Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Asparagus somatic embryogenesis: detection of somaclonal variation using molecular and cytological analyses

A thesis presented in partial fulfilment of the requirements for the degree

of

Doctor of Philosophy in Horticultural Biotechnology

at

Massey University

Wendy Hollingsworth

1998

Dedicated to:

My parents - Rudolph and Shirley Hollingsworth

".....because you love me....."

In pursuit of excellence !!!!!!

Abstract

The embryogenic potential for six asparagus cultivars (Aspiring, Karapiro, Pacifica, Turoa, Syn4, and UC157), and the genetic stability of the somatic embryogenic system were investigated. Experiments 1 to 3 investigated the embryogenic potential of select cultivars, whereas experiments 4 to 7 analysed the genetic stability of embryogenic cells and plantlets. In experiment 8, morphological, anatomical, cytological and molecular techniques were used to characterise different types of calli identified during the study.

For all cultivars, embryogenic callus was promoted on Murashige and Skoog (MS) media containing 3% sucrose, 1% agar and one of the following plant growth regulator (PGR) concentrations: 0.3, 1, 3, and 10 μ M 2,4-D and 1.0 μ M NAA/ 0.1 μ M Kinetin. Plant genotype, PGR concentration and length of time in culture significantly influenced both the number of explants producing calli and the type of calli developing from explants.

The following sequence was found to be most effective in producing complete plantlets from embryogenic calli: callus induction (CI) on Murashige and Skoog (MS) media containing 3% sucrose, 1% agar and either of 1.0, 3.0 and 10 μ M 2,4-D, followed by transfer onto liquid embryo induction media (EI) containing MS + 6% sucrose and finally regeneration on regeneration media (Rg4) containing MS + 0.2 g/l glutamine + 3% sucrose + 1% agar. Treatment of 'Pacifica' globular embryos at -15 °C for 3 hr produced the highest percent converted plantlets (34 and 26% for 6-month-old embryogenic calli and 1 year-old embryogenic suspension cells respectively).

The number of *in vitro*-regenerated asparagus plantlets surviving acclimatisation was increased by acclimatising plantlets with minicrowns that contain 2-5 storage roots, and by removal of *in vitro*-formed cladophylls prior to acclimatisation.

Random amplified polymorphic DNA (RAPD) markers distinguished among asparagus cultivars, and revealed differences within seed-raised commercial cultivars. The RAPD

technique also detected changes in genomic DNA structure induced during culture of embryogenic cells. No change in genomic structure of plantlets regenerated from somatic embryos was detected.

Cytological analysis, using chromosome counts and DNA content analysis, were used to determine the genetic stability of embryogenic calli, suspension cells, and plantlets regenerated through somatic embryogenesis. The basic chromosome number of 20 (2n = 20) remained unchanged for all samples. The DNA content of explants and plantlets was similar, indicating that plantlets were diploid. The experiment was unable to detect somaclonal variation, revealed by altered ploidy level indicating that cytological analysis is not as sensitive as RAPD analysis for detecting somaclonal variation.

Extracellular protein profiles generated for embryogenic cells grown in suspension culture were influenced by PGR concentration and length of time in culture, and were therefore not suitable for monitoring somaclonal variation.

Overall, individual cultivars produced between 6 to 8 different calli types for all PGR treatments. Plant genotype and PGR treatment influenced the phenotype of calli developed for each cultivar. The results indicate that, for the six asparagus cultivars investigated in this study, nodular calli or nodular mucilaginous calli have more embryogenic potential than other calli types. These calli were also noted to produce embryogenic cells in suspension, and could, therefore, be used to successfully inoculate liquid cultures either for small or large-scale production of asparagus somatic embryos.

Keywords

Asparagus officinalis L., in vitro, plant growth regulator, somatic embryos, embryogenic calli, maturation, regeneration, plantlet acclimatisation, random amplified polymorphic DNA (RAPD), chromosome count, DNA content, extracellular protein

ii

Acknowledgements

My heart felt thanks to my supervisors Drs B Christie, M Nichols, and H Behboudian for their excellent supervision and guidance during my research. I especially appreciate being given the independence to set my research pace and direction.

I am grateful to my Government and the NZ Commonwealth Scholarship Committee for awarding me the Commonwealth Scholarship and making it possible for me to complete my Ph.D. study. Thanks also to the NZ Asparagus Council for partially funding my research project. Funding from Massey University Research Fund and the Graduate Research Fund was much appreciated.

I would like to acknowledge the assistance of the following persons during various experiments, Dr D Greer, from HortResearch National Climate Laboratory in Palmerston North, for access to the laboratory facilities and technical assistance during the acclimatisation experiment. Drs P Lockhart (Department of Plant Biology) and G Ionas (Department of Microbiology), and Mr H Neilson (Department of Plant Science) for technical advice and suggestions during molecular analysis. Drs D Harding (Department of Biochemistry), D Cook, and K Wurm (Department of Plant Science) for their useful comments during biochemical analysis experiments. Dr O Campanella and J Latham (Department of Food Technology) for assistance in viscosity determination. Dr A Rowland and E Nickless (Department of Plant Biology) for technical assistance during cytological and confocal microscopic analysis. Thanks also to I O'Brien from the HortResearch Cytoflowametric Laboratory, Auckland for DNA content analysis.

I am also grateful to the following Departments for use, or loan, of equipment: Ecology, Food Technology, Microbiology, and Animal Science.

An appreciation is extended to the team at the photographic unit for photography of electrophoretic gels, to M Alexander for advice with computer graphics, to L Davis for speedy acquisition of materials required for my experiments and to the team at the Plant Growth Unit for maintenance of plant material throughout my project.

I am also grateful to Mr R Thomas for editorial comment and Dr L Opara for general comments on content and style of the thesis. An appreciation is also extended to Professor K Milne and the Secretaries for their ready smiles and continued interest in my progress. To my flatmates (Evelyn, Emma, and David) and the 'Dinner Club' (especially Harumi, Sylvia, and Winny) for helping me maintain a healthy balance between my academic and social life...... Thank you.

Finally, I am eternally grateful to my parents, brother, and sister for their love, support, and confidence in my ability to achieve my goals.

Contents

Pages

i. A	bstract		
ii. A	cknowledgments		
iii. C	Contents		
iv. L	list of Tables ————		
v. L	ist of Figures		
vi. L	List of Plates	¥.	
vii. L	ist of Abbreviations		

SECTION 1 ASPARAGUS PRODUCTION

1	Gene	ral Introdu	ction	— 1
1.1	Aspai	ragus produ	iction	1
	1.1.1		distribution ————	
	1.1.2	Internation	al asparagus production	— 1
1.2	Aspai	ragus breed	ing and production	2
	1.2.1	Asparagus	genome	2
	1.2.2	Conventio	nal asparagus production ————	3
			entional asparagus production —	— 4
		1.2.3.1	Shoot tip culture	— 4
		1.2.3.2	Meristem tip culture —	— 5
		1.2.3.3	Adventitious shoot culture	— 5
		1.2.3.4	Protoplast culture	- 6
		1.2.3.5	Haploid cell culture	— 6
		1.2.3.6	Somatic embryogenesis	— 7
1.3	Aspai	agus clona	l propagation in New Zealand	
1.4	Resea	rch proble	m, aim and objectives	— 9
	1.4.1	Research p	problem	— 9
	1.4.2	Research a	im	10
	1.4.3	Research of	objectives	10

SECTION 2 SOMATIC EMBRYOGENESIS

2	Soma	tic Embryogenesis: literature review	11
2.1	Intro	duction	11
	2.1.1	Naturally occurring somatic embryogenesis	11
	2.1.2	In vitro somatic embryogenesis	12
2.2	Soma	tic embryogenic process	13
	2.2.1	Induction of embryogenic calli	14

	2.2.2	Somatic er	mbryo development	— 15
	2.2.3	Embryo m	aturation	— 17
	2.2.4	Embryo co	onversion	— 19
2.3	Moleo	ular and B	iochemical events	20
	2.3.1	Biochemic	al events	21
		2.3.1.1	Lipids	21
		2.3.1.2	Intra-cellular proteins	22
		2.3.1.3	Extra-cellular proteins	23
		2.3.1.4	Carbohydrates ————	24
	2.3.2	Molecular	events	24
2.4	Sumn	nary of obje	ectives for section 2	25

vii

Asparagus somatic embryogenesis: 1. Induction of embryogenic calli using varying plant growth regulator concentrations

-		
3.1.1	Introduction	
3.1.2	Materials and	l methods
	3.1.2.1	Plant material
	3.1.2.2	Callus induction
	3.1.2.3	Statistical analysis
	3.1.3.4	Colour chart
3.1.3	Results	5
	3.1.3.1	Callus induction
	3.1.3.2	Condition of explant
	3.1.3.3	Selection of embryogenic calli
3.1.4	Discussion _	
3.1.5	Summary _	

Asparagus somatic embryogenesis: 2. Somatic embryo development, maturation and regeneration

	Abstr	act		40
3.2	Exper	riment 2 ——		41
	3.2.1	Introduction		41
	3.2.2	Materials and	Methods	42
		3.2.2.1	Plant material —————————————————————	42
		3.2.2.2	Somatic embryo induction and maintenance of	
			embryogenic calli ————	42
		3.2.2.3	Growth of embryogenic cells	43
		3.2.2.4	Somatic embryo development	43
		3.2.2.5	Somatic embryo maturation	43
		3.2.2.6	Embryo regeneration	44
		3.2.2.7	Maintenance of plantlets regenerated from somatic	
			embryos —	44

		Contents	VIII
	3.2.2.8	Shock-treatment of long-term embryogenic suspension cells	45
	3.2.2.9	Temperature treatment of globular somatic	
		embryos	45
3.2.3	Results		45
	3.2.3.1	Somatic embryo development from embryogenic suspensions	45
	3.2.3.2	Growth of embryogenic cells in suspension —	46
	3.2.3.3	Long-term embryogenic cells	47
	3.2.3.4	Somatic embryo maturation	48
	3.2.3.5	Embryo regeneration	48
	3.2.3.6	Temperature effect on embryo conversion	49
	3.2.3.7	Abnormal physiological development of somatic	
		embryos	55
3.2.4	Discussion	·	62
3.2.5	Summary		63

Acclimatisation of plantlets regenerated from asparagus somatic embryos

3.3	Evne	riment 3	
5.5	3.3.1		
	5.5.1	3.3.1.1	Acclimatisation of in vitro-produced plantlets:
		3.3.1.2	an overviewAcclimatisation of <i>in vitro</i> -regenerated asparagus
			plantlets
	3.3.2		methods
		3.3.2.1	In vitro-regenerated plantlets
		3.3.2.2	Plantlet acclimatisation
		3.3.2.3	Acclimatisation with or without <i>in vitro</i> -developed cladophylls
		3.3.2.4	cladophylls Seedlings
		3.3.2.5	Photosynthesis and transpiration
		3.3.2.6	Statistical analysis
	3.3.3	Results	
	5.5.5	3.3.3.1	Acclimatisation of plantlets
		3.3.3.2	Acclimatisation with or with out in vitro-developed
			cladophylls
		3.3.3.3	Photosynthetic capacity of plantlets
		3.3.3.4	Growth of plantlets in the greenhouse
	3.3.4	Discussion	
	3.3.5	Summary _	
	3.3.6		nents

viii

SECTION 3 GENETIC ANALYSIS

	uction —			
Variat	ion in veget	atively propagated plants		
4.2.1	Plant sports			
4.2.2	Chimeras -			
4.2.3	Variegation	l		
Causes	s of genetic	change in plant genomes		
4.3.1	Reproductiv	ve mechanisms		
4.3.2	Repeat sequ	iences		
4.3.3	Movement	of DNA between organelles		
4.3.4	Presence of	infectious organisms		
4.3.5	Genetic eng	gineering		
4.3.6		effects		
In vitre	o-associated	genetic variation		
		variation		
4.4.2	Factors influencing in vitro genetic variation			
	4.4.2.1	Ploidy level and genotype		
	4.4.2.2	Explant source and age		
	4.4.2.3	Culture environment		
	4.4.2.4	Length of time in culture		
	4.4.2.5	Pattern of growth and mode of regeneration		
Detect	ing genetic	variability in regenerants		
4.5.1	Phenotypic	analysis		
	4.5.1.1	Morphological characteristics		
	4.5.1.2	Biochemical analysis		
	4.5.1.3	Protein electrophoretic analysis		
	4.5.1.4	Secondary product analysis		
4.5.2	Genetic ana			
	4.5.2.1	Cytological analysis		
	4.5.2.2	Molecular analysis		
	Malaguland	echniques useful for detecting somaclonal		
4.5.3	Molecular			
4.5.3	variation			
4.5.3		Restriction fragment length polymorphism (RFLP)		
4.5.3	variation	Restriction fragment length polymorphism (RFLP) Polymerase chain reaction (PCR)-based techniques		

Abstr	act	
Exper	iment 4	
5.1.1	Introduction	
5.1.2	Materials and	l methods
	5.1.2.1	Plant material
	5.1.2.2	DNA extraction
	5.1.2.3	RAPD procedure
	5.1.2.4	Improved resolution of amplified bands
	5.1.2.5	RAPD analysis of seedlings
5.1.3	Results	
	5.1.3.1	Screening explants with primers
	5.1.3.2	Polymorphisms produced by primers
	5.1.3.3	Improved resolution of amplified products
	5.1.3.4	Reproducibility of DNA fingerprints
	5.1.3.5	Cultivar comparison and variation within
		cultivars
5.1.4	Discussion -	
5.1.5	Summary —	
5.1.6	Acknowledge	ments

Detection of variation among and within asparagus hybrids using random amplified DNA (RAPD) markers

Variation within asparagus embryogenic calli, suspension cells and plantlets regenerated from somatic embryos detected using RAPD markers

	Abstr	act —		118
5.2	Exper	riment 5 —		120
	5.2.1	Introduction		120
	5.2.2	Materials and	l methods —	120
		5.2.21	Plant material and culture conditions	120
		5.2.2.2	DNA extraction	121
		5.2.2.3	RAPD procedure	122
		5.2.2.4	Gel electrophoresis and staining —	122
		5.2.2.5	Nomenclature	122
	5.2.3	Results —		122
		5.2.3.1	DNA yields	122
		5.2.3.2	RAPD analysis of explants	122
		5.2.3.3	Primer effectiveness to reveal polymorphisms —	
		5.2.3.4	Specific polymorphisms revealed for each cultivar	124
		5.2.3.5	Effect of PGR treatment and length of time in culture on genetic stability of cultivars	133
	5.2.4	Discussion _		139
	5.2.5	Summary		142

5.2.6 Acknowledgments

Cytological analysis of asparagus embryogenic calli, suspension cells and regenerated plantlets

142

	Abstr	act			
5.3	Experiment 6				
	5.3.1	Introduction		1000	
	5.3.2	Materials and	d methods		
		5.3.2.1	Donor plant material		
		5.3.2.2	Calli and embryogenic cells		
		5.3.2.3	Regenerated plantlets	240	
		5.3.2.4	Determination of ploidy level	100	
		5.3.2.5	Determination of nuclear DNA content		
		5.3.2.6	Flow cytometry		
	5.3.3	Results			
		5.3.3.1	Chromosome counts	_	
		5.3.3.2	DNA content		
	5.3.4	Discussion			
	5.3.5	Summary -			
	5.3.6	Acknowledg	ments		

Detection of extracellular proteins secreted by asparagus embryogenic cells in suspension cultures

Abst	ract	
Expe	riment 7	
5.4.1	Introduction	
5.4.2	Materials and	d methods
	5.4.2.1	Plant material
	5.4.2.2	Embryogenic cell culture
	5.4.2.3	Extracellular protein extraction
	5.4.2.4	Protein content determination
	5.4.2.5	Extracellular glycoprotein detection
5.4.3	Results	
	5.4.3.1	Cultivar specific extracellular proteins
	5.4.3.2	PGR treatment effect on extracellular protein profiles
	5.4.3.3	Stability of extracellular protein profiles over time
	5.4.3.4	Protein profiles of cells grown in medium with or with out PGRs
	5.4.3.5	Extracellular glycoproteins ————
5.4.4	Discussion -	
5.4.5	Summary —	
5.4.6	Acknowledg	ments

xi

SECTION 4 CALLUS CHARACTERISATION

Characterisation of long-term asparagus calli maintained on medium containing plant growth regulators

Absti	ract ———	
Callu	is characterisa	tion: a synthesis of techniques
6.1.1	Introduction	
6.1.2	Materials and	d methods —
	6.1.2.1	Plant material
	6.1.2.2	Callus tissue
	6.1.2.3	Callus phenotype ————
	6.1.2.4	Type of cell suspension obtained on PGR-free medium
	6.1.2.5	Preparation of samples for confocal microscopy -
	6.1.2.6	Viscosity of culture medium
	6.1.2.7	Embryo maturation and regeneration ———
	6.1.2.8	RAPD analysis of calli
	6.1.2.9	Cytological analysis
6.1.3	Results	, Ma (
	6.1.3.1	Callus phenotype
	6.1.3.2	Characterisation of cell suspensions
	6.1.3.3	Embryo maturation and regeneration
	6.1.3.4	RAPD analysis of calli
	6.1.3.5	Cytological analysis of calli
6.1.4	Discussion _	
6.1.5	Summary	
6.1.6	Acknowledg	ments

General discussion, conclusions and recommendations

7.1	Gene	ral discussion and conclusions	196
7.2	Resea	arch application	200
	7.2.1	Direct application	200
	7.2.2	Future application	201
7.3	Recor	mmendation for future research	203
	7.3.1	Embryo maturation	203
	7.3.2	Genetic stability	204
	7.3.3	Bioreactor production	204
8	REFERENCES		205
	APPE	ENDICES	227

List of Tables

Page

Table 1.1	International asparagus production
Table 3.1	Effect of PGR treatment on the number of explants producing
1 4010 3.1	callus
Table 3.2	Morphology of explants grown on callus induction medium —
Table 3.3	Description of callus phenotype
Table 3.4	Somatic embryo development and morphology on induction
	medium
Table 3.5	Regeneration of somatic embryos
Table 3.6	Plantlet generation from cultivar Aspiring globular embryos —
Table 3.7	Survival of acclimatised in vitro-developed 'Pacifica' plantlets-
Table 3.8	Effect of plantlet storage roots on acclimatisation and survival
	after 5 weeks in the greenhouse
Table 5.1	Asparagus cultivars evaluated by RAPD analysis
Table 5.2	Polymorphic bands of asparagus cultivars
Table 5.3	List of primers and the number of DNA bands amplified for
	each cultivar
Table 5.4	Cultivar specific polymorphic markers useful for identifying
	'Aspiring', 'Karapiro', and 'Pacifica'
Table 5.5	Total number of variant DNA profiles revealed by all primers
	for asparagus cultivars Aspiring, Karapiro, and Pacifica
Table 5.6	Variant DNA bands observed for asparagus embryogenic cells
	grown on PGR-free liquid medium for one year
Table 5.7	Variant polymorphic bands observed for samples of asparagus
	embryogenic calli maintained on PGR medium for one year
Table 5.8	Variant DNA profiles revealed for asparagus cultivars Aspiring,
	Karapiro, and Pacifica by all primers for embryogenic calli and
	suspension cells
Table 6.1	Calli types developed for asparagus cultivars grown on
	PGR medium
Table 6.2	Type of calli developed for asparagus cultivars grown on
	PGR-free medium
Table 6.3	Phenotype of globular embryos produced for asparagus
	cultivars grown on embryo induction medium and then
	transferred to regeneration medium
Table 6.4	Plantlets regenerated from cultivars Aspiring and Turoa
	globular and mature somatic embryos derived from
	various calli types
Table 6.5	Conversion of 'Aspiring' globular embryos derived from
	calli type E
Table 6.6	Polymorphic DNA bands detected for calli maintained on
	callus induction medium

Appendices

Table 5.0	DNA profiles generated for six asparagus cultivars using	
	20 10-base primers	- 228

List of Figures

Page

Figure 3.1	Plant growth regulator treatment effect on the number of	
	explants producing calli	34
Figure 3.2	Growth of cultivars Aspiring, Karapiro, and Pacifica embryogenic cells in embryo induction medium	53
Figure 3.3	Growth of asparagus embryogenic cells in embryo induction medium	54
Figure 3.4	Photosynthesis and transpiration of 5-week-old acclimatised	
-	'Pacifica' plantlets and 5-week-old 'Syn4' seedlings	78
Figure 5.1	Extracellular protein profiles of asparagus cultivars Aspiring, Karapiro, and Turoa	159
Figure 5.2	Type and concentration of PGR effect on extracellular protein profiles of asparagus embryogenic cultures	160
Figure 5.3	Time effect on extracellular protein expression of cultivar Aspiring embryogenic cultures	163
Figure 5.4	PGR effect on expression of putative embryogenic-associated proteins secreted by cultivar Aspiring embryogenic cells	164
Figure 6.1	Viscosity of culture medium 4 weeks after growth of calli on PGR-free medium	183
Figure 7.1	Production of asparagus synthetic seed	202

List of Plates

Pages

Plate 3.1	Growth of explants on callus induction medium —
Plate 3.2	Somatic embryo development on EI1 medium
Plate 3.3	Somatic embryos
Plate 3.4	Somatic embryo aggregates
Plate 3.5a	Somatic embryo development
Plate 3.5b	Somatic embryo development
Plate 3.6	Precocious germination of somatic embryos
Plate 3.7	Recurrent embryogenesis
Plate 3.8	Rhizogenesis and organogenesis
Plate 3.9	In vitro root development on cultivar Pacifica plantlets
	regenerated from somatic embryos
Plate 3.10	Asparagus plant
Plate 3.11	Morphology of 3-month-old greenhouse acclimatised
	plantlets
Plate 5.1	Random amplified polymorphic DNA profiles for PC_9
	and SN_7 generated by 10 different primers
Plate 5.2	Relative sensitivity of ethidium bromide and silver staining of
	DNA bands
Plate 5.3	Consistency of DNA fingerprints from cultivar Pacifica generated
	using OPC-12
Plate 5.4	DNA profiles of 'Pacifica' plantlets regenerated from somatic
	embryos derived from calli initiated on medium containing
	10 µM 2,4-D
Plate 5.5	Variation in DNA profiles of 'Pacifica' revealed by different
	primers
Plate 5.6	Asparagus chromosomes (2n=20)
Plate 6.1	Phenological characteristics of calli types
Plate 6.2	Cell differentiation in somatic embryo suspension cultures
Plate 6.3	Confocal laser scanning microscopic images of somatic
	embryos

Appendices

Plate 3.0	Colour chart —	227
Plate 5.7	Extracellular protein profiles of asparagus cultivars	238
Plate 5.8	Extracellular glycoprotein profiles of asparagus cultivars ———	239

List of Abbreviations

μg	microgram (s)
μl	microlitre (s)
μm	micrometer (s)
μM	micromolar (s)
µmol	micromole (s)
2,4-D	2,4-dichlorophenoxyacetic acid
2C	nuclear DNA content of unreplicated diploid chromosome
	complement
ABA	Abscisic acid
AFLP	Amplified fragment length polymorphism
ASP	Asparagus cultivar Aspiring
BA (BAP)	Benzylamino purine
CFLP	Cleavase fragment length polymorphism
Chl-	Chlorophyll deficient embryos
Chl+	Globular embryos containing chlorophyll
CI	Callus induction
CRD	Complete random design
DNA	Deoxyribonucleic acid
EI	Embryo induction
g	grams
GA ₃	Gibberellic acid
hr	hour (s)
IAA	3-indole acetic acid
IEDC	Induced embryogenic determined cell
kD	kilodalton
kg	kilogram (s)
Kn	Kinetin
KP	Asparagus cultivar Karapiro
l or L	litres
LEA	Late embryogenesis protein
mg	milligram (s)
min	minute (s)
mm	millimetre (s)
MS	Murashige and Skoog
MW	molecular weight
NAA	α-Napthaleneacetic acid
°C	degrees Celsius
PC	Asparagus cultivar Pacifica
PCR	Polymerase chain reaction
PEDCs	Pre-embryogenic determined cell
PEG	Polyethylene glycol
PEMs	Proembryogenic masses
PGR	Plant growth regulator (s)
PI	Propidium iodide
Pur	Globular embryos with purple pigment
RAPD	Random amplified polymorphic DNA
	remean ampirios porjinorphilo Drart

RFLP	Restriction fragment length polymorphism
Rg	Regeneration
SEM	Standard error of mean
SN	Asparagus cultivar Syn4
SSCP	Single stranded conformation polymorphism
TU	Asparagus cultivar Turoa
UC	Asparagus cultivar UC157

xviii

SECTION 1

ASPARAGUS PRODUCTION