Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A food chain approach to control of Shiga toxin-producing *Escherichia coli* in New Zealand

A thesis presented in partial fulfilment of the requirements for the degree

of Doctor of Philosophy in Veterinary Science

at Massey University, Palmerston North, New Zealand

Andrew Springer Browne

2018

Copyright is owned by the author of this thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only, and should identify the author as the source of this research. This thesis may not be reproduced elsewhere without the permission of the author

^mEpiLab, Hopkirk Research Institute

School of Veterinary Science

Massey University

Palmerston North, New Zealand

Abstract

This thesis describes the prevalence and molecular epidemiology of Shiga toxinproducing *Escherichia coli* (STEC) in New Zealand using microbiological, genomic, molecular, and statistical methods. STEC are a zoonotic pathogen that can cause bloody diarrhoea and acute kidney failure. Cattle are a well-recognized STEC reservoir, and previous research has identified living near cattle and contact with their faeces as an increased risk for human infection. Seven STEC serogroups (O157, O26, O45, O103, O11, O121, O145), known as the 'Top 7' STEC, have been identified as an increased risk to human health, with the New Zealand meat industry undertaking testing to ensure that veal beef exports to some international markets are free of these 'Top 7' serogroups.

A random stratified cross-sectional study of 'Top 7' STEC prevalence of young dairy calves (n=1,508) on New Zealand dairy farms (n=102) found that approximately 20% of calves and 75% of farms were positive for one or more of the 'Top 7' STEC. 'Top 7' STEC prevalence was positively associated with increased number of calves in a calf pen, and prevalence significantly varied by region. This study utilized a new culture-independent diagnostic test, NeoSEEK (PCR/MALDI-TOF method), and used statistical and microbiological techniques to evaluate the sensitivity and specificity of the method for this and further studies.

A longitudinal study evaluating prevalence and transmission of 'Top 7' STEC in animals and the dairy farm environment found evidence of calf-to-calf, dam-to-calf, and environment-to-calf transmission. Whole genome sequencing analysis and prevalence data revealed cross-contamination of young veal calf hides occurs during transport and lairage to processing plants.

Analysis of New Zealand serogroup O26 bacterial isolates (n=152), in comparison to publicly available genome sequence data (n=252) from other countries (n=14), suggested introduction of STEC and non-STEC O26 into New Zealand during few periods in the 20th and early 21st century. Populations of New Zealand serogroup O26 *E. coli* are monophyletic, possibly due to minimal live cattle importations into the country.

Further research in this area should focus on effective interventions at the farm and meat processing level to decrease the risk of veal beef contamination, while protecting public health.

List of Publications

- Browne, AS, Midwinter, AC, Withers, H, Cookson, AL, Biggs, PJ, Marshall JC, Benschop, J, Hathaway, S, Haack, N, Akhter, R, and French, NP. Molecular epidemiology of Shiga toxin-producing *Escherichia coli* (STEC) on New Zealand dairy farms: application of a culture-independent assay and whole genome sequencing. Applied and Environmental Microbiology, accepted for publication.
- 2. Browne, AS, Midwinter, AC, Withers, H, Cookson, AL, Biggs, PJ, Marshall JC, Benschop, J, Hathaway, S, Hranac, R, Nisa, S, Rogers, L, Akhter, R, and French, NP. Evaluation of transmission dynamics and presence of Shiga toxin-producing *E. coli* (STEC) in animals and their environment on New Zealand dairy farms, and the potential impact on contamination of veal carcasses during slaughter and dressing. In preparation for Frontiers in Microbiology.
- 3. Browne, AS, Biggs, PJ, Cookson, AL, Wilkinson, D, Bloomfield, S, Midwinter, AC, Marshall, JC, Benschop, J, Rogers, L, Hranac, R, Withers, H, Hathaway, S, George, T, Jaros, P, Irshad, H, Fong, Y, Dufour, M, Kariki, N, Winkleman, T, and French, NP. A global genomic examination of Shiga-toxin producing *Escherichia coli* (STEC) serogroup O26 and non-toxigenic variants from multiple sources. Under review for Emerging Infectious Diseases.

List of Presentations

- Browne, AS, Biggs, P, Cookson, A, Midwinter, A, Marshall, J, Benschop, J, Bloomfield, S, Wilkinson, D, Roger, L, Withers, H, Hathaway, S, George, T, Jaros, P, Irshad, H, and French, N. The local and global evolution and transmission of Shiga toxin-producing *E. coli* (STEC) serogroup O26. One Health Aotearoa Symposium, Wellington, New Zealand. December 14th, 2017. (Oral)
- Browne, AS. Detection, prevalence, and transmission of STEC on dairy farms.
 Taranaki Veterinary Association. July 10th, 2017. (Oral)
- 3. Browne, AS, Biggs, P, Marshall, J, Cookson, A, Midwinter, A, Benschop, J, Withers, H, Hathaway, S, and French, N. Characterisation of *Escherichia coli* Serogroup O26 Isolates from New Zealand Cattle and Humans Compared to International O26 Isolates. Proceedings of the American Society of Microbiology Microbe Conference, New Orleans, USA, June 1-5, 2017. (Oral)
- Browne, AS. Detection, prevalence, and transmission of STEC on dairy farms.
 Taranaki District Health Board. May 11th, 2017. (Oral)
- Browne, AS. Detection, prevalence, and transmission of STEC on dairy farms.
 Starship Children's Hospital, Paediatric Nephrology Unit. March 28th, 2017. (Oral)
- 6. Browne, AS. Detection, prevalence, and transmission of STEC on dairy farms and how this translates to potential contamination of bobby veal. 2017 Meat

Industry Workshop at AgResearch, Ruakura, Wednesday 15 March 2017. Invited Speaker. (Oral)

- 7. Browne, AS, Biggs, P, Marshall, J, Cookson, A, Midwinter, A, Benschop, J,
 Withers, H, Hathaway, S, and French, N. Whole genome based comparison of *Escherichia coli* O26 serogroup isolates from New Zealand dairy calves.
 Proceedings from the 4th International One Health Conference, Melbourne, Australia, December 3-7, 2016. (Poster)
- 8. Browne, AS. A food chain approach to control STEC in NZ. Meat Industry Association Annual Technical Meeting, July 8th, 2016. Invited Speaker. (Oral)
- 9. Browne, AS. New molecular and genomic technologies to assess Shiga toxinproducing *E. coli* (STEC) on New Zealand dairy farms and meat product. Proceedings from the New Zealand Institute of Food Science and Technology Conference. July 4th-7th, 2016, Rotorua, New Zealand. Invited Speaker. (Oral)
- 10. Browne, AS, Midwinter, A, Withers, H, Cookson, A, Biggs, P, Marshall, J, Benschop, J, Hathaway, S, and French, N. Epidemiology of Shiga toxinproducing *E. coli* on New Zealand dairy farms using new molecular and genomic technologies. Proceedings of the New Zealand Veterinary Association Annual Conference, 21-24 June 2016, Hamilton, New Zealand. Invited Speaker. (Oral)
- Browne, AS. The application of new molecular and genomic technologies to understand the epidemiology of the Top7 STEC in dairy cattle in New Zealand.
 STEC Workshop hosted by Dairy Companies Association of New Zealand, the

Meat Industry Association, Ministry of Primary Industries. May 11th, 2016. Invited Speaker. (Oral)

- 12. Browne, AS. The application of new molecular and genomic technologies to understand the epidemiology of STEC 7 in cattle in New Zealand. STEC Workshop hosted by AgResearch, Massey University, and Ministry of Primary Industries. December 15th, 2015. Invited Speaker. (Oral)
- 13. Browne, AS, Midwinter, A, Withers, H, Cookson, A, Biggs, P, Marshall, J, Benschop, J, Hathaway, S, and French, N. Prevalence, risk factors, and spatial distribution of Shiga-toxin producing *E. coli* (STEC) on dairy farms in New Zealand. Proceedings of the 9th Triennial International Symposium on Shiga Toxin (Verocytotoxin)- producing *Escherichia coli* (VTEC) meeting in Boston, September 13-16, 2015. (Poster)
- 14. Browne, AS. STEC on Dairy Farms. Meat Industry Association: STECWorkshop. Wellington, New Zealand. February 9th, 2015. Invited Speaker.(Oral)

Research Grants

- Co-Investigator, Metabolic characteristics of *Escherichia coli* serogroup O145, Institute of Veterinary, Animal, and Biological Sciences, Massey University, (Amount Awarded: \$0 to \$5,000), Date Awarded: 04/2017
- Co-Investigator, Evaluation of transmission of Shiga toxin-producing *E. coli* between dairy cattle and deer, Institute of Veterinary, Animal, and Biological Sciences, Massey University, (Amount Awarded: \$0 to \$5,000), Date Awarded: 04/2015
- Co-Investigator, Genome evaluation of Shiga toxin-producing *E. coli* from deer and humans, Institute of Veterinary, Animal, and Biological Sciences, Massey University, (Amount Awarded: \$0 to \$5,000), Date Awarded: 11/2016
- IVABS Postgraduate Conference Travel Fund, Institute of Veterinary, Animal, and Biological Sciences, Massey University, (Amount Awarded: \$0 to \$5,000), Date Awarded: 04/2017
- IVABS Postgraduate Conference Travel Fund, Institute of Veterinary, Animal, and Biological Sciences, Massey University, (Amount Awarded: \$0 to \$5,000), Date Awarded: 04/2015
- IVABS Postgraduate Conference Travel Fund, Institute of Veterinary, Animal, and Biological Sciences, Massey University, (Amount Awarded: \$0 to \$5,000), Date Awarded: 10/2016
- 7. ASM Student and Post Doctoral Award, American Society of Microbiology, (Amount Awarded: \$0 to \$5,000), Date Awarded: 05/2017

Acknowledgements

I can still remember getting off the bus outside Massey University, climbing up the hill to the Vet tower on a (rare) hot day in Palmerston North. After changing into some respectable yet crumpled clothes, I snuck into Kevin Stafford's office to discuss a possible PhD at Massey University. The former dean of my Veterinary School in Ireland, Boyd Jones, had put me in touch with Kevin to discuss potential PhD projects. I was wandering aimless, adventuring and doing some productive work, but needing a new direction. I interviewed with three people that day, one of whom was Nigel French. So first off, many thanks to Kevin and Boyd for helping me find this great PhD.

A huge thank you to my eight supervisors...the "cricket team" (as an American...I'm not sure how many people are actually on a cricket team). I owe a ton to Nigel French, who took a chance on me, and has been supportive over the past four years. Special thanks also to Steve Hathaway, for bringing in his vast expertise but also helping create my thesis project. A massive thank you to Anne Midwinter, who listened to my wingeing, always had time to hear my crazy ideas, and is an excellent supervisor who cares so much for her students. Many thanks to Adrian Cookson, who was always cheery, calm, and had another idea up his sleeve. Thanks to Patrick Biggs, who tolerated my blundering attempts at genomics and always keeps the objectives in view. Thank you to Jackie Benschop, who was always calm and thoughtful with her feedback. Thanks to Jonathan Marshall ("Mr. Wizard"), for helping me with his statistical mastery. And last but not least, many thanks to Helen Withers, who joined me in the field for bobby calf adventures and helped so much in the writing outputs for this project. Most of all, thank you to all my supervisors who have helped me find a love and appreciation for scientific research, which I'll keep for many years to come. I have learned so much from my colleagues and the staff of ^mEpiLab over the years. To start, thanks to Patricia Jaros, the stellar and hard-act-to-follow PhD before me, who was patient and incredibly helpful throughout my thesis. A massive thank you to the student crew, including Kroon-Dog, Zoe, Reed, and Samuel, who I was fortunate to glean tips on stats and genomicky things, and hang with in this beautiful country. A massive thank you to Lynn Rogers, Neville Haack, Rukhshana Akhter, and Shahista Nisa, who helped me keep my project afloat by rocking the lab work while I was gallivanting off in the field. A huge thank you to Sir David Wilkinson, who was always patient, very helpful, and well dressed. And thank you to all the other people who helped me throughout the way, including the Agraphia group headed by Arata Hidano, the Massey Fleet (I'll miss you station wagon #476), and Christine Cunningham.

Thank you to my family for being so supportive of my endless wanderings: Dad, Kevin, Katrina, Jose, Izzy, Birdie, Erin, Jim, Nolan, Sierra, Wiley the Destroyer of Worlds, Lisa, Jason, Andrea, Dos, Loddi Doddi, Margot, Colin, Shanon, and Espe. Thank you to my Mom, who began my interest in science through raising chickens. Speaking of chickens, thank you Valkyrie, Starscream, Pashupatinath, Mezcal, and Sir Digby Chicken Caesar, for joining me at breakfast every morning.

Go Lakers! (Figure 3-5, Figure 3-6, Figure 5-9).

And to Stephanie Kimberly Marshall, who I love very much. It's finally time to roll to the Boulder County courthouse and get married!

Springer

February 22nd, 2018

Table of Contents

1	Introd	duction to	thesis1
	1.1	Backgro	und1
	1.2	STEC in	New Zealand1
		1.2.1	Human disease1
		1.2.2	Implications for trade and the New Zealand beef industry2
	1.3	Goals of	thesis research3
	1.4	Research	n Questions3
		1.4.1	Chapter 3: Molecular epidemiology of STEC on New Zealand dairy farms:
			application of a culture-independent assay and whole genome
			sequencing3
		1.4.2	Chapter 4: Evaluation of transmission dynamics and presence of Shiga
			toxin-producing E. coli (STEC) in animals and their environment on New
			Zealand dairy farms, and the potential impact on contamination of veal
			carcasses during slaughter and dressing4
		1.4.3	Chapter 5: A global genomic examination of STEC serogroup O26 and
			non-toxigenic variants from multiple sources4
	1.5	Structure	e of Thesis4
2			0
2			ew
	2.1		tion
	2.2	U U	xin-producing <i>E. coli</i> : the bacterial pathogen9
		2.2.1	Taxonomy and molecular typing
		2.2.2	Bacterial gene transfer
		2.2.3	Virulence factors
		2.2.4	Antimicrobial resistance factors
		2.2.5	Pathogenesis13
		2.2.6	Origin of STEC
		2.2.7	Evolution of STEC
		2.2.8	Relevance
	2.3		s and difficulties of detection and isolation of STEC16
		2.3.1	Overview of USDA-FSIS detection and isolation of STEC16
		2.3.2	Sample retrieval

		2.3.3	Common DNA-based culture-independent diagnostic tests (CIDTs)18
		2.3.4	Enrichment19
		2.3.5	Culture20
		2.3.6	Other culture-independent diagnostic tests (CIDT)23
		2.3.7	Relevance25
	2.4	Public h	ealth and epidemiology of STEC27
		2.4.1	STEC prevalence, risk factors, and transmission dynamics: humans27
		2.4.2	Medical treatment of STEC infection in humans32
		2.4.3	Antimicrobial resistance of STEC: human and cattle prevalence32
		2.4.4	STEC prevalence, risk factors, and transmission dynamics: cattle33
		2.4.5	Super-shedders41
		2.4.6	Interventions to decrease or eliminate STEC in cattle43
		2.4.7	Prevalence, risk factors, and transmission dynamics: cattle processing
			plants45
		2.4.8	Interventions for STEC in cattle at processing plants46
		2.4.9	Relevance47
3			demiology of Shiga toxin-producing <i>Escherichia coli</i> (STEC) on New Zealand
	-		pplication of a culture-independent diagnostic test and whole genome
	•	0	
	3.1		t51
	3.2		ction
	3.3		ls and Methods56
		3.3.1	Sample size calculations57
		3.3.2	Random stratified farm selection57
		3.3.3	Random animal selection and sampling within calf pens on farms58
		3.3.4	Initial laboratory processing59
		3.3.5	Evaluation of NeoSEEK for New Zealand 'Top 7' STEC detection60
		3.3.6	Whole genome sequencing, assembly, and analysis of <i>E. coli</i> serogroup
			O26 isolates retrieved from calf faecal samples62
		3.3.7	Data Retrieval and Statistical Analysis64
	3.4	Results.	
		3.4.1	Prevalence of 'Top 7' STEC serogroups by latent class analysis of RT-PCR
			and NeoSEEK64

		3.4.2	'Top 7' STEC detection via culture-independent methods	67
		3.4.3	Bacterial isolation of <i>E. coli</i> serogroup O26 and O157	75
		3.4.4	Whole genome sequencing (WGS) of serogroup O26 bacterial isolates	76
	3.5	Discussio	on	82
	3.6	Conclus	ion	85
	3.7	Acknow	ledgments	87
4	Evolu	ation of t	ransmission dynamics and presence of Shiga toxin-producing <i>E. coli</i> (STE	
4				
			their environment on New Zealand dairy farms, and the potential impact	
	4.1		ion of veal carcasses during slaughter and dressing	
	4.2		tion	
	4.3		s and Methods	
		4.3.1	Farm and meat plant selection	
		4.3.2	Sample collection	
		4.3.3	Sample processing	
		4.3.4	Data collection, database entry, and statistical analysis1	00
		4.3.5	Bacterial isolation1	03
		4.3.6	Whole genome sequencing1	03
	4.4	Results.		04
		4.4.1	'Top 7' STEC prevalence using NeoSEEK1	05
		4.4.2	Cohort study of bobby calves sampled on farm and at processing plant	S
				10
		4.4.3	Potential STEC prevalence by in-house RT-PCR detection1	11
		4.4.4	Cohort study of bobby calves sampled on farm and at processing plant	S
			1	14
	4.5	Factors	associated with STEC hide contamination, pre-intervention carcass	
		contami	nation, and carriage (RAMS) of calves1	15
		4.5.1	Independent evaluation of outcome variables for calf colonization, hide	•
			contamination, and pre-intervention carcass contamination1	15
		4.5.2	Factors associated with STEC contamination and carriage of calves on	
			dairy farms1	20
		4.5.3	Factors associated with contamination of calf hides at processing plants	5
			and pre-intervention calf carcasses1	22

		4.5.4	Bacterial isolation	125
		4.5.5	Whole genome sequencing (WGS) analyses of bacterial isolates	126
	4.6	Discussio	on	131
		4.6.1	Prevalence and transmission routes of STEC in environmental and	animal
			samples on farm	131
		4.6.2	Prevalence and transmission routes of STEC on hide and pre-inter-	vention
			veal carcasses at processing plants	134
		4.6.3	Limitations	137
	4.7	Conclus	ion	138
	4.8	Acknow	ledgements	141
5	A glo	bal genor	mic examination of Shiga-toxin producing Escherichia coli (STEC)	
	serog	group O26	6 and non-toxigenic variants from multiple sources	144
	5.1	Abstract	t	144
	5.2	Introduc	tion	145
	5.3	Method	S	147
		5.3.1	New Zealand bacterial isolates: selection, DNA and library prepara	ation,
			and sequencing	147
		5.3.2	Selection and retrieval of publicly available E. coli serogroup O26	raw
			sequence data	148
		5.3.3	Assembly, annotation, and initial analyses of whole genome seque	nce
			data	148
		5.3.4	Single nucleotide polymorphism (SNP) alignment and time of mos	t recent
			common ancestor (TMRCA) analyses	150
		5.3.5	Cattle importation data	151
	5.4	Results.		151
		5.4.1	Evolutionary dynamics of <i>E. coli</i> serogroup O26	152
		5.4.2	Pathogenicity of serogroup O26 E. coli	159
		5.4.3	Evolution of predictors of genetic variability	164
		5.4.4	Time of most recent common ancestor (TMRCA) analysis and infer	red
			global importation and transmission of E. coli O26	164
	5.5	Discussio	on	173
		5.5.1	Evolutionary dynamics of <i>E. coli</i> serogroup O26	173
		5.5.2	Between and within-country differentiations	175

		5.5.3	Pathogenicity of STEC O26	176
		5.5.4	Antibiotic resistance profiles and evolution	177
		5.5.5	Inferred global importation and transmission of E. coli O26	178
		5.5.6	Global transmission of STEC O26 via the movement of live cat	tle 179
		5.5.7	Study limitations	181
	5.6	Conclusi	ion	182
	5.7	Acknow	ledgments	182
6	Gene	eral discus	sion and future research opportunities for Shiga toxin-producing	j E. coli
	(STEC	C) in New	Zealand	185
	6.1	Introduc	tion	185
	6.2	Potentia	l impact of thesis findings	187
		6.2.1	Market and trade impact	187
		6.2.2	Public health impact	188
	6.3	Discussio	on of potential opportunities for future research	188
		6.3.1	On farm interventions to decrease STEC prevalence	188
		6.3.2	Improvement of bacterial isolation methods using culture med	ia 189
		6.3.3	Knowledge and public health risk communication of STEC	190
		6.3.4	Raw milk consumption	192
		6.3.5	Use of whole genome sequencing (WGS) technology	194
		6.3.6	Waterway contamination	195
	6.4	Conclusi	ion	196
7	Biblic	ography		197
8	Арре	endix		228

List of Figures

Figure 1-1: Structure of PhD thesis: A food chain approach to control of Shiga toxin-producing
E. coli in New Zealand6
Figure 2-1: Number of STEC cases per year in New Zealand from 1993 to 201628
Figure 2-2: Illustration of STEC transmission cycle
Figure 3-1: Sensitivity and specificity of NeoSEEK and RT-PCR assays for detection of the 'Top
7' serogroups in calf faecal enrichment samples (n=1,508)61
Figure 3-2: 'Top 7' serogroup prevalence (with 95% Cl), including both STEC and non-STEC,
detected in calves (n=1508) by region, using latent class analysis of NeoSEEK
and RT-PCR results
Figure 3-3: 'Top 7' serogroup prevalence (with 95% Cl), including both STEC and non-STEC,
detected in calves (n=1508) by island (A) and age (B) (young, 2 to 9 days; old,
10 to 21 days), using latent class analysis of NeoSEEK and RT-PCR results67
Figure 3-4: Calf (n=1,508) and farm (n=102) level prevalence of the 'Top 7' STEC on New
Zealand dairy farms by region (n=6)70
Figure 3-5: Maximum-likelihood core genome tree of serogroup O26 calf isolates (n=66),
annotated with region (n=6), antibiotic resistance gene class (n=1), and
virulence genes (n=26)77
Figure 3-6: Maximum-likelihood accessory genome tree of serogroup O26 calf isolates (n=66)
annotated with region (n=6), antibiotic resistance gene class (n=1), and
virulence genes (n=26)78
Figure 3-7: Hierarchical cluster trees of core, accessory, and virulence genes by farm (n=18)81
Figure 4-1: RAXml phylogenetic tree of <i>E. coli</i> serogroup O26 core (a) and accessory (b)
genomes annotated by farm, source, antibiotic resistance gene class, and
virulence genes128
Figure 4-2: RAXml phylogenetic tree of non-O26 serogroup E. coli core (a) and accessory (b)
genomes annotated by farm, source, antibiotic resistance gene class, and
virulence genes129
Figure 4-3: Hierarchical cluster analysis of serogroup O26 by farm (a) and source (b) for core
genome, accessory genome, and virulence genes
Figure 5-1: Number of gene groups per serogroup O26 bacterial isolate by core, accessory, and
singleton gene group counts154

Figure 5-2: Heap's Law coefficient of serogroup O26 bacterial isolates (n=404), by number	of
new genes per bacterial isolate	154
Figure 5-3: Number of genes detected in serogroup O26 bacterial isolates (n=404) by cour	ntry,
sequence type, source, and stx profile	155
Figure 5-4: Hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of <i>E. coli</i> serogroup O26 isolates (n=404), with a hierarchical set analysis of the hierarchi	:hical
set tree and shared gene groups visualized in green	157
Figure 5-5: Functional annotation classes for gene groups per labelled clade (A through E)	and
all bacterial isolates (n=404)	158
Figure 5-6: Hierarchical set tree of pangenome elements of <i>E. coli</i> serogroup O26 isolates	
(n=404), annotated by country, sequence type (ST), stx profile, source, and	
antibiotic resistance gene class. The clades as defined in previous figures a	bove
are annotated	159
Figure 5-7: Neighbour-joining tree of virulence genes (n=192) of serogroup O26 isolates	
(n=404) annotated with country, sequence type, <i>stx</i> profile, source, and	
antibiotic resistance gene class	161
Figure 5-8: Hierarchical cluster tree of dissimilarity matrix of virulence genes detected ($n=1$	92)
with <i>stx1</i> , <i>stx2</i> , <i>eae</i> and associated virulence genes highlighted	162
Figure 5-9: Heatmap (gold=present; purple=absent) of hierarchical cluster analysis of virule	nce
genes (x-axis, n=192) compared with a SNP core gene alignment (y-axis, n	
genes (x-axis, n=192) compared with a SNP core gene alignment (y-axis, n	=404)
	=404) 163
	=404) 163 <i>E.</i>
Figure 5-10: Areas of recombination (n=324) removed during Gubbins (241) processing for	=404) 163 <i>E.</i> olate,
Figure 5-10: Areas of recombination (n=324) removed during Gubbins (241) processing for <i>coli</i> serogroup O26 sequence type 21 (ST-21) isolates (n=344). For each iso	=404) 163 <i>E.</i> blate, by
Figure 5-10: Areas of recombination (n=324) removed during Gubbins (241) processing for <i>coli</i> serogroup O26 sequence type 21 (ST-21) isolates (n=344). For each iso blocks representing the regions identified as recombinations are indicated	=404) 163 <i>E</i> . blate, by are
Figure 5-10: Areas of recombination (n=324) removed during Gubbins (241) processing for <i>coli</i> serogroup O26 sequence type 21 (ST-21) isolates (n=344). For each iso blocks representing the regions identified as recombinations are indicated coloured blocks. Blue blocks are unique to a single isolate while red blocks	=404) 163 <i>E.</i> blate, by are s
Figure 5-10: Areas of recombination (n=324) removed during Gubbins (241) processing for <i>coli</i> serogroup O26 sequence type 21 (ST-21) isolates (n=344). For each iso blocks representing the regions identified as recombinations are indicated coloured blocks. Blue blocks are unique to a single isolate while red blocks shared by multiple isolates. The horizontal position of the blocks represent	=404) 163 <i>E</i> . blate, by are s 166
Figure 5-10: Areas of recombination (n=324) removed during Gubbins (241) processing for coli serogroup O26 sequence type 21 (ST-21) isolates (n=344). For each iso blocks representing the regions identified as recombinations are indicated coloured blocks. Blue blocks are unique to a single isolate while red blocks shared by multiple isolates. The horizontal position of the blocks represent their position in the core gene alignment of 3310 genes	=404) 163 <i>E</i> . blate, by are s 166 <i>E</i> .
 Figure 5-10: Areas of recombination (n=324) removed during Gubbins (241) processing for <i>coli</i> serogroup O26 sequence type 21 (ST-21) isolates (n=344). For each iso blocks representing the regions identified as recombinations are indicated coloured blocks. Blue blocks are unique to a single isolate while red blocks shared by multiple isolates. The horizontal position of the blocks represent their position in the core gene alignment of 3310 genes. Figure 5-11: Areas of recombination (n=277) removed during Gubbins (241) processing for 	=404) 163 <i>E</i> . olate, by are s 166 <i>E</i> . ate,
 Figure 5-10: Areas of recombination (n=324) removed during Gubbins (241) processing for <i>coli</i> serogroup O26 sequence type 21 (ST-21) isolates (n=344). For each iso blocks representing the regions identified as recombinations are indicated coloured blocks. Blue blocks are unique to a single isolate while red blocks shared by multiple isolates. The horizontal position of the blocks represent their position in the core gene alignment of 3310 genes. Figure 5-11: Areas of recombination (n=277) removed during Gubbins (241) processing for <i>coli</i> serogroup O26 sequence type 29 (ST-29) isolates (n=48). For each isolate 	=404) 163 <i>E</i> . blate, by are s 166 <i>E</i> . ate, by
 Figure 5-10: Areas of recombination (n=324) removed during Gubbins (241) processing for <i>coli</i> serogroup O26 sequence type 21 (ST-21) isolates (n=344). For each iso blocks representing the regions identified as recombinations are indicated coloured blocks. Blue blocks are unique to a single isolate while red blocks shared by multiple isolates. The horizontal position of the blocks represent their position in the core gene alignment of 3310 genes. Figure 5-11: Areas of recombination (n=277) removed during Gubbins (241) processing for <i>coli</i> serogroup O26 sequence type 29 (ST-29) isolates (n=48). For each isol blocks representing the regions identified as recombinations are indicated 	=404) 163 <i>E</i> . blate, by are s 166 <i>E</i> . ate, by are
 Figure 5-10: Areas of recombination (n=324) removed during Gubbins (241) processing for <i>coli</i> serogroup O26 sequence type 21 (ST-21) isolates (n=344). For each iso blocks representing the regions identified as recombinations are indicated coloured blocks. Blue blocks are unique to a single isolate while red blocks shared by multiple isolates. The horizontal position of the blocks represent their position in the core gene alignment of 3310 genes. Figure 5-11: Areas of recombination (n=277) removed during Gubbins (241) processing for <i>coli</i> serogroup O26 sequence type 29 (ST-29) isolates (n=48). For each isol blocks representing the regions identified as recombinations are indicated coloured blocks. Blue blocks are unique to a single isolate while red blocks. 	=404) 163 <i>E</i> . blate, by are s 166 <i>E</i> . ate, by are s
 Figure 5-10: Areas of recombination (n=324) removed during Gubbins (241) processing for <i>coli</i> serogroup O26 sequence type 21 (ST-21) isolates (n=344). For each iso blocks representing the regions identified as recombinations are indicated coloured blocks. Blue blocks are unique to a single isolate while red blocks shared by multiple isolates. The horizontal position of the blocks represent their position in the core gene alignment of 3310 genes. Figure 5-11: Areas of recombination (n=277) removed during Gubbins (241) processing for <i>coli</i> serogroup O26 sequence type 29 (ST-29) isolates (n=48). For each isol blocks representing the regions identified as recombinations are indicated coloured blocks. Blue blocks are unique to a single isolate while red blocks isolated blocks representing the regions identified as recombinations are indicated coloured blocks. Blue blocks are unique to a single isolate while red blocks shared by multiple isolates. The horizontal position of the blocks representing the regions identified as recombinations are indicated coloured blocks. Blue blocks are unique to a single isolate while red blocks shared by multiple isolates. The horizontal position of the blocks represented coloured blocks. Blue blocks are unique to a single isolate while red blocks shared by multiple isolates. The horizontal position of the blocks represented coloured blocks. Blue blocks are unique to a single isolate while red blocks shared by multiple isolates. The horizontal position of the blocks represented coloured blocks represented coloured blocks are unique to a single isolate while red blocks shared by multiple isolates. The horizontal position of the blocks represented coloured blocks represented coloured blocks are unique to a single isolate while red blocks shared by multiple isolates. The horizontal position of the blocks represented coloured block	=404) 163 <i>E</i> . blate, by are s 166 <i>E</i> . ate, by are s 167

annotated by country, stx profile, and source. Key convergence dates are
annotated with 95% HPD intervals, and the concentric circles indicate prior time
periods (blue, 100 years; grey 50 years) from the age of the newest isolate
(2017.5 in decimal years)168
Figure 5-13: Maximum clade credibility tree of time of most recent common ancestor (TMRCA)
analysis of <i>E. coli</i> serogroup O26 sequence type 29 (ST-29) isolates (n=48),
annotated by country and virulence. Key convergence dates are annotated with
95% HPD intervals, and concentric circles indicate prior time periods (blue, 100
years; grey 50 years) from the age of the newest isolate (2017.0411 in decimal
years)169
Figure 5-14: Bar graph of historical importations of live cattle into New Zealand between 1860
and 2010 by decade172
Figure 5-15: Comparison of live cattle imported (log $_{10}$ scale) into New Zealand and Japan from
1961 to 2013173

List of Tables

Table 2-1: STEC risk factors related to farm management by country
Table 2-2: Prevalence of environmental contamination of STEC
Table 2-3: Prevalence of STEC at cattle processing plants 45
Table 3-1: Sample size calculations for farms and calves with cluster-sample design effect of 3.6
Table 3-2: New Zealand dairy farms per region sampled and milking herd size, based on farm
manager records58
Table 3-3: Farm (n=102) and calf (n=1,508) level prevalence of the 'Top 7' STEC on New
Zealand dairy farms69
Table 3-4: Intraclass correlation (ρ) values of STEC using farm (n=102) and calf pen (n=267) as a
random factor71
Table 3-5: Logistic mixed effects regression model of factors associated with prevalence for any
'Top 7' STEC73
Table 3-6: Logistic mixed effects regression model of factors associated with prevalence for any
STEC O2674
Table 3-7: Logistic mixed effects regression model of factors associated with prevalence for any
STEC O10374
Table 3-8: Logistic mixed effects regression model of factors associated with prevalence for any
STEC O14575
Table 3-9: Bacterial isolation of STEC and non-STEC isolates of serogroup O157 and O26 from
faecal calf enrichment broths76
Table 3-10: PERMANOVA analysis of core genome (SNP distance matrix), accessory genome
(presence or absence of accessory genes), and virulence genes by region (n=5)
and farm (n=18)80
Table 4-1: Outcome variables examined by statistical methods for both 'Top 7' STEC and
potential STEC prevalence102
Table 4-2: Sample numbers collected by farm and calving period (n=2580)
Table 4-3: Prevalence of 'Top 7' STEC and non-STEC for all animal and environmental samples
(n=1018)107
Table 4-4: Prevalence estimates (95% CI) derived from a generalised linear model* of 'Top 7'
STEC in all animal and environmental sources by farm

Table 4-19: PERMANOVA analysis of core genome, accessory genome, and virulence factors	of
O26 isolates (n=25) by farm and isolation source1	127
Table 5-1: Summary of <i>E. coli</i> serogroup O26 isolates (n=404) by country (n=15)1	152
Table 5-2: PERMANOVA analysis of pangenome genes and virulence genes by sequence type	Э
(ST), country, isolation source, and <i>stx</i> profile1	164
Table 5-3: Antibiotic resistance gene detection of serogroup O26 bacterial isolates (n=404) by	у
antibiotic class (n=8) compared with country and source1	171

Adulterant	A poisonous or deleterious substance
	on a carcass or meat product that can
	be injurious to human health
Allele	An alternate form of a gene that
	arises due to a fixed substitution in a
	nucleotide
Antibiotic	A medicine that inhibits the growth
	or destroys bacteria
Beef trim	Smaller pieces of beef muscle used ir
	the production of ground beef
	products
Bobby calf	In New Zealand, a calf between the
	ages of four and ten days that is
	slaughtered for veal meat. The calf
	usually is born in a dairy herd, where
	the calf is surplus to requirements fo
	replacement animals in the herd and
	is not viable for meat production.
CIDT	Culture independent diagnostic test;
	in comparison to methods where
	bacteria are isolated on nutrient agai
Clade	A group of descendants of a commor
	evolutionary ancestor
Dam	The bovine mother of a calf
eae	intimin; a virulence gene that
	facilitates attachment of <i>E. coli</i> to the
	epithelial cells in the intestine
Enrichment broth	A nutrient broth that is mixed with
	bacteria and incubated at a specific
	temperature over a specific time in

order to increase the number of bacteria present

Haemolytic uremic syndrome; a
clinical presentation of haemolytic
anemia (low red blood cell count due
to destruction of red blood cells),
acute kidney failure (anuria, lack of
urine production), and
thrombocytopenia (low platelet
count); associated with severe clinical
cases of STEC

Multilocus sequence typing; a method of differentiating organisms based on the variations (alleles) in seven housekeeping genes, in order to assign a sequence type (ST)

Ministry of Primary Industries; a public service department of New Zealand, in charge of overseeing, managing, and regulating the farming, food, and biosecurity sectors in New Zealand

Polymerase chain reaction; a molecular detection method where a pair of primers, sequences of DNA that are specific markers for a gene or number of genes, are amplified and detected in an agarose gel by the length of the sequence

Polymerase chain reaction / Matrix Assisted Laser Desorption/Ionization – Time of Flight; a culture independent diagnostic test where a sample is ionized and then molecules

PCR/MALDI-TOF

MPI

PCR

MLST

HUS

are detected using time of flight mass spectrometry, with specific molecular mass indicating specific targets for detection; this method is used by the NeoSEEK assay

PFGE	Pulse field gel electrophoresis; a DNA fragmentation technique to produce a "DNA fingerprint" of particular bacteria
Phylogenetic tree	A branching diagram to illustrate evolutionary relationships of organisms based on similarities or differences of genetic characteristics
Potential STEC	In this thesis, this refers to an enrichment sample that tests positive for a <i>stx</i> gene as well as the <i>eae</i> gene, but may or may not have an STEC bacterium (<i>stx</i> and <i>eae</i> present) present in the sample
Prebiotic	In animals, a non-digestible carbohydrate that promotes the growth of microorganisms in the intestines which may benefit health
Probiotic	A mixture of microorganisms that are ingested by animals that may promote intestinal health
R _o	Basic reproduction number; in epidemiology, this refers to the number of cases of disease caused by one infective individual
RAMS	Recto-anal mucosal swab; a sterile cotton tipped swab is inserted into

	the rectum of a cow; this sample is
	then enriched in liquid media to
	increase detection of STEC
RT-PCR	Real time polymerase chain reaction;
	similar to PCR where a specific DNA
	sequence between primers is
	amplified, but a colour based probe
	reacts to binding in the region and is
	detected by a machine, leading to real
	time recognition of the amplification
	of the DNA sequence
SNP	Single nucleotide polymorphism;
	Single nucleotide differences between
	genes that are shared between
	organisms
Spring calving season	For dairy farms in New Zealand, this
	usually begins in late June to early
	July, and ends in September to
	October. Dairy farming in New
	Zealand typically follows an annual
	cycle, although some farms may allow
	for an Autumn calving season.
ST	Sequence type; a number assigned
ST	Sequence type; a number assigned through the MLST method to
ST	
ST STEC	through the MLST method to
	through the MLST method to differentiate groups of bacteria
	through the MLST method to differentiate groups of bacteria Shiga toxin-producing <i>Escherichia</i>
	through the MLST method to differentiate groups of bacteria Shiga toxin-producing <i>Escherichia</i> <i>coli</i> ; <i>E. coli</i> bacteria that contain the
	through the MLST method to differentiate groups of bacteria Shiga toxin-producing <i>Escherichia</i> <i>coli</i> ; <i>E. coli</i> bacteria that contain the <i>stx</i> gene and therefore may be able to
	through the MLST method to differentiate groups of bacteria Shiga toxin-producing <i>Escherichia</i> <i>coli; E. coli</i> bacteria that contain the <i>stx</i> gene and therefore may be able to produce Shiga toxin; also called
	through the MLST method to differentiate groups of bacteria Shiga toxin-producing <i>Escherichia</i> <i>coli; E. coli</i> bacteria that contain the <i>stx</i> gene and therefore may be able to produce Shiga toxin; also called verocytotoxigenic <i>E. coli</i> (VTEC), due

stx	A virulence gene that leads to the
	production of Shiga toxin
'Top 7' STEC	The seven O serogroups (O157, O26,
	O45, O103, O111, O121, O145) of STEC
	declared adulterants of beef by the
	USDA-FSIS, and recognized as a
	significant risk to human health
UK	United Kingdom
USA	United States of America
USDA-FSIS	United States Department of
	Agriculture–Food Safety and
	Inspection Service; in charge of
	protecting public health by ensuring
	the safety of meat, poultry, and
	processed egg products in the USA
Zoonoses	Pathogens (bacterial, viral, fungal,
	prion) that are transmissible between
	animals and humans