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ABSTRACT 

Over the past three decades, considerable amount of research efforts have been 

undertaken in order to develop a mathematical model for a three-phase fluidised-bed 

biofilm reactor (TPFBBR). Although biofilm properties such as biofilm thickness 

and its density are allowed to vary with biofilm growth in the model to simulate the 

real TPFBBR system, they are assumed to be constant in the majority of models 

developed for a TPFBBR. The main goal of this thesis is to develop mathematical 

models incorporating dynamic biofilm growth for a TPFBBR using three different 

modelling approaches such as a mechanistic model, a neural network model, and an 

intelligent hybrid model with a neurofuzzy model. 

This thesis consists of three parts. Firstly, a dynamic. biofilm growth model, which 

reflects the variation of biofilm thickness and its density
· in time, is developed. This 

model is derived from a biomass balance equation and is solved by the method of 

characteristics. The biofilm detachment model is proposed and incorporated within 

the dynamic biofilm growth model. The dynamic biofilm growth model with 

detachment is then combined with a reactio -diffusion model and reactor model to 

form an integrated model of a TPFBBR. Simulation method of integrated model 

incorporating the dynamic biofilm growth model is developed. It is observed that 

results predicted are in good agreement with experimental data and the integrated 

model proposed provides a valuable tool to predict performance of a TPFBBR. 

Secondly, the sequential neural network model, which is composed of two parts, 

namely, the neural process estimator and the neural process predictor, is developed to 

describe the task of process estimation and prediction for a TPFBBR. In order to 

implement the sequential neural network model, multi layer feedforward neural 

network (MFNN) with cascaded-correlation (C-C) learning and extended Kalman 

filtering (EKF) learning, and generalized regression neural network (GRNN) are 

used. Results shows that the sequential neural network model has the feasibility as 



iii 

intelligent estimators and dynamic predictors and gives considerably good results in 

process estimation and prediction for a TPFBBR. 

Finally, this thesis shows how a combination of both mechanistic and empirical 

modelling approaches, called a hybrid model, can be implemented and utilised for 

modelling a TPFBBR. The neurofuzzy model as an empirical part of hybrid model is 

used to estimate the variation of the biofilm thickness and biofilm density, and is 

combined with mechanistic model-based reaction-diffusion and axial-dispersion 

models to predict the dynamic behavior and performance of a TPFBBR according to 

the variation of biofilm density and biofilm thickness. This hybrid modelling 

approach due to its flexibility shows a unified framework through incorporation of 

strong points of both mechanistic and empirical models, and provides a new 

modelling framework with a great potential to be applied to other types of biofilm 

reactors. 



iv 

ACKNOWLEDGEMENT 

I would like to express sincere appreciation to Professor Rao Bhamidimarri for his 

support, encouragement, and outstanding guidance throughout the course of my 

Ph.D. research. In addition, his trust in me has left a deep impression on me. 

I also thank my adviser Dr. Aroon Parshotam for advice, encouragement, and 

support. 

Gratitude is expressed to Massey University for the financial support with Doctoral 

Scholarship. 

The assistance of John Alger In building experimental systems IS gratefully 

acknowledged. 

I am greatly indebted to my grandmother, my mother, my farther and my sister for 

the unconditioned love and support. I also wish to thank parent-in-law for their love 

and encouragement. I would like to thank my wife Yun-Ah, my son Min-Woo, and 

my daughter Sue-Ji, who gave me new meaning to my life. In many ways, my wife 

Yun-Ah is a co-author of this thesis. Her patience, understanding, unshakable faith in 

me, and help had played a major role in the course of my research work. 

Finally, my ultimate thanks go to my Lord God and Savior Jesus Christ. Without the 

wisdom from Jesus Christ, this work would not have been possible. 

Praise and Glorify the Lord Jesus Christ 



CONTENTS 

Abstract II 

Acknowledgements IV 

Contents V 

List of Figures x 

List of Tables xv 

List of Abbreviations XVll 

1 Introduction 1 

1.1 Introduction 1 

1.2 Thesis Overview 4 

1.3 Contributions of This Thesis 6 

2 Three-Phase Fluidised-Bed Biofilm Reactor-Background 8 
2 .1 Three-Phase Fluidised-Bed Biofilm Reactor (TPFBBR) 8 

2 .2 Hydrodynamics of TPFBBR 13 

2 .2 .1 Flow Regimes 13 

2 .2 .2 Minimum Fluidisation Velocity 14 

2 .2 .3 Pressure Drops and Phase Holdups 16 

2 .2.4 Gas-Liquid Mass Transfer 17 

2 .2 .5 Liquid-Solid Mass Transfer 19 

2 .2 .6 Mixing 24 

2 .3 Biofilm Characteristics in a TPFBBR 28  

2 .3.1 Biofilm Formation 28  

2 .3.2 Biofilm Characteristics 30 



3 Experimental Methods 34 
3.1 Introduction 34 

3.2 Experimental 34 

3.2.1 Reactor 34 

3.2.2 Startup and Operation of a TPFBBR 35 

3.2.3 Microorganisms and Culture Medium 37 

3.2.4 Analytical Methods 38 

4 Mechanistic Model for a TPFBBR Incorporating 40 
Dynamic Biofilm Growth 

4.1 Introduction 40 

4.2 Overview of Biofilm Growth Model 41 

4.2.1 Steady-State Biofilm Growth Model 41 

4.2.2 Dynamic Biofilm Growth Model 42 

4.3 Dynamic Biofilm Growth Model 43 

4.3.1 Detachment Model 46 

4.3.1.1 Overview of Biofilm Detachment Model 46 

4.3.1.2 Important Parameters Influencing Detachment in 48 
a TPFBBR 

4.3.1.3 Detachment Model Formulation 50 

4.3.2 Biofilm Growth Model Incorporating Detachment 53 

4.4 Review of Mathematical Modelling of a TPFBBR 55 

4.5 Integrated Model Development 56 

4.5.1 Reaction-Diffusion Model 57 

4.5.2 Reactor Model 58 

4.5.3 Hydrodynamic Parameters 59 

4.5.3.1 Axial Dispersion Coefficient 60 

4.5.3.2 Liquid-Solid Mass Transfer Coefficient 60 

4.5.3.3 Phase Holdups 62 

4.6 Results and Discussion 64 



4.6.1 Computer Program 64 

4.6.2 Computer Simulation Scheme oflntegrated Model 65 

4.6.3 Model Simulation Results 68 

4.7 Conclusions 82 

5 Sequential Neural Network Model for a TPFBBR 83 
5.1 Introduction 83 

5.2 Basics of an Artificial Neural Networks 85 

5.2.1 What is an Artificial Neural Network (ANN)? 85 

5.2.2 An Artificial Neural Network as a Process Modelling Tool 87 

5.2.3 Multilayer Feedforward Neural Networks (MFNN) 90 

5.2.4 Backpropagation (BP) Training Algorithm 92 

5.2.5 Cascade-Correlation (C-C) Algorithm 99 

5.2.6 Extended Kalman Filtering (EKF) Learning Algorithm 101 

5.2.7 Generalized Regression Neural Network (GRNN) 104 

5.3 Sequential Neural Network Model 107 

5.3.1 Criteria for Validation of Neural Network Mode 109 

5.4 Results and Discussions 112 

5.4.1 Data Sets 112 

5.4.2 Data Transformation 112 

5.4.3 Neural Process Estimator 119 

5.4.4 Neural Process Predictor 124 

5.5 Conclusions 127 

6 Intelligent Hybrid Model with a Neurofuzzy Process 129 
Estimator for a TPFBBR 

6.1 Introduction 

6.2 . Fuzzy System 

6.2.1 Fuzzy Sets 

129 

131 

131 



6.2.2 Fuzzy Inference System 

6.2.3 Takagi & Sugeno (TS) Fuzzy Model 

6.3 Neurofuzzy Modelling 

6.3.1 Contact Points of Fuzzy System and Artificial Neural 
Networks 

6.3.2 Background of Neurofuzzy Systems 

6.3.3 The Architecture of the ANFIS Neurofuzzy System 

6.3.4 Hybrid Learning Algorithms of the ANFIS 

6.4 Intelligent Hybrid Modelling for a TPFBBR 

6.4.1 Reaction-Diffusion Model 

6.4.2 Axial-Dispersion Model 

6.4.3 Intelligent Hybrid Model for a TPFBBR 

6.5 Results and D iscussion 

6.5.1 Results of Neurofuzzy Process Estimators 

6.5.2 Predictions of Dynamic Performance using Hybrid Model 
of TPFBBR 

6.6 Conclusions 

7 Conclusions 

7.1 Summary 

7.2 Applicability of Models Developed in This Thesis 

Nomenclature 

References 

Appendices 

133 

140 

140 

140 

143 

147 

149 

152 

152 

152 

155 

158 

158 

176 

183 

184 
184 

186 

191 

194 

207 



A. Main FORTRAN program for a TPFBBR used in Chapter 4 207 

B. Some routines for multilayer feedforward neural network 216 

(MFNN) trained by extended Kalman filtering (EKF) learning 

algorithm used in Chapter 5 



LIST OF FIGURES 

Figure 

2 .1 Three-phase fluidised bed reactor (TPFBR) 

2 .2 The TPFBBR system 

2.3 Flow pattern in a three-phase fluidized bed reactor 

2.4 Illustration of mass transfer processes in FBBR 

2.5 Axial solid distribution in a TPFBR (Tang & Fan, 1989) 

2.6 Biofilm development processes 

3.1 Schematic diagram of experimental apparatus 

4.1 Schematic of biofilm growth with a volume element of 
biofilm 

4.2 Design and simulation scheme for a TPFBBR 

Page 

9 

10 

13 

20 

27 

29  

36 

44 

67 

4.3 Time progression of the average biofilm thickness and 71 
biofilm density (UL = 0.066cm/sec , Ua= 0.48cm/sec , 

dsp = 570 fJffl ) 
4.4 Time progression of the average biofilm thickness and 72 

biofilm density (UL = 0.0325cm/sec , Ua= 0.42cm/sec, 

dsp = 570 fJffl ) 

4.5 Time progression of the average biofilm thickness and 73 
biofilm density (UL = 0.03 cm / sec , U 0= 1.2 cm / sec , 

dsp = 710 fJffl) 

4.6 Time progression of the average biofilm thickness and 74 
biofilm density (UL = 0.062cm/sec , Ua= 0.36 cm/sec , 

dsp = 275 fJffl ) 



----------------

4.7 The substrate concentration profiles in the liquid phase as a 77 
function of bed height at the different times (UL = 0.078 

cm/sec , Uo=0.842 cm/sec, dsp =570jJl1l) 

4.8 The substrate concentration profiles in the liquid phase as a 79 
function of bed height at the different times. (UL = 0.03 

cm/sec, Uo= 1.2 cm/sec , dsp = 710jJl1l) 

4.9 3-D plots of phenol concentration profile as function of 
bed height and time (UL =0.078 cm / sec, U 0 = 0.842 

cm / sec , dsp = 570 jJI1l ) 
4.10 3-D plots of phenol concentration profile as function of 

bed height and time (UL = 0.03 cm / sec, U 0 = 1.2 

cm / sec, dsp = 710 jJI1l) 

80 

81 

5.1 Neural network models 86 

5.2 Architecture of the multilayer feedforward neural network 90 

5.3 Common activation functions used in neural network 

5.4(a) The training phase of MFNN 

5.4(b) The prediction phase of MFNN 

91 

93 

93 

5.5 Backpropagation flow chart 98 

5.6 The architecture of the neural network trained with C-C 100 
after 2 hidden units have been added 

5.7 Generalized regression neural network 105 

5.8 Architecture of the sequential neural network model 110 

5.9(a) Comparison of prediction results between modelling with 118 
data transformation and raw data for neural process 
estimator 

5. 9 (b) Comparison of prediction results between modelling with 118 
data transformation and raw data for neural process 
estimator 

5. 9 (c) Comparison of prediction results between modelling with 119 
data transformation and raw data for neural process 
predictor 



5.10 (a) Results of the neural process estimator for the biofilm 122 
thickness using data set 1 

5.10 (b) Results of the neural process estimator for the biofilm 122 
density using data set 1 

5 .11 (a) Results of the neural process estimator for the biofilm 123 
thickness using data set 2 

5.11(b) Results of the neural process estimator for the biofilm 123 
density using data set 2 

5.12(a) Prediction results of the neural process predictor (MFNN 125 
with EKF) using data set 1 

5 .12(b ) Prediction results of the neural process predictor (GRNN) 126 
using data set 1 

5.12(c) Prediction results of the neural process predictor (MFNN 126 
with EKF) using data set 2 

5. 12(d) Prediction results of the neural process predictor (GRNN) 127 
using data set 2 

6.1 Conventional sets vs. fuzzy sets 131 

6.2 Different shapes of membership functions 132 

6.3 Typical fuzzy sets for temperature 132 

6.4 Graphical representation of fuzzy operator 135 

6.5 General structure of fuzzy inference system 136 

6.6 General structure of fuzzy inference engine 137 

6.7 Max-Min and Max-Dot interface 139 

6.8 Max-Dot interface with unioned and summed results 139 

6.9 The main advantage of the neurofuzzy system 144 

6.10 The architecture of the ANFIS neurofuzzy model 147 

6.11 Types of hybrid model; (a) Serial hybrid model (b) Parallel 155 
hybrid model 

6.12 The structure of hybrid model presented for a TPFBBR 157 



6.13 The structure of heuristic searching algorithm for 161 
neurofuzzy system 

6. 14(a) The result plots of the heuristic searching algorithm for 162 
structure indetification for biofilm thickness using data set 
1 (when MF=3): (a) 2 input selection cases 

6.14(b) The result plots of the heuristic searching algorithm for 163 
structure indetification for biofilm thickness using data set 
l(when MF=3): (b) 3 input selection cases 

6.15 Initial membership functions for each variable (data set 1) 165 

6.16 Membership functions after learning for each variable (data 166 
set 1) 

6.17 Plots of training and testing data distriubution on each 166 
input variable (data setl) 

6.18 Neurofuzzy model prediction of biofilm thickness with 167 
observed value: (a) data set 1 (b) data set 2 

6.19(a) The result plots of the heuristic searching algorithm for 170 
structure indetification for biofilm density using data set 
1 (when MF=3): (a) 2 input selection cases 

6.19(b) The result plots of the heuristic searching algorithm for 171 
structure indetification for biofilm density using data set 
1 (when MF=3): (b) 3 input selection cases 

6.20 Membership functions on each variable (a) before learning 173 
(b) after learning (data set 1) 

6.21 Plots of training and testing data distriubution on each 174 
input variable (data set 1) 

6.22 Neurofuzzy model prediction of biofilm density with 175 
observed value: (a) data set! (b) data set 2 

6.23 3-D plot of time and biofilm thickness on biofilm density 175 
(data set 1) 



6.24 The substrate concentration profiles in the liquid phase as a 177 
function of bed height at the different times for data set 1 

6.25 The substrate concentration profiles in the liquid phase as a 178 
function of bed height at the different times for data set 2 

6.26(a) 3-D plots of phenol concentration profile as function of bed 179 
heights and time (data set 1) 

6.26(b) 3-D plots of phenol concentration profile as function of bed 180 
heights and time (data set 2 )  

6.27(a) 3-D plots of phenol concentration profiles within the 181 
biofilm: (data set 1) 

6.27(b) 3-D plots of phenol concentration profiles within the 184 
biofilm: (b) data set 2 

7.1 Different modelling paradigms 187 



LIST OF TABLES 

TABLE PAGE 

2 .1 The comparisons of biomass concentration among 13 
biological processes (Perry, 1996) 

2.2 Summary of empirical equation for M.F. velocity 15 

2.3 Steady-state biofilm density and biofilm thickness values 32 
from different types of reactors 

3.1 Experimental conditions 

3.2 Composition of synthetic growth medium 

37 

38 

4.1 Summary of qualitative effects of tested parameters on 49 
detachment 

4.2 Values of parameters used in simulation 66 

4.3 Operating conditions for model simulations 68 

4.4 Boundary conditions for each biofilm growth model 69 
simulation 

5.1 Categorisation of some neural networks 87 

5.2 Operating conditions 113 

5.3 Continuous data transformation function used in the 115 
neural process estimator 

5.4 RMSE comparisons between data transformation and raw 116 
data for neural process estimator and predictor 

5.5 Continuous data transformation function used In the 117 
neural process predictor 

5.6 RMSE results of the neural process estimator for data set 121 
1 and 2 



---------------- -

5.7 Topologies of each neural network 124 

5.8 The comparison of RMSE for MFNN with EKF and 125 
GRNN 

6.1 The most popular logical fuzzy operators 135 

6.2 Some examples of the neurofuzzy system 145 

6.3 Learning schemes of neurofuzzy system 151 

6.4 Identification results for structures of neurofuzzy models 164 
using the heuristic searching algorithm over biofilm 
thickness (data set 1) 

6.5 Identification results for structures of neurofuzzy models 172 
using the heuristic searching algorithm over biofilm 
density (data set 1) 




