Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

TYPING OF CAMPYLOBACTER ISOLATES FROM HUMANS AND ANIMALS IN NEW ZEALAND

A thesis presented in partial fufilment of the requirements for the degree of Master of Science in Microbiology

at

Massey University Palmerston North

Megan Jane Leyland

1998

ABSTRACT

Campylobacteriosis is currently the most commonly notified communicable disease in New Zealand. The sources of *Campylobacter* infections are not known, although the consumption of incompletly cooked poultry, untreated water, unpasteurised milk and contact with animals are associated with an increased risk of infection.

The aim of this study was to establish a simple and reliable method for typing *Campylobacter* isolates in order to investigate the sources of *Campylobacter* infections in humans in New Zealand.

Campylobacter isolates from humans and animals were identified to the species and subspecies level with a series of biochemical tests. The isolates were then examined by three genotypic typing methods: restriction fragment length polymorphism (RFLP) analysis of chromosomal DNA, randomly amplified polymorphic DNA (RAPD) typing using the polymerase chain reaction and RFLP analysis of the flagellin genes.

The flagellin gene, *fla*B, was examined by PCR amplification followed by digestion with the restriction endonucleases *PstI* and *HindIII*. This method was the most reproducible of the three and provided a high level of discrimination, a total of 26 *PstI/HindIII* groups were found among 140 human *Campylobacter* isolates. Over 98% of *C. jejuni* and *C. coli* isolates could be typed using this method. The results of this study indicated that sheep, cows and calves may be important sources of *Campylobacter* infection in humans.

ACKNOWLEDGMENTS

I would like to sincerely thank my supervisor Associate Professor Mary Nulsen for her valuable guidance and help throughout the course of this project, and in the writing of this thesis. I would also like to thank the Department of Microbiology and Genetics for the use of the research facilities that have made this project possible.

I am grateful to Dr. George Ionas and Dr. Jan Schmid for their help with this project. I wish to thank Carolyn Young for all of her assistance and for answering many questions. I would also like to thank Nicole Von Maltzahn for her help with the dendogram analysis.

I wish to thank Stan Fenwick from the Faculty of Veterinary Pathology and Public Health for provding some of the animal isolates used in this study. I would also like to thank Carolyn Nicol from the Institute of Environmental Science and Research for the provision of the serotyped isolates. I would like to extend my appreciation to Catherine Norman and Barbara Asmundson for their help in the collection of the human isolates.

I would like to say a big "thank you" to all of my friends in the department for their support. In particular, I would like to thank Barbara, Sheralee and Michiko for their many trips to the "bank" (Options).

Finally, I would like to thank my parents for their continued support and encouragement.

TABLE OF CONTENTS

PAGE			
TITLE	PAGE		i
ABSTRACT			ü
ACKNO	OWLE	DGMENTS	iii
TABLE	OFC	ONTENTS	iv
LIST O	F FIG	URES	viii
LIST O	FTAB	LES	xii
LIST O	F ABB	REVIATIONS	xiii
СНАРІ	TER 1:	INTRODUCTION	1
1.1	Taxor	nomy and Historical Background	1
1.2	Camp	ylobacter Biology	1
1.3	Camp	oylobacteriosis	3
	1.3.1	Epidemiology of Campylobacteriosis	3
	1.3.2	Sources of Infection and Transmission	4
	1.3.3	Clinical Illness	5
	1.3.4	Pathogenesis	5
	1.3.5	Diagnosis and Treatment	6
	1.3.6	Control and Prevention	6
1.4	Typir	ng methods	7
	1.4.1	Phenotypic methods	7
		1.4.1.1 Biochemical Identification	7
		1.4.1.2 Phage Typing	8
		1.4.1.3 Serotyping	9
	1.4.2	Genotypic Methods	9

		1.4.2.1 Multilocus Enzyme Electrophoresis	9
		1.4.2.2 Restriction Endonuclease Analysis	10
		1.4.2.3 Ribotyping	10
		1.4.2.4 Pulsed Field Gel Electrophoresis	11
	1	.4.2.5 RAPD PCR	11
	1	.4.2.6 RFLP Analysis of Campylobacter Flagellin Gene	11
CHAP	TER 2:	MATERIALS AND METHODS	13
2.1	Mater	ials	13
	2.1.1	Charcoal Selective Medium	13
	2.1.2	Hematin Stock Solution	13
	2.1.3	Charcoal Non-Selective Medium	13
	2.1.4	Glycerol Broth	14
	2.1.5	Catalase Production Test	14
	2.1.6	Antibiotic Sensitivity Test	14
	2.1.7	Nitrate Reduction Test	15
	2.1.8	Hippurate Hydrolysis Test	15
	2.1.9	H ₂ S Production Test	15
	2.1.10	Indoxyl Acetate Hydrolysis Test	15
	2.1.11	DNase Production Test	16
	2.1.12	DNA Extractions	16
	2.1.13	Determination of DNA Concentration	17
	2.1.14	Restriction Endonuclease Digestion of DNA	18
	2.1.15	Agarose Gel Electrophoresis	19
	2.1.16	RAPD PCR	19
	2.1.17	Flagellin Gene PCR	20
2.	2 Met	hods	21
	2.2.1	Cultural Conditions	21
	2.2.2	Preservation of Cultures	21
	2.2.3	Catalase Production Test	21
	2.2.4	Antibiotic Sensitivity Test	21
	2.2.5	Nitrate Reduction Test	22
	2.2.6	Hippurate Hydrolysis Test	22

2.2.7	H ₂ S Prod	uction Test	22
2.2.8	Test for Growth at 25°C and 42°C		
2.2.9	Indoxyl Acetate Hydrolysis Test		
2.2.10	DNase Production Test		
2.2.11	DNA Ext	raction Method #1	23
2.2.12	DNA Ext	raction Method #2	24
2.2.13	DNA Ext	raction Method #3	24
2.2.14	Determin	ation of DNA Concentration	25
2.2.15	Restrictio	n Endonuclease Analysis	25
	2.2.15.1	Restriction Endonuclease Digestion of Genomic DNA	25
	2.2.15.2	Agarose Gel Electrophoresis of Restriction	
		Endonuclease Digests	26
2.2.16	RAPD PO	CR Typing	26
	2.2.16.1	RAPD PCR	26
	2.2.16.2	Agarose Gel Electrophoresis	26
2.2.17	Flagellin	Gene PCR Typing	27
	2.2.17.1	PCR Amplification of Campylobacter Flagellin Genes	27
	2.2.17.2	Agarose Gel Electrophoresis of the Amplicon	27
	2.2.17.3	Restriction Endonuclease Digestion of PCR Product	27
	2.2.17.4	Agarose Gel Electrophoresis of Digested Amplicon	28
	2.2.17.5	Estimation of Fragment Sizes	28
	2.2.17.6	Analysis of RFLP Patterns	28
	2.2.17.7	Estimation of the Number of Generations Derived From	
		a Single Bacterial Cell	29
	2.2.17.8	Description of the Havelock North Campylobacteriosis	
		Outbreak	29
CHAPTER 3:	RESUL	TS	30
3.1 Biotyp	oing		30
3.2 Source	e of Isolat	tes	30
3.3 DNA	Extractio	ns	30

3.4	Restriction Endonuclease Analysis	34
3.5	RAPD PCR Typing	34
	3.5.1 Optimisation of PCR Reaction	34
	3.5.2 RAPD Analysis of Campylobacter Isolates	38
3.6	Flagellin Gene Restriction Fragment Length Polymorphism	
	(RFLP) Typing	38
	3.6.1 PCR Amplification of the <i>fla</i> B Gene	38
	3.6.1.2 Optimisation of the PCR Reaction	38
	3.6.2 Restriction Endonuclease Digestion of the Amplicon	39
	3.6.3 flaB Gene RFLP Typing of Human Isolates	40
	3.6.3.1 flaB Gene Typing of Outbreak Isolates	40
	3.6.4 flaB Gene RFLP Typing of Animal Isolates	43
	3.6.5 RFLP Typing of Reference Strains	44
	3.6.6 Stability of RFLP Patterns in vitro	45
	3.6.7 Stability of RFLP Patterns in vivo	45
	3.6.8 Analysis of RFLP Patterns	45
	3.6.9 PCR Amplification of the flaA Gene	72
	3.6.10 flaA Gene RFLP Typing of Human Isolates	72
	3.6.11 flaA Gene RFLP Typing of Outbreak Isolates	72
CHAP	TER 4: DISCUSSION	85

REFERENCES

91

vii

LIST OF FIGURES

		PAGE
Figure 3.1	HaeIII digestion of Campylobacter genomic DNA	36
Figure 3.2	ClaI digestion of Campylobacter genomic DNA	36
Figure 3.3	Optimisation of DNA template concentration	37
Figure 3.4	PCR amplification of the <i>fla</i> B gene with primers RAA9 and RAA19	47
Figure 3.5	Restriction fragment length polymorphism patterns produced by <i>Pst</i> I digestion of the <i>fla</i> B genes of representative human <i>Campylobacter</i> isolates	
	А	49
	В	49
Figure 3.6	Restriction fragment length polymorphism patterns produced by <i>HindIII</i> digestion of the <i>flaB</i> genes of	
	representative human Campylobacter isolates	
84	А	51
	В	51
Figure 3.7	Restriction fragment length polymorphism patterns produced by <i>Pst</i> I digestion of the <i>fla</i> B gene of the following DNase producing isolates	53
Figure 3.8	produced by <i>Hind</i> III digestion of the <i>fla</i> B gene of the	50
	following DNase producing isolates	53

viii

DIOD

Figure 3.9	Restriction fragment length polymorphism patt	erns	
	produced by PstI digestion of the flaB genes of	of the	
	ESR isolates		
		А	55
		В	55
		С	57
Figure 3.10	Restriction fragment length polymorphism pat	terns	
	produced by HindIII digestion of the flaB gen	nes of the	
	ESR isolates		
		А	57
		В	59
		С	59
Figure 3.11	Restriction fragment length polymorphism par	tterns	
	produced by PstI digestion of the flaB genes	of 20	
	sheep isolates		
		A	61
		В	61
		С	63
Figure 3.12	Restriction fragment length polymorphism pa		
	produced by <i>Hin</i> dIII digestion of the <i>fla</i> B ge	enes of 20	
	sheep isolates	А	63
		B	65
		C	65
		C	05
Figure 3.13	Restriction fragment length polymorphism pa	atterns	
	produced by <i>PstI</i> digestion of the <i>flaB</i> gene		
	following animal isolates		67
Figure 3.14	Restriction fragment length polymorphism p	patterns	
	produced by HindIII digestion of the flaB g	č•	
	animal isolates		67

ix

Figure 3.15	Restriction fragment length polymorphism patter	erns	
	produced by PstI and HindIII digestion of the f	laB	
	genes of five reference isolates		68
Figure 3.16	Stability of PstI RFLP patterns		70
Figure 3.17	Stability of HindIII RFLP patterns		70
Figure 3.18	Dendogram of 168 Campylobacter isolates from	n	
	humans and animals		71
Figure 3.19	PCR amplification of the <i>flaA</i> gene with primer	2	
	pg50 and RAA19		74
Figure 3.20	Restriction fragment length polymorphism patter	erns	
¥.	produced by PstI digestion of the flaA genes of	f	
	representative human Campylobacter isolates		
		A	76
	1	8	76
Figure 3.21	Restriction fragment length polymorphism patter	erns	
	produced by HindIII digestion of the flaA gene	es of	
	representative human Campylobacter isolates		
		A	78
	1	В	78
Figure 3.22	Restriction fragment length polymorphism patte	erns	
	produced by PstI digestion of the flaA genes of	f	
	the ESR isolates		
		A	80
	1	В	80
	3	С	82

x

.

Figure 3.23 Restriction fragment length polymorphism patterns produced by *Hin*dIII digestion of the *fla*A genes of the ESR isolates

A	82
В	84

C 84

LIST	OF	TABL	ES

		PAGE
Table 1.1	Taxonomic position of species of the genus Campylobacter	2
Table 3.1	Differential reactions and characteristics of Campylobacter species	31
Table 3.2	The source and identification of <i>Campylobacter</i> isolates used in this study	33
Table 3.3	Fragment sizes of <i>flaB PstI</i> and <i>HindIII</i> patterns from human and animal isolates	39
Table 3.4	Distribution of RFLP types among human Campylobacter isolates	41
Table 3.5	RFLP types found among DNase producing isolates	42
Table 3.6	Distribution of RFLP types among ESR isolates	42
Table 3.7	Distribution of RFLP types among animal isolates	44
Table 3.8	Comparison of RFLP patterns of the <i>flaA</i> and <i>flaB</i> genes	73

LIST OF ABBREVIATIONS

bp	Base pair(s)
BRL	Bethesda research laboratories
CNSM	Charcoal non-selective medium
CSM	Charcoal selective medium
CTAB	Hexadecyltrimethyl ammonium bromide
DNA	Deoxyribonucleic acid
DNase	Deoxyribonuclease
dNTP	Deoxynucleotide triphosphate
EDTA	Ethylene diamine tetra-acetate
kb	Kilobase
mins	Minutes
MEE	Multilocus enzyme electrophoresis
NCTC	National collection of type cultures
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PFGE	Pulsed field gel electrophoresis
ppm	Parts per million
RAPD	Random amplification of polymorphic DNA
RFLP	Restriction fragment length polymorphism
rpm	Revolutions per minute
S _{AB}	Similarity value
SDS	Sodium dodecyl sulphate
TAE	Tris acetate EDTA
Taq	Thermus aquaticus
TE	Tris EDTA
TNE	Tris NaCl EDTA
Tris	Tris-(hydroxymethyl) aminomethane
U	Unit(s)
UV	Ultra Violet
V	Volts
w/	With
(w/v)	Weight: volume ratio
X	Times concentrated