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Abstract 

This thesis is primarily concerned with the numerical techniques involved in bifurcation 

analysis, in particular with the software package AUTO developed by Eusebius Doedel 

which performs this analysis on dynamical systems. 

The techniques of AUTO are investigated and applied to a steady state heat equation. 

The chosen equation can be solved by analytical methods for some boundary conditions. 

Initially AUTO was successfully applied to such problems, which have analytical 

solutions confirming its reliability. The software was then used to solve dynamical 

system problems which do not have known analytical solutions. These problems 

necessitated a modification to AUTO for non-autonomous systems. The modified 

version of AUTO was shown to be successful in finding solutions to these problems. 
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1 INTRODUCTION 

1.1 BIFURCATION ANALYSIS 

Bifurcation theory allows the analysis of a system (or model) with a control parameter 

which is fixed (in any single instance) but can vary depending on the system which is 

been modelled. For example, if the load on a vertical beam is greater than a certain 

amount, the beam will buckle causing a deflection (see figure 1.1). At the point of 

buckling, the solution structure changed. There is a solution branch where there is 

buckling, and a solution branch where there is none. The solution branch has bifurcated 

into two branches. The control parameter (A) for this system is the load on the beam. 

It is fixed for any particular set of physical parameters, but if varied, the solution 

structure may change. This system could have many other variable parameters (for 

example the elasticity modulus of the beam); however if only one parameter is varied 

at a time then its effects may be seen without other parameter variation influencing the 

results. This is the technique used in bifurcation analysis. 

DEFLECTION 

(+) 

0--------------'-----------

(-) 

A oc Load 

Deflecting 
Branch 

Non­
deflecting 
Branch 

Figure 1.1: A bifurcation Graph for the load on a beam 

! 



2 

The control parameter for a system is usually called the distinguishing parameter, 

principle parameter , or the bifurcating parameter, and will be denoted by A. As the 

previous example has shown, changing A changes the structure of the solution set. 

BIFURCATION POINTS 

Bifurcation analysis is the process of finding critical values of A which change the 

solution structure. A bifurcation graph is generated to aid this task. A bifurcation 

graph plots A against some norm of the solution (see figure 1.2). Solutions to the 

system are represented on this graph as curves or branches, where a branch is defined 

as a curve which can be parameterised by a single parameter. If, in a small 

neighbourhood of A, there is a point A0 at which the number of solutions change (in 

every small neighbourhood), then this point is described as a bifurcation point. These 

points are important as a change in the number of solutions indicates a change in the 

state of the system. 

The system will be defined as: 

(1.1) F(u,:>..) =0 

where u = [u1 , l½_ , ••. , un]1 , A is a scalar and F = [F 1, F2, ••• , F0 ]
1 is a system of 

equations. 
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The Jacobian operator Fu for this system is defined as: 

aF1 aF1 aF1 

Bu1 auz aun 

BF2 aF2 BF2 
(1.2) F = u 

au1 auz aun 

aF aFn aFn n 
au1 auz aun 

This system has a solution set: 

(1.3) 

for a particular value of A. A point A0 is a bifurcation point if S).. * 0, and there is 
0 

a u0 ES).. such that, for all sufficiently small neighbourhoods 
0 

there are two distinct solutions (u1 , AJ and (u2 , Ax)E UxV (see reference [3]). That 

is there is more than one solution of x for a particular value of A. 



4 

A bifurcation point on a solution branch can be sub-divided into one of two categories, 

a limit point and a branching point (see figure 1.2). 

llull 

x = limit point 

o= branching point 

Figure 1.2: A Bifurcation Diagram 
Limit point: 

This is when the solution curve folds back on itself. 

A limit point (A0 , u0) is defined to be a bifurcation point which has solutions 

(A0, u0) in the neighbourhood UxV such that : 

or 

Branching Point: 

This can be defined as a bifurcation point which is not a limit point. 

Note that any single branch can be parameterised using a single parameter t, giving a 

solution space { (u(t), A(t)) I a < t < b } . So an alternative definition of a limit point 

is a point ( u(t0), A(t0) ) such that A1 (t0) = 0. 
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Other conditions for bifurcation points can be found by introducing the Implicit 

Function Theorem: 

Theorem 1.1: The Implicit Function Theorem (see [12], Page 78) 

If 

(i) F is continuously differentiable and 

(ii) Fu has a continuous inverse at a point Cua, Aa) in solution space (1.3) 

then for the neighbourhoods: 

U = { UxE 9Z11 I llux - uall ( £ } and V = { AxE 9Z I IIAx - Aall ( 8}: 

(a) Fu has a bounded inverse for all points (ux, Ax) E UxV. 

(b) for all fixed AxE V, the equation F(ux, Ax) = 0 has a unique solution 

UXEU. ■ 

This implies that, when Fu is non-singular, there are no bifurcation points. So a 

necessary (but not sufficient) condition for a bifurcation point is that Fu is singular. 

If Theorem 1.1 holds then a branch B of solutions can be defined: 

(1.4) B = {(u(A), A) la<}. <b, F(u().), A)=O}, where a,bEfil 

The solution (0,A) is called the trivial branch. This happens when F(0,A)=0 for all 

values of A (i.e u(A)=0). 

Theorem 1.2: (see [12] page 79) 

If the trivial branch exists and \i=0 is an eigenvalue of the Jacobian F "' then 

if \i is an eigenvalue of odd multiplicity, A0 is a branching point from the 

trivial branch, 

i.e. A0= 0 is a root of det(FJO) - A0I ) = 0 which is of odd multiplicity 

(where FJ0) is the Jacobian evaluated at u=0). 

Note: \i and A are different variables. 

■ 
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This is a sufficient condition for a bifurcation point. Note that if the multiplicity of the 

eigenvalue is not odd then it is still not known whether the point is a bifurcation point. 

If the trivial solution does not exist, or bifurcation points from other branches are 

wanted, then Theorem 1.2 cannot be applied. So this theorem only locates bifurcation 

points which are on the trivial branch. To find bifurcation points from other branches, 

the system has to be converted into this form by linearisation: 

If a solution branch (U = u(A), A) is known then equation (1. 1) can be 

linearised such that: 

(1.5) H(h, µ) =F(U+h, µ) =0 

where h is a vector [h 1, h2, •• h0Y, and µ = A is the new bifurcation parameter 

(it is given a different symbol as A is fixed by the solution branch U). 

H(O, µ) = 0, for all µ, so Theorem 1.2 can be used to find bifurcation points. 

A bifurcation point µ0=g(U) in system H can be related back to F by 

substituting µ0 with A and solving A=g(U) for A. 

Note that this requires an existing solution branch U. 

Example 1.1: 

Define F to be the system: 

2 3 
/ 2(ul'u2,).) = u1 u2 - u1 - ).u2 =0 

This system has the trivial solution branch (Ll, A)= (0,0,a), aE 9\. But does it have any 

other branches? The implicit function theorem can be used to find possible bifurcation 

points along this branch. 
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The Jacobian Fu along the trivial branch is: 

This is singular when the determinant is zero, i.e when A=0. So by Theorem 1.1 A=0 

is a possible bifurcation point. At that point Fu has a zero eigenvalue of multiplicity 

2, which is even, so that Theorem 1.2 does not prove whether it is a bifurcation point 

or not. 

However if some algebraic manipulation is done on the system, one finds that 

{ (a, 0, A) , a > 0} is not a solution and also { (0, b, A), b > 0} is not a solution so 

non-trivial solutions only exist if u1, u2 :;t:Q, Eliminating A gives: 

which has only the trivial solution. So as there are no non-trivial solutions, A=0 is not 

a bifurcation point. • 

Example 1.2: 

Define F to be: 

This system has the trivial solution branch. The Jacobian Fu is: 

The trivial branch (0,0,a) has a possible bifurcation point when A=0. 
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Fu(0) has an eigenvalue of multiplicity 2 at that point, which is even, so Theorem 1.2 

does not prove whether it is a bifurcation point or not. Clearly A=u1 and A=½, are non­

trivial solutions. So solution branches (a,0,a) (0,a,a) and (a,a,a) exist for a E 9\, and 

(0,0,0) is a bifurcation point. Fu is not singular along any of the non-trivial branches, 

so by Theorem 1.1, there are no new bifurcation points coming off these branches. The 

bifurcation graph for this system is shown in figure 1.3. 

9.00 

7.00 

5.00 

3.00 

1.00 

- 1. 0 0 --+-r-..---r---,--.-.----.--.--,---r-,r-r---,,--,-r-,--r-,---r--r--r--r-,--,--.--r--.-----r--,--,--,--,-..,.....-r--, 

-1.00 1.00 3.00 5.00 

I\ 
Figure 1.3: Bifurcation diagram for Example 1.2 

II 
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Example 1.3: 

Define F to be: 

This system has the trivial branch as a solution. 

For points along this branch, the Jacobian Fu becomes: 

[
16-}. o l 

0 12-}. 

This is singular when A=16 and A=12 where the nullspace is one-dimensional. So by 

Theorem 1.2 these points are bifurcation points. As A has values both before and after 

these points (in their respective neighbourhoods) and also by Theorem 1.2, they can be 

sub-categorised as branching points (using the definition of a branching point defined 

earlier). 

The branches can be found analytically and are: 

To find bifurcation points along non-trivial branches, the system needs to be linearised 

about each solution branch by defining the system: H(h,µ) = F(U+h, µ), where U is a 

non-trivial solution branch u(A). The Jacobian Hh along the solution branch (h=O) is: 

(1.6) 
2 2 

12 +27U2 + 18U1 -µ 
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For the first branch ua (inserting it in the system H and making µ=A) the determinant 

is zero when: 

16 + 24Ui(A) =A, and 12 + 27Ui(A) =A (as Ui(A)=O) 

This corresponds to A=12 and A=9.6. The first point is the existing bifurcation point 

from the trivial solution. The second point is not in the range of the solution space (of 

A> 12). So by theorem 1. 1, there are no more bifurcation points along this branch. 

The second branch ub makes the determinant zero when A=l6 and when A=24. The 

first eigenvalue is the point where this branch connects to the trivial solution. The 

second point is a possible bifurcation point. By theorem 1.2, A=24 is a branching point 

from the branch ub. 

This new branch is: 

I±~ (A -9.6) 
21.6 ' 

±~ (A-24) 
54 

t 

It is more difficult to find branching points from this branch as U1 and U2 are both not 

zero. 
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So the analysis stops here, and a bifurcation graph of the results can be seen in figure 

1.4. 

4.00 

3.00 

2.00 

1.00 

0.00 

- 1 . 0 0 -t--..---,----,---.--,--,-.---r--.-,--,--.--,---,--,--.--,,-----r---,-,-----.-~-r--r----,--, 

0.00 25.00 50.00 75.00 100.00 125.00 

I\ 
Figure 1.4: Bifurcation diagram for example 1.3 

• 
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NORMS 

Bifurcation graphs require a single value from a vector of many solution values to plot 

against the distinguishing parameter A. The most commonly used value is the 

Euclidean norm: 

llull2=vu~+u;+ ... +u;, where u=[u1 Uz ... unr 

If a particular variable ua is of interest, then llull = lu) can be used. If a bound is 

wanted on the variables the 00-norm (llulU can be used where: 

llull= = max{lu; I : i = l, ... , n }. 

Each definition will give a different bifurcation diagram. Some may not show 

bifurcation points, or may show branching points which do not exist. 

For example, the point u=(l ,2) has the same Euclidean norm and oo-norm as the point 

u=(2, 1) , so the two solutions from different branches will appear to be intersecting on 

a bifurcation graph. However the norm llull= lu 11 will graph the two points differently. 

Another example considers the curves u1 = (A, A+ 1) and L½ = (1-A, A+ 1) which intersect 

when A=½. llull= =A+ 1 for all positive A on both solution curves. A bifurcation graph 

of A versus llull~ will show an intersection of the two curves at all values of A greater 

than zero. This problem is due to the difference between the dimension of the 

bifurcation graph, which is 2-dimensional, and the dimension of the system which it 

graphs. These two examples show that care must be taken when choosing a norm to 

ensure the solution curve is represented clearly on its bifurcation graph. 
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SYSTEMS OF DIFFERENTIAL EQUATIONS 

The previous analysis is for algebraic systems of the form F(u,A)=O. Now consider the 

situation when the model is a system of differential equations. i.e. F(D(u),A)=O where 

D(u) is a nxn matrix of all the derivatives of u with respect to t, where u is a vector of 

independent variables, and t is a vector of dependent variables. 

The solution space is: 

{ (u(t),A) I uE~Jr, tE9\Tn, AE9\}, 

For each value of A, there exists one or more vector fields u(t) of solutions. 

The definitions for bifurcation points, limit points and branching points can still be 

applied to this system by defining a fixed point u=u(t) which must satisfy the 

definitions for all values of tE 9\Tn . 

Theorems 1.1 and 1.2 are not easily applied to F as the Jacobian F,. is undefined. 

There is an analytical method for transforming a D.E. system into an algebraic system 

using an appropriate Green's integral, in which case the theorems can be used. This 

method will not be covered in any detail other than to say that it is very difficult to do 

for all systems except very simple ones. (see Gomez' thesis [5] and [9]), and then one 

still needs to find the function H from (1.5). 
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The existing norms can be applied at any fixed point u (usually the maximum). If there 

is only one dependent variable t defined over a fixed range [0,71, then there is another 

norm which can be applied: 

!lull={½ 
T 

f[ u1 (t)
2 + uz(t)2 + ... + un(t)2}dt 

0 

This gives a Euclidean-type norm which encompasses the value for u over the whole 

interval, rather than just a single value, so all points have an 'effect' on the norm. 

To make use of these theorems, one needs analytical solutions, which are only found 

in a very small subset of non-linear systems. Solution branches can be determined 

numerically, and Chapter 2 presents methods for doing this. 
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1.2 COMBUSTION MODELS 

Cellulosic materials such as wood chips (or shavings or sawdust), hay or bagasse are 

stored in large piles under conditions which may vary in temperature and humidity. 

Under certain conditions, the material spontaneously combusts, possibly causing 

substantial damage. 

For inert isotropic bodies obeying the Arrhenius Law the Fourier heat balance equation 

becomes ( see [7] and [ 11]): 

(-E) ar 
k'il2T+qaA.e RT =C- in the region rEOs:m3, t>O at 

with boundary conditions: 

ar ~ 
k- + h(T-T) = 0 on an (assuming Newtonian Cooling) an a 

ar =0 when x. =0 'efi a ' I xi 

where T(x,t) is the absolute temperature of a body at position vector x and time t, k is 

the thermal conductivity, and q, a, and A are exothermicity/unit mass, density and 

frequency factors respectively. E is the activation energy of the oxidation reaction, C 

is the specific heat capacity, and R is the gas constant. 'il2T is the Laplacian operator. 

In the boundary conditions, h is the heat transfer coefficient, and Ta is the absolute 

ambient temperature. 

The first boundary condition ensures that the temperature at the surface of the reactant 

is equal to the ambient temperature minus the effects of Newtonian cooling at the 

surface. In a symmetrically heated system, it is assumed that the temperature gradient 

at the centre is zero, resulting in the second boundary condition. 



The steady state model for this system is: 

k'\/2T+qaA.)-ffi.) =O 
ar ~ 

k- + h(T-Ta) =O on boundary an an 
dT =0 when x.=0 Vi dx. , I 

I 
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This system in symmetrical shapes can be converted to the dimensionless form (see [7] 

and [11]): 

(1.7) 

d2u j du u 
-+-- +).,(ao)e =0 
dr 2 r dr 

du du . -(0) =0, -(1) +Brn(l) =0 
dr dr 

E(T-T) f 
where u = --- is the dimensionless temperature excess, r =- is a 

RT2 ao 
a 

dimensionless length-scale (same for objects of any size) in the interval [0,1], with a0 

representing an appropriate characteristic length such as the half-width of the body, 

Bi = harJk ( > 0) is the surface heat transfer coefficient (denoted as the Biot number), 

and 'A is the Frank-Kamenetskii parameter [1] given by: 

2 ( R~) 
aoqaA.e 0 

,\(ao) = ----

k( :; ] 
The value for 'A is crucial. Solutions only exist for certain values of 'A. The maximum 

value of 'A occurs at the point where the substance will combust spontaneously. 
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In physical terms if, for a given ambient temperature the substance radius is larger than 

a critical size, then there are no steady states for temperature in the substance, and it 

will combust spontaneously over time. This critical value for A is denoted by Acrit· 

d 2u j du . 
-- + -- 1s the Laplacian !iu for Class A geometries in dimension j+ 1. i.e. 
dr 2 r dr 

geometries which have a single unit of measurement. 

EXAMPLES 

An infinite Slab (j=O): 

d 2u -+Aeu=O 
dr 2 

An infinite Cylinder (j=l) 

d 2u l du u 
-+--+;l.,e =0 
dr 2 r dr 

A Sphere (j=2): 

&u 2 au u 
-+--+;l.,e =0 
ar 2 r ar 

·It'.•• 



18 

There exists a well known analytical general solution to equation (1.7) when J=0 (see 

[7]): 

(1.8) 

where A and C are constants. C must be zero to satisfy the first boundary condition. 

The norm, which will be plotted in the bifurcation diagram against A, is the maximum 

value of u over 0srsl denoted by umax• Over this range the maximum value of u occurs 

when r = 0, so the norm umax is: 

um== u0 = u (0) = ln (A) 

An implicit solution relating u0 to A, for A > 0 is found by replacing ln(A) by the norm 

u0, and using the other boundary condition: 

(l.
9) ln(A) aln(2a2) -21ncosh(a)- 2" ~(a), where a" g and A>O. 

When A=O, u is the trivial solution u(r)=0 for all r. As u0 and A are unique for each 

value of a, the solution curve can be parameterised by a, giving a branch (u0(a),A(a)) 

of solutions. 



The solution when Bi = 1 is plotted in figure 1.5. 

15.00 

10.00 

5.00 

0.00 
0.00 0.05 0.10 0.15 

I\ 
0.20 0.25 

Figure 1.5: Bifurcation graph of system (1.7) with J=O and Bi=l. 

The maximum value of A is at a limit point, Acrit= 0.270671. 

19 

0.30 

By the definition of a limit point (see section 1. 1), a limit point is a point when 

A'(a) = 0, or equivalently d(ln).) =0. Also as the entire solution space is parameterised 
da 

by one parameter, there are no other branches, and therefore no branching points. 
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This gives an implicit equation for the co-ordinates of the limit point, for any given 

Biot number Bi: 

(1.10) . a crit sinh( a crit) cosh( a en,) + a !nt 
B1 =-----------

[l - a crittanh( a crit)] cosh2
( a crit) 

where acrit is the value of a when it is a limit point, from which the corresponding 

values (u0\rit and Acrit can be attained by using (1.9). 

A singular solution of ( 1. 10) occurs when the denominator is zero and Bi = co. This 

is called the Frank-Kamenetskii boundary condition, and corresponds to perfect heat 

transfer at the surface of the object. The last term of (1.9) becomes zero when Bi = co, 

and A can be defined explicitly in terms of u0: 

The limit point (when ~-A =0 ) is 0.87846. 
LJ.i,lo 

A general solution also exists for equation (1.7) when J=l (the infinite cylinder): 

(1.11) u(r) =ln[S:(l +Ar
2)2] 

where A is a constant of integration. Similar analysis may be used on this to give an 

implicit equation for A and u0 . From (1.11), u0= um•x= ln(8A/A) and introducing G = A 

results in: 

ln().)=1,J BG ]-[ 4G ] where G=}:_eu0 

~1 (G+ 1)2 Bi(G+ 1) ' 8 



The limit point ( (u0\rit' Acrit) occurs when d(lnA) =0, and results in the implicit 
dG 

equation: 

4G. 
Bi= cnt 

2 
(1-Gcnt) 

When Bi=00 , an explicit solution for A in terms u0 exists: 

and Acrit is 2. 
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A general solution for }=2 (or more generally for j:;i={Q or 1} ) has not been found. 

Chapter 3 discusses a numerical approach for solving (1. 7) for any j and Bi. 

THE SHAPE FACTOR 

The examples so far are Class A shapes which have Laplacians which are of the form 

~ d 2u j du . of equation (1.7). The Laplacian v-u = - + -- can also be used to approximate 
dr 2 r dr 

non-Class A geometries. Boddington, Gray and Harvey [ l] developed a technique for 

using (1.7) to model any shape possessing a point of symmetry by defining} as a shape 

factor: 

(1.12) . R; 
J =3- -1 

Rz 
s 
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where Rs is the Seminov radius [1], and R0 is the harmonic root-mean-square radius of 

the body: 

volume l 1 Jf dw Rs= 3 rfi , -
2 

= -
4 

-
2 

where dw is the solid angle subtended at the 
su ace area Ro 1t a 

centre O and a is the radius from O to the edge for given angle co-ordinates. 

3(2a)3 For example, a cube of volume (2a)3 has R8 =-- =a, and 
6(2a)2 

Ro =a j ~J3 = l.19'1a so the shape factor j for a cube of any size (as the a's cancel) 
1+--

7t 

is 3.280 (using (1.12)). 

The harmonic root-mean-square radius RA0 for any unit Class A shape is defined (see 

[ 1]) as: 

~
2 =l(j+l) 

3 

A shape Xis modelled by a Class A shape of radius %(j+ 1 ), where j is defined using Rs 

and R0 from the original shape X. This results in solving a modified version of (1.7) 

which has a new parameter A(R0) (see [1]): 

d2u + j_ du + lu+ 1)-'.(Ro)e u =0 
dr 2 r dr 3 
du du . 
-(0) =O, -(1) +Bzu(l) =0 
dr dr 

This system gives an approximate value of A for shape X. 



A can be found for the unit shape X by scaling A(R0) by R/. 

So (1.7) can model a shape of unit size by: 

1 -> Calculating the shape factor j from (1.12) 

2 -> Solving (1.7) to get solution points (u;, A; ) 

3 -> Scaling A;: 

* 3).,i 
).,.=---

' (i+l)~ 
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Table 1.1 has some more examples of shape factors. RAs is easy to find, but RA0 is not. 

(There is list of formulae of R0 for simple geometries in [1]). 

Table I.I: Example Shape factors 

Geometry RA0 RAS j 

Infinite Slab 3 3 0 

Rectangular Parallelepiped (ratio 1: 10: 10) 1.731 5/2 0.438 

Infinite Cylinder 1.225 3/2 1 

Infinite Square Rod 1.354 3/2 1.444 

Rectangular Parallelepiped (ratio 1: 1: 10) 1.354 10/7 1.694 

Sphere 1 1 2 

Eq uicy linder 1.115 1 2.729 

Cube 1.194 3.280 

Regular Tetrahedron 0.537 0.408 4.178 

Boddington, Gray and Harvey [1] showed that, for convex bodies, the shape parameter 

has values lying between 0 (the infinite slab) and 4.178 (the regular tetrahedron). 
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If N = j + l is defined as the dimension of a sphere, then d
2
B + N- l dB can be thought 

dr 2 r dr 

of as the Laplacian of the N-dimensional sphere in spherical co-ordinates. So, using 

the shape factor j , an object can be modelled as a j+ l dimensional sphere, where j is 

a positive real number. 

RESULTS FOR ARBITRARY; 

A phase plane analysis of (1.7) by Wake [14], has shown that for 1<}<9 , as u 

increases, A converges to A= where : 

(1.14) 
2 

)."'=2(i-l)e Bi 

He also showed that there are an infinite number of solutions to ( 1. 7) when A=A-. 

This implies that the bifurcation curve has a damped oscillation about the line A=A=, 

with amplitude decreasing as u increases. As there are infinitely many oscillations 

about a vertical line, there are also infinitely many limit points. 

No analytical solution to (1.7) has been found for arbitrary j and Bi. The rest of this 

thesis discusses techniques for numerically solving ( 1.7) to generate bifurcation graphs 

for any j or Bi value. The analytical results of this Chapter are used to test the 

accuracy of the numerical results. 
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2. NUMERICAL TECHNIQUES 

This Chapter describes the numerical techniques used by AUTO to perform bifurcation 

analysis on autonomous boundary value problems (BVP's). Numerical methods for 

bifurcation analysis of algebraic systems are presented followed by a method of 

discretising BVP's by collocation. Then it is shown how bifurcation analysis of BVP's 

can be performed by applying the techniques used for algebraic systems on the resulting 

discretised system. Finally, the numerical techniques of AUTO are extended for non­

autonomous boundary value problems. 

2.1 ALGEBRAIC SYSTEMS 

This section looks at bifurcation analysis of algebraic systems of the form: 

(2.1) 

where A is a free parameter. If Fis continuously differentiable and Fu has a continuous 

inverse at all solution points ( u(s), A(s) ) along a branch for a s s s b, then the Implicit 

Function Theorem (see chapter 1) ensures that there exists a smooth continuous branch 

where Fu is non-singular, and the solution has a parameterisation of the form 

{ ( u(s), A(s) )I a s s s b } where A(s)=s. This is called a simple branch. 
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Then from some starting value x0 = (u0 , A0 ) = (u(s 0), A(s0)) a curve can be generated: 

(2.2) = 

and, as A=s; d). = 1, so that (2.2) becomes: 
ds 

(2.3) 

An Euler predictor with Newton Corrector [8] finds a predicted value from: 

(2.4) 

(2.5) 

and u-/ is used to predict: 

(2.6) u 0o .. o + o).) =u().o) + o).uf 

).O=). +o). 
0 

where OA is an arbitrary step size. This gives an initial value (it°,A0
) for the next point 

which can then be improved by the Newton Corrector: 

(2.7) solve Fvou V = -Fv to get OU V 
u ' 

and an improved uv is then given by: 

(2.8) UV+ 1 = U V + () U V 

where v is incremented from v=O, and the sequence (2.7) and (2.8) is repeated until ou 

is sufficiently small. 

Note that the Implicit function theorem (see Chapter 1) implies that, when the Jacobian 

Fu is not singular, there cannot possibly be any bifurcation points as part (b) implies 

that there can only be one solution for a particular value of A. Hence the 

parameterisation s=A will work in all cases where there are no bifurcation points. 
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What if there are bifurcation points? Fu is singular at these points (by the Implicit 

function theorem) and when Fu is singular, (2.4) and (2.7) have no solutions. 

If there is a branching point ¾r> then there is a possibility that the procedure could 

work, as there are points A< Abr and A> Abr which have non-singular Jacobians (by the 

implicit function theorem), and so can be found by this method. So, as long as the 

exact point Abr is not found, the Jacobian is not singular and the procedure is likely to 

work. But if there is a limit point A1, then there is no solution for either A< A1 or 

A > A1, so the method will fail to find the points on the branch which are past the limit 

point. 

If another parameterisation is used (instead of s=A) which does not make Fu singular 

at limit points, then the Euler predictor with Newton Corrector method could still be 

used. It should be possible to find a single-parameter parameterisation that has a non-

singular Jacobian at limit points because the curve is still unique. 

If a normalisation N(u,A,s)=O is added to the system (2.1), a new system P(u,A,s) is 

formed, where u and A are now dependent on the parameter s: 

(2.9) 
x(s) = [ :~:], P(x(s), s) = [:c::/:J 0 

then the Jacobian becomes: 

[ 

F/u(s), A(s)) 
p XS S = 

/ ( ), ) N/u(s), ')..(s),s) 

F/u(s),A(s)) 

N;_ (u(s), A(s),s) 

If this is non-singular then the Euler predictor with Newton Corrector method will 

work. Note that Fu is singular at bifurcation points but Px might not be. 
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The following theorem about partitioned matrices from linear algebra is helpful in the 

context of the previous material. 

Theorem 2.1 (see [8] ) 

For a matrix M=[; !], where A is an n X n matrix, B is an x 1, C is a I X n, and 

D is a 1 x 1 matrix, if NS denotes nullspace, and CS denotes column space: 

(1) If A is non-singular then M is non-singular iff D - C A 1 B is non-singular 

(2) If A is singular and dim NS(A) = 1, then M is non-singular iff dim CS(B)=l, 

CS(B)nCS(A)=O, dim CS(C)=l, and NS(A)nNS(C)=O 

(3) If A is singular and dim NS(A) > 1 then M is singular. • 

A parameterisation which is a function of the arc-length of the curve will make it 

possible for Px to be non-singular around limit points, even though Fu is singular. This 

is the idea behind Pseudo-arclength parameterisation. 

Pseudo-Arclength Parameterisation 

The arc-length s(t) for the system (2.1) with solution (u(t), A(t)) is: 

t 

s(t) = J Ji~(1:)ll2 +li.c-d2 
d-i: 

a 

where 1 is a variable of integration. This implies that [s \t)]2 = lluf + I J. 1
2

. 
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If t=s, then the system is parameterised as the arclength such that: 

u ou + i O i - 1 = 0 

where O is the inner product: 

Note that 0 acts as a scaling factor to scale each co-ordinate of the x vector. 

The problem with this parameterisation is that if an iterative method is used (like the 

one mentioned previously) u and i are not known. But they can be approximated 

u - uJ. -1 and )., - ).J. -1 . using previous points as -~- --~ respectively, giving: 
!lt !lt 

llu - uj-I 112 + IIA -).,i-I 112 = !ls2
. 

Note that the points u and A are unknown in this equation. To make this equation 

linear in terms of the unknowns, Herbert Keller [8] used a different approximation to 

the arc-length: 

(2.10) 
ui-ui_1 = ui_1!ls +O( J!ls 12) 

• 2 
).i-).,i-I =).,i_1!ls+O(l!lsj) 

so the arc-length 1:is is approximated by: 

(2.11) 
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where the direction vector (u,)._)f is approximated using previous points (as in (2.10) 

except the direction vector is scaled): 

(2.12) 

. . 1 
(u,A) ~ -(ui-I -ui_2 , ).1_1 - }..i_2) 

L:,S 

2 z 2 ' 2 and 0Jull +e,. j). j = 1 

8" and 8;,,,. are weights to scale the co-ordinates u and A. Most of the time 8"=8;,,,.=1. M 

is the stepsize along the branch. The direction vector is nom1alised so the size of the 

change in u and A is proportional to LiS, which is fixed, sos can be used as a step size. 

(2.11) has dependent variables u and A and LiS which change at every step depending 

on the value of u and A at previous steps. 

Initially there are no previous points, so the first direction vector (u:0, ioY is 

approximated as the nullspace of [Fu I FJ which is found by solving: 

(2.13) 
uo 

[F : F] =0 u }. . 
Ao 

Provided Fu is non-singular, (2.13) has a one-dimensional nullspace. A single vector 

is then chosen by scaling the direction vector as in (2.12). This will only work if the 

starting point is not a bifurcation point (i.e. Fu is non-singular). 

Theorem 2.2 (see [8]) 

If every solution point x1 on a branch is defined as either: 

(a) 

(b) 

a regular point CFu is non-singular ) 

a normal limit point 

condition 1: dim NS(Fu )=1 
condition 2: F;,,,.n CS(FJ = 0 

or 

Then the Euler-Newton Corrector method will numerically generate the branch. 

■ 
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The proof of Theorem 2.2 is as follows: 

The Jacobian of Pis: 

F).. 1 
efi 

At a regular point Fu is non-singular and i/s not zero (as (2.2) is satisfied and Fu is 

non-singular), then 

and part (a) of Theorem 2.1 is satisfied, so Px is non-singular. If xi is a normal limit 

point, then A. = 0 (by (2.2) and condition 2), implying u. E NS(F ) . 
j J Uj 

Using condition 1 as well implies u. $CS(F t). 
J UJ 

This combined with conditions 1 and 2 mean that part 2 of Theorem 2.21 is satisfied, 

hence Px is non-singular. This proves that (2.9) with parameterisation N defined in 

(2.11) will pathfollow using the Euler predictor with Newton Corrector around regular 

limit points. ■ 

Another way of defining a regular limit point is to define it as a point where the 

Jacobian Px is non-singular. But it is still possible for Px to be singular, for example 

when dim NS(Fu )>l or when FA.E CS(FJ. 
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At a branching point, there is no unique direction vector [u,i]'. Equation (2.2) must 

be satisfied so this means that the solution to (2.2) has to have at least 2 parameters (i.e. 

is of dimension 2): 

This means that either NS(Fu)> 1 or F"E CS(Fu)· So by Theorem 2.1, the Jacobian Px is 

always singular at branching points. 

If this happens, then it may be possible to continue past the point by 'jumping' forward, 

if there is a smooth arc of solutions x(s) for sa<s<sb , of which only P/s0) is singular. 

One method is to adjust the stepsize so the corrector converges to a point which is not 

a bifurcation point using 2 previous points which are not bifurcation points. These 

points will always exist if Px is only singular at one discrete point, in the neighbourhood 

of s. 

So this leads to a pathfollowing algorithm based on the pseudo arc-length 

parameterisation and the Euler predictor with Newton corrector. 



PSEUDO-ARCLENGTH PATHFOLLOWING ALGORITHM 

INITIALISATION 

a =0, xa =x(s) =[ua, ).a] (not a bifurcation point) 

i=NS{Fua=F}..J such that, 11.xll=l 
-1, 

If a > 0 then x is defined as: 

PREDICTOR 

X(O) =x +(/ls)x 
a+I a 

CORRECTOR 
(v) 02 (v) ) • 02 ~ (v) • 

Na+I = /ua+I -ua ·u + }..(Aa+I -).)•). -L::..S 

l 
Solve: 

to get ox then define: 

if V > Vmax Or 

(v+ 1) (v) ~ 
Xa+I =Xa+I + uX 

l 
let v = v + 1 

l 

llllxlL,. < ( then repeat corrector 
I+ llxll.,, 

Adapt stepsize (see next page) 
J, 

if v<vmax then let a = a + 1 

<<-<<-----~ 

<<-<< 

->>->> 

->>-->>----~ 

33 
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The corrector iteration is stopped either if it has converged (the predicted relative error 

is less that s) or if it fails to converge after vmax iterations. Note that the relative error 

has a 1 in the denominator to prevent division by zero. If it fails to converge, the 

previous point is used again with a different (smaller) step size. 

ADAPTIVE STEPSIZE 

The speed of convergence of the Newton corrector iteration gives an indication about 

the accuracy of the initial Euler approximation, and as this approximation is 

proportional to the stepsize, then the convergence of the Newton corrector can be used 

to indicate whether to increase or decrease the step size !:is. If the Newton corrector 

converges in fewer than vmin iterations, then the stepsize is increased, and if it would 

require more than vmax iterations to converge then the stepsize is decreased. With an 

adaptive stepsize, the algorithm is less likely to fail or to be too slow, because the 

stepsize acts as a buffer for change in the solution structure. It also can be used to 

avoid 'landing' on branching points. 

DETECTION OF BIFURCATION POINTS 

A bifurcation point is detected by defining a function q(x) (where x = [u, AJ ), which 

has a zero at this point. A change of sign in q(x) indicates the presence of a zero 

nearby. A more accurate value of the zero can be obtained using the secant method: 

X -x 
V V-1 q(XV) Xv+l =Xv - -----

q(x) -q(xv-1) 

where v is iterated from 1 until the process converges. q(x) is defined for limit points 

and branching points as follows. 
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Limit Points 

A limit point occurs when 11,'(s)=O, and changes sign before and after. 11,'(s) can be 

determined accurately by solving the system: 

FJu 1(t)] + FJ). 1(t)] =0 

u[u 1(t)] + ).[).1(t)] = 1 

The first equation comes from (2.2), and the second equation is the Pseudo-arclength 

parameterisation. The solution vector [u',AT is normalised so 11,' is proportional to the 

distance away from the limit point (when 11,'=0), so that: 

1 q (x) = ---A1 
1 

ll[u \A1fll 

11,' is the horizontal-direction of the curve which must change sign at a limit point. So 

q 1 (x) is a suitable function for the root finder. 

Branching points: 

The Jacobian Pu is singular at branching points, So that its detenninant is zero at a 

branching point: 

i.e. Fu has a zero eigenvalue. If this eigenvalue is of odd multiplicity, then the sign 

of the determinant will change at the branching point, and also by Theorem 1.2 the 

point is guaranteed to be a bifurcation point. If this eigenvalue is of even multiplicity, 

then the point is a possible bifurcation point, and the sign does not change. These 

points will not be detected as bifurcation points in AUTO. Note also that as Px is not 

singular at limit points (by Theorem 2.2), only branching points will be detected. So 

q2(x) is an appropriate root finder for the detection of branching points. 
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CONTINUATION ON A NEW BRANCH 

When one or more branching point(s) are located on a branch, the new branches can 

be generated, by starting at a branching point x0= [u0,A0]1 and choosing a new direction 

vector. 

Any direction vector must be in the null space of [Fu0 I F,.°] (by using equation (2.2)), 

using the convention: Fu° = Fu evaluated at x0. 

If the branching point has NS(FJ=m and F'"E CS(FJ, then {<Po, cp 1 , ••• , <Pm} can be 

defined such that: 

and 

F}cp 0 + F,._ = 0. 

This can be substituted back into (2.2) to get: 

So u is a linear combination of the <P; 's : 

(2.14) 
m 

u0 = L a/Pp where a0 = J. 0 . 
j=O 

The double derivative of F (or 'double' Jacobian) is: 

(2.15) 

As F/E CS(Fu0
), w must also be in the column space of Fu0

• So the direction vector 

must have the form (2.14) with w in the column space of Fu0 (see [8]). 
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This provides sufficient information to compute the direction vectors, but is a very time-

consuming process. 

If one direction vector i 0 is known, another direction vector can be approximated by 

x' : 

(2.16) 

The first equation ensures that x' is in the null space of F} and the second equation 

makes x' orthogonal to i 0 . This is not a good approximation if the branches intersect 

at a very small angle, but if the stepsize is small enough, then the approximation works 

in most cases. The orthogonality condition also makes it less likely for the same branch 

to be traversed. 

The Pseudo-arclength Pathfollowing Algorithm can traverse the new branch by starting 

at the branching point and using x' as the new starting direction. 
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2.2 BOUNDARY VALUE PROBLEMS 

Any Autonomous Boundary Value Problem can be transformed into a system of first 

order differential equations. These are systems of the form: 

(2.17) 
du =f(u(t),')..), tE[O,l], u(.),F(.,.):mn+i ... 8r, ')..e:m 
dt 

with boundary conditions b/u(0),u(l),')..)=0, i=l,2, ... ,nb 

Collocation is one technique that can be used to discretise this D.E. into the form of 

equation (2.1). 

DISCRETISA TION 

If we define a mesh: 

< t" = l } where 1:,t = t 1 - t ,, J j+ J ' (05'} 5' N-1) 

then a submesh can also be defined for the interval [t1 , t
1
+1 ] : 

(2.18) 

so there is a grid of mN sub-intervals over the interval [O, l]. The points inside 

these sub-intervals are called Collocation points. 

If an arbitrary function f(t) is known at mN points on the grid, then f(t) can be 

m 

approximated over the interval [t1 , t1+ 1 ] by pj.(t) =" w,. /t)f(t. i) ~ , J+-
i=O m 

(cf. [2]) 

where the Lagrangian polynomials w1,;(t) are given by: 

m t-t. k 
J+-

(2.19) w .. (t) = IT m 
J,I t t k=O hi . i - . k 

' J+- J+-
m m 
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As u is an n-dimensional vector, it is approximated over the interval [0 , tj+I ] by n 

collocation equations: 

(2.20) 

u1(t) 

u2(t) 
u(t) = z p.(t) = 

J 

u/t) 

m 
{1} '°' !1} 

pi (t) = Lt wi,i(t) u. i 
i=O J+-;;; 

m 
(2} " (2} i (t) = Lt wi,lt)u. i 

. l=O J+-;;; 

m 
!n) L !n) 
}. (t)= w)t)u. i 

. }, J+-
1=0 m 

where pj (t) is now a vector, and u.{a) i z ua{t· i) is unknown. 
J+- J+-

m m 

To use pj (t) as an approximation for u(t), it is required to satisfy (2.17) at discrete 

points { zj,i } in the interval [t1 , t1+1] • So (2.17) becomes: 

(2.21) dp. 
_J(z . .)=f(p.(z . .), A), i=l, ... ,m, j=0,1, ... ,N-1 dt J,I J J,1 

and the boundary conditions (for points u0
1
a} and uN{a} on the boundary): 

(2.22) biu0,uN'A)=O, i=l,2, ... ,nb 

(as u0 = Po (0) , and u = PN-i (1) ) 

where 

(2.23) 
d {a) m 

J!j__(t) = '°' w!.(t) u {a). and 
dt Lt J,I . I 

i=O J+-;;; 

t [ n t-tj ... !:_l 
w!.(t) = l=l k=O,k;,1,k;,f m 

J,I m 

IT t. i -t. k 
J+- J+-

k=O,k;,i m m 

Note that w'j.i (t) is found by applying the product rule on (2.19). 
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Points {zi,J are zeroes of the mth degree Legendre polynomial relative to that 

subinterval. These are the best points to choose if the function is 'polynomial' shaped. 

So the D.E. is replaced by a series of (mN) algebraic systems (one for each mesh-point 

in the interval [0,1] ) in terms of the variables u_vil i and A. Expanding (2.21): 

m 

L 
{I} 

w./z . .)u k 
J, J,1 j+-

k=O m 

(2.24) 

m 

L {n} 
w./z .. )u k 

J, J,I j+-
k=Q m 

and 

(2.25) 

Combining (2.24) and (2.25) gives: 

J+­
m 

(2.26) F(fi~;} , ).) =[Go1 Go2 ••· Go,. Gil G12 ·•· GI,. ·•· G(N-1)1 G(N-1)2 ··· G(N-l)m bl ··· h,,]' =0 

\/ 1,/,o 

This is a system of the form F(u,A) = 0. So the pseudo-arclength path/allowing 

method (see previous section) can be used on this system. The individual linear 

systems G;i are not independent of each other as the coupled endpoints variables u; and 

U;+i occur in more than one system. 

The pseudo-arclength equation changes as there is a new variable t which 1s 

continuous over [0,1]. 



(2.27) 
1 

e~J (ua+l(t) - ua(t)) ·ua(t)dt + 0i(Aa+l - A) - ~s =0 
0 
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This integral equation can be discretised using Newton-Cotes formulae over the same 

interval [tj, tj+iL with sub-intervals [ tj+ifm, tj+U+lltm ]. Note that the points are equally 

spaced. 

1 n 

(2.28) Jcua+l(t) -u/t))·u/t)dtz L tvi(ua+I(t)-ua(tj))·u/ti)) 
O i=O 

where tvi are derived from the coefficients for 3rd 4th ,... 8th order Lagrange 

polynomials. 

(2.29) 

The order (n) of the numerical integration formula is the same as the number of 

collocation points, as the same points are used. 

So the pseudo arc-length equation becomes: 

(2.30) 

Where (ui~~) is approximated using the last 2 steps as in (2.12), and ( ui~l_!_) 
m~ m~ 

and 

Aa is known as well, leaving (ui~~) and Aa+I as the unknown variables. 
m (a+I) 
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Solution paths of the D.E. (2.17) can now be found by using the pseudo arc-length 

Pathfollowing algorithm with the modified pseudo arc-length equation N (2.30) and 

F (2.26). 

PARTIAL DERIVATIVES NEEDED FOR THE JACOBIAN 

Using the chain rule on f in (2.21): 

(2.31) 

{a) 
and as p. (z . .)=u (z . .): 

] J,1 a J,l 

(2.32) 

au {a). 
• I 
J+­

m 

I, 1a1c l = /, (p .(z . .), ).) 
PJ z1,1 u0 J J,I 

so applying (2.31) and (2.32): 

a {a) 
u . 

. I 
J+-

m 

(2.33) aG/k -!fu.(P/zj,i), ')..)tw1iz1)-f,w;i11), j=l or U=l+l and i=O) 
~- k-=O k=O 

auj+_j_ o, otherwise 
m 

and similarly: 

(2.34) (j=O and i=O) or (j=N-l and i=m) 

otherwise 

(2.35) 

fu, f).., (bh\, and (bh)).. can be defined analytically (before starting) by partially 
a 

differentiating the equations defined in (2.17). 
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If this is not possible (or is not very easy) then they can be generated numerically by 

differencing. 

e1 = [l,0,0, ... ,Qr 
aJ =f(u+!::.ea,A)-f(u-!::.ea,A) 

aua 21::. 
where e

2 
= [O,l,O, ... ,OY 

etc 

where !::i.. is a very small number (see Appendix B for size of !::i.. in AUTO) 

and similarly: 

aJ _f(u,)..,+!::,.)-f(u,)..,) 

BJ., !::. 

abh = bh (uo,UN, ')... +!::.) -bh(uo,UN' ')...) 

a)._ t::. 

bh(u0, u1 +!::.ea,')...) -b/u0, u1 -!::.ea, A) 

21::. 

b/u0 -!::.ea,ul'A)-bh(u0 +!::.ea,ul')..,) 

21::. 

The pseudo-arclength equation N (2.30) has partial derivatives: 

_j!j_=02 w .. u{a). 
1., U J,I . I 

a 'al J+-u_ i m 
J+-

m 
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Example of a Newton Corrector equation 

Consider a 2 dimensional system (n=2) with 2 boundary conditions (nb=2) , with 3 

collocation points (m = 3), and 3 mesh intervals (N=3). 

The Jacobian is a mnN + nb + 1 = 21x21 matrix and the Newton Corrector equation is: 

aoo, aoo, aG01 aGo, 
0 0 0 0 0 0 

aoo, 
a11u auo • .! auo.3. au! BA 

3 3 

aGoz aGoz aGoz aGo, 
0 0 0 0 0 0 

aG02 
a11o auo • .! auo.3. au 1 aA 

3 3 

BG03 BG03 aG03 aoo1 
0 0 0 0 0 0 

aG03 
a11o auo • .! auo.3. au 1 a,. 

3 3 

0 0 0 
ao11 ao11 ao11 aoll 

0 0 0 
ao11 

au! au, . .! au1.3. au2 a,. G{)J 
3 3 

ao,2 ao,2 ao,2 ao,2 aG12 
G{)2 

0 0 0 0 0 0 G{)3 au, au, • .! au 2 auz aA 
I•- Gll 3 3 

0 0 0 
ac,3 aGll ac13 aGIJ 

0 0 0 
ac13 G12 

(2.36) au, au1,.! au1,3. auz aA G13 
3 l ~x= -

aG21 aG21 aG21 aGz, aoz, 
G21 

0 0 0 0 0 0 G22 
au2 auz . .! auz.3. au3 aA 

3 3 G23 

i3G22 aG22 i3G22 aG22 aG22 bl 
0 0 0 0 0 0 

auz auz . .! au2,3. au3 aA b2 
3 3 

N 

0 0 0 0 0 0 
ao2i <JG2l i3G23 aG23 aG23 

auz auz . .! au2.3. au3 a,. 
3 3 

ab1 0 0 0 0 0 0 0 0 
ab, ab1 

a11o au4 aA 

ab2 0 0 0 0 0 0 0 0 
ab2 ab2 

allo au4 BA 

aN aN aN aN aN aN aN aN aN aN aN 
a11o Cu 1 auo.3. au 1 au1 • .! au1.3. au3 au3 • .! au3.3. au4 a,. 

O•-
3 3 3 3 3 3 

a a a 
where --- represents {I} {2} au. i au i au i J+- j+- j+-m m m 

and Ci; has 2 equations. 
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This Jacobian is close to a block-diagonal matrix. When solving this system advantage 

can be taken of this structure by using the method of condensation of parameters. This 

method uses Gauss elimination with partial pivoting. The matrix is subdivided and 

sections eliminated separately. This method is illustrated very well in [ 4]. 

BIFURCATION POINT DETECTION 

The discretised system can be treated as a large Algebraic system, so the zero-functions 

discussed in 2.1, can be used on this system to find accurate locations of limit points 

and branching points. 

ADAPTIVE MESH 

The interval [tj, tj+i] (from 2.18) does not have to be the same size for all j. If the 

solution curve x(t) has small curvature in an interval [a, b], then the interval size can 

be greater than a region where the curvature is greater. This process distributes the 

approximation error in a more uniform manner. 

Divided differences are used to get an indicator of the change in each interval 

[tj, tj+i ]. For ex:1rnple if there are m=3 points in each interval, the Divided Difference 

Table is: 

(uj+2/3 -2 uj+l/3 + uj )/(2/32 )!:,.t/ 
(uj+I -3 uj+2/3 + 3 uj+I/3 - uj )/(2/32 

)!:,.1/ 

(uj+l -2 uj+2/3 + Uj+l/3 )/(2/32 )!:,.t/ 

Figure 2.1: Divided Difference Table for m=3 
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The term DD/3)= (u;+i -3 u1+213 + 3 U;+t/3 - u1 )/(2/32 )!::.t/ is the 3rd divided difference. A 

fourth divided difference can be gained by combining the 3rd divided difference from 

consecutive intervals [0, t;+i ] and [t1+1 , t1+2 ]: 

(2.37) 

(3) (3) 
(4) DDj+l - DDj DD. ,::: ____ _ 

' 1 -(t:..t.+t:..t. 1) 2 J J+ 

Over the unit interval, if DDti > I then the change in u is too great; if DD/4) < 1, over 

the unit interval then the change in u is too small. DD?> is fixed to 1 by defining a 

new interval .c.."C, starting at a point µ in the interval [t1 , t1+2 ] such that: 

DD~4>( t:..t )4 = 1 
J f:.. 't' 

I 

So the new interval .c..1 has size t:..~DD}4)4 

or more generally, for the interval (2. 18) with u a vector: 

for all U; (i=l..,n): 

[DDrl can be found for J = 0, 1..., N-1. 

[DDN<m>i = 2[DD,v}mt - [DD,v_2<mt 
(extrapolating from the 2 previous divided difference values) 

Then the (m+ l)th divided differences can be found: 

DD (m)] D (m) 
(m+l) [ j+l i - [ Dj t [DDj l,::: __ 1 ___ _ 

-(t:..t. +t:..t. 1) 2 J J+ 

And the new interval sizes .c..11 are defined: 
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So the mesh intervals are adaptive, with their size based on the shape of the u(t) at the 

previous point. The existing values for u are for t at the previous mesh size. 

Interpolation is used get u(tj+i/m) for the new values of tj+i/m· 

NON-AUTONOMOUS SYSTEMS 

The methods used by AUTO work for autonomous systems, where the dependent 

variable (t in (2.17)) does not appear explicitly in the differential equation. Non­

autonomous Boundary Value Problems are: 

(2.38) 
du =f{u(t),A,t), tE[O,I], u(.),F(.,.):mn+i .... mn, A Em 
dt 

with boundary conditions blu(O),u(l),)..)=0, i=l,2, ... ,nb 

u(t) is predicted by p/t) for tE [tj, tj+iJ , and is evaluated at the points { zj,i }in the 

interval. So (2.21) becomes: 

(2.39) 
dp. 
- 1 (z . .)=f(p.(z . .),>-.,z . .), i=l, ... ,m, }=0,1, ... ,N-I d.t J,I J J,I J,1 

The Jacobian off must also include t: 

/, = af{x(t),A, t) 
X ax(t) 

And similarly for the numerical methods for generating the Jacobian. 

With these modifications, the existing methods can be used for Non-autonomous 

boundary value problems. 
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3 IMPLEMENTATION and RESULTS 

3.1 AUTO 

The numerical techniques of Chapter 2 have been implemented by Eusebius Doedel in 

a computer package called AUTO. It performs bifurcation analysis on algebraic and 

differential systems, producing output files representing solution branches on a 

bifurcation diagram, and also solution curves at points on these branches (for 

differential systems). A plotting program called PLAUT is incorporated as well to 

extract the numbers from the Fortran output files and plot graphs. This eliminates the 

need to manipulate the numbers into the format for an appropriate graphics package. 

To model a system using AUTO, a Fortran model file is created (see Appendix A for 

an example). This file defines: 

a. F(u,A) 

b. the Jacobians Fu and F"- (these may optionally be generated numerically) 

c. a starting point x0= (u0\ A0) for the first branch (note that u may be a 

function of t). This point cannot be a bifurcation point. 

c. the type of system (for example if it is an algebraic system or a 

Boundary Value Problem) 

d. the boundary conditions (if the system is a BVP) 

e. the number of mesh intervals (N), and the number of collocation 

points (m). 

f. Other AUTO parameters defining the numerical method used. 
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The AUTO parameters define all the constants involved in the numerical techniques of 

Chapter 2. For example, the stepsize and mesh can be fixed or adapted regularly (after 

one or more points), and the initial stepsize is defined as well as a minimum and 

maximum stepsize. This module is compiled and linked with the rest of the program 

(see Appendix A). For algebraic systems, this compiled program generates all the 

branches which come out of the initial point x0• For boundary value problems, a 

single branch is generated with bifurcation points identified. Further branches can be 

generated by continuing from branching points of previous runs. 

MODIFICATION OF AUTO FOR NON-AUTONOMOUS SYSTEMS 

The variables ui+i!m [al are defined in an array U(j , in + a), where n is the dimension 

of u. The value of ua at a point zi,i is defined by the Lagrange polynomial p/zi,i )(al 

m 

generated byL W(j,i) U(j,(i-l)*n+a), where W(j,i) is predefined as wi.i (zJ,i) from 
i=l 

(2.37). So ua is the value of u(t) at t = zi,i . 

The system/from equation (2.17) is defined in subroutine FUNC which is in the model 

file. Variables u=[u1 , ••• unJ and A are passed to this subroutine, and the variable F 

(representing F(u,A) ) is returned along with the .Jacobian derivatives Fu and F1c (if they 

are not generated numerically). Along with these variables, t and l!,,t0 are also passed 

to this subroutine, so they are accessible when evaluating F. The reason for l!,,t0 being 

passed will be explained later in this Chapter. Appendix B shows the subroutines 

affected and how they have changed. 
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3.2 EXAMPLE PROBLEMS 

These example problems have 2 purposes: 

(1) To test AUTO (when analytical solutions are known) 

(2) To generate bifurcation graphs 

The pathfollowing algorithm of AUTO is tested by using the example problems in 

Section 1. 1, which have known analytical solutions. Then AUTO is applied to the 

combustion equation (1.7). This equation is non-autonomous, so the modified version 

of AUTO has to be used. The effectiveness of AUTO for this system can then be 

tested by comparing the computational results with the analytical results from section 

1.2. Finally the model is used to evaluate Ac,it for non-Class A shapes and compared 

with the numerical results from other models. 

ALGEBRAIC SYSTEM EXAMPLES: 

Example 3.1: 

2 3 /z(upu2,A) = u1 u2 - u1 - Au2 = 0 

This is the same system as in Example 1. 1 where there is a point (0,0,0) on the trivial 

branch where the Jacobian is singular but there is no branching point. 
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Branching points are detected by AUTO as points where there is a change of sign in 

the determinant of Px : 

2 
1 3u1 -). -Ul 

p = 2 2 
X 

2u1u2 -3u1 U1 -). -Uz 

u1 uz j_ 

(in this case, 0u and 0A are both one). Along the trivial branch, the direction vector 

(upu2,A)' = (0,0, 1) and u=(0,0) so the determinant Det(Px ) is A2 
• This has a zero at 

(d,A) = (0,0,0), but the sign of Det(Px ) is positive for A< 0 and A> 0 (see Section 

2.1). So there is no change in sign and a Branching point is not detected. The trivial 

branch can be generated using AUTO by starting at a non-bifurcation point for example 

Xo= (0,0,-1). 

Example 3.2 

2 J;(u
1
,u

2
,).) =u2 -}..u

2 
=0 

The analysis in Chapter 1 showed that this system has 3 branches emanating from the 

trivial branch at point (0,0,0). When this is put into AUTO with staning point (0,0,-1), 

this bifurcation point is not found. 

The Jacobian Px is: 

p = 
X 

2u -).. 
1 

0 

Ul 

0 -ul 

2u -).. 
2 -uz 

uz ). 

Along the trivial branch the det(Px ) = A2 which is ~O for all A. Because there is no 

change in sign, the bifurcation point was not detected by AUTO. 
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Also Px has a 2-dimensional nullspace at this point. So (2.16) does not have a unique 

solution and branching at this point using AUTO is not possible. 

Example 3.3 

Consider the system m example 1.3. Starting at a regular point (0,0,-1), AUTO 

generates the bifurcation graph for this system without any problem. The eigenvalues 

at all of the branching points are all odd, which means that the determinant changes 

sign at these points (see Section 2.1 ). 

The initial, minimum and maximum stepsizes were initialised in the model file as 

DS = 0.005, DSMIN = 0.001 and 1 respectively. Other parameters, for example the 

number of times the Newton Corrector iterates (see Appendix A for a list of all the 

parameters) are set to their default values. The compiling and running of AUTO with 

this system took 19 seconds of CPU time. The results of AUTO are compared with the 

analytical solution in figure 3.1. 
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- 1 . 0 0 -t--..------r----,--.,............----.--.,............-,---,--,-~--,----,-..--r--,........-,--,--..------r----,--.,............--.--. 

0.00 25.00 50.00 75.00 100.00 125.00 

I\ 
Figure 3.1: Analytical and Numerical Solutions to Example 3.3 

The spacing of the numerical solution points is proportional to the stepsize. Note that 

the initial stepsize rapidly adapted to a much larger one (see Appendix B for the way 

AUTO adapts the stepsize). This implies that the initial stepsize was too small, and the 

same accuracy can be gained with a larger one. 
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THE COMBUSTION EQUATION 

Bifurcation graphs for (1.7) can be generated numerically. AUTO is designed for 

systems written as first order D.E's. Equation (1.7) can be defined as a system of two 

first order D.E's: 

(3.1) 

with boundary conditions: 

where t(=r) is the dependent variable, and the Biot number (Bi) and Shape factor (j) are 

constants. As t appears explicitly in the equations, (3.1) is non-autonomous and the 

modified version of AUTO has to be used. 

There is a special case for (3.1) when J=O: 

du1 -- u2 

(3.2) dt 

du2 -).e UI --
dt 

with the same boundary conditions. This is autonomous, and can be analyzed by the 

existing version of AUTO. 
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The accuracy of the numerically generated bifurcation graph for different values of j 

will be investigated in Examples 3.5, 3.6, 3.7, and 3.8 which use a fixed value of Bi 

corresponding to the Frank-Kamenetskii Boundary Conditions (Bi=00). 

Later, the accuracy of AUTO for different Bi numbers will be tested in Examples 3.9 

and 3.10, which have j fixed to 1. From these examples, one can get a good idea of 

the effectiveness of AUTO for this system. Finally the AUTO results for different non­

class A shapes (using the shape factor technique discussed in Section 1.2) are compared 

with numerical results from Wake and Jackson [15] (which use the exact Laplacian for 

the shape, rather than an approximation). 



Example 3.5: The Infinite Slab with Frank-Kamenetskii Boundary Condition 

This is system (3.2) where j = 0 and Bi = 00 • The boundary conditions become: 

56 

This has an implicit analytical solution (see Section 1.2). A model file of this system 

was created, with 10 collocation points (NTST=lO), and default values for other 

parameters. The model file was linked with the un-modified version of AUTO and 

AUTO was executed, taking 30 seconds of CPU time. The results are compared with 

the analytical solution in figure 3.2, where u1=max[u(t)]. 

12.00 

10.00 

8.00 

~ 6.00 
::3 

4.00 

2.00 

0.00 
0.00 

Analytical Solution Branch 
* * * * * Numerical Solution Branch 

0.20 0.40 0.60 0.80 1.00 

Figure 3.2: Analytical and Numerical Solutions for System (3.2), (wherej=0 and Bi=00) 
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As in figure 3.1, the spacing of the *'s, corresponds to the adaptive stepsize of the 

pathfollowing method. This shows that as would be expected, the Newton Corrector 

converges better when the curvature is small. AUTO also outputs the value of the 

solution u1(t) and u2(t) at various points on the bifurcation branch (see Appendix A for 

more information on output files). The curves of ui(t) at points labelled A, B, C, and 

D in figure 3.2, are shown in figure 3.3. 

7.00 

5.00 

3.00 

1.00 

-1 . 00 -1-r-.,.....,-,-...-.---,-~.....-.-,--,-,--r-r-r--r--T"""T......-,-,r-,-r-~,..--r-,--,-,-,-......-,-,~r-r-,-...-.---,-...,-,--,-, 

0.00 0.20 0.40 0.60 0.80 1.00 

t 
Figure 3.3: ui(t ) at points A, B, C, and D in figure 3.2 

The spacing of the *'sin figure 3.3 corresponds to the mesh size. At points A, B and 

C, the spacings do not vary greatly, but at point D (when u1 is proportionally much 

larger), the spacing becomes very small when tis close to zero as the curvature changes 
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more at these points. From (3.2), it can be seen that this is because duzfdt increases 

exponentially with u1• 

When the resulting system with J:;t:O is entered into AUTO, a divide-by-zero condition 

when t=O means AUTO will stop at this point, giving a divide-by-zero error. These 

systems have a solution when t = 0, but there is an apparent singularity in the derivative 

of L½ at this point. 

When t is close to zero: 

u "(O) = lim u \t) - u \0) 
t-zero t 

and as u'(0) = 0, 

(3.3) u '(t) 
-- ~u 11(t), for t-0 

t 

Approximation (3.3) can be used to eliminate the singularity in the derivative when t=0, 

by defining a piecewise system: 

du1 
u2 --

dt 

(3.4) __ 1_).,eut t<~ 
du2 (1 +}) ' 

~*o --
_j_u -}..e u1 dt t~~ 

2 ' t 

with boundary conditions: 

where s is very close to zero. 
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An obvious strategy for solving (3.1) is to fix ~ to a small number (say 0.01), and 

approximate (3.1) by (3.4). Example 3.6 shows that this strategy does not work. 

Example 3.6: System (3.4) where i=2, Bi=00 , and c,=0.01 (fixed) 

Default values for AUTO parameters were used except for NTST = 20, DS = 0.001, 

and DSMIN = 0.00001. 

numerical solution. 

30.00 

25.00 

20.00 

.-15.00 
8 

10.00 

5.00 

Figure 3.4 shows that the bifurcation diagram of the 

o. oo L.,...,....,...,...,..,_:::;::::;:::;:::;::::;::::;::;::::::;:::;:::::;:::;:::;::::;::;::;:::~=::;:~--,-,-,_,.....,..-.-.-. 
0.00 1.00 2.00 3.00 4.00 

I\ 
Figure 3.4: System (3.4) with Bi = 00 , j = 2, and s fixed to 0.01 

When j = 2 and Bi = co, The result by Wake [14] in section 1.2, proved that A 

converges to 2 as u1 = max[u1 (t)] increases to 00 • Figure 3.4 shows that Example 3.6 

converges to O as u1 increases to 00 • 
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So (3.4) with s fixed is not a good approximation to (3.1). 

If the solution ui(t) is approximated by a power series: 

ui(t) =ao +a/+aitz +ai3+ ..... 

Then the solution for the original system (3.1) and the piecewise system (3.4) are (3.5) 

and (3.6) respectively. 

and 

The value of -).e u 1 increases exponentially with u1, and as it becomes large, the 

difference between the two systems increases. So to keep a constant error s must 

decrease exponentially as u1 increases. Another problem arises when s is less than the 

first sub-interval length : 

where m is the number of collocation points and f,,.t0 is the first interval length, (as in 

(2.48)). In this case, the piecewise partition is at t = 0, because u is defined only at 

discrete points. This gives the same result as if s = 0, (because there are no non-zero 

t values between 0 and s) which contradicts the condition that s > 0. If S is defined: 

(3.7) 

then s is always m points away from the zero interval. 
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Also as the change in curvature is proportional to derivative duif dt , the adaptive mesh 

procedure will ensure that the interval M0 decreases exponentially as u1 decreases. This 

means that !:i.t0 needs to be passed to the subroutine FUNC in the user model file. 

Modification to AUTO: The modification to AUTO (referred to earlier in 
this Chapter) was made so that !:i.t0 is indeed passed 
to the subroutine FUNC (see Appendices A and B 
for an example model file and implementation). 

Example 3.7: Svstem (3.4) where i=L Bi=00, and C.=6t0 

This system was chosen because it has an analytical solution, and the numerical and 

analytical values can be compared to test the effectiveness of (3.4) in approximating 

(3.1). As (3.4) is non-autonomous, and requires !:i.t0, the modified version of AUTO 

was required to solve this system. Initial parameters were NTST=20, DS=0.001, 

DSMIN=0.00001, and the maximum number of points evaluated on a branch (NMX) 

was set to 500, with the other parameters set to their default values. Because of the 

shape of the solution curve (see figure 3.3), the overall change in slope increases at 

each point evaluated along the branch, requiring progressively smaller stepsizes. For 

this reason, NTST was increased to 20. This value had been worked out from previous 

runs. If NTST is too large, then the program takes too long to run, and if it is too 

small, then inaccuracies occur when evaluating u1• 

The compilation and running of AUTO took 136 seconds of CPU time. The output is 

compared with the analytical solution in figure 3.5. 
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2.00 2.50 

Figure 3.5: Analytical and numerical solution to Example 3.7 (}= 1, Bi = 00 , s=Lit0) 

For other values of j there are no known analytical solutions, but A converges to a 

known value as u1 increases for 1 <}<9 (see Section 1.2). The analytical and numerical 

values for these numbers are compared in the following example. 

Example 3.8: System (3.4) for different values ;, where Bi=00 and C,=Lit0 

AUTO was used 10 times on (3.4) with} ranging from Oto 10. Initial parameters were 

the same as Example 3.7. The entire computation took approximately 23 minutes of 

CPU time. Figure 3.6 shows the shape of the resulting curves. 
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Figure 3.6: Example 3.8 for j = 0, l ,2,3,4,5,6,7,8,9 
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For 1 < j < 9, the curves in figure 3.6, have multiple limit points. Figure 3.7 blows up 

the curve j = 8 to show that it does fold back on itself. 

r----------------------------------------------------------------------, 
I I 
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I 
I 
I 
I L ______________________________________________________________________ J 

Figure 3.7: Close up of dotted area in figure 3.5 

Analytically it has been proven [14] that there are an infinite number of "wiggles" for 

j in this range. As u1 increases, A converges to a value denoted by A=. From Section 

1.2: 

As Bi==, this simplifies to A== 2(i-l). Numerically, this can be predicted as the last 

point which was found on the branch, i.e. the 500'th point (as NMX=500). 
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Table 3.1: Numerical and Analytical values for A= , (Bi = co) 

j Analytical value of A_ Number of limit points Final value of A and u1 along 
found along the branch branch (500 points) 

2(j-1) A. u, 

1.0 Does not exist 0.00000009 36.7 

1.5 3 0.9038190 21.2 

2.0 2 5 2.009908 20.9 

2.5 3 5 2.999384 20.9 

3.0 4 6 3.999282 20.9 

3.5 5 6 4.999305 20.9 

4.0 6 5 5.999492 20.9 

4.5 7 5 6.999835 20.9 

5.0 8 6 8.000241 20.9 

5.5 9 5 9.000608 20.9 

6.0 10 6 10.00090 20.9 

6.5 11 6 l 1.00107 20.9 

7.0 12 5 12.00116 20.9 

7.5 13 5 13.00117 20.9 

8.0 14 4 14.00027 28.2 

8.5 15 2 15.00105 20.9 

9.0 does not exist 0 16.0097 20.9 

The 500'th point was to within one decimal place of A= (after 1 or more oscillations 

or 2 or more limit points) , so that the branches appear to be converging to A=. 

From table 3.1, the number of limit points in the curve found numerically in 500 steps, 

diminished as j approached the end-points 1 and 9. 

To see what happens at these endpoints, the number of steps (NMX) was increased to 

2000, and AUTO model files were created and run for j=0.9, 0.95, 1, 1.05, 1.1, 8.9, 

8.95, 9, 9.05, and 9.1. This process took 74 minutes of CPU time. 
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Table 3.2: Numerical and Analytical values for A= , (Bi = oo) 

j Analytical value of A_ Number of limit points Final value of A and u1 along 
{ =2(j-1) } found along tbe branch branch (after 2000 points) 

"- u, 

0.90 Does not exist 0.0000000 83.9 

0.95 Does not exist 0.0000000 62.5 

1.00 Does not exist 0.0000000 47.9 

1.05 0.1 0.0000079 37.9 

!.10 0.2 2 0.0086138 31.0 

8.90 15.8 2 15.81766 26.6 

8.95 15.9 0 15.91730 26.6 

9.00 Does not exist 5 16.01697 26.6 

9.05 Does not exist 6 16.11665 26.6 

9.10 Does not exist 5 16.21633 26.6 

Even after 2000 iterations when u1 is greater than 26, the number of limit points found 

near the endpoints j= 1 and j=9 is smaller than the number found when j is further 

away from the endpoints (in Table 3.1). As the maximum value of u1 does not 

decrease (in fact it increases) as j approaches the endpoints, the period of oscillation 

must have increased. 
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Example 3.9: System (3.4), i=L Bi varied and C,=Lltlk 

Five exponentially increasing Biot numbers {0.125, 0.5, 2, 8, 32} were chosen, and 

entered as 5 systems (as in Example 3.7, and using the same AUTO parameters). The 

numerical results are compared with the analytical results (see Section 1.2) in Figure 

3.8. 
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Figure 3.8: Numerical and analytical solutions for Example 3.9 

2.00 

Note that as Bi increases, the limit point converges to 2, which is the case when Bi=00 

(see figure 3.5). 
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Example 3.10: System (3.4), i=2, Bi varied and ~=~tet 

This has no analytical solution, but the final point evaluated on each branch can be 

compared with A= as in example 3.8. The AUTO model file for this system when 

2 
Bi Bi=2, as well as the output, is in Appendix A. When j=2, A= becomes 2e This 

value is compared with the 500'th point in Table 3.3. 

Table 3.3: Numerical and Analytical values for A= , (j = 2, and Bi is varied) 

Bi Analytical value of A_ !'\umber of Limit points Final value of A and u1 along 
2 

{ =2e-iii) found along the branch branch (after 500 points) 

" u, 

0.125 0.000000225 5 0.000000227 36.8 

0.5 0.036631277 5 0.03680918 24.9 

2 0.73575888 5 0.7393332 21.9 

8 1.557601566 5 1.565294 21.1 

32 1.878826126 5 1.888150 21.0 

The curve has the same number of limit points for all the Bi values used, showing that 

the period is oscillation is independent of Bi. 

After less than 3 oscillations (or 5 limit points) the final value of A approximates A= 

to 2 significant figures. 
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Example 3.11: System (3.4) with ; representing different shapes 

Section 1.2 showed how the shape factor j in System (3.4) can be used to approximate 

the Laplacian over any body. So the system can be used to generate solution curves 

for any shape. Wake and Jackson in [15] numerically calculated Acrit for objects using 

the dimensionless heat equation: 

(3.8) VZu + Ae" =0 

using the exact Laplacian "i/2u for each body. 

Different objects ranging from the infinite slab ()=0) to the regular tetrahedron 

()=4.178) were entered as model files into AUTO using (3.4) with the same 

parameters as in Example 3.8. The resulting value Acrit (the value of A at the first limit 

point) is scaled as discussed in Section 1.2 (page 23) so it can be compared to the 

results of [ 15]: 

* 3Acnr 
A.crit = (j+ l)~ 

Table 3.4 shows the value of Ac,it• and Acrit from [15], for objects with j ranging from 

0 to 4.178. 
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Table 3.4: Acrit for different shapes using real and approximate Laplacians 

j Shape RA0 Acrlt Acrlt 
. 

Acrlt Error 
from AUTO from [15] % 

0 Infinite Slab 3 0.878 0.878 0.878 0.0 

0.438 Rectangular Parallelepiped 1.731 1.343 0.935 0.832 11.0 
(ratio 1: 10: 10) 

1 Infinite Cylinder 1.225 2.000 2.000 2.000 0.0 

1.444 Infinite Square Rod 1.354 2.564 1.717 1.692 1.4 

1.694 Rectangular Parallelepiped 1.354 2.898 1.760 1.640 6.8 
(ratio 1: 1:10) 

2 Sphere 3.322 3.222 3.324 0.0 

2.729 Eq uicy linder 1.115 4.395 2.844 2.774 2.5 

3.280 Cube 1.194 5.260 2.586 2.448 5.3 

4.178 Regular Tetrahedron 0.537 6.759 13.580 not evaluated 

Equation (3.8) is the same as (3.4) for Class A geometries (when j is an integer). 

Table 3.4 shows that for non-Class A geometries, (3.4) approximates (3.8), with the 

accuracy of the approximation depending on the shape. 
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4 CONCLUSIONS 

The numerical analysis and running of AUTO have shown the capability of AUTO for 

bifurcation analysis on algebraic systems as well as Autonomous Boundary Value 

Problems. With modifications done to AUTO, it can now also generate bifurcation 

diagrams for non-autonomous Boundary Value Problems. 

The numerical methods of AUTO will generate branches of dynamical systems if: 

1 

and 

2 

The branching point with a Jacobian Fu of the system F has a zero 

eigenvalue of odd multiplicity. 

The dimension of the nullspace NS(FJ is greater than 1 only at discrete 

points. 

The Frank-Kamenetskii Heat equation (4.1) fits these criteria. 

(4.1) 

d 2u j du u 
- + -- + A(x)e =0 
dr 2 r dr 

du du . -(0) =0, -(1) + Bzu(l) =0 
dr dr 

This system is solvable by the modified version of AUTO for any value of j and Bi, 

with the process accomplished in a matter of seconds. 

The tests in Chapter 3 showed that the curves generated by AUTO compared favourably 

with the analytical solutions when j is O and 1. Another analytical result from Chapter 

1 is that for 1 < j < 9, the branch converges to the line A =A~· The numerically 

generated curves were shown to have this property as well. A similar process for five 

different Bi number and J= l and 2, showed that the results were accurate irrespective 

of the Bi number used. 
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These test results imply that the modified version of AUTO gives accurate results for 

any value of j or Bi. 

Applying the ideas about shape factor of Boddington, Gray, and Harvey [1], (4.1) was 

used to approximate the exact Laplacian equation: 

(4.2) ·,J2u + ).e u = 0. 

The value Acrit (the threshold value of A for thermal ignition) was generated by AUTO 

using (4.1) for different shapes. This value was compared with the result using (4.2) 

calculated by Wake and Jackson [15), showing that a good approximation to Acrii can 

be gained for any shape possessing a point of symmetry. 

This is a successful test-run for the effectiveness of the modified version of AUTO, 

and opens the way for modelling any non-autonomous Boundary Value Problem. 
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FUTURE RESEARCH 

Bifurcation graphs are highly non-linear and require some kind of pathfollowing 

technique to generate them. AUTO is restricted to modelling systems of ordinary first 

order D.E.'s. The Boundary Value Problems investigated in this thesis are models 

which use a single length dimension r for volume, and a shape factor j. Other models 

have 2 or 3 units for length. These are partial differential equations and cannot be 

solved by AUTO. The pathfollowing algorithm could be applied to these problems 

resulting in a numerical technique for generating bifurcation graphs. This could then 

be incorporated into AUTO, giving a very powerful tool for pathfollowing any system 

of first order partial D .E.' s. 



74 

APPENDIX A: USING AUTO 

This section contains information for using AUTO for algebraic systems and Boundary 

Value Problems. 

AUTO can be used on a dynamical system by making a model file which is a 

FORTRAN file containing the information required by AUTO for analyzing this system. 

This file has seven subroutines: 

SUBROUTINE FUNC: 

This contains the definition of the system where U(i) is uj, PAR(l) is A, and F(i) 

is F;. The derivatives Fu and F,. are also entered in this subroutine in arrays 

DFDU and DFDP, where DFDU(i,j) = dF/duj and DFDP(i,l) = dF/dA, although 

they will not be used if the Jacobian is generated numerically by AUTO. 

SUBROUTINE STPNT 

This contains the solution curves u(t) for a particular value A, and so gives a 

starting point for the bifurcation curve. 

SUBROUTINE INIT 

This contains the values of the AUTO parameters. For example, JAC=0 tells 

AUTO that the Jacobian is to be generated numerically, and IPS=4 tells AUTO 

that the system is a Boundary Value Problem. If the default value for a 

parameter is used, it does not need to be defined. (See pp. 134-143 of [ 4] for 

a description of all the parameters and their default values). 
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SUBROUTINE BCND 

This contains the Boundary Conditions. This subroutine will be ignored if the 

problem does not have boundary conditions. AUTO uses a fixed interval [0,1] 

fort where u;(0) = U0(i), ui(l) = Ul(i). Boundary conditions are entered as FB(i) 

which are functions of U0 and Ul and PAR(l). The boundary conditions are 

therefore FB(i) =0. The derivatives of FB are also entered here, but may not be 

used if derivatives are generated numerically. 

SUBROUTINE INCD 

This contains integral conditions. Variables Fl(i) are defined as functions of U 

1 

and PR(l), then the integral condition is: JFI(i)dt=O . The derivatives of FI 

0 

are entered here too. 

FUNCTION USZR 

One or more variables USZR are defined. USZR is a function of PAR(l), and 

when USZR=0, then the point is given a label number. 

The compilation and running of AUTO described in the thesis were performed on a Sun 

Spare Station SLC, although these could be done on any platform which has a F77 

Fortran Compiler. The graphics output (from PLAUT) does require that the platform 

has a suitable Tektronics emulator. 
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3 commands are needed to run AUTO: 

@auto {name} : runs AUTO with model file aut{name}.f, deleting all previous 

output created from previous runs with this model file. Output 

files are p.{name}, q.{name} and d.{name}. 

@autocont {name}: runs AUTO with model file aut{name}.f, using previous output 

@plaut {name}: 

files p. {name} q. {name} and d. {name} as input files and 

appending the resulting output to them. 

Initiates the plotting program using output files p. {name}, and 

q. {name}. 

@auto and @autocont run a sequence of system commands. In these files, the model 

file is linked to a preprocessor program which generates the main program. The main 

program changes depending on the type of analysis required for example, whether the 

model is an algebraic system or a BVP, or whether the analysis is continued from a 

previously calculated point. The type of analysis required is defined by the AUTO 

parameters in the model file. The main program sets up the required calls and 

necessary workspace, and runs the appropriate AUTO routines. It is compiled and 

linked with 3 AUTO libraries and the model file, and then run. The modified version 

of AUTO works the same as this except the commands are @autom and@autocontm. 
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Output is in the form of 3 Fortran output files and the screen: 

fort.7 (p. {name}): 

fort.8 (q.{name}): 

At the beginning of this file, all the parameters values defined 

from INIT in the model file are stored. The rest of the file 

contains all the points evaluated for the bifurcation graph. Each 

point (i/, A) has an identification number, a type, an L2-NORM, 

and the maximum value for each ui in the interval (0,1]. The 

point type is one of: 

EP - An end point of a branch, normal termination. 

MX - End point of a branch, abnormal termination (no­

convergence) 

UZ- Zero of function in USZR (from SUBROUTINE 

USZR in model file) 

BP- Branching point 

LP- Limit point 

Regular Point 

When the point type is not a Regular point, it is assigned a label, 

which is also output in this file. 

This file is only generated for Boundary Value problems. It has 

the restart information at label points for continuing bifurcation 

diagrams in future runs of AUTO using autocont. It contains the 

Values of 

[ 
I (a) "\]I 

U j+i/m , I\, • 

ti+ilm and ui+ilm (al, and the direction vector 



fort.9 (d. {name}): 

Screen: 
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This file has a summary of the Newton Corrector method 

including the number of iterations and stepsize at each point. 

Branching points, limit points and user defined points detection 

are summarised as well. 

This is the same as the contents of output fort.7 except that only 

label points are displayed, with the addition of columns headings. 

The bifurcation graph can be generated from p. {name} by using the @plaut command. 

This program can also be used to graph the solution u(t) from q. {name}. @plaut is a 

text-driven graph tool. It requires a tektronics terminal. There is available a SUN tek 

emulator called tektool which sets up a tektronics window. The command "BDO" plots 

the bifurcation graph from p. {name} on the screen. "2D" plots data from q. {name}. 

Help can be gained by typing "HELP". 
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An example: Example 3.10 when Bi=2 

The following Fortran code is the model file for this system. Changes to this file for 

the modified version of AUTO and comments are in italicised bold. 

c---------------------------------------------------------------------­
c----------------------------------------------------------------------
C Example Problem AUTBi2 : A Boundary Value Problem. for modified AUTO 
c---------------------------------------------------------------------­
c----------------------------------------------------------------------
C 

SUBROUTINE FUNC(T,S,NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP) 
C ---------- ----
C 
C !!!! Tis the variable t corresponding to u(t) and Sis ~t0 
C 
C This subroutine evaluates the right hand side of the first order 
C system and the derivatives with respect to (U(l},U(2)) and PAR(l). 
C (For documentation see the example problem AUTPP2). 
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
CSGLE IMPLICIT REAL (A-H,O-Z) 
C 

C 

DIMENSION U(NDIM),PAR(20),F(NDIM),DFDU(NDIM,NDIM),DFDP(ND:M,28) 
DOUBLE PRECISION A,S,T,E,B 

8=3.0 
C 
C Bis j+l where j is the shape factor 
C 

E=EXP (U (1)) 
C 
C IF (A.NE.S) PRINT '(F8.4)',S 

A=S 
IF (T.GT.A) THEN 

F(l)=U(2) 
F(2)=(-(B-l.0)/T)*U(2) - ?AR(l)*2 

C PRINT' (F8.3,F8.3,F8.3)',,,F(2),-0.5'PAR(l)'2 
ELSE 

F (l) =U (2) 
F(2)=-(l.0/B)*PAR(l)*E 

END IF 
C 
C Fis the system definition 
C 

IF(IJAC.EQ.0)RETURN 
C 

C 

C 

IF (T.GT.A) THEN 
DFDU(l,1)=0.0 
DFDU(l,2)=1 
DFDU(2,l)=-PAR(l)*E 
DFDU(2,2)=-(B-l.0)/T 

DFDP(l,1)=0.0 
DFDP(2,l)=-E 

ELSE 
DFDU(l,1)=0.0 
DFDU(l,2)=1 
DFDU(2,l)=-(l.0/B)*PAR(l)*E 
DFDU(2,2)=0.0 

DFDP (1, i) =0. 0 
DFDP(2,l)=-(l.0/B)*E 

END IF 
C 
C DFDU and DFDP are the derivatives of F 
C 

C 

RETURN 
END 



SUBROUTINE STPNT(NDIM,U,PAR,T) 
C ----------
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
CSGLE IMPLICIT REAL (A-H,O-Z) 
C 
C This subroutine must used to generate an initial starting point 
C (i.e., when not restarting from a previously computed solution). 
C The solution vector U must be given as a function of the independent 
C variable T (T takes on values between zero and one). 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

NDIM 
u 

PAR 

T 

Dimension of the system of differential equations. 
Vector of dimension NDIM. 
Upon return, U must contain a solution of the 
differential equation evaluated at 'time' T. 
Array of parameters in the differential equations. 
These may be initialized here, or else in INIT. 
(STPNT is called after INIT). 
Contains a value of the independent variable in \0,1\ 
where the solution is to be evaluated. 

DIMENSION U(NDIM),PAR(20) 
C 
C (Ir. this problem the sta~ting sclutio~ is actually i~depe~de~~ oft.) 
C 

C 

U(l)=0.0 
U(2)=0.0 
PAR(l)=0.0 

C This is the starting point on the branch 
C 

C 

RETURN 
END 

SUBROUTINE INIT 
C ----------
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
CSGLE IMPLICIT REAL (A-H,O-Z) 
C 

COMMON /BLBCN/ NDIM,IPS,:RS,ILP,!CP(20),PAR(20) 
COMMON /BLCDE/ NTST,NCC~,:AD,ISP,ISW,IPLT,NBC,N:N~ 
COMMON /BLDLS/ DS,DSMIN,DSMAX,IADS 
COMMON /BLLIM/ NMX,NUZR,RL0,RLl,A0,Al 
COMMON /BLMAX/ NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC 

C 
C In this subroutine the user should set those constants that require 
C values that differ from the default values assigned in DFINIT. 
C (See the main documentation for the default assignments). 
C 
C 

C 

C 

NDIM=2 
IPS=4 
IRS=0 
ILP=l 
ICP(l)=l 
NTST=20 
NBC=2 
NINT=0 
DS=0.001 
DSMIN=0. 00001 
DSMAX=l 
NPR=S00 
Jll.C=l 
NMX=S00 
NUZR=0 
RL0=0.0 
RL1=2000.0 
A0=0.0 
Al=2000.0 

RETURN 
END 
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SUBROUTINE BCND(NDIM,PAR,ICP,NBC,U0,Ul,FB,IJAC,DBC) 
C ---------- ----
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
CSGLE IMPLICIT REAL (A-H,O-Z) 
C 
C This subroutine defines the boundary conditions. 
C 
C Supplied variables : 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

NDIM 
PAR 
ICP 
NBC 
uo 
Ul 
IJAC 

Dimension of the first order autonomous system. 
Vector of problem parameters. 
Vector of indices of the free parameters. 
Number of boundary conditions. 
Value of the vector function U at t=O. 
Value of the vector function U at t=l. 
IJAC=O Derivatives need not be returned. 
IJAC=l Derivatives must be returned also. 

C Variables to be returned upon completion of call 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

FB The vector function defining the boundary conditions: 

FB ( UO, Ul, PAR) = 0. 

DBC The Jacobian of the boundary conditions 

DBC(i,j) : The derivative of the i'th boundary 
condition with respect to the j'th component of UO. 

DBC(i,NDIM+j) : The derivative of the i'th boundary 
condition with respect to the j'th component of Ul. 

DBC(i,2*NDIM+j) : The derivative of the i'th boundary 
condition with respect to PAR(j) (For free parameters) 

DIMENSION PAR(20),ICP(20),U0(NDIM),Ul(NDIM),FB(NBC),D3C(NBC,20) 
C 
C Define the two boundary conditions FB(l) and FB(2): 
C 
C 

C 
3=2 

C Bis the Bi number 
C 

FB(l)=U0(2) 
FB (2) =Ul (2) +s~u1 (1) 

C 
C 

IF(IJAC.EQ.0)RETURN 
C 
C Set up the derivatives of the boundary conditions 
C 
C With respect to UO 
C 

C 

DBC(l,1)=0.0 
DBC (1, 2) =l. 0 
DBC(2,1)=0.0 
DBC(2,2)=0.0 

C With respect to Ul 
C 

C 

DBC(l,3)=0.0 
DBC (1, 4) =0. 0 
DBC(2,3)=B 
DBC(2,4)=1.0 

(UO = U at 'time' T=O). 

(Ul U at 'time' T=l). 

C With respect to the free parameter (Here PAR(l) ). 
C 

DBC(l,5)=0.0 
DBC(2,5)=0.0 

C 
C RETURN 

END 
C 

SUBROUTINE ICND(NDIM,PAR,ICP,NINT,U,UOLD,UDOT,UPOLD,FI,IJAC,DINT) 
C ----------
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
CSGLE IMPLICIT REAL (A-H,O-Z) 
C 
C (This problem has no integral constraints.) 

RETURN 
END 
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C 
FUNCTION USZR(I,NUZR,PAR) 

C -------- ----

C 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

CSGLE IMPLICIT REAL (A-H,O-Z) 
C 

DIMENSION PAR(20) 
C 
C This subroutine makes it possible to generate plotting and restart 
C data at user-selected values of the free parameter(s). 
C Plotting and restart data will be written in unit 8 at zeroes of 
C functions defined below. 
C 
C 

USZR=0 
C 
C not used in this example 
C 

RETURN 
C 

END 

To run AUTO with this model file the following command was entered: 

@auto Bi2 

The screen then shows the results from compiling and running AUTO: 

aut3:2.f: 
func: 
st.pnt: 
ir.i t.: 
bend: 
iend: 
usz:c: 
fopt: 

ld: Undefined symbol 
MAIN 

aut.Bi2.o: bend : multiply def -
autBi2.o: foot : multiply def 
aut3i2.o: fu~e - multiply def : -autBi2.o: iend : multiply def -autBi2.o: init. : multiply def -
autBi2.o: usz:c - : multiply def 
autBi2.o: stpnt - : mulciply de 
mairi.f: 

MAIN auto: 

BR PT TY L/l.3 PAR (1) 
1 1 EP 1 0.000000E+00 
1 15 LP 2 1.4800282+00 
l 23 LP 3 5. 7998992-01 
1 48 LP 4 7. 8889112-01 
l 126 LP 5 7.201040E-01 
1 383 LP 6 7.4055572-01 
1 500 EP 7 7.3933322-01 

ned 
ned 
ned 
ned 
ned 
ned 
ined 

:...2-NORM 
0.000000E 
1.4379472 
7. 2457702 
2.260699£ 
7 .275749E 
2.3919252 
3.151358£ 

00 
00 
00 
01 
01 
02 
02 

MAX u (l) MAX U (2) 
0.0000002+0 0.0000002+00 
1.407336£~0 0.0C0000E-00 
6.6739882+0 0.000000E-00 
l.127426E+C 0.0000002-:JO 
l.606952E+Q C.000000£+00 
2.0805202+0 0.0000002+00 
2.190991E+0 0.000000E-00 
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Note that there are 4 limit points labelled 2 to 6 and 2 end points labelled 1 and 7. 
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The file p.Bi2 Contains all the points found by the pathfollowing algorithm which form 

a branch (added comments are in italicised bold) 

{initial values for the starting point} 
0 O.OOOOE+OO 2.0000E+03 O.OOOOE+OO 2.0000£+03 
0 PAR(.): O.OOOOE+OO O.OOOOE+OO 0.0000E+OO 
0 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 
0 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 
0 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 
0 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 

0.0000E+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 

{values for user defined constants} 
0 EPSU= 1.0000E-04 EPSS= l.OOOOE-04 EPSL(l) l.OOOOE-04 

1.0000E-04 
0 DS= 

THETAU= 
NDIM= 2 
NTST= 20 

NBC= 2 
ITMX= 8 

0 
0 
0 
0 

l.OOOOE-03 
l.OOOOE+OO 

DSMIN= 
THETAL(l)= 

IRS= 0 

l.OOOOE-05 
l.OOOOE+OO 

ILP= l 
ISP= 1 
NPR= 500 

DSMAX= l.OOOOE+OO 
THETAL(2)= O.OOOOE+OO 

0 
0 
0 

{point 
0 
1 
1 
1 
1 
1 
1 
1 
1 
l 
1 
l 
1 
1 
1 
1 
1 
1 
1 
1 
1 

IAD= 3 
IPS= 4 

NCOL= 4 
NINT= 0 
ITNW= 5 

NMX= 500 
NWTN= 3 

ICP( )= 1 

data for bifurcation graph} 
PT TY LAB PAR(l) 

l 9 1 0.000000E+OO 
2 0 0 9.462964£-04 
3 0 0 2.838744£-03 

L2-NORM 
O.OOOOOOE+OO 
3.233006£-04 
9. 703262£-04 

4 0 0 6.623059£-03 2.266078£-03 
5 0 0 l.4189352-02 
6 0 0 2.931246E-02 
7 0 0 5.9519912-02 
8 0 0 l.047299£-01 
9 0 0 l.723010E-01 

10 0 0 2.730470E-Ol 
11 0 0 4.225442£-01 
12 0 0 6.420272£-01 
13 0 0 9.545536£-01 
14 0 0 1.341724£+00 
15 5 2 l.480028E+OO 
16 0 0 1.289008£+00 
17 0 0 1.011955E+OO 
18 0 0 8.021947E-Ol 
19 0 0 6.777413£-01 
20 0 0 6.150687E-Ol 

4.86C,411E-03 
1.008863£-02 
2.064912E-02 
3.677822£-02 
6.165143£-02 
l.OC6039E-Ol 
l.63J.678E-Ol 
2.681558E-01 
4.594868£-01 
8. 7q804E-Ol 
l.437947E+OO 
2. t130124E+OO 
3.378580£+00 
4.288009E+OO 
5.120949E+OC 
5.861983E+OO 

ISW= 
MXBF= 
NUZR= 

5 
0 

MAX U (l) 
o.oooooos~oo 
3.155093£-04 
9.469428£-04 
2.211473E-03 
4.747214E-03 
9.845641E-03 
2.015211E-02 
3.5893862-02 
6.0l7126E-02 
9.8l9444E-J2 
l.592757E-8l 
2.618045E-01 
4.487539£-01 
8.544567£-01 
l.407336E+OO 
2.384808E+OO 
3.323C67E-00 
4.216039E+OO 
5.004512£+00 
5. 654113E+OO 

Ii:,LT= 
IID= 

0 
2 

MAX U (2) 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
0.000000:::~oo 
O.OOOOOOE-00 
O.OOOOOOE+OO 
O.OOCOOOE+OO 
O.OOOOOOS+OO 
O.OOOOOOE+OO 
O.OOOOOOS+OO 
O.OOOOOOS+QO 
O.OOOOOOE-00 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOS+OO 
O.OOOOOOE+OO 

1 499 
1 500 

0 
9 

0 7.393484£-01 3.144875£+02 2.190164£+01 O.OOOOOOE+OO 
7 7.393332£-01 3.151358E+02 2.190991E-01 O.OOOOOOETOO 

EPSL(2) 

This has all the point data. Note that the type is a number and not a Character code. 

type 5 points are limit points, type 9 end points, and O are regular points. 
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Each labelled point in p.Bi2 has an entry in q.Bi2 containing all the information needed 

to continue from those point in future runs: 

{initial parameters £or continuation} 
1 1 9 1 1 1 81 3 166 20 4 1 

{values £or t and u at discrete point tin [0,1] } 
0.0000000000E+OO 0.0000000000E+OO O.OOOOOOOOOOE+OO 
1.2500000000E-02 0.0000000000E+OO O.OOOOOOOOOOE+OO 
2.SOOOOOOOOOE-02 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 
3.7500000000E-02 0.0000000000E+OO O.OOOOOOOOOOE+OO 
5.0000000000E-02 O.OOOOOOOOOOE+OO 0.0000000000E+OO 
6.2500000000E-02 0.0000000000E+OO O.OOOOOOOOOOE+OO 
7.SOOOOOOOOOE-02 0.0000000000E+OO O.OOOOOOOOOOE+OO 
8.7500000000E-02 0.0000000000E+OO O.OOOOOOOOOOE+OO 
l.OOOOOOOOOOE-01 0.0000000000E+OO O.OOOOOOOOOOE+OO 
l.1250000000E-01 0.0000000000E+OO O.OOOOOOOOOOE+OO 

8.7500000000E-01 0.0000000000E+OO 
8.8750000000E-01 0.0000000000E+OO 
9.0000000000E-01 0.0000000000E+OO 
9.1250000000E-01 O.OOOOOOOOOOE+OO 
9.2500000000E-01 0.0000000000E+OO 
9.3750000000E-01 O.OOOOOOOOOOE+OO 
9.SOOOOOOOOOE-01 0.0000000000E+OO 
9.6250000000E-01 0.0000000000E+OO 
9.7500000000E-01 0.0000000000E+OO 
9.8750000000E-01 0.0000000000E+OO 
l.OOOOOOOOOOE+OO 0.0000000000E+OO 

{value of A' £or direction vector x'} 
9.4632044681E-01 

{value of u' £or direction vector x'} 
3.1544014894E-01 O.OOOOOOOOOOE+OO 
3.1541550518E-01 -3.9430018617E-03 
3.1534157389E-01 -7.8860037235E-03 
3.1521835508E-01 -l.1829005585E-02 
3.1504584875E-01 -l.5772007447E-02 

l.8768688862E-01 -2.8389613404E-01 
l.8411354318E-01 -2.8783913591E-01 
l.8049091022E-01 -2.9178213777E-01 
l.7681898974E-01 -2.9572513963E-01 
l.7309778173E-01 -2.9966814149E-01 
l.6932728620E-01 -3.0361114335E-01 
l.6550750315E-01 -3.0755414521E-01 
l.6163843257E-01 -3.1149714708E-01 
l.5772007447E-01 -3.1544014894E-01 
... followed by the next point ... 

O.OOOOOOOOOOE+OO 
O.OOOOOOOOOOE+OO 
O.OOOOOOOOOOE+OO 
O.OOOOOOOOOOE+OO 
O.OOOOOOOOOOE+OO 
O.OOOOOOOOOOE+OO 
O.OOOOOOOOOOE+OO 
O.OOOOOOOOOOE+OO 
O.OOOOOOOOOOE+OO 
O.OOOOOOOOOOE+OO 
O.OOOOOOOOOOE+OO 
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d.BI2 contains information from the Newton Corrector method at each point on the 

branch: 

NUMBER OF ITERATIONS 1 NEXT STEPSIZE 0.l00E+0l 
BRANCH 1 N= 14 IT= 0 A= 7.44985501E-01 PAR= l.42082915E+00 
BRANCH 1 N= 14 IT= 1 A= 8. 7 5296843E-01 PAR= l.34103914E+00 
BRANCH 1 N= 14 IT= 2 A= 8.74180420E-01 PAR= l.34172434E+00 
BRANCH 1 N= 14 IT= 3 A= 8.74180374E-01 PAR= l.34172437E+00 
LIMIT POINT FUNCTION 0.493E+00 
NUMBER OF ITERATIONS 3 NEXT STEPSIZE 0.547E+00 

This example point (number 14 on Branch 1) has 3 Newton iterations with A 

converging to 1.32, and the next stepsize is 0.547 (based on the number of Newton 

iterations). 

The limit point Function changes sign when there is a limit point. For example: 

BRANCH 1 N= 14 IT= 0 A= 7.44985501E-01 
BRANCH 1 N= 14 IT= 1 A= 8.75296843E-01 
BRANCH 1 N= 14 IT= 2 A= 8.74180420E-01 
BRANCH 1 N= 14 IT= 3 A= 8.74180374E-01 
LIMIT POINT FUNCTION 0.493E+00 
NUMBER OF ITERATIONS 3 NEXT STEPSIZE 

BRANCH 1 N= 15 IT= 0 A= l.27386060E+00 
BRANCH 1 N= 15 IT= 1 A= l.50947747E+00 
BRANCH 1 N= 15 IT= 2 A= l.49366043E+00 
BRANCH 1 N= 15 IT= 3 A= l.49357184E+00 
LIMIT POINT FUNCTION -0.339E-01 
* DETECTION OF SINGULAR POINT : ITERATION 

BRANCH 1 N= 15 IT= 0 A= l.45923601E+00 
BRANCH 1 N= 15 IT= 1 A= l.45748977E+00 
BRANCH 1 N= 15 IT= 2 A= l.45748950E+00 
LIMIT POINT FUNCTION= -0.123E-01 
* DETECTION OF SINGULAR POINT : ITERATION 

BRANCH 1 N= 15 IT= 0 A= l.43764409E+00 
BRANCH 1 N= 15 IT= 1 A= l.43762453E+00 
BRANCH 1 N= 15 IT= 2 A= l.43762453E+00 
LIMIT POINT FUNCTION= 0.203E-03 
* DETECTION OF SINGULAR POINT : ITERATION 

BRANCH 1 N= 15 IT= 0 A= 1.43794692E+00 
BRANCH 1 N= 15 IT= 1 A= l.43794700E+00 
LIMIT POINT FUNCTION= -0.168E-05 
* DETECTION OF SINGULAR POINT : ITERATION 
NUMBER OF ITERATIONS= 1 NEXT STEPSIZE 

PAR= l.42082915E+00 
PAR= l.34103914E+00 
PAR= l.34172434E+00 
PAR= l.34172437E+00 

0.547E+00 

PAR= l.71467895E+00 
PAR= l.46203950E+0O 
PAR= l.47896813E+0O 
PAR= 1.47906290£+00 

0 STEPSIZE = -0.352E-01 

PAR= 1.47145998E+00 
PAR= l.47990434E+0O 
PAR= 1.47990631E+00 

1 STEPSIZE = -0.200E-01 

PAR= 1.48037031E+00 
PAR= l.48002772E+00 
PAR= l.48002769E+0O 

2 STEPSIZE = 0.324E-03 

PAR= 1.48002572£+00 
PAR= l.48002773E+00 

3 STEPSIZE = -0.266E-05 
0.l00E+0l 

The limit point function changed sign and the Newton Corrector method was used to 

converge on the place where it changed sign. 
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These output files can be used to generate a bifurcation graph using the plaut program. 

First a tektronics window is set up by typing tektool. The plaut program is initiated 

by the command: 

@plaut Bi2 

The screen then shows: 

ENTER <HELP> IN CASE OF DIFFICULTY 

ENTER COMMAND 

typing BDO will result in a plot of a bifurcation diagram for the system: 
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Typing 2D gives the curve u(t) at the label points 1, 2, 3, 4, 5, 6, 7 and 8: 
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APPENDIX B: THE STRUCTURE OF AUTO 

INTERNAL SYSTEM CONST ANTS 

The smallest and largest acceptable real numbers for the machine are defined as: 

RSMALL=l.0D -30 (lxl0-30 in double precision) 

RLARGE=l.0D 30 (1Xl030 in double precision) 
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These numbers are used to stop underflow and overflow errors. For example, in Gauss 

elimination, the pivot element must be larger than RS MALL, otherwise a divide-by-zero 

error will result. 

The machine has a 14 decimal digit mantissa. HMACH=l.0D-7 is the approximate half 

exponent machine accuracy. This is used as Li in (2.46) for numerically generating the 

Jacobian, HMACH can be multiplied by itself 4 times, before the number goes out of 

range. This ensures that as long as the function f is within the range of the machine, 

then the resulting number from (2.46) is also within the accuracy of the machine. 

Every IADS steps along the branch (where IADS is a user defined constant), the 

stepsize is adapted. If the number of Newton iterations to find a point is NIT, the 

existing stepsize is RDS and ITNW is the maximum number of Newton iterations (vmax 

in Section 2.1) then: 

If NIT<= 1 Then RDS=2(RDS) 

If NIT=2 Then RDS=3/2 (RDS) 

If NIT> 2 and NIT< ITNW /2 Then RDS= 1.1 (RDS) 

If NIT >=ITNW Then RDS=0.S(RDS) 

These settings are fixed by AUTO and cannot be changed in the model file. 
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FLOW CHART 

A Flow Chart is included for AUTO when the main program is set up for a BVP 

(IPS=4) with 2 boundary conditions (NBC=2), no integral conditions (NINT) and with 

no previous runs used (IRS=0) This is the type of analysis done for all of BVP's in 

section 3.2. 

The program is represented as a text-based flow-chart with the convention: 

EXAMPLE - Name of Routine 

EXAMPLE - A Subroutine call 

EXAMPLE - A Subroutine call which contains other subroutine calls 

Example or EXAMPLE 

Example - A Comment 

MAIN PROGRAM 
CNSTNT: 

- Logic statements like if, then and loops 

Define problem independent constants e.g. maximum and minimum computable 
numbers 

DEFINIT: 

INIT: 

Sets default values of the constants. (These values are on page 143 of the 
manual.) 

Define constants from the users model file 
AUTOBV: 

Pathfollow for Boundary Value problems 

AUTOBV 
WSBV: 

Assign workspace.Le declare variables 
CNRLBV: 

Compute solution branches 



CNRLBV 
ntot=0 
RSPTBV: 
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Gets initial value for u(t) and A, defined in STPNT in the model file and put them 
into discrete variables UPS(i,j), and RL(l) respectively. 
get t values for these points 
ADAPT: {Adapt existing Mesh to this initial solution curve.} 

STDRBV: {get starting direction vector} 
SETUBV: 

Generate Jacobian Matrix Px from UPS values with Nx=0 (i.e. using a 0 
direction vector) to get {Fu I F,_ } 
Set right hand side of Matrix equation to 0 

BRBD: 
Find null vector of {Fu I F,.} to get an initial direction vector (UDOTPS, 

RLDOTPS) 
SCALEB: 

Scale this direction vector to unit length. 
STHD: 

Write the values of the AUTO user defined parameters in fort. 7. 
EXTRBV: {Extrapolate to get approximation to next point} 

LOOP UNTIL {the point evaluated is out of range} OR {the number of points is out of 
range} 

IF {adaptive mesh chosen (IAD= l)} AND {it has been IAD iterations since it has 
been adapted} THEN 

ADAPT: {Adapt existing mesh} 
IF { adaptive stepsize chosen (IADS= l)} AND {it has been IADS iterations since it has 
been adapted} THEN 

ADPTDS: 
Adapt existing stepsize 

CONTBV: {Use Euler Predictor as initial approximation for next point} 
Use 2 previous points UPOLDS, RLOLD and UPS,RL to approximate the next 
direction vector using the stepsize DDS. 
EXTRBV: {Extrapolate to get approximation to next point} 

SOLVEBV: 
Perform the Newton Corrector using initial approximation 

IF {Checking for limit points ILP>0} THEN 
LCSPBV(FNLPBV) 

IF {Checking for branching points ISP>0} THEN 
LCSPBV(FNBPBV) 

IF {Checking for user defined points NUZR>0} THEN 
LCSPBV(FNUZBV) 

STPLBV 
Store plotting data to fort. 7 and fort.8 

END OF LOOP 

ADAPT 
NEWMESH: 

Use last solution points uU) to get new mesh intervals (As in Chapter 2) 
INTERP: 

Replace last solution curve points by new point by interpolating to get u 
values for the new mesh interval's 
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EXTRBV: 
Define UOLDPS,RLOLD as UPS and RL respectively. 
get next point UPS,RL from previous point UOLDPS, RLOLD and direction vector 
UDOTPS,RLDOT 

SOLVEBV 
LABEL 1 
LOOP for NIT= l to ITNW 

Define IFST =0 
IF {Number of iterations is less than user variable NWTS} THEN 

Define IFTS= l 
IF IFTS = l THEN 

SETUBV: 
Generate Jacobian Px and Generate Right Hand side (F,N)1 

ELSE 
SETRBV: 

BRBD: 

Only Generate the Right Hand side {using Jacobian at the previous 
point} 

--Solve the Matrix equation Px=(F,N)1 to get solution RHSD 
Use RHSD as a Newton increment to get a better approximation for UPS,RL 
Check whether user-supplied tolerances for the new solution have been met 
and QUIT if they have. 

The Maximum number of iterations has been reached, so Reduce stepsize (if 
adaptive) 
IF minimum stepsize not reached THEN 

GOTO label l 
ELSE 

Display error message - NO convergence. 

SETUBV 
Generate U values at z values using weights W(i,j) 
FUNI: 

Call user subroutine FUNC in the Model file and get F(U,RL) and derivatives 
DFDU and DFDP 

Use DFDU and DFDP for Jacobian Px 
Use F and the Pseudo-arclength equation for N for the Right hand side 

MODIFICATIONS TO AUTO 

The co-ordinates i and} of the u value uJ+ilmare passed to the Subroutine FUNI, as well 

as the current mesh points TM CtJ+iim) and interval sizes DTM (tlt1 ). Another 

parameter k indicates whether the mesh points are at regular intervals or at z values. 



The following Fortran Code shows the modifications to the subroutine FUNI: 

FUNI(K,I,J,NDIM,U,UOLD,ICP,PAR,IJAC,F,DFDU,DFDP,TM,DTM) 
C 

C !!!!!!This has been modified, K says whether it is z-values or not 

C Parameters I and J have been added 

C J is the MESH step number and I is the Collocation point number 

C TM(J)+(I-1)/NCOL*DTM(J) is the T value which corresponds to be value of T 

C also as arrays TM and DTM are also needed they are passed as well. 

C 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 

CSGLE IMPLICIT REAL (A-H,0-Z) 

C 

C Interface subroutine to user supplied FUNC. 

C 

COMMON /BLICN/ NDM,NDMPl,NROW,NCLM,NRC,NCC,NPAR,NFPAR,NBCO,NINTC 

COMMON /BLMAX/ NPR,MXBF,IID,ITMX,!TNW,NWTN,JAC 

COMMON /BLRCN/ HALF,ZERO,ONE,TWO,HMACH,RSMALL,RLARGE 

COMMON /BLDIF/ UlZZ(SO) ,U2ZZ(SC) ,FlZZ(50) ,F2ZZ(50) 

COMMON /BLCDE/ NTST,NCOL,IP..D,ISP,ISW,IPLT,NBC,NIN~ 

C !!!!!! Note that NTST is needed 

C 

COV:MON /BLWTS/ W(8,7),W?(8,7),WH(8),WI(8),ZM(7J 

C !!!!!! new common variables added to get z values defined initially 

C 

C 

C 

for weights 

DIMENSION U(NDIM),UOLD(ND!M),ICP(20),PAR(20),F(ND!M) 

DIMENSION DFDU(NDIM,NDIM),DFDP(NDIM,20),TM(NTSTPlJ,DTM(NTSTPl) 

DOUBLE PRECISION Al,A,B,C 

INTEGER I,j,K,L 

C Generate the function. 

C 

L=I 

Al= (I-1) 

/\.=Al/NCOL 

IF (L.EQ.ZERO) THEN 

B=TM(J) 

ELSE 

IF (K.EQ.ZERO) THEN 

B=TM(J) + A•DTM(J) 

ELSE 

B=TM(J)+DTM(J)•ZM(L) 

ENDIF 

ENDIF 

C=DTM (1) 

CALL FUNC(B,C,NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP) 

C !!!!!!Bis the Value of T, and C is the first mesh interval length 

C 
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APPENDIX C: AUTO AND ORDINARY DIFFERENTIAL 

EQUATIONS 

The pathfollowing algorithm can be applied to systems of Ordinary Differential 

Equations: 

dx 
dt =F(x,).) 

The steady states of these systems, correspond to Solving F(x,"A) = 0. The stability of 

a solution point corresponds to the sign of the eigenvalues of Fu. If the eigenvalues are 

all negative , then the branch is stable, otherwise, the branch is stable. If the 

eigenvalues are complex with the real part zero, then the point is a Hopf point. Hopf 

points can be detected in this way. 

Periodic solutions from Hopf points, can be gained by forcing the period to be 1 adding 

boundary condition u(0) = u(l) , and an integral condition which minimises the phase 

change. 

The manual [4] has more information on how it is implemented, and how to use AUTO 

to get steady states and periodic solutions of O.D.E. 's 
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