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Abstract

This thesis is primarily concerned with the numerical techniques involved in bifurcation
analysis, in particular with the software package AUTO developed by Eusebius Doedel

which performs this analysis on dynamical systems.

The technigues of AUTO are investigated and applied to a steady state heat equation.
The chosen equation can be solved by analytical methods for some boundary conditions.
Initially AUTO was successfully applied to such problems, which have analytical
solutions confirming its reliability. The software was then used to solve dynamical
system problems which do not have known analytical solutions. These problems
necessitated a muodification to AUTO for non-autonomous systems. The maodified

version of AUTO was shown to be successful in finding selunions to these problems.
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1 INTRODUCTION

1.1 BIFURCATION ANALYSIS

Bifurcation theory allows the analysis of a system (or model) with a control parameter
which is fixed (in any single instance) but can vary depending on the system which is
been modelled. For example, if the load on 4 vertical beam is greater than a certain
amount, the beam will buckle causing a deflection (see figure 1.1). At the point of
buckling, the solution structure changed. There 1s a solution branch where there is
buckling, and a solution branch where there is none. The solution branch has bifurcated
into two branches. The control paramerer (L) for this system is the load on the beam.
It is fixed for any particular set of physical parameters, but if varied, the solution
structure may change. This system could have many other variable parameters (for
example the elasticity modulus of the beam); however Iif only one parameter 1s varied
at a time then its effects may be seen without other parameter variation influencing the

results. This 1s the technique used in bifurcation analysis.
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Figure 1.1: A bifurcation Graph for the load on a beam



The control parameter for a system is usually called the distinguishing paramerer,
principle paramerer |, or the bifurcating parameter, and will be denoted by A. As the

previous example has shown, changing A changes the structure of the solution set.

BIFURCATION POINTS

Bifurcation analysis is the process of finding critical values of A which change the
solution structure. A bifurcation graph 15 generated to aid this task. A bifurcation
graph plots A against some norm of the solution (see figure 1.2).  Solutions to the
system are represented on this graph as curves or branches, where a branch is defined
as a curve which can be parameterised by a single parameter. If, in a small
neighbourhood of A, there is a point A, at which the number of solutions change (in
every small neighbourhood), then this point is described as a bifurcation point. These
points are important as a change in the number of solutions indicates a change in the

state of the system.

The system will be defined as:
(1.1) F(u,1) =0
where u = [t , ¥, , ..., 4,]" , A 1s a scalar and F = [F, F,, ... , F]' is a system of

equations.



The Jacobian operator F, for this system is defined as:

[oF, &F, F,
u, du, du,,
oF, OF, oF,
(1.2) F =|0u, ou, u,

aF &F oF

_8u1 du, aun‘
This system has a solution set:
(1.3) S, ={ueR*| Flu, 1) =0}

for a particular value of A. A point X, is a bifurcation point if S, #o, and there is
o]

a u{}ES{,‘0 such that, for all sufficiently small neighbourhoods

U={uc 3| B, - ) (e }and V={ Ae R | A, - A {6}:
there are two distnct solutions (i, , A) and (i, A)e UXV (see reference [3]). That

is there is more than one solution of x for a particular value of A.



4

A bifurcation point on a solution branch can be sub-divided into one of two categories,

a limir point and a branching point (see figure 1.2),

Nl k_/_m__—*——/—:;,—»—-”x
/ :
Key: —&
x = fimif point \
o= branching point X
_/'J/

A

Figure 1.2: A Bifurcation Diagram
Limil point:

This is when the solution curve folds back on itself.
A limit point (A, , uy) 15 defined to be a bifurcation point which has solutions
(A ty) 1n the neighbourhood UxV such that :

either A, <A forall AeV, or A 22A;,foral AeV.

Branching Point:

This can be defined as a bifurcation point which is not a fimit point.

Note that any single branch can be parameterised using a single parameter ¢, giving a
solution space { (u(r), A(D) 1 a <r< b }. Soan alternative definition of a limit point

is a point { u(zy), Alzy) ) such that X'(z) =0
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Other conditions for bifurcation points can be found by introducing the Implicit

Function Theorem:

Theorem 1.1: The Implicit Function Theorem (see [12], Page 78)

If
(i) F 1is continuously differentiable and
(it) F, has a continuous inverse at a §oint {u,, A, in solution space (1.3)

then for the neighbourhoods:

U={ue 9?“' lu, - f(etand V={4e R f A, - X0 {8):

(a) F, has a bounded inverse for all points (i, A, ) € UxV.

(b) for all fixed A eV, the equation F(u, A) = 0 has a unique solution

e . | |

This implies that, when F, is non-singular, there are no bifurcation points. So a
necessary (but not sufficient) condition for a bifurcation point is that 7, is singular.
If Theorem 1.1 holds then a branch B of solutions can be defined:
(1.4) B={(u(X), ) |a<i<b, F(u(1),A)=0}, where a,beR
The solation (0,A) is called the wivial branch. This happens when F(0,A)=0 for all
values of A (1.e u{A)=0).

Theorem 1.2: (see [12] page 79)

If the trivial branch exists and Ag=0 is an eigenvalue of the Jacobian F, then

if A4 is an eigenvalue of odd multiplicity, A, is a branching point from the

trivial branch,

ie. 2=10 is a root of der(F(0) - Al ) =0 which is of odd multiplicity

{where F (0) is the Jacobian evaluated at 1=0). n

Note: A, and A are different variables.
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This 1s a sufficient condition for a bifurcation point. Note that if the multiplicity of the
eigenvalue 15 not odd then it is still not known whether the point is a bifurcation point.
If the trivial solution does not exist, or bifurcation points from other branches are
wanted, then Theorem 1.2 cannot be applied. So this theorem only locates bifurcation
points which are on the trivial branch. To find bifurcation points from other branches,

the system has to be converted into this form by linearisation:

If & solution branch (U = u(A), A) is known then equation (1.1) can be
linearised such that:

(1.5) H(h,p)=F(U+h, p)=0

where h is a vector [A,, h,, A1, and u = A is the new bifurcation parameter
(it is given a different symbol as A 1s fixed by the solution branch /).

H(0, u) =0, for all u, so Theorem 1.2 can be used w find bifurcation points.
A bifurcatton point p,=g(U) in system # can be related back o F by
substituting u, with A and solving A=g(U) for A.

Note that this requires an existing solution branch U.

Example 1.1:

Define F to be the system:

S 0,,A) =uf +u, ~Au, =0
PR =u12u2 ~u13 - Au, =0
This system has the trivial solution branch (i', M)= (0,0,@), ac K. But does it have any

other branches? The implicit function theorem can be used to find possible bifurcaton

points along this branch.



The Jacobian F, along the trivial branch is:

This is singular when the determinant is zero, i.6 when A=0. So by Theorem 1.1 A=0
is a possible bifurcation peint. At that point F, has a zero eigenvalue of multiplicity
2, which 1s even, so that Theorem 1.2 does ncIJt prove whether it is a bifurcation point
or not.

However if some algebraic manipulation is done on the system, one finds that
{{a, 0, }) , a > 0} is not a solution and also {{G, b, A), 6 > 0} is not a solution so
non-trivial solutions only exist if u,, &, #0. Eliminating A gives:

24
Uy =~y

which has only the trivial solution. So as there are no non-trivial solutions, A= is not

a bifurcation point. n

Example 1.2:

Define F to be:

F(gie, ) =ul - du, =0
(#5100, 0) =15 = A, =0

This system has the trivial solution branch. The Jacobian F is:

2u,-A 0

“1 0 2u-h

The trivial branch (0,0,q) has a possible bifurcation point when A=0.
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F (0} bas an eigenvalue of multiplicity 2 at that point, which is even, so Theorem 1.2
does not prove whether it is a bifurcation point or not. Clearly A=y, and A=u, are non-
trivial solutions. So solution branches {(a,0,2) (0.a,a) and (a,a,a) exist for a € R, and
(0,0,0) is a bifurcation point. F, is not singular along any of the non-trivial branches,
so by Theorem 1.1, there are no new bifurcation points comng off these branches. The

bifurcation graph for this system is shown in figure 1.3.
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Figure 1.3: Bifurcation diagram for Example 1.2



Example 1.3:

Define F o be:

Jiltuy,h) = 16u, + 12uf +24u1u§ - Au, =0
£, 3) = 120, + 92, + 181,uf — Auy =0

This system has the trivial branch as a solution.

For points along this branch, the Jacobian F, becomes:

0 12-3

i6-1 0 ]

This is singular when A=16 and A=12 where the nullspace is one-dimensional. So by
Theorem 1.2 these points are bifurcation points. As A has values both before and after
these points (in thelr respective neighbourhoods) and also by Theorem 1.2, they can be
sub-categorised as branching points (using the definition of a branching point defined
earlier).

The branches can be found analytically and are:

’1 ' 1
5| =(A-12 ] —(A-
Q, 9( ) 12(1"» 16), ©

To find bifurcation points along non-trivial branches, the system needs to be linearised

4

and u, =

¢

ua=

about each solution branch by defining the system: H(h,u) = F(U+h, ), where U 1s a

non-trivial solution branch u(A). The Jacobian H, along the solution branch (2=0) is:

16 +36U7 +24U; -1t 48U, U,

(1.6) H,0) =

36U,U, 12 +27U7 +18U2 -1
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For the first branch i, (inserting it in the system H and making n=_) the determinant
1s zero when:

16 + 24U, (A) =4, and 12 + 27U,(A) =& (as U,{A)=0)

This corresponds to A=12 and A=9.6. The first point is the existing bifurcation point
from the trivial solution. The second point is not in the range of the solution space (of

A>12). So by theorem 1.1, there are no more bifurcation points along this branch.

The second branch u, makes the determinant zero when A=16 and when A=24. The
first eigenvalue is the point where this branch connects to the trivial solution. The
second point is a possible bifurcation point. By theorem 1.2, A=24 is a branching point
from the branch u,.

This new branch is;

+J (A -9.6) i\J (A -24)

21.6 54

It is more difficult to find branching points from this branch as U/, and U, are both not

ZET0.
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So the analysis stops here, and a bifurcation graph of the results can be seen in figure

1.4.
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Figure 1.4: Bifurcation diagram for example 1.3
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NORMS
Bifurcation graphs require a single value from a vector of many solution values to plot
against the distinguishing parameter A. The most commonly used value is the

Euclidean norm:

2. 2 3
leell, =v/uq +uy +.. +u,,

where uz[ul u, .. u
If a particular variable u, is of interest, then ||u]| = |1 can be used. If a bound is

wanted on the variables the ee-norm (|[u]|..) can be used where:

|=¢
[[e]].. = max{ly; | :i=1,.., 7}

Each definition will give a different bifurcation diagram. Some may not show

bifurcation points, or may show branching points which do not exist.

For example, the point #=(1,2) has the same Fuclidean norm and se-norm as the point
u=(2,1} , so the two solutions from different branches will appear to be intersecting on
a bifurcation graph. However the norm [j¢[|= Tu;l will graph the two points differently.
Another example considers the curves u, = (&, A+1) and u, = (1-A, A+1) which intersect
when A=%. [lujl.. =A+1 for all positive A on both solution curves. A bifurcation graph
of A versus jlu||.. will show an intersection of the two curves at all values of A greater
than zero.  This problem is due to the difference between the dimension of the
bifurcation graph, which 1s 2-dimensional, and the dimension of the system which it
graphs. These two examples show that care must be taken when choosing a norm to

ensure the solution curve is represented clearly on its bifurcation graph.



SYSTEMS OF DIFFERENTIAL EQUATIONS

The previous analysis is for algebraic systems of the form F(u,A)=0. Now consider the
situation when the model is a system of differential equations. i.e. F(D(u),A)=0 where
D(u) 1s a nxn matrix of all the derivatives of u with respect to £, where « is a vector of
independent variables, and ¢ is a vector of dependent variables.
The solution space 1s:

{ @) | ue R, e R, he R},
For each value of A, there exists one or more vector fields w{r) of solutions.
The definitions for bifurcation points, limit points and branching points can still be
applied to this system by defining a fixed point u=u(r) which must satisfy the
definitions for all values of re R'" .
Theorems 1.1 and 1.2 are not easily applied to F as the Jacobian F, is undefined.
There 18 an analytical method for transtorming a D.E. system into an algebraic system
using an appropriate Green’s integral, in which case the theorems can be used. This
method will not be covered in any detail other than to say that it is very difficulr to do
for all systems except very simple ones. (see Gomez’ thesis [5] and [9]), and then one

still needs to find the function A from (1.5).
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The existing norms can be applied at any fixed point & (usually the maximum). If there
1s only one dependent variable ¢ defined over a fixed range [0,77], then there 1s another

norm which can be applied:

T
1
lize] = - ﬂul(z‘)2 (B +.. un(r)z}dr
0
This gives a Euclidean-type norm which encompasses the value for u over the whole

interval, rather than just a single value, so all points have an ’effect’ on the norm.

To make use of these theorems, one needs analytical solutions, which are only found
in a very small subset of non-linear systems. Solution branches can be determined

numerically, and Chapter 2 presents methods for doing this.
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1.2 COMBUSTION MODELS
Cellulosic materials such as wood chips (or shavings or sawdust), hay or bagasse are
stored in large piles under conditions which may vary in temperature and humidity.
Under certain conditions, the material spontaneously combusts, possibly causing

substanual damage.

For inert isotropic bodies obeying the Arrhenius Law the Fourier heat balance equation

becomes (see [7] and [11]):

-E
kV2T+q0A.e(RT)=C%z in the region PeQc®®, >0
¢

with boundary conditions:

k? +h(T-T)=0 on 9Q (assuming Newtonian Cooling)
{1

9T 0, when x,-0 Vi

X

where T(x,t) is the absolute temperature of a body at position vector x and time ¢, £ is
the thermal conductivity, and ¢, G, and A are exothermicity/unit mass, density and
frequency factors respectively. E is the activation energy of the oxidation reaction, C
is the specific heat capacity, and R is the gas constant. V*T is the Laplacian operator.
In the boundary conditions, k is the heat transfer coefficient, and 7, is the absolute
ambient temperature.

The first boundary condition ensures that the temperature at the surface of the reactant
1s equal to the ambient temperature minus the effects of Newtonian cooling at the

surface. In a symmetrically heated system, it 1s assumed that the temperature gradient

at the centre is zero, resulting in the second boundary condition.
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The steady state model for this system is:

(5)
kVPT+god .e' ®/=p
kz—T +T-T)=0 on boundary 3Q
n
gxz=0, when x=0 Vi

This system in symmetrical shapes can be converted to the dimenstonless form (see [7)

and [117):
2 .
du jau +Aage =0

(1.7 ar: radr

du du .

—) =0, —(1)+Biu(1)=0

dr( ) dr( ) (1)

ET-T) . . rat
where u=—2 is the dimensionless temperature excess, q. sa
RT’ 0

a

dimensionless length-scale (same for objects of any size) in the interval [0,1], with g,
representing an appropriate characteristic length such as the half-width of the body,
Bi = hay/k ( > 0) is the surface heat transfer coefficient (denoted as the Biot number),

and A is the Frank-Kameneiskii parameter [1] given by:

RT,

a:qu.e(-i"J

Aay =
RT?
E

k

The value for A is crucial. Solutions only exist for certain values of A. The maximum

value of A occurs at the point where the substance will combust spontanecusly.
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In physical terms if, for a given ambient temperature the substance radius 1s larger than
a critical size, then there are no steady states for temperature in the substance, and it
will combust spontaneously over time. This critical value for A is denoted by A,

d’u _jdu . - : ies in di on j i
"_2+_d— i the Laplacian Au for Class A geometries in dimension j+1. ie.
ar rdar

geometries which have a single unit of measurement.

EXAMPLES

An infinite Stab (j=0):

AU e e ol

dr?

An infinite Cylinder (j=1)

2
du  ldu +Ae“=0
drz rdr

A Sphere (j=2):

@4-2.@-}&3“:0

a2 ror
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There exists a well known analytical general solution to equation (1.7) when j=0 (see

e [

where A and C are constants. C must be zero to satisfy the first boundary coadirtion.

[7)):

(1.8)

u(r) =In(4) - 2ln| , A>0)

The norm, which will be plotied in the bifurcation diagram against A, is the maximum
value of & over 0<r<1 denoted by u,,,,. Over this range the maximum value of u occurs
when r = 0, so the norm u,,,, is:

U= o = U (0) = 1n (4)

An implicit solution relating u, to A, for A > 0 is found by replacing In(A) by the norm

Uy, and using the other boundary condition:

l.te
(19) In(A) = In202) - 2Incosh(e) - 24 200(E) “"’éﬂ’("‘) where o = IA% and 1>0.
1

When A=0, u is the trivial solution u(r)=0 for all r. As i, and A are unique for each
value of ¢, the solution curve can be parameterised by o, giving a branch (uy{c),A(0))

of sclutions.
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The solution when Bi = 1 is plotted in figure 1.5.
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Figure 1.5: Bifurcation graph of system (1.7) with j=0 and Bi=1.

The maximum value of A is at a limit peint, A_,= 0.270671.

crit—

By the definition of a limit point (see section 1.1), a limit point 1s a pomnt when

A(a) = 0, or equivalently %ln—;g =0. Also as the entire solution space is parameterised
a

by onie parameler, there are no other branches, and therefore no branching points.
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This gives an implicit equation for the co-ordinates of the lirmt point, for any given
Biot number Bi:

(1.10) g oSSO0, ) coshla,,) + o
[1-ea,, tanh(e )] cosh®(

CFit

cr:':)
where 0O, is the value of ¢ when 1t 1s a limit point, from which the corresponding

values (ug).;, and A, can be attained by using (1.9).

A singular solution of (1.10) occurs when the denominator 1s zero and Bi = <. This
is called the Frank-Kamenetskii boundary condition, and corresponds to perfect heat
transfer at the surface of the object. The last term of (1.9) becomes zero when Bi = o,

and A can be defined explicitly in terms of iy

a
2

2 {cosh™ l(e
e

A= 12

The limit point (when ﬂ =0 ) is 0.87846.
du,

A general solution also exists for equation (1.7) when j=1 (the infinite cylinder):

(L11) u(r) =1n[%(1 +Ar2)z}
where A is a constant of integration. Similar analysis may be used on this to give an
implicit equation for A and u,. From (1.11), #y= t,,.= In(8A/A) and introducing G = A

max

results in;

_{ 4G

: . where G=1¢%
Bi(G+1) 8

In(A) =|.n{ 8G
(G+1)?



21

The limit point ( (Up)ege Aer) OCCUTS when dgnl)

=0, and results in the implicit

equation:

. 4G,
Bi=———

(1- Gczrfr)

When Bi=ee, an explicit solution for A in terms #; exists:

% )
=8l 2 -¢ @

and A 15 2.

A general solution for j=2 (or more generally for j={0 or 1] ) has not been found.

Chapter 3 discusses a numerical approach for solving (1.7) for any j and Bi.

THE SHAPE FACTOR

The examples so far are Class A shapes which have Laplacians which are of the form

. o _d*u _jdu ) r
of equation (1.7). The Laplacian Vg =— +_? can also be used to approximate
drc rar

non-Class A geometries. Boddington, Gray and Harvey [1] developed a technique for
using (1.7) to mode] any shape possessing a point of symmetry by defining j as a shape

factor:

2
(1.12) j:3ﬁ—1
Rg
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where R; is the Seminov radius [1], and R, is the harmonic root-mean-square radius of

the body:

volume 1

R=3———r —= ! ffi&—} where dw is the solid angle subtended at the
¥ surface area R? 4m'/ g2

centre O and « is the radius from O to the edge for given angle co-ordinates.

3
For example, a cube of volume (2a)® has Ry = 32a) =g, and
6(2a)’
3
R,=a : 2,/3 =1.194a so the shape factor j for a cube of any size (as the a’s cancel)
PRl Sl
T

1s 3.280 (using (1.12)).

The harmonic root-mean-square radius RA, for any unit Class A shape 1s defined (see

[11) as:

RAG=G+1)
A shape X is modelled by a Class A shape of radius ¥s(j+1), where j is defined using R,
and R, from the original shape X. This results in solving a modified version of (1.7)

which has a new parameter A(Ry) (see [11):

du_jdo
ar®* rdr

du du .
{0 = — (D +Biu{l) =
dr(O) 0, dr()+ iu(1) =0

+%0‘+1)A(RD)3“=0

This system gives an approximate value of A for shape X.



A can be found for the unit shape X by scaling A(R,) by Ry~
So (1.7) can model a shape of unit size by:
1 -> Calculating the shape factor j from (1.12)
2 ->» Solving (1.7) to get solution points (i, A; }
3 -> Scaling A;
34,
 G+RAL

A
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Table 1.1 has some more examples of shape factors. RAg is easy to find, but RA, 1s not.

(There is list of formulae of R, for simple geometries in [1]).

Table 1.1: Example Shape factors

Geometry RA, RA, J
Infinite Slab 3 3 0
Rectangular Parallelepiped (ratio 1:10:10} 1731 5/2 0.438
Infinite Cylinder 1.225 372 1
Infintte Square Rod 1.354 372 1444
Rectangular Parallelepiped (ratio 1:1:10) 1.354  10/7 1.694
Sphere 1 1 2
Equicylinder 1.115 I 2729
Cube 1.194 1 3.280

Regular Tetrahedron

0.537 0.408 4.178

Boddington, Gray and Harvey [1] showed that, for convex bodies, the shape parameter

has values lying berween 0 (the infinite slab) and 4.178 (the regular tetrahedron).
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2 -
a® N 148 can be thought

If N =j +1 is defined as the dimension of a sphere, then
dar? rodr

of as the Laplacian of the N-dimensional sphere in spherical co-ordinates.  So, using
the shape factor j , an object can be modelled as a j+1 dimensional sphere, where j is

a positive real number.

RESULTS FOR ARBITRARY ;

A phase plane analysis of (1.7) by Wake [14], has shown that for I</<9 | as u
increases, A converges to A, where :

2
A,=2(G-De B

{1.14)
He also showed that there are an infinite number of sclutions to (1.7) when A=A_.
This implies that the bifurcation curve has a damped oscillation about the line A=A,

with amplitude decreasing as u increases. As there are infinitely many oscillations

about a vertical line, there are also infinitely many Iimit points.

No analytical solution to (1.7) has been found for arbitrary j and Bi. The rest of this
thesis discusses techniques for numerically solving (1.7) to generate bifurcation graphs
for any j or Bi value. The analytical results of this Chapter are used to test the

accuracy of the numerical results.



2. NUMERICAL TECHNIQUES

This Chapter describes the numerical techniques used by AUTO to perform bifurcation
analysis on autonomous boundary value problems (BVP’s). Numerical methods for
bifurcation analysis of algebraic systems are presented followed by a method of
discretising BVP’s by collocation. Then it is shown how bifurcation analysis of BVP’s
can be performed by applying the techniques used for algebraic systems on the resulting
discretised system. Finally, the numerical techniques of AUTO are extended for non-

autonomous boundary value problems.

2.1  ALGEBRAIC SYSTEMS

This section locks at bifurcation analysis of algebraic systems of the form:

2.1 O0=FQ,X), F(.): R LeR, uck

where A is a free parameter. If F is continuously differentiable and £, has a continuous
inverse at all solution peints ( u(s), A{s) ) along a branch for a £ s < b, then the Implicit
Function Theorem (see chapter 1) ensures that there exists a smooth continuous branch
where £ is non-singular, and the solution has a parameterisation of the form

{ (u(s), A(s) )I a <5 <6} where A(s)=s. This is called a simple branch.
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Then from some starting value x, = (i, A,) = (u(sy), A(sy)) a curve can be generated:

B du ar
2:2) Flu(s), A(sp)=0 = F, o +F 22 =0
and, as A=s; % =1, so that (2.2} becomes:
du
(2.3) F [u(rp), JBO)H = -F,[u(A), 1)

An Euler predictor with Newton Corrector [£] finds a predicted value from:

(2.4) Solve FfufzuFf to get uf

(2.5) where F, =F (u,h) and Fy=F,(ugho)

and 1,° is used to predict:

(2.6) 200+ 8A) =ulhy) + Sruy
A0=2, +52

where 8A is an arbitrary step size. This gives an initial value (¢°,A°) for the next point

which can then be improved by the Newton Corrector:
(2.7) solve F,du*=-F", to get du”

and an improved u” 1s then given by:
(2.8) Wl e 8y
where v is incremented from v=0, and the sequence (2.7) and (2.8) is repeated until du
1s sufficiently small.

Note that the Implicit function theorem (see Chapter 1) implies that, when the Jacobian
F, 1s not singular, there cannot possibly be any bifurcation points as part (b) implies

that there can only be one solution for a particular value of A. Hence the

parameterisation s=A will work in all cases where there are no bifurcation points.
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What if there are bifurcation points? F, is singular at these points (by the Implicit
function theorem) and when F, 1s singular, (2.4) and (2.7) have no solutions.

If there is a branching peint A,,, then there is a possibility that the procedure could
work, as there are points A< A,, and A> A, which have non-singular Jacobians (by the
implicit function theorem), and so can be found by this methed. So, as long as the
exact point A, is not found, the Jacobian is nbt singular and the procedure is likely to
work. But if there is a limit point A, then there is no solution for either A< A, or
A > A, so the method will fail to find the points on the branch which are past the limit

point.

If another parameterisation is used (instead of s=A) which does not make F, singular
at limit points, then the Euler predictor with Newton Corrector method could still be
used. It should be possible to find a single-parameter parameterisation that has a non-

singular Jacobian at limit points because the curve is still unique.

If a normalisation N{1,X,8)=0 is added to the system (2.1), a new system P(u,A,8) is

formed, where u and A are now dependent on the parameter s:

A
29 x(5) t((s)) . PG(s), 9) { e 1)
5

N(u, .,s)

then the Jacobian becomes:

F(u(s),A(s))  F,(u(s),A(s)

P (x(s),s) = N (u(5), A(s),8) N, (u(s), A(s),s)

If this is non-singular then the Euler predictor with Newrton Corrector method will

work. Note that £, 15 singular at bifurcation points but £, might not be.
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The following theorem about partitioned matrices from linear algebra is helpful in the

context of the previous matenal.

Theorem 2.1 (see [8] )

A B
For a matrix M:]C D}’ where d isan n X rmmatrix, Bisarnx 1, Cisal X »n, and

D is a 1 X 1 matrix, if NS denotes nullspace, and CS denotes column space:

{1 If A is non-singular then M is non-singular iff D - C A" B is non-singular

(2) If A 1s singular and dim NS(A) =1, then M is non-singular if dim CS{B)=1,
CS(B)NCS(A)=0, dim CS{C)=1, and NS(AINS{C)=0

€)) If A is singular and dim NS(A) > 1 then M is singular. |
A parameterisation which 1s a function of the arc-length of the curve will make it
possible for P, to be non-singular around limit points, even though F, 1s singular. This

1s the idea behind Pseudo-arciength parameterisation.

Pseudo-Arclength Parameterisation

The arc-length s(z) for the system (2.1) with solution (u(z), A(2)) 1s:
3
st = [l Aco)f d

where T is a variable of integration. This implies that [s’(OF = |al? + |4 2.
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If =5, then the system is parameterised as the arclength such that

goli + Aok -1=0

where ¢ is the inner product:
xox=0%x, +B2x.x, +... +8%% x , where x,8 R
Xy YUK, T UK X »

Note that € acts as a scaling factor to scale each co-ordinate of the x vector.

The problem with this parameterisation is that if an iterative method is used (like the

one mentioned previously) # and A are not known. But they can be approximated

. ) ) i A-A ) .
using previous points as J~land 71 respectively, giving:
At At

||u - uj..lllz * ”l - lj_lllz = ASI'

Note that the points # and A are unknown in this equation. To make this equation
linear in terms of the unknowns, Herbert Keller [§] used a different approximation to

the arc-length:

(2.10) w-u_ =i As+O(|As[?)
A=k =k As+O(|AsP)

so the arc-length as is approximated by:

(211 N A ,8) =8 -u,_ yi+B5(A -4, )-A-as=0.
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where the direction vector (&, A) is approximated using previous points (as in (2.10)

except the direction vector is scaled):

o1
(2.12) @)= W T Ay =)

Zp . 2 (s

and 8 Juf*+0;[A|%=1
8, and 6, are weights to scale the co-ordinates u and A. Most of the time 8,=6,=1. as
is the stepsize along the branch. The direction vector is normalised so the size of the
change in & and A is proportional to as, which is fixed, so s can be used as a step size.
(2.11) has dependent variables u and A and as which change at every step depending

on the value of i and A at previous steps.
Initially there are no previous points, so the first direction vector (#g,4g)' is

approximated as the nullspace of [F, | F,} which 1s found by solving:

(2.13) o
: [Fu : F;.] . =0
A

Provided F, is non-singular, (2.13) has a one-dimensional nullspace. A single vector
1s then chosen by scaling the direction vector as in (2.12). This will only work if the
starting point is not a bifurcation point (i.e. £, is non-singular).

Theorem 2.2 (see [8])

[f every solution point x; on a branch is defined as either:

(a) a regular point (F,_ 1S non-singular ) or

{b) a normal limit point

condition 1: dim NS(F, )=1
condition 2: F;, CS(F) = 0

Then the Euler-Newton Corrector method will numerically generate the branch.
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The proof of Theorem 2.2 is as follows:

The Jacobian of P 1s:

Fu Fl

P =

2. t 22
B’ 014
At a regular point £, 1s non-singular and ijis.not zero (as (2.2) is satisfied and F, is

non-singular), then

i,

= ~(Fuj}‘1Flj (by using (2.2))

Af

and part (a) of Theorem 2.1 is sausfied, so P, 1s non-singular. if x; is a normal limit

point, then A; = 0 (by (2.2) and condition 2), implying djeNS(Fuj).
Using condition [ as well implies LéjefCS(Fu}f)‘

This combined with conditions 1 and 2 mean that part 2 of Theorem 2.21 1s satisfied,
hence P, is non-singular. This proves that (2.9) with parameterisation N defined in
(2.11) will pathfollow using the Euler predictor with Newton Corrector around regular

limit points. |

Another way of defining a regular limit point is to define it as a polnt where the
Jacobian P, 1s non-singular. But it 1s still possible for P, to be singular, for example

when dim NS{F, )>1 or when F,e CS({F,).
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At a branching point, there s no unique direction vector [, A ). Equation (2.2) must

be satisfied so this means that the solution to (2.2) has to have at least 2 parameters (i.e.

is of dimension 2):
i
(F,:F,] . |=0
A

This means that either NS(F)>1 or F,e CS(F ). So by Theorem 2.1, the Jacobian P, is

always singular at branching points.

If this happens, then 1t may be possible to continue past the point by ’jumping’ forward,
if there is a smooth arc of solutions x(s) for s,<s<s, , of which only P (s,) is singular,
One methed is to adjust the stepsize so the corrector converges to a point which is not
a bifurcation point using 2 previous points which are not bifurcation points. These
points will always exist if £, 1s only singular at ene discrete point, in the neighbourhcod
of s.

So this leads to a pathfollowing algorithm based on the pseudo arc-length

parameterisation and the Euler predictor with Newton corrector.



PSEUDO-ARCLENGTH PATHFOLLOWING ALGORITHM

INITIALISATION
a=0, x =x(s)) =[ua, la] (not a bifurcation point)
x=NS{Fu :F, }, such that, %=1
i

If @ >0 then % is defined as:

- i
(,A) = :S-(ua iy A’a B l‘a—l)

such that O [i| +65 |4 [2=1

)

PREDICTOR
xé?)l =x,+(As)X
CORRECTOR

Ntf:)l = Bi(“ﬁl AR Bi(lt(:vzl =R A -as

(Fu)a +1 © (F.l. )a + 1(\’}

J 2 2
e’u’ O

a+l

to get Ox then define:
(v+1) 0

a+l ~KXas1 't &x

letv=v+1

1
IAxl,_

1+|x].,
A
Adapt stepsize (see next page)

itv>vy,, or {| then repeat corrector

ifvay ,thenleta=a + 1

33
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The corrector iteration is stopped either if it has converged (the predicted relative error
is less that £) or if it fails to converge after v, iterations. Note that the relative error
has a 1 in the denominator to prevent division by zero. If it fails to converge, the

previous point is used again with a different (smaller) step size.

ADAPTIVE STEPSIZE

The speed of convergence of the Newton corrector iteration gives an indication about
the accuracy of the initial Euler approximation, and as this approximation is
proportional to the stepsize, then the convergence of the Newton corrector can be used
to indicaie whether to increase or decrease the step size As. If the Newton corrector
converges in fewer than v, iterations, then the stepsize is increased, and if it would
require more than v, iterations to converge then the stepsize is decreased. With an
adaptive siepsize, the algorithm is less likely to fail or to be too slow, because the
stepsize acts as a buffer for change in the solution structure. It also can be used to

avold 'landing’ on branching poinis.

DETECTION OF BIFURCATION POINTS

A bifurcation point is detected by defining a function g(x) (where x = [u, A]'), which
has a zero at this point. A change of sign in g(x) indicates the presence of a zero

nearby. A more accurate value of the zero can be obtained using the secant method:

x'l-" _xV']. ( v)
X, =%, ——————qx
: q(x) ~q(x, )

where v 1s iterated from I until the process converges. ¢(x) is defined for limit points

and branching points as follows.
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Limit Points
A limit point occurs when A'(s)=0, and changes sign before and after. A’(s) can be

determined accurately by solving the system:

F [/ 0] + F,[A©] =0
alu 0] + MM 0] =1

The first equation comes from (2.2), and the second equation is the Pseudo-arclength
parameterisation. The solution vector [¢/,A"]' is normalised so A’ is proportional to the

distance away from the limit point (when A'=0), so that:

Jc):—~——!1 ; A7
AL, ATl

A’ is the horizontal-direction of the curve which must change sign at a limit point. So
g,{x) 1s a suitable function for the root finder.

Branching points:

The Jacobian P, 1s singular at branching points, So that its determinant 1s zero at a
branching point:
q,(x) =det(P)

1.e. F, has a zero eigenvalue. If this eigenvalue 1s of odd multiplicity, then the sign
of the determinant will change at the branching point, and also by Theorem 1.2 the
point is guaranteed to be a bifurcation point. [f this eigenvalue is of even multiplicity,
then the point is a possible bifurcation point, and the sign does not change. These
points will not be detected as bifurcation points in AUTO. Note also that as P, 1s not
singular at limit points {(by Theorem 2.2), only branching points will be detected. So

q,{x) is an appropriate root finder for the detection of branching points.
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CONTINUATION ON A NEW BRANCH

When one or more branching point(s) are located on a branch, the new branches can
be generated, by starting at a branching point x,= [#,,A,]’ and choosing a new direction

vector.

Any direction vector must be in the null space' of [FU1 F’ (by using equation (2.2)),

using the convention: F,” = F, evaluated at x,.

If the branching point has NS(F,)=m and F,e CS(F,), then {¢,, ¢, , ..., ®,.} can be

defined such that:
NS(F = a0, + a0, + ... + a6,
and
Flo,+ F, =0.

This can be substituted back into (2.2) to get:

F Ay =0.

So #1s a linear combination of the ¢, °s :

(2.14) iy= Y ad, where = Ao
i

The double derivative of £ (or "double’ Jacobian) is:

(2.15) Fli+ Fflo = -w, where w =[Ffuzi0:i0 + QFEA%}-»O * F:?xioio}

As F,%e CS(F%), w must also be in the column space of F,°. So the direction vector

must have the form (2.14) with w in the column space of F.° (see (8]).
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This provides sufficient information to compute the direction vectors, but is a very time-

consuming process.

If one direction vector X, is known, another direction vector can be approximated by

Flxj=0

. /
Xy % =0

(2.16)

The first equation ensures that x” is in the null space of F,° and the second equation

makes x” orthogonal to  %;. This is not a good approximation if the branches intersect

at a very small angle, but if the stepsize is small enough, then the approximation works
in most cases. The orthogonality condition also makes it less likely for the same branch

to be traversed.

The Pseudo-arclength Pathfollowing Algorithm can raverse the new branch by starting

at the branching point and using x” as the new starting direction.
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2.2 BOUNDARY VALUE PROBLEMS

Any Autonomous Boundary Value Problem can be transformed into a system of first

order differential equations. These are systems of the form:

%E =fu(®),r), te0,1], u(), F(,): R 1-R", AeR
'
with boundary conditions b (u(0),u(1),A)=0, i=1,2,..n,

(2.17)

Collocation 1s one technique that can be used to discretise this D.E. into the form of

equation {2.1).

DISCRETISATION

If we define a mesh:

{0=p< n<p<.. <p=1} where a;=1,,- 1, (0<j<N-1)

then a submesh can also be defined for the wterval [4; , £, I
(2.18) {5" feday FeZag 5‘+1}
m m

so there is a grid of m/V sub-intervals over the interval [0, 1]. The points inside

these sub-intervals are called Collocation points,

If an arbitrary function f{r) is known at mN points on the grid, then f{z) can be

approximated over the interval [z, 7,,] by pj(r) :E wj,i(t)f(tj* iy (cf. 2D
i=0

"
where the Lagrangian polynomials w; (1) are given by:

(2.19) w®= 11

=0k L, 0 "L
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As u is an n-dimensional vector, it is approximated over the interval g, £, ] by n

collocation equations:

W = w |
P =) w0u,
2 i

[, ‘ "

N 2)

(2.20) u() = HZ_G) -p=] O 70 Gk
_un(r).

m

ts) ta}
pj (t) = Z wj‘j(t) uj+ i
=0 m

m ]

J—

m

- {a .
where p; (1) is now a vector, and u r-un(z}_*_;) is unknown.
m

To use p, (1) as an approximation for u«(z), 1t is required 1o satisfy (2.17) at discrete

points {z;,; } in the interval [1;, ¢,,] . So (2.17) becomes:

i

dp; . ‘
(2.21) &)=, 2, i=Tem, j=01,.,N-1
and the boundary conditions (for points 1,*" and 1, on the boundary):

(2.22) blug,uy, 2)=0,1=1,2, ,n,

(asuy = p 0y, and wu=p,, (1) )

where
n mn
dp;” N~ / [k lf:I zt—r’hi]
2.2 / = (A = =L 0k ke m
(2.23) ¢“3§%m%1Md%@ .
" H r+-—§-. _t‘+£
oxs U Uh

Note that w';; () is found by applying the product rule on (2.19).
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Points {z,;} are zeroes of the mth degree Legendre polynomial relative to that

subinterval. These are the best points to choose if the function is "polynomial’ shaped.

So the D.E. is replaced by a series of (m/V) algebraic systems (one for each mesh-point

in the interval [0,1] ) in terms of the variables u_{a}i and A. Expanding (2.21):
Fr—

E )u k E )u k
N @ ,
(2.24) G__Ef(Ew Ju |y |2 o k| o e
g ’ 7 j=0,.,N-1
- - i}
k( )u ;c E ‘rs«:,-’;c(zj‘i)m‘+ 1
_k ] ] _;(:0 7 ;_
and
(2.25) byttt M) =0, = 1,2,.,m,

Combining (2.24) and (2.25) gives:

fat
(2.26) F[{xj.i} ,1]:[60, Goa » Gan G Gz = Gin = Ggray Gpuosg = Guwcom By = B =0
LS N

This is a system of the form F(u,A) =0. So the pseudo-arclength pathfollowing
method (see previous section) can be used on this system. The individual linear
systems G, are not independent of each other as the coupled endpoints variables i; and

U;,, OCCUr in more than one system.

The pseudo-arclength equation changes as there is a new variable 1 which 1s

continuous over [0,1].



41
1
(2.27) 0 [ (4, () ~1,0) (Dt + 05 (A, ~ 1) - As =0
]

This integral equation can be discretised using Newton-Cotes formulae over the same

interval (g, £,,], with sub-intervals [ £, L4y |- Note that the points are equally
spaced.

1 Fid
(2.28) [y -1, D), O =Y B, (8) -3, (8)) 5, (8))

0 i=0

where @, are derived from the coefficients for 3rd 4th ... 8th order Lagrange

polynomials.

o (x-x)

b
(2.29) B, :E

j=0,jk (x;'"xj)
The order (n) of the numerical integranion formula is the same as the number of

collocation points, as the same points are used.

So the pseudo arc-length equation becomes:

X AN Ay

0
) is approximated using the last 2 steps as in (2.12), and (”j+_i) and
Gy
jCY

B3 (A, - A )k -As=0

i
F —

m
m

Where (u ‘{k}

(&
U
Jt—

A, is known as well, leaving (
m

) and A,,; as the unknown variables.
(C22Y)
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Solution paths of the D.E. (2.17) can now be found by using the pseudo arc-length
Pathfollowing algorithm with the modified pseudo arc-length equation & (2.30) and

F (2.26).

PARTIAL DERIVATIVES NEEDED FOR THE JACOBIAN

Using the chain rule on f in (2.21);

Fo )N _FoE)h k)

(2.31)
au_h};' apj{a}(zj ;') au.{a}i
j+r— 4 jr—
and as pjh}(zj,‘.) :ua(zj,i):
(2.32) F s P2,0:0)

so applying (2.31) and (2.32):

(2.33) 3G, Pz, ) MY wilg )= wilz), =l or (=I+1 and i=0)
. ——— =0 =0

Bu ol

fu_.; 0, otherwise
and similarly:
(2.34) b, (bh)u,@j(z;,:)=;")z wi(z,), (=0 and i=0) or (j=N-1 and i=m)
' T #=o
auP ﬁ 0, otherwise
< 3G db.
(233) 8—):” :f)_ (pj(zj,f)7 l) a{ = (b;')),(uO’ uN’ A')

[ fio (B, and (b)), can be defined analytically (before starting) by partially

differentiating the equations defined in (2.17).
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If this is not possible (or is not very easy) then they can be generated numerically by

differencing.

e,=[1,0,0,..0F
_311 =f(u + Aea,k) —Hu - Aea,A)
ou,, 2A

» where ¢, =[0,1,0,..,0]'

ete

where A is a very small number (see Appendix B for size of A in AUTO)

and sinmularly:

O _fu,AtA)-fu,A) 0B, _by(ugu rAey, ) -by(ugu,-Ae,, A)
IA A du 2A

N

3b, b,(ug-Aeu, 1) -b,(u +Ae 1, L)

ob, b, (u,u,, A+A)-b, (u,u,A) £~
B _ P\ By R\ Hap 2A

EN A Sy

The pseudo-arclength equation N (2.30) has partial derivatives:




Example of a Newton Corrector equation

Consider a 2 dimensional system {#=2} with 2 boundary conditions (n,=2) , with 3

collocation points (i = 3), and 3 mesh intervals (N=3).

The Jacobian is a maN + n, + 1 = 21x21 matrix and the Newton Corrector equation is:

81=~

|

oG, oG, &, G, aG,. ]
[ o1 01 01 01 0 0 o o o o ch
Quy  Buy 1 By 2 By 8
3 3
ag, oG &3 oG, 3G
= = & 2 9 o 0 0 0 [—
Ouy g, 1 du 2 By 33
3 3
3G, 3G, aG, G 3G,
e Te e w9 ¢ o0 ¢ o o
iy B aua‘g du, ar
0 o 0 8G, &G, 8G, G, o 0 o oGy,
Suy By Bu 2 By, ai
3 ]
Q 0 Q 3G, 86, G, G, o a o 3G,
E,‘ul aulv_l Bu "1_ 8112 gi
I 3
0 e} o aGlB aGt] aGl] aG:; o B 9 6G,3
(2.36) du, 5“1,_; 5'“1,% Bu, 31
a a 0 a a 0 8G, 3G, 8G, 0G, 0G,
Oy 8112_1 31'42*2 Sy 723
3 3
0 g 0 0 0 0 %y Hp 8Gp Wy on
oy auz__; auzb% Ouy,  ax
o o] ¢ 4] 0 0] ——aG” m6613 —-_-GGB _66'” _aG”
Ouy 31{2_% auz*g du,  8A
8b, a, ab,
- a ) Q 0 0 0 )] Q R e —
Buy u, o
b b ab.
—= 0 0 0 0 0 0 0 g == =
Juy du, T
¥ aN  a¥ ¥ N AN B8 N N N N
B ey Omyn Ow duy Oz By By w2 Bk O
3 3 3 3 3 3
3 3 a
W [+ I {1} {2 . h .. )
here 5, represents | 4 . ou and G; has 2 equations
J*; Jr— Je=

GOt
G2

GI1
Gi2
Gi3
G2i
G22
G23
bi
52

|
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This Jacobian is close to a block-diagonal matrix. When solving this system advantage
can be taken of this structure by using the method of condensation of parameters. This
method uses Gauss elimination with partial pivoting. The matrix is subdivided and

sections eliminated separately. This method 1is illustrated very well in {4].

BIFURCATION POINT DETECTION

The discretised system can be treated as a large Algebraic system, so the zero-functions
discussed in 2.1, can be used on this system to find accurate locations of fimir points

and branching points.

ADAPTIVE MESH

The interval [¢,, £,,] (from 2.18) does not have 10 be the same size for all j. If the
solution curve x(¢) has small curvature in an interval [a, &), then the interval size can
be greater than a region where the curvature is greater. This process distributes the

approximation error in a more uniform manner.

Divided differences are used to get an indicator of the change in each interval

{4, . ] Forexwuple if there are m=3 points in each interval, the Divided Difference

Table is:

t":J"JrO

(W, - 1 H3)AL

LIS (Miop -2 Mip + 8 )f"(zf?’z )m;z
(ujq,.g - 1"-_,‘»,1;3)4"’(1)"3)&31 (”_;41 -3 Uias + 3Uapn- uj)f(2f32 )Af;';
Upias (i) ~2 Mpop + Wi );’(QISE)A:‘;.Z

(g = o) (1/3)D;
Wy

Figure 2.1: Divided Difference Table for m=3
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The term DD®= (u;,, -3 155 + 3 1,15~ 4,)/(2/37 )As is the 3rd divided difference. A
fourth divided difference can be gained by combining the 3rd divided difference from

consecutive intervals [4;, ¢,,] and [7,,, Ll

(3) (3)
(2.37) DD ® . M__
L 7

1
Over the unit interval, if DD > 1 then the change in u is too great; if DDJ{‘” < 1, over
the unit interval then the change in u is too small. DDV is fixed to 1 by defining a

new interval a7, starting at a point p in the interval [;, £, | such that:

)
@ At Y
T

1
So the new interval At has size At{DDf‘”)“

or more generally, for the interval (2.18) with 1 a vector:
for all #, (i=1..,n):
[DD™); can be found for j = 0,1..., N-1.

[DDN(M)]:' = 2[DDN_1(M)]‘_ _ [DDN_?_(m)]f
(extrapolating from the 2 previous divided difference values)

Then the (m+1)th divided differences can be found:

() {m)
[DDJ-(m+1}]i” DDj+l]£_[DDj ];

1
RGALUS

And the new interval sizes at; are defined:

m 1
A= m(E [DD}”””L] 4

i=1
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So the mesh intervals are adaptive, with their size based on the shape of the u(s) at the
previous point. The existing values for u are for 7 at the previous mesh size.

Interpolation is used get u(Z;,;,,) for the new values of ¢

Livifm ifme

NON-AUTONOMOQUS SYSTEMS

The methods used by AUTO work for autonomous systems, where the dependent
variable (¢ in (2.17)) does not appear explicitly in the differential equation. Non-

autonomous Boundary Value Problems are:

du _ .spatl | cpn
(2.38) = =Ru(@),r,0), te[0,1], u(),F(,.):R R, AeR

with boundary conditions b (u(0),u(1),4)=0, i=1,2,..n,

gd=ganny

u(r) is predicted by p(r) for te [z, 1,,] , and is evaluated at the points {z; }in the

ik
interval. So (2.21) becomes:

(2.39) 4p; . .

- E(Zj’i) :f(pj(zj.f): lyzj’f)’ L= 1:"-:m: J :O:I)---:N”I

The Jacobian of f must also include

_ s,

I ox(¥)

And similarly for the numerical methods for generating the Jacobian.

With these medifications, the existing methods can be used for Non-autonomous

boundary value problems.
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3 IMPLEMENTATION and RESULTS

3.1 AUTO

The numerical techniques of Chapter 2 have been implemented by Eusebius Doedel in
a computer package called AUTO. Tt performs bifurcation analysis on algebraic and
differential systems, producing output files representing solution branches on a
bifurcation diagram, and also solution curves at points on these branches (for
differential systems). A plotting program called PLAUT 1is incorporated as well to
extract the numbers from the Fortran output files and plot graphs. This eliminates the

need to manipulate the numbers into the format for an appropriate graphics package.

To model a system using AUTO, a Fortran model file 1s created (see Appendix A for

an example). This file defines:

a. FluA)
b. the Jacobians F, and F;, (these may optionally be generated numerically)
C. a starting point x,= (i, A,) for the first branch (note that u may be a

function of r). This point cannot be a bifurcation point.

c. the type of system (for example if it is an algebraic system or a
Boundary Value Problem)

d. the boundary conditions (if the system is a BVP)

€. the number of mesh intervals (), and the number of collocaiion
points (m).

f. Other AUTO parameters defining the numerical method used.



49
The AUTO parameters define all the constants involved in the numerical techniques of
Chapter 2. For example, the stepsize and mesh can be fixed or adapted regularly (after
one or more points), and the initial stepsize is defined as well as a minimum and
maximum stepsize. This module is compiled and linked with the rest of the program
(see Appendix A). For algebraic systems, this compiled program generates all the
branches which come out of the initial point x,. For boundary value problems, a
single branch is generated with bifurcation points identified. Further branches can be

generated by continuing from branching peints of previous runs.

MODIFICATION OF AUTO FOR NON-AUTONOMOUS SYSTEMS

The variables w.,., '@ are defined in an array U{j , in + a), where n is the dimension

i

of u. The value of u, at & point z,; 1$ defined by the Lagrange polynomial p,(z,, ylal

generated byz W(,D) UG,(i-1)sn+a), where W(j0) is predefined as w;, (z, ) from

i=]

(2.37). So u, is the value of u(z) atzr =z, .

The system f from equation (2.17) is defined in subroutine FUNC which is in the mode!
file. Variables u=[u, , ... u,] and A are passed to this subroutine, and the variable F
(representing F(u,A) ) is returned along with the Jacobian derivatives F, and F, (if they
are not generated numerically). Along with these variables, ¢ and Az, are also passed
to this subroutine, so they are accessible when evaluating F. The reason for At being

passed will be explained later in this Chapter. Appendix B shows the subroutines

affected and how they have changed.
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3.2 EXAMPLE PROBLEMS

These example problems have 2 purposes:

(1) To test AUTO (when analytical solutions are known)

(2) To generate bifurcation graphs
The pathfollowing algorithm of AUTO is tested by using the example problems in
Section 1.1, which have known analytical solutions. Then AUTO is applied to the
combustion equation (1.7). This equation is non-autonomous, so the modified version
of AUTO has to be used. The effectiveness of AUTO for this system can then be
tested by comparing the computational results with the analytical results from section
1.2. Finally the model is used to evaluate A, for non-Class A shapes and compared

with the numerical results from other models.

ALGEBRAIC SYSTEM EXAMPLES:

Example 3.1:

FiutnA) = uf +u, ~ Au, =0
AR Y =ul?'u2 - uf - Au, =0
This is the same system as in Example 1.1 where there is a point (0,0,0) on the trivial

branch where the Jacobian is singular but there is no branching point.



Branching points are detected by AUTO as points where there 18 a change of sign in

the determinant of P, :

3uf-l I -u

M
I

2 2
2uu, ~3u; w-A i,

U

1 Sy A

(in this case, 6, and 9, are both one). Along the wivial branch, the direction vector

(;21,;22,1)‘: (6,0,1) and u=(0,0) so the determinant Det(P, ) is A% . This has a zero at

(1,A) = (0,0,0), but the sign of Det(P, ) is positive for A< 0 and A> 0 (see Section
2.1). So there is no change in sign and a Branching point is not detected. The trivial
branch can be generated using AUTO by starting at a non-bifurcation point for example
x;= (0,0,-1).
Example 3.2

Fp, k) =uf - A, =0

F A =y - Ay =0

The analysis in Chapter 1 showed that this system has 3 branches emanating from the
trivial branch at point (0,0,3). When this is put into AUTO with starting point (0,0,-1),
this bifurcarion point is not found.

The Jacobian P, 1s:

Along the wivial branch the det(P, ) = A* which is 20 for all A. Because there is no

change 1n sign, the bifurcation pomnt was not detected by AUTO.
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Also P, has a 2-dimensional nullspace at this point. So (2.16) does not have a unique

solution and branching at this point using AUTO 1s not possible.

Example 3.3

Consider the system in example 1.3. Starting at a regular point (0,0,-1), AUTO
generates the bifurcation graph for this Systelﬁ without any problem. The eigenvalues
at all of the branching points are all odd, which means that the determinant changes

sign at these points (see Section 2.1).

The initial, minimum and maximum stepsizes were initialised in the model file as
DS = 0.005, DSMIN = 0.001 and 1 respectively. Other parameters, for example the
number of times the Newton Corrector iterates (see Appendix A for a list of all the
parameters) are set to thewr default values. The compiling and running of AUTO with
this system took 19 seconds of CPU time. The results of AUTO are compared with the

analytcal solution 1n figure 3.1.
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4.00 ++x«x Numerical Solution Branch

Analytical Solution Branch
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Figure 3.1: Analyncal and Numerical Solutions to Example 3.3
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The spacing of the numerical solution points s proportional to the stepsize. Note that
the initial stepsize rapidly adapted to a much larger one (see Appendix B for the way
AUTOQ adapts the stepsize). This implies that the initial stepsize was too small, and the

same accuracy can be ganed with a larger one.
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THE COMBUSTION EQUATION

Bifurcation graphs for (1.7) can be generated numerically. AUTO is designed for
systems written as first order D.E’s. Equation (1.7) can be defined as a system of two

first order D.E’s:

(3.1)
L= ~%u2—le“1 ,j#0
with boundary conditions:

1,0)=0, (1) +Biu,(1)=0

where 7{=r) is the dependent variable, and the Biot number (Bi) and Shape factor (j) are
constants. As 7 appears explicitly in the equations, (3.1) is non-autonomous and the

modified version of AUTO has to be used.

There is a special case for (3.1) when j=0:
(3.2)

with the same boundary conditions. This is autonomous, and can be analyzed by the

existing version of AUTQO.
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The accuracy of the numerically generated bifurcation graph for different values of j
will be investigated in Examples 3.5, 3.6, 3.7, and 3.8 which use a fixed value of Bi

corresponding to the Frank-Kamenetskii Boundary Conditions (Bi=ce).

Later, the accuracy of AUTO for different Bi numbers will be tested in Examples 3.9
and 3.10, which have j fixed to 1. From theée examples, one can get a good idea of
the effectiveness of AUTO for this system. Finally the AUTO results for different non-
class A shapes (using the shape factor technique discussed in Section 1.2) are compared
with numerical results from Wake and Jackson [15] {which use the exact Laplacian for

the shape, rather than an approximation).
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Example 3.5: The Infinite Slab with Frank-Kamenetskii Boundary Condition

This is system (3.2) where j = 0 and Bi = oo, The boundary conditions become:
w(=0, u(1)=0

This has an implicit analytical solution (see Section 1.2). A model file of this system

was created, with 10 collocation points (NTST=10), and default values for other

parameters. The model file was linked with the un-modified version of AUTO and

AUTO was executed, taking 30 seconds of CPU time. The results are compared with

the analytical solution 1n figure 3.2, where y,=maxfu(s)].

12.00

10.00

Analytical Solution Branch

>+ +x Numerical Solution Branch

8.00

6.00

A

4.00

2.00

e ey s b v v d v e oo s Ly g g

A
0.00 f-'id'-lllllii|!llltl!l][i’illll[li]illlililililil{!liil

0.00 0.20 0.40 0.60 0.80 1.00

A

Figure 3.2: Analytical and Numerical Solutions for System (3.2}, (where j=0 and Bi=cc)
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As in figure 3.1, the spacing of the *’s, corresponds to the adaptive stepsize of the
pathfollowing method. This shows that as would be expected, the Newton Corrector
converges better when the curvature is small.  AUTO also outputs the value of the
solution u#,(¢) and w,(z) at various points on the bifurcation branch (see Appendix A for
more information on output files). The curves of u«,(r) at points labelled A, B, C, and

D in figure 3.2, are shown in figure 3.3.

7.00

5.00

e

3.00

[ I U U U 0 AU T T T O TN IO O 00 O T VO N N S N I O I S A

1.00

+++++++++++
e -

| I |

_-1.00 T T T I T [{TT T T T T T T TP T TT T T TP I i T T T i ITTT I I T i i 1]

0.00 0.20 0.40 0.60 0.80 1.00

¢

Figure 3.3; u,(¢) at points A, B, C, and D in figure 3.2

The spacing of the *’s in figure 3.3 corresponds to the mesh size. At points A, B and
C, the spacings do not vary greatly, but at point D (when 4, is proportionally much

larger), the spacing becomes very small when 1 1§ close to zero as the curvature changes
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more at these points. From (3.2), it can be seen that this is because du,/dr increases

exponentially with u,.

When the resulting system with j#0 is entered into AUTO, a divide-by-zero condition
when =0 means AUTQO will stop at this point, giving a divide-by-zero error. These
systems have a solution when ¢ = 0, but there is an apparent singularity in the derivative

of u, at this point.

When 1 is close to zero:

im u/(H-u'(0)

#
73 =
(O) t—zerg ¢

and as #{0) = 0,

(3.3) E_;@ =u’(f), for -0

Approximation (3.3) can be used to eliminate the singularity in the derivative when t=0,

by defining a piecewise system:

a_
dt 2
(3.4) _ re™ <
a [t
dt *J—?uz—le“', 2k
t

with boundary conditions:

1 (0)=0,  u(1) +Biu,(1)=0

where £ is very close to zero.
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An obvious strategy for solving (3.1) is to fix £ to a small number (say 0.01), and

approximate (3.1) by (3.4). Example 3.6 shows that this strategy does not work.

Example 3.6; System (3.4) where {=2, Bi=co, and £=0.01 (fixed)

Default values for AUTO parameters were used except for NTST = 20, DS = 0.001,
and DSMIN = 0.00001. Figure 3.4 shows that the bifurcation diagram of the

numerical solution,

30.00

25.00

20.00
~ 15.00
3

10.00

5.00

RN EER RN RN NN RN AN NEN S AN EN NN N AR NS RN |

0.00 I L L L B L L O L L I T A T e e I I |

0.00 1.00 2.00 3.00 4.00

A

Figure 3.4: System (3.4) with Bi = e, j =2, and & fixed o 0.01

When j = 2 and Bi=-ce, The result by Wake [14] in section 1.2, proved that A
converges 1o 2 as i, = max{y,(#)] increases to eo. Figure 3.4 shows that Example 3.6

converges to 0 as u, increases o oo,
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So (3.4) with & fixed is not a good approximation to (3.1).

If the solution u,(t) is approximated by a power series:

u,(t) =ay +at+at’ va i+
Then the solution for the original system (3.1) and the piecewise system (3.4) are (3.5)

and (3.6) respectively.

(3.3 _xe"=q2 +20)a, + (6+3))ast + (12 +4fa > + . (n+D(n+2)+(n+2)a, t
and
B6)  _xe"=(2+2)a, + (6+6Day + (12+120)a,t? +... +(r+2)(n+1)(1 4} "

The value of -ie“ increases exponentially with u,, and as it becomes large, the

difference between the two systems increases. So to keep a constant error € must
decrease exponentially as i, increases. Another problem arises when £ is less than the

first sub-interval length :

At
E<—2
m

where m 15 the number of collocation points and Az, is the first interval length, (as in
(2.48)). In this case, the piecewise partition is at ¢ = 0, because u is defined only at
discrete points. This gives the same result as if £ = 0, (because there are no non-zero

¢ values between 0 and &) which contradicts the condition that & > 0. If £ is defined:

3.7) £ =At,

then & is always m points away from the zero interval.
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Also as the change in curvature is proportional to derivative du,/dr , the adaptive mesh
procedure will ensure that the interval Az,decreases exponentially as i, decreases. This

means that Az, needs to be passed to the subroutine FUNC in the user mode! file.

Modification to AUTO: The modification to AUTO (referred to earlier in
this Chapter) was made so that Az, is indeed passed
to the subroutine FUNC (see Appendices A and B
for an example model file and implementation).

Example 3.7; Svstem (3.4) where j=1, Bi=ee, and &=As,

This system was chosen because it has an analytical solution, and the numerical and
analytical values can be compared to test the effectiveness of (3.4) in approximating
(3.1). As (3.4) 1s non-autonomous, and requires Az, the modihed version of AUTO
was required to solve this system. [nitial parameters were NTST=20, DS=0.001,
DSMIN=0.00001, and the maximum number of points evaluated on a branch (NMX)
was set to 500, with the other parameters set to their defauit values. Because of the
shape of the solution curve (see figure 3.3), the overall change in slope increases at
each point evaluated along the branch, requiring progressively smaller stepsizes. For
this reason, NTST was increased to 20. This value had been worked out from previous
runs. If NTST is too large, then the program takes too long to run, and if it 15 t00
small, then inaccuracies occur when evaluating u,.

The corpilation and running of AUTO took 136 seconds of CPU time. The output is

compared with the analytical solution in figure 3.5.
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15.00
il Analytical Solution
i +x xxx Numerical Solution
10.00 +
3 )
5.00 -]
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Figure 3.5: Analytical and numerical solution to Example 3.7 (j=1, Bi = eo, £=As)

For other values of j there are no known analytical solutions, but A converges w a
known value as u, increases for 1</<9 (see Section 1.2). The analytical and numerical

values for these numbers are compared in the following example.

Example 3.8:  System (3.4) for different values /. where Bi=eo and E=At,

AUTO was used 10 times on (3.4) with j ranging from O to 10. Initial parameters were
the same as Example 3.7. The entire computation took approximately 23 minutes of

CPU time. Figure 3.6 shows the shape of the resulting curves.
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Figure 3.6: Example 3.8 for j = (0,1,2,3,4,5,6,7,8,9
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For 1< j <9, the curves in figure 3.6, have multiple limit points. Figure 3.7 blows up

the curve j = 8 10 show that it does fold back on itself.

r——- —_ - —_—— —_—— ————

-
: 1
i
H 15,00 ] H
1 t
1 b
t I
1
i
E t
] 1
1000 H
] 1
i
i
s !
3

1
] :8 |
5.00 4 d :
] t
1 1
! 1
1
1 r'=q 1
t ] 7 i
t 1 1
i 0.00 e T T T — i
: 13,2990 13.9995 14,6060 160005 140010 !
1 A ¢
[ i

L

Figure 3.7: Close up of dotted area in figure 3.5

Analytically it has been proven [14] that there are an infinite number of "wiggles” for
j in this range. As u, increases, A converges to a value denoted by A_.. From Section

1.2:

)
A_=20G-De' &
As Bi = oo, this simplifies to A, = 2(j-1). Numerically, this can be predicted as the last

point which was found on the branch, i.e. the 500°th point (as NMX=500).
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Table 3.1: Numerical and Analytical values for A, (Bl = o)

J Analytical vatue of A_ Number of limit points Final value of A and u; along
found along the branch branch {508 points)
2(-1) A £,
1.0 Docs not exist 1 0.00000009 36.7
1.5 1 3 0.5038190 212
20 2 3 2.009908 09
25 3 3 2999354 20.9
30 4 & 3.999252 209
3.3 5 6 4.999305 209
40 & 3 5.999402 209
4.3 7 5 6990835 209
5.0 ) ] $.000241 0.9
33 9 5 2.000603 209
6.0 10 6 10.00090 200
6.5 11 & E1.00107 209
7.0 12 3 1200116 20.9
75 13 3 1300117 200
8.0 14 4 14.00027 282
8.5 15 2 15.00105 20.9
9.0 does not exast 0 16.0097 209

The 500°th point was to within one decimal place of A (after 1 or more oscillations

or 2 or more limit points) , so that the branches appear 10 be converging 0 A,

From table 3.1, the number of limit points in the curve found numerically in 500 steps,

diminished as j approached the end-points 1 and 9.

To see what happens at these endpoints, the number of steps (NMX) was increased to
2000, and AUTO mode! files were created and run for j=0.9, 0.95, 1, 1.05, 1.1, 8.9,

8.95, 9, 9.05, and 9.1. This process took 74 minutes of CPU time.
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Table 3.2: Numerical and Analytical values for A_, (Bi = o)

i Analytical value of A_ Number of lmit points Finat value of X and u, along
{ =2(-1) } found along the branch branch (after 20600 points)
A #,
090 Does not exist 1 (.6000000 839
093 Croes not exist 1 0.0000000 62.3
1.00 Does not exist 1 0.0000000 415
1.05 01 I 0.0000079 379
1.19 02 2 0.0086138 310
3.90 15.8 2 15.81766 26.6
8.95 15.9 Q 1391730 26.6
9.00 Does not exist 5 16.01697 266
0.05 Does not exist & 16.11663 266
9.10 Docs pol exist 5 1621633 26.6

Even after 2000 iterations when i, 1s greater than 26, the number of limit points found
near the endpoints j=1 and j=9 is smaller than the number found when j 1s further
away from the endpoints {in Table 3.1). As the maximum value of u; does not
decrease (in fact it increases) as § approaches the endpoints, the period of oscillation

must have increased.
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Example 3.9: System (3.4). j=1. Bi varied and E=Az,.

Five exponentially increasing Biot numbers {0.125, 0.5, 2, 8, 32} were chosen, and
entered as 5 systems {as in Example 3.7, and using the same AUTO parameters). The

numerical results are compared with the analytical results (see Section 1.2) in Figure

3.8.

15.00

: «++++ Numerical Solution
10.00 4 Analytical Solution

L

5.00

Ble2 Bi=8 Bl=32

il ¥

0.00 et A S I O 0 A 0t N s G I S

0.00 0.50 1.00 1.50 2.00

A

Figure 3.8: Numerical and analytical solutions for Example 3.9

Note that as Bi increases, the limit peint converges to 2, which is the case when Bi=ee

(see figure 3.5).
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Example 3.10: System (3.4), j=2. Bi varied and &=Ar,.

This has no analytical solution, but the final point evaluated on each branch can be
compared with A_ as in example 3.8. The AUTO model file for this system when

2

Bi=2, as well as the output, is in Appendix A. When j=2, A_ becomes 2e B Thig

value is compared with the 500°th point in Table 3.3.

Table 3.3: Numerical and Analytical values for A, (f =2, and Bi is varied)

Bi Analytical value of & Number of limit poinis Final value of & and #, along
-2
{ =9 B} found aleng the branch branch (after 300 points)
A 1,

0.123 0.000000225 5 (.000000227 36.8

03 0.036631277 3 0.03680918 24.9

2 0.73575888 5 0.7393332 219

§ 1.557601566 3 1.565294 21.1

32 1 878826126 5 1.888150) 21.0

The curve has the same number of limit points for all the Bi values used, showing that

the period is oscillation is independent of Bi.

After less than 3 oscillations (or 5 limit points) the final value of A approximates A,

to 2 significant figures.
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Example 3.11:  System (3.4) with j representing different shapes

Section 1.2 showed how the shape factor j in System (3.4) can be used to approximate
the Laplacian over any body. So the system can be used to generate solution curves
for any shape. Wake and Jackson in [15] numerically calculated A,

- for objects using

the dimensionless heat equation:

(3.8) Viu +re* =0

using the exact Laplacian V?u for each body.

Different objects ranging from the infinite slab (j=0) to the regular tetrahedron
(j=4.178) were entered as model files into AUTO using (3.4) with the same

parameters as in Example 3.8. The resulting value A, (the value of A at the first limit

point) is scaled as discussed in Section 1.2 (page 23) so it can be compared to the
results of [15]:
;L‘ = crig
cri O+1)RA§
Table 3.4 shows the value of A_, and i_,, from [15], for objects with j ranging from

TTid crit

0to 4.178.
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Table 3.4: A, for different shapes using real and approximate Laplacians

i Shape RA, Aerit Aot Rert Error

from AUTO from [15] %

0 Infinite Slab 3 0.878 0.878 0.878 0.0
0438 Rectangular Parailelepiped 1.731 1.343 0.935 0.832 11.0

(ratio 1:10:10)

1 Infinite Cylinder 1.225 2.000 2.000 2.000 0.0
1.444  Infinite Square Rod 1.354 2.564 1.717 1.692 1.4
1.694 Rectangular Parallelepiped 1,354 2.898 1.760 1.640 6.8

{ratio 1:1:10)

2 Sphere 1 3.322 37222 3.324 0.0
2.729 Equicylinder 1.115 4.395 2.844 2774 2.5
3,280 Cube 1.194 5.260 2.586 2.448 53
4.178 Regular Tetrahedron 0.537 6.739 13380 nor evaluaied -

Equation (3.8) is the same as (3.4) for Class A geometries (when j 1$ an integer).
Table 3.4 shows that for non-Class A geometries, (3.4) approximates (3.8), with the

accuracy of the approximation depending on the shape.
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4 CONCLUSIONS

The numerical analysis and running of AUTO have shown the capability of AUTO for
bifurcation analysis on algebraic systems as well as Autonomous Boundary Value
Problems. With modifications done to AUTQ, it can now also generate bifurcation

diagrams for non-autonomous Boundary Value Problems.

The numerical methods of AUTO will generate branches of dynamical systems if:
i - The branching point with a Jacobian F, of the system F has a zero

eigenvalue of odd muluphcity.

2 - The dimension of the nullspace NS(F,) is greater than 1 only at discrete
points.

The Frank-Kamenetskii Heat equation (4.1) fits these criteria.

2 .
du jdu +A(x)e* =0
(4.1) dr? rdr

du du .

;(O) =0, ;(1) +Biu(1) =0
This system 15 sclvable by the modified version of AUTO for any value of j and Bi,
with the process accomplished in a matter of seconds.
The tests in Chapter 3 showed that the curves generated by AUTO compared favourably
with the analytical solutions when j1s O and 1. Another analytical result from Chapter
1 is that for 1< j < 9, the branch converges o the line A =A_,  The numerically
generated curves were shown to have this property as well. A similar process for five
different Bi number and j=1 and 2, showed that the results were accurate irrespective

of the Bi number used.
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These test results imply that the modified version of AUTO gives accurate results for

any value of Jj or Bl

Applying the ideas about shape factor of Boddington, Gray, and Harvey [1], (4.1) was

used to approximate the exact Laplacian equation:

(4.2) Vu+re=0.

The value A, (the threshold value of A for thermal ignition) was generated by AUTO

crit
using (4.1) for different shapes. This value was compared with the result using (4.2)

calculated by Wake and Jackson [15], showing that a good approximation to A, can

be gained for any shape possessing a point of symmetry.

This is a successful test-run for the effectiveness of the modified version of AUTQO,

and opens the way for modeliing any non-autonomous Boundary Value Problem.
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FUTURE RESEARCH

Bifurcation graphs are highly non-linear and require some kind of pathfollowing
technique to generate them., AUTO is restricted to modelling systems of ordinary first
order D.E.’s. The Boundary Value Problems investigated in this thesis are models
which use a single length dimension r for volume, and a shape factor j. Other models
have 2 or 3 units for length. These are partial differential equations and cannot be
solved by AUTO. The pathfollowing algorithm could be applied to these problems
resulting 1n a numerical technique for generating bifurcation graphs. This could then
be incorporated into AUTO, giving a very powerful tool for pathfollowing any system

of first order partial D.E.’s.
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APPENDIX A: USING AUTO

This section contains information for using AUTO for algebraic systems and Boundary

Value Problems.

AUTO can be used on a dynamical system by making a model file which is a
FORTRAN file containing the information required by AUTO for analyzing this system.
This file has seven subroutines:
SUBROUTINE FUNC:
This contains the definition of the system where U((} is «, PAR(1) 13 A, and F()
is F. The derivatives F, and F, are also entered in this subroutine in arrays
DFDU and DFDP, where DEDU(Lj) = dF/dw; and DFDP(i, 1) = dF /dX, although
they will not be used if the Jacobian is generated numerically by AUTO.
SUBROUTINE STPNT
This contains the solution curves u(¢) for a particular value A, and so gives a
starting point for the bifurcation curve.
SUBROUTINE INIT
This contains the values of the AUTO parameters. For example, JAC=0 tells
AUTO that the Jacobian is to be generated numerically, and IPS=4 tells AUTO
that the system is a Boundary Value Problem. If the default value for a
parameter is used, it does not need to be defined. (See pp. 134-143 of [4] for

a description of all the parameters and their default values).
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SUBROUTINE BCND
This contains the Boundary Conditions. This subroutine will be ignored if the
problem does not have boundary conditions. AUTO uses a fixed interval 0,1}
for r where u,(0) = UG(), (1) = Ul{). Boundary conditions are entered as FB({)
which are functions of UQ and Ul and PAR(1). The boundary conditions are
therefore FB(i) =0. The derivatives of FB are also entered here, but may not be

used if derivatives are generated numerically.

SUBROUTINE INCD

This contains integral conditions. Variables FI{{) are defined as functions of U

1
and PR(1), then the integral condition is: fFI(i)dr=0 . The denvatives of FI
0

are entered here 100.
FUNCTION USZR

One or more variables USZR are defined. USZR is a function of PAR(1), and

when USZR=0, then the point is given a label number,

The compilation and running of AUTO described in the thesis were performed on a Sun
Sparc Station SLC, although these could be done on any platform which has a F77
Fortran Compiler. The graphics output (from PLAUT) does require that the platform

has a suitable Tekironics emulator.
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3 commands are needed to run AUTO:

@auto {name} : runs AUTO with model file ant{name}.f, deleting all previous
output created from previous runs with this model file. Output
files are p.{name}, q.{name} and d.{name}.

@autocont {name}: runs AUTO with mode! file aut{name}.f, using previous output
files p.{name} q.[namé} and d.{name} as input files and
appending the resulting output to them.

@plaut {name}: Initiates the plotting program using output files p.{name}, and

q.{name}.

@auto and @autocont run a sequence of system commands. In these files, the model
Jile 1s linked to a preprocessor program which generates the main program. The main
program changes depending on the type of analysis required for example, whether the
model 1s an algebraic system or a BVP, or whether the analysis is continued from a
previously calculated point. The type of analysis required is defined by the AUTO
parameters in the model file. The main program sets up the required calls and
necessary workspace, and runs the appropriate AUTO routines. It is compiled and
linked with 3 AUTO libraries and the mode! file, and then run. The modified version

of AUTO works the same as this except the commands are @autom and @autocontm.
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QOutput is in the form of 3 Fortran output files and the screen:

fort.7 (p.{name}):

fort.8 (q.{name}):

At the beginning of this file, all the parameters values defined
from INIT in the model file are stored. The rest of the file
contains all the points evaluated for the bifurcation graph. Each
point (¢ , A) has an identification number, a type, an L2-NORM,
and the maximum value for each u;, in the interval [0,1]. The
point type 1s one of:
EP - An end point of a branch, normal termination.
MX - End point of a branch, abnormal termination (no-
convergence)
UZ-  Zero of function in USZR (from SUBROUTINE
USZR in model file)
BP-  Branching point
LP-  Limit point
Regular Point
When the point type is not a Regular point, 11 1s assigned a label,

which is also output in this file.

This file is only generated for Boundary Value problems. It has
the restart information at label points for continuing bifurcation
diagrams in future runs of AUTO using autocont. It contains the
Values of 5, and u,,,", and the direction vector

[ulj+i.l’m{a]7 ;\‘Y
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fort.9 (d.{name}):  This file has a summary of the Newton Corrector method
mcluding the number of iterations and stepsize at each point.
Branching points, limit points and user defined points detection

are summarised as well.

Screen: This 1s the same as the contents of output fort.7 except that only

label poiunts are displayed, with the addition of columns headings.

The bifurcation graph can be generated from p.{name} by using the @plaut command.
This program can also be used to graph the solution «{1) from q.{name}. @plaut is a
text-driven graph tool. It requires a tektronics terminal. There is available a SUN tek
emulator called tektool which sets up a tektronics window. The command "BDG" plots
the bifurcation graph from p.{name} on the screen, "2D" plots data from g.{name}.

Help can be gained by typing "HELP".
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An example : Example 3.10 when Bi=2
The following Fortran code is the model file for this system. Changes to this file for

the modified version of AUTO and comments are in italicised bold.

¥1tf I is the variable t corresponding to u{t) and 5 is At,

c
c
c
c
C This subroutine evaluates the right hand side of the first order
C system and the derivatives with respect to (U(1), U(2})) and PAR(I1}.
C {For documentation see the example problem AUTPFPZ).
c
IMPLICIT DOURLE PRECISION (A-H,0-32)
CSGLE IMPLICIT REAL (A-#,0-2)

DIMENSION U (NDIM),2AR{20),7(NDIM),DEDUANDIN, NDIM), 2002 (N22X, 20)
DCUBLE PRECISION A,5,7,E,2

[

8=3.3

iz j+1 where j is the shape factor

s e kel
[}

E=EAD (U(1]]

H

[Ep

F is the system definition

X2 K2l

IF{IJAC.EQ.Q)RETURN

y

IF {FT.GT.A) THEHM
DFDU{L,1)=0.0
DEDU{L, 2y =1
DFDU{2, 1} =-PAR{1} "E
DFDU{Z, 2} =-(B-1.01/7

DEDU(L1,1)=0.0
DEDU {1, 2] =1

DEDU{Z,1)= L0/73)=PARIL) *E

.G/ByTE

DEDY and DFOF are the derivatives of F

IsNe R

RETURN
END



SUBROUTINE STENT (MDIM, U, EAR, T}
T mmmmemsea—r m————
c
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
CSGLE IMPLICIT REAL (A-H,0-2)
C
€ This subroutine must used to generate an initial starting point
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C (i.e., when not restarting from a previously computed solution).
C The solution vector U must be given as a function of the independent
€ variakble T (T takes on values between zerc and one).
<
[ NOIM - Dimension of the system of differantial eguations.
[ g - Vector of dimension NDIM.
o Upon return, U must contain a solution of the
fof differential equation evaluated at ‘time’ T.
C PAR - Array of parameters in the differential equations.
< These may be injitialized here, or else in INIT.
c (STENT is called after INIT).
c T - Contains a value of the independent variable in 10,14
c where the solution is to be evaluated.
C
o
DIMENSION U{NDIM),PAR(2D)
C
¢ ({In this problem the stariing scluticn is acpually independent ol ©L.)
C
U{ly=9.8
U{21=0.1
PAR{1)=0.0
[
C This is the starting point on the branch
C
REITURN
fnk bl
. ZND
SUBROUT
[
<
IMPLICIT COUBLE FRECISION {A-H,0-2)
CEGLE TMPLICIT RZAL (A-H,C-2)
C

COMMON /RLITN/ NDIM,IZS,IR5,ILZ,ICP(20).PAR(LY)
COMMON /BLIDE/ NTST.NCCL,IAD,ISP,ISW, IPLT,NBT, NINT
COMMON /3LOLS/S D8, DSHMIN, Z3MAX, LI

COMMOW /BLLIM/ NMX,NUZR,RL0,RL1,AD,Al

COMMON /BLMAX/ NPR,MX3T,I1D, I7TMX, ITNW, NWTN, JAZ

In this swbroutine the user should set those constants that regquire

[

C values that differ from the default values assigned in DFINIT.
O {See the main documentation for the default assignments).
C
Z

=
%]

IF

[T}

A I e R
WA Ao
I

k=R I T I B I PR
o3
[T IR R T

=
[ R

=]
B

DS=G.
GSMIN=0.000Ck
pEMaX=1
WPR=500

Jac=1

WEMH =300
WUZR=0
RLO=0C.0
RL1=200G.C
a0=0.0
A1=2006.0

RETURN
ENi
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SUBROUTINE BCHWD (NDIM, PAR, ICP,NBC, U0, UL, F8, IJAC, D)
T mmemmeaaa o ————

IMPLICIT DOUBLE PRECISION (R-E,0-Z)
C5GLE IMPLICIT REAL (A B, -2}

This subroutine defines the boundary conditions.

Supplied variables -

NDIM : Dimension of the first order autonomous system,

PAR : Vector of problem parameters.

ICP : Vector of indices of the free parameters.

NBC : Number of houndary conditions.

uo : Value of the vector rfunction U at t=0.

223 : Value of the vecter function U at t=1.

TJAC : IJAC=0 : Derivatives need pnot be returned.
IJAC=]1 N Derivatives must be returned also.

Variables to be returned upon completion of call :
FB : The vector function defianing the boundary conditions:
FB { U0 , Ul , PAR) = 0.
DBC : The Jacobian of the boundary conditions

DBC (i, 7} : The derivative of the {’th boundary
condition with respect to the j'th component of U0

DBC{i, NDIM+3) : CThe derivative of the i’'th boundary
condition with respect to the j'th component of U@

DEC (1, 2*NDIM+F} : The derivative of the i‘th boundary
condition with respect te PAR(j) (For free parameters)

aooOoononaoaaoOooaoonDanoagaononnon o

DIMENSION PAR{Z20),ICP {20}, Ud(NDIV), Ul (NDIM), T3 (NBC), DBC(NBC, Z20)

C
T Define the two boupndary conditiens FB{1) and FB({Z2):
[
oY
3=2
C B is the B! number
<
FR{11=U012)
FR{Z)=sUL (2)+37ULL)
C
[
IF(I0AT 20 0 RETURY
C
C Set up the derivatives of the boundary conditions
C
C With respect teo U0 (00 = o at "time’ T=0).
c
DBC{l,11=2.0
CBC(1,2)=1.9
pac(2,11=0.0
DEC{Z,2)=0.0
[
T With respect to Ul (Ol = [ at ‘time’ T=1).
C
DBC{1,3)=0.
DBC(1,4)=0.
DBC(2,3)=3
DaC{2,4)=1.0
<
C WHith respect to the free parameter (Here PAR(1} ).
<
DEC{1,5)~=0.0
DBC(2,3)=0.C
C
C RETURN
ZHD
<
SUBRCUTINE ICND(MDIM, PAR, IOP, NINT, UG, UCLD, UDOT, GBPOLS, 5L, 25AC, DAY
[ e -————
C

IMPLICIT DOURLEZ PRECISION (A-3,0-Z)
CSGLEZ IMPLICIT REAL (A-H,0-2)
C
C (This problem has nc inteqral canstraints.}
RETURHN
END



TUNCTION USZR{I,NUZR, PAR)

IMPLICIT DOUBLE PRECISION {a-H,0-Z)
CECLE IMPLICIT REAL (A-H,C-Z2)

DIMEMSION PAR(Z20)

€ This subroutine makes it possible to generate plotting and restart
C data at user-selected values of the free parameter({s).

C Pletting and restart data will be written In unit 8 at zerces of
C functions defined below.

c
<
USZR=0
c
C not used in this example
C
RETURN
<
ENG

To run AUTO with this mode! file the following command was entered:
@auto Bi2

The screen then shows the results from compiling and running AUTO:

defined
definad
definag

B2 BTy LAB FAR{L) MAX Uiz) HAK U{Z)

H 1 2P i 0.00000CE+00 O C.CCCO00Z+00  2.500000E+0

z 15 L 2 1.48002BE+00 1. 1.£CG73362+-00 3.020C0C0E-3C
i 23 L@ 3005.799892E-01  7.245770z+00  5.86738882+02 O _JJO00CE-DD
1 48 L? 4 T7.8889% 01 2.280488E+01  1.,12742 21 LL2CeCsoE-SC
1126 L2 5 7.2010408-91 7.275724%92+01 1.6082328+01  CO.C0CULSCCE-DT
I 383 LP & 7.40%53537z-01 2. 2.080520=+C01 3.32028030=-00
i 500 P F07.3933322-01 3.151358E+02 2.1%80%%1=+G: 0.0000002-C0
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Note that there are 4 limit points labelled 2 to 6 and 2 end points labelled 1 and 7.
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The file p.Bi2 Contains all the points found by the pathfollowing algorithm which form

a branch (added comments are in italicised bold) :

tinitial values for the starting peint}
0 0.0000E+00 2.00Q00E+03 G.00QQE+00  2.0000E+03

0 PAR{.}: 0.00QCE+0QO0 . 0000E+Q0Q 0.0CO0E+DD 0.00GCE+Q0

D 0.0000E+GD 0.0000E+Q0 0.0000E+00 0.000CE+QD

o 0.0000E+00 0.0000E+CO 0.00002+00 0.00Q0E+00

o 0.0G0QE+DD 0.0000E+00 G.000CE+0D 0.0CG0E+0D

a 0.000CE+Q0 0.0000E+00 0.0000E+040 0.CO0CE+OOQ
fralues for user defined constants}

0 EPsSU= 1.000CE-04 EPS3= 1.0000E-04 EFS5L{i)= 1.0000E-04 EBSL{2) =
1.0000E-04

0 DS= 1.00002-03 pSMIN= 1,0000E-03 DSMAX= 1. 0000E+00

e} THETAU= 1.00Q00Z+00 THETAL{l)= 1.0000E+00 THEE?AL(Z)= 0.0000E+09

0 NDIM= Z 1P5= 4 0 iLp= 1

9 NTST= Z0 NCOL= g 3 IsP= 1 ISW= I IDLT= g

0 MNBC= 2  NINT= c [ WBR= A0 MEBT- z I1D= 2

G ITMX= 8  ITNH= 5] 3 SAT= 1 NUZR= s

0 ICPy b= i
{peint data for bifurcation graph)

ol 2T TY LAB PAR{Z) L2=NCORM MREK U1} MAX U (2}

H i 9 i 0.0000002-00  G.LOCCOG0Z+00  0.0000002-C0  G.OCOOCGE-G0

i 2 3 J  9.4629€4Z-04 3.233008E-04  3.155093z-0<4  G.OCCCGOE+DOD

1 3 0 0 2.838744%-03 &.7032625-04 9.4654282-34 (.0C00CCE+DD

1 £ s 0 5.623059=-23 2.286078T~-03  2.2114731g-C03 C.C0COCCE-00

1 B 1t} 0 1.418%335-02 4. 4. 20000002200

1 a 0 G 2.9312482-GZ2 1. 9. 0.3G0000=~

1 T ] G 5. i 2. Z.33025022-0C

i g pl [F 3. 3. C.2000002~50

i g 2 a9 1. . . 5.0000002+00

i 15 4 30 2. d 2. 5.04C0022+48¢C

! i c so4. H 1. 2.000000=+C0

1 i2 0 &6, 2. 2.6180438~-01  3.00Q000E-2C

1 13 & 0 s, 4. £.4875332-0% 0.0000002+00

i 14 s T 1.34172&85+402 B 8.344567E-01 S.000500E-3

1 15 5] 2 1.480C28g+00 I 1.40 3.0000032-G0

1 1% g 0 L1.2830082+00 2 : 2.38 0.40000008+00

1 17 ¥ 3 L.0138558+05 3.37E580=+0C 3.32 G.0000C0E+08

i ig 0 0 8.0215472-01  4.28803038+00 £.21 0.000000E+00

1 1% o 9 &.77741 01 5.120345%=+0C 5.G0C 0.0030002+20

b 20 2 0 §.1508872-01 5.862283E+00 S.&3 0.GC0000E+D

1 433 0 G T7.3983484=-03% 3.144873=+02 2. 0.00GeC0E+DD

a0c El 7 T.3933322-01 3.L31338E-02 2. C.GOJCC0E-QC

This has all the point data. Note that the type is a number and not a Character code.

type 5 points are limit points, type 9 end points, and O are regular points,



Each labelled point in p.Bi2 has an eniry in q.Bi2 containing all the information needed

to continue from those point in future runs:

{initial parameters for continuation}

1 1 9 1 1 1 81 3 166 20 4 1
{values for t and u at discrete point t in [0,1] }
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.2500000000E-02 0Q.0000000000E+00 0.00000000Q00E+Q0
2.5000000000E-02 0.0000000000E+00 0.000000000CE+00
3.7500000000E-02 O.000000000Q0E+00 0.0000000000E+00
5.0000000000E-02 0.0000000000E+00 0.0000000000E+00
6.2500000000E~02 0.0000000000E+00 0.0000000000E+00
7.5000000000E-02 0.0000000000E+00 0.0000000000E+00
8.7500000000E-02 0.000000CG000E+00 0.0000000000E+00
1.0000000000E-01 0.0000000000B+00 0.0000000000E+00
1.1250G00000E-01 0.0000000000E+00 0.0000000000E+00
8.7300000000E-01 0.0000000000E+00 0,0000000000E+00
8.8750000000E-01 0.000000000Q0E+00 0.0000000000E+00
9.0000000000E-01 0.0000C000Q00E+00 0.00000000C0E+00
9.12500000060E-01 0.0000000000E+00  0.0000000000E+00
9_.2500000000E~Q01 0.0000000000E+00 0.0000000000E+0Q0
9.3750000000E-01 0.0000000000E+C0 ©.0000000000E+00
9.5000000000E-01 0.0000000000E+00  0.000000C000E+QD
.6250000000E-01 0.0000000000E+00 0.00000000G0E+00
9.7500000000E-01 0.0000000000E4+00 0.0000000000E+GO
9.87500000060E-01 ©0.0000000000E+00 0.0000000000E+0D
1.0000C00000E+00  ©.0000000000E4+00 0.0000000000E+00
{value of A’ Ffor direction vector x'}
9.45632044681E-01
{value of u’ for direction vector x’}
3.1544014894E-01 0.0000000000E4+00
3.1541550518E-01 -3.9430018617E-03
3.1534157389E-01 —-7.8860037235E-03
3.1521835508E~-01 -1.1829005585E-02
3.15045848758-01 -1.5772007447E-02
1.8768688862E-01 -2.8389613404E-01
1.8411354318E-01 -2.87839135%1E-01
1.80450810228-01 -2.%178213777E-01
1.7681898974E-01 -2,9572513963E-01
1.7308778173E-01 -2.9966814149E-01
1.6832728620E~-01 -3.0361114335E-01
1.6550750315E-01 -3.0755414521E-01
1.6163843257E-01 -3.1149714708E-01
1.5772007447E-01 -3.1544014894E-01

... followed by the next point...

&4



83

d.BI2 contains information from the Newton Corrector method at each point on the

branch:

NUMBER OF ITERATIONS = 1 NEXT STEPSIZE = 0.300E+01
BRANCH 1 N= 14 IT= Q A= 7.44985501E-01 PAR= 1,423829%915E+00
BRANCH 1 N= 14 IT= 1 A= 8.75296843F-01 PAR= 1.34103914F+00
BRANCH 1 N= 14 IT= 2 A= 8.74180420E-01 PAR= 1.34172434E+00
BRANCH 1 N= 14 IT= 3 A= 85.74180374E-01 PAR= 1.34172437E+00
LIMIT POINT FUNCTION = 0.483E+00

NUMBER OF ITERATIONS = 3 NEXT STEPSIZE = 0.547E+00

This example point (number 14 on Branch 1) has 3 Newton iterations with A
converging to 1.32, and the next stepsize is 0.547 (based on the number of Newton
iterations).

The limit peint Function changes sign when there is a limit point. For example:

BRENCH 1 N= 14 IT= 0 A= 7.44985501F-01 PARR= 1.4208291SE+00
BRANCH 1 N= 14 IT= 1 A= 8.752%6843E-01 PAR= 1.34103914E+00
BRANCH 1 N= 14 IT= 2 A= 8.74180420F-01 PAR= 1.34172434E+00
BRANCH 1 W= 14 IT= 3 A= 8.74180374E-01 PAR= 1.34172437E+00
LIMIT POINT FUNCTION = 0.493+00

NUMBER OF ITERATIONS = 3 NEXT STEPSIZE = 0.547E400

BRANCH 1 N= 15 IT= (0 A= 1.27386060F+00 PAR= 1.71467895E+00
BRANCH 1 N= 15 IT= 1 A= 1.50947747E+00 PAR= 1.46203950E+00
BRANCH 1 N= 15 IT= 2 A= 1.49366043E+00 PAR= 1.47896813E+00
BRANCH 1 N= 15 IT= 3 A= 1.49357184E+00 PAR= 1.479062%0E+00
LIMIT POQINT FUNCTION = -0.33%g-01

* DETECTION OF SINGULAR POINT : ITERATION 0 STEPSIZE = -0.352E-01
BRANCH 1 N= 1S5 IT= (0 A= 1.459%923601E+00 PAR= 1.471459%8E+00
BRANCH 1 N= 15 IT= 1 A= 1.45748977E+00 PAR= 1.479%90434E+00
BRANCH 2 N= 15 IT= 2 mr= 1.45748950E+00 PAR= 1.47290631E+00
LIMIT POINT FUNCTION = -0.123E-01

* DETECTION OF SINGULAR POINT : ITERATION 1 STEPSIZE = -0.200E-01

BRANCH 1 N= 15 IT= 0 A= 1.43764409E+00 PAR= 1.48037031E+00
BRANCH 1 N= 15 IT= 1 A= 1.43762453E+00 PAR= 1.48002772E+00
BRANCH 1 N= 15 IT= 2 2= 1.43762453E+00 PAR= 1._.4800276%E+00
LIMIT POQINT FUNCTION = 0.203E-03

* DETECTION OF SINGULAR FOINT : ITERATION 2 STEPSIZE = 0.324E-03

BRANCH 1 N= 15 IT=

0 A= 1.43794692E+00 PAR= 1.48002572E+00
BRENCH ! N= 15 IT= 1 R=

1.243794700E+00 PaR= 1.48002773E+00

LIMIT POINT FUNCTION -0.168E-05
* DETECTION OF SINGULAR FOINT : ITERATION 3 STEPSIZE = -0.266E-05
NUMBER OF ITERATIONS = 1 NEXT STEPSIZE = 0.100E+01

The limit point function changed sign and the Newton Corrector method was used to

converge on the place where it changed sign.
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These output files can be used to generate a bifurcation graph using the plaut program.
First a tektronics window is set up by typing tektool. The plaut program is initiated
by the command:

@plaut Bi2

The screen then shows:

ENTER <HELP> IN CASE QF DIFFICULTY

ENTER COMMAND

typing BDG will result 1n a plot of a bifurcation diagram for the system:

200 |

150

100 ]

|
| s




Typing 2D gives the curve u(s) at the label points 1, 2, 3,4, 5,6, 7 and §:
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APPENDIX B: THE STRUCTURE OF AUTO

INTERNAL SYSTEM CONSTANTS

The smallest and largest acceptable real numbers for the machine are defined as:
RSMALL=1.0D -30  (1x10™ in double precision)

RLARGE=1.0D 30 (1x10” in double precision)

These numbers are used to stop underflow and overflow errors. For example, in Gauss
elimination, the pivot element must be larger than RSMALL, otherwise a divide-by-zero
error will result.

The machine has a 14 decimal digit mantissa. HMACH=1.0D-7 is the approximate half
exponent machine accuracy. This is used as A in (2.46) for numerically generating the
Jacobian, HMACH can be multiplied by itself 4 times, before the number goes out of
range. This ensures that as long as the function fis within the range of the machine,

then the resulting number from (2.46) is also within the accuracy of the machine.

Every IADS steps along the branch {(where IADS is a user defined constant), the
stepsize is adapted. If the number of Newton iterations to find a point is NIT, the
existing stepsize is RDS and ITNW is the maximum number of Newton iterations (v,
in Section 2.1) then:
If NIT<= 1 Then RDS=2(RDS)
- If NIT=2 Then RDS=3/2 (RDS)
- If NIT>2 and NIT< ITNW/2 Then RDS=1.1(RDS)

- If NIT >=ITNW Then RDS=0.5(RDS)

These settings are fixed by AUTO and cannot be changed in the model file.
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FLOW CHART

A Flow Chart 1s included for AUTO when the main program is set up for a BVP
(IPS=4} with 2 boundary conditions (NBC=2}, no integral conditions (NINT) and with
no previous runs used (JIRS=0) This is the type of analysis done for all of BVP’s in

secticn 3.2.

The program is represented as a text-based flow-chart with the convention;
EXAMPLE - Name of Routine

EXAMPLE - A Subroutine call

EXAMPLE - A Subroutine call which contains other subroutine calls
Example or EXAMPLE - Logic statements like if, then and loops

Example - A Comment

MAIN PROGRAM

CNSTNT:
Define problem independent constants e.g. maximum and minimum computable
numbers

DEFINIT:
Sets default values of the constants. (These valuas are on page 143 of the
manual.)

INIT:
Define constants from the users mode! file

AUTOBV:
Pathfollow for Boundary Value problems

AUTOBV
WSBY:

Assign workspace.l.e declare variables
CNRLBV:

Compute solution branches



0

CNRLBY

nfot=0

RSPTBV:
Gets initial volue for w(f ) and X, defined in STPNT in the mode/ file and put them
into discrete variabies UPS( ), and RL(1) respectively.
get t values for these points

ADAPT: {Adapt existing Mesh to this inffial solufion curve.)
STDRBV: {get starting direction vector)
SETUBV:

Genercate Jacobian Matrix P, from UPS values with N.=0 (i.e. using a 0
direction vecton to get {F, | f1
Sef right hand side of Matrix eguation t¢ 0
BRBD:
Find null vector of {F, | F } to get an initicl direction vector (UDOTPS,
RLDOTPS)
SCALEB:
Scale this direction vector to unit iength,
STHD:
Write the values ¢f the AUTO user defined parameters in fort.7.
EXTRBY: {Extrapolate fo get approximation 1o next point}

LOOP UNTIL {the point evaluated is out of range} OR {the number of points is out of
range)
IF {adaptive mesh chosen (IAD=1)} AND {it has been IAD iterglions since it has
been adapiedTHEN
ADAPT: {Adapt existing mesh}
iF {adaptive stepsize chosen (ADS=1)} AND {if has been tADS iterafions since it has
been adapted THEN
ADPTDS:
Adapt existing stepsize
CONTBV: {Use Eufer Predictor as inftial approximation for next point}
Use 2 previous paints UPOLDS, RLOLD and UPS kL to approximate the next
direction vector using the stepsize DDS.
EXTRBV: [Extrapolate to get approximation to next point]
SOLVEBV:
Perform the Newton Corrector using initicl approximation
IF {Checking for limit points ILP>0} THEN
LCSPBV(FNLPBV)
If {Checking for branching paints 1SP>0} THEN
LCSPBV(FNBPBV)

IF {Checking for user defined points NUZR>(0} THEN
LCSPBV(FNUZBY)
STPLBY
Store plotting data to fort.7 and fort.8
END OF LOOP

ADAPT
NEWMESH:
Use last solution points () to get new mesh intervais (As in Chapter 2)
INTERP:
Replace iast solution curve peints by new point by interpolating to get u
values for the new maesh inferval’s
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EXTRBV:
Define UOLDPS,RLOLD as UPS and RL respectively.
get next point UPS.RL from previous point VOLDPS, RLOLD and direction vector
UDOTPS.RLDCOT

SOLVEBV
LABEL 1
LOOP for NiT=1 fo I[TNW
Define IFST=0
IF {Number of iterations is less than user variable NWTS}THEN
Define IFTS=1
iF IFTS =1 THEN
SETUBV!
Generate Jacobian P, and Generate Right Hand side (F.N)'
ELSE
SETRBV:
Only Generate the Right Hand side {using Jocobian ot the previcus
point}

BRBC;

Solve the Mairix equation P=(F.N)' to get solution RHSD
Use RHSD as a Newton increment 1o get o better approximation for UPS. KL
Check whether user-supplied iolerances for the new solution have been met
and QUIT if they have.

The Maximum number of iterations has been reached. so Reduce siepsize (f
adaptive)
IF minimum stepsize not reached THEN
GOTO label 1
ELSE
Display error message - NO convergence.

SETUBV
Generate U values at z values using weights W )
FUNI:
Call user subroutine FUNC In the Model file and get F(U.RD and derivatives
CFCY and DFDP
Use DFDU and DFDP for Jacobian P,
Use F and the Pseudo-arclength eguation for N for the Right hand side

MODIFICATIONS TO AUTO

The co-ordinates { and j of the u value u;,,,, are passed to the Subroutine FUNI, as well
as the current mesh points TM  (f,,,) and interval sizes DTM  (Az, ).  Another

parameter £ indicates whether the mesh points are at regular intervals or at z values.



The following Fortran Code shows the modifications to the subroutine FUNI:

FUNT (K, I,J,NDIM,U,U0LD,ICP,PAR,IJAC,F,DFDU, DEDP, I'M, DTM)
c

C Parameters I and J have been added
lof J is the MESH step number and I is the Collocation point number
c TM () + (T-1) /NCOL*DTM(J) is the T valuve which corresponds to be value of ¢
c also as arrays TM and DIM are also needed they are passed as well.
C
TMPLICIT DOUBLE PRECISION {(&-H,0-Z}
CSGLE IMPLICIT REAL {(A~H,C2-2)
C

C Interface subrouvtine te user supclied FUNC.
C
COMMON FSLICNS NDM, NDMPD, NROW, NCLM, NRC, NCU, NEPAR, NFDAR, NBI0, NINTC
COMMON S3LMAN/ NDR,MYBD, IID, ITMX, ITNW, NWTN, JAC
CMMON /BLRCN/ HALT, ZZRC, CHE, TWO, HMACH, RSMALL, RLARGE
COMMON fRLOIES ULZ2Z(50),U22Z{33),F122150),F222130)
COVMMON JBLCTDE/ NTST, NCOL, TAD, ISP, ISYW, IBLT, N3O, NINT
C 11117V Note that NYTST is needed

%)

]

TUMMON JSLWTS/S W(B,7),W2{E, T}, WE8) ,WI{8), EM(7)
[of for weights

CIMENMIION UINDIMY, UQLD(NDIM), ICP 20, PAR(Z0), T (NDIM)

C
DEOU(NDIM, NOIM), DFDP (NDIM, 200, TM(NTSTPL)], DTM(NTSTF1}

A=RL1/WCICL

IF [L.EQ.ZERD) THEN

2=Tw 3]
CL5E
TP (K.EQ.ZERQ) THEH
B=TM{J) + A=OTM (5}
ZL5E

B=TW (J)+DTM (J) "ZM (L}

C rirrrt B is the Value of I, and C is the first mesh interval length
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APPENDIX C: AUTO AND ORDINARY DIFFERENTIAL

EQUATIONS

The pathfollowing algorithm can be applied to systems of Ordinary Differential

Equations:

dx
= =F(x,A
dt .2)

The steady states of these systems, correspond to Solving F(x,A) = 0. The stability of
a solution point corresponds to the sign of the elgenvalues of . If the eigenvalues are
all negative , then the branch is stable, otherwise, the branch is swable. If the
eigenvalues are complex with the real part zero, then the point is @ Hopf point. Hopf

points can be detected in this way.

Periodic solutions from Hopf points, can be gained by forcing the period to be 1 adding
boundary condition u{(0) = u(1) , and an integral condition which minimises the phase
change.

The manual {4] has more information on how it is implemented, and how to use AUTO

to get steady states and periodic solutions of O.D.E.’s
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