

Wilson, D. 1965. Nutritive value and the genetic relationship of cellulose content and leaf tensile strength in Lolium. J.Agri. Sci., 65:285-292

Wofford, D.S.and C.E. Watson, Jr. 1982. Inheritance of crown rust in tall fescue. Crop Sci., 22: 510-512.

Wofford, D.S. and A.A. Baltensperger 1985. Heritability estimates for turfgrass characteristics in bermudagrass. Crop Sci., $25: 133-136$.

Wright, S. 1921. Systems of mating. Genetics, 6:111-178.

APPENDIX 1

Duncan's multiple range test for juvenile leaf blade width

No.	Clu	us 7	Topo	Half-sib	Means	
1	1		69	147	24.9	defghijk
2				148	24.3	defghijk
3				150	22.5	ijk
4				151	24.9	defghijk
5				154	21.9	k
6			45	429	26.2	cdefghijk
7				430	25.2	defghijk
8				431	32.1	a
9				432	26.8	cdefghi
10				435	28.2	bcde
11	2		97	260	25.9	defghijk
12				261	26.1	cdefghijk
13				262	26.7	cdefghij
14				264	27.9	bcdef
15				266	26.9	cdefghi
16			31	369	21.9	k
17				371	27.2	bcdefgh
18				372	27.3	bcdefg
19				376	22.9	hijk
20				377	25.4	defghi
21	3		15	36	27.6	bcdef
22				37	27.4	bcdefg
23				38	23.9	efghijk
24				40	25.7	defghijk
25				42	24.4	defghijk
26		27	7	64	26.9	cdefghi
27				66	22.3	jk
28				67	25.2	defghijk
29				69	23.2	ghijk
30				71	23.6	fghijk
31	4			233	24.0	defghijk
32				234	31.3	ab
33				235	22.8	ijk
* 34				236	23.9	defghijk
35				237	25.4	defghijk
36		154		460	23.6	fghijk
37				461	30.3	abc
38				462	25.1	defghijk.
39				463	23.6	fghijk
40				465	25.6	defghijk
41	5			25	26.3	cdefghijk
42				26	22.1	k
43				27	26.8	cdefghi
44				31	25.9	defghijk
45				32	24.8	defghijk
46		142		414	26.1	cdefghijk
47				415	23.0	ghijk
48				416	24.0	defghijk
49				418	28.3	abcd
50				420	26.8	cdefghi

Means with the same letter are not significantly different at 5%

Means with the same letter are not significantly different at 5%

```
Duncan's multiple range test for mature leaf blade width at }15\mathrm{ weeks
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Clus & s 'ropo & Half-sib & Means & \\
\hline 1 & 1 & 69 & 147 & 9.6 & efgh \\
\hline 2 & & & 148 & 10.8 & abcdef \\
\hline 3 & & & 150 & 10.7 & abcdef \\
\hline 4 & & & 151 & 10.4 & abcdefgh \\
\hline 5 & & & 154 & 10.0 & defgh \\
\hline 6 & & 145 & 429 & 10.0 & defgh \\
\hline 7 & & & 430 & 11.5 & ab \\
\hline 8 & & & 431 & 10.9 & abcde \\
\hline 9 & & & 432 & 10.4 & abcdefgh \\
\hline 1.0 & & & 435 & 10.9 & abcde \\
\hline 11. & 2 & 97 & 260 & 9.6 & efgh \\
\hline 12 & & & 261 & 9.8 & defgh \\
\hline 13 & & & 262 & 10.7 & abcdef \\
\hline 14 & & & 264 & 10.2 & abcdefgh \\
\hline 15 & & & 266 & 10.1 & bcdefgh \\
\hline 16 & & 131 & 369 & 9.1 & h \\
\hline 17 & & & 371 & 10.4 & abcdefgh \\
\hline 18 & & & 372 & 10.6 & abcdef \\
\hline 19 & & & 376 & 9.9 & defgh \\
\hline 20 & & & 377 & 10.5 & abcdefg \\
\hline 21 & 3 & 15 & 36 & 10.7 & abcdef \\
\hline 22 & & & 37 & 11.1 & abcd \\
\hline 23 & & & 38 & 11.3 & \(a b c\) \\
\hline 24 & & & 40 & 10.7 & abcdef \\
\hline 25 & & & 42 & 9.8 & defgh \\
\hline 26 & & 27 & 64 & 11.3 & \(a b c\) \\
\hline 27 & & & 66 & 10.5 & abodef \\
\hline 28 & & & 67 & 10.4 & abodefigh \\
\hline 29 & & & 69 & 9.7 & efgh \\
\hline 30 & & & 71 & 10.5 & abcdef \\
\hline 31 & 4 & 91 & 233 & 9.5 & fgh \\
\hline 32 & & & 234 & 10.7 & abcdef \\
\hline 33 & & & 235 & 10.2 & bcdefgh \\
\hline 34 & & & 236 & 9.5 & fgh \\
\hline 35 & & & 237 & 10.4 & abcdefgh \\
\hline 36 & & 154 & 460 & 10.5 & abcdef \\
\hline 37 & & & 461 & 10.0 & defgh \\
\hline 38 & & & 462 & 10.4 & abcdefg \\
\hline 39 & & & 463 & 9.9 & defgh \\
\hline 40 & & & 465 & 10.0 & cdefgh \\
\hline 41 & 5 & 13 & 25 & 10.6 & abcdef \\
\hline 42 & & & 26 & 10.6 & abcdef \\
\hline 43 & & & 27 & 9.9 & defgh \\
\hline 44 & & & 31 & 10.0 & defgh \\
\hline 45 & & & 32 & 9.9 & defgh \\
\hline 46 & & 142 & 414 & 9.4 & fgh \\
\hline 47 & & & 415 & 10.2 & abcdefgh \\
\hline 48 & & & 416 & 9.2 & gh \\
\hline 49 & & & 418 & 11.5 & a \\
\hline 50 & & & 420 & 10.9 & abcde \\
\hline
\end{tabular}
Means with the same letter are not significantly different at 5%
```

```
Duncan's multiple range test for mature leaf blade width at 33 weeks
```



```
Means with the same letter are not significantly different at 5%
```


Dumoan's multiple range test for leaf sheath purple at 15 weeks


```
Duncan's multiple range test for leaf sheath purple at 33 weeks
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Clus & S Topo & Half-sib & Mean & \\
\hline 1 & 1. & 69 & 147 & 8.3 & \(a b c\) \\
\hline 2 & & & 148 & 9.0 & \(a b c\) \\
\hline 3 & & & 150 & 9.2 & \(a b c\) \\
\hline 4 & & & 151 & 8.9 & \(a b c\) \\
\hline 5 & & & 1.54 & 9.9 & \(a b\) \\
\hline 6 & & 145 & 429 & 9.4 & abo \\
\hline 7 & & & 430 & 8.9 & abc \\
\hline 8 & & & 431 & 9.4 & \(a b c\) \\
\hline 9 & & & 432 & 9.6 & ab \\
\hline 10 & & & 435 & 9.0 & \(a b c\) \\
\hline 11 & 2 & 97 & 260 & 9.4 & \(a b c\) \\
\hline 12 & & & 261 & 9.0 & \(a b c\) \\
\hline 13 & & & 262 & 9.8 & \(a b\) \\
\hline 14 & & & 264 & 9.0 & ab \\
\hline 15 & & & 266 & 10.0 & a \\
\hline 16 & & 131 & 369 & 7.4 & bc \\
\hline 17 & & & 371 & 8.0 & \(a b c\) \\
\hline 18 & & & 372 & 9.6 & \(a b\) \\
\hline 19 & & & 376 & 9.1 & \(a b c\) \\
\hline 20 & & & 377 & 9.4 & \(a b c\) \\
\hline 21 & 3 & 15 & 36 & 9.7 & \(a b\) \\
\hline 22 & & & 37 & 9.9 & \(a b\) \\
\hline 23 & & & 38 & 8.2 & \(a b c\) \\
\hline 24 & & & 40 & 9.0 & \(a b c\) \\
\hline 25 & & & 42 & 9.6 & \(a b\) \\
\hline 26 & & 27 & 64 & 9.3 & \(a b c\) \\
\hline 27 & & & 66 & 8.1 & abc \\
\hline 28 & & & 67 & 8.5 & \(a b c\) \\
\hline 29 & & & 69 & 8.9 & \(a b c\) \\
\hline 30 & & & 71 & 9.8 & \(a b\) \\
\hline 31 & 4 & 91 & 233 & 8.4 & \(a b c\) \\
\hline 32 & & & 234 & 8.9 & \(a b c\) \\
\hline 33 & & & 235 & 8.9 & \(a b c\) \\
\hline 34 & & & 236 & 7.9 & \(b \mathrm{c}\) \\
\hline 35 & & & 237 & 9.0 & \(a b c\) \\
\hline 36 & & 154 & 460 & 7.9 & bc \\
\hline 37 & & & 461 & 9.7 & ab \\
\hline 38 & & & 462 & 9.6 & ab \\
\hline 39 & & & 463 & 9.6 & \(a b\) \\
\hline 40 & & & 465 & 10.0 & a \\
\hline 41 & 5 & 13 & 25 & 9.3 & \(a b c\) \\
\hline 42 & & & 26 & 8.4 & \(a b c\) \\
\hline 43 & & & 27 & 8.4 & \(a b c\) \\
\hline 44 & & & 31 & 9.6 & \(a b c\) \\
\hline 45 & & & 32 & 9.2 & \(a b c\) \\
\hline 46 & & 142 & 414 & 7.9 & bc \\
\hline 47 & & & 415 & 9.6 & \(a b\) \\
\hline 48 & & & 416 & 8.9 & abc \\
\hline 49 & & & 418 & 9.7 & ab \\
\hline 50 & & & 420 & 8.9 & abc \\
\hline
\end{tabular}
Means with the same letter are not significantly different at \(5 \%\)
```

No.Clus		s Topo	Half-sib	Means	
1	1	69	147	105.6	abcdefg
2			148	109.2	abcdefg
3			150	110.7	abcdefg
4			151	109.6	abcdefg
5			154	113.9	abcdef
6		145	429	98.9	efg
7			430	107.9	abcdefg
8			431	112.3	abcdefg
9			432	114.6	abcde
10			435	105.8	abcdefg
11	2	97	260	104.2	bcdefg
12			261	107.7	abcdefg
13			262	121.4	a
14			264	114.6	abcde
15			266	111.9	abcdefg
16		131	369	98.5	fg
17			371	110.6	abcdefg
18			372	114.8	abcde
19			376	106.9	abcdefg
20			377	108.3	abcdefg
21	3	15	36	117.5	$a b$
22			37	111.5	abcdefg
23			38	104.7	bcdefg
24			40	101.4	cdefg
25			42	106.7	abcdefg
26		27	64	108.6	abcdefg
27			66	102.4	bcdef
28			67	97.6	g
29			69	104.4	bcdefg
30			71	107.1	abcdefg
31	4	91	233	116.0	abcd
32			234	116.9	$a b c$
33			235	104.6	bcdefg
34			236	106.3	abcdefg
35			237	114.1	abcdef
36		154	460	100.2	defg
37			461	100.8	defg
38			462	108.0	abcdefg
39			463	101.4	cdefg
40			465	113.5	abcdefg
41	5	13	25	106.8	abcdefg
42			26	105.8	abcdefg
43			27	112.5	abcdefg
44			31	109.4	abcdefg
45			32	100.0	defg
46		142	414	106.8	abcdefg
47			415	101.6	cdefg
48			416	100.6	defg
49			418	107.4	abcdefg
50			420	108.5	abcdefg

No.Clus		s Topo	Half-sib	Means	
1	1	69	147	139.2	$a b$
2			148	130.4	b
3			150	138.1	$a b$
4			151	136.1	$a b$
5			154	137.1	$a b$
6		145	429	131.2	b
7			430	128.4	b
8			431	137.6	$a b$
9			432	129.9	b
10			435	129.9	b
11	2	97	260	132.1	b
12			261	145.3	a
13			262	136.9	$a b$
14			264	131.6	b
15			266	135.4	$a b$
16		131	369	130.8	b
17			371	135.8	$a b$
18			372	136.6	$a b$
19			376	133.1	$a b$
20			377	136.4	$a b$
21	3	15	36	139.2	$a b$
22			37	133.4	$a b$
23			38	134.3	$a b$
24			40	128.2	b
25			42	136.5	$a b$
26		27	64	131.3	b
27			66	129.2	b
28			67	134.8	$a b$
29			69	132.9	$a b$
30			71	135.1	$a b$
31	4	91	233	137.6	$a b$
32			234	130.4	b
33			235	130.9	b
34			236	135.0	$a b$
35			237	133.8	$a b$
36		154	460	130.8	b
37			461	131.8	b
38			462	138.0	$a b$
39			463	137.1	$a b$
40			465	134.8	$a b$
41	5	13	25	132.3	$a b$
42			26	136.3	$a b$
43			27	128.6	b
44			31	139.2	$a b$
45			32	135.3	$a b$
46		142	414	134.0	$a b$
47			415	137.4	$a b$
48			416	134.3	$a b$
49			418	131.8	b
50			420	132.2	ab

Duncan's multiple range test for the median flowering day

Means with the same letter are not significantly different at 5%

No.Clus		Topo	Half-sib	Means	
1	1	69	147	2.4	$a b$
2			148	1.3	$a b$
3			150	1.0	b
4			151	2.9	ab
5			154	1.4	ab
6		145	429	1.4	$a b$
7			430	1.0	b
8			431.	1.4	ab
9			432	2.3	$a b$
10			435	3.1	ab
11.	2	97	260	1.4	$a b$
12			261	3.1	$a b$
13			262	2.0	$a b$
14			264	1.7	$a b$
15			266	2.2	$a b$
16		131	369	3.6	ab
17			371	2.0	ab
18			372	2.1	ab
19			376	2.2	ab
20			377	1.7	$a b$
21	3	15	36	1.8	ab
22			37	2.0	$a b$
23			38	1.1	b
24			40	1.6	$a b$
25			42	3.2	$a b$
26		27	64	2.8	$a b$
27			66	1.0	b
28			67	2.2	$a b$
29			69	3.0	$a b$
30			71	1.8	$a b$
31	4	91	233	2.9	ab
32			234	2.3	$a b$
33			235	2.9	$a b$
34			236	3.2	$a b$
35			237	3.4	$a b$
36		154	460	2.0	$a b$
37			461	2.7	$a b$
38			462	1.7	$a b$
39			463	1.9	$a b$
40			465	2.8	$a b$
41	5	13	25	2.0	$a b$
42			26	2.3	$a b$
43			27	2.1	$a b$
44			31	2.2	$a b$
45			32	4.0	a
46		142	414	2.0	$a b$
47			415	1.7	$a b$
48			416	1.6	$a b$
49			418	2.2	$a b$
50			420	1.9	ab

Means with the same letter are not significantly different at 5%

Duncan's multiple range test for anthesis position

Means with the same letter are not significantly different at 5%

[^3]

Duncan's multiple range test for panicle compactness

No.Clus Topo Half-sib				Means	
1	1	69	147	6.4	$a b c$
2			148	5.9	$a b c$
3			150	6.8	a
4			151	6.3	abc
5			154	3.9	bc
6		145	429	5.1	$a b c$
7			430	4.1	$a b c$
8			431	6.4	abc
9			432	6.0	$a b c$
10			435	6.0	$a b c$
11	2	97	260	4.7	abc
12			261	5.6	$a b c$
13			262	5.4	$a b c$
14			264	4.9	abc
15			266	3.9	bc
16		131	369	6.3	$a b c$
17			371	4.8	abc
18			372	3.8	c
19			376	4.8	abc
20			377	4.0	abc
21	3	15	36	4.8	$a b c$
22			37	6.1	$a b c$
23			38	6.7	$a b$
24			40	5.3	$a b c$
25			42	6.1	$a b c$
26		27	64	6.0	abc
27			66	4.6	$a b c$
28			67	5.9	abc
29			69	3.9	bc
30			71	5.5	abc
31	4	91	233	4.4	$a b c$
32			234	6.0	abc
33			235	3.8	c
34			236	6.5	abc
35			237	4.6	$a b c$
36		154	460	6.2	abc
37			461	4.8	abc
38			462	5.3	$a b c$
39			463	5.3	abc
40			465	4.3	$a b c$
41	5	13	25	6.2	abc
42			26	6.2	abc
43			27	6.3	abc
44			31	6.4	abc
45			32	5.0	$a b c$
46		142	414	6.3	$a b c$
47			415	4.9	$a b c$
48			416	5.4	$a b c$
49			418	6.2	$a b c$
50			420	5.3	abc

Means with the same letter are not significantly different at 5%

Duncan's multiple range test for old disease

Duncan's multiple range test for new diseases

Means with the same letter are not significantly different at 5%

No.Clus		Topo69	$\begin{aligned} & \text { Half-sib } \\ & 147 \end{aligned}$	Means		
1	1			9.1	$a b c$	
2			148	8.8	abcd	
3			150	8.2	abcd	
4			151	8.9	abcd	
5			154	8.3	abcd	
6		145	429	9.1	abcd	
7			430	8.8	abcd	
8			431	9.2	abc	
9			432	8.6	abcd	
10			435	8.3	abcd	
11	2	97	260	9.1	abcd	
12			261	8.9	abcd	
13			262	8.9	abcd	
14			264	9.6	a	
15			266	9.6	$a b$	
16		131	369	8.8	abcd	
17			371	8.8	abcd	
18			372	8.7	abcd	
19			376	9.0	abcd	
20			377	9.4	abc	
21	3	15	36	8.6	abcd	
22			37	7.9	cd	
23			38	8.7	abcd	
24			40	9.3	abc	
25			42	8.4	abcd	
26		27	64	8.8	abod	
27			66	9.1	abcd	
28			67	8.9	abcd	
29			69	9.3	abc	
30			71	7.6	d	
31	4	91	233	8.3	abcd	
32			234	8.3	abcd	
33			235	8.8	abcd	
34			236	9.0	abcd	
35			237	9.4	$a b c$	
36		154	460	8.4	abcd	
37			461	8.7	abcd	
38			462	9.1	abcd	
39			463	8.0	bcd	
40			465	8.6	abcd	
41	5	13	25	9.1	abcd	
42			26	8.7	abcd	
43			27	8.4	abcd	
44			31	8.2	abcd	
45			32	8.3	abcd	
46		142	414	8.4	abcd	
47			415	8.8	abcd	
48			416	8.3	abcd	
49			418	8.9	abcd	
50			420	8.4	abcd	

Duncan's multiple range test for flavanoid leaf sheath

Duncan's multiple range test for tiller number at 50% upper asymptote

Means with the same letter are not significantly different at 5%

Means with the same letter are not significantly different at 5\%

```
Duncan's multiple range test for tiller number at flowering
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Clus & us Topo & Half-sib & Means & \\
\hline 1 & 1 & 69 & 147 & 34.7 & defgh \\
\hline 2 & & & 148 & 32.9 & efgh \\
\hline 3 & & & 150 & 40.3 & bcdefgh \\
\hline 4 & & & 151 & 62.8 & a \\
\hline 5 & & & 154 & 36.2 & cdefgh \\
\hline 6 & & 145 & 429 & 43.8 & abcdefgh \\
\hline 7 & & & 430 & 32.1 & gh \\
\hline 8 & & & 431 & 47.2 & abcdefgh \\
\hline 9 & & & 432 & 52.8 & abcde \\
\hline 10 & & & 435 & 39.9 & bcdefgh \\
\hline 11 & 2 & 97 & 260 & 39.8 & bcdefgh \\
\hline 12 & & & 261 & 44.0 & abcdefgh \\
\hline 13 & & & 262 & 38.0 & cdefgh \\
\hline 14 & & & 264 & 51.7 & abcdefgh \\
\hline 15 & & & 266 & 50.4 & abcdefgh \\
\hline 16 & & 131 & 369 & 33.6 & defgh \\
\hline 17 & & & 371 & 32.0 & fgh \\
\hline 18 & & & 372 & 37.1 & cdefgh \\
\hline 19 & & & 376 & 33.3 & defgh \\
\hline 20 & & & 377 & 43.0 & bcdefgh \\
\hline 21 & 3 & 15 & 36 & 44.7 & abcdefgh \\
\hline 22 & & & 37 & 35.7 & cdefgh \\
\hline 23 & & & 38 & 35.7 & cdefgh \\
\hline 24 & & & 40 & 30.4 & h \\
\hline 25 & & & 42 & 49.4 & abcdefgh \\
\hline 26 & & 27 & 64 & 32.4 & fgh \\
\hline 27 & & & 66 & 30.5 & h \\
\hline 28 & & & 67 & 55.8 & \(a b c\) \\
\hline 29 & & & 69 & 51.0 & abcdefg \\
\hline 30 & & & 71 & 46.4 & abcdefgh \\
\hline 31 & 4 & & 233 & 46.1 & abcdefgh \\
\hline 32 & & & 234 & 52.3 & abcdef \\
\hline 33 & & & 235 & 32.4 & fgh \\
\hline 34 & & & 236 & 34.7 & defgh \\
\hline 35 & & & 237 & 35.6 & defgh \\
\hline 36 & & 154 & 460 & 36.0 & cdefgh \\
\hline 37 & & & 461 & 43.6 & abcdefgh \\
\hline 38 & & & 462 & 46.4 & abcdefgh \\
\hline 39 & & & 463 & 37.0 & cdefgh \\
\hline 40 & & & 465 & 45.9 & abcdefgh \\
\hline 41 & 5 & 13 & 25 & 43.0 & bcdefgh \\
\hline 42 & & & 26 & 29.9 & h \\
\hline 43 & & & 27 & 35.2 & defgh \\
\hline 44 & & & 31 & 41.7 & bcdefgh \\
\hline 45 & & & 32 & 36.7 & cdefgh \\
\hline 46 & & 142 & 414 & 44.3 & abcdefgh \\
\hline 47 & & & 415 & 35.0 & defgh \\
\hline 48 & & & 416 & 49.1 & abcdefgh \\
\hline 49 & & & 418 & 53.1 & abcd \\
\hline 50 & & & 420 & 52.6 & abcde \\
\hline
\end{tabular}
```

[^4]

Duncan' No. Clus		S Topo	Half-sib	Means	
		69		30.3	ab
2			148	22.8	$a b$
3			150	32.7	$a b$
4			151	27.4	$a b$
5			154	25.3	$a b$
6		145	429	20.6	$a b$
7			430	29.7	$a b$
8			431	24.1	$a b$
9			432	33.1	$a b$
10			435	19.5	b
11	2	97	260	27.3	ab
12			261	26.9	$a b$
13			262	22.2	$a b$
14			264	31.0	$a b$
15			266	26.7	$a b$
16		131	369	21.2	$a b$
17			371	30.1	$a b$
18			372	30.8	$a b$
19			376	26.4	$a b$
20			377	26.7	$a b$
21	3	15	36	34.4	$a b$
22			37	36.3	$a b$
23			38	33.0	$a b$
24			40	22.2	$a b$
25			42	36.3	$a b$
26		27	64	18.0	b
27			66	26.7	$a b$
28			67	35.8	$a b$
29			69	27.1	$a b$
30			71	25.1	$a b$
31	4	91	233	28.2	$a b$
32			234	33.2	$a b$
33			235	41.3	a
34			236	28.8	$a b$
35			237	25.4	$a b$
36		154	460	28.3	$a b$
37			461	32.0	$a b$
38			462	21.0	$a b$
39			463	27.4	$a b$
40			465	35.1	$a b$
41	5	13	25	20.2	$a b$
42			26	31.8	$a b$
43			27	26.4	$a b$
44			31	20.8	$a b$
45			32	28.9	$a b$
46		142	414	26.6	$a b$
47			415	36.9	$a b$
48			416	36.3	$a b$
49			418	22.9	$a b$
50			420	32.1	$a b$

Means with the same letter are not significantly different at 5\%
$\left.\begin{array}{ccccc}\text { Duncan's multiple range test } & \text { for } & \text { young } & \text { tiller number } \\ \text { No. Clus Topo Half-sib } & \\ 1 & 1 & 69 & 147 & \text { Means }\end{array}\right]$

No.Clus		S Topo	Half-sib	Means	
1	1	69	147	53.4	cde
2			148	47.9	cde
3			150	68.5	abcde
4			151	45.8	de
5			154	68.0	abcde
6		145	429	44.5	de
7			430	51.9	cde
8			431	51.8	cde
9			432	60.4	abcde
10			435	45.8	de
11	2	97	260	54.9	cde
12			261	59.6	abcde
13			262	54.0	cde
14			264	60.0	abcde
15			266	56.3	cde
16		131	369	47.1	de
17			371	64.2	abcde
18			372	65.2	abcde
19			376	49.8	cde
20			377	57.7	bcde
21	3	15	36	81.9	abc
22			37	52.7	cde
23			38	63.8	abcde
24			40	47.9	cde
25			42	91.2	a
26		27	64	34.7	e
27			66	45.3	de
28			67	74.1	abcde
29			69	63.9	abcde
30			71	64.9	abcde
31	4	91	233	57.8	bcde
32			234	64.3	abcde
33			235	76.4	abcd
34			236	57.4	bode
35			237	54.8	ccie
36		1.54	460	55.1	cde
37			461	63.1	abcde
38			462	49.4	cde
39			463	62.0	abcde
40			465	89.0	$a b$
41	5	13	25	43.6	de
42			26	51.4	cde
43			27	48.8	cde
44			31	47.6	de
45			32	55.0	cde
46		142	414	53.8	cde
47			415	67.8	abcde
48			416	61.4	abcde
49			418	50.7	cde
50			420	59.2	abcde

Means with the same letter are not significantly different at 5%

Duncan's multiple range test for base green tiller number

No.	Clu	as Topo	Half-sib	Means		
1	1	69	147	43.3	abcdef	
2			148	32.6	bcdef	
3			150	59.5	$a b c$	
4			151	31.1	cdef	
5			154	42.9	abcdef	
6		145	429	28.6	def	
7			430	38.3	abcdef	
8			431	31.6	bcdef	
9			432	42.6	abcdef	
10			435	29.5	def	
11	2	97	260	38.1	abcdef	
12			261	35.4	bcdef	
13			262	30.2	cdef	
14			264	37.1	abcdef	
15			266	32.9	bcdef	
16		131	369	32.3	bodef	
17			371	48.1	abcdef	
18			372	41.7	abcdef	
19			376	35.9	abcdef	
20			377	34.4	bcdef	
21	3	15	36	52.2	abcdef	
22			37	38.8	abcdef	
23			38	47.0	abcdef	
24			40	35.7	abcdef	
25			42	60.7	$a b$	
26		27	64	21.3	f	
27			66	36.0	abcdef	
28			67	55.4	abcdef	
29			69	41.3	abcdef	
30			71	41.4	abcdef	
31	4	91	233	37.8	abcdef	
32			234	44.7	abcdef	
33			235	57.9	abcd	
34			236	41.2	abcdef	
35			237	34.3	bcdef	
36		154	460	40.1	abcdef	
37			461	41.4	abcdef	
38			462	31.6	bcdef	.
39			463	44.1	abcdef	
40			465	64.9	a	
41	5		25	28.6	def	
42			26	42.8	abcdef	
43			27	33.2	bedef	
44			31	27.6	ef	
45			32	43.4	abcdef	
46		142	414	39.4	abcdef	
47			415	53.4	abcdef	
48			416	44.1	abcdef	
49			418	26.8	ef	
50			420	38.9	abcdef	

Means with the same letter are not significantly different at 5\%

Duncan's multiple range test for dead tiller dry weight

[^5]

```
Duncan's multiple range test for young tiller dry weight
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Clus & S Topres & Half-sib & Mea & \\
\hline 1 & 1 & 69 & 147 & 0.9 & cdefg \\
\hline 2 & & & 148 & 1.4 & bcdefg \\
\hline 3 & & & 150 & 2.2 & abcdefg \\
\hline 4 & & & 151 & 0.3 & g \\
\hline 5 & & & 154 & 2.2 & abcdefg \\
\hline 6 & & 145 & 429 & 0.9 & cdef \\
\hline 7 & & & 430 & 0.8 & defg \\
\hline 8 & & & 431 & 1.0 & bcdefg \\
\hline 9 & & & 432 & 1.4 & bcdefg \\
\hline 10 & & & 435 & 1.4 & bcdefg \\
\hline 11 & 2 & 97 & 260 & 0.9 & cdefg \\
\hline 12 & & & 261 & 0.9 & cdefg \\
\hline 13 & & & 262 & 1.0 & bcdefg \\
\hline 14 & & & 264 & 0.7 & defg \\
\hline 15 & & & 266 & 0.9 & cdefg \\
\hline 16 & & 131 & 369 & 0.9 & cdefg \\
\hline 17 & & & 371 & 2.3 & abcde \\
\hline 18 & & & 372 & 1.6 & bcdefg \\
\hline 19 & & & 376 & 0.7 & defg \\
\hline 20 & & & 377 & 0.7 & efg \\
\hline 21 & 3 & 15 & 36 & 2.0 & abcdefg \\
\hline 22 & & & 37 & 0.2 & \(g\) \\
\hline 23 & & & 38 & 1.2 & bcdefg \\
\hline 24 & & & 40 & 1.6 & bcdefg \\
\hline 25 & & & 42 & 3.6 & a \\
\hline 26 & & 27 & 64 & 0.3 & fg \\
\hline 27 & & & 66 & 0.9 & cdefg \\
\hline 28 & & & 67 & 2.9 & \(a b\) \\
\hline 29 & & & 69 & 1.9 & abcdefg \\
\hline 30 & & & 71 & 2.0 & abcdefg \\
\hline 31 & 4 & 91 & 233 & 1.7 & bcdefg \\
\hline 32 & & & 234 & 1.4 & bcdefg \\
\hline 33 & & & 235 & 2.7 & abcde \\
\hline 34 & & & 236 & 1.0 & bcdefg \\
\hline 35 & & & 237 & 0.9 & cdefg \\
\hline 36 & & 154 & 460 & 1.2 & bcdefg \\
\hline 37 & & & 461 & 0.9 & cdefg \\
\hline 38 & & & 462 & 1.1 & bcdefg \\
\hline 39 & & & 463 & 2.8 & abc \\
\hline 40 & & & 465 & 1.5 & bcdefg \\
\hline 41 & 5 & 13 & 25 & 0.9 & cdef \\
\hline 42 & & & 26 & 1.3 & bcdef \\
\hline 43 & & & 27 & 0.7 & def \\
\hline 44 & & & 31 & 0.9 & cdef \\
\hline 45 & & & 32 & 2.3 & abcdef \\
\hline 46 & & 142 & 414 & 1.2 & bcdef \\
\hline 47 & & & 415 & 2.7 & abcd \\
\hline 48 & & & 416 & 0.6 & efg \\
\hline 49 & & & 418 & 0.5 & efg \\
\hline 50 & & & 420 & 0.8 & cdefg \\
\hline
\end{tabular}
```

[^6]
Duncan's multiple range test for base green tiller dryweight

No.	clus	Is Topo	Half-sib	Means		
1	1	69	147	21.5	abcdef	
2			148	19.0	bcdef	
3			150	25.6	abcdef	
4			151	12.8	f	
5			154	20.3	abcdef	
6		145	429	14.3	ef	
7			430	18.2	cdef	
8			431	16.7	def	
9			432	22.2	abcdef	
10			435	16.1	def	
11	2	97	260	14.9	ef	
12			261	22.2	abcdef	
13			262	14.3	ef	
14			264	19.5	bcdef	
15			266	17.0	def	
16		131	369	12.6	f	
17			371	23.0	abcdef	
18			372	21.6	abcdef	
19			376	18.9	bcdef	
20			377	25.5	abcdef	
21	3	15	36	32.1	abcd	
22			37	35.9	a	
23			38	21.2	abcdef	
24			40	17.4	cdef	
25			42	24.7	abcdef	
26		27	64	16.0	def	
27			66	23.2	abcdef	
28			67	21.6	abcdef	
29			69	22.3	abcdef	
30			71	18.8	bcdef	
31	4	91	233	18.3	cdef	
32			234	22.4	abcdef	
33			235	33.7	abc	
34			236	22.8	abcdef	
35			237	13.5	f	
36		154	460	15.3	ef	
37			461	20.8	abcdef	
38			462	14.0	f	
39			463	35.0	$a b$	
40			465	30.8	abcde	
41	5	13	25	14.8	ef	
42			26	28.1	abcdef	
43			27	19.7	abcdef	
44			31	17.4	cdef	
45			32	22.9	abcdef	
46		142	414	13.3	f	
47			415	32.0	abcdef	
48			416	20.2	abcdef	
49			418	16.6	def	
50			420	21.7	abcdef	

No.	Clus	us Topo	Half-sib	Means	
1	1	69	147	21.3	bode
2			148	21.6	cde
3			150	33.3	abcde
4			151	26.2	bcde
5			154	26.0	bcde
6		145	429	29.1	abcde
7			430	26.7	bcde
8			431	24.6	bode
9			432	33.7	abcde
10			435	27.5	abcde
11	2	97	260	18.0	de
12			261	22.4	bcde
13			262	28.3	abcde
14			264	29.7	abcde
15			266	27.0	bode
16		131	369	28.1	abcde
17			371	26.2	bcde
18			372	26.9	bcde
1.9			376	30.4	abcde
20			377	33.6	abcde
21	3	15	36	23.7	bcde
22			37	23.7	bcde
23			38	28.6	abcde
24			40	21.7	bcde
25			42	29.4	abcde
26		27	64	36.9	$a b c$
27			66	32.5	abcde
28			67	26.4	bcde
29			69	26.3	bode
30			71	36.3	abcd
31	4		233	29.7	abcde
32			234	38.1	$a b$
33			235	20.3	bcde
34			236	15.8	e
35			237	32.8	abcde
36		154	460	23.5	bcde
37			461	23.1	bcde
38			462	26.8	bcde
39			463	26.4	bcde
40			465	26.0	bcde
41	5	13	25	33.7	abcde
42			26	18.8	cde
43			27	29.0	abcde
44			31	35.0	abcd
45			32	35.8	abcd
46		142	414	21.5	bcde
47			415	31.0	abcde
48			416	21.0	bcde
49			418	45.4	a
50			420	30.8	abcde

Means with the same letter are not significantly different at 5%

No.Clus		Topo	Half-sib	Means	
1	1	69	147	24.3	cdef
2			148	22.2	def
3			150	30.7	abcdef
4			151	19.9	def
5			154	30.8	abcdef
6		145	429	21.1	def
7			430	24.1	cdef
8			431	25.7	cdef
9			432	30.3	abcdef
10			435	22.8	def
11	2	97	260	20.1	def
12			261	46.4	abcdef
13			262	26.0	cdef
14			264	29.2	abcdef
15			266	26.6	bcdef
16		131	369	17.9	def
17			371	31.1	abcdef
18			372	34.2	abcdef
19			376	25.3	cdef
20			377	37.3	abcdef
21	3	15	36	46.5	a
22			37	43.1	$a b c$
23			38	28.5	abcdef
24			40	22.6	def
25			42	36.7	abcdef
26		27	64	23.3	cdef
27			66	28.2	abcdef
28			67	30.6	abcdef
29			69	35.5	abcdef
30			71	31.7	abcdef
31	4	91	233	26.9	abcdef
32			234	31.1	abcdef
33			235	41.6	abcd
34			236	29.3	abcdef
35			237	20.9	def
36		154	460	21.6	def
37			461	35.8	abcdef
38			462	22.3	def
39			463	42.9	$a b c$
40			465	46.2	$a b$
41	5	13	25	21.9	def
42			26	32.1	abcdef
43			27	27.4	abcdef
44			31	27.3	abcdef
45			32	28.6	abcdef
46		142	414	18.3	def
47			415	40.5	abcde
48			416	29.9	abcdef
49			418	27.3	abcdef
50			420	31.6	abcdef

Means with the same letter are not significantly different at 5%

```
Duncan's multiple range test for total tiller dry weight
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Clus & S Topo & Half-sib & Means & \\
\hline 1 & 1 & 69 & 147 & 45.6 & bcd \\
\hline 2 & & & 148 & 47.0 & bod \\
\hline 3 & & & 150 & 64.0 & abcd \\
\hline 4 & & & 151 & 46.0 & bcd \\
\hline 5 & & & 154 & - 56.8 & abcd \\
\hline 6 & & 145 & 429 & 50.2 & abcd \\
\hline 7 & & & 430 & 50.8 & abod \\
\hline 8 & & & 431 & 50.2 & abcd \\
\hline 9 & & & 432 & 64.0 & abcd \\
\hline 10 & & & 435 & 50.4 & abcd \\
\hline 11 & 2 & 97 & 260 & 38.1 & d \\
\hline 12 & & & 261 & 58.8 & abcd \\
\hline 13 & & & 262 & 54.2 & abcd \\
\hline 14 & & & 264 & 58.9 & abcd \\
\hline 15 & & & 266 & 53.6 & abcd \\
\hline 16 & & 131 & 369 & 46.1 & bed \\
\hline 17 & & & 371 & 57.3 & abcd \\
\hline 18 & & & 372 & 61.1 & \(a b c d\) \\
\hline 19 & & & 376 & 55.7 & abcd \\
\hline 20 & & & 377 & 70.9 & \(a b\) \\
\hline 21 & 3 & 15 & 36 & 70.2 & \(a b\) \\
\hline 22 & & & 37 & 66.9 & abcd \\
\hline 23 & & & 38 & 57.1 & abcd \\
\hline 24 & & & 40 & 44.3 & bcd \\
\hline 25 & & & 42 & 66.1 & abcd \\
\hline 26 & & 27 & 64 & 60.3 & abcd \\
\hline 27 & & & 66 & 51.2 & abcd \\
\hline 28 & & & 67 & 52.2 & abcd \\
\hline 29 & & & 69 & 54.9 & abcd \\
\hline 30 & & & 71 & 60.9 & abcd \\
\hline 31 & 4 & 91 & 233 & 56.6 & abcd \\
\hline 32 & & & 234 & 69.2 & \(a b c\) \\
\hline 33 & & & 235 & 62.0 & abcd \\
\hline 34 & & & 236 & 42.7 & bcd \\
\hline 35 & & & 237 & 55.8 & abcd \\
\hline 36 & & 154 & 460 & 45.1 & bcd \\
\hline 37 & & & 461 & 58.9 & abcd \\
\hline 38 & & & 462 & 49.2 & abcd \\
\hline 39 & & & 463 & 69.2 & \(a b c\) \\
\hline 40 & & & 465 & 78.2 & a \\
\hline 41 & 5 & 13 & 25 & 55.6 & abcd \\
\hline 42 & & & 26 & 50.9 & abcd \\
\hline 43 & & & 27 & 56.4 & abcd \\
\hline 44 & & & 31 & 62.3 & abcd \\
\hline 45 & & & 32 & 64.4 & abcd \\
\hline 46 & & 142 & 414 & 38.8 & cd \\
\hline 47 & & & 415 & 71.4 & \(a b\) \\
\hline 48 & & & 416 & 50.8 & abcd \\
\hline 49 & & & 418 & 72.7 & \(a b\) \\
\hline 50 & & & 420 & 62.5 & abcd \\
\hline
\end{tabular}
```

[^7]Duncan's multiple range test for number of days to reach 5% asymptote

Duncan's multiple range test for number of days to reach 50% upper asymptote

No.	Clus	(Topo	Half-sib	Means	
1	1	69	147	61.6	bcde
2			148	54.4	e
3			150	67.1	bc
4			151	65.4	bcde
5			154	62.2	bcde
6		145	429	62.8	bcde
7			430	59.3	cde
8			431	66.2	bod
9			432	65.6	bod
10			435	60.0	cde
11	2	97	260	63.1	bcde
12			261	69.4	$a b c$
13			262	64.5	bcde
14			264	66.6	bc
15			266	64.5	bcde
16		131	369	61.8	bode
17			371	63.5	bcde
18			372	64.1	bcde
19			376	60.3	bcde
20			377	62.6	bcde
21	3	15	36	77.8	a
22			37	69.0	abc
23			38	61.5	bcde
24			40	60.9	bcde
25			42	67.7	bc
26		27	64	59.6	cde
27			66	60.9	bcde
28			67	68.7	abc
29			69	67.3	$b c$
30			71	67.7	bc
31	4	91	233	60.4	bcde
32			234	63.6	bcde
33			235	61.4	bcde
34			236	61.3	bcde
35			237	61.0	bode
36		154	460	64.8	bcde
37			461	71.3	$a b$
38			462	64.1	bcde
39			463	65.2	bcde
40			465	65.1	bcde
41	5	13	25	62.2	bcde
42			26	62.2	bcde
43			27	61.4	bcde
44			31	60.2	cde
45			32	61.1	bcde
46		142	414	55.5	de
47			415	58.5	cde
48			416	65.8	bcd
49			418	65.1	bode
50			420	66.2	bcd

Duncan's multiple range test for number of days to reach 95% upper asymptote

No.Clus Topo Half-sib				Means	
1	1	69	147	97.5	bcdef
2			148	83.9	f
3			150.	99.3	bcdef
4			151	102.5	bcde
5			154	92.2	cdef
6		145	429	97.8	bcdef
7			430	92.3	cdef
8			431	104.5	abcde
9			432	103.8	abcde
10			435	96.0	bcdef
11	2	97	260	98.4	bcdef
12			261	109.7	$a b c$
13			262	98.6	bcdef
14			264	105.1	abcde
15			266	101.6	bcdef
16		131	369	93.7	cdef
17			371	94.9	cdef
18			372	97.0	bodef
19			376	91.3	def
20			377	96.8	bcdef
21	3	15	36	120.6	a
22			37	106.3	abcd
23			38	95.5	bcdef
24			40	96.4	bcdef
25			42	106.6	abcd
26		27	64	91.9	cdef
27			66	92.1	cdef
28			67	105.0	abcde
29			69	105.5	abcde
30			71	104.3	abcde
31	4	91	233	91.7	cdef
32			234	97.4	bcdef
33			235	94.2	cdef
34			236	94.3	cdef
35			237	92.8	cdef
36		154	460	97.6	bcdef
37			461	112.9	$a b$
38			462	98.7	bcdef
39			463	102.5	bcde
40			465	102.3	bcde
41	5	13	25	97.4	bcdef
42			26	95.9	bcdef
43			27	93.5	cdef
44			31	92.7	cdef
45			32	95.7	bcdef
46		142	414	90.3	def
47			415	88.0	ef.
48			416	101.9	bcde
49			418	100.2	bcdef
50			420	102.7	bode

Means with the same letter are not significantly different at 5%

Duncan's multiple range test for relative growth rate on 5% upper asymptote

Means with the same letter are not significantly different at 5%

Duncan's multiple range test for relative growth rate at 50% upper asymptote

Means with the same letter are not significantly different at 5%

Duncan's multiple range test for relative growth rate at 95\% upper asymptote

Means with the same letter are not significantly different at 5%

[^0]: * Significant at 5\% probability level
 ** Significant at 1\% probability level

[^1]: * Significant at 5\% probability level
 ** Significant at 1\% probability level

[^2]: * Significant at 5\% probability level
 ** Significant at 1% probability level

[^3]: Means with the same letter are not significantly different at 5\%

[^4]: Means with the same letter are not significantly different at 5%

[^5]: Means with the same letter are not significantly different at 5%

[^6]: Means with the same letter are not significantly different at $5 \frac{3}{\circ}$

[^7]: Means with the same letter are not significantly different at 5%

