Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Depletion and Harvesting Thermal Energy from Actuator Arm Electronics in Hard Disk Drives

A thesis presented in partial fulfillment of the

requirements for the degree of

Master of Engineering

in

Mechatronics

by

Di Wu

School of Engineering and Advanced Technology,

Massey University, Albany

New Zealand

2011

Abstract

In recent years, thermally assistive magnetic recording (TAMR) has been applied on actuator arm electronics (AE) in hard disk drive (HDD). When HDD operates, temperature of the AE chip inside enclosure can be as high as 80-100 °C, primary caused by processing and conditioning of magnetic signals and heated by wasted mechanical energy in form of thermal energy. To guarantee reliability of electronic device, AE chip junction temperature should be maintained at a relatively low level, which requires novel depletion of thermal energy. There are generally two methods to manage the thermal dissipation of chips. One is to follow existing approaches that conduct the thermal energy from the topside of the chip to a heat sink through a conductive paste, or other mediums. The other way is to dissipate the heat from the inner surface of the chip to a heat sink through silicon substrate.

In this thesis, thermal analysis of AE chip junction temperature is presented and discussed. Depletion of thermal energy generated by the AE chip will be characterized among several thermal management configurations. Then, a thermal resistance network model is established for AE chip junction temperature to ambient. The thermal resistance network is based on heat transfer paths from the chip to ambient. Every thermal resistance in the network can be calculated by analytical expression. The accuracy of the presented model will be also proven through comparing the results of mathematic model and simulation. Finally, based on the thermal analysis and managements, design of a novel active thermal energy harvester to transform the wasted energy into electrical energy will be presented. Finite element analysis (FEA) software is used to simulate piezoelectric characteristics of the thermal energy harvester.

Acknowledgements

I would like to thank Dr. Jen-Yuan (James) Chang for the supervision of my research and guidance along the way.

For their invaluable advice and help, I would also like to thank Hongyi Cheng and Rana Noman Mubarak.

Lastly, I would like to thank the staff and lecturers of Massey University's School of Engineering and Advanced Technology at Albany for the interest shown in the project and their freely given advice.

Contents

Abstract	i
Acknowledgements	ii
List of figures	v
List of tables	viii
Chapter 1 Introduction	1
1.1 Problem Description	1
1.2 Thermal management	1
1.3 Literature of micro heat engines	3
1.4 Piezoelectric applications in MEMS	4
1.5 Organization of this thesis	5
Chapter 2 Analysis of thermal energy depletion	15
2.1 Description of solid model	15
2.2 Depletion of thermal energy	16
2.3 Chapter summary	
Chapter 3 Analytical thermal resistance model of heat transfer	
3.1 Model development	
3.1.1 Calculation of R _{ca} , R _{cm} , R _{am} and R _a	
3.1.2 Calculation of R _{sf} and R _{cf}	
3.1.3 Calculation of R_{c1} , R_{c2} and R_s	
3.1.4 Calculation of AE chip junction temperature	
3.2 Analysis of mathematical model	
3.3 Chapter summary	
Chapter 4 Piezoelectricity and its use in micro-thermal energy harvester	
4.1 Fundamentals of piezoelectricity	
4.2 Design of micro-thermal energy harvester	
4.3 Fabrication of piezoelectric membrane	
4.4 Finite element analysis	

4.5 Chapter summary	48
Chapter 5 Summary	66
5.1 Conclusions and contributions	66
5.2 Future work	67
References	68
Appendix A	71

List of figures

Fig 1.1 - Illustrations of different thermal enhancing techniques
Fig 1.2 - Cross-sectional view of the heat transfer model configuration
Fig 1.3 - Three-dimensional stack of micro-channels
Fig 1.4 - (A) Schematic cross-sections of standard preamp flex assembly and (B) improved
thermal design flex assembly10
Fig 1.5 - Schematic cross-sectional view of the micro heat engine: (a) in 'down-state' and
(b) in 'up-state'11
Fig 1.6 - (a) Actual device, (b) cross section during cooling, and (c) cross section during
heating12
Fig 1.7 - Photograph of micro heat engine with inset showing top view of engine13
Fig 1.8 - Assembled engine and thermal switch14
Fig 2.1 - 3.5-inch hard disk drive: (a) Photograph and (b) Solid model20
Fig 2.2 - Actuator arm electronics system showing location of AE chip on flex cable heat
sink: (a) Photograph and (b) Solid model21
Fig 2.3 - Schematics showing copper location, (a) and two different heat source locations,
(b) and (c)
Fig 2.4 - Temperature rising as a function of uniform source power
Fig 2.5 - Temperature rising as a function of center source power
Fig 2.6 - Temperature rising as a function of corner source power
Fig 2.7 - Changes of dimension and location of heat source
Fig 2.8 - Temperature rising as a function of dimension ration of heat source (Lh)
to chip (L)27

Fig 3.1 - Cross section of a typical chip packaging
Fig 3.2 - Thermal resistance network of the typical chip packaging
Fig 3.3 - Top figure: section view of heat sink layer, bottom figure: bottom view of heat
sink layer
Fig 3.4 – solder bumps and flex cable with copper embedded in, top figure: section view,
bottom figure: top view
Fig 4.1 - The perovskite crystal structure
Fig 4.2 - Mono vs Poly Crystals
Fig 4.3 - Polarization of ceramic material to generate piezoelectric effect
Fig 4.4 - Cross section of thermal energy harvester
Fig 4.5 - Fabrication of the piezoelectric membrane generator
Fig 4.6 - Schematic flow chart of silicon membrane fabrication
Fig 4.7 - Schematic flow chart for the fabrication of the PZT membrane from a
micromachined substrate
Fig 4.8 - (a) Clamped boundary condition, FEA model of membrane structure (b) complete
mesh, (c) close up of membrane structure
Fig 4.9 - Static pressure-deflection curve for a 2mm membrane generator
Fig 4.10 - Deformation of the membrane generator
Fig 4.11 - Strain distribution of the PZT membrane surface
Fig 4.12 - Electrical potential distribution of the PZT membrane surface60
Fig 4.13 - Electrode location
Fig 4.14 - Average voltage versus different electrode sizes
Fig 4.15 – Laminate

Fig 4.16 -	Voltage output as a	function of pressure	64
------------	---------------------	----------------------	----

List of tables

Table 2.1 - Comparison of thermal dissipation	28
Table 3.1 - Dimensions and thermal parameters of the system	.40
Table 3.2 - Comparison of data obtained by the present model and simulation	41
Table 4.1 - Mechanical properties.	65