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ABSTRACT 

Sandersonia aurantiaca (Hook.) has recently become an important horticultural crop 

through its economic value for export of its cut flowers and tubers. Little information 

however is available on seed structure, morphology, development and propagation. The 

main objectives of this study were to investigate the pattern of seed development, to find 

satisfactory methods of improving the seed germination and to assess possible 

mechanisms of seed dormancy of Sandersonia aurantiaca (Hook.) . 

Seed development was investigated by fixing plant material in FAA solution, 

embedding in paraffin, and staining with safranin-fast green. A series of sections were 

examined and photographed under a microscope. Both embryo and endosperm 

development in Sandersonia show close similarity to development in Allium fistulosum 

(Alliaceae). Embryo development passes through early globular, late globular, elongated 

spheroidal and linear embryo development stages. Endosperm development conforms to 

the Nuclear type. Freely-growing walls between the endosperm nuclei may be associated 

with the embryo sac wall as projections. The structure of the mature seeds is very 

similar to that of Iris (lridaceae) seeds. The small, linear embryo is embedded in the 

endosperm which constitutes most of the seed volume. Such small, linear embryos may 

be one reason for embryo dormancy in Sandersonia seed. A special structure (a conical 

or cylindrical protuberance) is observed in the inner part of the seed coat, which may 

combine with a lignified layer (and perhaps including the endosperm) to contribute to the 

coat-imposed dormancy in this species. 

Eighty five treatments were firstly used to improve the germination percentage of 

Sandersonia seed. Only the treatment in which seeds scarified firstly with sandpaper for 

1 min and then nicked near the radicle end showed increased germination from Oto 10.6 

% by 30 days, at 20° C. Based on this result, 31 new treatment methods were designed 

in germination experiment 2. Water uptake patterns, allelopathic effect on lettuce seeds 

and embryo rescue of Sandersonia seed were also studied for assessing the possible 

mechanisms of dormancy. 
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The findings of the present study suggest that the Sandersonia seeds have double 

dormancy. The dormancy mechanism is located in both the seed coat and the embryo 

and it consists of at least two steps that must be activated in sequence before germination 

can occur. The first step can be activated prematurely by scarifying and nicking the 

seeds, thus allowing the seed coat to become permeable to water, oxygen or to reduced 

mechanical restriction. The second step can be activated directly by GA3 which 

stimulates embryo growth. This germination-promoting technique has great potential for 

Sandersonia for improvement of the germination percentage of seeds from O to about 70 

%, but development on a commercial scale needs further studies. 



iii 

ACKNOWLEDGMENTS 

I would like to express my deep grateful thanks to my supervisor, Associate Professor D 

W Fountain, for bis supervision, continual guidance and encouragement throughout this 

study. I deeply appreciated bis patience in reading, and constructively criticizing the 

manuscript, and bis correction of the English in this thesis. 

I also feel deeply grateful to Mr. E R Morgan of Crop Food Research Ltd. at the 

Levin Research Center for bis valuable discussions, criticisms and thoroughly examining 

the manuscript. 

I wish to express my profound gratitude to Professor P E Jameson, Head of 

Department of Plant Biology and Biotechnology, and the Science Faculty of Massey 

University for allowing me to study at the Department of Plant Biology and 

Biotechnology, Massey University; and to the Crop & Food Research Ltd. at the Levin 

Research Center for supplying Sandersonia seeds, plants and some equipment for the 

experiments. 

My work at the Department of Plant Biology and Biotechnology, Massey 

University was greatly facilitated by the assistance of all staff members, and my 

postgraduate colleagues of the department. My thanks go to them for their knowledge, 

help and friendship. I also thank all friends of mine for their friendship, which made my 

stay in New Zealand more enjoyable. 

Finally, I would like to thank my mother, my husband, my daughter and my sister 

for their love, understanding and encouragement during the period of my MSc 

candidature. 



TABLE OF CONTENTS 

ABSTRACT 

ACKNOWLEDGMENTS 

TABLE OF CONTENTS 

LIST OF TABLES 

LIST OF FIGURES 

LIST OF PLATES 

LIST OF ABBREVIATIONS 

Chapter 1 

GENERAL INTRODUCTION 

Chapter 2 

LITERA TORE REVIEW 

2.1 Seed development 

2.1.1 Ovary, ovule and embryo Sac 

2.1.1.1 Ovary 

2.1.1.2 Ovule 

2.1.1.3 Embryo sac 

2.1.2 Endosperm development 

2.1.3 Embryo development 

2.1.4 Seed coat 

2.1.5 Seed structure 

2.2 Seed dormancy and germination 

2.2.1 Classification of types of seed dormancy 

2.2.2 Embryo dormancy 

2.2.2.1 Cotyledons and embryo dormancy 

2.2.2.2 Germination inhibitors 

2.2.2.3 Embryo immaturity 

2.2.3 Cost-imposed dormancy 

i 

iii 

iv 

ix 

xi 

xiv 

xvii 

1 

6 

6 

7 

7 

7 

9 

10 

12 

15 

16 

18 

19 

20 

20 

21 

23 

24 

iv 



2.2.3.1 Water uptake by seeds 24 

2.2.3.2 Seed impermeability 25 

2.2.3.3 Mechanical restraint 27 

2.2.3.4 Interference with diffusion of endogenous inhibitors 29 

2.2.4 Laboratory techniques for breaking seed dormancy 30 

2.2.4.1 After-ripening 30 

2.2.4.2 Stratification 31 

2.2.4.3 Other effects of temperature on dormancy 33 

2.2.4.4 Light 34 

2.2.4.5 Chemicals 34 

2.2.4.6 Hard-coated seeds 34 

2.2.4. 7 Hormones 38 

2.2.5 Embryo rescue by embryo or ovule culture 40 

Chapter 3 

ANATOl\.fICAL AND MORPHOLOGICAL STUDIES OF SEED 

DEVELOPMENT IN Sandersonia aurantiaca (HOOK.) 

3.1 Introduction 

3.2 Materials and methods 

3.2.1 Plant materials 

3.2.2 Experiment methods 

3.2.2.1 Measurements 

3.2.2.2 Paraffin embedding and section preparation 

3.2.2.3 Examination 

3 .3 Observations 

3.3.1 Flower, ovary and ovule 

3.3.2 Ovule growth 

3 .3 .3 Embryo sac 

3.3.4 Development of endosperm 

3.3.5 Development of embryo 

3.3.6 Development of seed coat 

42 

42 

43 

43 

44 

44 

44 

45 

45 

45 

46 

47 

54 

59 

59 

V 



3.3.6 Development of seed coat 

3.3.7 Seed structure 

3.4 Discussion 

3.4.1 Ovary and ovule 

3.4.2 Ovule growth 

3.4.3 Development of endosperm 

3.4.4 Development of embryo 

3.4.5 Seed coat development and seed structure 

Chapter4 

GERMINATION OF Sandersonia aurantiaca (HOOK.) PROMOTED BY 

INTERACTION BETWEEN SCARIFICATION AND A PLANT GROWTH 

REGULATOR 

4.1 Introduction 

4.2 Materials and methods 

4.2.1 Seed source 

4.2.2 Seed viability 

4.2.3 Seed germination 

4.2.3.1 Experiment 1: A survey of dormancy breaking 

treatments on Sandersonia seeds 

4.2.3.2 Experiment 2: Optimisation of germination of 

Sandersonia seeds 

4.2.3.3 Experiment 3: Effect of gibberellic acid on 

Sandersonia seed germination 

4.2.3.4 Experiment 4: Germination optimisation 

treatments applied to other seed lots of 

Sandersonia 

4.2.4 Imbibition measurements 

4.2.5 Allelopathic effect on lettuce seeds 

4.2.6 Ovule or excised embryo growth in Vitro 

4.2.7 Statistical analysis 

59 

65 

69 

69 

70 

71 

73 

76 

78 

78 

80 

80 

80 

80 

81 

81 

83 

83 

85 

85 

86 

87 

vi 



4.3 Results 

4.3.1 Seed viability 

4.3.2 Seed germination 

4.3.2.1 Experiment 1: A survey of dormancy 

breaking treatments on Sandersonia seeds 

4.3.2.2 Experiment 2: Optimisation of germination 

of Sandersonia seeds 

4.3.2.3 Experiment 3: Effect of Gibberellic Acid on 

Sandersonia seed germination 

4.3.2.4 Experiment 4: Germination optimisation 

treatments applied to other seed lots of 

Sandersonia 

4.3.3 Imbibition measurements 

4.3.4 Allelopathic effect on lettuce seeds 

4.3.5 Ovule or Excised embryo growth in Vitro 

4.4 Discussion 

4.4.1 Seed viability and germination 

4.4.1.1 Seed viability 

4.4.1.2 Optimisation of germination of Sandersonia 

seed 

4.4.1.3 The role of chemicals 

4.4.1.4 The role of plant growth regulators 

4.4.2 Embryo dormancy 

4.4.3 Imbibition and seed coat-imposed dormancy 

4.4.4 Germination inhibitors 

4.4.5 Ovule and excised embryo growth in Vitro 

Chapters 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

5.2 Suggestions for future research 

87 

87 

88 

88 

91 

98 

100 

100 

103 

107 

109 

110 

110 

110 

112 

114 

115 

115 

118 

119 

121 

121 

123 

vii 



viii 

REFERENCES 125 



ix 

LIST OF TABLES 

Table 2.1 Some seeds containing gennination inhibitors (Source: 
Bewley and Black 1994) 22 

Table 2.2 Some treatments that remove coat-imposed dormancy 
(Source: Bewley and Black 1994) 27 

Table 2.3 Removal of dormancy by dry after-ripening 30 

Table 2.4 Some successful examples for breaking seed dormancy 
by stratification 32 

Table 2.5 Effect of light on breaking seed dormancy of some species 35 

Table 2.6 Some successful examples for breaking seed dormancy 
by chemicals 36 

Table 2.7 Some successful examples for breaking seed dormancy 
by mechanical treatments 37 

Table 2.8 Some successful examples for breaking seed dormancy 
by plant hormones 39 

Table 2.9 Species successful in ovule culture 41 

Table 3.1 Correlation of seed development and histological stages 68 

Table 3.2 Comparison of embryo development between Allium 
fistulosum L. and Sandersonia aurantiaca 75 

Table4.1 Eighty five Seed treatment methods employed in Experiment 1 82 

Table4.2 Thirty one Treatment methods employed in Experiment 2 84 

Table 4.3 The numbers of stained embryos and their topographical 
stain evaluation classes 88 

Table 4.4 The results of 85 seed treatment employed in Experiment 1 89-90 

Table4.5 Four secondary treatments employed during experiment 1 
and their results 91 

Table4.6 The results of secondary treatments (scarified with #240 
sandpaper + nicked near radicle end) of replicate four in 
experiment 1 91 

Table 4.7 Effect of temperature and light on seed gennination 
percentage, rate of germination and days taken for 
gennination in Sandersonia aurantiaca 92 



Table 4.8 Effect of mechanical treatments on seed germination 
percentage, rate of germination and days taken for 
germination in Sandersonia aurantiaca 

Table 4.9 Effect of chemicals on seed germination percentage, 
rate of germination and days taken for gennination 
in Sandersonia aurantiaca 

Table 4.10 Effect of hormones on seed germination percentage, 
rate of germination and days taken for gennination 
in Sandersonia aurantiaca 

Table 4.11 Effect of thiram and bleach on seed germination 
percentage, rate of germination and days taken for 
germination in Sandersonia aurantiaca 

Table 4.12 Fresh weight, dry weight per 100 seeds, viability, 
embryo size, and percentage germination of different 
lots of Sandersonia seeds. All treatments performed 

in nominal darkness at 20°c with 4 replicates (x2 times), 
40 seeds per petri dishes. 

Table 4.13 The final results of ovule culture for embryo rescue 

93 

94 

95 

96 

100 

107 

X 



xi 

LIST OF FIGURES 

Figure 1.1 Main exports of fresh cut flowers from New Zealand. 
All figures are f.o.b for years ended June 30. (a) 1991/ 
1992--1993/1994; (b) 1992/1993--1994/1995 (Source: 
Flowers New 'Zealand August 1994 and October 1995) 4 

Figure 2.1 Schematic representation of main types of embryogeny; 
based on Schnarf and Johansen's system of classification 
(Source: Natesh and Rau 1984) 13 

Figure 2.2 Development of embryo in Muscari comosum (Source: 
Maheshwari 1950) 14 

Figure 2.3 Diagrams illustrating typology of seeds based on size, 
shape, and position of embryo as seen in longitudinal 
sections of mature seeds (Source: Esau 1977). 17 

Figure 2.4 Dormancy and germination (Source: Bewley and Black 
1994) 19 

Figure 2.5 Triphasic pattern of water uptake by germinating seeds. 
Arrow marks the time of occurrence of the first signs of 
radicle protrusion (Source: Bewley and Black 1994) 25 

Figure 3.1 Changes of mean ovule diameter in seed development 
of Sandersonia. The values are the mean diameter of 60 
ovules + mean standard deviation 47 

Figure 4.1 Position of seed nick from the radicle end of the seed. 
(a) Nick near the radicle end for seeds scarified by 
sandpaper. (b) Nick at the radicle end for intact seeds. 
e, embryo; en, endosperm; s, strophiole; sc, seed coat 83 

Figure4.2 Effect of exogenous GA3 concentration on germination 
percentages measured 7 days, 8 days, 10 days, 11 days, 
12 days, 14 days, 17 days and 23 days after Sandersonia 
seeds were treated. Germination of treatments with the 
same letter was not significantly different (P = 0.05) 
within each curve according to Duncan's multiple range 
test 99 

Figure 4.3 Effect on Sandersonia seed germination percentages of 
different contact time of 300 ppm GA3. Results were 
measured at 9 days, 11 days, 14 days, 21 days and 28 
days. Germination of treatments with the same letter 
was not significantly different (P = 0.05) within each 
curve according to Duncan's multiple range test 99 



Figure 4.4 Water uptake patterns for intact seeds, decoated seeds, 
.,. nicked seeds, seeds pricked with a needle, and decoated 

+ nicked seeds during 192 hours of imbibition 

Figure 4.5 Water uptake patterns for seeds collected in different 
years during 192 hours of imbibition 

Figure 4.6 Water uptake patterns for seeds collected in 1995, but 
after different storage duration, during 192 hours of 
imbibition 

Figure 4. 7 Differences in mean diameters of soaking seeds 

101 

101 

102 

collected in different years 102 

Figure 4.8 Effect on (a) lettuce seed germination and (b) radicle 
length of the solutions, in which the different treatment 
of Sandersonia seeds were soaked for 1 week. Results 
were measured after 24 h, 48 h, 72 h and 96 h. The 
treatments were: (1) control, (2) nicked seeds, (3) intact 
seeds, (4) de-coated seeds+ rinse, and (5) de-coated seeds. 
The values are the mean of four replicates ( 15 seeds each ) ± 
mean standard error 104 

Figure 4.9 Effect on (a) lettuce seed germination and (b) radicle 
length of the solutions, in which the different treatment 
of leaching (1 week) Sandersonia seeds were soaked 
for 1 week. Results were measured after 24 h, 48 h, 
72 h and 96 h. The treatments were: ( 1) control, 
(2) de-coated+ nicked, (3) intact seeds, (4) de-coated 
+ nicked (nicking the seeds after leaching for 1 week), 
and (5) de-coated. The values are the mean of four 
replicates (15 seeds each)± mean standard error 105 

Figure 4.10 Effect on radicle length oflettuce seeds of the nine 
solutions, in which different treatment of Sandersonia 
seeds were soaked for 5 months, respectively. Results 
were measured 72 hours after incubation began. 

xii 

The values are the mean of four replicates ( 15 seeds each ) 
± mean standard error 106 

Figure 4.11 Effect on germination percentage of lettuce seeds of 
the nine solutions, in which different treatment of 
Sandersonia seeds were soaked for 5 months, respectively. 
Results were measured 24 h, 48 h, and 72 h after incubation 
began. The values are the mean of four replicates (15 seeds 
each ) ± mean standard error 106 

Figure 4.12 Growth rate of Sandersonia ovules in vitro. (a) the 
ovules were collected at younger stage (8 and 14 OAP), 
(b) collected at old stage (21-42 OAP). The ovules were 



placed at half strength MS medium (see section 4.2.6) and 
incubated in 16 h light /d at 25°C. Arrow marks the time 
of initiation of ovule germination in any replicate. 
Vertical bars represent 95 % LSD 

Figure 4.13 Schematic drawing of median longitudinal section of an 
iris seed from the Oncocyclus section. M, micropyle; 
A, aril; Em, embryo; VB, vascular bundle; Ch, chalaza; 
ST, suberized tissue; II, inner integument; OI, outer 
integument; En, endosperm. OI, II and A together 
form the seed coat (Source: Blumenthal et al. 1986) 

Figure 4.14 Radicle tip of Iris atropurpurea seeds close to inner 
micropylar end. x300. C, seed coat; CS, conical 
protuberance; En, endosperm; R, radicle (Source: 
Blumenthal et al. 1986) 

xiii 

108 

117 

117 



LIST OF PLATES 

Plate 1.1 The cut flowers of Sandersonia aurantiaca (Hook.) 
(Supplied by E R Morgan, Crop & Food Research Ltd. 
at the Levin Research Center). 

Plate 3.1 Transverse section of flower bud at 1 week before flower 
opening (x14). p, perianth; os, ovules; o, ovary; s, stamens. 

Plate 3.2 Transverse section of ovary at 1 OAP (x40). os, ovules; 
es, embryo sac; h, hypostase; f, funiculus. 

Plate 3.3 Longitudinal section of anatropous ovule at 1 DAP with 
micropyle (in outer integument region), obturator and 
hypostase (x160). oi, outer integument; ii, inner integument; 
ob, obturator; h, hypostase; nu, nucellar cap; es, embryo sac; 
m, micropyle. 

Plate 3.4 Part of longitudinal section of developing seed at 28 DAP 
with a vascular bundle (x40). s, strophiole; vb, vascular 
bundle; en, endosperm; ts, transfer cells. 

Plate 3.5 Functional and degenerated megaspores ( collected at 1 week 
before flower opening, x400). fin, functional megaspore; 
dm, degenerated megaspores. 

Plate 3.6 Bi-nucleate embryo sac at O DAP (x640). 

Plate 3.7 Embryo sac at 1 DAP (x400). s, synergid; e, egg cell; 
c, central cell; nc, nucellar cap. 

Plate 3.8 Egg cell at 1 DAP with a nucleus at micropylar pole (x400). 

Plate 3.9 Zygote at 8 OAP with a nucleus at chalazal pole (x400). 

Plate 3.10 Two polar nuclei adjacent to each other at 4 DAP (x640). 
pn, polar nuclei; nc, nucellar cap. 

Plate 3.11 Two polar nuclei fusing to form the secondary nucleus 
at 7 OAP (x400). sn, secondary nucleus; nc, nucellar cap. 

Plate 3.12 The antipodal cells at I OAP (x400). an, antipodals; 
nc, nucellar cap. 

Plate 3.13 Enlarged antipodals at 10 OAP (x200). an, antipodals; 
h, hypostase; ts, transfer cells; nc, nucellar cap. 

5 

46 

49 

49 

49 

49 

51 

51 

51 

51 

53 

53 

53 

53 

xiv 



Plate 3 .14 Longitudinal section of embryo sac showing most of the 
coenocytic nuclear endosperm and cytoplasm situating in 
the chalazal end and peripheral zone of embryo sac at 14 
DAP (x200). h, hypostase; cv, central vacuole; en, 
coenocytic nuclear endosperm; ts, transfer cells. 

Plate 3.15 14 DAP showing initiation of freely growing walls in 
between the endosperm nuclei at the charazal end and 
the edges of embryo sac; note crooked and irregularly 
growing walls associated with embryo sac wall (arrows) 
(xl60). h, hypostase; ts, transfer cells. 

Plate 3. 16 Part of cellular endosperm (14 DAP) showing the division 
of a cell through cell plate (arrow) formation following 

56 

56 

karyokinesis (x640). 56 

Plate 3.17 Completely cellularized endosperm (21 DAP, x40). em, embryo; 
en, endosperm; vb, vascular bundle; cp, cylindrical 
protuberance. 56 

Plates 3.18 and 3.19 17 DAP showing one to several layers of cellularized 
endosperm cells and a reduced central vacuole (xlOO). 
cv, central vacuole; en, cellularized endosperm; em, embryo; 
cp, cylindrical protuberance. 58 

Plate 3.20 Linear embryo with a degenerating suspensor surrounded 
by a clear space and endosperm cells (49 DAP, xlOO). 
em, embryo proper; ds, degenerating suspensor; 
en, endosperm; cs, clear space; sbs, small bodies. 58 

Plate 3.21 Median longitudinal section of a mature seed (56 DAP, x25). 
em, embryo; en, endosperm; s, strophiole. 58 

Plate 3.22 Stages in the development of the embryo. a, apical cell; 
b, basal cell; em, embryo proper; s, suspensor; 
en, endosperm; cp, cylindrical protuberance; sa, shoot 
apex; cot, cotyledon; r, prominent radicle; ea, embryonic 
axis; cs, clear space; nc, nucellar cap; sbs, small bodies. 
(A) Two-celled proembryo at 9 DAP (x400). 
(B) Three-celled proembryo at 9 DAP (x400). 
(C) Eight-celled embryo proper at 14 DAP (x400). 
(D) A eight to nine-celled suspensor at 14 DAP (x400). 
(E) Late globular embryo surrounded by endosperm cells 
at 21 DAP (x200). (F) Elongated spheroidal embryo with 
a suspensor at 28 DAP (x400). (G) Longitudinal section of 
linear embryo at 42 DAP (x200). (H) Transverse section of 
the embryo which was shown in (G) (x400). (I) Linear 
embryo in a mature seed (56 DAP, x200). 60-62 

xv 



Plate 3.23 Stages in the development of the seed coat. oi, outer 
integument; ii, inner integument; en, endosperm; 
ep, epidermis; pcs, parenchyma cells; ccs, compressed cells; 
11, lignified layer; cl, compressed cells + lignified layer. 
(A) A younger seed coat showing inner integument cells 
with horizontal elongation (12 DAP, x400). (B) Developing 
seed coat shows that the cells of outer integument become 
enlarged and more vacuolated, while the inner ones are 
crushed and initiate lignification (14 OAP, x400). 
(C) Seed coat at 28 OAP with four types of cells (x200). 
(D) Seed coat at 42 OAP (x200). 64 

Plate 3.24 Seed coat at maturity stage (56 OAP, x200). ep, epidermis; 
pcl, parenchyma cell layer; 11, lignified layer; en, endosperm 67 

Plate 3.25 Charazal part of a longitudinal section of a developing 
seed at 42 DAP (xlOO). en, endosperm; ts, transfer cells 67 

Plate 3.26 Micropylar part of longitudinal section of developing seed (xI60). 
em, embryo; en, endosperm; cp, cylindrical protuberance; 
s, strophiole. 67 

Plate 3.27 Longitudinal section of a dry seed (x40). en, endosperm; 
h,hilum. 67 

Plate 4.1 The effect of fungicide-thiram and surface sterilisation on 
germination of Sandersonia seeds. (A) surface sterilisation 
by 25 % bleach for 20 min, (B) 2.5 g/1 thiram in germination 
medium. 97 

xvi 



6-BA 

ABA 

AVOVA 

C2~ 

ea 

cb 

DAA 

DAP 

DW 

FAA 

GA 

lAA 

ISTA 

LS 

LSD 

MPD 

MS 

NZ 

ppm 

PAS 

RH 

TBA 

ITC 

we 

LIST OF ABBREVIATIONS 

6-benzyladenine 

abscisic acid 

An Analysis of Variance 

ethylene 

apical cell 

basal cell 

days after anthesis 

days after pollination 

dry weight 

Formalin-alcohol-glacial acetic acid solution 

gibberellic acid 

indole-3-acetic acid 

International Seed Testing Association 

Linsmaier and Skoog 

Least Significant Difference 

morphophysiological dormancy 

Murashige and Skoog 

New Zealand 

parts per million 

periodic acid-schiff s reagent 

relative humidity 

tertiary butyl alcohol 

2,3,5-triphenyl tetrazolium chloride 

water content 

xvii 




