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Maori Proverb 

Ehara ta te tangata kai, he kai titongi kau; 
engari mahi ai ia kite wherna; tino kai, tino makona. 

( Food provided by someone else is only food to be nibbled; 
food produced by one's own labour on the land is good, satisfying food). 

11 



11 Writing a book is an adventure. To begin with, it is a toy 
and an amusement. Then it becomes a mistress, then it 

hPf'Ame~ "' ~asteT' thPn 1t hPr>nmP<' ,., nrr-:,nt 'T'l-.= last ~i."SC ____ ..,_..._ ... u "".i..4.J. ~ .i.., u,n..,,u_ ....... U\A,,.,>Vll.J.Y..-:> U i..J.la..1 L • .L ll.\,,., J.. l. p1ra 

is that just as you are about to be reconciled to your servitude, 
you kill the monster and fling him about to the public 11 

• 

... Sir Winston Churchill 
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Abstract 

Entangled high polymers in the melt or semidilute solution exhibit motion dependent on 
the timescale. This motion may be characterised in terms of the " tube model " in which 
the random coil polymer under investigation is enclosed in a tube formed by its 
neighbours. At the shortest timescale, motion consists principally of segment 
reorientation. The topology of the tube implies that some residual anisotropy will exist in 
this motion3. On the next higher timescale reptative displacements around tube bends 
occur, thus causing a fluctuation in the direction of residual orientation. On the longest 
timescale, final correlation loss occurs by tube renewal. 

l, 

T Ip is the relaxation time for a spin system to come to thermal equilibrium in a transverse 
RF field. It is sensitive to components of the motion at the RF Larmor frequency. This 
frequency is low and adjustable ( 102 to 1Q5 Hz ) and extends the regime accessible to 
Field cycling TI experiments4. T Ip therefore provides access to the intermediate and long 
timescale fluctuations in entangled polymers. It is a major conclusion of this work that 
reptation and tube renewal effects can be directly observed. 

The BPP theory of relaxation25 has been extended to T Ip for three proton spins in a 
methyl group. Results of a relaxation study in two polymer melt systems, namely 
polydimethylsiloxane and polyethylene oxide are presented. In the latter case the results 
are compared with T Ip dispersions made on Polyethylene melts 13. The experimental data 

is seen to follow the theoretical predictions made by Kimmich3,4. 
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Chapter 1 Introduction 
Pawn to King four 

1.1 Polymer Melt Dynamics 

Molecular motion in polymer melts can be studied using NMR relaxation time 
measurements to probe the spectral densities which are based on fluctuating dipolar 
interactions between nuclear spins. 

It has been shown 1 that there are two types of viscoelastic behaviour. Low molecular 
mass polymers behave similar to isolated polymers and follow the predictions made by 
Rouse2. The high molecular mass spectrum, however, can be separated into a high 
frequency component and a low frequency component. The high frequency component is 
similar to that observed in the low molecular mass polymers. The low frequency 
component exists due to the effects of entanglements in polymer melts. The molecular 
mass at which the characteristics of the melt change is designated the critical molecular 
mass, Mc . It is the topic of this thesis to study the behaviour of polymer chains of 
masses higher than Mc, since this is the regime where entanglements occur, and it is the 
effect of these entanglements which govern the overall motion. 

The motion can be separated into three components3. In the shortest timescale, that of the 
"local" ( and therefore molecular weight independent processes) the motion is largely 
due to segment re-orientation by diffusing local II defects 11 

( rotational isomers of 
neighbouring segments ). This motion can be considered to correspond to the diffusion 
of a particle between two reflecting barriers4,5 with correlation time 't8• 

Since the polymer chains are not able to pass through each other they are effectively 
confined inside a tight-tube region ( see Fig.1-1 ).This tube which surrounds the chain is 
not fixed in space but is constantly renewed as the chain diffuses throughout the tube6. 
This curvilinear chain diffusion, known as a a II semi-local " process, occurs in the 
intermediate timescale with correlation time 't1 . The dynamics of such a process has been 

studied by de Gennes 7 who shows that local defect diffusion is the elementary process 
which finally causes the II reptation II phenomenon; the motion is due to further segment 
re-orientation by reptative displacements around bends of the tight-tube. 

The centre line of the tube, called the primitive chain by Doi & Edwards6, moves 
randomly forwards or backwards only along itself. The chain ends are free, therefore, to 
orient themselves randomly. It is the reptative process which finally leads to the 
transportation of material to and from the chain ends causing the surrounding tube to 
thread itself into a new configuration. This tube renewal, a " global " process, occurs in 
the largest timescale with correlation time 'tr. 
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Fig.1-1 

Schematic illustration of a chain in polymer melts. 
The chain is confined to a tight tube formed by the 
matrix of neighbouring chains ( circles ). 
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1.2 The Relationship Between NMR Relaxation Times and 
the Spectral Densities 

The relaxation phenomenon is caused by the fluctuating dipolar interactions arising from 
the tumbling of the molecule. Although this tumbling motion is a random process it can 
be characterised by a correlation time, 'Cc. By taking the Fourier transform of the 

correlation functions the spectral densities can be obtained. If the conditions of BPP8 
apply then' by measuring T 1, the spin-lattice relaxation time, and T2, the spin-spin 
relaxation time, information can be gained relating to the spectral densities at the 
characteristic frequencies pf zero, ro0 and 2roo where roo is the Larmor precession 
frequency about the main field Bo. 

When T Ip is measured, the spin-lattice relaxation time in the rotating frame, it is possible 
to probe the low frequency regime, while maintaining the high field sensitivity, and 
extract information at the characteristic frequency 2ro 1, where ro 1 is the Larmor 

precession frequency about the RF field; hence, because ro1 is variable, and much less 

than ro0, this allows us to study slow semi-local and global processes, i.e motion 

sensitive to -c1 and -Cr ( see Fig.1-2 ). 

logJ ( ro) 
A 

◄ col 

'C -1 
I 

► 

( 102 to 1a5 Hz) 

Fig.1-2 

Schematic log J0 ( ro } dispersion predicted by the reptation model of 

Kimmich. 

log co 
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1.3 The " Tight Tube " Condition and the Polymer Melts 

The motion of the internuclear vector causes the dipolar interaction to fluctuate. In a 
polymer there is a hierarchy of motion with the local segmental reorientation being most 
rapid and the overall molecular reorientation and centre of mass motion the slowest. If the 
most rapid motion involves a total correlation loss then the slow motion cannot be 
observed in the dipole relaxation process. The " tight tube " condition arises when the 
rapid processes leaves a residual correlation which remains to be modulated by slow 
motion. Such a residual correlation is akin to a fast local motion residual anisotropy and 
is characteristic of polymers in the melt. By contrast, in the solution phase the local 
motion is isotropic and no long range processes can be observed . 

.. 
1.4 T 1 Dispersions - The Experiments of Kimmich et al 

In a series of papers Kimmich and co-workers[ 3,4,9 - 12 ] have examined the dependence 
of the NMR longitudinal relaxation time T 1 on polarising field strengths, a technique 

known as field-cycling spectroscopy. Their experiments yield spectral densities at 104 to 
108 Hz. In this thesis we extend this frequency range down to 102 Hz using Tip 
measurements. Two polymer systems are employed, namely, polydimethylsiloxane and 
polyethylene oxide. In the latter case the results are compared with T lp dispersions made 
on polyethylene melts13. 

It is a major conclusion of this work that T lp measurements ( unlike T 1 dispersions ) 
probe a sufficiently low frequency regime that reptation and tube renewal effects can be 
directly observed. 


