Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE SYNTHESIS AND PROPERTIES OF POLYETHER SUBSTITUTED OLIGOTHIOPHENES

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Chemistry

at Massey University, Palmerston North, New Zealand.

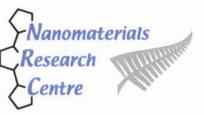
Daina Kim Grant

July 2003

Abstract

A number of novel dialkoxystyryl-substituted terthiophenes were synthesised as precursors to form conducting polymers. These compounds contained either crown ethers or polyether chains designed to complex metal cations, and polymerisable terthiophene moieties. Two isomeric cross-linked bis(terthiophene) crown ethers were also synthesised as monomers for conducting polymer synthesis, but could not be investigated further due to their insolubility. The solubility issue was circumvented by the formation of hemicrown compounds, containing two styrylterthiophene units linked by a polyether chain. Thiophene analogues of the crown ether, open-chain ether, bis(terthiophene) crown ether and hemicrown compounds were also successfully synthesised and characterised.

The response of the terthiophene crown compounds, open-chain compounds and hemicrowns to a large range of metal cations was investigated by UV and fluorescence spectroscopy. The results obtained from this work were consistent with complexation based on size-fit and charge density of ions, and with hard-soft-acid-base theory.


Chemical polymerisation of the terthiophene crown monomers and open-chain ether terthiophene compounds was carried out using FeCl₃. This led to the isolation of dimeric sexithiophene compounds in high yield. Characterisation of the pure sexithiophene derivatives showed that they were the product of regioselective dimerisation, caused by the asymmetric reactivity of the terthiophene-based monomers. This is believed to be due to uneven electron spin-density distribution, and theoretical calculations on the radical cation support this view. Producing dialkoxystyryl-substituted sexithiophenes by this synthetic route gave excellent yields of isomerically-pure product.

Chemical oxidation of terthiophene compounds using $Cu(CIO_4)_2$ was observed with UV/VIS/NIR spectroscopy. This allowed the observation and identification of absorption bands due to oxidised species. Reduction of these species led to sexithiophene dimers, as seen for chemical polymerisation using FeCl₃.

Electrochemical polymerisations of the terthiophene, thiophene and sexithiophene compounds were carried out by cyclic voltammetry. Those that formed adherent films were analysed by UV/VIS/NIR spectroscopy in both the neutral and oxidised form. The electrochemical and spectroscopic evidence again pointed to the formation of dimers as the primary product of oxidation from terthiophene-based monomers. The surface morphology of the films was investigated by scanning electron microscopy, and showed a variety of morphologies.

1

1

NANOMATERIALS RESEARCH CENTRE Private Bag 11 222, Palmerston North, New Zealand Telephone: 64 6 356 5919 Facsimile: 64 6 350 5612

CANDIDATE'S DECLARATION

This is to certify that the research carried out for my Doctoral thesis entitled "The Synthesis and Properties of Polyether Substituted Oligothiophenes" in the Institute of Fundamental Sciences, Massey University, Turitea, New Zealand is my own work and that the thesis material has not been used in part or in whole for any other qualification.

Candidate's Name: DAINA K. GRANT

Signature: The solution Date: 5/12/03

Te Kunenga ki Pūrehuroa

ν

NANOMATERIALS RESEARCH CENTRE Private Bag 11 222, Palmerston North, New Zealand Telephone: 64 6 356 5919 Facsimile: 64 6 350 5612

CERTIFICATE OF REGULATORY COMPLIANCE

This is to certify that the research carried out in the Doctoral Thesis entitled "The Synthesis and Properties of Polyether Substituted Oligothiophenes" in the Institute of Fundamental Sciences at Massey University, New Zealand:

- (a) is the original work of the candidate, except as indicated by appropriate attribution in the text and/or in the acknowledgements;
- (b) that the text, excluding appendices/annexes, does not exceed 100,000 words;
- (c) all the ethical requirements applicable to this study have been complied with as required by Massey University, other organisations and/or committees which had a particular association with this study, and relevant legislation.

Candidate's Name: DK.GRANT	Supervisor'	's Name: P. L. OFFICER
Signature: Toyo	Signature:	Defice
Date: 5/12/03	Date:	05/12/03

Te Kunenga ki Pūrehuroa

ix

Publications

Grant, D. K. (2002). "Synthesis and polymerisation of fully conjugated polyethersubstituted terthiophenes." <u>Synthetic Metals</u> **135-136C**: 101-102.

Burrell, A. K., D. L. Officer and D. K. Grant (2002). "Functionalised poly(terthiophenes)." <u>Synthetic Metals</u> 135-136C: 95-96.

Acknowledgements

Thank-you the management of Crop & Food Research for giving me the opportunity and the resources to undertake a PhD. In particular I would like to thank Dr Chris Downs for his unfailing support, for asking me how I was and genuinely caring about the reply.

To my chief supervisor Dr David Officer: this project wouldn't have gone ahead without your generous provision of financial support, equipment and space.

Thank-you to the staff and students of the Nanomaterials Research Centre and the Institute of Fundamental Sciences for long discussions that occasionally involved chemistry. In particular I would like to acknowledge Dr Wayne Campbell, who has made his friendship and chemical expertise freely available to me over many years. Thank-you also to Dr Gavin Collis and Dr Paul Plieger for teaching me the intricacies of pinball.

Thank-you to the support staff at both Massey University and Crop & Food Research (stores, workshop, electronics and administration) for doing what you could to help.

A special thank-you to Dr Simon Hall and Dr Keith Gordon for helpful discussions on electrochemistry and spectroscopy.

Thank-you to the staff of the Intelligent Polymer Research Institute in Wollongong and Industrial Research Ltd in Wellington for the opportunity to undertake research using your facilities and expertise.

Finally to my family and friends, especially my mother Lorraine, Koryn & Helga, Andy & Rachel, Jobee and Blake: thank-you for graciously accepting my unavailability at times during the course of this research and loving me anyway, and also for distracting me when I needed a break!

Table of Contents

Abbreviations	xix
Index of Figures	xxi
Index of Synthetic Schemes	xxix
Index of Tables	xxxi
Index of Compounds	xxxiii

1 INTR	ODUCTION AND LITERATURE REVIEW	1
1.1	Research Objectives	2
1.2	Crown Ethers	3
1.3	Conducting Polymers	6
1.3	1 Polymer growth	7
1.3	2 Charge transport in conducting polymers	8
	3 Functionalised polymers based on thiophene	
1.4	Past Work on Ether Functionalised Thiophenes	15
1.4	1 Open-chain ethers	15
1.4	2 Psuedo crown ethers	21
1.4	3 Alkyl spaced crown ethers	24
1.4	4 Directly bonded crown ethers	27
1.5	Past Work on Vinyl-Substituted Polythiophenes	32
1.6	Vinyl Linked Terthiophene Crown Ether Target Molecules	34

2 SYNTHESIS OF ETHER FUNCTIONALISED (TER)THIOPHENES _____ 35

2.1	Literature Synthetic Methods	37
2.1.1	-	37
2.1.2	• •	44
2.1.3	B The synthesis of vinyl-substituted thiophenes	45
2.2	Synthetic Studies Toward Monostyryl (Ter)thiophene Crowns	47
2.2.1	Synthesis of crown phosphonium salts	
2.2.2	Wittig reactions using crown phosphonium salts	50
2.2.3	Synthesis of crown phosphonates	53
2.2.4	Horner-Emmons reactions using phosphonates	55
2.2.5	Synthesis of crown-functionalised thiophenes	58
2.3	Synthesis of Open-Chain Ether Functionalised (Ter)thiophenes _	62
2.3.1	Open-chain terthiophenes	62
2.3.2	2 Open-chain thiophenes	68

3	SYNT	HESIS OF ETHER FUNCTIONALISED BIS(TER)THIOPHENES	73
	3.1	Literature Synthetic Methods	76
	3.2	Synthesis of Bis(styryl (Ter)thiophene) Crowns	77
	3.2.1	Synthesis of crown bis(phosphonium salt) and bis(phosphonate)	_77
	3.2.2	Wittig/Horner-Emmons reactions using mixed bis(phosphonium salt)s and	
		bis(phosphonate)s	_81
	3.2.3	Synthesis of syn-bis(formylbenzo)-18-crown-6 XLV	_83
	3.2.4	Horner-Emmons reaction using <i>syn</i> -bis(formylbenzo)-18-crown-6	_88
	3.2.5	Synthesis of anti-bis(formylbenzo)-18-crown-6 XLVI	_90
	3.2.6	Horner-Emmons reaction using anti-bis(formylbenzo)-18-crown-6	_94
	3.2.7	Formation of bis(styryl thiophene) crowns	_96
	3.3	Synthesis of (Ter)thiophene Hemicrowns	98
	3.3.1	Synthesis of terthiophene hemicrowns	98
	3.3.2	Synthesis of thiophene hemicrowns LXIV - LXVI	103
	3.4	Synthetic Summary1	105

1 | | |

4	SPECTRO	SCOPIC ION BINDING STUDIES	107
	4.1 UV/	VIS Spectroscopy	_108
	4.1.1	Literature review	_108
	4.1.1.1		_108
	4.1.1.2	Effect of cation complexation on absorbance of functionalised crown ethers	110
	4.1.1.3	Effect of cation complexation on polyether-substituted polythiophenes	_114
	4.1.2	UV/VIS spectra of polyether-substituted oligothiophenes	
	4.1.2.1		
	4.1.2.2		
	4.1.2.3		
	4.1.3	Effect of cation complexation on terthiophene monomer UV/VIS spectra_	_124
	4.1.3.1		
	4.1.3.2		_127
	4.2 Fluc	prescence Spectroscopy	_131
	4.2.1	Literature review	_131
	4.2.1.1	Fluorescence of substituted crown ethers	_131
	4.2.1.2	Fluorescence of substituted terthiophenes	_133
	4.2.1.3	Fluorescence of crown ether-substituted thiophenes	_135
	4.2.2	Fluorescence of polyether-substituted oligothiophenes	_137
	4.2.3	Effect of cation complexation on terthiophene monomer fluorescence	
		spectra	_139
	4.2.3.1	Experimental procedure	
	4.2.3.2	Discussion	_142
	4.3 Sun	1mary	145

5	CHEMICA	L AND ELECTROCHEMICAL POLYMERISATION	147
	5.1 Che	mical Polymerisation	148
	5.1.1	Literature review	148
	5.1.2	FeCl ₃ polymerisation of terthiophene monomers	
	5.1.3	Cu(ClO ₄) ₂ polymerisation of terthiophene monomers	
	5.2 Elec	tropolymerisation	168
	5.2.1	Cyclic voltammetry in a three-electrode cell	168
	5.2.2	Experimental procedures	172
	5.2.3	Electropolymerisation of reference compounds	175
		Terthiophene	177
	5.2.3.2	Styryl terthiophene LXXVI	179
	5.2.3.3	Methoxystyryl terthiophene LXXVII	182
	5.2.4	Electropolymerisation of dialkoxystyryl-substituted terthiophene	
		compounds	188
	5.2.4.1		
	5.2.4.2		192
	5.2.4.3		
	5.2.4.4		201
	5.2.4.5		210
	5.2.4.6		218
	5.2.5	Electropolymerisation of thiophene monomers	229
	5.2.5.1	Electropolymerisation of dialkoxystyryl-substituted thiophene	220
	5 2 5 2	compounds	229
	5.2.5.2		
	5.2.5.3		
	5.2.6 5.2.7	Electropolymerisation of sexithiophene compounds Summary	236 239
	5.2.1	Summary	239

6 CONCLUSIONS ______ 241

7 EXPERIMENTAL DETAILS	2	45
	2	Ŧ J

References	343

, 1 }

Abbreviations

AFM	atomic force microscopy
Anal.	analysis
aq.	aqueous
ArC	aromatic carbon atom
ArH	aromatic proton
AU	absorbance units
с.	concentrated
ca.	circa
calc	calculated
CV	cyclic voltammetry or cyclic voltammogram
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DMF	dimethylformamide
Ε	potential
Em	emission
ESR	electron spin resonance
Et	ethyl
EtOH	ethanol
EtOH eq.	ethanol equivalents
eq.	equivalents
eq. Ex	equivalents excitation
eq. Ex FAB-MS	equivalents excitation fast atom bombardment mass spectrometry
eq. Ex FAB-MS Fig.	equivalents excitation fast atom bombardment mass spectrometry Figure
eq. Ex FAB-MS Fig. GPC	equivalents excitation fast atom bombardment mass spectrometry Figure gel permeation chromatography
eq. Ex FAB-MS Fig. GPC HOMO	equivalents excitation fast atom bombardment mass spectrometry Figure gel permeation chromatography highest occupied molecular orbital
eq. Ex FAB-MS Fig. GPC HOMO HRMS	equivalents excitation fast atom bombardment mass spectrometry Figure gel permeation chromatography highest occupied molecular orbital high-resolution mass spectrometry
eq. Ex FAB-MS Fig. GPC HOMO HRMS h	equivalents excitation fast atom bombardment mass spectrometry Figure gel permeation chromatography highest occupied molecular orbital high-resolution mass spectrometry hours
eq. Ex FAB-MS Fig. GPC HOMO HRMS h IR	equivalents excitation fast atom bombardment mass spectrometry Figure gel permeation chromatography highest occupied molecular orbital high-resolution mass spectrometry hours infrared
eq. Ex FAB-MS Fig. GPC HOMO HRMS h IR IR	equivalents excitation fast atom bombardment mass spectrometry Figure gel permeation chromatography highest occupied molecular orbital high-resolution mass spectrometry hours infrared indium tin oxide

LUMO	lowest unoccupied molecular orbital
μL	microlitre
mA	milliampere
MALDI-MS	matrix assisted laser desorption of ions mass spectrometry
max	maximum
Me	methyl
MeCN	acetonitrile
MeOH	methanol
min	minutes
mL	millilitre
mM	millimole/litre
mmol	millimole
mol	mole
NIR	near infrared
NMR	nuclear magnetic resonance
Ph	phenyl
SEM	scanning electron microscopy or scanning electron micrograph
TBAP	tetrabutylammonium perchlorate
ThC	thienyl carbon atom
ThH	thienyl proton
THF	tetrahydrofuran
r.t.	room temperature
sat.	saturated
TLC	thin layer chromatography
UV	ultraviolet
ν	scanning speed
V	volt
VIS	visible

Index of Figures

Figure	2	Page
1.1	Examples of crown ethers	3
1.2	Crown ether – metal ion complexation	4
1.3	Schematic representation of 2:1 and 3:2 'sandwich' complexes	4
1.4	Examples of conjugated polymers	6
1.5	Redox activity of polythiophene	7
1.6	Polymer growth mechanism including oxidation, radical cation	7
	coupling and deprotonation	
1.7	Degeneracy of poly(trans-acetylene) and non-degeneracy of	8
	polythiophene ground states	
1.8	Thiophene	10
1.9	Coupling orientations of 3-substituted thiophenes	11
1.10	Regioregular polymers from disubstituted bithiophenes and	12
	terthiophenes	
1.11	Regioselective chemical polymerisations by Gallazzi and	13
	McCullough, and Chen and Lere-Porte	
1.12	Functionalisation space of polythiophene	14
1.13	Alkoxy substituted polythiophenes	16
1.14	3-Alkoxy substituted thiophenes synthesised by Roncali et al.	17
1.15	Cyclic voltammograms of poly[3-(3,6-dioxaheptyl)thiophene]	18
	in LiClO₄ and TBAP	
1.16	Heteroatom substituted polythiophenes synthesised by	18
	McCullough et al.	
1.17	3-Alkoxy and 3-alkoxy-4-methylthiophenes synthesised by	19
	Feldhues et al	
1.18	Poly(3-alkoxythiophenes) studied by Chen and Tsai	20
1.19	Alkoxy chain substituted polythiophenes (Scheib & Bauerle)	20
1.20	Formation of psuedo crown ether cavities during polymerisation	21
1.21	Oxyethylene linked bis(bithiophene) monomers of Roncali and	22
	Scheib	

1.22	Oligo(oxyethylene) bridged EDOT monomers	22
1.23	Metal ion induced twisting of bithiophene monomer	23
1.24	Macrocyclic psuedo-crown ether cavities synthesised by	24
	Fabre <i>et al</i> .	
1.25	Alkoxy spaced crowns synthesised by Bauerle and Scheib	25
1.26	Poly(3-alkoxy-4-methylthiophene)s	26
1.27	Planar and perpendicular bithiophene monomers designed by	26
	Sannicolo et al.	
1.28	Crown ether functionalised thiophenes synthesised by	27
	Bicknell et al.	
1.29	Directly π -conjugated monomers of Bauerle and Scheib	28
1.30	Crown ether functionalised thiophenes studied by Berlin et al.	29
1.31	Polymers synthesised by Yamamoto et al.	30
1.32	Crown containing copolymers by Bouachrine et al.	31
1.33	2- and 3-substituted styrylthiophenes	32
1.34	Nitrostyryl terthiophene synthesised by Cutler et al.	33
1.35	Vinyl linked terthiophene crown ether target molecules	34
2.1	Target compounds styryl-15-crown-5 and styryl-18-crown-6	36
2.2	terthiophene	27
2.2	Heck arylation of olefins	37
2.3	Synthesis of vinyl-substituted crown ethers <i>via</i> alcohol	38
2.4	dehydration	20
2.4	Formation of vinyl-substituted dibenzo-18-crown-6	38
2.5	Vinylation of benzo-15-crown-5 <i>via</i> Knoevenagel condensation	39
2.6	Extension of K noevenagel condensation method	39
2.7	Claisen-Schmidt condensation of crown derivatives	40
2.8	Formation of mono- and bis-crown ether styryl dyes according to	41
	the method of Gromov <i>et al</i> .	
2.9	Formation of stilbene bis-crown ethers	42
2.10	Wittig reaction between ferrocene phosphonium salt and	43
	formylbenzo-15-crown-5	

2.11	Formation of vinyl substituted crown via Wittig (or Horner	44
	Emmons) reaction	
2.12	Synthesis of 3'-vinyl-2,2':5',2"-terthiophene via Grignard	44
	chemistry	
2.13	Wittig/Horner-Emmons reactions used to synthesise vinyl-	45
	substituted terthiophenes	
2.14	The use of Wittig reactions to synthesise vinyl thiophenes	46
2.15	¹ H NMR spectrum of styryl-15-crown-5 terthiophene I	52
2.16	'H NMR spectrum for benzo-15-crown-5 phosphonate XIII	55
2.17	Fully assigned ¹ H NMR spectrum of styryl-15-crown-5	60
	thiophene XV	
2.18	Open-chain polyether styryl-substituted terthiophenes targeted	62
2.19	Formation of open-chain ether functionalised terthiophenes	63
2.20	¹ H NMR spectra of open-chain terthiophenes XXIII - XXV	66
	(ether region)	
2.21	Comparison of aromatic regions in 'H NMR spectra of	67
	compounds XXIII and XXVI	
2.22	Styryl terthiophene reference compounds	68
2.23	¹ H NMR assignment for open-chain thiophene XXX	70
3.1	Potential for actuation effect caused by metal complexation	74
3.2	The two isomeric forms of bis(styryl terthiophene)-18-crown-6	75
3.3	MALDI-MS of <i>syn</i> -bis(styryl terthiophene)-18-crown-6 XVI after acid wash	89
3.4	Isomeric terthiophene hemicrowns targeted	98
3.5	Assigned ¹ H NMR spectrum of isovanillin-derived terthiophene	101
5.5	hemicrown LXI	101
3.6	Comparison of ¹ H NMR spectra for terthiophene hemicrowns	102
5.0		102
	LXI, LXII and LXIII	
4.1	The structure of terthiophene	108
4.2	Crown ether styryl dyes	111
4.3	Aza crown ether styryl dyes investigated by UV/VIS spectroscopy	112

4.4	Polyether substituted polythiophenes investigated by UV/VIS	115
	spectroscopy	
4.5	Ionochromic polythiophenes synthesised by Marsella et al.	116
4.6	Crown ether functionalised (ter)thiophenes	117
4.7	Absorbance spectra of terthiophene monomers in MeCN	118
4.8	Solution and thin film UV/VIS spectra of 18-crown-6	123
	terthiophene dimer LXVII	
4.9	Change in absorbance maxima caused by addition of metal	126
	cations to terthiophene monomers	
4.10	Styryl-15-crown-5 terthiophene I before and after addition of Mg^{2+}	128
4.11	Crown ether styryl dyes of Barzykin and Shin	132
4.12	Styryl-substituted aza crown ethers	133
4.13	Benzo-crown ether fluorophore synthesised by Cielen et al.	135
4.14	Pyridino crown ethers containing thiophene-based fluorophore(s)	136
4.15	Absorbance and fluorescence spectra for polyether-substituted	138
	terthiophene XXVII and polyether-substituted sexithiophene	
	LXIX in CH_2Cl_2	
4.16	Absorption and fluorescence spectra of styryl-15-crown-5	140
	terthiophene I before and after addition of Mn^{2+}	
4.17	Fluorescence quenching caused by addition of metal cations to	141
	terthiophene monomers	
5 1	Chamical relevances of 15 groups 5 to this phase to form	151
5.1	Chemical polymerisation of 15-crown-5 terthiophene to form	151
5.2	head-to-tail, head-to-head or tail-to-tail linked dimers	150
5.2	¹ H NMR spectra (aromatic region) of styryl-15-crown-5	152
	terthiophene I and 15-crown-5 terthiophene dimer LXVII	
5.3	Fully assigned ¹ H NMR spectrum for terthiophene dimer LXXIII	155
5.4	Potential oligomers formed from chemical polymerisation of	159
	terthiophene hemicrown LXI	
5.5	Oxidation and reduction of methoxystyryl terthiophene LXXVII	162
	as observed by UV/VIS spectroscopy	
5.6	Schematic representation of a three electrode cell	169

5.7	Applied voltage, measured current and final cyclic	170
	voltammogram for ferrocene	
5.8	Cyclic voltammetry for terthiophene	175
5.9	Post-polymerisation CVs of terthiophene in 0.1 M TBAP and	176
	0.1 M LiClO ₄	
5.10	Growth CV and surface morphology of terthiophene film on	177
	ITO-coated mylar	
5.11	UV/VIS/NIR spectra of poly(terthiophene) in the neutral and	178
	oxidised forms	
5.12	Cyclic voltammetry for styryl terthiophene LXXVI	179
5.13	Post-polymerisation CVs for styryl terthiophene LXXVI in	180
	0.1 M TBAP and 0.1 M LiClO ₄	
5.14	Growth CV and surface morphology of styryl terthiophene	181
	LXXVI film on ITO-coated mylar	
5.15	UV/VIS/NIR spectra of poly(styryl terthiophene) in the oxidised	182
	form	
5.16	Cyclic voltammetry for methoxystyryl terthiophene LXXVII	183
5.17	Post-polymerisation CVs of methoxystyryl terthiophene LXXVII	184
	in 0.1 M TBAP and 0.1 M LiClO ₄	
5.18	Growth CV and SEM for methoxystyryl terthiophene LXXVII	186
	film	
5.19	UV/VIS/NIR spectra of poly(methoxystyryl terthiophene) in the	187
	neutral and oxidised forms	
5.20	Cyclic voltammetry for dimethoxystyryl terthiophene XXIX	188
5.21	Post-polymerisation CVs of dimethoxystyryl terthiophene XXIX	190
	in 0.1 M TBAP and 0.1 M LiClO ₄	
5.22	Growth CV and SEM of dimethoxystyryl terthiophene XXIX film	191
	on ITO-coated mylar	
5.23	UV/VIS/NIR spectra of poly(dimethoxystyryl terthiophene) in	192
	the neutral and oxidised forms	
5.24	Cyclic voltammetry for styryl-15-crown-5 terthiophene I	193

5.25	Post-polymerisation CVs of styryl-15-crown-5 terthiophene I in	195
	0.1 M TBAP and 0.1 M LiClO ₄	
5.26	Growth CV for styryl-15-crown-5 terthiophene I	196
5.27	Post-polymerisation CVs of styryl-15-crown-5 terthiophene I in	197
	0.1 M TBAP and 0.1 M LiClO ₄	
5.28	Growth CV and SEM of styryl-15-crown-5 terthiophene I film	198
5.29	UV/VIS/NIR spectra of styryl-15-crown-5 terthiophene I in the	199
	neutral and oxidised forms	
5.30	Overoxidation of styryl-15-crown-5 terthiophene I	200
5.31	Cyclic voltammetry for styryl-18-crown-6 terthiophene II	200
5.32	Cyclic voltammetry for open-chain terthiophene XXIII	202
5.33	Post-polymerisation CVs of open-chain terthiophene XXIII in	203
	0.1 M TBAP and 0.1 M LiClO ₄	
5.34	UV/VIS/NIR spectra of open-chain terthiophene XXIII in the	204
	neutral and oxidised forms	
5.35	Growth CV and SEM image of XXVI film on ITO-coated mylar	205
5.36	Cyclic voltammetry for open-chain terthiophene XXVI	206
5.37	Post-polymerisation CVs of open-chain terthiophene XXVI in	207
	0.1 M TBAP and 0.1 M LiClO ₄	
5.38	Growth CV and SEM image of open-chain terthiophene XXVI	208
	film on ITO-coated mylar	
5.39	UV/VIS/NIR spectrum of poly(XXVI) in the oxidised form	209
5.40	Cyclic voltammetry for open-chain terthiophene XXVII	209
5.41	Cyclic voltammetry for isovanillin hemicrown LXI	211
5.42	Post-polymerisation CVs of hemicrown LXI in 0.1 M TBAP and	213
	0.1 M LiClO ₄	
5.43	Growth CV and surface morphology of isovanillin hemicrown	215
	LXI film from 1:1 MeCN:CH ₂ Cl ₂	
5.44	Growth CV and scanning electron micrograph of isovanillin	216
	hemicrown LXI film grown from CH_2Cl_2	
5.45	Schematic diagram of terthiophene hemicrown surface deposition	217
5.46	UV/VIS/NIR spectra of hemicrown LXI in the neutral and	218
	oxidised forms	

5.47	Cyclic voltammetry for styryl-15-crown-5 terthiophene:	219
	terthiophene copolymer	
5.48	Post-polymerisation CVs of 15-crown-5:terthiophene copolymer	220
	in 0.1 M TBAP and 0.1 M LiClO ₄	
5.49	Growth CV and surface morphology of 15-crown-5 terthiophene:	221
	terthiophene copolymer film on ITO-coated mylar	
5.50	UV/VIS/NIR spectra of styryl-15-crown-5 terthiophene:	222
	terthiophene copolymer in the neutral and oxidised forms	
5.51	Cyclic voltammetry for 15-crown-5 terthiophene:terthiophene	223
	hemicrown copolymer	
5.52	Post-polymerisation CVs of 15-crown-5 terthiophene: hemicrown	224
	copolymer in 0.1 M TBAP and 0.1 M LiClO ₄	
5.53	Growth CV and surface morphology of 15-crown-5 terthiophene:	225
	hemicrown copolymer film on ITO-coated mylar	
5.54	UV/VIS/NIR spectra of styryl-15-crown-5 terthiophene:	226
	hemicrown:copolymer in the neutral and oxidised forms	
5.55	Cyclic voltammetry for styryl-15-crown-5 thiophene XV	227
5.56	Cyclic voltammetry for thiophene hemicrown LXV	231
5.57	Cyclic voltammetry for styryl-15-crown-5 thiophene:	232
	terthiophene copoly mer	
5.58	Post-polymerisation CVs of terthiophene:thiophene crown	233
	copolymer in 0.1 M TBAP and 0.1 M LiClO ₄	
5.59	Growth CV and SEM of thiophene crown:terthiophene copolymer	234
	on ITO-coated mylar	
5.60	UV/VIS/NIR spectra of thiophene crown:terthiophene copolymer	235
	in the neutral and oxidised forms	
5.61	Cyclic voltammetry for open-chain sexithiophene LXXIII	237
5.62	Cyclic voltammetry for open-chain sexithiophene LXXII	237
5.63	Cyclic voltammetry for open-chain sexithiophene LXX	238

Index of Synthetic Schemes

Schen	ne	Page
1	Alternative routes toward target compounds I and II	48
2	Formation of benzo-crown phosphonium salts III and IV	49
3	Wittig reactions between phosphonium salts III-IV and	51
	nitrobenzaldehyde	
4	Wittig reactions between phosphonium salts III-IV and	53
	terthiophene aldehyde	
5	Formation of benzo-crown phosphonates XIII and XIV	54
6	Horner-Emmons reactions between phosphonates XIII-XIV and	57
	terthiophene aldehyde	
7	Formation of styryl terthiophene crowns I and II from	58
	terthiophene phosphonate	
8	Formation of styryl-15-crown-5 thiophene XV	59
9	Synthesis of styryl-18-crown-6 thiophene XVI	61
10	Formation of tosylated glycols according to Lauter et al.	63
11	Formation of polyether-substituted benzaldehydes XVII-XXII	64
12	Horner-Emmons reaction to form open-chain terthiophenes	65
13	Synthesis of dimethoxystyryl terthiophene	68
14	Open-chain ether functionalised thiophenes XXX-XXXV	69
15	Synthesis of dimethoxystyryl thiophene	71
16	Alternative routes toward target crown linked bis(terthiophene)s	78
	XXXVII and XXXVIII	
17	Formation of syn/anti isomeric mixture of crown	79
	bis(phosphonium salt)s XXXIX and bis(phosphonate)s XL	
18	Wittig-type reactions between disubstituted crowns XXXIX-XL	83
	and 4-nitrobenzaldehyde	
19	Alternative routes toward syn-bis(formylbenzo)-18-crown-6 XLV	84
20	Products formed from attempted demethylation of 1,5-bis(2'-	85
	methoxy-4'-formylphenoxy)-3-oxapentane XLIX	

21	$S_N 2$ and $S_N Ar$ reactions between the thioethoxide ion and a	86
	substituted benzaldehyde	
22	Horner-Emmons reaction between dialdehyde XLV and	88
	terthiophene phosphonate	
23	Formation of anti-bis(formylbenzo)-18-crown-6 XLVI	92
24	Products formed from demethylation of 1-(2'-methoxy-4'-	94
	formylphenoxy)-5-(2"-methoxy-5"-formylphenoxy)-3-	
	oxapentane LIV	
25	Horner-Emmons reaction between dialdehyde XLVI and	95
	terthiophene phosphonate	
26	Formation of syn-bis(styryl thiophene)-18-crown-6 LIX	96
27	Synthesis of anti-bis(styryl thiophene)-18-crown-6 LX	97
28	Formation of bis(terthiophene) hemicrowns LXI-LXIII	99
29	Synthesis of bis(thiophene) hemicrowns LXIV-LXVI	104

Index of Tables

Table		Page
4.1	Crown ether cavity sizes	111
4.2	Metal cation ionic diameters	112
4.3	Solution absorbance maxima of terthiophene monomers	120
4.4	Solution absorbance maxima of thiophene monomers	121
4.5	Solution and solid-state absorbance maxima of terthiophene	122
	dimers	
4.6	Misono softness values for metal cations	129
4.7	Fluorescence data for terthiophene and sexithiophene monomers	137
	obtained in CH ₂ Cl ₂	
5.1	Calculated spin density values for styryl-substituted	157
	terthiophenes	
5.2	Oxidation and reduction absorbance data for terthiophene	161
	monomers treated with $Cu(ClO_4)_2$ and hydrazine	
5.3	Absorption maxima for electrochemically produced films and	227
	chemically produced dimer films	
5.4	Peak oxidation and reduction potentials obtained on electro-	228
	polymerisation by cyclic voltammetry over the range ± 1.0 V	

Index of Compounds

For structures and systematic names of all compounds, refer to Chapter 7. A fold-out reference guide to the structures of terthiophene- and sexithiophene-based compounds is provided inside the back cover.

Ι	styryl-15-crown-5 terthiophene
II	styryl-18-crown-6 terthiophene
III	benzo-15-crown-5 phosphonium salt
IV	benzo-18-crown-6 phosphonium salt
V	formylbenzo-15-crown
VI	formylbenzo-18-crown-6
VII	hydroxymethylbenzo-15-crown-5
VIII	hydroxymethylbenzo-18-crown-6
IX	chloromethylbenzo-15-crown-5
X	chloromethylbenzo-18-crown-6
XI	nitrostyryl-15-crown-5
XII	nitrostyryl-18-crown-6
XIII	benzo-15-crown-5 phosphonate
XIV	benzo-18-crown-6 phosphonate
XV	styryl-15-crown-5 thiophene
XVI	styryl-18-crown-6 thiophene
XVII	isovanillin short-chain benzaldehyde
XVIII	isovanillin medium-chain benzaldehyde
XIX	isovanillin long-chain benzaldehyde
XX	vanillin short-chain benzaldehyde
XXI	vanillin medium-chain benzaldehyde
XXII	vanillin long-chain benzaldehyde
XXIII	isovanillin short-chain terthiophene
XXIV	isovanillin medium-chain terthiophene
XXV	isovanillin long-chain terthiophene
XXVI	vanillin short-chain terthiophene

XXVII	vanillin medium-chain terthiophene
XXVIII	vanillin long-chain terthiophene
XXIX	dimethoxystyryl terthiophene
XXX	isovanillin short-chain thiophene
XXXI	isovanillin medium-chain thiophene
XXXII	isovanillin long-chain thiophene
XXXIII	vanillin short-chain thiophene
XXXIV	vanillin medium-chain thiophene
XXXV	vanillin long-chain thiophene
XXXVI	dimethoxystyryl thiophene
XXXVII	syn-bis(styryl terthiophene)-18-crown-6
XXXVIII	anti-bis(styryl terthiophene)-18-crown-6
XXXIX	18-crown-6 bisphosphonium salt (isomeric mixture)
XL	18-crown-6 bisphosphonate (isomeric mixture)
XLI	bis(formylbenzo)-18-crown-6 (isomeric mixture)
XLII	bis(hydroxymethylbenzo)-18-crown-6 (isomeric mixture)
XLIII	bis(chloromethylbenzo)-18-crown-6 (isomeric mixture)
XLIV	bis(nitrostyryl)-18-crown-6 (isomeric mixture)
XLV	syn-bis(formylbenzo)-18-crown-6
XLVI	anti-bis(formylbenzo)-18-crown-6
XLVII	isovanillin methoxy hemicrown
XLVIII	isovanillin hydroxy hemicrown
XLIX	vanillin methoxy hemicrown
L	vanillin hydroxy hemicrown
LI	4-ethylsulfanyl-3-hydroxy-benzaldehyde
LII	3-hydroxy-4-[2-(2-hydroxy-ethoxy)-ethoxy]-benzaldehyde
LIII	3-[2-(2-chloro-ethoxy)-ethoxy]-4-methoxy-benzaldehyde
LIV	mixed methoxy hemicrown
LV	mixed hydroxy hemicrown
LVI	4-12-(2-chloro-ethoxy)-ethoxy1-3-methoxy-benzaldehyde
LVII	4-ethylsulfanyl-3-methoxy-benzaldehyde
LVIII	4-hydroxy-3- 2-(2-hydroxy-ethoxy)-ethoxy -benzaldehyde
LIX	syn-bis(styryl thiophene)-18-crown-6

1

LX	anti-bis(styryl thiophene)-18-crown-6
LXI	isovanillin terthiophene hemicrown
LXII	vanillin terthiophene hemicrown
LXIII	mixed terthiophene hemicrown
LXIV	isovanillin thiophene hemicrown
LXV	vanillin thiophene hemicrown
LXVI	mixed thiophene hemicrown
LXVII	15-crown-5 terthiophene dimer
LXVIII	18-crown-6-terthiophene dimer
LXIX	isovanillin short-chain terthiophene dimer
LXX	isovanillin medium-chain terthiophene dimer
LXXI	isovanillin long-chain terthiophene dimer
LXXII	vanillin short-chain terthiophene dimer
LXXIII	vanillin medium-chain terthiophene dimer
LXXIV	vanillin long-chain terthiophene dimer
LXXV	dimethoxystyryl terthiophene dimer
LXXVI	styryl terthiophene
LXXVII	methoxystyryl terthiophene
LXXVIII	styryl terthiophene dimer
LXXIX	methoxystyryl terthiophene dimer

i