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Non-negative matrix factorization (NMF) is a powerful tool for data science researchers, and it has
been successfully applied to data mining and machine learning community, due to its advantages
such as simple form, good interpretability and less storage space. In this paper, we give a detailed
survey on existing NMF methods, including a comprehensive analysis of their design principles,
characteristics and drawbacks. In addition, we also discuss various variants of NMF methods and
analyse properties and applications of these variants. Finally, we evaluate the performance of nine
NMF methods through numerical experiments, and the results show that NMF methods perform

well in clustering tasks.
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1. INTRODUCTION
In recent years, technologies related to data analysis have
attracted much attention, and many real-world applications
are in urgent need for faster and better data processing tech-
niques [1, 2]. In data processing field, matrix is usually an
indispensable form for organizing and describing data [3, 4].
First, structured data is normally stored in the form of matrix,
whereas unstructured data is usually converted to structured
data before processing. Second, research on matrix has a long
history and has accumulated tremendous research outputs,
which can be directly applied to many data analysis problems
[5, 6]. Therefore, as one of the popular organization forms
for analysing and processing data, matrix plays a critical role
in data science. Matrix factorization is an important method
to study properties of matrix, and it can help us understand
the nature of matrix. At present, matrix factorization has been
widely used in many real applications, such as data compres-
sion and recovery, information retrieval, recommender systems
and feature extraction [7, 8]. There are many analysis methods
using matrix factorization to solve practical problems, such
as principal component analysis and independent component
analysis [9, 10]. However, these methods have one thing in
common, i.e. the obtained matrix contains both positive and

negative values, which limits application scenarios of these
methods [11, 12]. For example, in real applications such as
image processing or text data analysis, the data is non-negative,
so the matrix after decomposition should not contain negative
values [13–15]. Therefore, it is of practical importance to
ensure non-negativity of the elements in the decomposed low-
rank matrix.

In 1999, Lee et al. proposed a new matrix factorization
method, named non-negative matrix factorization (NMF),
which has aroused widespread attention among researchers
around the world [16]. NMF is a new method for matrix
factorization, which can deal with large-scale data. On the
other hand, because of the introduction of non-negativity
constraints, the decomposition results of NMF have a wide
range of practical applications and better interpretability
[17, 18].

Current research on NMF mainly focuses on several aspects,
i.e. design of regularization terms, design of data items,
application and optimization methods. The design of data
item is to make the NMF better deal with data with various
noises. Although NMF method has been applied to many
practical tasks, it still faces some problems on dealing with
noisy data sets. This is because traditional NMF methods
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use mean square error to measure the reconstruction error of
matrix factorization. However, in order to reduce the value of
objective function, the mean square error loss function forcibly
fits outliers, which reduces the accuracy of the original data
representation. To deal with this issue, Huang et al. employed
l2,1-norm to measure the reconstruction error of matrix
factorization [19]. Du et al. proposed an NMF method based
on the correntropy-induced metric, which assumes that noise
obeys a non-Gaussian distribution [20]. Yang et al. utilizes
Lasso regularization and Laplacian regularization to deal with
noisy data. Here, Lasso regularization is designed to avoid over-
fitting problems and select sparse subsets of features, whereas
Laplacian regularization preservers local structure of data [21].

The design of regularization term is to make NMF algo-
rithms to have a better ability to represent data under var-
ious assumptions. For example, sparse representation-based
regularization terms can be used to learn meaningful features,
graph-based regularization terms can preservers the local struc-
ture of data. By designing different regularization terms, NMF
can be applied to more practical problems. Hoyer et al. pro-
posed an improved NMF model, that is, NMF with sparseness
constraints, which can easily control sparseness degree of the
basis vector [22]. Yuan et al. proposed projective NMF for
improving linear mapping ability of the feature space solution
of non-negative matrix [23]. Ding et al. proposed an orthogonal
non-negative matrix factorization (ONMF) [24]. In addition,
Ding et al. relaxed the restriction on non-negativity of NMF,
allowing the input matrix and the decomposed base matrix have
negative values, and they proposed semi-NMF and convex-
NMF, thereby expanding the scope of application of NMF [25].

Due to the non-negativity constraint, the NMF optimization
method is different from tradition matrix factorization method.
Therefore, the NMF optimization method is also a hot topic
in NMF research. The existing NMF algorithms are mainly
based on improvement of the three major NMF optimization
methods [26]. Multiplicative update (MU) method is a clas-
sic NMF method, which alternately updates the non-negative
matrix through multiplication [27, 28]. The method not only
reduces reconstruction error gradually, but also guarantees non-
negativity of the resulting low-rank matrix. The MU method is
easy to implement and can often produce better decomposition
results. However, there is no guarantee of convergence, and
there are some defects in numerical calculations. Alternating
least squares method (ALS) is a simple and intuitive method.
It first solves the unconstrained problem, and then projects the
obtain matrix to a non-negative space [29, 30]. This method
has large errors and there is no convergence guarantee, but
it is a better initialization method. Alternating non-negative
least squares method (ANLS) is a method for solving opti-
mization problems with boundary constraints [31, 32], which
decomposes an NMF problem into two sub-optimization prob-
lems with non-negative constraints. Among them, the pro-
jected gradient method proposed by Lin et al. is a common
method to solve the optimal solution of the sub-problem, but

disadvantages of this method include excessive amount of cal-
culations and high computational complexity [33]. The hierar-
chical alternating least squares (HALS) method further decom-
poses the sub-problems, where each time a certain row or a
certain column of the decomposition matrix is solved [34].

As a data analysis method, NMF has been proven to be
useful in many real applications. In clustering tasks, NMF-
based clustering methods have shown good performance [20,
35]. In image processing, NMF is an effective method for
image data dimensionality reduction and feature extraction,
which is usually used to extract image features to facilitate
fast and automatic recognition [36, 37]. In addition, NMF is
also used in text analysis, such as identifying semantic rele-
vance between documents, information extraction and indexing
[38]. In recommender systems, the problem of incomplete data
can be solved by processing user’s historical data through
NMF [39, 40]. In the field of biomedicine research, NMF
can be used to analyse molecular sequence of DNA, and it
also can be used to select drug components for new drug
discovery [38, 41].

With deep learning methods receiving more and more atten-
tion in data processing, many researchers pay attention to the
combination of deep learning methods and NMF for data rep-
resentation. For example, Trigeorgis et al. proposed deep semi-
NMF method, where the method gives a reasonable explanation
for each layer of networks and can express the hidden layer
features of complex data. Flenner et al. introduced a deep NMF
network capable of producing interpretable hierarchical classi-
fication of many types of data [42]. Nie et al. proposed a jointly
combinatorial scheme to concentrate the strengths of both deep
neural networks (DNN) and NMF for speech separation, in
which NMF is used to learn the basis spectra that are integrated
into a DNN to directly reconstruct the magnitude spectrograms
of speech and noise [43, 44]. Chen et al. proposed an end-to-
end model, named Attention-based Multi-NMF DNN, which
combines clinical data and gene expression data extracted by
multiple NMF algorithms for prognostic prediction of breast
cancer [45]. Wisdom et al. proposed a novel recurrent neural
network architecture for speech separation, which can solve the
optimization problem for sparse NMF [46, 47].

In this paper, we review the NMF problem from four aspects,
i.e. data item, regularization item, application and NMF opti-
mization method. Specifically, we present a detailed summary
to NMF, including the basic concepts, optimization of NMF
and some variants of NMF. The contributions of the paper
are 2-fold: (1) we summarize nine classic NMF optimization
methods, discussing advantages and disadvantages of these
methods and (2) we verify the efficiency and convergence
of these NMF methods through numerical experiments. The
organization of the paper is as follows. We introduce nine
classical NMF algorithms in detail in Section 2. Then, we
present five variant models of NMF in Section 3. In Section 4,
we verify the performance of nine NMF methods with respect
to clustering task.
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2. NMF ALGORITHMS

Given a non-negative matrix V ∈ R
n×d and a positive integer

r < min(m, d), the problem of NMF is to find non-negative
matrices W ∈ R

n×r and H ∈ R
r×d, such that the follow is

minimized:

f (W, H) = ‖V − WH‖2
F

s.t., W ≥ 0, H ≥ 0
(1)

From the above NMF problem statement, it is clear that the
aim of NMF is to find an approximation of V using the product
of two matrices W and H. In this section, we introduce nine
NMF methods for solving model Equation (1)

2.1. MU

MUs method was originally used to solve the non-negative least
squares problem, and Lee et al. first applied this method to
solve the NMF problem [48–50]. This method updates W and
H by alternating iterations. The update rules are as follows:

Hk+1
bj = Hk

bj − Hk
bj

((Wk)
T

WkHk)bj

�fH

= Hk
bj

((Wk)
T

V)

((Wk)
T

WkWk)bj

(2)

and

Wk+1
ia = Wk

ia − Wk
ia

(WkHk+1(Hk+1)
T
)bj

�fW

= Wk
ia

(V(Hk+1)
T
)

(WkHk+1(Hk+1)
T
)bj

(3)

With the above MU method, W and H can converge to a
stable point and the non-negativity of the matrix is guaranteed
during each iteration [51]. MU method has attracted many
researchers’ attention, because it is easy to implement and it
can produce better results. However, there are some issues that
need to be solved: (1) since MU is a first-order gradient descent
method, its convergence speed is slow; (2) the method does
not guarantee convergence to a local minimum, and solution
obtained by the method is not necessarily a stable point; and
(3) the method may have a zero denominator during iteration
[52, 53]. To deal with the above issues, many researchers
improved the MU method. For example, Gillis et al. modified
MU method by adding a small positive lower bound to the
result after each update [54]. However, the method may result
in a non-sparse resulting matrix. Despite these improvements,
the MU method still remains to be a very inefficient numerical
method for NMF [55, 56].

2.2. ANLS

ANLS is a popular method to solve NMF [57, 58]. The
MU method solves the problem of NMF by alternating

updating, which is a special case of ANLS method [59]. ANLS
decomposes the corresponding NMF problem into two sub-
optimization problems with non-negative constraints, and then
solves the optimal solution of the sub-problems. The two sub-
problems are given as follows:

Ht+1 = arg min
H

∥∥V − WtH
∥∥2

F (4)

and

Wt+1 = arg min
W

∥∥V − WHt+1
∥∥2

F (5)

Compared with the MU method, ANLS can provide better
optimization capability and can converge to a stable point.
Solving sub-problems with non-negative constraints is the main
part of this method. However, since each step of the update is
to solve the optimal solution of the sub-problem, the method
requires large amount of calculations and has high computa-
tional complexity. At present, there are many methods [60, 61]
to solve the sub-problems, among which the projected gradient
method is a commonly used method to solve the bounded
constraint problem.

2.3. ALS

ALS method is easy to implement, and its computational cost
is relatively low [62]. The method first solves an unconstrained
problem, and then projects the result to a non-negative space,
so as to satisfy the non-negative constraint [29, 63], i.e.

Ht+1 = max(arg min
H

∥∥V − WtH
∥∥2

F , 0) (6)

The update method of W is similar to Equation (6). Exper-
iments show that this method is usually difficult to obtain
reasonable results. When dealing with dense matrices, the loss
value of the ALS method tends to oscillate during the update
process and cannot be used as a stable numerical method for
practical calculations. For sparse matrix, in the initial stage of
the iteration, the error value decreases faster, but as the iteration
progresses, the error value will not continue to decrease [64–
66]. Therefore, the ALS method is not suitable for directly
solving NMF. In real applications, this method is usually used
for preprocessing original data, i.e. initializing the data.

2.4. HALS

HALS method obtains a simpler form by further decomposing
the sub-problem, which updates only one column or row of the
matrix at a time while keeping the rest of the matrix unchanged
[64, 67]. The sub-problem of NMF can be further decomposed
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into the following form:

‖V − WH‖2
F= ‖V − ∑
i �=j wihi − wjhj‖2

F
(7)

For Equation (7), HALS method updates a certain column of
W or H each time, and then projects to the non-negative space,
i.e.

wj = max{VhT
j −∑

i�=j wi(hjhT
j )

‖hj‖2 , 0} (8)

or

hj = max{VT wj−∑
i�=j hi(wT

j wj)

‖wj‖2 , 0} (9)

Compared with the MU method, HALS method converges
faster and guarantees convergence to a local minimum under
weaker conditions [68]. In addition, the computational over-
head of the HALS method is mainly due to calculation of the
gradients. The HALS method is an excellent algorithm that
achieves a relative balance between efficiency and accuracy.
However, for large-scale matrices, the calculation efficiency of
the method is still low.

2.5. Newton-like method

Newton-like method is an effective method for solving convex
optimization problems. This method can accelerate the con-
vergence process of objective function by mining second-order
effective information of objective function [69, 70]. At iteration
t, the method first approximates the objective function around
the current iterate Hk by using the following quadratic model,
i.e.

φt(H) = f (Ht) + (H − Ht)T�f (Ht)+
1

2α
(H − Ht)TDt(H − Ht)

(10)

And then, we can obtain

H̄
t = arg min φt(H, α) (11)

which is then used to obtain the new iterate by simply setting

Ht+1 = Ht + β(H̄
t
α − Ht) (12)

where β ∈ (0, 1] is a step size.

2.6. Projected gradient method

Projection gradient method is a popular method for solving
bounded constraint problems. The main difference between
different projected gradient methods is the choice of step size
[71]. NMF is a typical bounded optimization problem, so many

researches use projected gradient method to solve NMF. The
bounded optimization problem is defined as follows:

min
x∈Rn

f (x)

s, t.li ≤ xi ≤ ui, i = 1, . . . , n
(13)

where f (x) is a continuously differentiable function, l and u
are lower and upper bounds, and k is the index of iterations.
Projected gradient method updates the current solution xk and
xk+1 through the following rule:

xk+1 = P[xk − αk�f (xk)] (14)

where

P[xi] =
⎧⎨
⎩

xi if li < xi < ui

ui if xi ≥ ui
li if xi ≤ li

(15)

where P maps a point back to the bounded feasible region,
and variants of projected gradient methods differ in selecting
the step size. Motivated by this fact, Lin et al. proposed to
employ projected gradient methods for NMF [72], and we list
the details in Algorithm 1.

Algorithm 1 Projected gradient method for NMF.

Input: V, Wt

1: Initialize W1 ≥ 0, H1 ≥ 0, k = 1, α = 0.1, β = 0.1
2: repeat
3: Update Hk+1 = P[Hk − α�f (Hk)]
4: α = αβ

5: k = k + 1
6: until Stopping criterion Equation (16) is satisfied

Output: Ht+1

To ensures the function value in each iteration to decrease,
the stopping condition of projected gradient methods is given
as follows:

f (Hk+1) − f (Hk) ≤ γ�f (Hk)T(Hk+1 − Hk) (16)

where γ is a parameter.

2.7. Active set method

Since the combination coefficients of matrix are generally
sparse, it is a good choice to employ active set algorithms
for solving NMF problem [73]. These active set strategies can
improve the accuracy of NMF methods, while keeping the
computational cost at a low level. For example, Kim et al.
applied active method to NMF, to improve the efficiency of
traditional NMF methods [57].

The constraint hij ≥ 0 is said to be active in the optimal
solution H∗, if for any feasible solution of NMF, the current
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iteration H is classified into two parts, i.e. active variables and
inactive variables. Given a small positive constant ζ , the active
set can be estimated as follows:

(AS)I(vec(V)) = {i : vec(V)i ≤ 0} (17)

where I(vec(V)) represents the index set that contains esti-
mated indices of the active variables.

We use Ik = I(vec(Ht)) and Ft = F(vec(Ht)) in Equation
(18), where Ft denotes the remaining index of vec(H). At
iteration t, the variables of vec(H) with indices in Ik are called
active variables, whereas the remaining variables are called
inactive variables. A non-negative matrix H∗ is said to be a
stationary point of ANLS, if for every i = 1, 2, . . . , rn, we have

{
vec(∇f (W, H))i ≥ 0, ∀i ∈ I∗
vec(∇f (W, H))i = 0, ∀i ∈ F∗ (18)

where we have I∗ = {i : vec(Hi) = 0} and F∗ = {1, 2 . . . , nr}.
Strict complementary condition holds H∗, if the strict inequal-
ities hold in the first constraint of Equation (18).

2.8. Alternating direction multiplier method

Alternating direction multiplier method is a tradition opti-
mization method, which is well suited to distributed convex
optimization. To facilitate presenting alternating minimization,
we first introduce two auxiliary variables X and Y, and consider
the following equivalent model:

min 1
2 ‖V − WH‖2

F
s.t, W − X = 0, H − Y = 0, X ≥ 0, Y ≥ 0

(19)

where we have X ∈ R
n×r and Y ∈ R

r×d. The augmented
Lagrangian function of Equation (19) is defined as follows:

φ(W, H, X, Y, �, �) = 1
2 ‖V − WH‖2

F +
〈�, W − X〉 + 〈	, H − Y〉 + α

2 ‖W − X‖2
F

+β
2 ‖H − Y‖2

F

(20)

where � ∈ R
n×r and 	 ∈ R

r×d are Lagrangian multipliers,
α, β ≥ 0 are penalty parameters for the constraints W−X = 0
and H − Y = 0, and 〈·, ·〉 denotes the matrix inner product.

The alternating direction method [74] for Equation (19) is
derived by successively minimizing the augmented Lagrangian
function φ(U) with respect to W, H, X and Y, one at a time
while fixing the others at their most recent values, and then
updating the multipliers after each sweep of such alternating
minimization. The introduction of the two auxiliary variables
X and Y makes it easy to carry out each of the alternating
minimization steps. Specifically, these steps can be written in

a closed form as follows

W = � + β(H − Y) =
(HHT + αH − �)(HHT + αH)−1

H = � + β(H − Y) =
(WTW + βH)−1(WTV + βY − �)

X = max(W + �/α, 0)

Y = max(H + �/β, 0)

� = � + α(W − X)

� = � + β(H − Y)

(21)

2.9. NeNMF Method

Traditional NMF solvers often suffer from one or some of
the following three problems, i.e. slow convergence, numerical
instability and non-convergence [75, 76]. Guan et al. presented
a new NeNMF solver to simultaneously overcome the afore-
mentioned problems [77]. It applies Nesterov’s optimal gradi-
ent method (OGM) to alternatively optimize one factor with
another fixed. Since Equation (1) is a non-convex minimiza-
tion problem, it is impractical to obtain the optimal solution.
However, the block coordinate descent methods can obtain a
local solution to Equation (1) through alternatively solving the
following equation until converged

Ht+1 = arg min F(Wt, H) =
1
2

∥∥V − WtH
∥∥2

F

(22)

Most existing NMF solvers are special implementations under
this scheme. NeNMF method employs Nesterov’s OGM to
solve both problems presented in Equation (22).

Recent research has proven that F(Wt, H) is convex and the
gradient ∇HF(Wt, H) is Lipschitz continuous; thus, Nesterov’s
method can be used to efficiently optimize Equation (22)

Hk = arg min
H≥0

φ(Yk, H) = F(Wt, Yk)+〈∇HF(Wt, Yk), H − Yk
〉 + L

2 ‖H − Yk‖2
F

(23)

where φ(Yk, H) is the proximal function of F(Wt, H) on Yk,
L = ||WtTWt|| is the Lipschitz constant given in [77], 〈·, ·〉
denotes the matrix inner product, Hk contains the approxi-
mate solution obtained by minimizing the proximal function
φ(Yk, H) over H and Yk stores the search point that is con-
ducted by linearly combining the latest two approximate solu-
tions, i.e. Hk and Hk − 1. According to [78], the combination
coefficient αk+1 is updated in each iteration as follows:

αk+1 = 1+
√

4α2
k +1

2
(24)

NeNMF uses Lagrange multiplier method to solve Equation
(23), so we can obtain the Karush–Kuhn–Tucker conditions as
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follows:

∇Hφ(Yk, H) ≥ 0
Hk ≥ 0
∇Hφ(Yk, H) ⊗ Hk = 0

(25)

where ∇Hφ(Yk, H) = ∇HF(Wt, Yk) + L(Hk − Yk) is the
gradient of φ(Yk, H) with respect to H at Hk, and ⊗ is the
Hadamard product. According to Equation (25), we have

Hk = P(Yk − 1
L∇HF(Wt, Yk)) (26)

where P(X) projects all the the negative entries of X to zero. By
alternatively updating Hk, αk+1 and Yk+1 with Equation (24)
and Equation (26) until convergence, the optimal solution can
be obtained.

From the above NMF optimization, the majority of tradi-
tional NMF optimization algorithms can be unified as alter-
nating minimization or block coordinate descent scheme with
different block sizes and various optimization approaches for
each block.

3. VARIANTS OF NMF

There are two issues with the standard NMF model. On the
one hand, it is impossible to obtain a unique solution by non-
negative constraints alone. On the other hand, it is difficult to
use a priori knowledge to comprehensively characterize data
[22, 61, 79]. To deal with these issues, many researcher design
different data item and regularization item, resulting in various
variants of NMF. In this section, we introduce five popular
variants of NMF.

3.1. Semi-NMF and convex NMF

The basic NMF method constrains each element of the original
input matrix to be non-negative, which limits the application of
NMF [80, 81]. Ding et al. [25] proposed mathematical models
of semi-NMF, which are more suitable for general data, thus
expanding the application field of original NMF method. Semi-
NMF relaxes non-negativity constrains of NMF and allows the
data matrix V and W to have mixed signs, while restricting
only the feature matrix H to comprise of strictly non-negative
components. The objective function is defined as

Jsemi-NMF = 1
2 ‖V − WH‖2

F
s.t, H ≥ 0

(1)

If we regard W = [w1, . . . , wn] as the cluster centroids,
then H = [h1, . . . , hn] can be treated as the cluster indicators
for each data point. In fact, if we have a matrix H that is
not only non-negative but also orthogonal, then every column
vector would have only one positive element, making semi-
NMF equivalent to k-means [82].

In semi-NMF, there are no constraints on the basis matrix W.
Based on semi-NMF, Ding et al. further proposed convex-NMF
method. In the convex-NMF, the basis matrix W is obtained by
a linear combination of the samples, i.e. wj = ∑

i uijvi, where
uij ≥ 0. The objective function of convex-NMF is defined as

Jconvex-NMF = ‖V − VUH‖2
F

s.t., U ≥ 0, V ≥ 0
(2)

In convex-NMF, for the reason of interpretability, the method
restricts basic matrix to convex combinations of the columns
of V. This constraint has the advantage that we could interpret
the columns wi as weighted sums of certain data points. In
particular, these columns can capture a notion of centroids.
Convex-NMF applies to both non-negative and mixed-sign data
matrices [83, 84]. Moreover, convex-NMF has an interesting
property, i.e. the factors U and H both tend to be sparse.

3.2. ONMF

Although NMF has some excellent properties, there are still
rooms for further development. To deal with the issue that
the basic NMF cannot achieve a unique solution, Ding et al.
proposed ONMF. Based on the original NMF, the method
imposes an orthogonal constraint on the decomposition factor.
The objective function of ONMF is defined as

JONMF = ‖V − WH‖2
F

s.t., W ≥ 0, H ≥ 0, HTH = I
(3)

or

JONMF = ‖V − WH‖2
F

s.t., W ≥ 0, H ≥ 0, WTW = I
(4)

The above two models can achieve sparse and unique solutions,
and Ding et al. proved that the two models are equivalent to k-
means clustering model [85, 86]. However, it is worth noting
that the substance of the two models is quite different. For
example, in terms of clustering tasks, Equation (3) represents
clustering based on the columns of input matrix (or samples),
whereas Equation (4) represents cluster based on the rows of
input matrix (or feature).

3.3. Tri-factorization NMF

In the past decade, researchers have proposed several variants
of NMF from different aspects for improving its performance.
To improve the uniqueness of the solution and preserve the
local property of NMF, the ONMF has been proposed, which
imposes the orthogonal condition on the original NMF. Based
on the ONMF, Ding et al. [24] proposed orthogonal non-
negative matrix tri-factorization (NMTF). This method decom-
poses the data matrix to three factor matrices and preserves
double orthogonality conditions, which provide more degrees
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of freedom than the ONMF. The objective fuction of tri-
factorization NMF is presented below

JTri-NMF = ‖V − WSH‖2
F

s.t, W ≥ 0, H ≥ 0, WTW = I, HHT = I
(5)

In this way, columns and rows are clustered simultaneously,
and both orthogonality constraints can be satisfied with a good
low-rank approximation [87]. During the past decades, NMTF
has been successfully used in various applications, such as
text data mining, image clustering, recognition and retrieval
task, and community detection, etc. [88]. Since NMTF is an
important unsupervised learning algorithm, the overwhelming
interest of NMTF-based methods is focused on clustering tasks,
particularly for image and document clustering problems. Cur-
rently, most NMTF-based methods for clustering utilize the
square of Euclidean distance as similarity measure to quantify
the approximation between the original data matrix and the
reconstructed ones.

3.4. Symmetric NMF

Although NMF has performed better than other data analysis
methods in many fields [89, 90]. One of the important reasons
is that NMF approximates original data by a linear combination
of basis vectors [91, 92]. When the data has non-linear structure
or lies on a complicated manifold, then NMF may achieve bad
results. Symmetric NMF (SNMF) is an effective approach to
cluster data with non-linear structure [93, 94]. It only takes into
account symmetric matrix that can be constructed by various
similarity metrics and factorizes the matrix into two low-rank
matrices (H, HT ). The objective of SNMF is defined as

JSNMF = ∥∥A − HHT
∥∥2

F
s.t, H ≥ 0

(6)

where A ∈ R
n×n is the similarity matrix measured by a certain

distance metric. Kuang et al. showed that SNMF is related
to spectral clustering (SC), and both of them share a same
loss function with different constraints [70, 95]. Therefore,
SNMF can be regarded as a graph clustering method, and it
is more effective for non-linearly separable data than NMF.
Another merit of SNMF is that it can directly generate the
clustering indicator without post-processing, whereas SC needs
extra post-processing like k-means to finish the clustering task.

3.5. Kernel NMF

NMF and many of its variants are linear in nature, so it is impos-
sible to distinguish between non-linear structures hidden in the
data. In traditional machine learning, kernel function can map
low-dimensional space data to high-dimensional feature space
or infinite-dimensional space through a non-linear mapping,
so as to achieve linear separability of the data [96, 97]. Based

on this motivation, Zhou et al. applied the kernel method to
NMF and proposed Kernel Non-negative Matrix Factorization
(KNMF) [98]. The objective function of KNMF is defined as

JKNMF = ∥∥φ(V) − WφH
∥∥2

F
s.t, H � 0

(7)

where φ(.) represents the kernel function, which maps the orig-
inal matrix V from low-dimensional space to high-dimensional
space, Wφ is the base in feature space and H is its combining
coefficients, each column of which denotes the dimension-
reduced representation for the corresponding object.

4. EXPERIMENTS

In this section, We experimentally evaluate performance of
the nine NMF optimization methods on six public data sets,
in terms of efficiency and clustering performance. All experi-
ments are conducted in MATLAB on a Win10 machine with a
2.66GHz Intel Quad-core processor and 8GB memory.

4.1. Experimental setting

To verify performance of the NMF solvers, the experiment
uses six public data sets, as shown in Table 1. To ensure
fairness in the experiment, all NMF solvers start from the same
initial point (W0, H0), and set all NMF solver iterations to 100
times. In the first part of the experiment, we compare the time
required for all NMF solvers to reach 100 iterations to verify
the efficiency of the NMF solver. In the second part of the
experiment, k-means is used to cluster the base matrix W, so
as to compare performance of each solver in clustering and
dimensionality reduction tasks. In the clustering task, we use
three evaluation indicators (i.e. ACC, NMI, and Pur) to verify
the clustering performance of the nine methods. We listed the
details of three evaluation metrics as follows:

ACC = Ncorrect
N , (1)

where N represents the total sample number and Ncorrect
represents the sample number accurately clustered.

NMI = H(A)+H(B)
H(A,B)

(2)

where A and B are clustering results, and H(A, B) is the joint
entropy of A and B.

Pur = 1
N

∑
k max |wk ∩ cj| (3)

where wk denotes cluster classes, cj denotes true classes.
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FIGURE 1. Objective value versus iteration epoch and CPU time of nine NMF solvers on Madelon data set.

FIGURE 2. Objective value versus iteration epoch and CPU time of nine NMF solvers on PIE_pose data set.

FIGURE 3. Objective value versus iteration epoch and CPU time of nine NMF solvers on Coil20 data set.

4.2. Result analysis

To verify efficiency and convergence of the nine NMF solvers,
we report the variation of objective function values for nine
NMF solvers during iteration in Figs 1–6. From the above
figures, in term of convergence we can see that the ALS method
does not guarantee that the value of the objective function

is decremented each time during the iteration, other methods
can ensure that the objective function is decreasing for each
iteration, so that the objective function converges. In terms
of efficiency, the ALS method, the NeNMF method, and the
HALS method converge to the local optimum value with the
least time.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, Vol. 64 No. 7, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/64/7/1080/6323682 by guest on 22 July 2022



1088 J. Gan et al.

FIGURE 4. Objective value versus iteration epoch and CPU time of nine NMF solvers on AR_face data set.

FIGURE 5. Objective value versus iteration epoch and CPU time of nine NMF solvers on Ecoil data set.

TABLE 1. Statistics of the data sets used in the experiment.

Dataset #samples #features #classes

Madelon 2600 500 2
PIE_pose 2856 1024 68
Coil20 1440 1024 20
AR_face 3120 560 120
Ecoil 336 343 8
Jaffe 213 1024 10

To validate performance of nine NMF solvers, we perform
experiments using the clustering task and report the experimen-
tal results in Tables 2 and 3. From the two tables we can see
that the NeNMF method has stable performance and achieves
the best results on most of the data sets. The ALS method has
achieved the best results on PIE_pose 271 data set, but obtained
the worst results on other data sets, which further proves that the
ALS method is easy to cause numerical instability. In addition,
the other methods outperform k-means in most of the cases,
which proves the effectiveness of NMF method in clustering
task.

5. CONCLUSIONS

NMF decomposes the input non-negative matrix into two low-
rank non-negative matrices, which can be effectively applied
for many real-world applications. In this paper, we introduced
some properties of NMF and summarized several NMF meth-
ods in detail. In addition, we also paid attention to variants
of NMF and their application scenarios. Although NMF has
been successfully applied in many fields, there are still some
problems remained to be solved. We proposed several future
directions based on the shortcomings of NMF, i.e. (1) although
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FIGURE 6. Objective value versus iteration epoch and CPU time of nine NMF solvers on Jaffe data set.

TABLE 2. Clustering results on three public data sets, i.e. Madelon, PIE_pose27, and Coil20.

Data sets Madelon PIE_pose27l Coil20

ACC NMI Pur ACC NMI Pur ACC NMI Pur

k-means 0.5073 0.0002 0.5073 0.2458 0.4933 0.2675 0.5403 0.7254 0.5799
MU 0.5012 0.0012 0.5314 0.4569 0.6763 0.4874 0.6590 0.7525 0.6840
ALS 0.5135 0.0005 0.5355 0.6870 0.8382 0.7227 0.5667 0.6259 0.2020
PG 0.5112 0.0004 0.5023 0.6411 0.7898 0.6646 0.5778 0.7325 0.6312
Newton 0.5234 0.0021 0.4007 0.6008 0.6696 0.8006 0.6010 0.7456 0.7015
ADMM 0.5322 0.0006 0.0.5311 0.5932 0.6494 0.7351 0.6171 0.7351 0.7286
HALS 0.5335 0.0005 0.5698 0.5270 0.7327 0.5532 0.6125 0.6987 0.7012
AS 0.5762 0.0168 0.5489 0.5875 0.7572 0.6201 0.6521 0.7500 0.6778
NeNMF 0.5754 0.0165 0.5456 0.6838 0.7976 0.7027 0.6493 0.7512 0.6819
NALS 0.5788 0.0165 0.5788 0.4405 0.6824 0.4762 0.5840 0.7146 0.6188

TABLE 3. Clustering results on three public data sets, i.e. AR_Face, Ecoil, and Jaffe.

Data sets AR_Face Ecoil Jaffe

ACC NMI Pur ACC NMI Pur ACC NMI Pur

k-means 0.2554 0.5661 0.2728 0.6190 0.5508 0.6964 0.7887 0.8182 0.8122
MU 0.3468 0.6185 0.3728 0.5476 0.5381 0.7798 0.8357 0.8448 0.8498
ALS 0.3840 0.6511 0.4087 0.7381 0.6049 0.7708 0.6385 0.7226 0.6479
PG 0.3689 0.6595 0.3971 0.4673 0.5066 0.7857 0.8122 0.8742 0.8592
Newton 0.3927 0.7247 0.4007 0.6008 0.6696 0.8006 0.7430 0.8187 0.7015
ADMM 0.2973 0.6326 0.4009 0.4688 0.6494 0.7351 0.6171 0.7351 0.7286
HALS 0.3099 0.5959 0.3369 0.3036 0.1706 0.5714 0.4085 0.4889 0.46951
AS 0.3599 0.6396 0.3856 0.5833 0.5456 0.7917 0.8310 0.8629 0.8451
NeNMF 0.3619 0.6441 0.3875 0.6339 0.5120 0.7768 0.8967 0.8704 0.8967
NALS 0.3003 0.6020 0.3272 0.4107 0.0427 0.4286 0.5305 0.6182 0.5869

there are many NMF algorithms, accuracy and convergence
rate still need to be improved, (2) when processing large scale
data, efficiency of NMF method needs to be improved, and (3)
it is interesting and meaningful to apply NMF methods to many
different real-world applications.
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