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Abstract

Qualified difference sets are a class of combinatorial configuration. The sets are related
to the residue difference sets that were first discussed in detail in 1953 by Emma Lehmer.
Qualified difference sets consist of a set of residues modulo an integer v and they possess
attractive properties that suggest potential applications in areas such as image formation,
signal processing and aperture synthesis. This thesis outlines the theory behind qualified
difference sets and gives conditions for the existence and nonexistence of these sets in
various cases.

A special case of the qualified difference sets is the qualified residue difference sets.
These consist of the set of nth power residues of certain types of prime. Necessary and
sufficient conditions for the existence of qualified residue difference sets are derived and
the precise conditions for the existence of these sets are given for n = 2, 4 and 6. Qualified
residue difference sets are proved nonexistent for n = 8, 10, 12, 14 and 18.

A generalisation of the qualified residue difference sets is introduced. These are the
qualified difference sets composed of unions of cyclotomic classes. A cyclotomic class
is defined for an integer power n and the results of an exhaustive computer search are
presented for n = 4, 6, 8, 10 and 12. Two new families of qualified difference set were
discovered in the case n = 8 and some isolated systems were discovered for n = 6, 10 and
12.

An explanation of how qualified difference sets may be implemented in physical

applications is given and potential applications are discussed.
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Chapter 1

Overview

Qualified difference sets (QDS) are a class of combinatorial configurations that are related
to the normal residue difference sets (RDS) that were first discussed in detail by Lehmer
[47, pp. 425-430]. If zero is included as an element in the QDS, we have modified qualified
difference sets (MQDS), which are similarly related to the modified residue difference sets
(MRDS), also discussed by Lehmer [47, pp. 431-432]. All four classes of set possess
similarly attractive properties that suggest potential applications in areas such as image

formation, signal processing and aperture synthesis.

Different applications require different parameters of these sets. For example, high
energy astronomy uses an image formation technique called coded aperture imaging [23,
29], whereby radiation from a high energy source passes through holes in an aperture made
of opaque material and lands on a position sensitive radiation detector. The transparency
of any aperture (i.e. the ratio of the total area of holes to the entire aperture area)
depends on the parameters of the set from which the aperture is generated. For most high
energy telescopes, apertures of 50% transparency have been used [56, 69, 70], although
other transparencies have been proposed to aid physical construction of the aperture
[15, 33]. Accorsi et al. have investigated the use of the coded aperture technique in medical
imaging, concluding that in certain circumstances a lower transparency aperture is the

best compromise between instrument sensitivity and practical construction constraints [1].

The rationale behind this thesis is to introduce QDS and MQDS and hence increase
the range of parameters available for use in physical applications. In it we discuss QDS
and MQDS, including their existence and applications. In Chapter 2 we relate QDS and
MQDS to RDS and MRDS respectively, giving some necessary definitions. We present a
historical discussion of the RDS and MRDS and we discuss the current research position
of these sets. We also outline some of the necessary theory of cyclotomy required in many
of the proofs in the thesis. In Chapter 3 we discuss the special cases of the qualified
residue difference sets (QRDS) and similar sets that include the zero element called the
modified qualified residue difference sets (MQRDS). Using cyclotomy with respect to the

integer power n, we present necessary and sufficient conditions for the existence of both



types of set. In Chapter 4 we provide precise conditions for the existence of both QRDS
and MQRDS for n = 2, 4 and 6, and in Chapter 5 we prove the nonexistence of both
types of set for n =8, 10, 12, 14 and 18.

In Chapter 6 we discuss QDS and MQDS that are created from the unions of cyclotomic
classes. We provide necessary definitions and discuss the existence of such sets for the
values n =4, 6, 8, 10 and 12.

In Chapter 7 we discuss the possible applications of QDS and MQDS and in Chapter
8 we summarise the thesis and the findings in it.

Some of the results in this thesis have been published elsewhere as follows: Sections
3.2, 4.2, 4.3 and 4.4 are in [40], [41] and [17]; Section 5.2 is in [17]; Section 5.3 is in [18];
Section 5.4 is in [19]; Sections 5.5 and 5.6 are in [21]; Chapter 6 is in [20].



Chapter 2

Difference Sets and Qualified

Difference Sets

2.1 Difference Sets

Difference sets are a class of combinatorial configurations. Each difference set is associated
with three main parameters, v, k, A\, and for this reason they are sometimes also referred
to as (v, k, A) difference sets. In the case when v is an odd prime we will use the symbol

p instead of v. First we require the following preliminary definition.
Definition 2.1 Let N be a positive integer. We define the sets Zy and ZX, as follows:
Zn =1{0,1,2,...,N — 1} (2.1)

Z} =Zy—{0}={1,2,...,N — 1}. (2.2)

Then the set Zy is a group under addition modulo N. The set ZJJ(, is not a group under
addition modulo N, but it is a group under multiplication modulo N if and only if N is

prime.
Difference sets are defined as follows.

Definition 2.2 Let v,k and X\ be positive integers. A (v,k,\) difference set D =
{a1,a9,as,...,ax} is a set of k residues modulo v, such that for each d € Z the
congruence

a;—aj=d (mod v) 1<4,j<k, (i#3])

has exactly A solution pairs a;,a; € D. The integer v is called the modulus, k is called the

size and X is called the multiplicity of the set D.

There is evidently a relationship between the parameters v, k and A of a difference set that

arises due to the incidences of occurrence of each non-zero difference. As an immediate



Difference Sets 4

consequence of Definition 2.2 we obtain the following equation, which we refer to as the

incidence relation for a given difference set:
k(k—1)=A(v—1). (2.3)

This arises from the fact that there are k(k — 1) non-zero differences and each non-zero

difference occurs exactly A\ times. An example is the (15,7,3) difference set given by:
D15 ={1,2,3,5,6,9,11} (mod 15).

Each non-zero difference modulo 15 occurs three times, for example the difference 5 arises
from6—1,11—6 and 1 — 11 (mod 15). Therefore A = 3. Note that the values (v, k, \) =
(15,7,3) satisfy (2.3). Note also that the condition in Equation (2.3) does not guarantee
the existence of a difference set. For example, the parameters (v, k, \) = (16,6, 2) satisfy
(2.3) but do not give rise to a difference set.

There are a number of obvious difference sets that are generally of little interest. These

are discussed by Baumert [8, pp. 1-2] and include the following;
1. The empty set: D ={}; k=A=0.
2. All single element sets: D ={i}; 0<i<v—1,k=1, A=0.
3. The complete set of residues modulo v: D ={0,1,2,..., 0 -1} v=k= .

4. The complete set of residues modulo v, minus the element i: D = {0,1,2,...,i —
Lii+1l,...,0—-1h50<i<v—1l,k=v—-1, A=v-2.

These are called trivial difference sets and are often either ignored or treated as only
limiting cases. From the incidence relation (2.3), trivial difference sets arise if and only if
the quantity k& — A equals either zero or unity. Therefore if a (v, k, \) difference set exists
then it is non-trivial if and only if

k—A>2. (2.4)

In many discussions about difference sets in the literature, the assumption in Equation
(2.4) is often made implicitly. The definitive work on difference sets is the book by Baumert
[8] although other works of note include papers by Hall [36] and Baumert [7].

A subclass of (v, k, \) difference sets are the nth power residue difference sets (RDS).
In 1953, Lehmer presented a detailed discussion of RDS [47]. A RDS of order n is defined

as follows.

Definition 2.3 Let n and k be positive integers and suppose p = nk + 1 is prime. Let
D = {ry,ro,r3,...,11} be the set of nth power residues of p. The set D is called an nth
power residue difference set with k elements, RDS for short, if, when we form all the

k(k — 1) non-zero differences

ri —7rj (mod p) 1<id,j <k, (i#]) (2.5)
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we obtain every element of Z; exactly A times. The prime p is called the modulus, k is
called the size and X is called the multiplicity, of the set D.

Note from the earlier discussion on trivial difference sets that a non-trivial RDS also

requires n to be greater than unity. An example of a non trivial RDS is the following.

Example 2.4 The parametersn = 4, k = 9 yield a fourth power RDS with nine elements.
For p =nk + 1 = 37 is prime the incidence relation (2.3) implies A\ = 2. Indeed, for the

set
D ={a€Zi:a=2a" for somex €L,

={1,7,9,10,12, 16,26, 33, 34},

each non-zero difference occurs A = 2 times.

An example of a set of parameters n, p, k, A that obey the incidence relation (2.3) but do
not yield a RDS is as follows.

Example 2.5 The parameters n = 4, k = 13 do not yield a fourth power RDS with 13
elements.
For p =nk+1 =53 is prime the incidence relation (2.3) would imply A = 3. But, for the

set
D ={a€Z:a=a" for some x € 7

={1,10,13,15,16, 24, 28, 36,42, 44, 46,47,49}
the difference 1 occurs twice (16 — 15 and 47 — 46) while the difference 2 occurs four times
(15— 13, 44 — 42, 46 — 44 and 49 — 47). Therefore, the differences do not occur the same

number of times and hence there is no difference set in this case.

Chowla demonstrated that a fourth power RDS exists if and only if k is an odd square
[24].

In her article, Lehmer also points out that similar sets exist if zero is counted as a
residue [47, p. 431]. These are called nth power modified residue difference sets, by virtue
of the modification introduced by the inclusion of the zero element. The definition of a

modified residue difference set is as follows.

Definition 2.6 Let n and k be positive integers and suppose p = nk + 1 is prime. Let
D* ={ro,r1,7r2,...,7} be the set of nth power residues of p where ro = 0. The set D* is
called an nth power modified residue difference set with k + 1 elements, MRDS for short,

if, when we form all the k(k + 1) non-zero differences
ri—rj (mod p) 0<i,j<k, (i#)) (2.6)

we obtain every element of Z; exactly A times. The prime p is called the modulus, k is
called the size and A is called the multiplicity of the set D*.

In this case the parameters have the following incidence relation:
E(k+1)=Av—1). (2.7)

An example of a non trivial MRDS is the following.
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Example 2.7 The parameters n = 4, k = 3 yield a fourth power MRDS with four
elements.
For p =nk + 1 = 13 is prime the incidence relation (2.7) implies \ = 1. Indeed, for the

set
D ={a€Zfy:a=a" for somex € Z{;} U {0}

={0,1,3,9},

each non-zero difference occurs exactly once, so A = 1.

2.2 Existence of RDS and MRDS

RDS and MRDS are subclasses of difference sets, of which there has been much study
and research. These sets have come in for special attention, mainly as a result of their
ease of construction. The definitive work on RDS and MRDS is by Lehmer [47] although
the article by Storer also gives extensive results on both types of set via the theory of
cyclotomy [60], and Berndt, Evans and Williams provide alternative proofs of many of the
associated theorems using Gauss sums [10, Chapter 5]. We present the known results as

a series of theorems.

Theorem 2.8 (Lehmer [47]) There exist no nth power RDS or MRDS for odd values

of n.

Lehmer provides a full proof of the nonexistence of RDS for odd n. She attributes the
nonexistence condition for MRDS to Hall without a clear citation, although a proof is
given by Baumert [8, Theorem 5.17]. Therefore for RDS and MRDS we are restricted to

studying cases when n is even.

Theorem 2.9 (Paley [55]) RDS for n = 2 exist if and only if p = 4z — 1 is a prime

and x s a positive integer.
Theorem 2.10 (Baumert [8]) MRDS do not exist for n = 2.

Theorem 2.11 (Chowla [24]) RDS forn = 4 exist if and only if p = 4x> +1 is a prime

and x is an odd integer.

Chowla proved Theorem 2.11 using results of cyclotomy from Bachmann [2]. Lehmer
generalised the results in Theorems 2.9, 2.10 and 2.11, and outlined the necessary and
sufficient conditions for the existence of both RDS and MRDS [47, Theorems III and III’].
She was therefore able to prove further results. Again she attributes the following theorem
for a MRDS with n = 4 to Hall without citation.

Theorem 2.12 (Lehmer [47]) MRDS for n = 4 exist if and only if p = 42> +9 is a

prime and x is an odd integer.

In the case n = 6 Lehmer proved the following
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Theorem 2.13 (Lehmer [47]) RDS and MRDS for n = 6 are nonexistent.
and for n = 8 she proved the following

Theorem 2.14 (Lehmer [47]) RDS for n = 8 exist if and only if p is a prime of the
form p = 822 +1 = 64y> +9 where x and y are both odd integers. MRDS for n = 8 ewist if
and only if p is a prime of the form p = 8x% + 49 = 64y? + 441 where x is an odd integer

and y is an even integer.

In her paper the final result for MRDS in Theorem 2.14 is incorrectly quoted [47, p. 432].
Correctly quoted results for MRDS with n = 8 are provided by Storer [60, p. 81, Theorem
19’], Baumert [8, p. 124] and Berndt et al. [10, p. 179, Theorem 5.3.6(b)].

For higher values of n no further RDS or MRDS have yet been found. For n = 10,
Lehmer proved the nonexistence of RDS for the case when 2 is a 5th power residue of the
prime modulus p [47, p. 430]. The final existence question for n = 10 for both RDS and
MRDS was solved by Whiteman.

Theorem 2.15 (Whiteman [67]) RDS and MRDS for n =10 are nonexistent.
We also have the following theorems

Theorem 2.16 (Whiteman [68]) RDS and MRDS for n =12 are nonexistent.
Theorem 2.17 (Muskat [52]) RDS and MRDS for n = 14 are nonexistent.

In the case n = 16 Whiteman used cyclotomy to provide a partial solution by proving
that both RDS and MRDS are nonexistent if 2 is an octic (8th power) residue of p [66].

The full proof for n = 16 was completed by Evans using Gauss sums [26].
Theorem 2.18 (Evans [26]) RDS and MRDS for n = 16 are nonexistent.
We also have a full solution in the following case.

Theorem 2.19 (Baumert and Fredricksen [5]) RDS and MRDS for n = 18 are

nonezxistent.

For n = 20 Muskat and Whiteman proved the nonexistence of both RDS and MRDS when
5 is a biquadratic residue of p [53]. The final solution was provided by Evans.

Theorem 2.20 (Evans [28]) RDS and MRDS for n = 20 are nonezistent.
For n = 22 and n = 24 partial solutions exist.

Theorem 2.21 (Muskat [52]) RDS and MRDS for n = 22 are nonexistent if 2 is an

eleventh power residue of p.

Theorem 2.21 is a special case of the following neat theorem of Muskat.
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Theorem 2.22 (Muskat [52]) There ezist no nth power RDS or MRDS when n = 6
(mod 8) and 2 is an (n/2)th power residue of p.

Theorem 2.23 (Evans [27]) For n = 24 RDS and MRDS do not exist if either 2 is a

cubic residue of p or if 3 is a biquadratic residue of p.

In a separate article Berndt and Evans claim that the remaining cases for n = 24 could
‘... undoubtedly be settled using the formula for Ga4 [the Gauss sums of order 24] ...” but
they concede that the calculations would appear to be very laborious [9, p. 350].

In an interesting recent incident, Ott published an article claiming to prove that the
order n of RDS and MRDS must be a power of 2 [54, Theorem 1]. However, Ott’s result
was subsequently refuted by Yuan and Yahui [72].

Summaries of the existence conditions for RDS and MRDS are given in Tables 2.1 and

2.2 respectively.

n | RDS exist if and only if Conditions References
2 p=4dx—1 x integer Paley [55]
4 p=4dz?+1 x odd Chowla [24]
6 Nonexistent Lehmer [47]
8 | p=822+1=064y%2+9 x,y odd integers Lehmer [47]
10 Nonexistent Lehmer [47], Whiteman [67]
12 Nonexistent Whiteman [68]
14 Nonexistent Muskat [52]
16 Nonexistent Whiteman [66], Evans [26]
18 Nonexistent Baumert & Fredricksen [5]
20 Nonexistent Evans [28]
22 Nonexistent 2 is 11th power residue of p | Muskat [52]
24 Nonexistent 2 is cubic residue or Evans [27]
3 is biquadratic residue of p

Table 2.1: Parameters for the existence of RDS.
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n | MRDS exist if and only if Conditions References
2 Nonexistent Baumert [8]
4 p=4z?+9 x odd Lehmer [47]
6 Nonexistent Lehmer [47]
8 | p =8z +49 = 64y? + 441 x odd, y even Lehmer [47]
10 Nonexistent Whiteman [67]
12 Nonexistent Whiteman [68]
14 Nonexistent Muskat [52]
16 Nonexistent Whiteman [66], Evans [26]
18 Nonexistent Baumert & Fredricksen [5]
20 Nonexistent Evans [28]
22 Nonexistent 2 is 11th power residue of p | Muskat [52]
24 Nonexistent 2 is cubic residue or Evans [27]
3 is biquadratic residue of p

Table 2.2: Parameters for the existence of MRDS.

2.3 Qualified Difference Sets

In this thesis an extension to the RDS and MRDS is introduced in the form of two new
types of set. These we call qualified difference sets and modified qualified difference sets.
We define the qualified difference sets as follows.

Definition 2.24 Let k be a positive integer and R = {ry,r2,r3,..., 7%} C Z be a k-
element set of distinct non-zero residues modulo an integer v. We call R a qualified
difference set, QDS for short, if there exists some non-zero integer m, 0 < m < v, which
1s such that

1.
mr; ¢ R, 1<j<k (2.8)

2. if we form all the k? non-zero differences
ri —mr; (mod v) (2.9)
we obtain every element of 2 exactly \ times and we do not obtain zero. The integer v

1s called the modulus, k is called the size and A is the multiplicity of the set R. We call m
a qualifier of R.

Note that the condition mr; ¢ R implies that m = 1 is not a qualifier, since we would then

obtain exactly k zero differences, whereas Definition 2.24 specifies that the differences must
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all be non-zero. If zero is counted as a residue, we can obtain modified qualified difference
sets, by virtue of the modification introduced by the inclusion of the zero element. We

define these sets as follows.

Definition 2.25 Let R = {ry,ro,r3,...,7x} C Z} be a k-element set of distinct non-
zero residues modulo an integer v. Let ro = 0 and define R* = RU {ro}. We call R* a
modified qualified difference set, MQDS for short, if there exists some non-zero integer m,

0 < m < v, which is such that

1.
mr; € R, 0<j<k (2.10)

2. if we form all the (k + 1)? non-zero differences

ri —mr; (mod v) (2.11)

we obtain every element of ZF exactly X\ times and zero exactly once. The integer v is
called the modulus, k is called the size and X is the multiplicity of the set R*. We call m
a qualifier of R*.

Note the single occurrence of the zero difference for a MQDS. This results from the point
that from (2.11) we have firstly 7o — mro = 0 (giving the single zero difference) and
secondly mr; € R, which means that another zero difference cannot occur. As above,
m = 1 cannot be a qualifier, since we would then obtain exactly k + 1 zero differences,
whereas Definition 2.25 specifies that the zero difference occurs exactly once.

As for difference sets, the parameters of QDS and MQDS are related by an incidence

relation. This is given by the following lemma.

Lemma 2.26 For a QDS of k elements and modulus v we have the following incidence
relation

k2= \v—1) (2.12)

and for a MQDS of k + 1 elements and modulus v we have the incidence relation

(k+1)2=1+Av—1). (2.13)

Proof. For a QDS of k elements there are k? possible non-zero differences, and each non-
zero difference modulo v occurs exactly A times, giving (2.12). For a MQDS, there are
k+1 elements (including zero), and hence (k+1)? possible differences. The zero difference
occurs exactly once and each non-zero difference modulo v occurs exactly A times, giving
(2.13). O

The following lemma is presented to avoid ambiguity in Chapter 5 (Lemma 5.2).
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1 4 13 16
1716 10 9 3

5 41 2 13 12 6
13111 5 4 15
614 8 7 1

Table 2.3: Table showing r; — 2r; (mod 17).

Lemma 2.27 If R = {ry,r2,...,r} is a QDS then R* = RU{0} is not a MQDS and if
R* = RU{0} is a MQDS then R is not a QDS.

Proof. If R is a QDS and R* is a MQDS then by Equations (2.12) and (2.13) we obtain
k = 0, which contradicts that k is a positive integer. O
When the modulus v is odd the following lemmas apply for QDS and MQDS.

Lemma 2.28 For all QDS and MQDS, if the modulus v is odd, then k must be even.

Proof. This is immediate from Lemma 2.26. U

The simplest QDS and MQDS are those composed of the nth power residues of certain
types of prime p, and having analogous properties to the RDS and MRDS respectively.
These are called qualified residue difference sets and modified qualified residue difference
sets, the word ‘residue’ being incorporated to notify that the sets are composed of nth

power residues. The QRDS are defined for modulus p as follows.

Definition 2.29 Letn and k be positive integers and suppose p = nk—+1 is an odd prime.
Let R = {ry,r2,73,...,7} be the k-element set of non-zero nth power residues of p. We
call R an nth power qualified residue difference set with k elements, QRDS for short, if R
is a QDS.

An example of a QRDS is the following.

Example 2.30 The parameters n =4, k =4 and p = nk+ 1 = 17 yield a QRDS. The
complete list of possible qualifiers is m =2, 8, 9 and 15.
For p =17 is prime, the incidence relation (2.12) implies A = 1. We obtain the set

R ={reZf :r=a" for somex € Z;}
= {1,4,13,16}).

Since we use this example in Section 7.4, we show the resulting differences in detail. Using
the qualifier m = 2 we use (2.9) to obtain the results in Table 2.3, modulo 17. Note from

Table 2.3 that each non-zero difference modulo 17 occurs exactly once, giving A = 1, and
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the zero difference does not occur. The list of possible values of m arises due to the fact
that all the qualifiers are those integers that are in residue class n/2, namely those integers
that are (n/2)th power residues that are not nth power residues [21, Theorems 2.1 and
2.2]. Thus, 2, 8, 9 and 15 are the squares which are not fourth powers in Z;}.

If zero is counted as an nth power residue we obtain modified qualified residue

difference sets. We define these sets as follows.

Definition 2.31 Let k be a positive integer and R = {r1,re,r3,...,7;} be the set of nth
power residues of an odd prime p = nk + 1. Let R* be the k + 1-element set R* =
{ro,r1,7r2,...,7x} = RU{0} where ro = 0. We call R* an nth power modified qualified
residue difference set, MQRDS for short, if R* is a MQDS.

We now give an example of a MQRDS.

Example 2.32 The parameters n =2, k=2 and p=nk+1 =15 yield a MQRDS. The
complete list of possible qualifiers is m = 2 and 3, as these are the integers that are in
residue class n/2 [21, Theorems 2.1 and 2.2].

For p =5 is prime, the incidence relation (2.13) implies A = 2. We obtain the set

R* ={reZ :r=a?for some x € Z3 } U {0}
= {0,1,4}.

Using m = 2 or m = 3 with (2.11) we obtain every non-zero difference modulo 5 exactly
twice, giving A = 2 and zero occurs exactly once.

In all cases so far discovered of RDS, MRDS, QRDS and MQRDS, the modulus v
of each type of configuration is an odd prime p. Storer investigated the case when the
modulus of a RDS or MRDS is a power of an odd prime (p®). He states that for n = 4,6,8
we must have o = 1 and hence a prime modulus [60, Theorem 20, p. 82]. He gives a
specific proof for the case n = 4, which he attributes jointly to Lebesgue [46] and a
rediscovery by Hall [37], and he ascribes the proof for n = 6 to W.H. Mills, without citing
a reference. He provides no proof for n = 8.

In the remainder of this thesis, the modulus v = p is always an odd prime.

2.4 Cyclotomy

The proofs in this thesis make extensive use of cyclotomy and cyclotomic number theory.
Therefore we present a brief discussion of cyclotomy in this section. Firstly we require a

definition of a primitive root.

Definition 2.33 Let p be an odd prime. The integer g is a primitive root of p if g is a
generator for the multiplicative group Z7, that is, {g* :u € Z}} = 7.
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Note here that Z]‘; is a cyclic group with respect to multiplication and so the existence of
a primitive root g as a generator is guaranteed [39, p. 40-41]. Now, let n and k be positive

integers and suppose we have
p=nk+1 (2.14)

where p is an odd prime. Let g be a primitive root of p. We now define the terms residue

class and index. The index is also called the discrete logarithm.

Definition 2.34 Let p be an odd prime which satisfies (2.14) and let g be a primitive root
of p. The integer N € Zl‘f is said to be in residue class i with respect to g for the given

values of p and n if the following congruence holds for some integer u:
N = g""™  (mod p). (2.15)

We call the quantity un + i in (2.15) the index of N, referred to as ind N, or the discrete
logarithm of n with respect to the base g. Therefore

g M N = N (mod p). (2.16)

We also define the cyclotomic constant of order n.

Definition 2.35 Let n and k be positive integers such that p = nk + 1 is an odd prime.
Let g be a primitive root of p. The cyclotomic constant (i,7) of order n denotes the number
of members of the residue class i which are followed by a member of the residue class j,

that is the number of solutions to the congruence
gt 4+ 1=¢"""  (mod p) (2.17)
where 0 < i, <n—1and 0 <u,v<k-—1.

See Dickson [25] for an in-depth study of the properties of cyclotomic constants. The
following results, also due to Dickson [25, pp. 392-394], are required too:

(i,5) = (j,1)if k is even (2.19)
n—1 . . . . . .

o k—1 ifkisevenand =0, orif kis odd and i =n/2
6,5 = . /2 (990
= k  otherwise

(4,7) = (i+mn,j+2n) (2.21)

for all integers 1 and 2. We also require the following lemma.

Lemma 2.36 Let n and k be positive integers such that p = nk + 1 is prime. Now let
N € Z}‘f be an integer and define N such that NN =1 (mod p). If N is in residue class

n — i with respect to the primitive root g then N is in residue class i with respect to g.
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Proof. Let N; and Ny be integers and suppose they are in residue classes 71 and io,
respectively. From Definition 2.34 we see that the product N1 N» is in residue class i1 + is
(mod n). The claimed result now follows on taking Ny = N, No = N and using the fact
that the integer 1 is in residue class zero. O

Apart from Dickson, cyclotomic constants have been investigated by many authors,
including Lehmer [48], Whiteman [67, 68], Muskat [52] and Baumert and Fredricksen

[5, 6]. Those cyclotomic constants used in this thesis are given in Appendix A.
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Chapter 3

Qualified Residue Difference Sets

3.1 Introduction

In this chapter we discuss in detail QRDS and MQRDS. We establish the necessary and
sufficient conditions for the existence of QRDS and MQRDS in Section 3.2. We then give
a few basic properties of QRDS and MQRDS in Section 3.3.

3.2 Necessary and Sufficient Conditions for the Existence
of QRDS and MQRDS

In this section we establish the necessary and sufficient conditions for the existence of
QRDS and MQRDS. Throughout this section, n and k will denote positive integers and
p =nk + 1 is assumed to be prime. Let R be a QRDS (if one exists) with modulus v = p
having k elements and multiplicity A, where A is given by the incidence relation (2.12).
Also, let R* be a MQRDS (if one exists) with modulus v = p having k + 1 elements and
multiplicity A, where A is given by the incidence relation (2.13).

Lemma 3.1 For the QRDS R, we have

p=n?+1 and X\ = k/n. (3.1)

For the MQRDS R*, we have
p=xn?—2n+1 and A= (k+2)/n. (3.2)
Proof. From Equation (2.12) k2 = A\(p — 1) = Ank, so k = \n. O

Lemma 3.2 For all QRDS of prime modulus and all MQRDS of prime modulus, k must

be even.
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Proof. By definition the modulus p is odd. Therefore, k£ must be even by Lemma 2.28.
O
We now have the required information to outline the necessary and sufficient conditions
for QRDS and MQRDS to exist. The following theorem applies to QRDS.

Theorem 3.3 Let g be a primitive root of p. Suppose the integer m € Z; belongs to
residue class n — o with respect to g for some integer o, 0 < 0 < n—1. Then m is a

qualifier of the QRDS R if and only if the cyclotomic constants obey the relations
(s,0)=1(0,8) =A=k/n (3.3)
fors=0,1,...,(n—1).

Proof. Let R be a QRDS of modulus p = nk + 1 and multiplicity A. Suppose that
m is a qualifier of R, belonging to the residue class n — o, 0 < ¢ < n — 1. For each

t=1,2,...,p— 1 the congruence
ri—mr; =t (modp): 1<i,j<k (3.4)

has exactly A solutions. Multiplying (3.4) through by m7;, where mm =1 (mod p) and

r;j7; =1 (mod p), and rearranging gives
mtr; +1=mr7;  (mod p). (3:5)

Since m belongs to residue class n — o, m belongs to residue class o by Lemma 2.36. Also,

u1n+o+s+0

r; is in residue class zero, as is 7; by Lemma 2.36. Therefore mtr; = g (mod p)

for some integer u; and so mtr; belongs to residue class o + s, where s is the residue

class of t. Also mr;7; = gu2ntototo

(mod p) for some integer up and so mr;7; belongs to
residue class 0. Now ¢ takes on any value from 1 to p— 1 and (3.5) always has A solutions.

Therefore using Definition 2.35 we have
(c+s,0)=Afors=0,1,...,(n—1)

and so by periodicity modulo n (see Equation (2.21)), Lemma 3.2 and (2.19) for k even

we have

(s,0) = (o,s) =Afors=0,1,...,(n—1). (3.6)

Eliminating p from p = nk 4+ 1 and Equation (2.12) gives A = k/n to complete Equation
(3.3). Therefore we have shown the necessity of the condition in Theorem 3.3. We now
need to prove that it is sufficient.

Suppose that the (s,0) are all equal for a given o # 0, then we have
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Since by Lemma 3.2 k must be even, then using (2.19) and (2.20), and noting that o # 0

gives

n—1 n—1
> (i,0) = (0,i) = k. (3.8)
=0 =0

Therefore we have, from (3.7), (3.8) and (3.1), (s,0) = A for all s. Therefore (3.5) and
hence (3.4) has exactly k/n solutions for all ¢. Thus, using a qualifier m which is in residue
class n — o will yield a QRDS. Hence the condition is sufficient and Theorem 3.3 is proved.

O

The following theorem gives a necessary and sufficient condition for a MQRDS to exist.

Theorem 3.4 Let g be a primitive root of p. Suppose the integer m € Z; belongs to
residue class n — o with respect to g for some integer o, 0 < o < n—1. Then m is a
qualifier of the MQRDS R* if and only if the cyclotomic constants obey the relations

14+ (0,0) =1+ (0,0) =1+ (0,0) =(s,0) =(0,8) =A=(k+2)/n (3.9)
fors=1,2,....,(n—1), s#o.

Proof. Let R* be a MQRDS of modulus p = nk + 1 and multiplicity A\. Suppose that
m is a qualifier of R*, belonging to the residue class n — o, 0 < ¢ < n — 1. For each

t=1,2,...,p— 1 the congruence
ri—mr; =t (modp): 0<4,j<k (3.10)

has exactly A solutions. Congruence (3.10) has only one solution when ¢ = 0 i.e. when
it =7=0. Fori # 0 and j # 0 we begin by following the same procedure as for the
proof of Theorem 3.3. We multiply (3.10) through by m#; (where mm =1 (mod p) and
r;7; =1 (mod p)) and rearrange to give the congruence in (3.5). As above, m belongs to
residue class o, mtr; belongs to residue class o + s, where s is the residue class of ¢, and
mr;7; belongs to residue class 0. The remaining non-zero differences are of the following
form

ri—m.0O=t (modp) (i#0,j=0) (3.11)

0—mr;=t (modp) (i=0,5%#0). (3.12)

Now, by the hypothesis of Theorem 3.4, Congruence (3.10) has exactly A solutions for
each non-zero value of ¢. If i # 0 and 7 # 0 then all A solutions arise as a result of (3.5)
and in these cases we follow the reasoning for the QRDS case (Equations (3.5) to (3.6))
and obtain (s,0) = A for those values of ¢ (in residue class s) not generated by Equation
(3.11) or (3.12). If one of the differences ¢ does arise as a result of the zero residue ry we
have a solution to either (3.11) or (3.12). Firstly, if j = 0 we obtain ¢ = r; from Equation
(3.11) and so t belongs to residue class zero and hence we have a solution to (3.11) when
s = 0. Secondly, if i = 0 we obtain ¢t = (—1)mr; and so t belongs to residue 7 +n — o

where 7 is the residue class of —1. Now g is a primitive root of p and so —1 = ¢gP~1/2
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(mod p). However, because p = nk + 1 we have (p — 1)/2 = nk/2 and, since k is even by
Lemma 3.2, we have (p — 1)/2 = fn for some integer 3 and so —1 = ¢ which means
that the residue class of —1 is zero. Therefore ¢ belongs to residue class n — o and we have
a solution to (3.12) when s = n — o (note: it is not possible for both of Equations (3.11)
and (3.12) to be satisfied simultaneously, since this would mean that ¢t = r; = —mr;. But
r; belongs to residue class zero and —mr; belongs to residue class o, a contradiction since
o # 0). Therefore, since R* is a MQRDS of multiplicity A, we have

A—1lifs=0ors=n—o

(s+o0,0)= { (3.13)

A otherwise

which by periodicity gives

A—1if s = =0
(s,0) = pemoons=a (3.14)
A otherwise

Finally, Lemma 3.2 and Equations (2.19) and (3.2) combine to complete Equation (3.9).
This proves that the conditions are necessary. We now show that they are sufficient.

Suppose for a given o # 0 we have
1+(0,0) =1+ (0,0) =(s,0),s=1,2,...,n—1,s#0

then .
n(s,0) =2+ (i,0). (3.15)
=0

Now, k is even and o # 0. Therefore, by Lemma 3.2 and Equations (2.19) and (2.20) we
obtain
n(s,o) =k+2. (3.16)

Now eliminating p from p = nk + 1 and Equations (3.16) and (2.13) gives (3.9). Thus,
using a qualifier m which is in residue class ¢ will yield a MQRDS. This completes the
proof of Theorem 3.4. O

Note that for both QRDS and MQRDS the qualifier m belongs to residue class n — o.
We therefore give the following general definition that applies to all QDS and MQDS that

are generated using index classes.

Definition 3.5 Let p = nk+1 be an odd prime and let g be a primitive root of p. Suppose
Ry p is a QDS or MQDS of order n and modulus p, generated using index classes with
base g. There is an integer m € Z;r whose residue class with respect to g ism — o. The

quantity o is called a definer of the set R, .

The analysis above indicates that the definer o # 0. In the case of QRDS and MQRDS,
further developments by Byard, Evans and Van Veen have limited the conditions for the
definer. In 2006 the author proved that if ¢ is a definer for a QRDS or MQRDS then —o

is also a definer [17, Theorem 3.3], thus limiting the need to check only for values o < n/2.
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However, in 2009 the definer was calculated precisely by Byard, Evans and Van Veen as
follows:
o=n/2 (3.17)

[21, Theorem 2.1]. We therefore modify Theorems 3.3 and 3.4 accordingly to give the
following existence theorems for QRDS and MQRDS.

Theorem 3.6 A QRDS exists for the prime modulus p = nk + 1 if and only if the
cyclotomic constants

(s,n/2) = (n/2,s) =A=k/n (3.18)
for0 < s <mn/2and X is the multiplicity of the QRDS. The qualifiers m € Z;r are precisely

all integers that are in residue class n/2 with respect to the primitive root g.

Proof. Combining (3.17) with (3.3) gives (3.18). However, the range of values for s is
shortened as follows. Using (2.18) and (2.19) with the cyclotomic constant (i,n/2) gives

(i,n/2) = (i+n/2,n/2). (3.19)

Thus we only need consider values of s < n/2. This completes the proof of Theorem 3.6.
O

Theorem 3.7 A MQRDS exists for the prime modulus p = nk + 1 if and only if
14+ (0,n/2) =1+ (n/2,0) = (s,n/2) = (n/2,s) = A= (k+2)/n (3.20)

for 0 < s < n/2, and X is the multiplicity of the MQRDS. The qualifiers m € Z; are

precisely all integers that are in residue class n/2 with respect to the primitive root g.

Proof. Combining (3.17) with Theorem 3.4 and (3.19) proves the theorem. O

Chapters 4 and 5 address the existence question for QRDS and MQRDS for even
values of n up to n = 18 excluding n = 16. The proofs of nonexistence for n = 16 and
n = 20 are presented in [21]. In all cases cyclotomy is used extensively and the relevant

cyclotomic constants are given in Appendix A.

3.3 Some Properties of QRDS and MQRDS

QRDS and MQRDS have many properties. We prove some of these here. In this section
we let R be a QRDS and R* be a MQRDS.

Lemma 3.8 All QRDS R and MQRDS R* are symmetric, i.e. ifr € R, thenp—1r € R,
and if r € R*, then p —r € R*.

Proof. Let r be a non-zero nth power residue of the prime p. Therefore r € R and r € R*.
Also r—1/n =1 (mod p) which by p = nk + 1 means that 7 = 1 (mod p). However,
since k is even by Lemma 2.28 then (—r)* = 1 (mod p). Therefore —r must also be a

residue and hence p —r € Rand p —r € R*. O
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Corollary 3.9 —1 € R and —1 € R*

Proof. As 1 is always an nth power residue then, by Lemma 3.8, —1 must also be a
residue and hence must be in both R and R*. O

Lemma 3.10 If m is a qualifier of a QRDS or MQRDS then p — m is also a qualifier.

Proof. Let m be a qualifier of a QRDS or MQRDS of modulus p and order n. By Theorem
3.6 or Theorem 3.7 respectively, m is in residue class n/2. Therefore m = g""+”/ 2 (mod p)
for some integer u. But —1 is in residue class zero by Corollary 3.9, so —m = guntn/2

(mod p) for some integer v. Therefore —m is in residue class /2 and is hence a qualifier. [

The following lemma makes easier the task of finding a qualifier, m, in certain

circumstances.

Lemma 3.11 If the multiplicity X of a QRDS is odd or the multiplicity A of a MQRDS

is even, 2 and p — 2 are in residue class n/2, and can hence be used as qualifiers.

Proof. Lehmer proved that the cyclotomic constant (0, j) is odd or even according as 2
belongs to residue class j or not [47, Lemma I]. For a QRDS, using (3.18) gives (0,n/2) = A,
so if A\ is odd then 2 belongs to residue class n/2 and can hence be used as a qualifier.
Also, by Lemma 3.10 p — 2 must also be a qualifier. For a MQRDS, using Equation (3.20)
gives 1 4+ (0,n/2) = A. Therefore if A is even then (0,n/2) is odd and so 2 belongs to
residue class n/2 and can hence be used as a qualifier. Also, by Lemma 3.10 p — 2 must

also be a qualifier. O
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Chapter 4

Existence of QRDS and MQRDS
for n=2,4 and 6

4.1 Introduction

In this chapter we prove that QRDS and MQRDS exist for all orders n = 2,4 and 6 and we
determine precisely the conditions for which both types of set exist for these values of n.
We use the theorems of cyclotomy derived by Dickson [25]. The proofs run along similar
lines to those used by Lehmer [47] in her generalisation of RDS and MRDS. Originally
the case of a RDS for n = 2 was discovered in a different guise by Paley [55] and Chowla
proved the existence of RDS for n = 4 [24] using results from Bachmann [2]. Lehmer
extended the analysis to include MRDS and she also proved that there do not exist RDS
or MRDS for n = 6. The proof of existence of QRDS and MQRDS for n = 6 in Section
4.4 is therefore an interesting contrast to Lehmer’s result.

For a QRDS to exist we need to determine conditions which satisfy Equation (3.18).
For a MQRDS to exist we need to determine conditions which satisfy Equation (3.20).

4.2 Existence for n =2

In this section we prove the following:

Theorem 4.1 QRDS and MQRDS exist for n = 2 and prime modulus p if and only if

p =4a + 1 where a is a positive integer.
Proof. Since p = nk + 1 then for n = 2 we have
p=2k-+1. (4.1)

To determine the necessary and sufficient conditions for a QRDS to exist we also need to

satisfy Equation (3.18) for n = 2. Therefore we need to demonstrate that

(0,1) = A = k/2. (4.2)
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Using the relevant cyclotomic constant equation for n = 2 and k even from Section A.1 of
the Appendix we have
(0,1) =(p—1)/4. (4.3)
Now, combining Equations (4.2), (4.3) and (4.1) combine to give no further restriction on
p beyond p = 4\ + 1 which is satisfied (as per Equation (3.1)).
For a MQRDS to exist we need to satisfy Equation (3.20). Therefore we need to

demonstrate that
1+(0,1)=Xx=(k+2)/2. (4.4)

Here, combining Equations (4.4), (4.3) and (4.1) gives p = 4\ — 3 which is also satisfied
(as per Equation (3.2)).

In both cases we have p = 4a 4 1 for integer a.. This completes the proof of Theorem
4.1. d

4.3 Existence for n =4

In this section we prove the following:

Theorem 4.2 Ifn =4 and p is an odd prime a QRDS exists if and only if p = 1602 + 1
and a MQRDS ezists if and only if p = 1602 + 9 where « is an integer in each case.

Proof. Since p = nk + 1 then for n = 4 we have
p=4k+1 (4.5)
and the cyclotomic constants are given in terms of the quadratic partition
p =z 4 49° (4.6)

where x and y are integers and z = 1 (mod 4) (Section A.2).
By (3.1) and (3.18), a necessary condition for the existence of a QRDS is

(0,2) = (p—1)/16. (4.7)
Also, from Section A.2 we have
16(0,2) = p — 3 + 2. (4.8)

Equations (4.7) and (4.8) combine to give z = 1. Hence, from (4.6) we must have p =
1+ 4y?, and since p = 1 (mod 16) by (3.1), then y must be even and so p = 16a? + 1.
For the converse, assume p = 16a? + 1 is prime. Following Theorem 3.6 and Equation
(3.1) it is enough to show
(0,2) =(1,2) = (p—1)/16. (4.9)

From Section A.2 we have
16(1,2) =p+1 — 2x. (4.10)
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Now p = 16a? + 1 and so by (4.6) x = 1 since the representations of p as the sum of two
squares is unique up to order and sign. Now, Equations (4.8) and (4.10) combine to give
(4.9) so the converse is proved.

By (3.2) and (3.20), a necessary condition for the existence of a MQRDS is

1+(0,2) = (p+7)/16. (4.11)

Now (4.8) and (4.11) give p — 3+ 22 = p+ 7 — 16 and hence x = —3. Therefore, by (4.6)
p=9+4y? From (3.2) p=16A—7 and so p =9 (mod 16), which means y must be even.
Therefore p = 1602 + 9 for integer a.

For the converse, assume we have a prime p = 16a? + 9. Following Theorem 3.7 and

(3.