Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

АР (1	PLICATION FOR A Pursuant to AC 98/16	MASSEY U PPROVAL OF 8 (Revised 2), A	NIVERSITY REQUEST TO EM pproved by Academ	BARG(nic Boar	OGS 1) A THESIS d 16.02.99)
Name of Ca	ndidate:Bernadette J	ane Mullan	ID 1	Number:	
Degree:	MSc		Dept/Institute/School	d:	_Chemistry, IFS
Thesis Title	Investigation into the A	cidic Protein Frac	tion of Bovine Whey an	d its Effe	ct on Bone Cells.
Name of Ch	ief Supervisor:Dav	id RK Harding	Tele	ephone E	xtn: 3551
As author of	f the above named thesis	, I request that my	thesis be embargoed fi	om publi	c access
until	December 2015		for the following	reasons:	
The	esis contains commercia	ally sensitive info	rmation.		
The not	sis contains information be disclosed.	which is personal	or private and/or whic	ch was gi	ven on the basis that
Imm pub	nediate disclosure of th lish all or part of the the	esis contents wou sis.	ald not allow the auth	or a reas	conable opportunity
Oth	er (specify):		-		
Dease expla	er (specify): ain here why you think the thesis contains comme sted the five (5) year em	his request is justif reially sensitive 1 bargo that I now s	ied: material. Fonterra Coo eek.	operatives	Groups Limited h
Oth Please expla This reque	er (specify):	his request is justif reially sensitive 1 bargo that I now s	ñed: material. Fonterra Coo eek.	operatives	Groups Limited h
Please expla This reque	er (specify):	his request is justif rcially sensitive t bargo that I now s	ied: material. Fonterra Coo eek.	operatives	Groups Limited h
Oth Please expla This reque Signed (Car	er (specify):	his request is justif reially sensitive 1 bargo that I now s	Tied: material. Fonterra Coo neek.	operatives Date	Groups Limited h
Oth Please expla This reque Gas Signed (Car Endorsed (Car	er (specify):	his request is justif recially sensitive to bargo that I now s	Tied: material. Fonterra Coo eek.	Date	Groups Limited ha

INVESTIGATION INTO THE ACIDIC PROTEIN FRACTION OF BOVINE WHEY AND ITS EFFECT ON BONE CELLS

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCE IN CHEMISTRY AT MASSEY UNIVERSITY,

NEW ZEALAND

BERNADETTE JANE MULLAN

JANUARY 2010

Abstract

Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time.

Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk.

Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied *in vitro* (cell based) and *in vivo* (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis.

Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone.

Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both *in vivo* and *in vitro* activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using *in vitro* screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7).

Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.

Acknowledgements

I wish to thank my supervisors Dr Kate Palmano and Associate Professor David Harding for their hard work, advice and encouragement throughout the journey of this thesis; without their support I would not have been able to achieve what I have. In particular I would like to thank Kate for her patience, ideas and passion for this work and the long hours of dedication she has spent working on this thesis with me, I will forever be thankful.

I would like to thank my manager, Steve Holroyd, for the time, support and opportunity needed for me to complete my masters while still working.

Carmen Norris and Linda Schollum require special thanks for their help and guidance with techniques and ideas for this thesis and thanks also to Dr Wei-Hang Chua at Massey University for his work in the bone activity assays.

I would like to thank the staff at the Fonterra Research Centre for their support and understanding throughout my work on this thesis, but in particular I would like to thank David Elgar for his help with the protein ResourceTM analysis, Jean Garman for her work in molecular weight profiling and the staff of the Analytical Services Group for their work in compositional analysis.

To my parents, Philip and Irene, thank you; the sacrifices you have made for me as parents, and the support and encouragement you have given me throughout my life, have allowed me to become the person I am today and for this I will be forever grateful.

Hamish, my husband, your support and patience throughout my study has been greatly appreciated. I know the responsibilities you have taken on to allow me the time to do the long hours needed to get this thesis finished and for that I thank you.

Table of Contents

Ab	stract		i
Acknowledgementsiii			
Ta	ble of	Conter	ntsiv
Lis	st of T	ables	vii
Lis	st of F	figures	viii
Ab	brevi	ations	xi
1.	Intro	duction	1
	1.1	Bone	Health and Bovine milk 1
		1.1.1	Milk Structure and Composition 1
		1.1.2	Bone Structure
		1.1.3	Milk and Bone
		1.1.4	Milk Proteins and Bone
		1.1.5	Whey Acidic Protein Fraction and Bone
	1.2	Presen	nt Work
		1.2.1	Present Work
2.	Prep	aration	of Whey Acidic Protein Fractions11
	2.1	Descri	ption and Source of WPC Substrates
	2.2	Chemi	icals and Materials in Fraction Preparation
	2.3	Summ	ary of Fraction Generation
	2.4	Devel	opment of Fractionation Procedure
		2.4.1	Small-Scale Trials
		2.4.2	Larger-Scale Preparative Trials
		2.4.3	Modifications to Procedure
	2.5	Isolati	on of the Fractions
		2.5.1	GS19 – Cheese WPC80:
		2.5.2	CR05 – Mineral WPC80:
		2.5.3	HS15 – Lactic WPC80:
3.	Expe	eriment	al Section

3.1	Compo	ositional Analysis	. 31
	3.1.1	Chemicals and Materials	. 31
	3.1.2	Determination of Element Composition	. 31
	3.1.3	Determination of Vitamin D3 Content	. 32
	3.1.4	Determination of Vitamin K Content	. 32
	3.1.5	Determination of Total Nitrogen and Protein Content	. 32
	3.1.6	Determination of Non Protein Nitrogen	. 32
	3.1.7	Determination of Fat Content	. 33
	3.1.8	Determination of Fatty Acid profile	. 33
	3.1.9	Determination of Total Phosphate Content	. 34
	3.1.10	Determination of Amino Acid Profile	. 34
	3.1.11	Determination of Growth Factors	. 35
	3.1.12	Determination of Lactoferrin Content	. 35
	3.1.13	Determination of Molecular Weight Profile	. 35
	3.1.14	Determination of Proteins by Resource TM HPLC	. 36
	3.1.15	Determination of Phospholipids by Mass Spectrometry	. 36
	3.1.16	Determination of Enzyme Hydrolysis using PAGE Gels	. 37
	3.1.17	Determination of Proteins using RP-LC-MS/MS	. 39
	3.1.18	Determination of Bone Activity	. 40
Resu	ilts and	Discussion	. 43
4.1	Result	s and Discussion	. 43
	4.1.1	Composition of WPC Powders and Fractions	. 43
	4.1.2	Elemental Composition and Total Phosphate	. 43
	4.1.3	Vitamin D3 and Vitamin K Content	. 46
	4.1.4	Total Nitrogen, Protein and Non-Protein Nitrogen	. 46
	4.1.5	Fat Content	. 47
	4.1.6	Fatty Acid Analysis	. 47
	4.1.7	Phospholipids Analysis by Mass Spectrometry	. 52
	4.1.8	Analysis of Whey Proteins by Resource TM HPLC	. 56
	4.1.9	Amino Acid Analysis	. 59
	4.1.10	IGF-1, TGF-β1 and TGF-β2 Growth Factors and Lactoferrin	. 62
	4.1.11	Molecular Weight Profiles	. 64
	4.1.12	Enzyme Hydrolysis of Acid Fraction Powders	. 68
	3.1 Resu 4.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 3.1 Compositional Analysis

4.1.13 Determination of hydrolysis by SDS PAGE
4.1.14 Protein Analysis from Mass Spectrometry
4.1.15 Bone Activity Results
5. Conclusion Section
5.1 Overview and Conclusions
6. References
Appendices
Appendix 1: Principles of analytical procedures used in this study
Appendix 1.1: Determination of Element Composition
Appendix 1.2: Determination of Vitamin D3 Content
Appendix 1.3: Determination of Vitamin K Content
Appendix 1.4: Determination of Total Nitrogen and Protein Content
Appendix 1.5: Determination of Non-Protein Nitrogen Content
Appendix 1.6: Determination of Total Phosphate Content
Appendix 1.7: Determination of Amino Acid Profile
Appendix 1.8: Determination of Growth Factors
Appendix 1.9: Determination of Lactoferrin Content
Appendix 1.10: Determination of Proteins by Resource TM HPLC
Appendix 1.11: Determination of Phospholipids by Mass Spectrometry 102
Appendix 2: Resource [™] Breakthrough Fraction HPLC Profiles
Appendix 3: Molecular Weight Profile
Appendix 4: Trypsin Digest SDS PAGE
Appendix 5: Bone Activity Results

List of Tables

Table 1	The details of the three WPC 80 powders used in this study 12
Table 2	ICP-OES results for the parent WPC and fractionated powders
Table 3	TN, protein and NPN content of the parent WPC and fractionated
	powders
Table 4	Fat content of the parent WPC and fractionated powders
Table 5	Fatty acid composition of the parent WPC and fractionated powders 48
Table 6	Phospholipids distribution in the parent WPC powders (MS peak area) 52
Table 7	Phospholipids distribution in the acid and breakthrough fractions
Table 8	Analysis of whey proteins in the parent WPC and fractionated powders 56
Table 9	Amino acid results for the parent WPC and fractionated powders
Table 10	Growth factors and lactoferrin results for the parent WPC and fractionated
	powders
Table 11	Molecular weight profile for the parent WPC and fractionated powders 64
Table 12	Molecular weight profile for the trypsin digest acid fractions powders 70
Table 13	The % peak area of the proteins/peptides identified by in the genomic
	database for the 1:40 and 1:100 acid fraction trypsin digested powders 74
Table 14	Bone activity summary of the powders and desired characteristics

List of Figures

Figure 1	Image, as supplied by Michael Loh, Fonterra Research Centre,		
	Palmerston North, was taken with a Philips CM10 TEM at 130000x		
	magnification2		
Figure 2	A simple image of a bone taken from		
	http://www.teachpe.com/anatomy/bone_structure.php4		
Figure 3	Schematic diagram of the ÄKTAexplorer 10 FPLC system15		
Figure 4	The FPLC UV absorbance (215nm pink, 254nm red and 280nm blue)		
	and conductivity spectra (brown) show the loading of sample solution		
	onto the column (0 to \sim 100min), the sample being washed through the		
	column with water (~100 to ~157min) and the removal of bound		
	material with salt (~157 to ~270min) before being put back into water		
	(~270min to ~330min)		
Figure 5	The FPLC UV absorbance (215nm pink, 254nm red and 280nm blue)		
	and conductivity spectra (brown) of sample solution loading on the 1L		
	Q Sepharose Big Beads column, showing that as the sample moved		
	through the column not all of the material was bound, resulting in an		
	increase in the UV absorbance and conductivity as the sample		
	emerged from the column		
Figure 6	The FPLC UV absorbance (215nm pink, 254nm red and 280nm blue)		
	and conductivity spectra (brown) showing the water flush-through of		
	unbound sample and salt elution step with 1M NaCl on the 1L Q		
	Sepharose Big Beads column. As indicated, salt loading was between		
	~1080 minutes and ~1490 minutes, with water being flushed through		
	prior to and following the salt step		
Figure 7	The FPLC UV absorbance spectrum (215nm pink, 254nm red and		
	280nm blue) for the HS15 fractionation showing the absorbance		
	changing as material elutes from the column under different conditions. 29		

Figure 8	The FPLC conductivity spectrum (brown) for the HS15 fractionation
	showing the conductivity changing under different buffer conditions.
	The peak near 4100 min is due to the 2M NaCl loading on the column 30
Figure 9	Fatty acid profile of the parent WPC and fractionated powders51
Figure 10a	Phospholipid profile of the parent WPCs and fractionated powders.
	(See Figure 10b for a smaller scale graph of the low concentration
	phospholipids)54
Figure 10b	PI, L-PE, L-PC and PS phospholipid profile of the parent WPCs and
	fractionated powders
Figure 11	Resource TM HPLC Profiles of the parent WPCs. a) GS19 Parent WPC;
	b) CR05 Parent WPC; c) HS15 Parent WPC
Figure 12	Resource TM HPLC Profiles of the acid fractions. d) GS19 Acid
	Fraction; e) CR05 Acid Fraction; f) HS15 Acid Fraction59
Figure 13	Amino acid profile of the parent WPC and fractionated powders61
Figure 14	Molecular weight profile chromatograms for acid fractions: a) GS19
	AF; b) CR05 AF; c) HS15 AF66
Figure 15	Molecular weight profile of the parent WPCs and fractionated
	powders
Figure 16	SDS-PAGE Gel of acid fractions incubated with pepsin at 1:40
	enzyme to substrate (w/w) ratio
Figure 17	SDS-PAGE Gel of acid fractions incubated with pepsin at 1:100
	enzyme to substrate (w/w) ratio
Figure 18	Molecular weight profile chromatograms for trypsin digested acid
	fractions: a) GS19 AF; b) CR05 AF; c) HS15 AF72
Figure 19	Molecular weight profile of the acid fraction and trypsin digested acid
	fraction powders
Figure 20	MS relative peak intensity areas for proteins and peptides found in the
	trypsin hydrolysed acid fractions77
Figure 21	MS relative peak intensity areas for proteins and peptides found in the
	trypsin hydrolysed acid fractions; the higher intensity protein peaks
	have been removed to focus on protein peaks of lower intensities
Figure A1	Surface plasmon resonance (SPR) method. (Taken from
	http://www.nature.com/nrd/journal/v1/n7/fig_tab/nrd838_F2.html)100

Figure A2	Biacore sensogram. (Taken from
	http://www.astbury.leeds.ac.uk/facil/SPR/spr_intro2004.htm)101
Figure A3	Resource TM Breakthrough Fraction HPLC Profiles for: a) GS19
	Breakthrough Fraction; b) CR05 Breakthrough Fraction; c) HS15
	Breakthrough Fraction
Figure A4	Molecular weight profiles for: a) GS19 Parent WPC; b) GS19 Acid
	Fraction; c) GS19 Breakthrough Fraction104
Figure A5	Molecular weight profiles for: a) CR05 Parent WPC; b) CR05 Acid
	Fraction; c) CR05 Breakthrough Fraction
Figure A6	Molecular weight profiles for: a) HS15 Parent WPC; b) HS15 Acid
	Fraction; c) HS15 Breakthrough Fraction
Figure A7	PAGE gels of the GS19 trypsin digested acid fractions at 1:40 (top)
	and 1:100 (bottom) enzyme to substrate (w/w) ratio
Figure A8	PAGE gels of the CR05 trypsin digested acid fractions at 1:40 (top)
	and 1:100 (bottom) enzyme to substrate (w/w) ratio
Figure A9	PAGE gels of the HS15 trypsin digested acid fractions at 1:40 (top)
	and 1:100 (bottom) enzyme to substrate (w/w) ratio
Figure A10	Effect of the three WPC parent powders, acid and breakthrough
	fractions on osteoblast cell proliferation. Statistical significance
	(p < 0.05) from the 0 control is indicated by an asterisk. Means ±
	SEM. With permission, these graphs have been included from the
	bone activity results report by Dr Wei-Hang Chua
Figure A11	Effect of the three WPC parent powders, acid and breakthrough
	fractions on Raw 264.7 osteoclastogenesis. Significance ($p < 0.05$)
	from 0 control indicated by asterisk. Means \pm SEM. With permission,
	these graphs have been included from the bone activity results report
	by Dr Wei-Hang Chua
Figure A12	An image of the effect of the control and lactoferrin on
	osteoclatogenesis (osteoclast development) under the conditions of
	RANK-L present and absent as taken from, with permission, the bone
	activity results report by Dr Wei-Hang Chua

Abbreviations

α-Lac	Alpha-lactalbumin
AF	Acid fraction
AOAC	Association of Official Analytical Chemists
ASE	Accelerated solvent extraction
ASG	Analytical Services Group
β-Lac	Beta-lactoglobulin
BMD	Bone mineral density
BME	Beta-mercaptoethanol
BSA	Bovine serum albumin
BT	Breakthrough (fraction)
CPPs	Casein phosphopeptides
CR05	Mineral acid WPC 80 manufactured October 2007
DMSO	Dimethyl sulfoxide
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-linked immunosorbant assay
EPA	Eicosapentaenoic acid (C20:5N-3)
ESI	Electrospray ionization
FCS	Fetal calf serum
FPLC	Fast protein liquid chromatography system
FRC	Fonterra Research Centre, Palmerston North
FSOT	Fused silica open tubular
GLYCAM 1	Glycosylation-dependent cell adhesion molecule 1
GMP	Glycomacropeptide
GP	Gel permeation
GS19	Cheese WPC 80 manufactured February 2008
HBS-EP	10mM HEPES, 150mM NaCl, 3mM EDTA, 0.005% Surfactant P20
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HESI	Heated electrospray ionization
HPAEC	High performance anion exchange chromatography

HPLC	High performance liquid chromatography
HRP	Horseradish peroxidase
HS15	Lactic acid WPC 80 manufactured March 2008
ICP-OES	Inductively coupled plasma optical emission spectrophotometry
ID	Internal diameter
IDF	International Dairy Federation
IgA	Immunoglobulin A
IGF-I	Insulin-like growth factor-I
IgG	Immunoglobulin G
IgM	Immunoglobulin M
ISO	International Organization for Standardization
KCl	Potassium chloride
LC	Liquid chromatography
LF	Lactoferrin
LOD	Limit of detection
LOQ	Limit of quantitation
L-PC	Lysophosphatidylcholine
L-PE	Lysophosphatidylethanolamine
LTQ	Linear trap quadrupole
MBP	Milk basic protein
ΜΕΜα	Minimal essential medium α
MFGM	Milk fat globule membrane
MS	Mass spectrometry
MTT	3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NCBI	National Centre for Biotechnology Information
NMKL	Nordic Committee on Food Analysis
NPN	Non-protein nitrogen
NZDRI	New Zealand Dairy Research Institute
NZTM	New Zealand Testing Methods
OPN	Osteopontin
PAGE	Polyacrylamide gel electrophoresis
PC	Phosphatidylcholine
PE	Phosphoethanolamine
Pi	Isoelectric point

PI	Phosphatidylinositol
PP3	Proteose peptone component 3
PP5	Proteose peptone component 5 (β -casein-5-phosphate 1-105/107)
PP8	Proteose peptone component 8
PS	Phosphatidylserine
PUFA	Polyunsaturated fatty acid
PVDF	hydrophilic polyvinylidene fluoride
RANK-L	Receptor activator for nuclear factor κ B ligand
RAW 264.7	Mouse leukaemic monocyte macrophage cell line
RP-HPLC	Reverse phase high performance liquid chromatography
RP-LC-MS/MS	Reverse phase-liquid chromatography-mass spectrometer
SDS	Sodium dodecylsulfate
SM	Sphingomyelin
SPP 1	Secreted phosphoprotein 1
SPR	Surface plasmon resonance
TEM	Transmission electron microscope
TFA	Trifluoroacetic acid
TGF-β1	Transforming growth factor-β1
TGF-β2	Transforming growth factor-β2
TMB	3,3,5,5-tetramethylbenzidine
TN	Total nitrogen
TRAP	Tartrate-resistant acid phosphatase
Tris-HCl	2-Amino-2-(hydroxymethyl)-1,3-propanediol, hydrochloride
	(tris(hydroxymethyl)aminomethane hydrochloride)
Trp Hyd	Trypsin hydrolysate
UF	Ultrafiltered
UV-Vis	Ultraviolet - visible
WPC	Whey protein concentrate
WPC 80	Whey protein concentrate 80
WPI	Whey protein isolate