
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



CON CU RRENT VIOLA Jo ES CLASSI PIERS O A PORTABLE BEOW ULP CL USTE R 

A thesis pre ented in partial 
fulfilment of the requirement 

for the degree 

of r-.Iaster of Engineering 

in M chatronics at 
r-.Iassey Univer ity 

Ravi Kiran Chemudugunta 
200 

Copyright© 2008 by Ravi Kiran Chemudugunta 



Abstract 

Real-time Computer Vision is an interesting application for supercomputing, real-time appli­
ca tions ( vision processing in part icular) employ special purpose hardware such as DSPs to 
achieve high performance. This thesis explores parallel computers particularly commodity 
general purpose hardware. We also build a prototype to better understand the economics 
of supercomputing. specifically rela ted to mobile computing - low power. rugged de ign by 
building a mobile computer. A new communication layer is built. where by the nature of the 
locali ty of the nodes allows one to optimise the protocols to reduce the latency comparably. 
Finally a study and in depth results of the algorithm. the Viola Jone Object d tector in 
parallel are presented followed by reflection and fu t ure work based on the current results and 
platform. 



iii 

Acknowledgements 

First and foremost I would like to thank my supervisor Dr. Andre Barczak. \\'ithout his 
advise and motivation I \\'Ould11 ·t have been able to succeed. I thank him for listenillg to my 
sometimes strange ideas and steering me in the right direct ion t hroughout this work. I would 
also like to acknowledge my co-superTisor Dr. Johan Potgieter for inpu t and advise on the 
project. 

I extend my thanks to Dr. Napoleon Reyes for being encouraging and Dr. Chris :t\Icssom 
for his valua ble insights and input. I would like to acknowledge everyone from the Computer 
Sciences Department, Guy Kloss. Rushad Irani. Anton Gerdelan and Daniel Playne for their 
encouragement and friendship through the years. 

I would like to thank Thomas Felton for counselling me through my life. his support has 
been integral for me to be able to finish this work. Finally. I would like to thank my family, 
who supported me in everyway during this work. without them I would not be here today. 



iv 

Contents 

Acknowledgements iii 

1 Introduction 1 

2 Literature R eview 3 

2.1 Object Detection 3 

2.1.1 Training . 5 

2.1.2 A Cascade of Det ctors 7 

2.2 Parallel Computing on Clu ters g 

2.3 Motivation and Base Work g 

2.4 Hardware Infrastructure 10 

2.5 Software Infrast ructure . 10 

2.5 .1 Interconnect Software P rotocols . 11 

2.6 Conclusions of the Li terature Review 12 

2.6.1 Implementation Details 13 

2.6.2 On UDP . . . 13 

3 Method / Material 14 

3.1 Hardware 14 

3.2 Physical Construction 14 

3.3 P arallel Knoppix 16 

3.4 Testing Tools 17 

3.4.1 Qemu 17 

3.4.2 VDE Et hernet 17 

3.5 Distribution . 17 

3.5.1 TTY Linux build system 18 

3.5.2 Methods to Reduce Packages Sizes 18 

3.6 Moose Linux .. . 19 



3.6.l Build System Overview 

3.G.2 Distribution . 

3.6.3 Packaging 

3.6.4 Testing . 

3. 7 :-.Ieasuring Time 

4 Imple m e ntation 

4.1 Synchronisation by Broadca t ?-. Iessages 

4.2 

4.3 

4.4 

4.5 

4.G 

4. 7 

4.8 

4.9 

4.1.l 

4.1.2 

4.1.3 

Xaive Approach 

Knowledge Rows 

Results . .. . 

Broad casting Protocol 

LSPIP: Loosely Synchronised Parallel Image P rocessing Library . 

Parallelising Detectors 

Single Classifiers . 

\Iult iple Classifiers 

4.6. l Dist ribution of Classifiers among i\"odes 

Dealing wit h Results . . . . . 

\ 1easuring System Efficiency 

4.8.l Tc ting \1ethod. Image Sequences 

4 .. 2 Test ing \Iethod, USB Camera 

Summary .. . . . . . 

5 R esults a nd Discussion 

5.1 :'\ etwork Performance 

5.2 CP U Performance . 

5.2.1 USB Camera 

5.3 Experimental Condit ions. 

5.4 Average System Performance 

5.5 Ind ividual i\"ode Performance 

5.6 Scalability . . . . . . . . . 

5.6. l Resolution Scaling 

5. 7 Performance Analysis . . 

V 

19 

19 

20 

20 

20 

21 

21 

22 

22 

22 

23 

24 

27 

27 

28 

29 

29 

30 

32 

32 

32 

33 

33 

33 

35 

36 

36 

37 

39 

41 

41 



VI 

6 Conclusion and Future Work 

6.1 Conclusions from Results 

6.2 Perspectives . 

6.3 Future Work 

6.3. 1 

6.3.2 

6.3.3 

6.3.4 

P arallelising Single Classifiers 

Strategies of Applying Multiple Classifiers 

Moment Based Detection Algorithms 

Other Hardware Platforms 

DSP Hardware .. 

GPGPU Hardware 

A UDP Image Broadcast Header File 

B UDP Image Result Collection Header File 

C LSPIP: 'Source' Program 

D LSPIP: 'Process' Program 

E LSPIP: 'Sink' Program 

F Mooselinux Build System: 'Get' 

G Mooselinux Build System: 'Update' 

H Mooselinux Build System: 'Build' 

I Timing Routines for Benchmarking 

I.1 Header File . . 

1.2 Implementation 

Bibliography 

45 

45 

45 

46 

46 

46 

46 

47 

47 

47 

48 

50 

52 

55 

58 

61 

64 

66 

68 

68 

69 

70 



List of Figures 

2.1 Samples of Hand Detection, source [Barczak and Chcmudugunta, 2006] 

2.2 Generator Function . 

2.3 Flow Diagram ... . 

2.4 Lena . ..... .. . 

2.5 Composition of a Strong Haar Classifi er 

2.6 Parallel Classifiers, source [Barczak and Chemudugunta, 2006] 

2. 7 Haar Features. source [Intel, 2007] . . . . . . . . . . . . . . . . 

2. Summed Arca Table. adapted from [Viola a 11d J ones. 2002] . . 

2.9 Ca cade of Boosted Clas ifiers. adapted from [Lienha rt and ~laydt. 2002] 

VI I 

4 

6 

6 

7 

7 

8 

2.10 T he OSI ~lode!, source [CiscoSystcms. 2006] . . . . . . . . . . . . . . . . . 9 

3.1 Hardware pla tform, source [Barczak and Chcmudugunta. 2006] 

3.2 Real-time Constraints. source [Barczak and Chemudugunta. 2006] 

3.3 Prototype . . . . . . 

3.4 !\loose Build Syst em 

4.1 Broadcast Synchronisation ........... . 

4.2 Enabling Broadcasting using BSD Sockets API 

4.3 Packet Structure . . . . . . . . . . . . . . . . . 

4.4 Network Layout, source [Barczak and Chemudugunta , 2006] 

4.5 Subwindow List . . . . . . . . . . . . . . . . . . . . . . . .. 

4.6 Parallel Classifiers, source [Barczak and Chemudugunta, 2006] 

4.7 Communication Pattern 1, source [Barczak and Chcmudugunta, 2006] 

4.8 Communication Pattern 2, source [Barczak and Chemudugunta, 2006] 

5. 1 Broadcast Performance of MPI vs UDP P rotocol 

5.2 Classifier Performance on a Single ode 

5.3 CP U vs Send FPS (640x480) 

5.4 Test Sequence . . . . . . . . . 

15 

15 

16 

19 

21 

25 

25 

27 

2 

30 

30 

31 

34 

34 

35 

36 



viii 

5.5 Average System Performance . . . . .. 37 
5.6 ludividual Kode Performance for 160xl20 38 
5.7 Indi\·idual Kode Performance for 320x240 3 
5.8 Individual Node Performance for 640x4 0 39 
5.9 Performance Scalability for 160xl20 40 

5.10 Performance Scalability for 320x240 40 

5.11 Performance Scalability for 640x4 0 41 
5.12 Resolution Scaling for 1 Kode . 42 

5.13 Resolution Scaling for 2 ~odes 42 

5.14 Resolution Scali11g for 3 Nodes 43 

5.15 Resolution Scaling for 4 ~ odes 43 
5.16 lutegral Image Computation Times . 44 



ix 

List of Tables 

3.1 Cluster Specifications ..... . .... . .. . 14 

5.1 Cluster Specifications relevant to performance . . . . . . . . . . . . . . . . 33 

5.2 II Computation Time and Sub \VindO\\" Load for each of the Resolut ions . 41 



1 

Chapter 1 

Introduction 

The motivation for this work is to realise a concept of real-time video processing on a parallel 
computer. Image Proce sing promises intelligent systems that are able to communicate wi th 
humans better. However it is a very compute intensive process and requires specialised 
hardware to make implementat ion viable. Image Processing applicat ion exhibit inherent 
parallelism and so can be parallelised u ing multiple processors each doing some sub-task in a 
larger ta k thereby speeding up the operation. Using the analogy of a hole being dug by many 
workers - the more workers the faster it i completed, however one cannot have an infini te 
number of workers digging the same hole as in reali ty t here are space restrictions around how 
infinite workers can be placed in a physical space and issues of how they collaborate with 
each other so they do not run into each other all the t ime. The same is true for parall l 
computing, the more computers there are on some task , the faster it can be performed, but 
like the workers it depends on how much interprocess communication exists between t hem, 
how often they have to synchronise and physical restrictions such as bandwidth and memory. 

The objectives for this work a re to build a system that demonstrates the use of multiple 
proces ors on an vision detection algori thm, and optimising where necessary algorithms and 
communication protocols to make the system as efficient as pos ible with the given resomce . 
The vision is to have a reusable framework for medium sized mobile robotics such as humanoid 
size robot and autonomous vehicles to enable high speed image processing so to make them 
more aware of their surroundings (for e.g. localisation) and intelligent in they way th y 
interact with humans (for e.g. gesture recognition). 

The scop e of the work includes using a particular form of vision detection algorithm, the 
Viola Jones method. Extensive research has been conducted on this topic and many resources 
are available from which to start from, these include work by Andre L. Barczak (supervisor of 
this thesis) for e.g. in [Barczak et al. , 2005a] that provides a framework for hands detection 
(see chap. 2). Many types of architectures exist for computing, these include embedded 
microprocessors, desktop comput ing processors and special purpose hardware like FPGA and 
DSP processors. This work will focus on using commodity off the shelf hardware that is able 
to run linux out of the box and provide common interfaces such as USB for easy interfacing 
with easily available web camera hardware. 

Chapter two reviews relevant literature and how it has shaped this work. The literature 
review is split into three categories, fundamental theory, software and hardware to de-lineate 
the different aspects of the project. First fundamental theory explains the workings of object 



2 C HAPTER 1. I NTRODUCTION 

detect ion method used for this thesis and links some of the aspects of the algorithms to how 
it may function on parallel machines. 

Past work is reviewed. including designs and proposals of architectures and systems for 
parallel image processing. This includes review of literature on parallel machines based 011 

the Beowulf formul a for achieving faster computing. their operation and construction . 

A particular programming problem can be solved in many ways: either lcvcraging on 
already available application programming libraries or starting from scratch . The section on 
oftwar e infrastructure surveys available options such as :-.Iessage Passing Interface messaging 

platform for communication. 

The literature review concludes with a summary of all of the literature reviewed and what 
things ,,·ere taken into consideration and how they effected this work. 

Chapter three discusses the materials and methods used during for the devf'lopmcnt . The 
specifications of hardware chose11. why it was chosen and its general sctup are outlined. T'hc 
second part of the chapter details the software infrastructure used to develop the system. 
The distribution and its build system used to bui ld the software and deploy the system is 
shown in detai l. Test ing tools allow one to improve the ability to ch eck the functionality of 
some feature without having to act ually deploy on the hardware. The various testing tools 
and how they were used in this work are discussed. :-.let hods of benchmark ing arc shown and 
their results verified to show that all results are accurate a rc outlined towards the end of the 
chapter. 

In chapter four a detailed description of the software, including the protocol and frame­
work. At the lowest level the algorithms and packet struct ures are discussed. Synchronisation 
is an important aspect of any parallel programming, e pecially with communication protocols. 
Synchronisation over broadcast channels are explored, following by some conclusions on the 
approach. Finally the chapter concludes with a detailed description of the implementation of 
protocols designed around UDP. reusable framework and application programming interface 
that is exposed for the implementation of the system. 

In chapter five results are presented. The chapter provides details of the setup of the 
system used for benchmarking the system. First isolated benchmarks of the protocols is 
presented conducted on a larger cluster to examine the effect of increased number of nodes. 
Following this, an examination of the hardware used for the embedded system is presented 
specifically related to rates at which it is able to compute algorithm related tasks. 

Following isolated benchmarks, the results of the benchmarks on the completed system 
with all of the protocols and algorithms are shown with rigorous analysis and reflection of 
results. 

Chapter six concludes the thesis by reviewing the results from chapter 5. A review of 
the work conducted and some perspectives on the various aspects are provided for anyone 
wishing to repeat a similar project . Finally the chapter concludes with future work and the 
various directions that can be taken from this point such as other object detection algorithms 
that can be performed on the system or modifications to the hardware to improve on the 
performance already gained. 



3 

Chapter 2 

Literature Review 

This thesis brings together many elements of research in the fields of machine vision, parallel 
computing, embedded software and hardware development. The literature review is divided 
up into sections to help put the various work reviewed into perspective. 

2.1 Object D etection 

Object Detection deals with identifying objects in images such as cars, people and animals. 
Ideal algorithms do not have have any constraints on the input image in order to work. For 
example it is quite easy to detect an object if a background frame with no object in it i 
available from which the new image can be subtracted to obtain the location and ize of the 
object . This approach would not cale well if there were multipl types of objects in t he scene 
and only a particular object was needed (without further processing). 

Figure 2.1 shows an example of application, hands detection, for rotation in-variant gesture 
recognition. 

There are fundamentally two way of describing an object (according to [Yang et al. , 2002] 
a.nd [Bianchini et al. , 2004], there are four methods: this thesis focuses on the feature invari­
ant approach) , using its statistical properties, such as an histogram or using morphological 
properties of the object such as geometric relationships of image intensities within the image 
and, component based, a combination of several of the above two mentioned. Generally, sta­
tistical descriptors allow for wide range of variation in objects while morphological operators 
allow for much less variabili ty. One such method that is examined i the ViolaJones detec­
tor which uses a combination of statistical-like and morphological properties of an object to 
maximi e its performance. They are similar to Joint Histograms which are a combination 
of histograms of colour channels at various areas in the image [Pass and Zabih, 1999]. The 
object descriptor will here by be referred to as the kernel. 

Example of one such statistical detection system is detailed in [Kloss , 2008]. 

Further , objects presented can be of any size, orientation (angle) and position within the 
image. Ignoring for now the problem of orientation, the problem of variation in size and 
position of the object within the image can be solved by two ways. These are, moving and 
rescaling the kernel, and, keeping the kernel the same size and moving it across multiple 



4 C HAPTER 2. LITERATURE R EVIEW 

Figure 2.1: Samples of Hand Detection. source [Barczak and Chemuclugunta. 2006] 

versions of the image each at a different scale. The la tter is sometimes referred to a mult i­
resolution analysis a11cl is con iclered computationally expensive because scaling images takes 
a large percentage of time iu comparison to the detection phase. 

The Viola Jones detector [Viola and Jones. 2002] uses the moving/ scaling kernel approach. 
where by the kernel is dragged across the image at different scale factors . T he detector is 
able to run very rapidly, boasting 15 frames per se('ond on a 700 MHz Desktop Computer @ a 
resolution of 320 x 224. The parameters that control a kernel's scale and posilion are referred 
to as scale factor and translation factor. The scale factor is the proportion of subsequent sizes 
of the scaled kernel, while the translation factor is the number of pixels the kernel is moved 
a t each iteration. The kernel can be rescaled easily because a kernel is made up of rectangles 
(Haar Features) that describe some image area, and can themselves be de cribed in relation 
to a proportion to the kernel size. 

Figure 2.3 shows a simplified flow diagram of how the detector works. The ViolaJones 
works on pre-processed images which are called Integral Images [Crow, 19 4]. An Integral 
Image is a special data structure designed to rapidly improve the calculation of the sums and 
differences of pixel intensities in images (Figure 2. ) . A subwindow generator 2.2 is simply 
en('apsulating the functionality of two nested loops, the output which is a series of subwindow 
'addresses' containing posit ion and scale information to dictate where the kernel must be 
applied in the image. 

As a functional unit the detector can be seen as a binary function , if the given subwindow 
in the list matches the object specified by the Classifier then it outputs either t rue or false 
for that specific subwindow being examined. 

Figure 2.4(a) shows some sample how a list of subwindows would map to the image, 
all the subwindows that can be generated haven 't been shown for clarity purposes. Of the 
two marked subwindows SWO and SWl only SWl would pass the detector test when a face 
classifier is used. Figure 2.4(a) shows a very small sample of subwindows, usually because 
we don't know where the image is all subwindows are searched to find the object, because 



2.1. OBJ ECT D ETECTIO 5 

subwindows close to each other are very much like each other the detector returns true, the 
results of what this would look like is shown in figure 2.4 (b) . 

The final stage of the detection pipeline (figure 2.3) is used to coalesce these neighbouring 
windows together to produce once result , the result of this operation i shown in figure 2.4( c) 
where multiple detections (figure 2.4(b)) are coalesced into one result around the object. 

The OpenCV generator has a special form of the function 2.2 in which the translation is 
proportional to the scale. 

An HCC is really a cascade of classifier , we will discu s first how a monolithic classifier 
is constructed. 

To understand the performance characteristics of the classifiers of the Viola J ones detector 
we must first understand how it is constructed. A single classifier is constructed by using a set 
of amples. split into training set (positive and negative) and test sets. The single classifier 
is trained uch that it all samples in the po itive et are posit ively marked while all samples 
in the negative set are attenuated . The SC is then run against the test set to obtain the 
performance characteristics such as detection rate D and fal e positive rate F. The detection 
rate D is the number of samples identified correctly while the false positive rate F is the 
number of samples ident ified incorrectly. 

In practise however it is very hard to ·catch' all of the positive samples and 'attenuate' all 
of the negative samples in the training set because of the limi tations of training method . For 
example one of the negat ive sample might look so much like the face that while attenuating 
it, we may loose the ability to classify some faces correctly. Generally this problem occurs 
because we cannot correctly split the N dimensional space into object/ non-object a reas. 

2.1.1 Training 

For a given input image a et of value can be obtained ba eel on haar features. One can think 
of a haar feature as a very simple statistical descriptor of some image area, like an histogram. 
A feature value describes the difference of pixels described by the feature type (figure 2. 7) 
and the image area underneath it. Like histograms, a image area with multiple configurations 
( different light intensities) can yield the same feature value. 

Lets assume that the image size is 24x24 (a very small image) then the munber of 
unique areas this image contains can be de cribed by the number of pixels within the im­
age, 24 * 24 = 576. However using Hf 's the same image can be described by 45396 features 
[Viola and Jones, 2002], which is why Hf 's are referred to as being an over-complete repre­
sentation. The following process of comput ing the number of Hf 's in an image area should 
not be confused with the scaling kernel approach discussed in the previous ection. 

Only a small number of important features are necessary to build a good cla sifier. Having 
45,396 (for example) features is like having a space with that many dimensions. AdaBoost 
is used to select the most relevant features ( dimensionality reduction) necessary to correctly 
classify the object. The selected features are called weak classifiers as by themselves they 
cannot correctly classify a subwindow (previous paragraph; discussion on statistical properties 
of Hf 's) and so are combined to create a stronger classifier. 

The literature points to the final monolithic face detector consisting of 200 weak cla sifiers 
to achieve good detection and false positive rates. 



6 CHAPTER 2. LITERATU RE R EVI EW 

Figure 2.2: Generator Function 

const int translation 5; 

const int M kernel_size.width; 
const int N kernel_size.height; 

const int w img_size.width; 
const int H img_size.height; 

double current scale 
int x = O; 
int y O; 

int subwindows O; 

while ( 

1 · ' 

((M * current_scale) < W) && 
((N * current_scale) < H) 
) { 

X = O; 
while ((M * current_scale 
y = O; 
while ((N * current_scale 
subwindows++; 
y+=translation; 
} 

x+=translation; 
} 

current_scale *= scale; 
} 

+ x) 

+ y) 

< W) 

< H) 

Haar Classifier Cascade 

{ Scale,Translation} Factor 

{ 

{ 

Image Frame Size 

__! 
.,.. Subwindow 

Generator 

Image Frame 
.,.. Integral Image 

Generator 

' .- Detector 

Figure 2.3: Flow Diagram 



2.1. OBJ ECT D ETECTION 

(a) Lena Sub Windows (b) Lena Many Hi ts (c) Lena One Hi t 

Figure 2.4: Lena 

Figure 2.5: Composit ion of a Strong Haar Classifier 
h: weak haar classifier 
K : number of weak classifiers 
w: "veights associated with each weak cla sifier 

K 

strong classifier output = L h(k) x w(k) 
k=O 

2 .1 . 2 A Cascad e of Det ectors 

7 

(2.1 ) 

[Viola and Jones, 2002] propose the use of multiple classifiers organised in a cascade. For 
xample rather than having a monolithic classifier with 200 weak classifiers. having 10 -

20 weak classifier cla sifiers arranged in an cascade. Figure 2.9 shows the structure of the 
detector, the sub window passes t hrough each of the stages and is only marked as the object 
if it has passed all of the stages. The advantage of using this architecture is that if trained 
correctly the cascade can be set up in such as way that all of the 'easy' samples can be rejected 
early and be spared of computing the rest of the cla sifiers and their weak classifiers in the 
cascade. Because the process is cumulative, if each of t he indi vidual stages is able to classify 
correctly to 99 % of the subwindows and comparatively large fa! e positive rate, the ea cading 
of these produces a very good classifiers. 

The greater the number of weak learners the better the clas ifier, by limi t ing the number 
of weak 1 arners in the early stages the number of subwindows which are not the object can be 
thrown out early (since each of the detector have a good detection rate) , the false positives 
or posit ives are forwarded to the next stage where yet more false positives are eliminated 
until all of the windows are eliminated or in the case it is the object then it passes the entire 
detector and is marked as an object. 

This has some implications in the context of execut ing detection algorithm in parallel; 
because each of the classifiers takes a different amount of time depending on the input image 
(and the particular subwindow in question) , one of the processes may finish early and be idle 
while the other processors are still working on their stages. 



8 

Class ifi er O" 

Class ifi er 12' 

Class ifier 24" 

Class ifi er 84" 

Class ifi er 90' 

C H A PTER 2. LI TER ATURE R EVI EW 

Class ified as a hand? 

Return angle a 

Return position (x .y) 

F igure 2.6: Parallel Clas sifier , source [Barczak and Chemudugunta, 2006] 

I. Edge feature 

[]--~~ 
(a) (b) (c) (d) 

2·citc11J~~ ~ ~ 
(a) (b) (c) (d) t"i" ,~ 

3. Center-surround features 

~~ 
(a) (!{ 

F igm e 2.7: Haar Features, ource [Intel, 2007] 

(x, y ) 

Figure 2.8: ummed Area Table, adap ted from [Viola and Jones, 2002] 

stage 1 stage 2 stage N hit rate= h 
N 

h h 
Sub Window ·7 ,_, ·7 1 - f 

h 
), - - - - _ ____,.~ Sub Window contains Object 

t 1 - f false alarms = fN 

Sub Window contains no Object 

Figure 2.9: Cascade of Boosted Classifiers, adapted from [Lienhart and Mayd t , 2002] 



2.2. P ARA LLEL COMPUTI NG ON CLUSTERS 9 

7 Ap pi ica tion 

6 Presentation 

5 Session 

4 Transport 

3 Network 

2 Data link 

Physical 

Figure 2.10: The OSI Model , source [CiscoSystems, 2006] 

2.2 Parallel Computing on Clusters 

Clusters are a set of discrete computing units, each with their own memories and processors, 
and usually incorporate some form of interconnect between the them. They are a result of 
an AdHoc movement to obtain more performance and supported by the fall in prices of high 
performance commodity computing componan ts such a computers and network hardware. 
Clusters of computers have been traditionally bound by 1/ 0 bottle neck that is the network 
but a network interconnect peeds increase this is no longer a limiting factor and can be s en 
in the decline of the use of large and expensive shared memory system . 

There a re new ways of assessing performance than just peak flop and cost / flop, but 
more from an energy perspective that is watts/ flop. It 's not a purely environmental concern 
as the bigger the watts/ flop the bigger the installat ion fac ility will need to be and the larger 
the cooling will need to be, increasing the cost / flop. 

Lunchbox clusters are a new class of supercomputers which are smaller in size and have less 
power and infrastructure requirements then do their larger counterparts, i. e. they demonstrate 
good metrics such as flop / watt and price / giga-flop in comparison. 

Mini-Clusters were first created by Mitch Williams of Sandia Laboratory in 2000. They 
are usually made by stacking together a set of embedded computer / single board computers 
connected via Ethernet and run the Linu.,x kernel with customised operating system. The 
smaller size enables them to sit along side a desktop computer for testing of parallel applica­
tions before they are deployed on bigger clusters. 

2.3 Motivation and Base Work 

In [Barczak and Dadgostar, 2005] a framework for using multiple highly specialised classifiers 
to detect hand gestures at multiple orientations is presented. This approach differs in that 
while many solutions try to generalise the solut ion to include mult iple orientations without 



10 CHAPTER 2. LITERATU RE TI EVIEW 

the added cost of image transforms. this solution allows classifiers to still be highly accurate 
a11d robust. 

The work in [Barczak et al. , 2005b] is used as basis for implementation forms the basis of 
this thesis . The paper presents a prototype of a parallel mobile platform tha t i designed to 
run concurrent object classifiers . Concurrent classifiers allow for robust detect ion of objects 
that arc otherwise hard to train for using a single classifier. The design of the plat form is 
based on a Beowulf (a class of parallel computers) detailed in [Barczak et al. , 2003]. 

In addi tion to the characteristics of a typical Beowulf clusters. the system must also have 
qualities of an embedded system, relative low power consumption and size so that the system 
can be portable. T he system also requires the ability to capture video without any external 
support. via and inbuilt USB interface/ camera. 

The work in [Barczak et al.. 2005b] also presents au analysis of the performance of multiple 
classifiers on both single and multiple processor machines. Two models are presented , how 
good a particular classifier is at detecting objects with relation to processing requirements aud 
positive detection rate, and what happens when two or more classifiers are pipelined to use the 
same pre processed image data (integral images) . The model on multiple class ifiers showed 
that there is a significant benefit to cascading multiple classifiers and that if parallelised with 
each of the nodes running more than one classifier then, the speed up is very close to linear. 

An empirical model of a common communica tion library J\IPI. is presented howing that 
they are restrictive to the application of object detection by their performance. Specifi­
cally the broadcast call used to distribute images MPLBcast is not a true broadcast pro­
tocol but uses a tree like structure to distribute da ta which is not the most efficient strat­
egy [Barczak et al. , 2005b]. 

2.4 Hardware Infrastructure 

The \\'Ork in [\\'e bb. 1993] presents a real-time parallel image processing based on a compar­
atively esoteric architecture running an stereo vision a lgorithm. According to [\\'ebb, 1993. 
real time processing problems are different to scientific comput ing in the context of parallel 
computing. An increase in the number of processors increases the latency since, message 
sizes will be smaller and there will be more messages; but this can usually be compensated 
by increasing the data set size. However, because the problem sizes in most vision processing 
systems are fixed , for example there is no advantage in processing at a higher resolut ion]. 

La tency is an important factor, because the problem sizes arc finite (the number of sub­
windows to be examined by one or many classifiers), it must be minimised to increase the 
time that can be spent computing the tasks before the timeslice is up. 

2 .5 Software Infrastructure 

A thorough description of networking protocols can be found in [Tanenbaum, 1996]. Briefly 
networking protocols are stacked on top of each other so each layer is more or less unaware 
of the other layers present 2.10. T his allows applications to concentrate on implementing 
against just one layer and not worry about the lower level layers or conversely, the lower 



2.5. SOFTWARE l i\'FRASTRUC'TURE 11 

le vel implementations just to provide basic interfaces and not worry about wha t application 
is being run. 

The work published in [Liu et al.. 2002] on a UDP protocol for Internet Robots presents 
an overview around the rational for a new protocol for remote tcleoperation of robots. The 
paper shows t hat TCP is not a good candidate for real-t ime communication and feedback 
of data because of its cl1aracteristics such as exponential back off. However, when designing 
UDP protocols they must not be overly aggressive. as this would threaten the stabi li ty of the 
internet. T he ability co-exist with T CP traffic is called TCP-friendliness [Liu et al.. 2002]. 
Because in this work there is no sha ring of network it is not so im portant to be friendly. 
An interesting argument is also presented in [Liu et al. , 2002], that is of relat ion to real- time 
video/ audio systems to real-t ime robot teleoperation. that even though they are named real­
time, only real-time teleoperation is truly real time where as video/ audio transmission is 
buffered and so only quasi real time. Indeed. the whole image is buffered before any compu­
tation begins, being a ble to overlap the smallest possible comple tion unit in communicat ion 
e .g. a subwindow with computation would be ideal (however, they overlap at different scales) . 

In [Gu and Grossman, 2005] a very good discussion of UDP based protocols is presented . 
Some of the findings that are presented is that acknowledgement in UDP protocol is very 
expensive if not handled correctly. because there is a context switch between user and kernel 
space, the resulting performance is lower t han an in kernel implementation. A framework 
for what things a UDP protocol must take into account is also presented. Th is finding is 
re-iterated in [:\Iajumder, 2004] 0 11 high performance libraries for ~IPI in UDP. that after 
adding reliabili ty it resul ts in performance worse than that of TCP. Therefore UDP if used . 
must be kept light, with minimal acknowledgements between and sender and receiver (i.e. 
keep the protocol overhead small) . 

Relia bility is not orthogonal to per formance [Donaldson et al.. ] . Here Donaldson stresses 
that reliabili ty must also be taken into account. For this application however, reliabili ty is 
not so important (at least for the transmi sion video) if a packet i lo t the next packet can 
be used to decode video. 

The work published in [Tinetti and Barbieri , 2003] shows a current implementation of 
efficient broadcast ing over Ethernet clusters in the :\!PI Library using the application While 
the existence of this paper was not known during the development of a UDP protocol, this 
paper provides some perspectives why a more efficient implementation does not yet exist in 
many common MPI libraries even though the concept of multicasting over Ethernet networks 
is well known; That is because of portabili ty. 

2.5.1 Interconnect Software Protocols 

In [Geusebroek and Seinstra , 2005] grid-like computer networks are used to perform object 
recognit ion. A robotic dog uploads an image to a middleware component that dispatches the 
job of performing some kind of a dictionary match and then returns the resul t to the dog 
which then outputs the class of the object using an speech synthesiser. T he concept is novel 
and opens up the opportunity to be able to harvest a lot of computing power via computers 
located on the internet. There is many such grid gateways now in operation, including one 
at Massey University, known as BestGrid. 



12 C HAPTER 2. LITE RATURE R EV IEW 

\ i\Teb Services are a form of language independent remote procedure calls, used widely to 
tie large/ disparate systems together . In comparison to many RPC frameworks, web services 
are considered slow and heavy because of the verbosity of the underlying data exchange 
format , X 1L. However the work in [van Engelen , 2003] points to the feasibility of using \ i\TS 
as a communication layer . gSoap is a \ i\TS stack wri tten in C/C++ and has many extensions 
that make it att ract ive for real- time applicat ions, for example the ability to pack binary data 
instead of having to serialise it in Xi\IL Format. 

gSoap also contain an implementation for UDP-over-SOAP [Combs et al. , 2004], [van Engelen. 2003] . 
UDP-over-SOAP is an extension to the SOAP specification that allow SOAP messages to 
transported using UDP datagrams. T his was done out of recogni t ion that many applications 
match the semantics of UDP for example not needing delivery guarantees and the abili ty 
to make multicast transmissions. Because the characteristics required for t his platform are 
similar , the use of SOAP would be a good approach also . 

As ment ioned in [Tinetti and Barbieri , 2003] Parallel Image Processing has been an area 
that has been tudied for a long t ime, but no portable solu tion has emerged . This is largely 
due to the lack of suppor t by languages for parallel programming. Further the difficul ty to 
generalise in the presence of many types of a rchi tectures results in fragmented efforts. 

In [Ramachandran et al.. 2003] a cluster prograrmning middleware fo r Interact ive Stream­
Oriented Applicat ions, Stampede. is presented. Stampede attempts to hide the implemen­
tation details of multimedia applications by providing a specialised data st ructures called 
a space-t ime data-type. It also provides some abstractions relating to channels which have 
similar semantics as those presented in [Huang, 2006], another framework for Parallel Pro­
gramming. 

2.6 Conclusions of the Literature Review 

The Viola J ones classifiers are used for the task of object detection. This class of object 
detection algori t hms solves many problems of variation in an image, for example of location 
and size. This is achieved by using a moving-scaling kernel approach, this can be done rapidly 
because all computations are performed on a precomputed integral image. 

Training classifiers is an expensive process, requiring weeks of compute t ime. Once 
trained however they are very accurate. This works deals only with the run t ime charac­
teristics of classifiers, as the accuracy and detection capabili t ies have already been reported 
[Viola and J ones, 2002]. 

The image on which the detector runs has an effect on the performance. This is advanta­
geous because image areas not representing the target object are eliminated early. However , 
in this context of multiple concurrent classifiers leads to load imbalance among processes. 

The same paradigm that was used to build cheap Parallel Clusters can be used to also 
build cheap , fast and small machines. Lunchbox clusters are a new class of machines that 
have a similar design physiology to their larger counter-parts except tha t they demand much 
less space and power , and so allows t hem to be portable. 



2.6 . CONCL SIONS OF T HE LITERATURE R EVIEW 13 

2.6.1 Implementat ion Details 

MPI presents latency by synchronisation included in MPI broadcast operation, but it will still 
be considered because it integrates such an approach into a well known library. The paper 
[Tinetti and Barbieri, 2003] does not describe well how synchronisation wa implemented, 
even with a broadcast medium no known algorithms for global synchronisation exist and can 
only be achieved using point to point algori thms ( or complexity less than or equalling that 
of O (N), where N is the number of nodes synchronising at one time) [Schneider , 1982]. 

Grids and Web Computing currently for the application of real-time recognition this 
approach is not suitable mainly due the issue of latency and secondly the current hardware 
would not be able to harvest the processing power of an external networking computing device 
since it is not able to connect wireles ly. 

The network will be a dedicated network with no other extraneous nodes on it to inter­
fere with the communication. Hence, contention is not a major factor; also there are two 
independent physical channels available through which communication can take place. Also 
reliability is not uch a major factor especially for broadcasting video, further more there 
are no known ways to provide reliabili ty between multiple hosts but only on point to point 
networks. 

Simple UDP will be used in favour of other encapsulation and transmission systems (for 
e.g. SOAP messages) , simply because SOAP messages and such are too verbose and add 
overhead. Also UDP is a convenient way to broadcast data to many hosts at once. So there 
is a possibili ty to employ it for broadcast operations, which has been ident ified to be a bottle 
neck in the system. 

2.6.2 On U DP 

Packets on TCP / IP network are fragmented; the size of fragmentation is a function of the 
amount of data on the output queue as well as protocol window settings. The maximum 
size of a packet (UDP or TCP) is limited to the payload size of its container , the IP packet. 
Because IP packets only have a 16 bit value to say how big its payload is the maximum size 
is limited to approximately 64K. 

To circumvent t his limitation a new standard wa proposed in the form of RFC2675 
[Borman et al. , 1999] which allowed a special flag to be et within the header that would 
direct the stack to read the length of the tag in another header placed inside t he payload. 
Current Literature doe not show any real implementations of the standard, so appear that 
it is not a well documented feature. This is probably due to the fac tha t smaller packets are 
ju t better suited for the internet and it does not make sense to break the sharing capabili ty 
created by having packet switching in the first place. 

There is some ambiguity Related to Jumbograms, jumbograms in popular literature are 
related to changing the 1TU of the Ethernet layer, typically raising it from the usual 1500 
to 9000 bytes to improve CPU utilisation and efficiency [Gerdelan et al. , 2007]. I t is recom­
mended that jumbograms be used to refer to IPV6 packet enla rgement where as jumboframes 
are used for low level frame enlargement. 



14 

Chapter 3 

Method / Material 

In this chapter we examine the process of selecting materials and what is selected. This 
includes both hardware and software. 

3 .1 Hard ware 

Table 3.1: Cluster Specifications 
CPU VIA C3 / Eden (x86 compatible 
Memory DDR266 512 MB 
Network Dual LAN, VIA VT6105 LOM 10/ 100 Base-T Ethernet 
USB 4 USB 2.0 Connectors 
Features On-board (Sound, Video, IDE) Controllers 

On-board (I2C, LVDS, Serial, Parallel) Connect ivity 
Power Supply DC 12V to ATX Converter 
Switch 2x Linksys 5 port Ethernet 

Init ial research has indicated there are many platforms that could be used, among the 
options are embedded ARM/ MIPS based computer boards, single board computers (SBC) to 
desktop based computer part . 

One of the aims of the project , to reduce the time and money spent on esoteric hardware 
that it must be off the shelf, and able to run the Linux operating system. For our system we 
choose a mini-ITX form factor x86 based computer board by VIA. The pees are shown in 
table 5.1. The system is able to boot a i386 Linux Kernel without any modifications. The 
target is to have a customised distribution and special communication libraries, with support 
for applications built with other communication libraries like MPICH. 

3.2 Physical Construction 

Originally the nodes were built with threaded rods and fastening nuts, however this was not 
a very good solution as the nuts would frequently become loose and cause the boards to move 



3.2. PHYSI CA L CONSTRUCTION 

Ethernet 
Switches Processors 

I 

I 

\ 

\ I 

'-. I , , 
Battery '' · 

I ' 
I ' Pack , ' · 

D-----'---__ ',~,:,. -:- -: 
' · I 

',. 

Master 
Node 

• 
• 
• 

Slave 
Nodes 

Camera 

Figure 3.1: Hardware platform, source [Barczak and Chemudugunta, 2006] 

Acquire 
frame 

perfonnance- penalty 
deadline 

roadcas Af cquirc roadcas Af cquirc 
ramc rame 

Recv 
Frame 

Integral 
Image 

rocessin time 

Class. 
I 

Class . 
2 

Application- spec ific 
deadline 

Recv 
Frame 

Figure 3.2: Real-time Constraints, source [Barczak and Chemudugunta, 2006] 

15 



16 C HAPTER 3. M ET HOD / M ATERI AL 

F igure 3.3: P rototype 

from side to side dming movement. Later the motherboards were placed in mini pizza boxes, 
this worked will but still the whole system was not a unit in one. 

Finally some nylon spacers were found that did the job perfect ly, they are stackable and 
hold the motherboards in place t ightly without stressing the board materials itself. F igure 
3.3 shows the final p rototype with threaded rods and hard disks and CD-ROM drive during 
testing. T he picture shows the relative arrangement of ach of the boards. 

3.3 Paralle l Knoppix 

P arallelKnoppix [Creel, 2007] was used to test the cluster. Like other Knoppix based distribu­
tions ParallelKnoppix is a Debian based Live-CD based di t ribution. A selected master node 
r quires a CD-ROM drive while the slave nodes only require a PXE boot capable NIC. The 
master node first loads up and an ini tial setup process is required to select a few op tions such 
as which interface t o start boot servers on and then the slave nodes are booted via network. 
PK also has t he nice feature that it LAM boots the nodes to create a working environment 
for MPI programs to run. 

A ParallelKnoppix distribution can be customised allowing for drivers and addit ional 
packages to be added in a process called remastering. The default version did not include 
camera drivers as well as libraries such as OpenCV and its dependencies. 



3.4. T EST ING TOOLS 

3.4 Testing Tools 

3 .4 .1 Qemu 

17 

Qemu [Bellard , 2007] is a virtual machine like V 1ware [Vmware, 2007] and Xen [Xen, 2007] 
with an easy to use command line interface, the ability to create images in the fly. This 
makes it ideal as a tool for testing distributions and has proved as an invaluable tool. Virtual 
Machin testing allows to quickly test something without having to move the image onto a 
the machine. 

3.4.2 V DE Ethernet 

Virtual distributed emulates a virtual networking setup and has virtual counterparts to cables 
and switches. Together with Qemu, VDE can be used to test a network of virtual machines 
without having to put it on the real machine. This is an excellent tool to test various boot 
up strategies such as network boot. 

3.5 Distribution 

Because of the distributed nature of development of the Linmc platform a large number of 
options exist in the quest to decide which option to choose. Most distribution are written 
with an application in mind, and a target architecture to use. In gen ral the easier it is 
to install and setup the lesser the flexibility. So, many developers are faced with the task of 
deciding whether to build an distribution from scratch or customise a pre-existing distribution. 

Some of the popular distributions like Redhat and Debian come with a large Repository of 
oftware but minimum installs are very large in comparison to a cu tom built distribution. On 

the other hand. small distributions come with very limi ted choice for pre compiled oftware 
and no development tool chains in tall d , and applications compiled on a development box 
will have used different version of compilers and librarie . 

The easy way and least extensible way is to take a distribution off the shelf, strip it 
to optimise for size. This is very hard to do and can leave the system architecture in a 
disabled such that no more software can be installed or added. This approach is not very 
scalable as with more complicated software packages like Xll , where there are potentially 
many dependencies and it is hard to know whether removing something will affect the working 
of it so this can be a tediou process. 

There are two classe of distribution, recipe based and packaged based. Recipes are 
cripts tha t dictate how a distribution should be built from scratch, where as packaged based 

distribution are pre packaged components. Instead of changing a distribution made out of 
packages it is better to edit the scripts that were u ed to make the packages becau e this is 
more scalable approach and allows the distribution to be rebuilt easily. 

Most recipe based systems are also packaged based in that they generate packages which 
are then extracted to the target system; this is done to cache some of the work by enabling 
pre-compiled binaries to be used rather than having to generate everything from scratch 
(which is a very lengthy process). 



1 CHAPTER 3. METHOD / MATERIAL 

Gentoo Linux focuses on performance by compiling all programs from scratch. Gentoo 
LinlLx is a collect ion of e-builds which are a collection of bash scripts which tell the installer 
how to compile and install programs. 

The rocks build system is a general purpose build system which allows the customisation 
of all of the components, like Gentoo rocks is a set of recipes which t ell the installer how to 
compile and install programs. 

Debian Live is a distribution builder as well as a live helper like the linux-live project used 
to create and setup bootloaders for a variety of devices. Debian Live al o has some built in 
knowledge on how to remove extra packages without effecting the performance of the sy tem, 
fur ther debian live has the added advantage of being able to provide netboot facility without 
manual modification of boot scripts. 

3.5 .1 TTY Linux build syste m 

While most embedded distributions tend to be small and feature packed , it is hard to cus­
tomise them. Usually to save pace much of the documentation is removed. things are changed 
to decrea e free space but at the expense of obfuscating the distribution. They don 't contain 
a compiler to save space so a new pa kage cannot be compiled which is needed in ensure that 
it works correctly. It is possible to compile a package under a different distribution ( desktop 
ystem) and transfer this onto the root ystem of the di tributed build sy tern , however this 

has the problems of the fact that the versions of libraries such as libc may vary. 

The TTY Linux build system is an embedded Limrn: system. It include the original build 
script u ed to build the distribution, a recipe. TTYLinux is therefore a package-based as well 
as recipe based di tribution . Recipes are used to build packages which are then installed onto 
the root file system. 

Using recipe based distributions has the advantage that the target distribution aligns 
closely with the development computer, CP U platform, libraries and utilities used. Thi 
means that the di tribution can be made highly customisable in a calable way as well as 
a llowing easier transfer of programs from the development system to th target system. 

3.5.2 M ethods to R educe P ackages Sizes 

Sometimes just having one dependant package can drag in hundreds of packages by recursive 
dependency filling. This can be avoided by choosing carefully at compile time what those 
dependencies are, in certain cases some dependencies maybe be eliminated or added to 'recom­
mends' rather than to 'requires . 'Recommends' and 'Requires' in the debian package format 
refer to what other packages are to be installed together, anything in the 'Requires' section 
is a hard dependency without who presense the application package will not function, where 
as 'Recommends' includes common package that 'go along ' with that package but do not 
necessarily effect the functioning of the package. Package boundaries are logically separated 
on packages, however sometimes this is not enough they need to be further split down, for 
example into documentation, libraries and executables. 



3.6. MOOSE LI 1 X 

Repository Information ---1>~ update ~ 

""""·'''' t 
package cache 
package_cache/ ~,,__ Jc---.... Repository Information 

cache.pkl 

J 
build 

Staging Area 
dist/ 

/ get ~ Package Meta Information 

~ ~ data/ 

download cache } 
download_cache/ 

~ create(qemu)image ------>~ Final Image 
mooselinux.img 

Figure 3.4: l\foose Build System 

3.6 Moose Linux 

19 

Using the knowledge of some of these distributions I decided to build my own distribution that 
targeted and focused to the application and development environment that i being using, 
Debian/Ubuntu, OpenCV and MPI. 

3.6 .1 Build System Overview 

The build system is a combination of (Simple) Python and Bash together. The parts high­
lighted in red are python scripts, in blue are bash scripts and the rest of the graph shows 
resources (directories/ files). 

3.6.2 Distribut ion 

Moose Linux uses Debian Repositories (either Ubuntu or Pure-Debian) as a ource for pack­
ages. The first stage of the process involves getting a list of packages available from t he server 
listed in sources.list. A small utility, 'update' performs this task, indexing package name and 
downloading location and outputting this as a pickle so it can easily be searched by 'get'. 

'get' takes a single argument, the name of the package (also the key value for the pickle 
stored in the previous step). It uses the argument to look up where the package resides and 
proceeds to download it , this can either be local or any URL supported by the curl library. 
A download cache is utilised to reuse downloads on subsequent builds. When the package is 
succe sfully downloaded to download_cache/ it is extracted using dpkg-deb -x which retrieves 
all of the files in the package. 

After all of the contents of a particular package are extracted, global rules such as stripping 
all documentation (/ usr /share/ doc, trees) are applied as well as any package specific rules 



20 CHAPTER 3. M ETHOD / M ATERIAL 

listed in Package Meta Information , data/. Here, one can place additional rules such as 
selecting exactly which files to choo e (white list) . The selected contents are then packaged 
up in a simpler archive, tar.gz and placed inside package_cache. 'update' and 'get' can be run 
independently. 

3.6.3 P ackaging 

'build ', a ba h script do s the work of taking the cached packages (stripped of documentation 
and other files) and putting them into an staging area, dist/. The advantage of leaving the 
staging area open to the user is so one can chroot into the environment and make desired 
changes before creating an distribution image using createimage. 

'createimage' create an in-place disk image formatted as an EXT2 disk (using the loop 
device) of the dist/ directory. One can chroot into the staging area make quick changes and 
create an image without redoing the entire process (although this it is better to put permanent 
changes into data/ as additional files/ instructions for better clarity). 

3.6.4 Testing 

'createqemuimage· creates fully self contained bootable image for use with qemu so the image 
generated can easily be tested without the need to put it on a real computer. This is the 
most useful of feature as trail and error te ting can become very tedious when the software 
has to be transferred to another storage medium such as a flash disk. 

3. 7 Measuring Time 

CP U Time is the wall t ime P rocess t ime is split into two fields , 

proces t ime: how long the process was execu ting 
system time: how long the system i active within the given t ime slice. 

These times are also commonly known as the real , user and system times. 

#include <time.h> // Time API 

clock(): get real time 

times(): get real time using utime and system time using stime 

utime: the time the process has been executing 
stime: the time the operating system spent executing on behalf of the process 

both utime and stime are of type struct tms 

The code used for benchmarking through out was validated using 'time': a Unix utili ty 
that measures time of a process from start to fini sh reporting also the real, user and system 
times. 



21 

Chapter 4 

Implementation 

4.1 Synchronisation by Broadcast M essages 

Synchronisation is the process where by all some set of processes all reach the same point in 
their execution and will not continue if all of the nodes in the group have left the stage. In 
the i\1PI framework this is known as an barrier call . 

Ethernet is a very common interconnect among the HPC community. several studies have 
shown [Majumder and Rixner , 2004] fast ethernet interconnects for e.g. 10 GB/ e are compa­
rable to the more costly interconnects such as Myrinet. It is possible to develop optimised 
communication routines and parallel algorithms taking into account the underlying hardware 
available to computers [Tinetti and Barbieri , 2003], and m any parallel algori thms are based 
on broadcasts [Tinetti and Barbieri , 2003]. 

A synchronisation algorithm must have the abili ty to differ ntiate between subsequent 
barrier calls, because one node may have passed to t he next ba rrier while another is still leav­
ing, given that the process skew is large enough [ chneid r , 1982]. Synchronisation algorithms 
can take advantage of underlying a rchitecture such as broadcast and multicast available on 
Ethernet, InfiniBancl and Myrinet [Buntina et al. , J [ chneider , 1982]. 

, 

I 
I 

I 
I 

\ I 
I I 

I 

I 

\ I ', 

,,- I 0 

,\-~-
,' 1 

I 

( 

,, 
\'' 
' ' 
' 

Figure 4.1: Broadcast Synchronisation 



22 CHAPTER 4. IMPLEMENTATION 

Because this is being implemented on the UDP layer it must be assumed that any messages 
maybe lost . Furthermore there is no phase three involved because the there is no master , 
once a node realises it is not needed anymore to synchronise it cont inues. 

4 .1.1 Naive A pproach 

Each node carries an array of boolean flags , the algorithm is as follows: Wait for everyone to 
to check in and stop when all node have checked in Until all of the nodes have checked in 
continue broadcasting node id. 

In this approach the node takes into account only the communicat ion between it and 
the other nodes (going from the other nodes to the node) if all messages from the node 
transmitting were blocked - the node would receive all of the messages from the other nodes 
and continue, while t he other nodes would be blocked. 

4 .1. 2 Knowledge Rows 

Instead of the nod only broadcasting its own Id, it also broadcasts its knowledge array, that 
is. what nodes it has heard from. This allows the node to check whether its messages were 
received by the all other nodes before continuing. 

Also the node now contains a matrix, containing for each node in the group its current 
knowledge row. This works in the implementation however there have been some cases where 
the final message is lost: 

node B sends A a message// A knows of B 
Node A sends Ba message// B knows of A (A knows B knows of A) 
// Node A quits because all of the groups know about it and 
//that it knows about all of the nodes 

// if the message is lost then Node B stalls 

?Node B sends A a message? message may be lost! 

4 .1.3 R esults 

The above synchronisation technique for using does not work all the time, however it exposes 
some characteristics of u ing broadcast channels. Firstly, Broadcast Synchronisation makes 
nodes very ineffective; conventional algorithms that use point to point messages are able 
to block when a certain node it is responsible for receiving a token. Where a when using 
broadcast channel, the node must constantly broadcast tokens until all of the nodes have 
uccessfully synchronised. This makes nodes inefficient to other processes running on the 
ystem at the time of synchronisation. Also it has been found that the speed is much better 

than using MPLBarrier (point-to-point). 

The application allows for some amount of non-synchronous operation because the prob­
lems that each node is working on is independent of the other. 



4.2. BROADCASTING PROTOCOL 23 

It is more efficient to use MPLBarrier to achieve synchronisation. This is found in the 
implementation of [Tinetti and Barbieri, 2003], there are implicit barriers before and after, 
firstly to make sure all of the nodes are ready for a data broadcast and the second to make 
sure no node has lo t any information. In this application it is better to drop the frame and 
capture the next than to re-request another frame (see sec. 2.6.1). 

4.2 Broadcasting Protocol 

The User Datagram Protocol allows broadcasting of data to multiple nodes where as stream 
oriented protocol such as STCP and TCP are inherently designed for point to point type 
communications. The approach that was first con idered was putting the network cards 
in promiscuous mode which allow them to receive all network traffic on the network. One 
of the drawbacks is that if the send address is of a valid node on the network the switch 
memorises it and will not send the same packet to any other node. This problem can however 
be circumvented by sending to an addres that is never going to be on the network however 
the broadcasting method is used. The following details the construction of the light weight 
protocol, some of it rationale and finally its strengths and weaknesses in comparison to other 
protocol stacks. 

Broadcast messages can be sent by sending to either a multicast address (class E) (as 
in IPV6 , broadcasting is not supported, instead the multicast t chnique must be utilised 
[Hall, 2007]) or by sending to the highest address in the host part of the IP address space. 
For example, if the network is of the setup like this: 192.16 .0.0/ 24 (first 24 bits of the IP 
address reserved to the network portion), then its broadcast address is 192.16 .0.255. When 
this packet reaches layer 2 of the protocol tack, because broadcast packets don ' t have a 
particular destination they have their MAC address set to FF:FF:FF:FF:FF. This also tells 
switches that this is a broadcast packet which is echoed across all ports. DHCP utilises this 
technique to acquire DHCP leases dming network start up, and in certain cases (like the 
approach used in this work) a crit ical tage of system boot up. 

Broadcasting together with spoofing can be used as an attack, someone can easily fake an 
IP address and request a ping response from a set of computers by the way of a broadcast 
ping request, causing a lot of traffic to be sent to the victim. In general the ability to rewrite 
packets is seen as a dangerous thing. On a Linux Kernel using the glibc interface any traffic 
being sent to a broadcast address mu t first have an option explicitly set on the socket before 
sending data. This operation doe not require superuser privileges (root), however ensures 
that nothing is accidentally broadcasted. 

UDP allows for broadcasting but also it i datagram oriented, that is there is no notion 
of stream-ness or data continuity in between packets and sometimes referred to as a connec­
tionless protocol. As we will see this can both be advantageous as well as disadvantageous 
(see sec. 2.6.2). This is advantageous because more often than not , even in applications that 
require stream-n ss a command terminator is included to indicate where a particular unit of 
transaction finishe , this is built in to UDP in a way because the unit is the packet. The 
primary disadvantage semantically speaking is that if data is seen as continuous rather than 
as a datagram the user must build her own protocol on top of UDP. It can also be noted 
that FTP uses a stream protocol (TCP) to transfer files , but instead of using a terminator or 
marker to signify EOF the connection is dropped. 



24 CHAPTER 4. I rvIPLEMENTATIO 

IP packets can only carry a limit d amount of payload , this isn ' t a problem with stream 
oriented protocol such as STCP or TCP and only an issue with UDP based protocols (see 
sec. 2.6.2). If data bigger than the payload is needed , then continuation (stream-ness) se­
mantics must be built on top by the user. The protocol designed here called Image Transfer 
P rotocol or ITP, is a specially designed lite-weight protocol for transferring image sequences 
over UDP. The intention was not to use compression and typical image sizes are much bigger 
than t hat of the packet size, even with grayscale images. The protocol described here handles 
this problem as well as providing some features such as multiplexing and ordering. 

Figure 4.3 shows the structure of the packet. Context Id i u ed to provide multiplexing 
capability, the idea is that if ever in t he future there needs to be two separate groups of 
images sequences broadcasted on the same port , then this value can be used to group image 
sequences together. Sequence id 's are used to order the frames in a sequential manner , and 
also serve as a way to id frames on the sequence. Sequence id along with size and offset 
parameter are important for data consistency. 

Algorithm 1 shows the general pseudo code for the send routine, the init ialisation stage 
consists of ini tialising a packet buffer with the some initial headers. The loop consists of 
putting the correct data into the packet, adjusting the header values such as offset and 
sending the packet. 

Algorithm 1 Image Send Routine sendjmage 
while n i img_size do 

assemble packet 
assemble other stuff 
ret = send(fragment) 
n += ret 

end while 

Algori thm 2 shows the general pseudo code for the recv routine, the ini t ialisation stage 
consists of ini tialising packet and image buffers. T he loop consists of receiving data from 
the broadcast channel, checking the headers for example to see that there are no missing 
fragments, and appending data fragments to image buffer . 

UDP when overloaded to perform TCP like function , that is provide in-order reliable 
delivery performs poorly in comparison to TCP (see ec. 2.5). Hence the protocol is kept 
very short. Also for the application of real-t ime video processing it doe not matter if frames 
are lost or corrupted, it can simply be replaced with another frame. The protocol is ideal for 
this application. Some performance measurements are taken to measure the CPU load and 
protocol efficiency in the following chapter including throughput rate, sender CPU load and 
receiver CPU load. 

4.3 LSPIP: Loosely Synchronised Parallel Image Processing 
Library 

This library was developed for this work to bring together the image broadcasting mechanism 
as well as a framework for designing parallel image proce sing applications. This framework 



4.3. LSPI P : LoosELY SY1 CHRONISED P ARALL EL I MAGE PROCESS ING LIBRARY 25 

Algorithm 2 Image Receive Rou tine recv jmage 
while true do 

receive packet 
if local sequence number is zero and packet offs t is zero then 

set current packet to that of received packet sequence number 
end if 
if local sequence number is not zero and local sequence number not equal to packet 
sequence number then 

drop fragment and restart by setting current sequence number to zero 
end if 
if packet offset is not adjacent to local packet off et then 

drop fragment and restart by setting current sequence number to zero 
end if 
if packet offset equals image ize then 

retmn image to caller 
end if 
n += ret 

end while 

Figure 4.2: Enabling Broadcasting using BSD Sockets API 
int opt= l ; 
//char opt '1 '; 
uns igned opLsize=sizeof(int ); 
if (set ockopt (send_socket, SOL_ OCKET, SO_BROADCAST, &opt, opLsize) < 0) { if 

printf(" setsockopt error: %s\n" , strerror( errno )) ; 
exit( l ); 

} 

15 16 31 

context id 

fr ame id 

offset 

si ze 

hash 

data 

Figure 4.3: Packet Structure 



26 CHAPTER 4. I M PL EMENTAT ION 

is really a set of base programs which enable the development of re-usable non-synchronous 
applications . 

Source - image source, can be replaced either by camera or video. 
Process - receives image, processes and returns broadcasts results. 
Sink - receives both images and results and renders to a screen 
or a video sequence, also provides using statistics (fps). 

This modular architecture has the advantage that any of the components can be restarted 
wi thout effecting the other , of cour e if t he source is modified then the process and sink are 
effected. 

The sink component uses internally the use of thread via the pthreads ( a standard PO SIX 
threading API) library. If the process sends a result very close to or after the acquisit ion of a 
new frame from the source. the result is never seen as a bounding box drawn over the object. 
Hence a FIFO buffer with automatic decay of old object is used. This allows for results to 
be seen even if they are not valid per se. Al though in video sequence a result even if from 
an older frame is usually relevant as motion sequences change very slightly in their content 
from frame to frame. 

The library has been designed to operate with OpenCV in mind and so interoperate with 
lpllmage ( the nat ive storage format used through out the library) st ructure and functions 
take a pointer to a pre-allocated Ipllmage to wri te/ read. 

API 

int init_udp_send_unicast(char *address, int port); 
int init_udp_send(char *address, int port); 
int send_image(Ip1Image *img, unsigned int context_id, unsigned int frame_id); 

int init_udp_recv(int port); 
int recv_image(Ip1Image *img); 

The server (in this ea e the source) would call the function iniL udp....send(ADDRESS 
PORT), where address is a broadcast addre s and por t is predefined to be 4001. After t his 
the server can simply send an image by capturing if from whatever source (camera/file) and 
calling the sendJmage() routine. 

The client (process and sink) would call the iniL udp_recv(PORT) and t hen call recvJmage() 
to receive any images send by the source process (located on any computer in the cluster). 
The function takes care of all of the error detection and decoding the image data into proper 
RGB or grayscale values before returning. 

Note the (interesting) reversal , usually 'servers' tend to call the recv routine to bind to 
ports but here it is the other way around, data providers start by sending and clients bind to 
receive da ta. 

Similar functions exist for the aggregation of results and the summary / code is available 
in the appendices. 



4 .4. PARALLEL IS!NG D ETECTORS 

Master Node 

Massey Network 
130.123.0 .0/16 

Slave Nodes 

- Camera - -USB - -® 

Figure 4.4 : Network Layout, source [Barczak and Chemudugunta, 2006] 

27 

In figure 4.4 the network layout of the cluster is shown. The master node would t he source 
here because it is connected directly to the USB camera . Each of the slaves run the 'process' 
process and the sink proce s can be run anywhere where there is a display attached. The 
diagram also shows that the master node contains an aliased network interface card in order 
for it to be attached to t he network allowing to login/ transfer files from the development 
computer . 

4.4 Parallelising Detectors 

The Viola J ones Detector shows a high degree of parallelism for multi-resolut ion object de­
tection in images, and also when multiple classifiers are present in the detect ion pipeline. A 
single Viola Jones detector is a pipeline, organised as layers the sub window in question must 
pass through all of the stages of before it is marked as an object. Al o, [Barczak et al. , 2005b] 
shows how a set of classifiers can be parallelised by tying the input image to multiple pro­
cessors with the added advantage that when there is more t han one cla sifier per node the 
integral image can b e reused. 

4.5 Single Classifiers 

From chapter two, Figure 2.3 shows how ViolaJones detector works. Also from chapter two, 
the Image frame cannot be decompo ed by the basis of da ta as common Image processing do 
because of the scale the windows overlap each other so it would hard to decompose the image 
in a fair way. Also if the image is decomposed geometrically it could mean that the object is 
now split and this would prevent its detection all-together. 



2 CHAPTER 4 . lMPLEM E TATIO 

sub windows 

scale A scale B scale C scale D scale E 

Figure 4.5 : Subwindow List 

A single classifier can be paralleli ed using a list of haarjobs, a haarjob is a da ta struc­
ture used to store the output from the subwindow generator. Because it is not easy divide 
the output of the subwindow generator purely ba eel on its input parameters, the output is 
u ed to pli t the subwindow list among the nodes. This is effectively functional decomposi­
tion, because the data remains the same at all nodes, but the work of finding / eliminating 
subwindows is divided among multiple nodes. 

Figure 4.5 shows how this list may appear, recalling also the generator algorithm presented 
in the li terature review, for each scale such that the kernel size mult iplied by the scale factor 
is not bigger than the image move the scaled kernel over the entire image wi th the given 
transla tion factor . 

The amount of processing that a particular cascade performs is dependant on the image 
properties underneath the subwindow (see sec. 2.1.2) . The more likely is the objec t of being 
detected. the more stages will pa sand the more processing capacity will be consumed. 

Because there are many parameters that control the subwindows generator , it is difficult 
to parti t ion the jobs generated by this block by simply dividing the parameters. So instead, 
each of the node generates the whole list using the same parameters and then using a given 
strategy selects which subwindows it will work on. 

typedef struct HaarJob { 
int x,y; 
double scale; 
} HaarJob; 

The HaarJob data structure specifies which scale and offset (x, y) the kernel is to be run. 

4.6 Multiple Classifiers 

When the number of classifiers is equal to or larger than the number of processors than each 
of the nodes can be dedicated to running an individual classifier. Figure 4.6 shows the general 
approach , a set of classifiers work on the input image and finally the results are aggregated 
at the end. In this particular case the different classifiers designated to each of the angles for 
face detection would be used on each of the nodes, however , any arbitrary set of classifiers 
can be run for example different classifiers for different objects. There are two approaches a 
fully synchronised parallel approach and a non-synchronised approach. 



4.7. D EALING WI T H RESULTS 29 

In a fully synchronised approach every node works in lock step where each of the nodes is 
doing the same task, either , get object - process image - send results. This approach can be im­
plemented using parallel programming libraries like MPI with relative ease, however there are 
some performance pitfalls. One of the performance pitfalls identified in [Barczak et al. , 2005b] 
was that the data delivery mechanism for the call 1PLBcast is not a true broadcast, the time 
of distribution of a frame of video will vary depending upon the number of processors that 
are on the cluster. (cite the paper show MPL.Bcast approach with Ethernet broadcast) shows 
however that there exists a compatible call that takes advantage of the broadcast nature of 
Ethernet networks. Even though there exi ts such a call. it isn 't completely free of the node 
scaling problem, one need to take into account that all nodes would have to synchronise with 
each other before and after the broadcast t ransmission to etup and check that the data ha 
been transferred correctly. Efficient synchronisation strategies exist, such as the tree like 
strategy, but these are still not t rue broadcast . The fir t problem is of latency caused by 
protocol overhead. 

The s cond problem is dependant on correctn ss. Because of nature of the detection 
method, two cla ifier do not complete at exactly the same time. In a fully synchronous 
method of the nodes will be sitting idle until the other complete , when it could just pick 
up the next frame and continue detection. Allowing a node to continue while the other 
node is st ill computing an old r frame means that the node computing the older node may 
never compute the current frame. depending upon how the input queue is managed. If then 
node consistency take longer than the frame rate than the system becomes non real-time. 
A non-synchronous approach has two advantages over a synchronised approach . faster data 
distribution the abili ty for a faster node to continue processing. 

4 .6 .1 Distribut ion of C lassifiers among N odes 

The way classifiers are distributed among various nodes can lead to interesting results. , Vith 
hand classifiers there are 9 angles present. with both + and - orientation , if the assumption 
is made that there is only ever one object in the image then if in small sub group if classifiers 
they are grouped by orientation than the detection of one classifier can be u. eel to abort 
t he rest of the pipeline saving speed. This can be extended to allow for multiple objects by 
working at the sub window level, eliminating subwindows that are detected and passing the 
re t of them to the next cascades. 

4. 7 Dealing with Results 

A publi heel in the article in [Barczak and Chemudugunta, 2006], two different types of con­
straints are identified, performance penalty deadline and application specific deadline. Per­
formance deadlines are real-time deadlines, that is if a node spends too long computing an 
older frame it automatically incurs a penalty as it must wait till another frame arrives there 
by reducing its affective processing fps. 

However , application specific deadlines are different , they are deadlines set by the imple­
menter , even though the result might be out of date, it is not completely useless as it maybe 
used to infer something about a certain object in the image sequence, like past position or in 
the interpolation of some future position. 



30 CHAPTER 4. I M PLEMENTATIO N 

Classifier 0° 
(l..) 
b1) 

Classifier I Z' crj C lass ified as a hand? 
8 - Classifier 24° - Return angle ex crj 
1-, 
b1) 
(l..) 

Return position (x ,y) ....... 
C - Classifier 84° 

Classifier 90' 

Figure 4.6: Parallel Classifiers, source [Barczak and Chemudugunta, 2006] 

Process I - Master Af cquire rroadcasl ~cquire rroadcasl Afi cquire Broadcast Af cquire rroadcasl 
rame 1rame rame rame 

processing time 

Process I - Slave Integra l Class. Class. 
Image I 

Class. 
N 

~ 
Process 2 - Slave Recv positions ( in memory) 

Process 2 - Mas1er Listen I Recvl 

Time 

Figure 4 .7: Communication Pattern 1, source [Barczak and Chemudugunta, 2006] 

Figure 4.7 shows the communication pattern of a rather synchronous approach, in this 
approach all of the results are queued until the end and sent . Figure 4.8 shows a non­
synchronous approach: the head node can receive results at any point in t ime. The advantage 
for sending t he result as soon as it is available is t hat it results in quicker recep tion and it 
spreads the workload of sending results to the master node from mult iple slaves. 

4.8 Measuring System Efficiency 

The performance characteristics of even serially execu ting code is hard to measure as it all 
depends on t he image being presented , the classifier and its training method and a variety 
of other factors. To exhaustively examine every possibliity is computationally unfeasible. 
Therefore the performance models in [Barczak et al. , 2005b] have to make assumptions such 



4 .8. MEASURI NG SYSTEM EFFICIENCY 31 

Process I - Master Acquire lmcgralEroadcasl Acquire lnlcgra lrroadcasl Acquire lnlcgral rroadcasl 
frame Image frame Image frame Image 

processing time \ 
Process I - Sia\ c Class. Class. 

I 
Class . 

N 
', 
.. , , 

Process 2 - Sim c Ree, positions (in memory) 

Process 2 - Master Lislcn 

Time 

Figure 4.8: Communication Pattern 2, source [Barczak and Chemudugunta, 2006] 

as the percentage of layers a t each of the stages increase linearly. This is not an unreasonable 
approach as in fact the number of layer at each stage for a part icular group of classifier 
trained for hand detection have more or less the same amount of layers in each of the stage . 

There is some difficulty in understanding what i going on in an non-synchronised applica­
tion, because each of the nodes could be doing different things at the same time. therefore an 
approach of taking the average of the ystem is taken. The average frame rate is the average 
of the number of frames being proce sed in each of the different processors. Ther is also 
another mea ure for measuring the systems performance, the timely-ness of the answer, that 
is because this system is intended to be a real time system the timely-ness of the answer is 
very important. Timely ness i measured by whether or not the result received from a slave 
node is still within the bracket of the frame, i.e. until the next fram is available from the 
input source and all measurements become invalid. 

This would be very easy in a synchronous application because the observed rate would 
be the rate at which the system was performing with no in consistent results. However in 
a non synchronous system it is harder to say how well the system is performing apart from 
empirical observations. 

Two important metrics are important , the fps and the ops (objects per second). The fps 
tells us how many frames each of the nodes each of the nodes is able to process, this itself 
cannot be collectivised, how well is the system performing. 

Objects per econd is the number of objects that any one of the nodes is computing per 
second. This can be collectivised, that is the number of objects being computed across the 
whole network can simply be found by adding up all of the individual metrics. This can then 
be compared against a previous mea urement to say how well the system is performing. 

Since no correlation can be made to what layer a subwindow passes and the likeness to 
the object in question, one must only take into consideration those subwindows that have 
passed entirely and have been marked as objects by a previous classifier. That is, the process 
of finding an object does not get easier as the number of classifiers increase. 



32 C HAPTER 4. I MPLEMENTATION 

4.8.1 Testing Method , Image Sequences 

To get a bet ter understanding of how performance changes, different sequences with positive 
samples are inj ected into the sequence to cause a particular classifier to stress itself. It would 
be interesting to note also the disparity between the upper and lower level bound of frame 
rate on each of the nodes. 

4 .8 .2 Testing Method , U SB Camera 

A USB camera can also be used to test the system, with some conditions it should be possible 
to generalise the experienced performance to mo t real-life conditions. For example. using 
the face detector and ob erving t he performance with a few people in the frame would be a 
good enough real-world test . 

4.9 Summary 

In this section the Image proto ol ha been explained. its designed around the UDP protocol. 
The protocol and the programs used in the system are generalised into an application library, 
LSPIP that enables any object detect ion a lgorithm to work using the same code base. 

The challenge for parallelisation and the st rategie used to solve them are explained , 
including single classifiers and multiple clas ifiers. And finally testing m thods are used . 

The next chapter more details on test conditions and presents some results and findings 
of experiments. 



33 

Chapter 5 

Results and Discussion 

5.1 N etwork P erformance 

The following result are conducted on sep arate groups of clusters. The sisters is an cluster 
built a t Massey University [Barczak et a l. , 2003]. In brief the cluster consists of 8 Dual 
Athlon compute nodes with 2 GB of RAM and interconnected via a gigabi t switch. In the 
following experiment the efficiency of both MPI broadcast and UDP based broadcast calls 
are compared . 

Figure 5.1 shows the performance of the DP protocol vs the MPI broadcast call. It 
shows that for the purpose of video broad casting wi t h the available hardware it is far bet ter 
to use than MPI broadcast rout ines. The graph also shows that the broadca t times are 
independent to the number of nodes in the cluster (up to node only here). The reason for 
this is that modern intelligent swi tches are able to map MAC address/ Physical Port number 
pairs in memory, however becau e the library routines broadcast on the broadcast address 
the switches revert to acting as simple hubs, repeat ing everything on every port. 

5.2 CPU P erformance 

All of experiments detailed here for t h are conducted on the emb dded hardware. The following 
experiment only uses one of the four board available (as all of the nodes are equal in computer 
power ) to examine the rate at which it can run the classifiers on the machine. 

Table 5.1: Cluster Specifications relevant to performance 
CPU VIA C3 / Eden (x 6 compatible 
Memory DDR266 512 MB 
Network Dual LAN, VIA VT6105 LOM 10/ 100 Base-T Ethernet 

Figure 5.2 shows the performance of each of the clas ifiers with respect to a chosen scale 
factor and resolution of the input image. The input image is an average image, which consists 
of one face and no false detections. 

The graph 5.2 shows that for high resolution images a large scale factor must be used to 
minimise computing time. At a nominal scale factor of 1.3 (shown to achieve good detection 



34 

en .s 
iii 
Cll 
t) 

'O 
Cll e 
co 
.8 
a, 
E 
f'.: 

70 

60 

50 

40 

30 

20 

10 

CHAPTER 5. R ESU LTS A N D DISCUSSION 

Time to Broadcast greyscale images using MPI 

320x240 MPI 
640x480 MPI 
800x600 MPI 

1024x768 MPI 
320x240 ITP 
640x480 ITP 
800x600 ITP 

1024x768 1TP 

0 - - - - - - - - - - -r - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - -

1 2 3 4 5 6 

Number of Slaves 

Figure 5. 1: Broadcast Performance of MPI vs UDP Protocol 

en .s 
a, 
E 
~ 
2 

4000 

3500 

3000 

2500 

2000 

1500 -- ·-.. 
1000 

500 r----
0 

1.1 

Runtime for classifiers 

1.2 1.3 1.4 

scale factor 

320x240 
640x480 
800x600 

1024x768 

1.5 

Figure 5.2: Classifier Performance on a Single Node 

1.6 



5.2. C PU PERFORMANCE 

80 

70 

60 

so 
" "' ~ 
"' :, 40 
:, 
0. 
u 

30 

20 

10 

CPU Usage vs Frame Transmission Rate 

w/ USB Camera - wo/ Network ---+-­
wo/ USB Camera - w/ Net work ----·­

w/ USB Camera - w/ Net work 

Frames/Second 

Figure 5.3: CPU vs Send FPS (640x480) 

35 

10 

re ults) the results shows t hat only the two lower resolutions (320x240, 640x4 0) ar capable 
achieving real-time performance (if, real is computing in less than a second t ime) . It hou.ld be 
noted that the original Viola J ones [Viola and Jones, 2002] results are based on low resolution 
images and many implementat ions like Open CV prescale the image into a smaller image before 
commencing detection. 

5.2.1 USB Camera 

USB cameras are comparatively cheaper and widely available however they are very expensive 
in compute cycles. USB is host-driven, meaning the main system CPU has to do all of the 
work of coordinating and moving data to/ from devices. 

Figure 5.3 shows that USB is an inefficient system for delivering images, especially to such 
low powered compute node. The bottom line (wo/ USB - w/ Network) shows the compute 
cycles u ed when an NULL image is sent using the protocol, i.e with the USB capture func­
t ionality turned off within the application but leaving open the broadcasting. The middle line 
(w/ USB - wo/ Network) show the load of USB capturing but with no broadcasting in the 
loop. At 10 FPS the load is around 70% leaving very li ttle room for any useful computation 
on the head node. The third line shows the full load experience by the 'source' process on 
the head-node. It confirms the load of sending an NULL image being consistant with USB, 
i.e. if the bottom line is added to the middle line the result is roughly the top most line ( w / 
USB - w/ Network) . However , USB can be used if the performance is sacified , or if can be 
implemented in a way that minimises its overhead. 

All further results are shown with image sequences buffered to RAM rather than acquiring 
images via USB, to show the the speed up characteristics of cluster without biasing the 
headnode. This methods also allows experiments to be repeated with the same input data 
for comparison. 



36 C HAPTER 5. R ESULTS AND DISCUSSION 

Figure 5.4: Test Sequence 

5.3 Experimental Condit ions 

The following experiments and the results presented are performed on the finished cluster 
setup. The layout of the cluster can be found in figure 4.4 and the details of the components 
a re listed in 5.1. 

The head node connected runs the 'source' and 'process' modules, where a all of the 
compute nodes run the 'process' module only. except the last node that run t he 'sink ' module 
in addition to the 'process' module. 

All measurements were taken with hand equence 5.4, overlay-ed over a background image 
as the accuracy wasn't really what was being tested for but the efficiency of the system as a 
whole. The sequence consist of the following workload . -90 to 90, t here are a total of 190 
images in the test sequence. 

The experiments were repeated for three resolutions (hands sequence), and loading nodes 
with varying numbers of clas ifiers sharing the same integral image. The nodes were loaded 
serially i.e. when an additional classifier was added it would be added to t he node next in 
the line (or round robin). This resulted in the nodes having classifiers that were not locally 
affinated. A possible strategy would be to explore the performance when nodes are loaded 
using classifiers that are locally tuned. 

Because the whole system is not synchronised, the send fps is capped at 10 frames per 
second. The entire sequence of 190 image therefore takes 19 seconds to complete broadcasting. 
Each of the nodes reports the number of frames processed in this time segment. This value 
can then be divided by 19 to obtain an FPS value. 

5.4 Average System Performance 

Figure 5.5 shows the performance of the system with varying number of classifiers. 



5.5. I DIVIDU AL TooE P ERFORMANCE 37 

Average System Performance 

160 X 120 ~ 

10 320 X 240 ' --~--• r . ... . 

; , 

' > • y 

10 15 20 

Number of Classifiers 

Figure 5.5: Average ystem Performance 

Figure 5.5 show performance levelling out as the number of classifiers increases. This 
is also a reflect ion of the characteristics of the classifiers running on a single nodes. T his 
behaviour of holding steady after a certain number of classifiers does not continue forever , 
i.e. event ually the frames per second will drop to 0, when mea ured within some rea onable 
time interval. In thi instance its measured as the number of frames processed within the 190 
frame transmission sequence time (19 seconds). 

Also the measurement for the lowest resolu t ion seems to indicate that there is an asymp­
tote close to 13 classifiers that will hit the the ground, however there is an another upward 
asymptote (which cannot be seen here, as the number of classifiers that can be loaded is 
bound) that would how similar behaviour as the curves for the other two resolutions, the 
curves will flatten out and remain roughly con tant even after addition of more classifiers. 
This behaviour can be een in figure 5.6, performance per node for 160 by 120. 

5.5 Individual Node Performance 

Each of the compute nodes running the 'process' process is able to give output of how many 
frames it is able to capture (infact this is the only way to record what is happening in an 
asynchronous system). The following results show what each node experienced in isolation 
with the rest of t he sy tern. 

For Nodes 1 and 2 there is an extra measur ment of 5 classifiers , this is due to the fact 
that there are only 1 classifier available and only 4 nodes. By using the round robin classifier 
distribution strategy Node 1 gets classifier 17 and ode 2 gets classifier 18. 

Figure 5.6 shows very good performance as this is for the lowest resolution. It should be 
noted that for number of classifiers betwen 1 and 3 (on the x-axis), the performance is report 
is at maximum, 10 frames per second (the input rate) , however it is possible the nodes can 
run faster (for this particular resolution) then this if the input rate was increased. 



38 CHAPTER 5. R ESULTS AND DISCUSSION 

Performance per Node 160 by 120 

10 ,..... _____ __,,_ _ ____ .,...._ __ Node 
Node 
Node 
Node D --"--- D 

Number of Classifiers 

Figure 5.6: Individual Node P erformance for 160x120 

Performance per Node 320 by 240 

Node 1 ------Node 2 ___ _,_ __ _ 

3 . Node 3 
Node 4 a 

2 . S 

1.5 -~ .. 
........ _______ """'~--

0 -- ~------------------------
0 

0. 5 

Numbe r of Class i fiers 

Figure 5. 7: Individual Node Performance for 320x240 



5 .6. SCALAB ILIT Y 

0 . 8 

0 . 6 

0 . 4 

0. 2 

Performance per Node 640 by 480 

0 

Number of Classifiers 

Node 1 ---­
Node 2 ---~-­
Node 3 
Node 4 o 

Figure 5.8: Individual Node Performance for 640x480 

39 

These figures 5.6, 5. 7, 5. , also show that the nodes operate independently to each other , 
whether or not other nodes are operating with the ame parameters the output frame rate 
remains the same. T his can a lso been seen in figures on scalability in the following sect ion. 

Also as can be seen from the individual node performances. the performance at a resolution 
of 640 by 480 (figure 5.8) is very poor and saturates to floor very quickly. 

5 .6 Scalability 

Scalabili ty refers to how scalable the ystem is a a whole [Wilkinson and Allen , 1999], that 
is if more resources were added how well does the system use these resources. The aim of 
t his exerci e is to typically observe the limi t of the ystem when things saturate so there is 
no more gain in adding resources. 

The figures (5.9, 5.10, 5. 11) show the scalability of whole system with respect to the 
number of nodes. They show t hat the system is very scalable in terms of t he number of 
nodes, though it only conta ins 4 nodes, measurements of the protocol have shown similar 
results for number of nodes up to ( ee figure 5.1). 

The light dip in the frames per econd on all three figur s towards (number of nodes 
greater than 3) is due to the fourth node being slower. This can be seen also in figures 5.6 , 
5 . where the individual node performance of node 4 is consistently slower than the other 
nodes. ode 4 is assigned the task of rendering the results , this slows down the node and 
pulls down the average of the frames per second when node four is involved. 

This is especially visible in figures 5.11 and 5.10 where the node 4 has to do a lot of work 
rendering the image to the screen. If one were to arrange the nodes such tha t the slower 
nodes were added first then it would seem like the scalability is greater than linear. 



40 

"' a. .. 

' 

10 

CHAPTE R 5. R ESULTS AND DlSCUSSIO 

Scalability 160 by 120 

Number of Nodes 

18 Classifiers ---+-­
.l < O~ss.i.fiexs ::-~--· 

4 Classifiers · 

Figure 5.9: Performance Scalability fo r 160x120 

2 . 2 

1 . 8 

1. 6 

1. 4 

1. 2 

0 . 8 

0 . 6 

0 . 4 

0 . 2 

0 

Scalability 320 by 24" 

,· 

18 Classif~~r:s -~ 
1..2 c1a·s·sI"f:iers --- --· 

4 Classifiers 

---------r-_-________ _ 

Number of Nodes 

Figure 5.10: P erformance Scalability for 320x240 



5.7 . P ERFORMANCE A r A LYSIS 

0 . 5 

0 . 45 

0 . 4 

0 . 35 

0 . 3 
"' °' "' 0 . 25 

0 . 2 

0 . 15 

0 . 1 

0 . 05 

Scalability 640 by 480 

Number of Nodes 

18 Classifiers --
12 Classifier,e -~:..·--­
..,4. -Cl-a·ss·.Cfiers 

Figure 5.11: Performance Scalabili ty for 640x480 

5.6.1 Resolution Scaling 

41 

Resolu tion sca ling refers to how the performance is affected when the problem size is increased . 
In this inst ance the resolut ion is varied (keeping constant all of the other variables such as 
scaling and translat ion factor). 

All of the four graphs (5.12, 5. 13, 5.14 and 5. 15) show that performance is be t at the 
lower resolution of 160 by 120 and degrades rapid ly as it is increased . A the number of nodes 
increased , the rate at which performance degrades also seems to decrease. However, this may 
be in part to t he increased frames/ second rate when more nodes are added. 

5. 7 Performance Analysis 

Going from the lowest to the highest resolution it can be seen that the II (integral image, 
from this point onwards they will be referred to as II) computat ion phase takes almost 16 
times longer while the number of subwindows to be examined is 42 times that it is before. 

Table 5.2: II Computation Time and Sub Window Load for each of the Resolutions 
Resolu t ion II Compute T ime Number of Sub Windows 

(Kernel = 24x24, Scale = 1.3, 
Translation = 5) 

160 X 120 i s 
320 X 240 4 i 7 s 
640 X 480 16 i 42 s 

There seems to be large differences between 320x240 and 160xl20. Table 5. 7 shows the 
relation between various resolutions and their work loads. Here 'i' is a symbolic of the number 
of pixels in the in the lowest resolut ion, where as s is symbolic of t he number of subwindows 



42 

Ul 

CHAPTE R 5. R ESU LTS AND DISCUSS IO N 

Resolution Scalabi 1 i ty l Node 

18 Classifiers -------
12 Classifiers ___ ..,. __ _ 

4 Classifiers 

o L _________ ....:::::t:::::==~~===========:d 
!60x l20 320 x 240 640 x 48< 

Resolution 

Figure 5.12: Resolution Scaling for 1 Node 

Resolution Scalability 2 Node 

10 ,--------------~-------------, 
18 Classifiers ---+--
12 Classifiers -----·· 

4 Classifiers 

e: 5 

··········· ... 

···················· ... •.. 

-'x -------------------------------
0 L ________ .:::========:::::::::~~d 

1 60x l20 320 x 2 40 

Reso l ution 

Figure 5.13: Resolut ion Scaling for 2 Nodes 

6 40 x4 8< 



5.7. PERFORMANCE ANALYS IS 

"' 

Resolution Scalability 3 Node 

10 ,---------------,----------------, 
18 Classifiers 
12 Classifiers 

4 Classifiers 

t 5 

"--- --------
o L _______ =::=::~~~~==:::::d 

l60x120 320x240 

Resolution 

Figure 5.14: Resolution Scaling for 3 Nodes 

Resolution Scalability 4 Node 

640x48< 

10 ,---------------,----------------, 
18 Classifiers 
12 Classifiers 

4 Classifiers 

''>t------------------

O L__----=~=====~ 160x 120 320 x 240 

Resolu ion 

Figure 5.15: Resolution Scaling for 4 Nodes 

640 x 48< 

43 



44 

Q) 

-~ .... 

0 . 08 

0 . 07 

0 . 06 

0 . 05 

0 . 04 

0 . 03 

0 . 02 

0 . 01 

0 
160x120 

CHAPTER 5. RES ULTS A N D DISCUSSION 

II Computation Times 

320 x 240 640x480 

Resolut ion 

data~-

/ 
/ 

1024 x76 

Figure 5. 16: Integral Image Computa tion Times 

generated. The process of generating an integral image is linear in relation to the number of 
pixels and this can be observed in figure 5.16 (note: multiply width*height ). 

The II computa tion phase for 320x240 is four times bigger than 160xl20 and 640x480 is 
16 times bigger than the smallest resolution, however it isn ' t just the picture size but the 
number of subwindows at each resolution. The work load for the number of subwindows for 
resolutions is not linear , so it grows rapidly as the resolution is increased. 



45 

Chapter 6 

Conclusion and Future Work 

6.1 Conclusions from Results 

The UDP broadcasting protocol is efficient and able to scale very well to increasing number 
of hosts in comparison with MPI for the purpose of video broadcasting. 

USB is a host driven protocol meaning the CPU has to do everything on its behalf, like 
moving data to and from the device. USB is an inefficient system for delivering images, espe­
cially for such low powered nodes, however it can be used but sacrificing some performance. 

Average System Performance shows performance evening out over as more classifiers are 
added. This also shows in individual node results also. Both are also indicative of the 
performance of multi-classifier cascades that are able to reuse integral image computation. 

The nodes perform poorly at higher resolutions, for best performance the system must be 
used with resolutions between 160 by 120 and 320 by 240. 

Individual Node Performance shows that the nodes operate independently. This is good 
because the slower nodes do not slow down the whole system to operate at the same rate, 
however this makes finding out what is happening difficult as each node must be queried 
separately. 

The system is very scalable, this is in part due to the asynchronous operation but also the 
efficiency of the image broadcast protocol. Adding more nodes also reduces the performance 
degradation of system as the resolution is increased. 

Analysis of performance shows that the load increases non-linearly and explains why there 
is a large performance drop when going from 160 by 120 to 320 by 240. 

The results indicate that the architecture of using networked computers is viable for per­
forming real-time vision processing; with a little more computer power, it should be possible 
to run more classifiers or increase the resolution given the scalability of the system is very 
good. 

6.2 Perspectives 

Chapter 3 highlights some of the challenges faced during the building of t he distribution for 
the cluster. It is important to have the software platform working very early on in a project. 



46 CHAPTER 6. CONCLUSION AND F UTURE WORK 

The focus on reducing distribution (linux) space, while crucial to the successful deployment 
of the system takes up a large amount of time. Currently the embedded distribution space is 
very fragmented. There are many possible build systems and distributions that can be used. 

Always opt for an open system, one where the build system and documentation are readily 
available. Commercial targeted distributions such as Monta Vista should be avoided whenever 
possible. Choosing an open/ large system allows development to be carried out on the same 
distribution that is chosen for the target and makes it easier to run software on the target 
system without porting and dependencies issues. 

The current build system that is named 'mooselinux' and developed for this thesis is 
reusable and can be used for anyone desiring to build a customised distribution without 
loosing the ability to modify and add to it later. With this build system both Ubuntu 
and Debian can be used, both which contain large repositories of pre-compiled software and 
libraries. 

6.3 Future Work 

6.3.1 Parallelising Single Classifiers 

The method explored in this t hesis relies on having more classifiers than the number of nodes 
available. However the question of whether it is possible to parallelise a single classifier is 
interesting. While single classifiers are accurate, they are unable to adapt to changes of the 
object when rotation is present. Single classifiers can be trained with object data at multiple 
orientations, however this has shown poor detection rates and takes longer to train due to 
the additional training samples required. 

Initial results show that it is possible to parallelise an individual classifier. By splitting 
the subwindow list (generated by the subwindow generator algorithm presented in chapter 
2), each node can be assigned a part of the list to compute. 

6.3.2 Strategies of Applying Multiple Classifiers 

If the task of deciding what to run is more expensive or the savings are menial then actually 
running the task is better. With this in mind we go ahead and observe a policy for distribution, 
its requirements on the underlying protocol, its overhead and finally the system output -
comparing it to the generic version. 

6.3.3 Moments Based Detection Algorithms 

Moments based detection system shows good detection rates that uses precomputed inte­
gral image like the Viola Jones detector, but with the added advantage that training times 
are remarkably smaller [Barczak and Johnson, 2006]. It would be interesting to explore the 
performance characteristics of this algorithm on this system. 



6.3. FUTURE WORK 47 

6.3.4 Other Hardware Platforms 

The current system, while being portable could still be made smaller. A new platform would 
most likely be ARM based processor packaged as an System On Chip that is able to provide 
many of the same peripheral interfaces as were available on the x86 solution. The ARM 
route is attractive as they are cheap, lower power and support the same software as the x86 
platform. Debian and Ubuntu both support the same software repository for both x86 and 
ARM platforms. The build system 'mooselinux' would be able to adapt to this easily as all 
that would be required for the change would be to modifying the repository location from 
x86 to ARM. 

DSP Hardware 

The process of finding out whether a subwindow contains an object of interest is in itself a par­
allelisable task. The task of detection can be summarised to, high-speed lookups, arithmetic 
operations and control flow manipulation. DSPs hardware are a special class of processors 
that is designed to work one or more streams of data at a high rate (having multiple ALU 
units). DSPs also contain very localised memory that gives them the ability to access memory 
rapidly (an II can be stored, giving a speed up). 

Further these units are also very efficient and us very little power. Many commercial 
devices such as cell-phones employ specialised hardware in the form of a DSP for complex 
and resource intensive video processing while leaving control to the main processor. A similar 
architecture would be beneficial for this application as it would decrease the power usage of 
the system while giving more computational power and maintaining mobility of the system. 

GPGPU Hardware 

One of the interesting hardware platforms that has emerged is the use of GPU hardware 
for image processing. GPGPUs are very similar to DSPs however they differ in that their 
pipeline is reasonably fixed. This is starting to change however with programmable units. 
Modern graphics hardware are very powerful in the raw amount of data they are able to 
process. As applications demand greater amount of hardware acceleration, powerful GPU 
will be embedded onto mainboards (as is the case already with top of the line laptops, 2008). 
This would provide essentially an off the shelf solution for using special purpose hardware 
[Fung and Mann, 2004]. 



48 

Appendix A 

UDP Image Broadcast Header File 

#ifndef UDP _IMAGE_H 
#define UDP _IMAGE_H 

#include "hseih.h" 

#include <opencv/cv.h> M 
#include <sys/socket .h> 
#include <sys/types. h> 
#include < netinet/in.h > 
#include <arpa/ inet.h> 
#include < netdb.h> 
#include < unistd.h> 
#include <signal.h> 
#include < fcntl.h > 
#include <errno.h> 
#include <sys/time.h> 
#include <stdlib.h> 
#include < memory.h> 

#define MAX_UDPIMAGE_SIZE 64000 
//#defin e MAX_UDPIMAGKSIZE 32768 
#define THROTTLE 000000 

typedef struct { 
unsigned int contexLid; / / 4 bytes 
unsigned int frame_id; / / 4 bytes 
unsigned int offset; // 4 bytes 
unsigned int size; / / 4 bytes 
unsigned int hash; / / 4 bytes 
unsigned char data[MAX_UDPIMAGE_SIZE]; 

} udplmage; 

#define UDPIMAGE_STRUCT_SIZE (MAX_UDPIMAGE_S1ZE+ 20) 
#define DEBUG_UDP _BCAST 1 

10 

20 

30 



//#define ADDRESS "192.168.0.255" 
#define ADDRESS "127. 255. 255. 255" 
#define PORT 4001 
#define WIDTH 640 
#define HEIGHT 480 
#define DEPTH 1 

/* 
extern int send_socket; 
extern struct sockaddr_in ea; 
extern int recv_socket; 
extern struct sockaddr_in sa; 

extern int currenLframe_id; 
extern int lasLframe_id; 
extern int currenLfram e_offset; 

*/ 

49 

40 

int iniLudp_send_unicast(char *address, int port); 50 

int iniLudp_send(char *address, int port); 
int send_image(Ipllmage *img, unsigned int contexLid, unsigned int frame _id); 

int iniLudp_recv(int port); 
int recv_image(Ipllmage *img); 
#endif 



50 

Appendix B 

UDP Image Result Collection 
Header File 

#ifndef UDP _RESULT _H 
#define UDP _RESULT _H 
#include <stdio.h> 
#include <sys/socket .h> 
#include <sys/types.h> 
#include < netinet/in.h> 
#include <arpa/ inet.h> 
#include < netdb.h> 
#include < unistd.h> 
#include <signal.h> 
#include < fcntl.h> 
#include <errno.h> 
#include <sys/time.h> 
#include < stdlib.h> 
#include < memory.h> 

typedef struct { 
unsigned int contexLid; / / 4 bytes 
unsigned int frame_id; / / 4 bytes 
int xl; 
int x2; 
int y l; 
int y2; 

} udpResult; 

//#define RESULLADDRESS "192.168. 0.1 " 
#define RESULT _ADDRESS "127. 255. 255. 255" 
#define RESULT _PORT 4002 

static int send_socket_result; 
static struct sockaddr_in ca_result; 

10 

20 

30 



int iniLudp_send_result (char *address, int port); 
int send_result (udpResult *res); 

static int recv_sockeLresult; 
static struct sockaddr_in sa_result; 

int iniL udp_recv_result(int port); 
int recv_result(udpResult *res); 
int recv_result(udpResult *res, char *host); 

#endif 

51 

40 



52 

Appendix C 

LSPIP: 'Source' Program 

The following program sources from a list of images, allowing offiine testing without a camera. 

#include <stdio.h > 
#include <stdlib.h> 
#include <time. h > 
#include <sys/times. h > 
#include < math.h > 
#include <string.h > 
#include <ctype. h> 

#include <opencv / cv.h> 
#include <opencv / highgui .h> 

#include < udp_image.h> 

#include "timer . h" 
#include "filelist.h" 

Ipllmage *resizedlmage = O; 
Ipllmage *grayScalelmage = O; 

Ipllmage *fetch_new_image(CvCapture *capture) { 
if ( !capture ) return ULL; 

cvGrabFrame( capture); 
Ipllmage *image = O; 
image = cv RetrieveFrame( capture); 

if (!image) { 

} 

printf( "error reading image \n") ; 
exit(l); 

10 

20 fetch _new_image 

30 



} 

if ((image->width != WIDTH) 11 (image-> height != HEIGHT)) { 
if (resizedimage == 0) { 

53 

resizedimage = cvCreateimage(cvSize(WIDTH, HEIGHT) , image->depth, image-> nChannels); 
} 
cv Resize( image, resizedimage); 

} 

if ((resizedimage != 0) && (resizedimage-> nChannels != DEPTH)) { 

} 

if (grayScaleimage == 0) grayScaleimage = cvCreateimage(cvSize(WIDTH, HEIGHT), 8, l) ; 40 

cvCvtColor( resizedimage, grayScaleimage, CV _BG R2G RAY) ; 
return grayScaleimage; 

if (image-> nChannels != DEPTH) { 

} 

if (grayScaleimage == 0) grayScaleimage = cvCreateimage(cvSize(WIDTH, HEIGHT) , 8, l); 
cvCvtColor(image, grayScaleimage, CV _BGR2GRAY); 
return grayScaleimage; 

return image; 50 

int main(int argc, char *argv[]) { 
CvCapture *capture = O; 

main 

if (argc > 1) { 
printf("capturing from file %s\n", argv[l]) ; 
capture = cvCaptureFromAVI(argv[l]); 

} else { 

} 

printf("capturing from camera\n"); 
capture = cvCaptureFromCAM(O); 

if (capture == NULL) { 

} 

printf("error init capture device\n") ; 
exit(l); 

iniLudp_send(ADDRESS, PORT); 

Ipllmage *img = O; 
int n = O; 

while (1) { 
img = fetch_new _image( capture); 
if (!img) { 

printf("error capturing frame\n"); 
} 

60 

70 



} 

54 CHAPTER C. LSPIP: ' SOURCE ' PROGRAM 

send_image(img, 1001, n) ; 
//printf("Sleeping fo r 1 seconcf\n"); 
//sleep(l); so 

/ /incorporate fpslimiter into this 
n++; 

} 



55 

Appendix D 

LSPIP: 'Process' Program 

The following program processes an image from the network using Viola J ones Algorithm, 
this can be replaced with any detection algorithm. 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <sys/times.h> 
#include < math.h> 
#include <string.h> 
#include <ctype.h> 

#include <opencv / cv .h> 
#include <opencv / highgui.h> 

#include < udp_image.h> 

#include "timer.h" 
#include "filelist.h" 

Ipllmage *resizedlmage = O; 
Ipllmage *grayScalelmage = O; 

Ipllmage *fetch_new_image (CvCapture *capture) { 
if ( !capture ) return NULL; 

cvGrabFrame( capture); 
Ipllmage *image = O; 
image = cv RetrieveFrame( capture); 

if (!image) { 
printf(" error reading image\n") ; 
exit (l); 

10 

20 fetch _new_image 



56 

} 

CHAPTER D. LSPIP: 'PROCESS' PROGRAM 

} 

if ((image->width != WIDTH) 11 (image->height != HEIGHT)) { 
if (resizedimage == 0) { 

30 

resizedimage = cvCreateimage(cvSize(WIDTH, HEIGHT), image->depth, image->nChannels); 
} 
cv Resize( image, resizedimage); 

} 

if ((resizedlmage != 0) && (resizedimage->nChannels != DEPTH)) { 

} 

if (grayScaleimage == 0) grayScaleimage = cvCreateimage(cvSize(WIDTH, HEIGHT) , 8, l) ; 40 

cvCvtColor(resizedimage, grayScalelmage, CV _BGR2GRAY); 
return grayScalelmage; 

if (image->nChannels != DEPTH) { 

} 

if (grayScalelmage == 0) grayScaleimage = cvCreatelmage(cvSize(WIDTH, HEIGHT), 8, l); 
cvCvtColor(image, grayScaleimage, CV _BGR2GRAY); 
return grayScalelmage; 

return image; 50 

int main(int argc, char *argv[]) { 
CvCapture *capture = O; 

main 

if (argc > 1) { 
printf( 11 capturing from file %s\n 11

, argv[l]); 
capture = cvCaptureFromAVI(argv[l]); 

} else { 

} 

print£( 11 capturing from camera \n 11 
) ; 

capture = cvCaptureFromCAM(O) ; 

if ( capture == NULL) { 

} 

printf( 11 error init capture device\n 11
); 

exit(l) ; 

iniLudp_send(ADDRESS, PORT); 

Ipllmage *img = O; 
int n = O; 

while (1) { 
img = fetch_new _image( capture); 
if (!img) { 

print£(" error capturing frame \n 11 
) ; 

60 

70 



} 

} 
send_image(img, 1001, n); 
//printf("Sleeping for 1 second:\n"}; 
//sleep(l}; 

//incorporate fpslimit er into this 
n++; 

} 

57 

80 



58 

Appendix E 

LSPIP: 'Sink' Program 

The following program processes image from the network as well as results from the 'process ' 
stage and render these to the screen. This program can alternatively be replaced with a video 
writer that can save the results to an video file. 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <sys/times.h> 
#include < math.h > 
#include <string.h> 
#include <ctype.h> 

#include <opencv/cv.h> 
#include <opencv / highgui.h> 

#include < udp_image.h> 

#include "timer .h" 
#include "filelist .h" 

Ipllmage *resizedlmage = O; 
Ipllmage *grayScalelmage = O; 

Ipllmage *fetch_new_image(CvCapture *capture) { 
if ( !capture ) return NULL; 

cvGrabFrame( capture); 
Ipllmage *image = O; 
image = cv RetrieveFrame( capture); 

if (!image) { 
printf( "error reading image\n") ; 

10 

20 fetch _new_image 



} 

exit(l); 
} 

if ((image->width != WIDTH) 11 (image->height != HEIGHT)) { 
if (resizedimage == 0) { 

59 

30 

resizedimage = cvCreateimage(cvSize(WIDTH, HEIGHT), image->depth, image->nChannels); 
} 
cv Resize( image, resizedimage); 

} 

if ((resizedlmage != 0) && (resizedimage->nChannels != DEPTH)) { 

} 

if (grayScaleimage == 0) grayScaleimage = cvCreateimage(cvSize(WIDTH, HEIGHT) , 8, l) ; 40 

cvCvtColor(resizedimage, grayScaleimage, CV _BGR2GRAY); 
return grayScaleimage; 

if (image->nChannels != DEPTH) { 

} 

if (grayScaleimage == 0) grayScaleimage = cvCreateimage(cvSize(WIDTH, HEIGHT) , 8, l); 
cvCvtColor(image, grayScaleimage, CV _BGR2GRAY); 
return grayScaleimage; 

return image; 50 

int main(int argc, char *argv[]) { 
CvCapture *capture = O; 

main 

if (argc > 1) { 
printf("capturing from file %s\n" , argv[l]) ; 
capture = cvCaptureFromAVI(argv [l]); 

} else { 

} 

printf("capturing from camera\n") ; 
capture = cvCaptureFromCAM(O) ; 

if (capture == NULL) { 

} 

printf("error init capture device\n"); 
exit(l) ; 

iniLudp_send(ADDRESS, PORT) ; 

Ipllmage *img = O; 
int n = O; 

while (1) { 
img = fetch_new _image( capture); 
if (!img) { 

60 

70 



60 

} 

printf("error capturing frame\n"); 
} 
send_image(img, 1001 , n ); 
/ / print!( "Sleeping for 1 second\ n"); 
//sleep(l }; 

/ /incorporate fpslimit er into this 
n++; 

} 

C HAPTER E. LSPIP : ' SINK ' PROGRAM 

80 



Appendix F 

Mooselinux Build System: 'Get' 

The following python program is part of mooselinux distribution builder. 

#! /usr /bin/python 

import os 
import sys 
import urllib 
import zlib 
from gzip import GzipFile 
import pickle 

global cache 
cache = {} 

PACKAGE_CACHE = "package_cache" 
DOWNLOAD_CACHE = "download_cache" 
DATA = "data" 

def check(pkg): 
print "checking " + pkg 
return 0 

def build(pkg): 
print "building " + pkg 
try: 

filename = cache[pkg] .split( '/') 
except: 

print "package not found" 
return 

filename = filename[len(filename) - 1] 
if (not os.path.exists(DOWNLOAD_CACHE + "/" + filename)): 

61 

10 

check 

20 

build 

30 



62 

download(pkg) 
try: 

CHAPTER F. MOOSELINUX B UILD SYSTEM: ' G ET' 

os.system("dpkg-deb -x download_cache/" + filename + " tmp") 
except: 

print "error building package " + pkg 
exit 

os .chdir("tmp") 
os.system("rm -rf usr/share/man") 
os.system("rm -rf usr/share/doc") 
try: ® 

if (os.path .exists(" .. /" + DATA + "/" + pkg + "/files")): 
os.system("tar czfT" + " .. /" + PACKAGE_CACHE + "/" + pkg + ".tar.gz" + " ./" --l 

else: 
print "*** WARNING *** No pruning information found, applying global rules" 
os.system("tar czf " + " .. /" + PACKAGE_CACHE + "/" + pkg + " . tar.gz . ") 

finally : 
os.chdir(" .. ") 
as .system(" rm -rf tmp/ * ") 

def download(pkg): 50 download 
print "downloading " + pkg 
filename = cache[pkg].split( '/') 
filename = filename[len(filename) - l] 
urllib.urlretrieve(cache[pkg]. DOWNLOAD_CACHE + "/" + filename) 

def get(pkg): get 
# if (os. path.exists (PA CKAGE_CACHE + "/" + pkg + ". tar.gz")): 
# if (check(pkg) == 0) : 
# build(pkg) 
# els e: 60 

build(pkg) 

def build_local(pkg): build_local 
package_name = pkg.replace( "moose_" , "") 
if (os.path.exists("local/" + package_name)): 

os.chdir("local/" + package_name) 
try: 

os.system("tar -czf .. / .. /" + PACKAGE_CACHE + "/" + pkg + ". tar .gz . ") 
finally: 

os.chdir(" . . / .. /") 70 

else: 
print "package not found" 
return 

if __ name __ == " __ main __ " · 

if (len(sys.argv) < 2): 
print "usage: get package" 



63 

else: 
if (not os. path. exists("cache . pkl") ): 

print "cache not found, run update" so 
else: 

cache = pickle.load( open(" cache. pkl", "rb")) 
if (sys.argv[l] .find("moose_ ") >= 0): 

build_local(sys.argv[l]) 
else: 

get( sys.argv[l]) 



64 

Appendix G 

Mooselinux Build System: 'Update' 

The following python program is part of mooselinux distribution builder. 

#! /usr / bin/python 

import os 
import sys 
import urllib 
import zlib 
from gzip import GzipFile 
import pickle 

def parse_package_file(f, base): 
cache= {} 
for line in f.readlines(): 

line = line.strip(' \n') 
tokens = line.split (' ') 
if (tokens (O] == "Package:") : 

current = tokens(l] 
cache(tokens[l]] = 1111 

if (tokens [O] == "Filename: ") : 
cache[current] = base + tokens[l] 

return cache 

def update(): 
cache= {} 
f = file("sources.list") 
for line in f.readlines(): 

line = line.strip(' \n') 
tokens = line.split(' ') 
if (len( tokens) < 4): 

continue 
print "type, uri, dist", tokens [O], tokens[l], tokens[2] 

10 parse_package_fi lc 

I 

20 

update 

30 



reps = tokens[3 :) 
for rep in reps: 

print "fetching " + rep + 11 
• • • 

11 

65 

urllib.urlretrieve(tokens[l) + "dists/ 11 + tokens[2) + 11
/

11 + rep + "/binary-i386/Packages.gz 
f = GzipFile(rep + ".packages. gz", "r") 
cache. update(parse_ package_file( f, tokens[l))) 
f.close() 

f = open('cache .pkl ', 'wb') 
pickle.dump( cache, f) 
f.close() 40 

if __ name __ == " main 
update() 

"· 



66 

Appendix H 

Mooselinux Build System: 'Build' 

T he following bash script is part of mooselinux distribution builder. 

#!/ bin/bash -eux 

########################################################################### 

# ttylinux build script 
########################################################################### 

# 

# directory locations 
# 

T OPDIR='pwd' 
DISTDIR= " $TOPDIR/ dist" 

PACKAGES= "moose_basesystem moose_busybox moose_linux-2. 6 . 20 " 
PACKAGES+= "bash libc6 libgccl libncurses5" 

# exit with error message 
# 

error_exit () 
{ 

} 

# 

set +x 
echo 
echo "ERROR: $1" 

echo 
exit 1 

# check whether preconditions for build are met 
# 

check_sani ty () 

10 

20 

30 



{ 
cd "$TOPDIR" 

[ -e . / build ] 11 \ 

error_exit "you need to be in the directory with build" 

[ II Cid -u C II = "0" l 1 1 \ 

error_exit "you need to be root for the build to work" 
} 

build_ packages() 
{ 

} 

for i in $PACKAGES 
do 

./get $i 
done 

unpack() 
{ 

} 

rm - rf 11 $DISTDIR 11 

mkdir "$DISTDIR" 
for i in $PACKAGES 
do 

tar xzf "$TOPDIR/package_cache/$i. tar. gz" - C "$DISTDIR" 
done 

########################################################################### 

# build sequence 

67 

40 

50 

########################################################################### 60 

check_sani ty 
build_ packages 
unpack 



68 

Appendix I 

Timing Routines for Benchmarking 

The following listing shows the implementation of a timer used to benchmark all of the pro­
tocol and algorithms in this work. 

1.1 H eader File 

#ifndef TIMER_H_ 
#define TIMER_H_ 

#include < time.h> 
#include < sys/ times.h> 
#include < math.h> 

#define CLK_ TCK CLOCKS_PER_SEC*lOOOO 

class Timer 
{ 
public: 

Timer(); 
void start(); 
void stop(); 
virtual -Timer(); 
double getCpuTime(); 
double getProcessorTime() ; 
clock_t getTics(); 
clock_t getTicsUp() ; 

private: 

}; 

struct tms buffer; 
clock_t tics_up, ties; 
double f, w; 

10 

20 



l.2. I MPLEMENTATION 

#endif l*TIMER_H_ * I 

1.2 Implementation 

#include "timer .h" 

Timer: :Timer() { 

} 

void Timer::start(void) { 
t ies_ up = t imes( & buffer); 
t ies= buffer. tms_ u t ime+ buff er. tms_stime; 

} 

void T imer::stop(void) { 
ties_up = times(&buffer) - tics_up; II wall time 
ties= buffer.tms_utime + buffer.tms_stime - ties; II combined processor time 

} 

double Timer::getCpuTime(void) { 
return (double) t ies_up / (double) CLK_TCK; 

} 

double Timer: :getProcessorTime(void) { 
return (double)ties / (double) CLK_TCK; 

} 

clock_t T imer::getTicsUp() { 
return t ies_up; 

} 

cloek_t Timer::getTies() { 
return t ies; 

} 

Timer:: -Timer() { 

} 

I I get wall time in ties 

I I get combined processor time in ties 

69 

Timer::Timer 

Timer: :start 

10 

Timer ::stop 

Timer : :getCpuTime 

20 

Timer: :getProcessor· 

Timer: :get TicsU p 

Timer::getTics 

30 

Timer: :-Timer 



70 

Bibliography 

[Xen, 2007] (2007). Xen virualisation. Web. http: //www.xen.org. 

[Barczak and Johnson, 2006] Barczak, A. and Johnson, M. (2006). A new rapid feature ex­
traction method for computer vision based on momentsa new rapid feature extraction 
method for computer vision based on moments. In Proceedings of the Image and Vision 
Computing IVCNZ2006, pages 395- 400. 

[Barczak and Chemudugunta, 2006] Barczak, A. L. C. and Chemudugunta, R. (2006). Ex­
periments with a mobile cluster for real-time object detection. In Mukhopadhyay, S. C. 
and Gupta, G. S., editors, 3rd International Conference on Autonomous Robots and Agents 
(!CARA 2006 ), pages 303- 308, Palmerston orth, Z. 

[Barczak and Dadgostar, 2005] Barczak, A. L. C. and Dadgostar, F. (2005). Real-time hand 
tracking using a set of cooperative classifiers based on haar-like features. Research Letters 
in the Information and Mathematical Sciences, 5:29- 42. 

[Barczak et al., 2005a] Barczak, A. L. C., Dadgostar, F. , and Johnson, M. J. (2005a). Real­
time hand tracking using the viola and jones method. In SIP 2005, pages 336- 341, Honolulu , 
HI. 

[Barczak et al., 2005b] Barczak , A. L. C., Johnson, M. J., and Messom, C. H. (2005b). A 
mobile parallel platform for real-time object recognition. In ENZCon05, pages 153- 158, 
Auckland, NZ. 

[Barczak et al., 2003] Barczak, A. L. C., Messom, C. H. , and Johnson, M. J. (2003). Perfor­
mance characteristics of a cost-effective medium-sized beowulf cluster supercomputer. In 
LNCS 2660, pages 1050- 1059. Springer Verlag. 

[Bellard, 2007] Bellard, F. (2007). Qemu processor emulator. Web. 

[Bianchini et al., 2004] Bianchini, M., Maggini , M., Sarti , L. , and Scarselli, F. (2004). Re­
cursive neural networks for object detection. In Joint Conference on Neural Networks, 
volume 3, pages 1911- 1915. IEEE International. 

[Borman et al., 1999] Borman, D., Deering, S. , and Hinden, R. (1999). RFC 2675: IPv6 
Jumbograms. Technical report , etwork Working Group. 

[Buntinas et al., ] Buntinas, D., Dhabaleswar, Panda, K. , and Sadayappan, P. Fast nic-based 
barrier over myrinet/gm. 



BIBLIOGRAPHY 71 

[CiscoSyst ems, 2006] CiscoSystems (2006). Cisco Systems Manual on Internetworking. Cisco. 

[Combs et al. , 2004] Combs, H., Gudgin, M., Justice, J ., Kakivaya, G., Lindsey, D., Orchard, 
D., Regnier , A., Schlimmer, J ., Simpson, S. , Tamura, H ., Wright , D., and Wolf, K. (2004). 
Soap-over-udp. Technical report , Industry Consortium. 

[Creel, 2007] Creel, M. (2007). Parallel knoppix. Web. Create a HPC cluster in 5 minutes. 

[Crow, 1984] Crow, F . C . (1984) . Summed-area tables for texture mapping. ACM Computer 
Graphics, 18(3):207- 212. 

[Donaldson et al. ,] Donaldson, S. R. , Hill, J.M. D., and Skillcorn, D. B. Performance results 
for a reliable low-latency cluster communication protocol. 

[Fung and Mann, 2004] Fung, J. and Mann, S. (2004) . Using mult iple graphics cards as a 
general purpose parallel computer : Applications to computer vision. In 17th International 
Conference on Pattern Recognition. 

[Gerdelan et al. , 2007] Gerdelan, A. P., Johnson, M. , and Messom, C. H. (2007). Performance 
analysis of virtualized head nodes ut ilising cost-effective network attached storage. 

[Geusebroek and Seinstra, 2005] Geusebroek, J. and Seinstra, F . (2005). Ob-
ject recognition by a robot dog connected to a wide-area grid sys­
tem. In The International Conf erence on Mutimedia f3 Expo. IEEE. 
www.science.uva.nl/ m ark/ pub/ 2005/ GeusebroekICME05.pdf. 

[Gu and Grossman, 2005] Gu, Y. and Grossman, R. L. (2005). Optimizing udp-based proto­
col implementations. Third International Workshop on Protocols for Fast Long-Distance 
Networks. 

[Hall, 2007] Hall, B. (2007). Beej's guide to network p rogramming using internet sockets . 
Web . ht tp: / / beej.us/guide/bgnet / output / ht ml / singlepage/bgnet .html. 

[Huang, 2006] Huang, Z. (2006). View-oriented parallel programming. Technical Report 
OUCS-2006-08, University of Otago. htt p: //vodca.ot ago.ac.nz/ . 

[Intel, 2007] Intel (2007) . OpenCV CV Reference Manual. Intel. 

[Kloss, 2008] Kloss, G. (2008). Gaining Colour Stability in Live Image Capturing. In Pro­
ceedings of the 6th New Zealand Computer Science Research Student Conference. 

[Lienhart and Maydt , 2002] Lienhart , R. and Maydt, J . (2002). An extended set of haar-like 
features for rapid object detection. In Proceedings of the International Conference on Image 
Processing, pages 900- 903 , Rochester , USA. IEEE. 

[Liu et al. , 2002] Liu, P. X. , Meng, M. , Ye, X. , and Gu, J. (2002) . An udp-based protocol 
for internet robots . In Proceedings of the 4th World Congress on Intelligent Control and 
Automation, pages 59- 65 , Shanghai, P.R. China. IEEE, IEEE. 

[Majumder , 2004] Majumder, S. (2004). High performance mpi libraries for ethernet. Mas­
ter's thesis, Rice University. 



72 BIBLIOGRAPHY 

[Majumder and Rixner, 2004] Majumder, S. and Rixner, S. (2004). Comparing ethernet and 
myrinet for mpi communication. In LCR '04: Proceedings of the 7th workshop on Workshop 
on languages, compilers, and run-time support for scalable systems, pages 1- 7, ew York, 

1Y , USA. ACM. 

[Pass and Zabih, 1999] Pass, G. and Zabih, R. (1999). Comparing Images Using Joint His­
tograms. Journal of Multimedia Systems, 7(3):234- 24. 

[Ramachandran et al., 2003] Ramachandran, U., Nikhil, R. S., Rehg, J. M., Angelov, Y. , 
Paul, A. , Adhikari , S. , Mackenzie, K. M., Harel , N., and Knobe, K. (2003). Stampede: 
A cluster programming middleware for interactive stream-oriented applications. In IEEE 
Transactions on Parallel and Distributed Systems. 

[Schneider, 1982] Schneider, F. B. (1982). Synchronisation in distributed programs. ACM 
Transactions on Programming Languages and Systems, 4: 179- 195. 

[Tanenbaum, 1996] Tanenbaum, A. S. (1996). Computer Networks. Prentice Hall; 3rd edition 
(March 6, 1996) . 

[Tinetti and Barbieri, 2003] Tinetti , F. G. and Barbieri, A. (2003). An efficient implemen­
tation for broadcasting data in parallel applications over ethernet clusters. In AINA '03: 
Proceedings of the 17th International Conference on Advanced Information Networking and 
Applications, page 593, Washington, DC, USA. IEEE Computer Society. 

[van Engelen, 2003] van Engelen, R. A. (2003). Pushing the SOAP Envelope with Web Ser­
vices for Scientific Computing. In Proceedings of the International Conference on Web 
Services (ICWS), pages 346- 354, Las Vegas, V. 

[Viola and Jones, 2002] Viola, P. and Jones, M. (2002). Robust real-time object detection. 
International Journal of Computer Vision - to appear. 

[Vmware, 2007] Vmware (2007). Vmware. Web. http: //www.vmware.com. 

[Webb, 1993] Webb, J. A. (1993). Latency and bandwidth considerations in parallel robotics 
image processing. In Supercomputing '93: Proceedings of the 1993 ACM/IEEE conference 
on Supercomputing, pages 230- 239, New York, NY, USA. ACM Press. 

[Wilkinson and Allen, 1999] Wilkinson, B. and Allen, M. (1999). Parallel Programming: 
Techniques and Applications Using Networked Workstations and Parallel Computers. Pren­
tice Hall. 

[Yang et al., 2002] Yang, M.-H., Kriegman, D. J. , and Ahuja, . (2002) . Detecting faces 
in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
24(1) :34-58. 




