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Abstract 

Debugging is a major area of software d evelopment that has 

r eceived little attent ion. This thesis starts by looking a t work done 

in the a r ea of bug prevention, bug detection, bug location and bug 

correc tion. 

A debugging system, BIAS, is proposed to help in detecting, 

locating and correc ting b ugs . Three major design goals are established. 

Fi rs tly, the system should be simple and easy to understand as this 

will encourage use. Secondly, the system s h ou ld be general so tha t 

it will be available to a large number of us e rs. Finally, it should 

be incremental as this will save users' time. An incremental 

l anguage , STILL, is de signe d to show how BIAS applies to struc tur e d 

l anguages. 

The cons truction of the system is shown. Each da ta structure , 

and how it is used, is descr ib ed . BIAS use s a n int e rpretive 

system and runs threaded code on a pse udo-machine: How the threads 

are interpreted and how they are set up is shown next. 

The use of BIAS is shown by following through an example s ess ion 

with the system. This consists of e ntering a program, editing it, and 

running it. As bugs show themselves, various debugging commands are 

used to locate the bugs. The program is then edited, and the corrections 

linke d into the code so that it will run correctly. This cycle is 

r e p eated until no bugs remain, without at any time recompiling the 

whole program. 

It turns out that the best way of achieving the design goals is 

to extend an incremental compiler host to include debugging commands. 

This gives a clear emphasis to the power of incremental compilers. 
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Chapter 1 

DEBUGGING AN INTRODUCTION 

"Bloody instructions which~ being l earned~ 

Return to plague the inventor . " 

Macbeth in Macbeth I (vii) 

1 

Wh e n Macbeth was plotting the murder of Duncan, he r ea lised that 

his plans would eventually turn against him. He decided not to go 

ahead, but, being easily led, he did the d eed and his original thoughts 

were proved correct. What he needed was a good debugging system so 

that he could correct his mistakes before they became fatal. 

Debugging has been around since Whirlwind I [Schw 71, VanT 74], 

yet it is one of the most neglec t e d areas in software development 

[Bern 68, Gris 70, Pier 74]. This is certainly due in pa rt to 

'debugg ing' being a dirty word. No-one likes to admit that they make 

mistakes, so when the time comes to correct them, people tend to hide 

the fact. Consequently, each programmer thinks that he is the only 

one who takes such a long time to do the job, and that there is little 

general need for debugging aids. 

What is debugging? Testing and debugging are often confused with 

each other as they usually overlap. When a program compiles correctly, 

the programmer enters data in a testing phase in which errors are 

detected. The prograrrnner then tries to locate and correct these errors 

in a debugging phase, and the cycle is repeated. As time passes, the 

testing phases get longer until there appears to be no bugs (although 

this is often not the case). Of course, the debugging phases 

generally do not get shorter, and may well get longer as the errors 

become more obscure. 

So here we arrive at a major point. Debugging takes more time 

than any other aspect of programming. Estimates vary from 30% to 90% 



[Gain 69, Gaul 75, VanT 74], so it is clear that to improve software 

production time, debugging is a good, if not the best, area to 

attack. This thesis will show the development of BIAS (Batch and 

interActive System), a de?ugging system which collates, clarifies and 

simplifies existing systems. 

1.1 Bug Prevention 

2 

Prevention is better than cur~ is a proverb well suited to de­

bugging. While it is unlikely that all bugs can be prevented, any 

technique that can reduce their number or their complexity is welcome. 

Every program should be well designed. This is best achieved 

using a top-down technique such as step-wise refinement [Wirt 71]. 

The modules produced should be of limited size [Your 75] and be able 

to stand on their own as far as possible. Interfacing is thus kept 

to a minimum which not only reduces the chance of having bugs, but 

also reduces the scope of any that do appear. This is known as 

bulkheading [VanT 74]. Debugging is made easier as bugs are isolated 

and much less likely to interact. 

Style is a mark of individuality that pretends to excuse many 

faults, but like any writer, the programmer must use style as a beacon 

not a smokescreen. Good style not only reduces the number of bugs 

but also makes debugging much easier. One major technique is the 

selection of identifiers. This is the most important principle in 

program readability [VanT 74], although comments saying why something 

is done rather than what it is doing are still essential. Structuring 

and indentation are also valuable aids [Dora 72]. Ultimately, what­

ever features of style are used, they must be used consistently. 

Compile-time errors are much easier to prevent than run-time errors. 

The prevention of compile-time errors can be done with interactive 

systems. There are two methods currently in use. Incremental compilers 

get the user to correct his syntax line by line [Ryan 66]. Interactive 

text editors such as EMILY [Hans 71] and GENISYS [Barr 75] actually 

prevent the user from making errors. EMILY works from any BNF grammar 

and so prevents only syntax errors, GENISYS and the system described 

by Lasker [Lask 74] perform static semantic checks as well. 
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These text e ditors all work by building a parse tree from the BNF 

grammar. All possible productions for each non-terminal are displayed 

~nd the programmers selects which production he wants by sending its 

associated number [Barr 75] or by pointing a light-pen to it [Hans 71, 

Lask 74]. The syntax of a program must consequently be correct. 

Unfortunately programs require a long time to enter by this method. 

Entry of identifiers (all the syst ems mentioned) and expressions 

(GENISYS) by typing them directly in does help. This heads the idea 

back towards incr emental compilation. 

1.2 Bug Detection 

Bug detection is finding out if there are bugs. The usual tool 

for this is testing. As the number of possible data sets is usually 

astronomical, exhaustive testing is impractical, but one can improve 

reliability and shorten production time by using carefully selected 

test-cases [Buxt 69, VanT 74]. Tes ting should first show that the 

general case works. Extreme data, exploring the fringes of what is 

acceptable, are then tried to make sure no overflows occur. Finally, 

exception conditions for data that is blatantly or marginally wrong 

are tested to make sure errors are reported. Each type of data (general, 

extreme and exception) will cause its own type of error which should 

help to pin-point bugs. Whatever type of data is used, it must be 

easy to predict what output will result. If not, it will be hard to 

locate the bug, which may even be in the prediction of the output. 

Modular test-beds allow modules to be tested individually. All 

globals are set by some device, and all calls from the module will be 

dummies. With an interactive system, the programmer can perform the 

action of dummy subroutines himself. He can also change parameters 

while the program is running and probe the boundary conditions more 

effectively. Bate describes such a system which resembles a breakpoint 

debugging system [Bate 74]. With this system, variables can be 

examined and altered, and breakpoints set to give the tester control 

anywhere in the program. A design goal for BIAS was to facilitate 

module testing (see section 2.5). 

Two novel methods of finding bugs in systems software have been 
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developed by Rain [Rain 73]. The 'Bug Farm' randomly alters correct 

data, often providing unthought of combinations. The 'Bug Cont es t' 

offers an incentive to users to find bugs. This leaves the programmer 

free to repair bugs without having to spend hime time on testing. 

It also has a useful side-effect in that user reluctance to try the 

new software is overcome, and the n ew system is used to its fullest 

extent. 

Unfortunately, testing shows the presence, not the absence of 

bugs. A formal proof of correctness, however, can show that a program 

is error-free, and if it is not, it can help pin-point the error(s). 

A bug in the F-level PL/I compiler was found by such a proof where 

testing had failed to detect it [Buxt 69]. Formals proofs can 

eliminate testing and simplify debugging while ensuring correctness. 

Because of this, correctness is an important area of study and is 

receiving much attention [Elsp 72, Lond 70]. 

Lowny commented that "ANY significant advance in the programming 

art is sure to involve very extensive automated analyses of program." 

[Buxt 69]. The verifying compiler described by King is an example 

of this [King 71]. Predicates are submitted to the compiler with the 

program, and the compiler does the proof. If the program is not 

correct, the likely source of error is pointed out. The main drawback 

is that as with all predicate proofs, the predicates are difficult to 

formulate. If the program is written with the proof in mind, the 

predicates will be easier to produce [Dijk 69], but even then the proof 

may well explode with program size. 

There are compromises between formal proofs and the classical 

methods of debugging and testing. Less than rigorous formal proofs, 

amounting to a kind of disciplined desk-checking will often yield many 

bugs [Schw 71]. Stepwise refinement is a very informal method of proof 

that tends towards prevention rather than detection [Wirt 71]. Proving 

that critical parts of a program are correct will prevent many bugs 

without excessive overhead. The same will be true for proving that 

certain anomalies are not present in a program. Such a system is DAVE 

[Oste 76]. DAVE detects two types of anomalies: reference before 

assignment and assignment followed by no reference. This picks up 

uninitialised variable errors and also helps to find spelling mistakes. 



All the methods of proo f mentio ne d so far do not execute the 

pr ogram. Howev er, p r e di c at e s c a n b e u sed at run- time to check for 
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data anoma li e s. 'ON' sta t ements in PL/I a nd Burroughs Ex tended Algol 

cause only l ow-level f a ul(s to b e trap ped, but are still v e ry useful 

in dete cting errors. Algol W ' asserts' are at a much higher level 

a nd ca n be a s sophistica ted as f o rma l pre dicat e s [Satt 72]. 

1.3 Bug Location 

Once a bug is known to exist, th e n e xt step is to find out exactly 

whe re and what it is. The commo n e st me thod of locating bugs is to pore 

ove r a pro gr am listing, doing a me nta l d e sk-check with the data that 

made the pro g r a m go wrong. This is partic ularly true of small routines 

whic h the d ebugger did not write [Goul 75]. However, with larger 

progra ms, some bugs ca n be very h a rd to find without more sophisticated 

tools. 

One of the o l d e st de bugg ing t o ols is the core dump, usua lly taken 

aft e r the progr am ha d made a n e rror t h a t up se t the ha rdware. The 

entire contents of memo ry and all the r e gisters would be printed in 

hex or octal, with very little to signify what was what. With the 

advent of high-level languages, the meaning of such dumps became more 

obscure, although they are still used [Blai 71, Gris 70, Kuls 71]; 

However the tr end is to format dumps so that they relate to the source 

program. Stack dumps on the Burroughs B6700 are e a sy to follow when 

used in conjunc tion with the compiler option STACK (which is available 

for all major compilers). The B6700 also has a dump analyser for 

core-dumps which makes them much easier to understand. Selective 

and snap dumps are more useful to the high-level language programmer. 

Dumping suspect variables at carefully chosen places in the program 

will give a lot of information with relatively little output. [Ferg 63, 

Gain 69, Satt 72]. 

Tracing is another old debugging tool. There are many kinds of 

trace, but they all show where some trace condition or trap has occurred. 

Typical traps are storing to a variable (store trace), change of flow 

of control (flow trace) or reaching a given line of code (line or 

source trace). Traces are very useful as they can give a full history 

of program execution. They can, however, generate a lot of superfluous 
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output if they are not controll e d [Grav 74]. Dynamically turning 

the trace on and off [Gris 70, Gris 73], tracing only when a dynamic 

condition is true [Blai 71, Ferg 63] or limiting the trace by a static 

condition or loop [Burr 74 A, Burr 74 F, Satt 72] will reduce output 

considerably. With interactive systems, the trace can even be turned 

on or off by the programmer [Bull 72, Kuls 71]. 

Program statistics are useful for d eubugging and increasing 

efficiency. The simplest statistic is the execution time for the 

program. This in itself can often help to locate errors . The 

execution summary of SNOBOL 4 [Gris 73] is an extension of this. 

Burroughs Algal has a compiler option to print the time spe nt on each 

procedure of a program. MUSSEL and Algal W go one step further and 

give the execution count for each statement [Grav 74, Satt 72]. A 

different kind of statistic is the cross-reference listing, [Brow 73, 

Burr 74 A], which is particularly useful when looking through large 

programs. 

All the tools mentioned so far are batch-oriented. With inter-

active systems a much greater range of tools can be ma<le available. 

The basis of most interactive debugging systems is breakpointing. A 

breakpoint is a device for giving control to the programmer at an inter­

active terminal. The programmer can then converse with his program, 

see exactly what it is doing, and even correct it if it is wrong (section 

1.4). 

Interactive debugging in the days of machine-code programming 

consisted of stepping through the program instruction by instruction 

until something looked wrong. By using console switches a correction 

would be made and the process of detecting and locating bugs would 

continue. Stepping statement by statement is the high-level language 

equivalent, and it is just as useful [Gain 69, Pier 74, Burr 76 A] . 

This method can be extended by stepping several statements at a time 

[Pier 74] or running the program at an observable speed [Bate 69]. 

Bugs are usually detected some time after they occur, which makes 

them hard to locate. This is especially true of evanescent bugs which 

by Murphy ' s Law never seem to occur when they are being looked for. 

If, however, the program can be backed up to the point of error, the 
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problem is solved. Reversible execution can be implemented in two ways. 

The simplest is by checkpoints [Bate 74, Gris 71]. This requires little 

effort, but a forward execution from· the checkpoint may differ from the 

original and evanescen t bugs might not appear again. The other method 

is to record each change in the program as it happens [Bate 69, Davi 75, 

Zelk 73]. This takes a lot of process time, but using the history file 

for forward execution when possible will guarantee the same execution 

path will be used. 

It is often useful to run a program again without changing its 

variables. This is an important feature of an incremental compiler called 

incremental execution [Bull 72, Rish 70]. Incremental compilers can 

also run the program from any point in the program, or even run an incomplete 

program. This greatly facilitates debugging as small sections of code 

can be tested independently of the rest of the program. 

There is a right way and a wrong way to use any tool, and debugging 

tools are no exception. The programmer should get an idea of what is 

wrong with his pro gram and carefully select his tools rather than apply 

battering-ram tactics. It will be cheaper, quicker and cause less head­

aches. Knowing what errors might occur is a start [Brow 73, VanT 74]; 

certain errors are best located with certain tools. For example, bad 

initialisation can be easily found by a store and/or fetch trace while 

looping errors can often be found by using execution counts. 

1.4 Bug Correction 

Once a bug has been located, it must be put right if the program is 

to work correctly. Bug correction usually consists of patching the 

source program and recompiling it, although only the offending subroutine 

may be recompiled and then bound or link-edited to the rest. In either 

case, the program must be run again from scratch. This approach is time 

consuming to the progranuner and to the machine. The alternative is to 

correct the error at run-time. 

When an exception condition occurs, the computer will detect it and 

terminate the program. However, if PL/1 or Burroughs Algol 'ON' statements 

are used, the program can retain control. This will enable the program to 

make some correction or output suitable for debugging information. At any 
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rate, the program can continue execution , which may lead to finding other 

bugs. 

Such interrupts are used for hardware and related errors, but software 

errors are not so easily detected or corrected. Recovery blocks are a 

solution whereby a section of code will ensure a c ondition, which is like 

a predicate in formal proofs [Rand 75]. If the main piece of code, the 

primary alternative,does not satisfy the condition, other alternatives are 

executed until the condition is satisfied or there are no more alternatives, 

which causes a fatal error. This allows the program to continue and give 

reasonable results even it if is not completely correct . 

Conversing interactively with a running program, inspecting and 

changing its variables is a powerful tool [Barr 69]. If a programmer can 

watch his variables change value, he can actually see his program go wrong and 

possibly see why it went wrong [Balz 69]. In any case, correcting wrong 

values will t emporar ily patch the program. The ability to do this is the 

basis of most breakpoint debugging systems [Appendix A] and is an important 

advantage of time-sharing. 

If the programmer has to correct the same error each time it is 

executed, debugging will take a long time. By making a run-time patch, he 

actually changes the program so that hopefully the error is fixed for that 

execution of the program. Unfortunately, run-time patches on most debugging 

s y stems often do not resemble the source language of the program and so are 

not permanent [Bate 74, Blai 71, Gris 70]. Also, they are usually very 

limited as to what they can do (assign only constants [Bate 74, Burr 74A], 

no conditional statements [Ashb 73]). 

Incremental compilers solve all these problems. Patches have the same 

status as any other part of the program. They are in the same source 

language and suffer no restrictions as the same compiler is used for patches 

as for the rest of the program [Bull 72, Ryan 66]. When an error is 

located ~t run-time, a patch can be made, linked into the rest of the program 

and the same run continued as if nothing had happened. Editing the program 

at run-time is an important aspect of incremental compilers [Rish 70]. 
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So far, the programme r sugges ts the correction, tries it and lets 

the computer find out if it works. Davis sugge sts that with inexperienced 

programmers , it is better for the computer to suggest the mistake as well 

lDavi 75]. When an error occurs, the computer backs up the program 

showing how the error was reached and what could have c a used it. When the 

user decid e s on the cause, the computer explains how it could fix the 

mistake, checks with the user and does the fix. 
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