Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. THE STRUCTURE OF DOTHISTROMIN

A Thesis

Presented to Massey University in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy

> by R.T. GALLAGHER

Massey University

July 1971

To Ruth,

and Tracey and David

ABSTRACT

The fungus <u>Dothistroma pini</u> Hulbary is a needle pathogen of <u>Pinus radiata</u> and other pines, producing a necrotic disease commonly known as Dothistroma needle blight. The fungus is widely distributed in major pine forests throughout the world; it was reported in New Zealand on P. radiata in 1964.

The species <u>P</u>. <u>radiata</u>, <u>P</u>. <u>ponderosa</u>, and <u>P</u>. <u>nigra</u> (laricio) are all grown extensively in New Zealand and unfortunately are all highly susceptible to the disease. Because forestry plays an important role in the New Zealand economy, the disease is of economic significance to New Zealand. The disease can be controlled by spraying with insoluble compounds of copper.

Following a suggestion that <u>D</u>. <u>pini</u> might produce a toxin responsible for host cell death, a red pigment was isolated from <u>D</u>. <u>pini</u> cultures and shown to be toxic to <u>Chlorella pyrenoidosa</u>, a unicellular green alga. This thesis is concerned with a detailed investigation into the nature and characterisation of the red pigment.

<u>D. pini</u> was cultured in the laboratory on an aqueous malt medium, and red pigment extracted from the cultures and purified by thin layer chromatography was shown by mass spectroscopy to be a mixture of two closely related compounds of molecular formula $C_{18}H_{12}O_9$ and $C_{18}H_{12}O_8$. The former compound which was present in greater amount, was named dothistromin, and the latter was named deoxydothistromin. Both dothistromin and deoxydothistromin were shown to be present in extracts of <u>D. pini</u> infected <u>P. radiata</u> needles.

A detailed chemical investigation using chemical reactions (including the classical degradative technique of zinc dust distillation), derivative formation, infrared spectroscopy, electronic absorption spectroscopy, nuclear magnetic resonance spectroscopy, and mass spectroscopy, allowed elucidation of the structure of dothistromin. Dothistromin was shown to be a tri- α -hydroxyanthraquinone onto which was fused a substituted tetrahydrodifuro ring system.

A major feature of the structure of dothistromin is the substituted tetrahydrofuro [2,3-b] benzofuran moiety. Fungal metabolites known to incorporate this structural feature include the toxic and potently carcinogenic aflatoxins, and the carcinogenic sterigmatocystin. A discussion on the possible carcinogenicity of dothistromin, its co-metabolites, and artefacts is included.

The strong green-yellow fluorescence of solutions of the red pigment and dothistromin, when irradiated with ultraviolet light is attributable to the 1,4-dihydroxyanthraquinone chromophoric nucleus of dothistromin.

Another important structural feature of dothistromin is the reactive hemiacetal group, allowing dothistromin to undergoe facile acid catalysed mono-alkylation and mono-acetylation.

The probability that in solution dothistromin exists as a complex equilibrium mixture, was discussed.

The mass spectrum of dothistromin shows a characteristic loss of the formyl radical CHO[•] (m/e 29), and the neutral fragment C_2H_4O (m/e 44). The same loss of a formyl radical, and a homologous neutral fragment was also shown by a number of dothistromin derivatives. Two fragmentation schemes were proposed to rationalise the mass-spectral fragmentation of dothistromin.

During the course of the investigation, a number of crystalline, optically active derivatives of dothistromin were prepared; these included dothistromin penta-acetate and dothistromin ethyl ether tetra-acetate. The structure and absolute configuration of a crystalline heavy atom derivative of dothistromin was determined by an x-ray crystallographic diffraction study. This confirmed the structures proposed in this thesis, and also allowed the absolute configuration of the cis-fused furo rings of dothistromin to be deduced.

Deoxydothistromin was assigned one of two structures, and the nature of other co-metabolites was briefly considered. The synthesis and biosynthesis of dothistromin was also discussed.

Acknowledgements

I wish to express my sincerest thanks to my supervisor, Professor R. Hodges, for helpful discussion and encouragement throughout the course of this work, and for giving up so much of his valuable time to instruct me in the technique of mass spectroscopy.

I am indebted to Professor R.D. Batt for arranging the project for this thesis.

My thanks to Dr. K.W. Jolley (and, earlier, Dr. D.F.S. Natusch of the Applied Chemistry Division, D.S.I.R.) for running NMR spectra.

To various other members of the academic and technical staff of the Department of Chemistry and Biochemistry of Massey University, I express my gratitude, for useful discussion and assistance.

I would like to express my appreciation to Dr. C. Bassett and Miss M. Buchanan of the Forest Research Institute, Rotorua, and Mr. P.J. Brunt, for considerable help and advice on various aspects of D. pini culture.

I thank Professor T.N. Waters, his wife Dr. J.M. Waters, and Mr. C.A. Bear, of the Department of Chemistry, University of Auckland, for the X-ray diffraction study which they carried out on a derivative of dothistromin prepared during this work.

Finally, I would like to thank Miss J. Thompson, who typed this thesis.

(vi)

TABLE OF CONTENTS

		Page
ABSTRACT		(iii)
ACKNOWLED	GEMENTS	(vi)
TABLE OF	CONTENTS	(wii)
LIST OF F	IGURES	(_x)
LIST OF S	CHEMES	(xi)
LIST OF T	ABLES	(xii)
	TON	1
	ND DESCURATION	1.
RESULTS A	ND DISCUSSION	4
Chap. 1	ISOLATION AND PURIFICATION OF THE RED PIGMENT	4
	Laboratory Culture of Dothistroma pini	4
	Extraction of Red Pigment from D. pini Cultures	4
	Purification of Red Pigment by prep. TLC	5
	Isolation of Red Pigment from Infected Needles	6
	Attempts at Crystallisation of the Red Pigment	6
Chap. 2	EXAMINATION OF THE RED PIGMENT BY MASS SPECTRO-	
	SCOPY	8
	Dothistromin and Decxydothistromin	9
	Structural Conclusions from the Mass Spectral	
	Data	9
Chap. 3	ATTEMPTS TO SEPARATE DOTHISTROMIN AND DEOXY-	
	DOTHISTROMIN	14
	Examination of Red Pigment by TLC	14
	Examination of Red Pigment by Counter Current	
	Distribution	14
Chap. 4	THE HYDROXYANTHRAQUINONE CHROMOPHORE OF	
ľ	DOTHISTROMIN	27
	Reversible Reduction-Oxidation with Alkaline	
	Dithionite	27
	Colour with Alkali	28
	Colour with Various Metal Ions in Ethanol	28

			Page
		Metal Salt and Chelate Complex Formation	31
		Fluorescence	31
		The Visible Absorption Spectra	33
		Zinc Dust Distillation	38
		Interpretation of the Results of Zinc Dust	
		Distillation	43
		Identity of the Chromophoric Moiety of	
		Dothistromin	45
Chap.	5	ACETYLATION OF THE RED PIGMENT. DOTHISTROMIN	
		PENTA-ACETATE AND DEOXYDOTHISTROMIN TETRA-	
		ACETATE	46
Chap.	6	THE STRUCTURE OF DOTHISTROMIN PENTA-ACETATE	52
Chap.	7	THE STRUCTURE OF DOTHISTROMIN	66
		Dothistromin Equilibrium Mixture in Solution	66
		Structural Evidence from Chemical Reactions	71
		Formation of Ether Derivatives of Dothistromin-	
		Mono-Alkylation and Mono-Acetylation of the	
		Hemiacetal Group	72
		Mass Spectroscopy of Dothistromin and its Mono-	
		Alkyl Ether Derivatives. Loss of the Formyl	
		Radical CHO and the Neutral Fragment C_2H_4O	74
		Dothistromin Ethyl Ether Tetra-Acetate	79
		Non-Equivalent Methylene Protons	80
		Methylation of Dothistromin	83
		Methylation of Dothistromin Mono-Ethyl- and Mono-	
		Methyl-Ethers	84
		Heavy Atom Derivatives of Dothistromin for an	
		X-Ray Diffraction Study	91
		Confirmation of Structure and Absolute Config-	
		uration of Dothistromin Bromo-Ethyl Ether	
		Tetra-Acetate (85), by an X-Ray Diffraction	
		Study	93
		Systematic Nomenclature for Dothistromin and	
		its Derivatives	93

		Page
	Configuration, Optical Activity and Racemisation of Dothistromin	95
Chap. 8	SOME MISCELLANEOUS REACTIONS OF DOTHISTROMIN AND ITS DERIVATIVES	97
	Degradation of Dothistromin to Salicylic Acid Hydrolysis of the Acetal Group of Dothistromin	97
	Penta-Methyl Ether Oxidation of the Hemiacetal (88) to the	98
	Lactone (89)	98
Chap. 9	DEOXYDOTHISTROMIN AND OTHER CO-METABOLITES OF DOTHISTROMIN	99
Chap. 10	POSSIBLE CARCINOGENICITY OF DOTHISTROMIN, ITS CO-METABOLITES AND ARTEFACTS	101
Chap. 11	THE SYNTHESIS AND BIOSYNTHESIS OF DOTHISTROMIN The Synthesis of Dothistromin	102 102
	The Biosynthesis of Dothistromin	103
GENERAL S	UMMARY AND CONCLUSIONS	105
EXPERIMEN	TAL SECTION	108
APPENDIX	Metastable Ions - Detection by the Defocusing	
	Technique	131
	Counter Current Distribution	133
	The Fluorescence of 1,4-Dihydroxy Anthraquinone	134
	Sterigmatocystin, the Aflatoxins, Aversin and	
	Versicolorin	142
REFERENCE	S	145
FORMULAE		152
PUBLICATI	ONS	158

.

List of Figures

]	Figure		Page
	1	Mass Spectral Line Diagram of Homogeneous Red Pigment	10
	2(a)	Plot of Tube Number versus Absorbance at 492 nm and 464 nm, CCD Run 1	17
	2(b)	Plot of Ratio of Peak Absorbances versus Tube Number, CCD Run 1	17
	3(a)	Plot of Tube Number versus Absorbance at 492 nm, CCD Run 2	19
	3(b)	Plot of Ratio of Peak Absorbances versus Tube Number, CCD Run 2	19
	4	Visible Electronic Absorption Spectrum of Pigment from Tube No.55, CCD Run 2	19
	5(a) - 5(d)	Visible Electronic Absorption Spectra of Ethyl Acetate Phase from CCD Run 3, Tubes 58-84	22
	6	Mass Spectral Line Diagram of Acetylation Product of Red Pigment	48
	7	Mass Spectral Line Diagram of Dothistromin Penta- acetate	51
	8	NMR Spectrum of Dothistromin Penta-acetate	54
	9	Electronic Absorption Spectra of Dothistromin Penta-acetate and Model Compounds (29) and (30)	62
	10	NMR Spectrum of Dothistromin Ethyl Ether Tetra- acetate	80
	11	Modified Jablonski Diagram	135
	12	Energy Level Diagram Types for Lower Electronic States of Anthraquinones	141

List of Schemes

Scheme		Page
1	Dothistromin Equilibrium Mixture in Solution	67
2	Mass Spectral Fragmentation of Dothistromin	77
3	Alternative Mass Spectral Fragmentation of Dothistromin	78

List of Tables

Table		Page
I	Molecular Formulae of Ions Observed in Upper Mass Region of Mass Spectrum of Homogeneous Red Pigment	11
II	Action of Alkaline Sodium Dithionite on Hydroxy- anthraquinones	29
III	Colour of Hydroxyanthraquinones with Aqueous 1.ON NaOH	29
IV	Colour of Hydroxyanthraquinones with Various Metal Ions in Ethanol	30
V	Fluorescence of Hydroxyanthraquinone Solutions under Irradiation with UV light (λ 350 nm)	32
VI	Visible Electronic Absorption Spectra Data on Some $\alpha-Hydroxyanthraquinones$	34
VII	Visible Electronic Absorption Spectra Data for Di- α - and Tri- α -hydroxyanthraquinones	37
VIII	Chemical Shifts of Acetate Groups of Some Aryl Acetates and Acetoxyanthraquinones, in CDCl ₃	56
IX	Electronic Absorption Spectra of some Acetoxy- anthraquinones	60
Х	NMR Data for 2-acetcxy-tetrahydrofuro[2,3-b] benzo- furans	64
XI	IR Carbonyl Frequencies of Anthraquinones with $\alpha-Hydroxyl$ Groups	69
XII	Summary of Methylation Reactions	85