
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Th_e_Dev e lopm ent ~~ __ a.!!__Incremen tal

Debuggi ng System

A thesis present e d in partial fulfilment

of the r equi r ements for the deg r ee of

Master of Science

in Computer Sc i ence at

Massey University

Malcolm John ~Donald

1978

Abstract

Debugging is a major area of software d evelopment that has

r eceived little attent ion. This thesis starts by looking a t work done

in the a r ea of bug prevention, bug detection, bug location and bug

correc tion.

A debugging system, BIAS, is proposed to help in detecting,

locating and correc ting b ugs . Three major design goals are established.

Fi rs tly, the system should be simple and easy to understand as this

will encourage use. Secondly, the system s h ou ld be general so tha t

it will be available to a large number of us e rs. Finally, it should

be incremental as this will save users' time. An incremental

l anguage , STILL, is de signe d to show how BIAS applies to struc tur e d

l anguages.

The cons truction of the system is shown. Each da ta structure ,

and how it is used, is descr ib ed . BIAS use s a n int e rpretive

system and runs threaded code on a pse udo-machine: How the threads

are interpreted and how they are set up is shown next.

The use of BIAS is shown by following through an example s ess ion

with the system. This consists of e ntering a program, editing it, and

running it. As bugs show themselves, various debugging commands are

used to locate the bugs. The program is then edited, and the corrections

linke d into the code so that it will run correctly. This cycle is

r e p eated until no bugs remain, without at any time recompiling the

whole program.

It turns out that the best way of achieving the design goals is

to extend an incremental compiler host to include debugging commands.

This gives a clear emphasis to the power of incremental compilers.

Acknowledgements

I would like to thank everyone at the Massey University Computer

Centre and all those other people who have listened to my ideas, so

often with enthusiasm . Just explain ing the system has greatly aided

me in the development of the system described herein. In particular,

I would like to thank my supervisor, Ted Drawneek, for always having

a co-operative ear, and for all the guidance and constructive

criticism that was of such great value . Thanks also to Margaret

Dench for her excellent job of typing when time was short , and to

Phill Jenkins for general discussions about programming, which are

always useful, and for the artwork on the figures .

1

1.1

1. 2

1.3

1. 4

2

2. 1

2.2

2.3

2.4

2.5

2.6

3

3. 1

3 .1.1

3.1. 2

3. 1.3

3.1.4

3.2

3.3

3.3.1

3.3.2

3.3.3

3.4

3.4 .1

3.4.2

3.4.3

3.4.4

3.4.5

3.5

4

4.1

4.2

4.3

Table of Contents

Debugging - an Introduction

Bug Prevention

Bug De t ec tion

Bug Lo ca tion

Bug Correction

Designing the Syste m

Some Possible Approaches

Design Goals

Simplici ty

Generality

Incrementality

STILL

Building the System

Data Structures

Statement Information

Symbol Table

Structure Table

Controls

Pseudomachine

Compiler

CASE Statemen t

Loop Statement

Blocks and Procedures

Command Analyser

Trap Commands

CONTINUE Command

DELETE Comman d

Patching

Other Editing Commands

Linkage

Using the System

Entering the Program

Run-time Errors

Module Testing

1

2

3

5

7

10

10

12

13

17

19

20

24

24

25

30

33

33

34

38

39

39

39

41

42

42

43

45

47

49

51

51

52

53

4.4

4.5

4.6

4.7

5

Appendices

A

B

C

D

Editing

Breakpoints

Finishing Up

Running Under Batch

Conclusions

Comparison of Debugging Systems

Syntax of BIAS

Syntax of STILL

Pseudomachine Instructions

Bibliography

54

56

58

58

60

64

64

67

70

73

76

3 . 1

3.2

3.3

3.4

3.5

3.6

List of Figures

STINFO tables for example program

Structure and Symbol tables

26

31

Example showing the design of the pseudornachine 36

Code generated for loop statement 40

Examples of deletions 46

Examples of insertions 48

Chapter 1

DEBUGGING AN INTRODUCTION

"Bloody instructions which~ being l earned~

Return to plague the inventor . "

Macbeth in Macbeth I (vii)

1

Wh e n Macbeth was plotting the murder of Duncan, he r ea lised that

his plans would eventually turn against him. He decided not to go

ahead, but, being easily led, he did the d eed and his original thoughts

were proved correct. What he needed was a good debugging system so

that he could correct his mistakes before they became fatal.

Debugging has been around since Whirlwind I [Schw 71, VanT 74],

yet it is one of the most neglec t e d areas in software development

[Bern 68, Gris 70, Pier 74]. This is certainly due in pa rt to

'debugg ing' being a dirty word. No-one likes to admit that they make

mistakes, so when the time comes to correct them, people tend to hide

the fact. Consequently, each programmer thinks that he is the only

one who takes such a long time to do the job, and that there is little

general need for debugging aids.

What is debugging? Testing and debugging are often confused with

each other as they usually overlap. When a program compiles correctly,

the programmer enters data in a testing phase in which errors are

detected. The prograrrnner then tries to locate and correct these errors

in a debugging phase, and the cycle is repeated. As time passes, the

testing phases get longer until there appears to be no bugs (although

this is often not the case). Of course, the debugging phases

generally do not get shorter, and may well get longer as the errors

become more obscure.

So here we arrive at a major point. Debugging takes more time

than any other aspect of programming. Estimates vary from 30% to 90%

[Gain 69, Gaul 75, VanT 74], so it is clear that to improve software

production time, debugging is a good, if not the best, area to

attack. This thesis will show the development of BIAS (Batch and

interActive System), a de?ugging system which collates, clarifies and

simplifies existing systems.

1.1 Bug Prevention

2

Prevention is better than cur~ is a proverb well suited to de­

bugging. While it is unlikely that all bugs can be prevented, any

technique that can reduce their number or their complexity is welcome.

Every program should be well designed. This is best achieved

using a top-down technique such as step-wise refinement [Wirt 71].

The modules produced should be of limited size [Your 75] and be able

to stand on their own as far as possible. Interfacing is thus kept

to a minimum which not only reduces the chance of having bugs, but

also reduces the scope of any that do appear. This is known as

bulkheading [VanT 74]. Debugging is made easier as bugs are isolated

and much less likely to interact.

Style is a mark of individuality that pretends to excuse many

faults, but like any writer, the programmer must use style as a beacon

not a smokescreen. Good style not only reduces the number of bugs

but also makes debugging much easier. One major technique is the

selection of identifiers. This is the most important principle in

program readability [VanT 74], although comments saying why something

is done rather than what it is doing are still essential. Structuring

and indentation are also valuable aids [Dora 72]. Ultimately, what­

ever features of style are used, they must be used consistently.

Compile-time errors are much easier to prevent than run-time errors.

The prevention of compile-time errors can be done with interactive

systems. There are two methods currently in use. Incremental compilers

get the user to correct his syntax line by line [Ryan 66]. Interactive

text editors such as EMILY [Hans 71] and GENISYS [Barr 75] actually

prevent the user from making errors. EMILY works from any BNF grammar

and so prevents only syntax errors, GENISYS and the system described

by Lasker [Lask 74] perform static semantic checks as well.

3

These text e ditors all work by building a parse tree from the BNF

grammar. All possible productions for each non-terminal are displayed

~nd the programmers selects which production he wants by sending its

associated number [Barr 75] or by pointing a light-pen to it [Hans 71,

Lask 74]. The syntax of a program must consequently be correct.

Unfortunately programs require a long time to enter by this method.

Entry of identifiers (all the syst ems mentioned) and expressions

(GENISYS) by typing them directly in does help. This heads the idea

back towards incr emental compilation.

1.2 Bug Detection

Bug detection is finding out if there are bugs. The usual tool

for this is testing. As the number of possible data sets is usually

astronomical, exhaustive testing is impractical, but one can improve

reliability and shorten production time by using carefully selected

test-cases [Buxt 69, VanT 74]. Tes ting should first show that the

general case works. Extreme data, exploring the fringes of what is

acceptable, are then tried to make sure no overflows occur. Finally,

exception conditions for data that is blatantly or marginally wrong

are tested to make sure errors are reported. Each type of data (general,

extreme and exception) will cause its own type of error which should

help to pin-point bugs. Whatever type of data is used, it must be

easy to predict what output will result. If not, it will be hard to

locate the bug, which may even be in the prediction of the output.

Modular test-beds allow modules to be tested individually. All

globals are set by some device, and all calls from the module will be

dummies. With an interactive system, the programmer can perform the

action of dummy subroutines himself. He can also change parameters

while the program is running and probe the boundary conditions more

effectively. Bate describes such a system which resembles a breakpoint

debugging system [Bate 74]. With this system, variables can be

examined and altered, and breakpoints set to give the tester control

anywhere in the program. A design goal for BIAS was to facilitate

module testing (see section 2.5).

Two novel methods of finding bugs in systems software have been

4

developed by Rain [Rain 73]. The 'Bug Farm' randomly alters correct

data, often providing unthought of combinations. The 'Bug Cont es t'

offers an incentive to users to find bugs. This leaves the programmer

free to repair bugs without having to spend hime time on testing.

It also has a useful side-effect in that user reluctance to try the

new software is overcome, and the n ew system is used to its fullest

extent.

Unfortunately, testing shows the presence, not the absence of

bugs. A formal proof of correctness, however, can show that a program

is error-free, and if it is not, it can help pin-point the error(s).

A bug in the F-level PL/I compiler was found by such a proof where

testing had failed to detect it [Buxt 69]. Formals proofs can

eliminate testing and simplify debugging while ensuring correctness.

Because of this, correctness is an important area of study and is

receiving much attention [Elsp 72, Lond 70].

Lowny commented that "ANY significant advance in the programming

art is sure to involve very extensive automated analyses of program."

[Buxt 69]. The verifying compiler described by King is an example

of this [King 71]. Predicates are submitted to the compiler with the

program, and the compiler does the proof. If the program is not

correct, the likely source of error is pointed out. The main drawback

is that as with all predicate proofs, the predicates are difficult to

formulate. If the program is written with the proof in mind, the

predicates will be easier to produce [Dijk 69], but even then the proof

may well explode with program size.

There are compromises between formal proofs and the classical

methods of debugging and testing. Less than rigorous formal proofs,

amounting to a kind of disciplined desk-checking will often yield many

bugs [Schw 71]. Stepwise refinement is a very informal method of proof

that tends towards prevention rather than detection [Wirt 71]. Proving

that critical parts of a program are correct will prevent many bugs

without excessive overhead. The same will be true for proving that

certain anomalies are not present in a program. Such a system is DAVE

[Oste 76]. DAVE detects two types of anomalies: reference before

assignment and assignment followed by no reference. This picks up

uninitialised variable errors and also helps to find spelling mistakes.

All the methods of proo f mentio ne d so far do not execute the

pr ogram. Howev er, p r e di c at e s c a n b e u sed at run- time to check for

5

data anoma li e s. 'ON' sta t ements in PL/I a nd Burroughs Ex tended Algol

cause only l ow-level f a ul(s to b e trap ped, but are still v e ry useful

in dete cting errors. Algol W ' asserts' are at a much higher level

a nd ca n be a s sophistica ted as f o rma l pre dicat e s [Satt 72].

1.3 Bug Location

Once a bug is known to exist, th e n e xt step is to find out exactly

whe re and what it is. The commo n e st me thod of locating bugs is to pore

ove r a pro gr am listing, doing a me nta l d e sk-check with the data that

made the pro g r a m go wrong. This is partic ularly true of small routines

whic h the d ebugger did not write [Goul 75]. However, with larger

progra ms, some bugs ca n be very h a rd to find without more sophisticated

tools.

One of the o l d e st de bugg ing t o ols is the core dump, usua lly taken

aft e r the progr am ha d made a n e rror t h a t up se t the ha rdware. The

entire contents of memo ry and all the r e gisters would be printed in

hex or octal, with very little to signify what was what. With the

advent of high-level languages, the meaning of such dumps became more

obscure, although they are still used [Blai 71, Gris 70, Kuls 71];

However the tr end is to format dumps so that they relate to the source

program. Stack dumps on the Burroughs B6700 are e a sy to follow when

used in conjunc tion with the compiler option STACK (which is available

for all major compilers). The B6700 also has a dump analyser for

core-dumps which makes them much easier to understand. Selective

and snap dumps are more useful to the high-level language programmer.

Dumping suspect variables at carefully chosen places in the program

will give a lot of information with relatively little output. [Ferg 63,

Gain 69, Satt 72].

Tracing is another old debugging tool. There are many kinds of

trace, but they all show where some trace condition or trap has occurred.

Typical traps are storing to a variable (store trace), change of flow

of control (flow trace) or reaching a given line of code (line or

source trace). Traces are very useful as they can give a full history

of program execution. They can, however, generate a lot of superfluous

6

output if they are not controll e d [Grav 74]. Dynamically turning

the trace on and off [Gris 70, Gris 73], tracing only when a dynamic

condition is true [Blai 71, Ferg 63] or limiting the trace by a static

condition or loop [Burr 74 A, Burr 74 F, Satt 72] will reduce output

considerably. With interactive systems, the trace can even be turned

on or off by the programmer [Bull 72, Kuls 71].

Program statistics are useful for d eubugging and increasing

efficiency. The simplest statistic is the execution time for the

program. This in itself can often help to locate errors . The

execution summary of SNOBOL 4 [Gris 73] is an extension of this.

Burroughs Algal has a compiler option to print the time spe nt on each

procedure of a program. MUSSEL and Algal W go one step further and

give the execution count for each statement [Grav 74, Satt 72]. A

different kind of statistic is the cross-reference listing, [Brow 73,

Burr 74 A], which is particularly useful when looking through large

programs.

All the tools mentioned so far are batch-oriented. With inter-

active systems a much greater range of tools can be ma<le available.

The basis of most interactive debugging systems is breakpointing. A

breakpoint is a device for giving control to the programmer at an inter­

active terminal. The programmer can then converse with his program,

see exactly what it is doing, and even correct it if it is wrong (section

1.4).

Interactive debugging in the days of machine-code programming

consisted of stepping through the program instruction by instruction

until something looked wrong. By using console switches a correction

would be made and the process of detecting and locating bugs would

continue. Stepping statement by statement is the high-level language

equivalent, and it is just as useful [Gain 69, Pier 74, Burr 76 A] .

This method can be extended by stepping several statements at a time

[Pier 74] or running the program at an observable speed [Bate 69].

Bugs are usually detected some time after they occur, which makes

them hard to locate. This is especially true of evanescent bugs which

by Murphy ' s Law never seem to occur when they are being looked for.

If, however, the program can be backed up to the point of error, the

7

problem is solved. Reversible execution can be implemented in two ways.

The simplest is by checkpoints [Bate 74, Gris 71]. This requires little

effort, but a forward execution from· the checkpoint may differ from the

original and evanescen t bugs might not appear again. The other method

is to record each change in the program as it happens [Bate 69, Davi 75,

Zelk 73]. This takes a lot of process time, but using the history file

for forward execution when possible will guarantee the same execution

path will be used.

It is often useful to run a program again without changing its

variables. This is an important feature of an incremental compiler called

incremental execution [Bull 72, Rish 70]. Incremental compilers can

also run the program from any point in the program, or even run an incomplete

program. This greatly facilitates debugging as small sections of code

can be tested independently of the rest of the program.

There is a right way and a wrong way to use any tool, and debugging

tools are no exception. The programmer should get an idea of what is

wrong with his pro gram and carefully select his tools rather than apply

battering-ram tactics. It will be cheaper, quicker and cause less head­

aches. Knowing what errors might occur is a start [Brow 73, VanT 74];

certain errors are best located with certain tools. For example, bad

initialisation can be easily found by a store and/or fetch trace while

looping errors can often be found by using execution counts.

1.4 Bug Correction

Once a bug has been located, it must be put right if the program is

to work correctly. Bug correction usually consists of patching the

source program and recompiling it, although only the offending subroutine

may be recompiled and then bound or link-edited to the rest. In either

case, the program must be run again from scratch. This approach is time

consuming to the progranuner and to the machine. The alternative is to

correct the error at run-time.

When an exception condition occurs, the computer will detect it and

terminate the program. However, if PL/1 or Burroughs Algol 'ON' statements

are used, the program can retain control. This will enable the program to

make some correction or output suitable for debugging information. At any

8.

rate, the program can continue execution , which may lead to finding other

bugs.

Such interrupts are used for hardware and related errors, but software

errors are not so easily detected or corrected. Recovery blocks are a

solution whereby a section of code will ensure a c ondition, which is like

a predicate in formal proofs [Rand 75]. If the main piece of code, the

primary alternative,does not satisfy the condition, other alternatives are

executed until the condition is satisfied or there are no more alternatives,

which causes a fatal error. This allows the program to continue and give

reasonable results even it if is not completely correct .

Conversing interactively with a running program, inspecting and

changing its variables is a powerful tool [Barr 69]. If a programmer can

watch his variables change value, he can actually see his program go wrong and

possibly see why it went wrong [Balz 69]. In any case, correcting wrong

values will t emporar ily patch the program. The ability to do this is the

basis of most breakpoint debugging systems [Appendix A] and is an important

advantage of time-sharing.

If the programmer has to correct the same error each time it is

executed, debugging will take a long time. By making a run-time patch, he

actually changes the program so that hopefully the error is fixed for that

execution of the program. Unfortunately, run-time patches on most debugging

s y stems often do not resemble the source language of the program and so are

not permanent [Bate 74, Blai 71, Gris 70]. Also, they are usually very

limited as to what they can do (assign only constants [Bate 74, Burr 74A],

no conditional statements [Ashb 73]).

Incremental compilers solve all these problems. Patches have the same

status as any other part of the program. They are in the same source

language and suffer no restrictions as the same compiler is used for patches

as for the rest of the program [Bull 72, Ryan 66]. When an error is

located ~t run-time, a patch can be made, linked into the rest of the program

and the same run continued as if nothing had happened. Editing the program

at run-time is an important aspect of incremental compilers [Rish 70].

9.

So far, the programme r sugges ts the correction, tries it and lets

the computer find out if it works. Davis sugge sts that with inexperienced

programmers , it is better for the computer to suggest the mistake as well

lDavi 75]. When an error occurs, the computer backs up the program

showing how the error was reached and what could have c a used it. When the

user decid e s on the cause, the computer explains how it could fix the

mistake, checks with the user and does the fix.

MASSEY U 'IVERSITY
.LI.BAARX

