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Abstract

Extended aqueous systems, crystalline ice and liquid water, are studied com-
putationally to investigate their ground state and excited state properties.
Methods from solid state physics and quantum chemistry are combined to
shed light on some of the unusual properties of water and ice.
For the ground state of crystalline ice, density functional theory (DFT) cal-
culations are compared to an ab initio incremental ansatz that utilizes peri-
odic Hartree-Fock together with localized electron correlation calculations.
It is shown that the many-body decomposition of the electron correlation
converges very fast, allowing the achievement of excellent agreement with
experimental data even when limiting correlation energy contributions to
two-body terms only. The incremental method is utilized by a computer pro-
gram that combines the periodic and localized calculations, and allows for
structural optimization of the system of interest.
The adsorption of water molecules on the surface of ice is studied using DFT.
Adsorption is found to be favoured on non-crystallographic adsorption sites,
and a slight tendency towards the formation of rough surfaces is reported.
The localization of excess electrons at the surface of ice is facilitated by co-
adsorbed water molecules. For a correct theoretical description of the latter,
a self-interaction correction scheme for the excess electron has to be used.
However, it is sufficient to limit the self-interaction correction to the excess
electron only, since the neutral ice surface itself is well described within con-
ventional DFT. The self-interaction correction scheme is incorporated into a
commonly used DFT program package.
Optical excitations of crystalline ice are calculated using many-body pertur-
bation theory. Solving the two-particle Bethe-Salpeter equation yields op-
tical spectra in excellent agreement with experimental data. Based on this
agreement, an embedding model is developed that reduces the hydrogen
bond network to its most important contribution. The model is applied to
crystalline ice, where it reproduces the experimental spectral features, and to
microscopic liquid water structures obtained from molecular dynamics sim-
ulations, where it reproduces the energy shift of the first absorption peak and
gives overall good agreement with experiment. The driving force of water’s
anomalous optical behaviour is identified.
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Water is the driving force of all nature.

Leonardo da Vinci

1
Introduction

It is one of the simplest heteronuclear molecules. It is the material with the
largest known number of physical and thermodynamical anomalies. It is one
of the most abundant substances on Earth and the most abundant crystalline
substance in outer space. It is the most dissolving liquid known. It is the only
substance available in all three states of matter under ambient conditions. As
far as we know, it is essential for the development of life on our planet. It is
suspected to be instrumental in the creation of ozone-destroying free radicals
in the upper atmosphere. Water is many things, and it certainly has very
interesting properties.

70% of the surface of our planet are covered with water; about 10% of its
land mass is covered in ice. 65% of the human body mass is water. US$
720 million were spent by the North American Space Agency on the Mars
Reconnaissance Orbiter spacecraft to search for water on Mars. It is essen-
tial for every living organism known to man, yet can lead to lethal intoxi-
cation due to osmotic processes. It is the ubiquitous solvent in innumerable
chemical and technological applications. Yet despite its omnipresence and
fundamental importance, and being the focus of a multitude of experimental
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1 Introduction

(a) 1a1: O 1s (b) 2a1: O 2s (c) 1b2: O 2px

(d) 3a1: O 2py (e) 1b1: O 2pz (f) 4a1: O-H σ∗

Figure 1.1: Isosurfaces of water’s molecular orbitals, from Hartree-Fock cal-
culations, including the main atomic orbital contributions. Panels (a)–(e):
occupied electronic states; (f) lowest unoccupied electronic state.

and theoretical studies, there are still questions unanswered, and problems
unsolved.

The water molecule, as mentioned above, is seemingly very simple: it has
C2v symmetry; the mean OH bond length is about 0.957Å [1]; it is bent with a
mean HOH angle of about 104.5◦, and has a dipole moment of about 1.85 De-
bye [2]. This corresponds to a partial charge of about -0.7 atomic units at the
oxygen atom, and +0.35 atomic units at the hydrogen atoms [3]. These prop-
erties can be understood with the illustrative concepts of bond hybridization
and atomic electronegativity. However, they also set the stage for the fasci-
nating effects and phenomena that make aggregations of water molecules so
unique. The polar character of the water molecule combined with the oxygen
lone pairs enables the formation of hydrogen bonds. Their versatility drives
the unusual properties of water clusters, liquid water, and solid ice – and,
depending on the definition of “unusual”, water and ice exhibit about 40 to
60 anomalies in comparison to “normal” liquids and solids.

When freezing, water can crystallize in at least 13 different crystal struc-
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tures, depending on pressure and temperature conditions [4]. Experimen-
tally, new phases of ice have been investigated since the start of the twen-
tieth century [5], and even today possible new high pressure phases are re-
ported [6]. The crystalline structures differ with respect to the space group
symmetry of the oxygen atoms’ lattice, and whether the hydrogen bond net-
work is ordered or not. Disordered hydrogen bonds are usually found at
higher temperatures [4]. Locally, all solid phases feature a tetrahedral coordi-
nation of water molecules: each molecule donates and accepts two hydrogen
bonds. It is beyond these local surroundings that the structures deviate from
each other. In addition to the different crystal structures, water can freeze as
high density or low density amorphous ice [7, 8]. These numerous different
solid structures are possible due to the flexibility of the hydrogen bond, as
mentioned above.

Standard experimental methods to investigate crystalline phases of water
include electron, neutron, and x-ray diffraction. However, their use is lim-
ited when the (inherently non-periodic) liquid phase of water is studied: al-
though a short-range order is still approximately kept, the long-range order
is lost. These methods can thus yield only averaged structural information,
e.g. in the form of radial distribution functions [9]. However, to reveal in
more detail the structural and dynamical properties of liquid water, indirect
methods such as near-edge x-ray absorption spectroscopy have to be used.
Why are these properties of interest? Traditionally, liquid water is seen as
a somewhat disordered version of ice: hydrogen bonds are regularly bro-
ken and re-formed, and molecules can more or less freely diffuse through
the liquid; however, the water molecules are still quasi-tetrahedrally coordi-
nated, with about four nearest neighbours at any given time. This view is
supported by virtually all diffraction experiments and theoretical molecular
dynamics simulations. Recently, however, this point of view was challenged
by ultrafast x-ray absorption measurements in water [10], which found liq-
uid water’s spectroscopic fingerprint more closely related to the surface of ice
than to bulk ice. According to this research, liquid water molecules would
have on average only two nearest neighbours, in crass contrast to the tradi-
tional view. This result was listed by Science magazine as one of the scientific
“Breakthroughs of the Year” in 2004 [11], and has sparked a flurry of experi-
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1 Introduction

mental and theoretical investigations. The jury on this matter is still out.
Given this context, theoretical studies on aqueous systems are more impor-

tant than ever. They provide a means to reproduce experimental findings,
establish accurate models of natural systems, and allow for detailed scru-
tinizing of the phenomena investigated. Parameter-free calculations (here
referred to as ab initio calculations, or first principles calculations) are par-
ticularly useful: the ability to describe natural phenomena using a purely
microscopic theory of matter, without introduction of empirical parameters,
can not be overestimated – it enables us to test the very microscopic theory
against nature, while explaining known and predicting new and interesting
effects of the systems studied.

The present work aims to investigate extended aqueous systems from first
principles. It focuses on ground state and excited state properties, and the
search for appropriate methodologies to describe these correctly. Chapter 2
introduces the background to the theoretical and computational methodol-
ogy used. Chapter 3 presents ground state calculations of crystalline ice from
a quantum chemical ansatz, combining periodic Hartree-Fock calculations
with a localized electron correlation treatment. Using this method, unprece-
dented accuracy regarding agreement with experimental data is achieved.
Chapter 4 contains results of studies of the adsorption of water molecules on
the surface of ice. Chapter 5 presents a first principles study on the localiza-
tion of excess electrons at the surface of ice, where a partial self-interaction
correction scheme proves crucial. Chapter 6 investigates the optical proper-
ties of liquid water and ice. After using Green’s function methods to obtain
optical spectra of ice in excellent agreement with experiment, a model system
is introduced that proves sufficient to reproduce the optical spectrum of ice.
The application of this model to liquid water has enabled the first theoretical
study that consistently reproduces the energy shifts in the optical spectra of
both the liquid and solid phase of water. Chapter 7 contains a summary and
conclusions.
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There is a mask of theory over the whole face
of nature.

William Whewell

A theory must be tempered with reality.

Jawaharlal Nehru

2
Method Review

In this work, a variety of systems are studied computationally that vary in
size and dimension from small clusters of molecules, surface systems, to peri-
odic bulk. Thus, different methods have to be employed to correctly describe
and calculate the desired properties. This chapter gives a short overview
over these methods. For further reading, the reader is referred to standard
textbooks on quantum chemistry [12–14], solid state physics [15, 16], and
many-body physics [17].

2.1 The Many-Electron Problem

Atoms, molecules, and crystals comprise atomic nuclei and electrons. Cor-
rectly describing these systems means including all their mutual interactions.
However, considering the problems and properties studied here allows for
some major simplifications: the typical length scale is L ∼ 1Å, and typical ve-
locities are v ∼ 1

137 c. Thus, it is convenient to ignore quantum field (L ≫ λe,
the electron’s Compton wave length) and relativistic effects (v ≪ c, the speed
of light), and start from non-relativistic quantum mechanics.
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2 Method Review

There, a quantum system’s wave function
∣∣Φ⟩ is governed by the

Schrödinger equation, which reads in atomic units

Hen
∣∣Φ⟩ = ı̇

∂

∂t
∣∣Φ⟩, (2.1)

with the Hamiltonian

Hen = Tn + Vnn + Te + Ven + Vee. (2.2)

It contains the operators for the nuclear kinetic energy Tn, the nuclear poten-
tial energy Vnn, the electronic kinetic energy Te, the electron-nuclear interac-
tion potential Ven, and the electronic interaction potential Vee. If the Hamilto-
nian is not explicitly time-dependent, the time evolution of

∣∣Φ⟩ can be formu-
lated in terms of the Hamiltonian’s eigenfunctions

∣∣Ψen
i
⟩

and corresponding
eigenvalues Een

i :

∣∣Φ(t)
⟩

= ∑
i

⟨
Φ(0)

∣∣Ψen
i
⟩
e−ı̇Een

i t∣∣Ψen
i
⟩
, (2.3)

Hen
∣∣Ψen

i
⟩

= Een
i
∣∣Ψen

i
⟩
. (2.4)

De-coupling the nuclear degrees of freedom {Rn} and neglecting the cou-
pling between electronic states and nuclear motion (Born-Oppenheimer ap-
proximation) separates (2.4) into a nuclear and an electronic part, Hen =
Hn + H and

∣∣Ψen
i (Rn)

⟩
= ψn

i (Rn)
∣∣Ψi
⟩
, where

Hnψn
j (Rn) ≡ (Tn + Vnn)ψn

j (Rn) = En
j ψn

j (Rn), (2.5)

H
∣∣Ψj
⟩
≡ (Te + Ven + Vee)

∣∣Ψj
⟩

= Ej(Rn))
∣∣Ψj
⟩
. (2.6)

The total wave function is expanded into solutions
∣∣Ψi
⟩

of the electronic
Hamiltonian H:

∣∣Φ(t)
⟩

= ∑
j

Cje
−ı̇(En

j +Ej)t
ψn

j (Rn)
∣∣Ψj
⟩
. (2.7)

Solving equation (2.6) to a desired accuracy is a major task of quantum chem-
istry and theoretical solid state physics. For inhomogeneous systems with
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2.2 The Hartree-Fock Method

more than one electron, only a few highly symmetric cases allow to solve
(2.6) analytically. However, the Rayleigh-Ritz variational principle provides
a means to give upper bounds to the system’s energy levels Ei by using ap-
proximate wave functions

∣∣Ψ̃⟩: since H is bound from below, it holds

Ẽ =
⟨
Ψ̃
∣∣H∣∣Ψ̃⟩⟨

Ψ̃
∣∣ Ψ̃⟩ ≥

⟨
Ψ0
∣∣H∣∣Ψ0

⟩⟨
Ψ0
∣∣Ψ0

⟩ = E0, (2.8)

for any trial wave function
∣∣Ψ̃⟩, where

∣∣Ψ0
⟩

and E0 denote the electronic
ground state and the ground state energy, respectively. For a non-degenerate
groundstate

∣∣Ψ0
⟩
, the equal sign in (2.8) holds only for

∣∣Ψ̃⟩ =
∣∣Ψ0
⟩
. Excited

state energies Ei can be approximated by trial wave functions
∣∣Ψ̃⟩ that are

orthogonal to the subspace spanned by {
∣∣Ψj
⟩
}j<i.

Within a parametrized set of trial wave functions {Ψ̃ν}, the best approxi-
mation

∣∣Ψ̃ν∗
⟩

of the true groundstate wave function is obtained by solving

Ψ̃ν∗ : ν∗ = min
ν

[⟨
Ψ̃ν

∣∣H∣∣Ψ̃ν

⟩
− λ(

⟨
Ψ̃ν

∣∣ Ψ̃ν

⟩
− 1)

]
. (2.9)

2.2 The Hartree-Fock Method

In second quantization and atomic units, the electronic Hamiltonian reads

H = Te + Ven + Vee, (2.10)

Te = ∑
σ

∫
d3r ψ†

σ(r)
{
−1

2
∇2
}

ψσ(r), (2.11)

Ven = ∑
σ

∫
d3r ψ†

σ(r)V(r)ψσ(r), (2.12)

Vee =
1
2 ∑

σ,σ′

∫∫
d3r d3r′ ψ†

σ(r)ψ†
σ′(r′)v(r, r′)ψσ′(r′)ψσ(r). (2.13)

There, we have the electron creation (annihilation) field operators ψ†
σ(r)

(ψσ(r)), the external potential V(r), and the Coulombic potential of the in-
teracting electrons,

v(r, r′) =
1

|r − r′| . (2.14)
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2 Method Review

The Hamiltonian also contains sums over the spin degrees of freedom σ. The
pair-interaction of the electrons Vee makes the many-electron problem so dif-
ficult. Therefore, it would be desirable to map the problem onto a system of
non-interacting quasi-particles that do not feel the Coulombic interaction but
a suitable effective potential. The wave function

∣∣Ψ⟩ could then be approxi-
mated by a product of the quasi-particles’ spin orbitals:

Ψ(r) =
⟨
r
∣∣Ψ⟩ =

N

∏
i=1

ϕi(ri, σi) (2.15)

Demanding that the approximate wave function fulfills Pauli’s exclusion
principle leads to the complete antisymmetric sum of the product wave func-
tion:

Ψ(r) =
1√
N!

∑
π∈℘(N)

(−1)|π|
N

∏
i=1

ϕπ(i)(ri, σi) (2.16)

There, ℘(N) denotes the permutation group of rank N. Introduced inde-
pendently by Fock [18] and Slater [19], this ansatz for the electronic wave
function is also known as a Slater determinant (SD):

Ψ(r) =
1√
N!

ϕ1(r1, σ1) ϕ2(r1, σ1) · · · ϕN(r1, σ1)
ϕ1(r2, σ2) ϕ2(r2, σ2) · · · ϕN(r2, σ2)

...
... . . . ...

ϕ1(rN, σN) ϕ2(rN, σN) · · · ϕN(rN, σN)

(2.17)

Using all possible SD’s (by varying the atomic orbitals ϕi) as the set of trial
wave functions in (2.9) leads to the well-known Hartree-Fock equations for the
ϕi:

HHF
∣∣ϕi
⟩

=

[
h +

N

∑
j=1

(Jj − Kj)

] ∣∣ϕi
⟩

= εi
∣∣ϕi
⟩
, (2.18)

h = −1
2
∇2 + Ven, (2.19)

Jj
∣∣ϕi
⟩

=
⟨
ϕj
∣∣v∣∣ϕj

⟩∣∣ϕi
⟩
, (2.20)

Kj
∣∣ϕi
⟩

=
⟨
ϕj
∣∣v∣∣ϕi

⟩∣∣ϕj
⟩
. (2.21)
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2.3 Electron Correlation

The total energy of the electronic system is given by

E =
N

∑
i=1

⟨
ϕi
∣∣h∣∣ϕi

⟩
+

1
2

N

∑
i,j=1

(⟨
ϕi
∣∣Jj
∣∣ϕi
⟩
−
⟨
ϕi
∣∣Kj
∣∣ϕi
⟩)

(2.22)

=
N

∑
i=1

εi −
1
2

N

∑
i,j=1

(⟨
ϕi
∣∣Jj
∣∣ϕi
⟩
−
⟨
ϕi
∣∣Kj
∣∣ϕi
⟩)

. (2.23)

The operators Jj and Kj represent the mean-field Coulombic interaction (also
known as the Hartree term) and the exchange interaction (also known as the
Fock term) between electrons i and j. The latter stems from the antisymmetric
character of the wave functions and has no classical analogue. That the total
energy (2.23) is not equal to the sum of the eigenvalues εi illustrates the quasi-
particle character of the Hartree-Fock orbitals ϕi. The exchange operator K
acts only on electrons of the same spin orientation, since v in (2.21) is spin-
independent.

2.3 Electron Correlation

In the Hartree-Fock (HF) method, electrons are treated as independent par-
ticles obeying the Pauli exclusion principle. They interact based on the aver-
age position of the other electrons, where in fact their motion is governed
by the actual position of the other electrons. Electrons of opposite spins,
that do not feel the exchange repulsion, can come arbitrarily close to each
other in the HF approximation. Displaying the pair distribution function
of the homogeneous electron gas visualizes this problem. The pair distri-
bution function g(r, r′) corresponds to the probability to find an electron at
position r′ provided an electron is located at position r. In the homogeneous
case, g(r, r′) reduces to g(r) = g(|r − r′|). Figure 2.1 shows g(r) for the ho-
mogeneous electron gas, obtained from various numerical approaches. In
the Hartree approximation, where the wave function takes the product form
(2.15) which corresponds to neglecting the exchange operator Ki from (2.21)
it holds g(r) = 1: having an electron at r does not influence the probability
of having another electron at any other point r′. In the HF approximation,
an “exchange hole” is created around the electron at r, illustrating the repul-
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Figure 2.1: Pair-distribution function g(r, r′) = g(|r − r′|) for the homoge-
neous electron gas, from various numerical approximations. kF denotes the
Fermi wave vector.

sion of electrons of equal spin; g(0) = 0.5 in the HF approximation. In re-
ality, however, Coulombic repulsion creates an “exchange-correlation hole”
around the electron at r = 0 that is deeper and more localized than in the HF
approximation.

In electronic structure theory, “electron correlation” coins the sum of all in-
teractions beyond the Hartree and Fock terms, that is, the difference between
the HF approximation and the exact Hamiltonian. The following sections
present several methods that treat electronic correlation, based on the HF
wave function as a starting guess for the electronic structure.

2.3.1 Many-body perturbation theory

An intuitive way to include electron correlation is to treat the difference be-
tween HF and the exact Hamiltonian perturbatively:

H = HHF + λV, (2.24)

V = Vee −
N

∑
i=1

(Ji − Ki). (2.25)
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This many-body perturbation theory (MBPT) is also known as Møller-Plesset
theory [20]. A power expansion of the electronic wave function and energies
with respect to the coupling constant λ,

∣∣Ψ⟩ =
∣∣ΨHF

⟩
+ λ

∣∣Ψ̃(1)⟩+ λ2∣∣Ψ̃(2)⟩+ · · · , (2.26)

E = E0 + λE1 + λ2E2 + · · · , (2.27)

leads to

E0 =
⟨
ΨHF

∣∣HHF
∣∣ΨHF

⟩
=

N

∑
i=1

εi, (2.28)

E1 =
⟨
ΨHF

∣∣V∣∣ΨHF
⟩

= −1
2

N

∑
i,j=1

(⟨
ϕi
∣∣Jj
∣∣ϕi
⟩
−
⟨
ϕi
∣∣Kj
∣∣ϕi
⟩)

, (2.29)

E2 =
⟨
ΨHF

∣∣V∣∣Ψ̃(1)⟩ =
1
4

occ

∑
i,j

vir

∑
r,s

|
⟨
ΨHF

∣∣V∣∣Ψrs
ij
⟩
|2

E0 − Ers
ij

. (2.30)

There,
∣∣Ψrs

ij
⟩

= a†
s a†

r ajai
∣∣ΨHF

⟩
is a doubly excited HF state, where electrons

from the orbitals
∣∣ϕi
⟩
,
∣∣ϕj
⟩

are excited to the virtual states
∣∣ϕr
⟩
,
∣∣ϕs
⟩
. Here, a†

i
(ai) denote electron creation (annihilation) operators that increase (decrease)
the occupation number of orbital

∣∣ϕi
⟩

by 1. The sums in (2.30) sum over
all occupied and virtual states, respectively. Note that EHF = E0 + E1, and
thus the second order MBPT gives the first energy correction E2 beyond HF.
This level of correlation treatment (known as MBPT2 or MP2) is a common
method to improve the HF energy EHF. Higher order corrections (MPn) are
possible, but computation time scales like O(Nn+3). As is the nature of per-
turbation theory, its efficiency depends on the size of the perturbation or, in
other words, the usefulness of the unperturbed Hamiltonian. If HF is not
suitable to describe the electronic system correctly, higher order perturbation
theory may be needed, in which case it can be more efficient to use other
correlation methods. Further, if the energy difference in the denominator of
(2.30) becomes small, the expansion (2.27) may not converge. This is a fun-
damental problem in the treatment of electron correlation effects in metallic
systems.
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2.3.2 Configuration Interaction

The HF method yields by construction the best single-determinant ap-
proximation to the electronic wave function. Extending

∣∣ΨHF
⟩

to a multi-
determinant wave function seems to be a natural way to improve the descrip-
tion of an electronic system. In the configuration interaction (CI) approach,
more determinants are constructed by exciting electrons to virtual orbitals,
that span (with variable coefficients ci) the total wave function [21–23]:

∣∣ΨCI
⟩

=
∣∣ΨHF

⟩
+

occ

∑
a

vir

∑
r

cr
a
∣∣Ψr

a
⟩
+

occ

∑
a,b

vir

∑
r,s

crs
ab
∣∣Ψrs

ab
⟩
+ · · · (2.31)

=
∣∣ΨHF

⟩
+ ∑

S
cS
∣∣ΨS

⟩
+ ∑

D
cD
∣∣ΨD

⟩
+ ∑

T
cT
∣∣ΨT

⟩
+ · · · . (2.32)

There, S (D, T) sums over all single (double, triple) excitations of the HF wave
function. The groundstate energy is obtained by minimization with respect
to the coefficient set {ci}:

ECI = min
{ci}

⟨
ΨCI
∣∣H∣∣ΨCI

⟩⟨
ΨCI

∣∣ΨCI
⟩ . (2.33)

That means solving the secular equation

HCIc = ECIc, (2.34)

where HCI
ij =

⟨
Ψi
∣∣H∣∣Ψj

⟩
. Note that all orbitals are frozen at the HF level

of theory, and only the determinants’ coefficients are optimized. The lowest
eigenvalue ECI,0 is the electronic groundstate energy, and the groundstate is
determined by the corresponding eigenvector c0. The second lowest eigen-
value ECI,1 and its eigenvector c1 correspond to the first excited electronic
state etc.

A full CI calculation includes all possible excitations into all virtual orbitals
– the number of which in an actual calculation equals the number of linearly
independent basis functions. Since the number of determinants grows ex-
ponentially with the number of orbitals, these calculations are prohibitively
large for all but the smallest molecular systems. Usually, the excitation ex-
pansion is truncated at some level. Common truncated CI methods use the
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excited state determinants up to double (CISD) or triple (CISDT) excitations.

The truncated CI method suffers from two major shortcomings. The first
is the lack of size-extensivity. That is, treating two electronic systems as non-
interacting fragments of the same compound will generally not equal the
sum of the individual energies of the two systems. If, for instance, two frag-
ments are calculated on CISD level of theory, a consistent treatment of the
compound system should include certain triple and quadruple excitations;
namely, those that are products of the fragments’ single and double excita-
tions. Thus, a CISD compound calculation will give a higher energy than the
sum of the fragments’ energies. Secondly, the only consistent way to truncate
CI is by the number of excitations of the HF state, i.e. after including all sin-
gle, double, or triple excitations. That means that often a very large number
of (not particularly important) determinants has to be considered; the con-
vergence of the total energy with respect to the size of the wave function is
thus rather slow.

2.3.3 Coupled Cluster Theory

The coupled cluster (CC) theory, developed in the field of nuclear physics
[24,25] and adapted later for use in atomic and molecular calculations [26,27],
aims to overcome the above mentioned shortcomings of CI. In a CC expan-
sion, the single determinant wave function is expanded by incorporating ex-
citations of a given type (single, double, etc.) to infinite order in a product
wave function ansatz, with variable coefficients ti:

∣∣ΨCC
⟩

=

[
∏
a,r

(1 + tr
aa†

r aa)

] [
∏
ab,rs

(1 + trs
aba†

s a†
r abaa)

]
· · ·
∣∣ΨHF

⟩
(2.35)

A full CC expansion, including up to N-tuple excitations, gives the same
wave function as a full CI expansion. However, due to the product ansatz
even truncated CC wave functions are inherently size extensive. Since
(a†

r aa)2 = 0, it holds

(1 + tr
aa†

r aa) =
∞

∑
k=0

1
k!

(tr
aa†

r aa)k = exp tr
aa†

r aa, (2.36)
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and the full CC wave function (2.35) can be rewritten in an exponential form
as

∣∣ΨCC
⟩

= exp T
∣∣ΨHF

⟩
(2.37)

T = T1 + T2 + · · · + TN, (2.38)

where Ti denotes the sum over all possible excitations of i electrons:

T1 = ∑
a,r

tr
aa†

r aa, (2.39)

T2 = ∑
ab,rs

trs
aba†

s a†
r abaa, . . . (2.40)

The exponential operator exp T then reads, re-ordered by the number of ex-
citations,

exp T = eT = 1 + T1 +
(

T2 +
1
2

T2
1

)
+
(

T3 + T2T1 +
1
3!

T3
1

)
+ · · · . (2.41)

The CC wave function fulfills a Schrödinger equation for the electronic
Hamiltonian H,

H
∣∣ΨCC

⟩
= ECC

∣∣ΨCC
⟩
. (2.42)

The coefficients (or “amplitudes”) of the excitation operators (tr
a, trs

ab, and so
on) are to be optimized. However, unlike in the previously discussed meth-
ods, the CC ansatz does not allow for the use of the variational principle. The
variational minimum conditions for the excitation amplitudes trs···

ab···,⟨
Ψrs···

ab···
∣∣eT H

∣∣ΨCC
⟩

= ECC
⟨
Ψrs···

ab···
∣∣ eTΨHF

⟩
(2.43)

lead to highly nonlinear equations coupling all CC amplitudes (which in gen-
eral contain non-physical solutions). Solving these equations is not possible
for all but the smallest molecular systems. Instead, (2.42) is usually written
as a projected Schrödinger equation, with an effective non-hermitian Hamil-
tonian HT acting on the HF state:

e−T HeT∣∣ΨHF
⟩
≡ HT∣∣ΨHF

⟩
= ECC

∣∣ΨHF
⟩
. (2.44)
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Projection onto
∣∣ΨHF

⟩
and all excited states

∣∣Ψrs···
ab···
⟩

that are obtained by the
excitation operators in T yields the linked coupled cluster equations for the en-
ergy ECC and the amplitudes trs···

ab···:⟨
ΨHF

∣∣e−T HeT∣∣ΨHF
⟩

= ECC, (2.45)⟨
Ψrs···

ab···
∣∣e−T HeT∣∣ΨHF

⟩
= 0. (2.46)

Equations (2.46) are much easier to handle than (2.43): combining the nature
of T, comprising sums of commutating excitation operators, with the fact that
H contains only one- and two-electron operators means a Baker-Campbell-
Hausdorff expansion of the similarity-transformed Hamiltonian HT vanishes
identically after the fourth term:

HT = e−T HeT =H + [H, T] +
1
2
[[H, T], T] +

1
3!

[[[H, T], T], T] (2.47)

+
1
4!

[[[[H, T], T], T], T].

Thus, equations (2.46) contain the coupled cluster amplitudes at most to
fourth order; amplitudes of the highest excitations appear only linearly.

The property of H to include only up to two-electron operators also greatly
simplifies the energy expression (2.45):

ECC =
⟨
ΨHF

∣∣HT∣∣ΨHF
⟩

=
⟨
ΨHF

∣∣H(1 + T1 + T2 +
1
2

T2
1 )
∣∣ΨHF

⟩
(2.48)

= EHF + ∑
a,r

tr
a
⟨
ΨHF

∣∣H∣∣Ψr
a
⟩
+

1
4 ∑

ab,rs
(trs

ab + tr
ats

b − ts
atr

b)
⟨
ΨHF

∣∣H∣∣Ψrs
ab
⟩
.

(2.49)

While the energy ECC is completely determined by the single and double
excitation amplitudes alone, these in turn depend through (2.46) on all higher
amplitudes included in the CC calculation.

For practical calculations, the CC expansion has to be truncated. A com-
mon choice is restricting T to single and double excitations, T = T1 + T2, the
CCSD approximation, which scales like O(N6). Including triple excitations,
T = T1 + T2 + T3, results in the CCSDT approximation (O(N8)). Because the
latter is not feasible beyond the smallest of molecular systems, a perturba-
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tive treatment of the triple excitations on top of CCSD calculations is often
dubbed the “gold standard” of single reference calculations: the CCSD(T)
approximation, scaling like O(N7).

Symmetry adapted cluster expansion

For totally symmetric spin singlet states the CC expansion is a very good and
successful method. For open-shell systems, however, the excitation operators
can create a CC wave function of mixed symmetry. While the amplitudes of
the incorrect symmetry excitations will vanish identically, they still increase
the number of variables and thus the complexity of the CC equations (2.46).
An elegant way to expand the HF wave function in this case is using sym-
metry adapted cluster operators (SAC), that yield only the desired number of
independent variables [28, 29]:

∣∣ΨSAC
⟩

= PeS∣∣ΨHF
⟩

(2.50)

S = S1 + S2 + · · · + TN (2.51)

where P is a symmetry projection operator and Si denotes the sum over all
symmetry-adapted excitations of i electrons:

S1 =
f1

∑
τ1

∑
a,r

Cr
τ1,aS†

τ1,a,r (2.52)

S2 =
f2

∑
τ2

∑
ab,rs

Crs
τ2,abS†

τ2,ab,rs . . . . (2.53)

The sum over τi runs over all symmetry functions of interest. Defined in that
way,

∣∣ΨSAC
⟩

contains only determinants of the desired symmetry.
The resulting SAC equations are similar to the conventional CC equations

(2.46) and are solved for the amplitudes Crs···
τi,ab···.

Excited states, SAC-CI

The SAC expansion also serves as a good starting point for excited state cal-
culations: the SAC wave function

∣∣ΨSAC
⟩

can be used as input for a conven-
tional CI expansion, in what is known as the SAC-CI method [30, 31]. It is
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based on the fact that the set of functions {
∣∣ΨK

⟩
} defined by

∣∣ΨK
⟩

=
(
1 −

∣∣ΨSAC
⟩⟨

ΨSAC
∣∣) SeSR†

K
∣∣ΨHF

⟩
(2.54)

forms a basis for the excited states:

⟨
ΨK
∣∣ΨSAC

⟩
= 0 (2.55)⟨

ΨK
∣∣H∣∣ΨSAC

⟩
= 0. (2.56)

The operator R†
K denotes an electronic excitation of some kind. Expanding

an excited state
∣∣Ψe
⟩

in the basis (2.54) gives

∣∣Ψe
⟩

= ∑
K

aK

[
R†

K + ∑
i

CiS†
i R†

K

] ∣∣ΨHF
⟩
− ∑

K
aK
⟨
ΨSAC

∣∣R†
K
∣∣ΨSAC

⟩∣∣ΨSAC
⟩
.

(2.57)
The coefficients aK are obtained from solving the secular equation

HSAC-CIa = ESAC-CIa, (2.58)

where HSAC-CI
I J =

⟨
ΨI
∣∣H∣∣ΨJ

⟩
. The lowest eigenvalue E0

SAC-CI (and its eigen-
vector a0) correspond to the first excited state of the chosen symmetry, E1

SAC-CI

and a1 to the second excited state, and so on.

2.4 Density Functional Theory

The Hartree-Fock method has proven a valuable tool in atomic and molecu-
lar calculations, if only to serve as a starting point for the correlation methods
discussed in section 2.3. To treat crystalline materials, it can be extended to
describe systems with periodic boundary conditions; however, due to the
non-local character of the exchange operator (2.21) these calculations are
rather time-consuming, and a more efficient method is needed. Density func-
tional theory is this method.

Hohenberg and Kohn [32] identified the electronic density n(r) of the
ground state as a central quantity that uniquely determines the ground state
and (except for a constant) the external potential Ven. Thus, the ground state
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energy E0 is a functional of the ground state density:

E0 = E0[n] = F0[n] +
∫

d3r Ven(r)n(r), F0[n] =
⟨
Ψ0
∣∣Te + Vee

∣∣Ψ0
⟩
. (2.59)

The functional F0[n] is universal, independent of the external potential.

Since E0[n] reaches its minimum at the actual ground state density associ-
ated with Ven, a variational principle can be set up:

E0 = min
ñ

E0[ñ]. (2.60)

To exploit the minimum property of E0[n], Kohn and Sham devised a scheme
to map the many-electron system to a system of non-interacting quasi-
particles in an effective potential such that it has the same ground state den-
sity n(r) as the interacting system [33]. Writing the wave function of the
non-interacting system as a SD with single-particle orbitals {ϕi}, the ground
state energy and electron density are

n(r) =
N

∑
i=1

|
⟨
r
∣∣ϕi
⟩
|2, (2.61)

E = F0[n] +
N

∑
i=1

⟨
ϕi
∣∣Ven

∣∣ϕi
⟩
, (2.62)

F0[n] =
N

∑
i=1

⟨
ϕi
∣∣− 1

2
∇2∣∣ϕi

⟩
+ EH[n] + Exc[n], (2.63)

All electron interaction contributions beyond the Hartree energy EH are in-
cluded in the exchange-correlation energy functional Exc[n], which is unknown.
The variational principle (2.60) leads to the Kohn-Sham equations for the or-
bitals

∣∣ϕi
⟩
:

HKS
∣∣ϕi
⟩

=
[
−1

2
∇2 + Ven + VH[n] + Vxc[n]

] ∣∣ϕi
⟩

= εi
∣∣ϕi
⟩
. (2.64)

VH(r) =
δEH

δn(r)
=
∫

d3r′ n(r′)v(r, r′) (2.65)

Vxc(r) =
δExc

δn(r)
. (2.66)
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Like the HF equations, the Kohn-Sham equations have to be solved itera-
tively, since the orbitals

∣∣ϕi
⟩

determine via the density n(r) from (2.61) the
Kohn-Sham Hamiltonian HKS. Also, like in HF theory, the quasi-particle
character of the non-interacting system is illustrated in the total energy,
which is not equal to the sum of the Hamiltonian’s eigenvalues εi:

E =
N

∑
i=1

εi − EH[n] + Exc[n] −
∫

d3r Vxc(r)n(r). (2.67)

In principle, solving the Kohn-Sham equations gives the correct electronic
ground state electron density and energy. However, the unknown exchange-
correlation functional Exc[n] has to be approximated in practical applications,
and all currently available approximations suffer from such shortcomings
that limit the applicability of DFT.

2.4.1 Approximations to the exchange-correlation energy

The exchange-correlation energy Exc[n] contains all electron-electron interac-
tions beyond the Hartree energy as a functional of the electronic ground state
density; more precisely, it also contains the self-interaction correction to the
Hartree term and the difference between the kinetic energy

⟨
Ψ
∣∣Te
∣∣Ψ⟩ and its

non-interacting counterpart, ∑i
⟨
ϕi
∣∣− 1

2∇2
∣∣ϕi
⟩
.

The Local Density Approximation

Basically all approximations to Exc[n] start from the homogeneous electron
gas (which itself is a good approximation for valence electrons in metals).
In the local density approximation (LDA), Exc[n] integrates over local contribu-
tions from the homogeneous electron gas’ exchange-correlation energy den-
sity ϵhom

xc (n):

ELDA
xc [n] =

∫
d3r n(r)ϵhom

xc (n)
∣∣
n(r). (2.68)

The exchange-correlation potential Vxc(r) in (2.64) is then given by

VLDA
xc [n](r) = ϵhom

xc (n)
∣∣
n(r) + n(r)

∂

∂n
ϵhom

xc (n)
∣∣
n(r). (2.69)
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Figure 2.2: Homogeneous electron gas correlation energy density, plotted vs.
Wigner radius rS = (3

4 πn)−1/3, from QMC calculations [34], and most com-
mon fits [35, 36].

The homogeneous electron gas was subject to extensive theoretical studies
[37, 38]. Its exchange energy density can be written out analytically,

ϵx(n, ζ) = − 3
4π

(
3π2n

) 1
3 f (ζ), f (ζ) =

1
2

[
(1 + ζ)4/3 + (1 − ζ)4/3

]
, (2.70)

where ζ = (nα − nβ)/n is the relative spin polarization of the electron gas.
The remaining correlation energy density ϵc(n) = ϵxc(n) − ϵx(n) can be cal-
culated to high accuracy using quantum Monte Carlo methods (QMC) [34].
Subsequent fits of ϵc(n) by Perdew and Zunger [35] or Vosko et al. [36] com-
plete the construction of ELDA

xc [n], see Figure 2.2.

Despite being a rather crude approximation, the LDA has been applied
successfully to calculate ground state energies, lattice constants, and phonon
frequencies of various materials, especially for metallic systems; most of
which deviate strongly from the originating homogeneous electron gas, or
even a slowly varying electron density. Several reasons for that can be iden-
tified: the LDA often gives a good approximation of the sperical average of
the exchange-correlation hole; it also fulfills the sum rule that the charge of
the exchange-correlation hole be exactly -1. However, LDA has many short-
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comings, one of which is a notorious under-estimation of the band gap of
semiconductors or insulators, of up to 100%.

Generalized Gradient Approximations

An obvious extension to LDA is the consideration of density gradient infor-
mation in the exchange-correlation kernel:

Exc[n] =
∫

d3r n(r)ϵxc(n,∇n)
∣∣
n(r). (2.71)

Over the last decades, various of these generalized gradient approximations
(GGA) have been suggested, and, with varying success, applied to a wide
range of materials. Among the most common functionals are PW91 [39, 40]
(named after its developers Perdew and Wang) and PBE [41] (named after
Perdew, Becke, and Ernzerhof). Both use the following models, depending
on the local electron density n and the spin polarization ζ:

Ex[n] =
1
2

Ẽx[(1 + ζ)n] +
1
2

Ẽx[(1 − ζ)n], (2.72)

Ẽx[ñ] =
∫

d3r ñ(r)F(s)ϵhom
x (n)

∣∣
ñ(r), s ≡ |∇ñ|

2k̃Fñ
; (2.73)

Ec[n] =
∫

d3r n(r)
[
ϵhom

c (n, ζ) + H(t, rS, ζ)
]

, t =
|∇n|
2gksn

, (2.74)

g(ζ) =
1
2

[
(1 + ζ)2/3 + (1 − ζ)2/3

]
, ks(n) =

√
4kF

π
. (2.75)

The parametrizations use scaled density gradients s and t, the local Fermi
wave vector kF and screening wave vector ks = (4kF/π)1/2, and the local
Wigner radius rS. They differ in the parametrization of the enhancement
function F(s) and H(t, rS, ζ) (in LDA it holds F(s) ≡ 1 and H ≡ 0). Both
GGAs fulfill the sum rule for the exchange-correlation charge, and over a
wide range of materials give better results than LDA: atomic ground state
energies and molecular binding energies are improved; hydrogen bonds are
decribed better; simple metal lattice constants agree better with experiment;
the ground state of iron is predicted correctly. However, the semi-local ap-
proach to the exchange-correlation energy of (2.71) still leads to fundamental
shortcomings within these (and all) GGAs: no possibility to describe disper-
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sion forces; an unphysical asymptotic exponential decay of the electrostatic
potential above surfaces; self-interaction of the electrons; no discontinuity
in Vxc(r) with respect to the electron number N, thus a systematic under-
estimation of the band gap in semiconductors and insulators [42].

2.4.2 Self-interaction correction schemes

Self-interaction coins the interaction of an electron in orbital
∣∣ϕi
⟩

with itself
in the Hartree energy term:

ESI [ni] ≡ EH[ni] =
∫

d3r d3r′ ni(r)v(r, r′)ni(r′). (2.76)

In Hartree-Fock theory, ESI is cancelled exactly by a corresponding term in
the exchange energy Ex. The same holds in exact DFT,

EH[ni] + Exc[ni] = 0. (2.77)

However, in all practical DFT implementations (i.e., in all available
exchange-correlation approximations) the identity in (2.77) does not hold.

Since ESI is mediated by the Coulombic potential v(r, r′), the self-
interaction is largest for localized orbitals. Several schemes have been pro-
posed to explicitly (yet efficiently) dispose of artificial self-interaction; for
instance, an early work by Stoll and co-workers suggested subtracting the
correlation energy of electrons with the same spin from the total correlation
energy [43].

The Perdew Zunger scheme

Perdew and Zunger suggested to explicitly subtract the term (2.77) from the
total energy expression [35]:

EPZ
xc [n] = Exc[n] − ∑

i
(EH[ni] + Exc[ni]) . (2.78)
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Using EPZ
xc in (2.60) leads to an orbital-dependent Hamiltonian:

HPZ∣∣ϕi
⟩

=
[
−1

2
∇2 + Ven + VH[n] + VPZ

xc [n, ϕi]
] ∣∣ϕi

⟩
= εi

∣∣ϕi
⟩
, (2.79)

VPZ
xc (r) = Vxc(r) −

∫
d3r′ ni(r′)v(r, r′) − ∂Exc

∂ni(r)
. (2.80)

Solving (2.79) iteratively is computationally very demanding, and the non-
hermicity of the Hamiltonian HPZ requires more attention in the iterative
process.

The Mauri scheme

If a 2N + 1 electron system is investigated that contains an excess electron
or hole, extra care should be taken to correctly describe the excess charge.
If the underlying 2N electron system (in case of an excess electron) is well
described within DFT, one could restrict the self-interaction correction to the
excess charge. Moreover, claiming that the magnetization density m(r) =
nα(r) − nβ(r) be equal to the excess charge, a new energy functional can be
proposed that corrects self-interaction based on the magnetization density
[44]:

EM
xc [nα, nβ] = −EH[m] + Exc[nα − m, nβ]. (2.81)

The Hartree self-interaction of the magnetization density is removed from
the total energy expression, and the exchange-correlation energy is calcu-
lated only for the 2N electron system. Due to EH[m], this functional tends
to maximize m(r) and thus leads to unphysical spatial separation of spins
α, β; with the condition

∣∣ϕiα
⟩

=
∣∣ϕiβ

⟩
=
∣∣ϕi
⟩

(i = 1 . . . N), however, this is
prevented, and the resulting total energy expression reads

E = T[n] + EH[nα + nβ] + EM
xc [nα, nβ] + ∑

ij
ηij(
⟨
ϕi
∣∣ϕj
⟩
− δij). (2.82)

This approach is a very efficient method, but only applicable for spin-1/2
systems with an additional electron or hole. Ionic defects in semiconductors
can thus be described more accurately. The correction term does not affect
the results of the neutral system, in contrast to the Perdew-Zunger approach.
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2.5 Green’s Function Formalism

Density functional theory is essentially a ground state theory. Wave func-
tion based methods such as CI can calculate excited states, but the num-
ber of configurations become too large when describing extended systems.
In that case, one usually has to resort to time-dependent density functional
theory (TDDFT) [45–47], or Green’s function techniques. The Green’s func-
tion formalism is extremely useful to access observables connected with elec-
tronic excitations, such as ionization energies, electron affinities, optical tran-
sition matrix elements, or dynamic polarizabilities. It is equally applicable
to molecular and periodic systems, and allows for systematic improvement
of calculated properties by providing a well defined perturbation series. In
the following, the theory of Green’s functions is presented, with special focus
on one-electron excitations and electron-hole interaction in the case of opti-
cal excitations. The theory for the latter is based on Hedin’s work [48], for
reviews see [49–51].

2.5.1 One and two electron Green’s functions

In a N-electron system, the one-electron Green’s function is defined by

G(rt, r′t′) =
⟨

N
∣∣T{ψ(r, t)ψ†(r′, t′)}

∣∣N⟩, (2.83)

where ψ†(r, t) (ψ(r′, t′)) are the Heisenberg electron creation (annihilation)
operators; T creates the time-ordered product of ψ and ψ†. Thus, for t < t′,
G(rt, r′t′) describes a (N − 1)-electron state, where a hole is created at (r, t)
and propagated to (r′, t′). For t > t′, G(rt, r′t′) describes the propagation of
an extra electron, added to the system at (r, t), and detected at (r′, t′). The
one-electron Green’s function is suitable to describe one-electron processes
like (inverse) photo-electron spectroscopy. In case of a time-independent ex-
ternal potential G depends only on the difference τ = t − t′ between t, t′:

G(r, r′, τ) = G(r, r′, t − t′) = G(rt, r′t′). (2.84)
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Analogously, the two-electron Green’s function is defined as

G(12, 1′2′) =
⟨

N
∣∣T{ψ(1)ψ(2)ψ†(1′)ψ†(2′)}

∣∣N⟩, (2.85)

with the abbreviated notation 1 ≡ (r1, t1). Depending on the time-ordering,
G(12, 1′2′) describes the probabilities of electron-electron (t1, t2 > t′1, t′2),
hole-hole (t1, t2 < t′1, t′2), or electron-hole (t1, t′1 ≷ t2, t′2) propagation pro-
cesses. The latter describes optical excitations.

Spectral Representations

In frequency space, G reads

G(r, r′, ω) =
∫ ∞

−∞
dτ G(r, r′, τ)eı̇ωτ =

∫ ∞

−∞
dω′ A(r, r′; ω′)

ω − ω′ , (2.86)

where the spectral function A(r, r′; ω) is introduced. If a complete set of H
eigenstates of (N − 1) and (N + 1) electrons is inserted in (2.83), G(r, r′, ω)
can be written in a Lehmann representation with the amplitudes

fs(r) =

{ ⟨
N
∣∣ψ(r)

∣∣N + 1, s
⟩
, ϵs > µ⟨

N − 1, s
∣∣ψ(r)

∣∣N⟩, ϵs < µ
(2.87)

as

G(r, r′, ω) = ∑
s

fs(r) f ∗s (r′)
ω − [ϵs + iηsgn(µ − ϵs)]

(2.88)

A(r, r′, ω) = ∑
s

fs(r) fs(r′)δ(ω − ϵs). (2.89)

where the chemical potential µ was introduced; s labels the (N + 1)- and
(N − 1)-electron states; and the positive infinitesimal number η ensures cor-
rect analytical properties of G. Thus, poles of G correspond to electron ad-
dition or removal energies. For non-interacting particles, all N and (N ± 1)
states are Slater determinants, and the poles of G are at the eigenvalues of the
respective effective Hamiltonian. For interacting electrons, the state summa-
tion in (2.88) will in general yield broad peaks, the finite width of which
relates to the lifetime of these quasiparticle excitations.
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Equation of motion

From the field operators’ equation of motion, ı̇ψ̇ = [ψ, H], where H is the
electronic Hamiltonian from (2.10), one derives the equation of motion of the
one-electron Green’s function:[

ı̇
∂

∂t
+

1
2
∇2 − V(r)

]
G(rt, r′t′)

+ ı̇
∫

d3r′′ v(r, r′′)
⟨

N
∣∣T{ψ(r, t)ψ(r′′, t)ψ†(r′′, t)ψ†(r′, t′)}

∣∣N⟩ (2.90)

= δ(r − r′)δ(t, t′).

To solve (2.90), one needs to know the two-electron Green’s function that ap-
pears due to the Coulombic interaction term between the electrons. Similarly
to (2.90), an equation of motion could be constructed for the two-electron
propagator that in turn contains higher order Green’s functions. Alterna-
tively, however, a set of coupled integro-differential equations can be con-
structed with the electronic self energy operator Σ as central quantity [48].

2.5.2 Electronic Self Energy and Hedin’s equations

Rewriting (2.90), the electronic self energy operator Σ is defined by[
ı̇

∂

∂t
+

1
2
∇2 − V(r) − VH(r)

]
G(rt, r′t′)

− ı̇
∫

d3r′′ dt′′ Σ(rt, r′′t′′)G(r′′t′′, r′t′) = δ(r − r′)δ(t, t′). (2.91)

There, the Hartree potential VH(r) is extracted from the Coulomb integral
of (2.90). Although only defined implicitly, Σ as introduced in (2.91) is the
foundation for an expansion into the screened Coulomb potential W, that
allows for accurate calculation of one-electron properties.

In frequency space, (2.91) reads[
ω +

1
2
∇2 − V(r) − VH(r)

]
G(r, r′, ω)

−
∫

d3r′′ Σ(r, r′′; ω)G(r′′, r′, ω) = δ(r − r′). (2.92)
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Two approximations to Σ are immediately obvious. Σ ≡ 0 leads to the
Hartree approximation; self-energy effects are then completely ignored.
Σ(rt, r′t′) = ı̇v(r, r′)G(rt, r′t′)δ(t, t′) leads to the Hartree-Fock approxima-
tion; the self-energy is approximated to be mediated by the bare Coulomb
potential, and in frequency space equals the exchange potential: Σ(r, r′; ω) =
−v(r, r′)

⟨
N
∣∣ψ†(r′)ψ(r)

∣∣N⟩ = Vx(r, r′). Using the bare Coulomb potential
is a crude approximation, since screening effects become very important in
molecules and periodic systems. An expression of Σ in terms of the screened
Coulomb potential W is thus desirable.

In general, let G0(r, r′, ω) be the Green’s function of some effective Hamil-
tonian,[

ω +
1
2
∇2 − V(r) − VH(r) − Ve f f (r)

]
G0(r, r′, ω) = δ(r − r′), (2.93)

then (2.92) can be rewritten as a Dyson equation:

G(12) = G0(12) +
∫

d34 G0(13)
(
Σ(34) − Ve f f (r)δ(3 − 4)

)
G(42), (2.94)

where the short notation 1 ≡ (r1, t1) etc., is re-introduced.

Hedin’s equations

Using a generating functional ϕ, a method commonly used in field the-
ory [17, 52], one obtains a central relation between the one-electron Green’s
function’s variational derivative and the two-electron Green’s function:

δG(12; ϕ)
δϕ(3+)

= G(12; ϕ)G(33+; ϕ) − G(13, 23+; ϕ). (2.95)

Superscript “+” indicates infinitesimal shift of the time coordinate in the
complex plane to ensure convergence. Combining this result with (2.85), and
comparing (2.90) and (2.91) gives an explicit expression for Σ:

Σ(12; ϕ) = ı̇
∫

d34 v(r1, r3)
δG(14; ϕ)

δϕ(3+)
G−1(42; ϕ) (2.96)

= −ı̇
∫

d34 v(r1, r3)G(14; ϕ)
δG−1(42; ϕ)

δϕ(3+)
. (2.97)
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Introducing the screened Coulomb potential W as

W(12) =
∫

d3 v(r1, r3)ϵ−1(32) (2.98)

with the inverse of the microscopic dielectric function ϵ,

ϵ(12) = δ(12) −
∫

d3 P(32)v(r1, r3) (2.99)

and the microscopic polarization function P,

P(12) = ı̇
∫

d34 G(23)G(42)
δG−1(42)
δVH(1)

(2.100)

a set of coupled equations, Hedin’s equations, can be formulated, that even-
tually defines Σ:

Σ(12) = ı̇
∫

d34 W(1+3)G(14)Λ(42; 3) (2.101a)

W(12) = v(r1, r2) +
∫

d34 W(13)P(34)v(r4, r2) (2.101b)

P(12) = −ı̇
∫

d34 G(23)G(42)Λ(34; 1) (2.101c)

Λ(12; 3) = δ(12)δ(13) (2.101d)

+
∫

d4567
δΣ(12)
δG(45)

G(46)G(75)Λ(67; 3).

Together with the Dyson equation (2.94), Hedin’s equations (2.101) are the
foundation for a perturbation series that allow for iterative calculation of G
and thus all one-electron properties. Essential are the dynamically screened
Coulombic interaction W(12), which in turn is determined by the polariza-
tion P(12) that describes the N-electron system’s response to the presence
of an additional electron or hole. The vertex function Λ(12; 3) contains the
information about the interaction of the screening electrons and holes.

2.5.3 GW Approximation

Hedin’s equations (2.101) can be treated iteratively to obtain ever improving
expressions for the self energy operator Σ. Starting from Σ = 0, the vertex
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function is Λ(12; 3) = δ(12)δ(13). That in turn gives the following set of
equations:

Σ(12) = ı̇G(12)W(1+2) (2.102a)

W(12) = v(r1, r2) +
∫

d34W(13)P(34)v(r4, r2) (2.102b)

P(12) = −ı̇G(12)G(21) (2.102c)

In this so-called GW approximation, Σ is simply the product of the one-
electron Green’s function G and the screened interaction W. The dynamical
screening in W leads to a much better description of self energy effects than
the HF approximation, where the unscreened Coulomb potential is used.

The polarization function P is simply the product of an electron and hole
propagator – the GW approximation does not go beyond the random phase
approximation (RPA), and thus should not be expected to yield high quality
absorption spectra.

The iterative procedure works as follows: starting from some Green’s func-
tion G0 from a suitable independent particle system, a polarization function
P0 = −ı̇G0G0 can be calculated; then, the screened interaction W0 = ϵ−1

0 v is
set up, and the self energy operator Σ0 = G0W0 is calculated; the Dyson equa-
tion G = G0 + G0(Σ−Ve f f )G (2.94) gives an improved Green’s function; and
so on, until self consistency is reached. In practical calculations, however, this
process is often aborted after the first iteration (giving Σ = G0W0) [53,54]. In
fact, striving towards self-consistency in the GW approximation (2.102) of-
ten worsens results after the first iteration, due to neglect of vertex correc-
tions [51].

In periodic systems, a common starting point for a GW calculation is DFT.
Kohn-Sham wave functions are used to construct G0 in the form of (2.88). The
screened interaction W can be difficult to compute, since the dielectric matrix
ϵ(12) has to be inverted at every frequency ω. Model dielectric functions [55]
or the plasmon-pole approximation [56] circumvent this step; the detailed
frequency behaviour of ϵ(12) can be argued to be of little importance, since
W = ϵ−1v contains an integration over all frequencies. Thus, quasi-particle
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energies ϵQP
i and wave functions

∣∣ϕQP
i
⟩

are obtained by

∣∣ϕQP
i
⟩

=
∣∣ϕi
⟩
, (2.103)

ϵQP
i = ϵi +

⟨
ϕi
∣∣Σ(ϵQP

i ) − Vxc
∣∣ϕi
⟩

(2.104)

≈ ϵi +
⟨
ϕi
∣∣Σ(ϵi) − Vxc

∣∣ϕi
⟩ (

1 +
∂Σ
∂ϵ

∣∣∣∣
ϵi

)−1

, (2.105)

where in the last step Σ was expanded linearly around the KS eigenvalue ϵi.
The thus obtained eigenvalues ϵQP

i can be compared directly to photo elec-
tron spectroscopy data (for occupied states) or inverse photo electron spec-
troscopy data (for unoccupied states).

2.5.4 Bethe-Salpeter Equation

Optical excitations are governed by the two-particle polarization function.
Closer inspection of Hedin’s equations shows that P(12) is in fact a contrac-
tion of such a two-particle polarization function:

P(12) = P(11+, 22+) (2.106)

P(11′, 22′) = −ı̇G(12)G(2′1′) (2.107)

Substituting (2.101d) in (2.101c), and using δΣ/δG = ı̇W, one obtains the
Bethe-Salpeter equation for the microscopic polarization function, in GW ap-
proximation:

P(11+, 22+) = −ı̇G(12)G(2+1+) + ı̇
∫

d34G(14)G(31+)W(34)P(34, 22+).
(2.108)

2.5.5 Response Functions

The microscopic dielectric function was introduced in the previous chapter,
see (2.99). Its spatial Fourier transform determines the loss function L(ω),
which is measured in electron energy loss spectroscopy (EELS). Photon ab-
sorption, however, is related to the macroscopic dielectric function ϵM(ω). For

40



2.5 Green’s Function Formalism

periodic crystals, it holds [57–59]

ϵM(q̂, ω) = lim
q→0

1
ϵ−1

00 (q, ω)
, (2.109)

with the head element ϵ00 of the dielectric matrix ϵGG′(q, ω). The contribu-
tion of off-diagonal elements of ϵGG′ to ϵM are local-field effects, originating
from density fluctuations on the microscopic scale. The macroscopic dielec-
tric function can be derived from a macroscopic polarization function P̄,

ϵM(q̂, ω) = 1 − lim
q→0

v(q)P̄00(q, ω), (2.110)

which in turn fulfills the Dyson equation

P̄(12) = P(12) +
∫

d34P(13)v̄(r3, r4)P̄(42), (2.111)

v̄G(q) =

{
0 , G = 0
vG(q), G ̸= 0

(2.112)

v̄ is a short-ranged Coulomb potential, where the G = 0 Fourier component
is set to 0.

Writing P̄ as a contraction of a two-particle polarization function, and us-
ing the Bethe-Salpeter equation (2.108) for P leads to the defining equation
for the macroscopic polarization function:

P̄(11+, 22+) = −ı̇G(12)G(2+1+)+ ı̇
∫

d3456G(14)G(31+)Ξ(3456)P̄(56, 22+)
(2.113)

with the four point kernel Ξ that contains the screened electron-hole attrac-
tion and a short-range electron-hole exchange term:

Ξ(3456) = W(34)δ(35)δ(46) − v̄(35)δ(34)δ(56). (2.114)

Instead of calculating the microscopic polarization via (2.108) with the ker-
nel W, and then using (2.111) to obtain P̄, one can solve the Bethe-Salpeter
equation with the modified kernel Ξ = W − v̄ to obtain P̄ directly.
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2.5.6 Optical Excitation Calculations

To solve a Bethe-Salpeter equation such as (2.113), a four-point function has
to be inverted at every frequency of interest. A more convenient and also
intutive way is to expand P̄ into the orthonormal and complete set of eigen-
functions

∣∣ϕi
⟩

of the initial effective single-particle Hamiltonian:

P̄(11′, 22′) = ∑
n1,...,n4

ϕ∗
n1

(r1)ϕn2(r2)ϕn3(r3)ϕ∗
n4

(r4)P̄n1n2,n3n4 . (2.115)

The matrix elements P̄n1n2,n3n4 are determined via

P̄n1n2,n3n4 = [Hexc − ω]−1
n1n2,n3n4

( fn4 − fn3) (2.116)

with the (effective two-particle) excitonic Hamiltonian

Hexc
n1n2,n3n4

= (ϵn2 − ϵn1)δn1,n3δn2,n4 + ( fn1 − fn2)Ξn1n2,n3n4 . (2.117)

and the occupation numbers fi and quasi-particle energies ϵi. This picture is
very intuitive: for Ξ = 0 (no electron-hole interaction) Hexc is diagonal and
contains quasi-particle energy differences on the diagonal; that corresponds
to P̄ = −ı̇GG, the random phase approximation. Including the electron-
hole interaction means all excited states mix in the polarization matrix ele-
ments (2.116). The eigenvalues Eλ and eigenvectors Aλ of Hexc determine
the macroscopic dielectric function by

ϵM(q̂, ω) = 1 − lim
q→0

v(q) ∑
λ,λ′

∑
n1,n2

⟨
ϕn1

∣∣eı̇q·r∣∣ϕn2

⟩
An1n2

λ

1
ω − Eλ + ı̇η

(2.118)

× ∑
n3,n4

⟨
ϕn3

∣∣eı̇q·r′ ∣∣ϕn4

⟩
A∗ n3n4

λ′ ( fn3 − fn4).

The eigenvalues Eλ of the excitonic Hamiltonian Hexc determine the peak
positions of ϵM(ω), and the coefficients A

ninj
λ determine the mixing of the

formerly independent transitions
⟨
ϕi
∣∣eı̇q·r∣∣ϕj

⟩
.

A direct diagonalisation of Hexc, however, may not be feasible for large
systems. Instead, determining the scalar product

⟨
µ
∣∣ Aλ

⟩
with µij =⟨

ϕi
∣∣eı̇q·r∣∣ϕj

⟩
from an initial value problem leads to an O(N2) method to di-

rectly calculate ϵM(ω) [60–62].
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I like everything around me to be clear as
crystal and completely calm.

Alfred Hitchcock

I am obsessed with ice cubes. Obsessed.

Drew Barrymore

3
Ground state properties of

crystalline ice

3.1 Crystalline Ice

Water and ice have been, and continue to be, the subject of innumerable
experimental and theoretical studies, due to their abundance on Earth and
their important role in many chemical, biological, and geological processes,
or simply because of their many unusual properties [4]. Understanding these
properties is crucially linked to understanding the hydrogen bond network
that forms in water’s liquid and solid phase. The accurate quantum theoret-
ical simulation of water is, however, still a formidable task.

Water in the crystallized state is tetrahedrally coordinated, see Figure 3.1.
Each molecule donates and accepts two hydrogen bonds to/from neighbour-
ing molecules, such that there is exactly one hydrogen atom between neigh-
bouring oxygen atoms [63]. While this means that the local environment
of all molecules in the crystal is similar, there are a multitude of possible
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Figure 3.1: Ice Ih: crystal structure of this hydrogen-disordered hexagonal
phase; top view along crystallographic c axis. Red (white) spheres indicate
oxygen (hydrogen) atoms, dashed lines indicate hydrogen bonds.

arrangements of the ice crystal as a whole, due to the large number of pos-
sible distributions of donated and accepted hydrogen bonds [64]. Indeed,
depending on temperature and pressure, water crystallizes in more than a
dozen different structures, some of which occupy only small areas of phase
space, see Figure 3.2, or do not have areas of absolute stability at all.

The ice we encounter daily, i.e. formed under low pressure from frozen
liquid water, usually crystallizes in the hexagonal phase Ih, although a cubic
phase Ic can also form. Both are hydrogen disordered structures, where the
hydrogen bond network has a lower crystalline symmetry than the positions
of the water molecules. More precisely, the notions “hexagonal” and “cubic”
refer to the oxygen atoms’ symmetry. In contrast to the hydrogen atoms’ po-
sitions, oxygen atoms’ positions are much more readily detected using low-
energy electron diffraction (LEED). Under zero pressure, the average dis-
tance of neighbouring oxygen atoms is about 2.70Å, and the intramolecular
OH distance is about 0.95 · · · 1.00Å.
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Figure 3.2: Phase diagram of liquid and solid phases of water; roman nu-
merals denote different crystalline phases and their regions of stability. From
Ref. [4].

The ice Ih and Ic phases are rather open and spacious. Increasing pres-
sure can lead to complete rearrangement of the oxygen lattice, and thus very
different crystal structures. At low temperatures and/or high pressures, hy-
drogen ordered phases are stable. For instance, ice XI is the ordered phase of
ice Ih; ice VIII is the ordered phase of ice VII; and ice IX (which is metastable
compared to ice II) is the ordered phase of ice III. Ice II itself is hydrogen or-
dered; it has a rhombohedral unit cell [65], see Figure 3.3. Going beyond
these phases to higher pressure levels will lead to structural motifs with
the nearest oxygen-oxygen (OO) distance being only twice as large as the
intramolecular oxygen-hydrogen (OH) distance. In that case the hydrogen
atoms will in fact sit between the oxygen atoms and bridge the OO bonds.
Technically, the molecular character of the ice crystal breaks down at that
point. It should be noted that the corresponding phase ice X has not been
resolved unambiguously.

Computationally, a multitude of quantum chemical methods are routinely
used to study water clusters [66–68], and extended systems are usually inves-
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Figure 3.3: Crystal structure of the hydrogen ordered phase ice II. Top view
along crystallographic c axis.

tigated by (semi)classical force field simulations or density functional theory
based calculations. Correctly describing water’s force field by a classical po-
tential is a long-standing goal of the theoretical community. Originally, rigid
frames of point charges would be used to describe water, with varying dis-
tribution and amount of electric charges [69–72]. The charges are fitted such
that the potentials describe quantities like the melting point of ice, liquid
water’s density anomaly, or relative energies of various ice phases as accu-
rately as possible. However, transferability of these potentials is rather low.
An improvement are polarizable water models that allow for a response of
the water molecule to its electrostatic environment [73–75]. These potentials
are better suited to describe water in a broader variety of chemical environ-
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3.2 Density Functional Theory calculations

ments. The potential from Ref. [75] is fitted not to experimental data but to ab
initio calculations, and has been tested extensively on the water dimer’s vi-
brational spectrum as well as on liquid water’s structural properties [76, 77].

Going beyond fitted potentials, density functional theory offers a com-
putationally affordable way to calculate solid and liquid water. Following
the introduction of non-norm conserving ultrasoft pseudopotentials in the
1990s [78], efficient plane wave basis set calculations of aqueous systems
were possible, including the high-pressure transition to ice X [79], ground
state properties of cubic ice Ic [80], and Car-Parrinello molecular dynam-
ics [81] of liquid water [82,83]. After these early works, the question arose as
to how well DFT is suited to describe the hydrogen bonds of ice and water. A
systematic study of the performance of LDA and popular GGA functionals
found that both PBE and PW91 are able to reproduce ground state proper-
ties of ice in good agreement with experiment [84]. These findings, however,
were biased by a fortuitious error cancellation between the GGA function-
als and non-convergence in the reciprocal space summation. More recent
results [85–87] find that PBE and PW91 tend to overestimate ice’s binding
energy by up to 100 meV (about 15%) per molecule. They yield, however,
equilibrium lattice constants in good agreement with experiment, see also
section 3.2 below. This generally good performance, but also the lack of alter-
native first principles approaches, has led to wide usage of DFT for simulating
liquid water and melting processes under extreme conditions [88, 89], water
at surfaces and interfaces, and solvation processes in water or ice [90, 91].

3.2 Density Functional Theory calculations

Although DFT calculations of crystalline ice are available in the literature
[84], they are presented here for two reasons. Firstly, to serve as a well de-
fined starting point for further investigations, like the ab initio many-body
treatment of crystalline ice (see section 3.4), the surface of ice (see chapter 4),
or the optical properties of ice (see chapter 6). Secondly, to correct the point
of view in the above mentioned literature [84] about the accuracy of the GGA
functionals used.
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3 Ground state properties of crystalline ice

Figure 3.4: Commonly used unit cells for ice Ih by Petrenko et al. [92], Morri-
son et al. [93], and Hamann [84]. Filled (open) circles represent oxygen atoms
at the corner of (inside) the primitive hexagonal unit cell.

3.2.1 Hexagonal ice Ih

Computational details of the calculations are presented in the next subsec-
tion, followed by results of the DFT calculations. Unless mentioned other-
wise, the most common crystal structure of ice, hexagonal ice Ih, was stud-
ied.

Ice Ih has a hexagonal crystal structure; it forms bilayers of hydrogen-
bonded water molecules, that are themselves connected by hydrogen bonds.
The primitive unit cell contains four molecules [92]; it is, however, not possi-
ble to construct (by appropriate distribution of the hydrogen atoms) a prim-
itive unit cell that has no permanent dipole moment. This unphysical sit-
uation would lead to problems and certainly errors in the description of
ice, which is why bigger unit cells are used in calculations with periodic
boundary conditions. Dipole free unit cells were suggested and used by
Morrison et al. [93] and Hamann [84]; see Figure 3.4 for a top view on these
cells. Hamann’s cell contains 12 molecules, and Morrison’s cell contains 16
molecules. Besides allowing for a dipole free unit cell, larger super cells are
better positioned to simulate the hydrogen bond disorder found in ice Ih.
The variation of the total energy depending on the microscopic arrangement
of the hydrogen bond network was recently calculated to be of the order of
10 meV per molecule or less [86]. Note that while Morrison’s super cell con-
tains 16 molecules, it is made up of two identical orthorhombic sub-units,
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3.2 Density Functional Theory calculations

each of which contain two symmetry non-equivalent water molecules.

3.2.2 Plane wave basis and pseudopotentials

To solve the KS equations (2.64) numerically in an actual calculations, the KS
orbitals

∣∣ϕi
⟩

have to be expanded into a suitable basis set
∣∣χq
⟩
:

∣∣ϕi
⟩

= ∑
q

χqi
∣∣χq
⟩
, χqi =

⟨
χq
∣∣ϕi
⟩
. (3.1)

Possible basis functions are Slater type orbitals (STO’s) [94], which correctly
describe the wave function’s cusp at the nucleus; Gaussian type orbitals
(GTO’s) [95], which allow for efficient calculation of overlap and exchange
integrals like (2.21); finite elements or a real space grid [96, 97], which al-
low high accuracy and good parallel scaling by domain decomposition; and
plane waves. The latter are especially suited for periodic boundary condition
calculations, both from a physical point of view, with electronic eigenfunc-
tions (Bloch states) spread out over the entire system, and from a technical
point of view, since the kinetic energy operator is diagonal, and symmetry in
the periodic space simplifies the calculations’ complexity.

Every plane wave
∣∣q⟩ is characterized by its wave vector q, defined by⟨

r
∣∣ q
⟩

= eı̇q·r. In a periodic system, the wave vector q can be split into
q = k + G, where k is in the first Brillouin zone, and G is a reciprocal lattice
vector. That way, every electronic state can be expressed as

∣∣ϕnk
⟩

= ∑
G

χnk(G)
∣∣kG

⟩
, χnk(G) =

⟨
kG

∣∣ϕnk
⟩
. (3.2)

∣∣kG
⟩

denote the plane wave basis vectors,
⟨
r
∣∣ kG

⟩
= exp ı̇(k + G) · r. The

sum over G has to be truncated in an actual calculation. A single parame-
ter Gmax = max |G|, the maximum length of all included reciprocal lattice
vectors, controls the size of the plane wave basis. Increasing Gmax or, equiv-
alently, the kinetic energy cutoff Ec = G2

max/2, increases the basis set size
monotonously. All basis functions are orthogonal, thus no basis set superpo-
sition error occurs.

The number of basis functions scales like E3/2
c , and a typical DFT calcu-

lation thus scales like E3
c . . . E4.5

c . In other words, it is desirable to minimize
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3 Ground state properties of crystalline ice

the basis set expansion as much as possible. The inter-atomic part of the KS
wave functions is generally well described by relatively few plane waves:
over distance, the wave functions do not vary much. Near the nuclei, how-
ever, the KS wave functions will exhibit nodes and strong fluctuations, which
contain high spatial frequencies and thus require a large cutoff energy Ec

for a quantitatively good description. Much of the interesting physics and
chemistry happens in the overlap regions of the valence orbitals; the core re-
gions, and especially the core electrons, do not contribute significantly to a
number of material properties such as equilibrium lattice constants, phonon
frequencies, and optical properties. This argument justifies the “frozen core
approximation”, where the core electron wave functions are not determined
self-consistently, but rather kept frozen from an all-electron atomic calcula-
tion. The KS equations (2.64) are then solved for the valence electrons only,
however, with a modified one-electron potential Vc

en:

HKS
∣∣ϕi
⟩

=
[
−1

2
∇2 + Vc

en + VH[nv] + Vxc[nv]
] ∣∣ϕi

⟩
= εi

∣∣ϕi
⟩
, (3.3)

Vc
en = Ven + VH[nc] + Vxc[nc + nv] − Vxc[nv]. (3.4)

Here, nc (nv) denotes the core (valence) electron density. Due to the non-
linearity of Vxc in n(r), the core-valence exchange-correlation potential can
be written exactly only as the difference Vxc[nc + nv]− Vxc[nv]. It can be esti-
mated, however, as

Vxc[nc + nv] − Vxc[nv] ≈ ∑
s

Vxc[nAE
c,s + nAE

v,s ] − Vxc[nAE
v,s ], (3.5)

where s runs over all atomic centres in the unit cell, and nAE denotes an
electron density from an all-electron atomic calculation.

Applying the frozen-core approximation reduces the number of electronic
degrees of freedom and can speed up calculations drastically. However, this
is paid for by a certain unphysical description of the regions near the atomic
nuclei. Going further, one can postulate that not only the description of the
core but also of the valence electrons near the nuclei should have small in-
fluence on a large number of physical and chemical properties. Thus, em-
ploying a pseudopotential, that deviates from the actual potential close to the
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3.2 Density Functional Theory calculations

nuclei and leads to a numerically convenient description of the valence elec-
tron wave functions, should be of much use while introducing only minor
unphysical effects. The concept of pseudopotentials has received much at-
tention since its introduction in atomic [98] and nuclear physics [99] and is
a research field of ongoing activity. Whether or not the use of pseudopoten-
tials will be rendered unnecessary by ever increasing computational power
is difficult to say.

Norm-conserving Pseudopotentials

Introduced by Kleinman and Phillips [100], and after further work by
Hamann et al. [101,102], an easy way to construct so called norm-conserving
pseudopotentials was presented by Troullier and Martins [103]. Starting
from a desired analytical fit of the wave function near the nucleus, the inverse
radial Schrödinger equation is solved for each angular momentum compo-
nent l for the pseudopotential. The pseudo wave function fulfills several
physical and numerical conditions:

• Transferability : atomic all-electron and pseudo eigenvalues are equal,
ϵAE

l = ϵPP
l , and wave functions are equal outside a cutoff radius rl.

• Norm conservation:
⟨
ϕPP

i

∣∣ϕPP
i
⟩

= 1.

• Softness:
∣∣ϕPP

i
⟩

is nodeless, and has no cusp at r = 0.

• Smoothness: at r = rl, pseudo and all-electron wave function are equal
up to fourth radial derivative.

Ultrasoft Pseudopotentials

Studying first-row elements with pseudopotentials of the Troullier-Martins
type is numerically expensive, since the valence 2p orbitals are localized close
to the nuclei. The cutoff radius rp is thus rather small, and the smoothness
and norm conservation conditions lead to a pseudo wave function that is
not much different from the all-electron wave function. Thus, high plane
wave cutoff energies (around 35 a.u. for oxygen) are necessary. Vanderbilt
introduced so-called ultrasoft pseudopotentials, based on the following gen-
eralisations of the Troullier-Martins scheme [78]:
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• Scattering properties of all-electron and pseudo state should not be
equal at the eigenvalue ϵAE but at an arbitrarily chosen energy ϵ̃ that is
closer to the chemically interesting energy range.

• Scattering properties should be equal at several arbitrarily chosen ener-
gies ϵ̃i.

• Allow non-norm conserving pseudo wave functions.

The last condition transforms the KS problem into a generalized eigenvalue
problem. The additional computational cost will in general be outweighed
by the smaller plane wave basis set.

Central quantity is the overlap operator S between the pseudo wave func-
tions:

S = 1 + ∑
i,j

Qij
∣∣βi
⟩⟨

β j
∣∣, (3.6)

Qij =
⟨
ϕAE

i
∣∣ϕAE

j
⟩
−
⟨
ϕPP

i
∣∣ϕPP

j
⟩

(3.7)∣∣βi
⟩

= ∑
j

B−1
ij

∣∣χj
⟩

(3.8)

Bij =
⟨
ϕPP

i
∣∣χj
⟩

(3.9)∣∣χi
⟩

= (ϵ̃i − Te − Vloc)
∣∣ϕPP

i
⟩

(3.10)

It fulfills the orthonormalization condition
⟨
ϕPP

i

∣∣S ∣∣ϕPP
j
⟩

= δij. The KS equa-
tions read[

−1
2
∇2 + Vc

en + VH[nv] + Vxc[nv] + ∑
ij

Dij
∣∣βi
⟩⟨

β j
∣∣] ∣∣ϕi

⟩
= ϵiS

∣∣ϕi
⟩

(3.11)

Dij =
∫

d3r (VH[nv] + Vxc[nv]) Qij(r) (3.12)

Relaxing the norm-conservation condition allows significant reduction of the
plane wave cutoff. First-row elements can be described accurately using a
cutoff energy as low as 15 a.u. in case of oxygen [85].
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Projector Augmented Wave Method

The central quantity in the ultrasoft pseudopotential scheme is the overlap
operator S . Recognizing that S = T †T is the square of a transformation
operator T is the essential step to extend this scheme to the projector aug-
mented wave method (PAW) [104]. Using T instead of S means constructing
a frozen core approximation, combined with a dual basis set ansatz similar to
LMTO or LAPW approaches. In the PAW method, radial projector functions
transform between all-electron wave functions defined on a radial grid, and
soft wave functions expanded into a plane wave basis set. This way, the all-
electron wave functions near the nuclei are always available, unlike in the
ultrasoft scheme, where they are lost. It also means that every observable
will be evaluated on the plane wave grid and on the radial grid using the
all-electron wave functions near the core. The PAW method is much better
suited to compute e.g. optical properties, at a computational cost for the self-
consistent step that is comparable to the ultrasoft pseudopotential scheme.

3.2.3 Results and Discussion

Density functional theory calculations are performed for crystalline ice Ih,
using a plane wave basis and the projector augmented wave method as im-
plemented in the Vienna Ab-initio Simulation Package (VASP) [105,106]. The
exchange-correlation contribution to the total energy is modelled using the
generalized gradient approximation (GGA) [40, 41]. For comparison, some
calculations were performed within the local density approximation. The
unit cell of Ref. [84] was used to model the hydrogen disordered hydrogen
bond network. The cutoff energy for the wave function expansion is 15 a.u.
Integrations over the Brillouin zone were sampled at 12 special k-points in
the irreducible part [107]. For a given unit cell volume, internal degrees of
freedom are relaxed until the remaining forces on the atoms are below 5
meV/Å. Minimum energies over the given lattice constant range are fitted
with a solid state equation of state [108].

The description of hydrogen bonds is sensitive with respect to the
exchange-correlation functional used [84]. Using the PW91 [40] and PBE [41]
functionals, Hamann [84] obtained results for the sublimation energy, equi-
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a0 [Å] Eb [eV] B0 [kBar] B′

Experiment 4.497 -0.580 89.0
LDA 4.157 -1.139 263.6 4.56

GGA (PW91) 4.418 -0.702 157.6 4.71
GGA (PBE) 4.424 -0.670 149.0 5.01

Table 3.1: Ground state properties of ice Ih from DFT calculations: lattice
constant a0, binding energy Eb, bulk modulus B0, and its derivative B′ =
dB/dp, listed for various exchange-correlation functionals and compared to
experiment.

librium volume, and bulk modulus in very good agreement with experi-
ment. Our calculations, however, result in an ice cohesive energy of 0.70
eV for the PW91 functional, somewhat higher than the experimental value
of 0.58 eV per molecule [109], see Figure 3.5. The present result exceeds the
value of 0.55 eV calculated in Ref. [84], but agrees with other recent calcula-
tions [86,87]. Hamann’s results may suffer from a fortuitious cancellation be-
tween exchange-correlation functional errors and non-converged reciprocal
space sampling. While the shortcomings of the exchange-correlation func-
tional can not be avoided, care was taken in this study to achieve conver-
gence in all numerical parameters such as the plane wave expansion and the
sampling of the Brillouin zone.

The LDA significantly overestimates the hydrogen bond strength, see Ta-
ble 3.1: the binding energy is about twice as large as found in experiment. Ac-
cordingly, lattice and elasticity constants are much smaller than found exper-
imentally. Both GGA flavours, however, are much better suited to describe
ice. The PW91 equilibrium lattice constant of 4.418 Å is about 1.8% smaller
than the experimental value of 4.497 Å [110]. The rather large discrepancies
for the bulk modulus may result from temperature effects, as the experiment
was carried out at about 250K [111]. Because the PBE and PW91 functionals
lead to almost the same results, PW91 is used for most ice DFT calculations in
this work. The contribution of lattice vibrations to the sublimation energy of
the crystal was also estimated, using monochromatic and Debye approxima-
tions for the intramolecular and rotational/translational vibrations, respec-
tively. These sum up to 88 meV per molecule, in excellent agreement with
the experimental result of 90 meV per molecule [109].
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Figure 3.5: Cohesive energy of ice Ih, from DFT calculations. The filled dia-
mond indicates experimental results [109, 110]. Figure taken from Ref. [85].

3.3 The Incremental Scheme

DFT calculations provide a means to calculate material properties rather
quickly, and quite reliably. As seen above, they are also capable to describe
hydrogen bonded ice. However, there is no systematic scheme to improve
DFT results towards experimental accuracy. Wave function based methods
offer this systematic improvement, be it configuration interaction (see section
2.3.2) or coupled cluster theory (see section 2.3.3). For extended systems, pe-
riodic Hartree-Fock calculations are well established but neglect electron cor-
relation which often proves crucial when calculating material properties. It is
highly desirable to go beyond the periodic HF scheme and include electron
correlation for extended systems. However, the treatment of electron corre-
lation from first principles methods constitutes one of the most fundamental
problems in solid state physics. It is currently not known how to treat sys-
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tems with small band gaps or even metals using accurate electron correlation
methods such as the above mentioned CI or CC theories [112, 113].

A major improvement in this direction consists of the introduction of the
incremental correlation method by Stoll and co-workers [114, 115], the suc-
cessful application of which was reported even for metallic systems like mer-
cury [116]. Note, however, that while this method is a way to systematically
obtain correlation energy corrections, it is not a true two-particle theory that
provides correlated wave functions in a periodic system. Instead, it combines
an effective single-particle theory (Hartree-Fock) used in a periodic system
with local correlation methods.

It was shown that the electron correlation energy of small water clusters
converges rapidly with the order of the many-body decomposition in the in-
teraction energy, much faster than the total interaction energy [117]. While
this illustrates the local nature of electron correlation, it also raises the ques-
tion whether solid water could be described by combining periodic HF cal-
culations with localized correlation energy calculations truncated at two- or
three-body level (see below). If the former is sufficient, for instance liquid
water could be simulated from ab initio wave function based methods by
combining HF calculations and a parametrized dimer correlation potential,
in the spirit of a recently presented ab initio water pair potential [75].

In the incremental approach, the total interaction energy of ice is separated
into the HF energy EHF and the electron correlation energy Ec:

E = EHF + Ec. (3.13)

EHF is obtained from periodic Hartree-Fock calculations, whereas Ec (normal-
ized to one unit cell) is expanded in a many-body decomposition [118]:

Ec = ∑
n

E(n)
c = ∑

i
E(1)

c (i) + ∑
i,j

E(2)
c (ij) + ∑

i,jk
E(3)

c (ijk) + . . . (3.14)

The index i in each sum runs over all correlation units in the crystalline unit
cell, whereas the higher indices j, k, . . . run over the whole crystal. There is
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an infinite number of many-body sums. The individual terms are defined as

E(1)
c (i) = ϵc(i) (3.15)

E(2)
c (ij) = ϵc(ij) − ϵc(i) − ϵc(j) (3.16)

E(3)
c (ijk) = ϵc(ijk) − ϵc(ij) − ϵc(jk) − ϵc(ki) (3.17)

+ ϵc(i) + ϵc(j) + ϵc(k)

where ϵc(x) denotes the total correlation energy of correlation unit x. The
incremental scheme proves a valuable computational tool if the series (3.14)
converges sufficiently fast (i) in terms of number of sums that have to be
considered, and (ii) in terms of number of contributions within each sum
that have to be included. The first condition asks for the physical or chemical
nature of the interaction in the system studied: how good is it described with
a pure pair interaction, or how many higher-order interactions are important.
The second condition asks for the range, or the screening, of the interaction:
up to which distance are for instance pair interactions important. If the series
(3.14) converges sufficiently fast, it can be truncated after the two- or three-
body terms E(2)

c (ij) or E(3)
c (ijk). Another choice has to be made regarding

which subsets of the atomic basis form the primitive correlated units. In case
of ice, the natural choice is to treat every water molecule in the unit cell as
smallest independent correlated unit.

The FORTRAN90 program corrpbc was written to perform the incremen-
tal scheme calculations. It interfaces with the CRYSTAL06 [119] program
package for the periodic boundary condition Hartree-Fock calculations, and
with the MOLPRO program package (2006 release version) for the local corre-
lation energy calculations. Input data for corrpbc includes a complete CRYS-
TAL06 input file (including unit cell and atomic basis parameters, basis sets
for the periodic HF calculations, k-point sampling, and all other computa-
tional parameters needed); basis sets for the correlation calculations; an en-
ergy threshold for the geometry optimization. Supported correlation meth-
ods are MBPT2 (see section 2.3.1) and CCSD(T) (see section 2.3.3). corrpbc

can perform single point calculations and geometry optimizations; for the
latter, it can optimize internal coordinates and/or unit cell parameters (ei-
ther globally or at fixed unit cell volume). Gradients for all internal coordi-
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nates are calculated analytically – for the HF energy EHF from the periodic HF
calculations, and for the correlation energy Ec from the localized correlation
calculations, by ∇Ec = ∇Eloc

tot −∇Eloc
HF. Gradients for the unit cell parame-

ters are calculated numerically. Update of atomic coordinates and unit cell
parameters (possibly constrained by the constant volume condition) is done
by using either a conjugate gradient or a quasi-Newton optimization algo-
rithm [120, 121]. Structural optimizations run until the change in the total
energy E = EHF + Ec is smaller than some energy criterion Emin. Implement-
ing a gradient based criterion should also be possible. Figure 3.6 shows a
flowchart diagram of corrpbc’s operation mode.

The program can be used for atomic and molecular crystals, with arbitrary
choice of primitive correlation units. It can handle many-body expansions up
to the trimer term E(3)

c (ijk). The monomer term E(1)
c is of interest in molecu-

lar crystals; although it is not expected to influence binding energies, it could
contribute to changes of the equilibrium geometry. Note that no “embedding
procedure” of any kind has been implemented; all localized units are calcu-
lated in the gas phase. Surrounding them by appropriate basis set centres,
polarizable fields, or simply a dielectric background would make the gen-
eration of the local units more demanding, but take into account a screening
effect of the interaction that may lead to faster convergence of the many-body
expansion.

The selection of monomer, dimer, and trimer units is not automatised.
Thus, all monomers, dimers, and trimers have to be handed to corrpbc ex-
plicitly. It should, however, be possible to extend the program to automati-
cally generate all sub-units based e.g. on a distance cutoff criterion. Another
optimization route would be parallelizing the correlation calculations, which
can be performed independently.

3.4 Ab initio Study of Crystalline Ice Ih

We simulate the most common crystalline phase of ice under ambient condi-
tions, hexagonal ice Ih. Its hydrogen bond disorder is considered by using
the 16 molecule super cell by Morrison et al. [93]. Note, however, that Mor-
rison’s cell contains the same eight molecule unit cell twice. In our calcula-
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E = EHF + Ec ∇E = ∇EHF +∇Ec

∆E < Emin?

Figure 3.6: Flowchart of the incremental scheme program corrpbc.
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Figure 3.7: Top view on the ice Ih crystal structure, depicting one-, two-, and
three-body terms used in the many-body decomposition of the crystal’s cor-
relation energy.

tions, we will use the primitive unit cell with eight water molecules. This
orthorhombic unit cell, space group P6/mmm, contains two water molecules
in the irreducible unit. Thus, six atomic positions and three unit cell coordi-
nates are to be optimized.

Being a molecular crystal, the one-body correlation energies E(1)
c (i) de-

scribe intra-molecular correlation; they will influence the water molecule’s
geometry, and thus indirectly the hydrogen bond network. Going further,
we study the influence of the two-body correlation, especially its spatial de-
cay, and estimate the influence of three-body terms. See Figure 3.7 for a top
view of the crystal structure and illustrations of two- and three-body terms.

3.4.1 Computational Details

Atom centered Gaussian basis sets for the periodic boundary calculations
have to be chosen carefully: too diffuse basis functions cause linear depen-
dencies or prohibit convergence of the iterative solution of the HF equations,
while too small basis sets fail to describe correctly the hydrogen bonds in ice
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Basis Set Total Energy [a.u.] rOH [Å] ∠HOH [deg]
6-311G** -76.047012 0.94098 105.46

aug-cc-pVTZ -76.061203 0.94103 106.32
aug-cc-pVQZ -76.066676 0.93980 106.32
aug-cc-pV5Z -76.068009 0.93963 106.33

Table 3.2: Water molecule in gas phase, basis set tests. Comparison of total
HF energies and molecular geometries.

and produce large basis set superposition errors (BSSE) [122]. We found sev-
eral oxygen basis sets previously used in periodic HF calculations [123, 124]
as well as common double zeta basis sets [125, 126] not to be suitable for
describing ice: the above mentioned problems, namely too diffuse oxygen
2p basis functions, cause convergence problems. Dense, proton-ordered ice
phases have been calculated successfully [127, 128] using the Hartree-Fock
optimized split-valence 6-31G** basis sets developed by Pople et al. [129].
In our work Pople’s 6-311G** basis sets [130] are used for both oxygen and
hydrogen. Though they do not yield well converged energies for the water
molecule in the gas phase, see Table 3.2, they are sufficient for solid state cal-
culations, where the presence of basis functions on neighbouring molecular
centres leads to an improved description of the electronic structure.

This very presence of basis functions, however, causes a basis set superpo-
sition error (BSSE) that needs to be taken into account when calculating the
lattice (or binding) energy of the ice crystal. To calculate this binding energy,
the BSSE in our solid state HF calculations is corrected for by using the Boys-
Bernardi counterpoise scheme [122]: water’s gas phase energy is calculated
with empty basis sets on the positions of surrounding water molecules in
the crystal. This corrected gas phase energy is then subtracted from the total
energy of the unit cell to obtain the binding energy of the crystal. Table 3.3
shows the convergence of water’s total energy with respect of the number of
surrounding basis set centres. It shows that the total energy is converged to
10−3 a.u. after including three coordination shells of basis set centres. The
corresponding energy E = −76.053443 a.u. is used as BSSE-corrected gas
phase energy. The unit cell [93] is generated by two water molecules in the
asymmetric unit. Their internal coordinates and the unit cell parameters are
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No. of basis No. of molecular Total energy [a.u.]
set shells centres

0 0 -76.047012
1 4 -76.052843
2 16 -76.053353
3 47 -76.053443

Table 3.3: Water molecule, BSSE correction for gas phase energy. HF energy
calculated with 6-311G** basis set is listed versus the number of surrounding
empty basis set centres on crystallographic positions.

optimized over a range of fixed unit cell volumes V. The energy-volume
curve E(V) is then fitted using Vinet’s equation of state [108]. Brillouin zone
integrations are sampled at eight special k-points [107].

Localized correlation calculations are performed using augmented corre-
lation consistent triple zeta basis sets [131] for both oxygen and hydrogen.
Both second order many-body perturbation theory [20] and coupled-cluster
theory [132, 133] (CCSD(T), including single, double and perturbative triple
excitations) are used to calculate correlation energies. The system’s geometry
is fully optimized up to inclusion of two-body next nearest neighbour inter-
actions. Correlation contributions from outer neighbour shells are added as
single point energy corrections to the minimum structure; too many dimer
terms prohibited full geometry optimization in these cases. Similarly, all
CCSD(T) energies are computed using the respective MBPT2 geometries; the
correlation calculations were computationally too demanding to perform full
geometry optimizations. A parallelized code for the correlation terms would
be useful to perform these calculations.

Note that the correlation contributions also need to be corrected for BSSE.
For instance, calculating the two-body increment E(2)

c (ij) involves subtrac-
tion of the one-body increments E(1)

c (i), E(1)
c (j), see (3.16). The one-body in-

crement E(1)
c (i) (E(1)

c (j)) should thus be calculated with the basis set of unit
j (unit i) present. This has been implemented into corrpbc, and plays a sig-
nificant role: the BSSE correction for E(2)

c only from the nearest neighbour
two-body increments ranges from 41 to 49 meV per molecule, depending on
the lattice constant. The BSSE correction for next nearest neighbour incre-
ments is even higher, ranging from 50 to 61 meV per molecule.
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3.4 Ab initio Study of Crystalline Ice Ih

a0 [Å] Eb [eV] B0 [kBar] B′

Experiment 4.497a -0.580b 89.0c

(incl. ZPVE) -0.490b

HF only 4.735 -0.402 100.4 3.97
+MBPT2 E(1)

c 4.686 -0.401 111.6 5.14
+MBPT2 E(2)

c , NN 4.549 -0.530 142.9 5.03
+MBPT2 E(2)

c , 2NN 4.518 -0.556 148.5 5.06
+MBPT2 E(2)

c , 3NN 4.504 -0.568 151.4 5.12
+MBPT2 E(2)

c , 5NN 4.501 -0.571 150.4 4.97
(incl. ZPVE) 4.529 -0.470 135.4 5.27

+MBPT2 E(3)
c 4.509 -0.569 150.7 5.05

+CCSD(T) E(1)
c 4.687 -0.401 107.9 5.43

+CCSD(T) E(2)
c , NN 4.560 -0.529 141.3 5.44

+CCSD(T) E(2)
c , 2NN 4.522 -0.560 148.3 5.40

+CCSD(T) E(2)
c , 3NN 4.505 -0.574 153.3 5.68

+CCSD(T) E(2)
c , 5NN 4.501 -0.577 152.4 5.54

(incl. ZPVE) 4.529 -0.476 135.9 5.78

afrom Ref. [110]
bfrom Ref. [109]
cfrom Ref. [111]

Table 3.4: Ground state properties of ice Ih from incremental scheme calcu-
lations, compared to experimental values: equilibrium lattice constants a0,
lattice energies Eb, bulk moduli B0, and their derivatives B′ = dB/dp.

3.4.2 Results and Discussion

Essential results of the incremental scheme calculations are compiled in Ta-
ble 3.4 and Figures 3.8 and 3.9, and compared to experimental data. The
experimental lattice energy was obtained by Whalley by adjusting ice’s heat
of sublimation for zero point vibrational energy (ZPVE) corrections [109].

Periodic HF calculations underestimate the hydrogen bond network,
yielding too large a lattice constant (4.735 Å as compared to 4.497 Å, more
than 5% too large), and too small a binding energy (0.4 eV per molecule, miss-
ing about 30% of the interaction). Including one-body MBPT2-correlation
terms E(1)

c (i), i.e. intramolecular correlation energies, does not improve these
results, see also Figure 3.8. This is to be expected as most ground state
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Figure 3.8: Lattice energy of ice from HF and various MBPT2 correlation
treatments, compared to experiment [109, 110]. Notation: MP2(2,xNN) de-
notes periodic HF plus two-body MBPT2 up to the xth shell in nearest neigh-
bors.

properties depend on the correct description of the intermolecular hydrogen
bonds. However, including two-body terms E(2)

c (ij) leads to close agree-
ment with experimental results, depending on the spatial extent over which
the interactions are taken into account. Table 3.4 illustrates the improvement
which is achieved by successively including outer neighbour shells into the
two-body energy summation. We find the two-body interaction energy to be
converged when including up to the third nearest neighbour shell, that is,
including the 47 closest dimer correlation contributions for every molecule
in the unit cell, up to a distance of roughly 7 Å (at equilibrium lattice con-
stant). Including the 4th and 5th nearest neighbours (about 150 additional
dimer terms, up to a distance of roughly 11 Å) adds only very small en-
ergy contributions of about −2 · · · − 5 meV per molecule to the total binding
energy. A similarly rapid convergence behaviour was previously found in
rare gas solid state calculations [134]. The thus obtained lattice constant of
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3.4 Ab initio Study of Crystalline Ice Ih

4.501 Å from MBPT2 is in excellent agreement with the experimental result
of 4.497 Å. The c/a ratio of 1.627 also agrees with experiment (1.628, [110]);
at HF level, c/a = 1.609 is significantly smaller. Similarly, the lattice energy
of -0.571 eV per molecule is very close to the experimental value of -0.580
± 0.007 eV per molecule. As for the bulk modulus: the experimental value
was obtained at T = −16◦C and is thus significantly smaller than the calcu-
lated values of about 150 kBar at absolute zero. Extrapolating experimental
fits for B0(T) to absolute zero yields values ranging from B0(T = 0) = 107
kBar [135] to B0(0) = 121 kBar [111], still much smaller than the calculated
value.

Advancing from many-body perturbation theory, we also used coupled
cluster theory to calculate the local correlation contributions. Due to compu-
tational cost of these calculations, however, the respective MBPT2 geometries
were used. The influence of the correlation method is rather weak, see Table
3.4 and Figure 3.9. Including all two-body terms up to the 5th coordination
shell, we obtain an equilibrium lattice constant of 4.501 Å, and a binding en-
ergy of -0.577 eV per molecule. Again, both values are extremely close to
experimental results, see Figure 3.9. As for the bulk modulus, we obtain a
similar deviation from experimental results. Considering the temperature
dependent quantity B(T) was measured over a rather narrow range of tem-
peratures, the theoretical value of B0 = 152.4 kBar at the coupled cluster level
is the most reliable reference value at 0 K. We further conclude that for the
two-body summation of the correlation energy, a cutoff radius of about 7 Å
gives reasonably converged results.

In water clusters, the three-body correlation energy E(3)
c (ijk) was previ-

ously found to be much smaller than the two-body term E(2)
c (ij) [117]. More-

over, that study found the three-body correlation to be mostly compensated
by an equally large four-body term of opposite sign. For crystalline ice,
the magnitude of the three-body correlation is estimated at MBPT2 level of
theory by considering the most important three-body terms: water trimers
with two hydrogen bonds, i.e. the most compact trimer configurations that
can be constructed, see also Figure 3.7. Their contributions to the total
energy sum up to between -0.4 meV and +5 meV per molecule, depend-
ing on the lattice constant; the changes in the ground state properties are
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Figure 3.9: Lattice energy of ice from HF and various CCSD(T) correlation
treatments, compared to experiment [109, 110]. For notation see Figure 3.8

thus comparably small, see Table 3.4. Three-body terms from more dis-
tantly located trimer configurations are expected to contribute much less
to the correlation term E(3)

c (ijk). At equilibrium lattice constant, it holds
E(3)

c (ijk) = 0.0012E(2)
c (ij), confirming the rapid convergence of the many-

body expansion already found in finite water clusters. Thus, it should be
reasonable to truncate the expansion after the two-body term, which in turn
can be spatially restricted to a maximum distance of about 7 Å between the
molecules considered.

The zero point vibrational energy of ice has been estimated to be 90 meV
per molecule from experimental vibrational data [109], and 88 meV per
molecule from DFT calculations [85]. Here, we perform a similar analysis for
the calculated ab initio structures. Lattice vibrations are calculated at MBPT2
level of theory, using an augmented double zeta basis set [131], for the cen-
tral molecule of a (H2O)5 cluster which in turn is embedded in the dipole
electrostatic field of surrounding ice [136]. Acoustic (translational and libra-
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3.4 Ab initio Study of Crystalline Ice Ih

tional) modes are occupied using the Debye model, optical (intramolecular)
modes using the harmonic Einstein model. Over the volume range consid-
ered, binding energy shifts range from 110 meV to 87 meV per molecule, with
102 meV at the equilibrium lattice constant. The ZPVE-corrected binding en-
ergy of -0.470 (-0.476) eV from MBPT2 (CCSD(T)) calculations compares well
to the experimental heat of sublimation of -0.490 eV, see Table 3.4. However,
the equilibrium lattice constants are about 0.7% higher than in experiment.
The simple vibrational model employed here most likely overestimates the
ZPVE corrections, and a more accurate treatment of the phonon dispersion
or the inclusion of anharmonicity effects should yield better results. The cor-
rected bulk moduli decrease to about 135 kBar, in better agreement with ex-
trapolated experimental results.

DFT calculations, see section 3.2, give less accurate results for ice’s ground
state properties. The local density approximation (LDA) for the elec-
tron exchange-correlation energy overestimates the hydrogen bond strength
severely, resulting in a lattice constant 7.5% too small. Generalized gradient
(GGA) functionals give better crystal parameters and bulk moduli, but still
overestimate the lattice energy by about 100 meV per molecule. Judging from
HF’s underestimation of the hydrogen bond strength, it is expected and has
been found recently [137] that hybrid-density functionals (by mixing in some
exact exchange) should be somewhat better suited to describe solid water or
ice. The optimized effective potential method [138,139] is another promising
option to go beyond DFT. Both approaches, however, will achieve higher ac-
curacy by significantly reducing the calculation speed, because the non-local
exchange operator or an effective interaction kernel have to be calculated.

3.4.3 Conclusions

In conclusion, we have presented here the first ab initio many-body decompo-
sition for the total energy of crystalline ice. In line with recent water cluster
calculations it was shown that it is sufficient to truncate the correlation en-
ergy expansion after the two-body term. The calculated ground state prop-
erties agree very well with experimental data. We predict the bulk modulus
of ice at very low temperatures to be higher than extrapolations from high-
temperature measurements suggest. The fast convergence of the correlation
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3 Ground state properties of crystalline ice

energy (regarding both the many-body expansion and the spatial extent of
the interaction) justifies the combination of periodic HF calculations with a
parametrized high-level ab initio dimer correlation potential, for instance in
liquid water simulations. The application to liquid water simulations is of
particular interest given the recent, as of yet unresolved, discussion in the
literature about water’s microscopic structure [10].
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Beauty, like ice, our footing does betray;
Who can tread sure on the smooth, slippery
way:
Pleased with the surface, we glide swiftly on,
And see the dangers that we cannot shun.

John Dryden

4
The surface of ice

The surface structure of ice, in contrast to the bulk properties of the crys-
tal, remains little understood. Investigating the basal plane of hexagonal ice
alone has been the aim of numerous experimental and theoretical studies,
see, e.g., Ref. [140] for an early review, or Ref. [141] for a more recent work.
One interesting question, which dated back to Faraday [142], is whether or
not a quasi-liquid layer exists on the surface of ice. We now know that a
pre-melting effect leads to a liquid layer on the ice surface, at temperatures
lower than ice’s melting point. However, the onset temperature Tp for this
surface pre-melting is still debated. Recently, dynamical low-energy elec-
tron diffraction (LEED) at T = 90 K accompanied by Hartree-Fock total en-
ergy calculations and semi-empirical molecular dynamics (MD) simulations
found the Ih(0001) basal plane to be fully bilayer-terminated and unrecon-
structed [143, 144]. Also, Helium atom scattering on thick ice layers, grown
at T = 125 K, showed the surface to have 1 × 1 hexagonal symmetry and to
be terminated by a full ice bilayer [145]. X-ray absorption spectroscopy mea-
surements on ice films grown at T = 130 . . . 150 K, on the other hand, indicate
the presence of occupied surface sites different from bulk crystallographic
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4 The surface of ice

positions [146, 147]. The reported onset temperatures Tp of surface pre-
melting seem to depend strongly on the respective method and experimental
conditions. Surface vibrational spectroscopy studies found Tp ≈ 200 K [148].
Other experimental studies, however, found Tp to be as high as 260 K [149].
Theoretical studies on the pre-melting of the surface reported significant sur-
face disordering at T = 230 K in a semi-empirical MD study [150] and at
T = 190 K in a Car-Parrinello MD study [151]. Obviously, the picture of the
ice surface structure depending on temperature is far from complete. How-
ever, in the low-temperature regime, the assumption of a crystalline surface
covered with ad-molecules seems to be justified.

Recent empirical calculations [152] using the TIP4P pair interaction poten-
tial [71] considered the adsorption, diffusion and island formation of water
ad-molecules on ice. Surprisingly, for some adsorption configurations it was
found that the binding energy of water ad-molecules exceeds the cohesive
energy of the bulk [152]. That implies that the formation of many surfaces,
e.g., by formation of microscopic ice clusters, would be thermodynamically
favoured over the formation of macroscopic ice crystals – in crass disagree-
ment with everyday experiences. The calculations presented here are mod-
elling the surface structure of ice from first principles, using density functional
theory.

4.1 Surface Calculations

Studying surface systems computationally is an especially challenging task.
They are infinite (and periodic) within the surface plane, but semi-infinite
(and thus non-periodic) along the surface normal directions. Both typical
quantum chemical codes (which are optimized for 0D-periodicity) as well as
solid state programs (designed for 3D-periodicity) must make compromises
when treating surfaces. Either the surface is modelled by huge clusters (in a
quantum chemical approach) or by repeated “slabs” of material, separated
by sufficient vacuum (in a solid state approach). Both varieties demand
huge computational resources: a cluster modelling a surface must be large
enough to eliminate finite size effects; slab cells must contain enough mate-
rial and vacuum to avoid spurious interactions between adjacent surfaces,
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4.1 Surface Calculations

both through the material and the vacuum. Those restrictions mean surface
calculations will easily be 10 to 100 times more computationally demanding
than calculations for the corresponding bulk material.

Here, density functional theory calculations (DFT) are performed, to
model the surface of ice. A plane-wave basis is used in conjunction with
the projector augmented wave method (PAW) [104] as implemented in
the Vienna Ab-initio Simulation Package (VASP) [105, 106]. The exchange-
correlation contribution to the total energy is modelled using the PW91 func-
tional within the generalized gradient approximation (GGA) [40]. The plane
wave cutoff for the wave function expansion is 15 a.u. The surface is mod-
elled by periodically repeated slabs: each slab contains four bilayers (eight
layers) of ice within a 2× 2 surface periodicity (see Figure 4.1 for a side view).
The slabs are separated by vacuum, equivalent in its thickness to four ice bi-
layers (eight layers). Both the number of k-points and the thickness of the
slab and the vacuum were tested for numerical convergence. Somewhat in
contrast to the case of bulk calculations, we found the k-point sampling to
be of minor importance for the calculation of surface formation energies and
molecular adsorption energies. Upon changing the sampling of the surface
Brillouin zone (BZ) from using the Γ point only to a regular mesh of 6 k-
points in the irreducible part of the BZ, the calculated adsorption energies
change only by a few meV per adsorbate molecule. We use 6 irreducible
k-points for all surface calculations presented below. The adsorption geome-
tries are relaxed until the remaining forces on the atoms are below 5 meV/Å.
The oxygen atoms of the bottom bilayer of the slab are kept fixed in their
ideal bulk positions.

To assess the influence of the proton disorder on the total energy of the slab
describing the surface, different hydrogen bond configurations were calcu-
lated for a 16 molecule bulk cell of ice [93]. The total energy was found to
fluctuate by less than 5 meV per molecule for the different structures. This
confirms earlier force-field results for bulk ice cells [86]. The proton disorder
within the slab is therefore not expected to affect the binding energy of an ad-
molecule significantly. Thus, we construct the slab cells by first choosing the
desired hydrogen arrangement at the surface and then proceed to distribute
– obeying the ice rules – the remaining protons. The cells are set up to have
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Figure 4.1: Slab realisations of low index surfaces of ice Ih, side views. From
left to right: basal plane, (0001) surface; prism face, (101̄0) surface; secondary
prism face, (112̄0) surface.

zero net dipole moment.

4.2 Surface formation energies for ice Ih

Ice Ih is a hexagonal crystal, and has several interesting low index sur-
faces, see Figure 4.2. The basal plane surface, along the crystallographic
(0001) direction, is terminated by “chair” conformations of water rings of
six hydrogen-bonded molecules. Ice Ih forms bilayers along the (0001) direc-
tion, that are in turn connected by hydrogen bonds. The primary prismatic
face, along the (101̄0) direction, has no identifiable bilayer structure, and the
surface layer consists of folded six-rings of water molecules. The surface of
the secondary prismatic face, along (112̄0), consists of water dimer motifs
connected to the sub-surface layer, see Figure 4.1. Note that all these surface
features are derived from the ideal, bulk-like terminated surface construc-
tions. However, in optimizing the surface geometries, we did not find major
reconstructions for any of these surfaces, instead retaining these features.

We calculate the surface formation energies for the surfaces mentioned
above, by using the slabs shown in Figure 4.1. The surface formation energy
is actually an energy density per area, and equals to the energy cost involved
in splitting an infinite crystal into two halves, thus creating two surfaces. Ob-
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4.2 Surface formation energies for ice Ih

Figure 4.2: Common low index surfaces for hexagonal crystals.

viously, this cost will in general depend on the cleavage plane through the
crystal, as different crystalline directions involve cutting more or less bonds,
or allow for more or less favourable surface reconstructions.

From a slab calculation with N atoms or molecules, the surface formation
energy E f is determined by

E f =
Etot

slab − N × Etot
bulk

2Aslab
, (4.1)

where Etot
slab is the slab’s total energy, Etot

bulk is the bulk binding energy per
atom/molecule, and Aslab is the slab surface area. Information about E f for
a variety of surfaces can be of use in determining the thermodynamic shape
of a crystal – which at constant volume forms to have the smallest possible
surface energy.

Table 4.1 lists the calculated formation energies for the different surface
directions. Allowing optimization of the surface layers’ geometries is im-
portant to obtain correct results, although the relative energetic order is
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4 The surface of ice

Surface direction E f [mJ/m2], E f [mJ/m2], Previous work
(ideal) (reconstructed)

Basal plane, (0001) 211 119 187 a

Prism face, (101̄0) 300 246
Sec. prism face, (112̄0) 239 196 127a

a from Ref. [153]

Table 4.1: Surface formation energies for various low index surfaces of ice Ih
for both ideal (fixed bulk) surfaces, and reconstructed surfaces, compared to
previous theoretical work.

preserved. The calculated energies do not agree with previous theoretical
work [153], where sums of the electrostatic energy of (semi-)infinite crystals
were investigated. We assume that the first principles approach used here
should be the more accurate description. In Figure 4.3, we show the corre-
sponding Wulff crystal. It features prominently the basal plane, along the
(0001) direction, and the secondary prism plane, along (112̄0) direction. The
primary prismatic face, along the (101̄0) direction, is energetically too un-
favourable to form. While the Wulff shape shows how an ice crystal can look
like, the wide variety of small ice crystals is well known, and illustrates that
the Wulff construction is a purely thermodynamic ansatz. It ignores kinetic
properties such as diffusion coefficients and barriers, that hinder a crystal
from always growing in its thermodynamically favored shape. While there
are no direct measurements of ice’s surface enthalpy of formation energy, we
can compare our result to the surface tension of liquid water, which is about
119 mJ/m2 [154]: the average surface tension of the Wulff crystal is about
149 mJ/m2, thus overestimating the liquid’s experimental result by about 25
per cent. This is to be expected: keeping in mind that the hydrogen bond
strength in ice is overestimated by the DFT method used (by about 15 per
cent), the surface formation energies tend to be too large, too.

4.3 Monomer adsorption on the basal plane

Inspired by the certainly interesting results by Batista et al. [152], the adsorp-
tion of water molecules on the surface of ice is studied. As found in the
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4.3 Monomer adsorption on the basal plane

Figure 4.3: Wulff shape construction of the ice Ih crystal, with surface energy
data from Table 4.1.

previous section, the basal plane is the thermodynamically most favoured
crystal cleavage plane, and also appears most often in nature; we thus limit
this study to water adsorption on the basal plane of hexagonal ice Ih.

Single molecule adsorption

The adsorption of single monomers on the full-bilayer terminated surface is
studied first. Out of the many adsorption sites possible, we focus on the most
favored structures considered in the work of Batista et al. [152]. The possible
adsorption sites are classified by the orientation of the three water molecules
in the uppermost surface layer that are closest to the adsorbing molecule
(such a distinction is always possible, due to the hexagonal crystal structure
of ice Ih). Four arrangements are possible, which are distinguished by the
number of OH groups pointing upwards along the surface normal. The first
one (here labelled “A”) has one OH group pointing upwards. The possible
adsorption configurations A-1 and A-2 are shown in Figure 4.4. They differ
with respect to the lateral position of the ad-molecule. In both cases, the
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4 The surface of ice

(A-1) (A-2)

Figure 4.4: Adsorption site type A (one surface OH group pointing up-
wards). Adsorbate molecule (dark red oxygen atom) and uppermost surface
layer molecules are shown. Left (right): optimized geometries in position
A-1 (A-2). Upper panel: top views; lower panel: side views.

final positions of the adsorbed molecules are similar: they rotate towards the
surface and establish hydrogen bonds with the substrate oxygen atoms’ lone
pairs. The nearest upward-pointing OH group on the surface rotates towards
the ad-molecule to form a third hydrogen bond. This rotation is restricted by
the back bonds of the surface layer molecule with the water molecules in the
sub-surface layer.

The binding energy of the adsorbate in A-1 is 0.58 eV, about 82% of the bulk
cohesive energy (see Table 4.2). This is in clear contrast to the TIP4P calcula-
tions that find the surface binding energy stronger than in the bulk [152]. It
is, however, in agreement with the fact that macroscopic ice crystals do exist
and are stable. Nevertheless, the adsorption energy calculated here is slightly
larger than expected from a mere bond-counting approach, given that only
three hydrogen bonds to the substrate are formed, compared to four in the
bulk case. But also for the surface of liquid water it was argued recently
that undercoordinated water monomers tend to enhance the existing hydro-
gen bonds compared to the bulk configuration [10]. In the present case, the
ad-molecule does not occupy a regular crystal position and the uppermost
substrate molecules also relax from their ideal bulk positions. The internal
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4.3 Monomer adsorption on the basal plane

Geometry Adsorption d(OH) d(OH · O) d′(O · HO)
energy [eV] [Å] [Å] [Å]

A-1 0.575 0.99 2.04 1.78
0.99 2.06

A-2 0.552 0.98 2.25 1.82
0.98 2.05

B-1 0.548 1.00 1.79 1.94
2.60

B-2 0.550 1.00 1.81 2.07
2.26

Bridge 0.576 1.01 1.68 1.69
1.01 1.68

Table 4.2: Adsorption energies and geometric parameters for the configu-
rations shown in Figures 4.4, 4.5, and 4.6. d(OH) are the bond length(s) of
adsorbate OH group(s) involved in bonding, d(OH · O) the hydrogen bond
length(s) to the substrate, d′(O · HO) the distance from adsorbing oxygen to
upward pointing OH group(s).

relaxation of the ad-molecule is small, its OH bond lengths are only slightly
stretched compared to the gas phase geometry. The uppermost substrate
molecules move out of the surface by up to 0.3 Å. This decreases the OH·O
hydrogen bond lengths, which vary from 1.78 Å to 2.06 Å. However, they
are still remarkably larger than the bulk value of 1.69 Å. The HOO hydrogen
bond angles vary from 12.9◦ to 18.4◦. These values are well within common
geometrical boundaries for hydrogen bonds [10, 88]. To estimate the influ-
ence of the substrate relaxation on the binding energy, a A-1 geometry with
substrate frozen in its optimized free surface geometry was calculated. The
resulting binding energy is 0.44 eV, which lets us estimate that the substrate
relaxation accounts for about 0.14 eV of the total adsorption energy.

The adsorption energy at the A-2 adsorption site is 0.55 eV, about 79%
of the bulk cohesive energy. The adsorbing molecule donates two hydro-
gen bonds to the substrate atoms and accepts one hydrogen bond from the
upward-pointing OH group. The substrate atoms that participate in the
bonding slightly shift towards the adsorbate. The hydrogen bond donating
molecule moves the most, about 0.3 Å. The ad-molecule effectively preserves
its gas phase structure: the OH bond lengths are slightly stretched to 0.98 Å,
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4 The surface of ice

the HOH angle decreases to 103.8◦. The OH·O distances and HOO angles
of the three hydrogen bonds vary between 1.82 Å and 2.25 Å, and 13.3◦ and
18.9◦, respectively.

Another possible adsorption site (here labelled “B”) has two OH groups
pointing upwards in the uppermost ice layer. The corresponding relaxed ad-
sorption configurations B-1 and B-2 are shown in Figure 4.5. Again, they
differ with respect to the lateral position of the adsorbing molecule. In both
cases the ad-molecule donates a single hydrogen bond to the substrate and
accepts two weaker bonds from the surface molecules. Its bond donating OH
group is elongated to 1.00 Å, the OH·O distance is about 1.80 Å. However,
finite HOO angles of 11.0◦ and 10.6◦ remain for both B-1 and B-2, respec-
tively. The two upward-pointing OH groups on the surface rotate towards
the adsorbing molecule’s oxygen atom to form weaker hydrogen bonds. The
binding energies are in both cases about 0.55 eV and thus very similar to the
A-2 site’s binding energy. For B-1 we determine a substrate relaxation contri-
bution of about 0.17 eV to the total adsorption energy. This is slightly larger
than in the A site, because the rotation of two surface OH groups towards the
adsorbate yields a higher gain in binding energy.

Interestingly, although the adsorption sites are clearly different, the calcu-
lated adsorption energies are rather similar, with only a slight preferrence
for the A-1 site. However, if we compare the geometrical properties of the
hydrogen bonds formed, see Table 4.2, we find that all adsorption situations
are in fact quite similar: one rather short hydrogen bond (bond length about
1.8 Å) and two longer hydrogen bonds (longer than 2.0 Å) are formed. The
longer bonds are in addition more distorted than the short bonds. This holds
for all adsorption sites investigated. Thus, the direct vicinity of the adsorbing
molecule is not as important for the adsorption energy as might be expected.
Instead, a variety of adsorption sites offer similar possibilities for the adsorb-
ing water molecule to establish hydrogen bonds. The contributions of zero
point vibrations are therefore expected to be similar in all studied cases. Fur-
thermore, they are expected to be smaller than the bulk value of 88 meV per
molecule.

There are two more adsorption sites conceivable: with three and with zero
OH groups pointing upwards at the surface, respectively. Within a 2× 2 sur-
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4.3 Monomer adsorption on the basal plane

(B-1) (B-2)

Figure 4.5: Adsorption site type B (two surface OH groups pointing up-
wards). Left (right): optimized geometries in position B-1 (B-2). Upper panel:
top view; lower panel: side view.

face periodicity, however, no slabs for these surface configurations can be set
up that obey both the ice rules and have a net zero dipole moment. Because
the surface periodicity of 4 × 2 that is compatible with these requirements is
too large for the computational resources available, these adsorption sites are
not considered in this work. In any case, the adsorption of water monomers
on sites with three or zero OH groups pointing upwards was previously
found to be far less favored than in A or B configurations [152], mostly due to
the fact that only two hydrogen bonds can be established between substrate
and adsorbate.

The relation between the adsorption energy of an ad-molecule and the sur-
face formation energy per surface molecule determines the formation of ei-
ther flat or rough surfaces. We find that depending on the specific geometry
the adsorption of water monomers on non-crystallographic adsorption sites
lowers the surface formation energy – compared to the ideal full-bilayer ter-
mination – slightly, by up to 30 meV per molecule. The DFT calculations thus
predict a weak tendency to surface roughening.
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4 The surface of ice

Figure 4.6: Co-adsorption of two water molecules: “dimer” or “bridge” con-
figuration. Left: top view; right: side view.

Higher surface coverage

We also investigate one adsorption configuration for higher coverage, with
two molecules arranged in the 2 × 2 surface cell as suggested in Ref. [147].
The optimized adsorption geometry is shown in Figure 4.6. The calculated
adsorption energy for this configuration is 0.58 eV per ad-molecule and
thus nearly equal to the most preferred single ad-molecule configuration A-
1. Again, there is a slight overbinding compared to the bulk cohesive en-
ergy: three newly established hydrogen bonds equals to an energy of 0.38
eV per bond, compared to 0.35 eV in bulk ice. The two ad-molecules relax
into a structure similar to the gas phase water dimer [155], but slightly con-
tracted. This dimer-like structure allows for the ad-molecules to establish
rather strain-free hydrogen bonds to the substrate. Indeed, all adsorption-
induced hydrogen bonds have a bond length of about 1.69 Å, close to the
bulk value. The relaxation of the substrate molecules is small, with displace-
ments of 0.10 Å and 0.19 Å. However, these relaxations lead to the enhanced
binding energy per bond when compared to the bulk.

Further increase of adsorbate coverage should result in the formation of
the next half bilayer on the surface. However, our calculations show that this
is not a stable configuration; the adsorbed half bilayer tends to separate from
the underlying bulk. This result is in agreement with experimental findings
[145].
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Figure 4.7: Surface plane averaged and smoothed potential differences with
respect to the clean surface (see text), plotted along the surface normal. The
abscissa is scaled in units of ice bilayers, dashed vertical lines indicate the
positions of the substrate ice layers.

Influence on the surface dipole moment

In general, adatoms or adsorbed molecules may cause or modify a surface
dipole layer. This allows to determine the initial-state contributions to the
ionization energy [156, 157] that can be considered to dominate in the cases
of doped semiconductors. For molecular crystals, in addition, final-state ef-
fects may be important for the total ionization energy. Still, changes of the
surface dipole layer will also in this case largely determine the changes of the
ionization energy. Therefore we study the influence of ad-molecules on the
variation of the local electronic potential Vloc(r) across the surface region. It
is given in DFT-GGA as

Vloc(r) = VPS
loc (r) + VH(r) + Vxc(r), (4.2)

where VPS
loc (r), VH(r) and Vxc(r) are the local part of the pseudopotential, the

Hartree and the exchange-correlation potential, respectively. Laterally aver-
aging Vloc(r) yields the in-plane averaged potential Vloc(z). By subtracting
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4 The surface of ice

the potential V0
loc(z) of the free surface

∆Vloc(z) = Vloc(z) − V0
loc(z), (4.3)

the influence of the adsorbate on the local potential is obtained. In Figure
4.7, ∆Vloc(z) is plotted for all investigated configurations along the surface
normal z. The potential is also averaged along the z direction over the width
of one ice bilayer, thus yielding identically zero in ideal bulk regions beneath
the slab surface. In all cases, the adsorbed molecules change the electrostatic
potential near the surface and to some extent in the slab. However, only in
the A sites a significant increase of the surface dipole layer (indicative for
an increase of the ionization energy) of more than 0.5 eV is observed. This
contrasts with the far larger changes of the ionization energy calculated for
molecular adsorption on semiconductor surfaces, see, e.g. Ref. [158]. It is
most likely related to the flexibility of the hydrogen bonds that allow for a
relatively free reorientation of the ad-molecules that try to compensate rather
than enhance long-range electric fields.

4.4 Conclusions

In summary, the adsorption of water monomers on the ice Ih basal plane is
found to be energetically very favorable. In contrast to earlier empirical cal-
culations, however, we do not find adsorption energies in excess of the bulk
cohesive energy. Nevertheless, due to an energy gain per hydrogen bond
larger than in the bulk, the adsorption of ad-molecules lowers the surface
energy. This is expected to favour the formation of rough surface structures
which may be suitable to explain recent experimental findings of an abun-
dance of isotropically distributed OH groups that terminate the crystalline
ice [147]. The adsorption of water monomers has little impact on the surface
dipole layer.
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Electricity is the power that causes all natural
phenomena not known to be caused by some-
thing else.

Ambrose Bierce

5
Charge localization at the

surface of ice

The properties of charged clusters or charges localizing at surfaces are of
great interest in cluster and surface science, atmospheric chemistry and as-
trophysics. Aqueous systems are especially intriguing due to water’s unique
role in many biological, chemical and technological processes [159, 160]. Ex-
periments on anionic aqueous systems range from first measurement of the
spectra of a solvated electron in bulk water [161] and water clusters [162] to
recent studies of ultrafast solvated electron dynamics in water and thin ice
films [163–166].

Water clusters have been studied thoroughly both experimentally and the-
oretically over the last decades; anionic water clusters again are of special
interest since the polar environment, together with the rather unrestricted
rotational degrees of freedom of the water molecules involved, should al-
low for self-trapping of excess electrons within the clusters. Indeed, depend-
ing on cluster size and preparation conditions, possible electron localization
sites have been found both at the surface and in the interior of water clus-
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ters [66–68, 167–175]. While for small water clusters the excess electron’s lo-
calization in a surface state seems well established, there is ongoing debate
about how large a water cluster has to be to provide interior localization sites,
or even for interior localization to be the dominant process [68,167,173–175].

Advancing from clusters to extended systems, the localization of excess
electrons at the ice surface was explored in several recent theoretical stud-
ies [176–178]. In these studies, molecular dynamics techniques were usually
applied. These techniques are suitable for following the dynamics of a local-
ized electron state. However, a systematic approach directly comparing dif-
ferent possible localization sites that are likely to occur at real ice surfaces [85]
is still missing. The results presented here are a step in this direction.

We investigate the localization of an excess electron at the basal plane
surface of hexagonal ice Ih by performing gradient-corrected density func-
tional theory calculations (DFT-GGA). In order to account for spurious self-
interaction effects that artificially delocalize the excess electron, the DFT
wave functions are used as input for a partial self-interaction correction
(SIC) scheme [44]. Essentially, the excess electron’s potential is corrected
for self-interaction, whereas the remaining electrons are treated on the usual
DFT basis. In the previous chapter we investigated the charge neutral
ice Ih(0001) surface and found water monomer adsorption on several non-
crystallographic surface sites to be favorable (see also Ref. [85]). Starting
from these geometries, we find localization of an excess electron at surface
adsorbed water molecules that is significantly more pronounced than on the
ideally terminated ice basal plane.

5.1 Self-interaction correction

Describing localized excess charges within DFT poses an inherent problem:
In contrast to Hartree-Fock (HF) calculations, the electronic self-interaction
in the Hartree and the exchange-correlation contributions to the total energy
do not cancel each other. This is a problem of all available approximations to
the exchange-correlation energy Exc[n]. The remaining self-interaction leads
to spurious delocalization of the electronic wave function. While it is pos-
sible to perform HF-type calculations, these are computationally very de-
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5.1 Self-interaction correction

manding and neglect electronic correlation effects. SIC schemes [35, 44] (al-
most) correct the error in the exchange-correlation functional, but lead to an
orbital-dependent Hamiltonian, and thus to a complicated variational prin-
ciple problem that may impose technical difficulties to solve.

A partial SIC scheme that applies only to the excess electron appears as
an affordable yet sufficiently accurate alternative, since the neutral system of
interest (hydrogen bonded ice) is well described within DFT, see section 3.2,
while the self-interaction error is largest for the localized excess charge. In a
system of 2N + 1 electrons, we therefore solve

{Te + VKS[n]}
∣∣ϕiσ

⟩
= εi

∣∣ϕiσ
⟩
, i = 1, . . . , N; σ = α, β (5.1)

{Te + VKS[ñ]}
∣∣ϕN+1,σ

⟩
= εN+1

∣∣ϕN+1,σ
⟩
, (5.2)

where n(r), ñ(r) as defined by

n(r) = ∑
i,σ

fiσ|
⟨
r
∣∣ϕiσ

⟩
|2, ñ(r) =

N

∑
i,σ

|
⟨
r
∣∣ϕiσ

⟩
|2, (5.3)

are the total and paired-electron densities, respectively, and VKS = Ven +
VH + Vxc is the total Kohn-Sham potential given as a functional of these den-
sities. The above equations (5.1), (5.2) can be derived from the modified en-
ergy functional

E[{ϕiσ}] = E0[{ϕiσ}] − EH[nex] −
∫

d3r nex(r)(Vxc(r) − Ṽxc(r)) (5.4)

+
∫

d3r nex(r) (VKS[n(r)] − VKS[ñ(r)])

by variation with respect to
⟨
ϕiσ
∣∣. There, E0[{ϕiσ}] is the DFT total energy

functional (2.59), evaluated using the eigenvalues and -functions from (5.1),
(5.2), and the remaining terms correct for self-interaction contributions in the
various parts of E0[{ϕiσ}]. Vxc(r) = δExc/δn(r) and Ṽxc(r) = δExc/δñ(r)
denote the exchange-correlation potential of the total and paired-electron
density, respectively. nex(r) = n(r) − ñ(r) = |

⟨
r
∣∣ ϕN+1,σ

⟩
|2 is the excess

charge density in the system. This approach was initially inspired by a simi-
lar scheme by Mauri et al. [44] that calculates SIC based on the magnetization
density, which is assumed to be equal to the density of the unpaired elec-
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Figure 5.1: Upper panel: Radial charge density 4πr2ϱ(r) of hydrogen atom,
calculated in DFT and with partial SIC scheme (see text), and compared to
exact solution; lower panel: relative deviation of DFT and SIC density from
exact result.

tron. However, it is more closely related to an earlier work by Lundin et
al. [179] who applied the scheme described above to correct self-interaction
of 4 f electrons in atomic calculations.

5.2 Computational Details

The partial SIC scheme was implemented in the Vienna Ab-Initio Simulation
Package (VASP) [105]. Due to the non-hermicity of the Hamiltonian, none
of the default iterative matrix diagonalization techniques implemented in
VASP [180–184] could be used. Instead, a single-band solver using the conju-
gate gradient method had to be employed. Subspace rotations to orthogonal-
ize the KS orbitals also had to be switched off. For these reasons, eqs. (5.1),
(5.2) are not solved self-consistently. Rather, starting from the optimized DFT
wave functions, one SIC iteration is performed to obtain an updated wave
function. A plane wave basis (kinetic energy cutoff of 15 a.u.) is employed
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in conjunction with ultrasoft pseudopotentials to model the electron-ion in-
teraction. Implementing the partial SIC scheme for the PAW method also
supported by VASP would have been too difficult, mostly because of the
handling of the atom-centered augmentation charges when summing up the
paired electron density. The total energy expression (5.4) was implemented
to determine the binding energies of the excess electron. The electronic ex-
change and correlation effects are described by the PW91 functional [40].
Bulk ice vacancy defects are modeled in a series of super cells with up to 128
molecules per cell. Surface calculations of the ice Ih(0001) basal plane are per-
formed using repeated slabs consisting of four ice bilayers, that are separated
by a vacuum equivalent of eight bilayers (about 28 Å). There, and in the bulk
calculations, the zero wave vector term of the Ewald contribution to the to-
tal energy is neglected. That corresponds to introducing a spatially uniform
positive background charge that neutralizes the cell. While this removes the
divergence of the electrostatic energy of the system, a spurious interaction
between the excess and the background charge is introduced, that vanishes
only in the limit of infinite supercells. Analytic correction formulae for this
interaction energy have been proposed and implemented [185], however,
their applicability is currently under discussion [186, 187]. Their influence
on the accuracy of the results could only be assessed by extrapolating from
a series of calculations, which currently exceeds our computational capabil-
ities, to infinite cell size. A dipole correction scheme prevents long-range
interaction between surface slabs arising from surface dipole moments. Sur-
face periodicity is 2 × 2; reciprocal space integrations are performed at the Γ
point only.

As a test the partial SIC scheme is applied to the hydrogen problem. For
N = 0 paired electrons, the scheme completely removes the Hartree- and
XC-potential from the Hamiltonian. Only the electron-ion interaction (mod-
elled by a DFT pseudopotential) remains. The resulting radial charge density
is plotted in Figure 5.1 and compared to DFT-GGA and the exact result. The
artificial delocalization of the DFT charge density is corrected for by the self-
interaction correction. Remaining deviation from the exact solution are most
probably due to the finite box size and the use of an ultrasoft pseudopoten-
tial.
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5 Charge localization at the surface of ice

Figure 5.2: Excess electron den-
sity at bulk vacancy (located at ar-
row point). Isosurface value ϱiso =
0.03e/Å3.

Figure 5.3: Excess electron density
at ideal bilayer-terminated sur-
face. Isosurface value ϱiso =
0.03e/Å3.

5.3 Excess electron calculations

We start the calculations by considering bulk hexagonal ice Ih with vacancy
defects. As shown in Figure 5.2, an excess electron can localize at bulk va-
cancy sites at dangling OH bonds, occupying 4a1-like LUMO states. It is to
be expected that it could localize even better at a vacancy that has four in-
ward pointing OH bonds, similar to interior localization sites in water clus-
ters, or liquid water. However, it is not possible to construct a crystalline
super cell that, aside from this defect, obeys the ice rules [64] everywhere
else; a compensating second vacancy defect or a combination of Bjerrum de-
fects [188] would have to be introduced. Calculations of such systems were
not performed here, as it is considered unlikely that fast electron solvation,
on a timescale of 0.2 ps [164], facilitates formation of such defect combina-
tions, with defect migration times of tens of picoseconds [189]. However, the
formation of Bjerrum defects [190] was found to facilitate ionic charge local-
ization: a recent theoretical study found simultaneous solvation of anions
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and cations in ice enhanced by common L and D defects (where zero or two
hydrogen atoms are situated between adjacent oxygen atoms) [91].

At the ideal bilayer-terminated surface, a scenario similar to the bulk va-
cancy occurs: Excess electrons occupy 4a1-like LUMO states of surface water
molecules. However, contrary to the bulk vacancy site, no localization occurs
laterally, i.e., in the surface plane between the upward pointing OH groups
as shown in Figure 5.3. The binding energy of the excess electron is 0.69 eV.
Recently it was found, however, that the formation of rough ice surfaces ter-
minated with single water monomers and dimers is energetically favored,
see Ref. [85] and section 4. Other experimental studies found abundant pres-
ence of dangling OH bonds at the ice surface [147] and ice surface disorder
increasing with temperature, before formation of a quasiliquid layer [191].
Therefore we also explore the localization of excess electrons at rough sur-
faces.

Figure 5.4 shows the excess electron density along with the in-plane aver-
aged density navg

ex (z) plotted along the surface normal direction for some of
these surface structures. In all investigated cases, the excess electron localizes
at the surface. Furthermore, in agreement with the results above, it preferen-
tially localizes at dangling OH bonds. Therefore, on a rough ice surface, an
excess electron should be expected to be confined laterally as well. The lo-
calization perpendicular to the surface plane is by and large independent of
the detailed surface geometry; a slightly increased localization can be found
on isolated dangling OH bonds (see Figure 5.4(b)) and for larger adsorbate
complexes, where the localization sites are farther away from the ideal bulk
(see Figure 5.4(d)). Binding energies range from a slightly non-binding sce-
nario (localization at co-adsorbed water’s LUMO, cf. Fig. 5.4(c)) to at most
1.11 eV (localization at surface vacancy, cf. Fig. 5.4(a)). Ionic relaxation of the
surface region was not included in the present study. However, it should be
expected that any atomic relaxation in response to the excess electron should
enhance rather than weaken its localization and increase its binding energy.
Moreover, since the local rearrangement of hydrogen bonds is easier at the
surface than in the bulk crystal, we expect the self-trapping of excess elec-
trons in unoccupied ice surface states to be more effective than in the bulk.
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Figure 5.4: Excess electron density at various surface defect sites. Plotted are
charge densities (ϱiso = 0.03e/Å3) and laterally averaged densities navg(z).
Surface defects, with electron binding energy: (a) surface vacancy, Eb = 1.11
eV, (b) and (c) water monomer adsorbed surfaces, Eb = 0.08 eV and Eb =
−0.06 eV, and (d) water dimer adsorbed surface, Eb = 0.04 eV; all per 2 × 2
surface cell.
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Figure 5.5: Side view on slab cell: comparison of excess electron density
from DFT and SIC calculations. Local potential from DFT calculation is also
given; dashed lines indicate positions of ice bilayers.

5.4 Discussion

The results above show that excess charges in aqueous systems prefer to oc-
cupy LUMO-like states at dangling OH bonds of water molecules. The pres-
ence of these in ice bulk vacancy sites or in various ice surface terminations
allows for electron localization even in these rigidly hydrogen-bonded sys-
tems. The application of SIC leads to an increased localization compared to
DFT results in all cases studied. For some configurations, SIC is necessary to
achieve a physical solution; see Figure 5.5, where we compare the in-plane
averaged charge densities of the excess electron for one of the ice surface ter-
minations, as arising from the DFT and the SIC calculations. In DFT, the ex-
cess electron is smeared out in the vacuum region between adjacent slabs; re-
moving its self-interaction then leads to localization near the surface. Rough
surfaces allow for increased lateral electron localization. The degree of ver-
tical localization, along the surface normal, is by and large independent of
the detailed adsorbate geometry. In addition, we find the highest electron
binding energy for a surface vacancy site that provides several OH dangling
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bonds. Localization at an ad- or surface molecule’s OH group is found to
be energetically much less favorable. The general result that excess charges
in ice preferentially localize at the surface confirms recent electron solvation
experiments on ice clusters, grown on a Cu substrate [164]. It also suggests
that atmospheric reactions that are catalyzed or assisted by ice surfaces may
often take place in a charged environment. Provided the underlying ice sur-
face is ionized, e.g., by cosmic radiation, uptake and reaction mechanisms of
atmospheric molecules may differ significantly from commonly studied neu-
tral ice substrates [160, 178, 192]. Recent interpretations of atmospheric data
see the role of charge-assisted heterogeneous reactions in ozone depletion
differently [193–195]; however, our findings that realistic models of the ice
surface provide a variety of electron localization sites should justify further
experimental and theoretical studies on these systems.

92



One can enjoy a rainbow without necessarily
forgetting the forces that made it.

Mark Twain

6
The optical spectrum of water

and ice

In this chapter, the optical absorption of small water clusters, water chains,
liquid water, and crystalline ice is analyzed computationally. Two compet-
ing mechanisms are identified that determine the energy of the optical ab-
sorption onset: electronic transitions involving “surface” molecules of finite
clusters or chains cause a redshift upon molecular aggregation compared to
monomers. At the same time, a strong blueshift is caused by the electro-
static environment experienced by water monomers embedded in a hydrate
shell. Regarding the recent dispute over the microscopic structure of the
liquid state of water, the present results support the conventional fourfold
coordinated structural model of water, as obtained from ab initio molecular
dynamics simulations.
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6 The optical spectrum of water and ice

6.1 Water’s Optical Absorption Anomaly

Understanding the excited state properties of water in its many phases is fun-
damental to research in fields as diverse as corrosion, cellular biology, and
atmospheric chemistry. For instance, without UV protection from the ozone
layer, liquid water offers little protection against UV damage to marine life,
as radiation penetrates liquid water far into the vacuum UV region near the
surface. At the same time, UV penetration into liquid water would allow for
increased mutation rates of marine organisms, and play a part in the evo-
lution of life. The onset of optical absorption is blueshifted (i.e., shifted to
higher energies) in liquid water and ice, as compared to water molecules in
the gas phase. The lowest absorption peak shifts from the gas phase value of
7.4 eV (λ=168 nm) to 8.2 eV (151 nm) for liquid water and to 8.7 eV (143 nm)
for ice (in its hexagonal, cubic and amorphous phase) [196–199]. Figure 6.1
gives a compilation of experimental results, taken from Ref. [197]. The figure
illustrates the blueshift of the absorption onset upon condensation, an effect
which seems counter-intuitive. Typically, upon condensation of molecules a
transition from molecular energy levels to dispersive energy bands occurs,
which reduces the gap between occupied and empty electronic states. As
a result, the optical absorption is expected to redshift (i.e., shifted towards
lower energies) for the condensed phases, as compared to the gas phase. Ex-
plaining, and even reproducing, this anomalous behaviour of water has been
a longstanding quest for theoretical scientists.

Not only are the electronic and optical properties of water intriguing, there
are also interesting questions concerning the structural properties of its ubiq-
uitous liquid phase. A recent X-ray absorption (XA) study [10] indicated that
the widely replicated 100-year-old picture of the structure of liquid water
might, in fact, be wrong. Until recently practically all state-of-the-art molec-
ular dynamics (MD) calculations (see, e.g., [200, 201]) supported the theory
that hydrogen bonds pulled liquid water into an extended network, with
each water molecule bonded to four others. The recent synchrotron results
suggest that many water molecules are, in fact, bonded to only two neigh-
bors. The XA spectral features near the energy of the oxygen 1s state were
found to be similar not to bulk ice, but more to the surface of ice [10]. In the lat-
ter, a water molecule would clearly have about two neighbours on average,
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Figure 6.1: Experimental absorption spectra of water in its three phases, from
[197]. Lowest absorption peaks in vapor (water, ice) are at 7.4 (8.2, 8.7) eV.

whereas in the former each water molecule has four nearest neighbours.

Standard experimental approaches to analyze the crystal structures (X-
ray and neutron diffraction) can provide detailed information on ordered
phases of ice, but only indirect, and often limited, information on amor-
phous ice and liquid water. On the theoretical side, classical and first prin-
ciples molecular dynamics simulations based on density functional theory
(DFT) have been used extensively to study water and solvation processes,
see, e.g., Refs. [202,203]. However, it is not yet fully understood how accurate
the various gradient-corrected functionals in DFT describe the structural and
diffusive properties of liquid water [204–206]. Furthermore, the quantitative
influence of the inclusion of proton quantum effects in ab initio simulations
remains to be established. Therefore, methodologies that solely depend on
computational data may have difficulties in reliably determining the struc-
tural properties of liquid water. In these circumstances, the comparison of
spectroscopic data such as the optical response with fingerprints calculated
for structural candidates may be of value.

Remarkably, a recently calculated optical absorption spectrum of liquid
water deviates significantly from experiment. Coincidentally quite close to
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Figure 6.2: Calculated optical absorption spectrum of liquid water, from
Ref. [207]. Solid line: DFT absorption spectrum; dotted line: DFT+GW quasi
particle spectrum; red dashed line: excitonic spectrum, with first peak at 7.3
eV. Inset shows experimental absorption data, from Refs. [197, 208].

the first absorption peak of gas phase molecules, the calculated onset of the
optical absorption occurs at about 7.3 eV, see Figure 6.2. The spectrum was
obtained by solving the Bethe-Salpeter equation for a variety of structural
snapshots obtained from classical periodic boundary condition MD simula-
tions of liquid water (see Ref. [207] for details). The calculations included
excitonic effects. As first principles calculations for the water molecule [209]
and crystalline ice Ih [210] reproduce the measured optical absorption peaks
well, this discrepancy could be indicative of the failure of the standard, tetra-
hedral model of liquid water. Whereas the latter is supported by recent MD
simulations with an ab initio based force field [75], calculations of XA spectra
were interpreted to support either the tetrahedral model [211, 212] or two-
fold bonding configurations [213, 214].

In this work, the impact of the coordination and the electrostatic environ-
ment on the excited-state properties of hydrogen-bonded water monomers
is analyzed in detail. We investigate small water clusters, chains of water
molecules, solid ice as well as liquid water obtained from ab initio MD sim-
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ulations. Two competing mechanisms are identified that considerably shift
the excitation energies of hydrogen-bonded monomers compared to single
molecules: A redshift is caused by “surface” effects for undercoordinated
structures, while the local electric fields of neighboring molecules shift the
spectrum to higher energies (blueshift). The optical response calculated for
ab initio liquid water agrees remarkably well with experiment.

6.2 Computational Details

6.2.1 Ground state properties

Structural properties of crystalline ice and water clusters are optimized us-
ing DFT with a plane-wave basis and the projector augmented wave (PAW)
method [104] as implemented in the Vienna Ab-initio Simulation Package
(VASP) [105, 106]. Computational details are similar to those introduced in
section 3.2. Specifically, hexagonal ice Ih is calculated, the hydrogen disor-
der of which is accounted for by using a 12 or 16 molecule super cell [84,93].
The plane wave cutoff energy is 15 a.u., and a special k-point set is used to
approximate Brillouin zone integrations. Small water clusters are placed in
the center of a super cell large enough to avoid spurious interaction between
the cluster and its repeated images. A box size of 20 · · · 28Å was chosen and
found to suffice for all cluster calculations. The Brillouin zone for all cluster
calculations is sampled using the Gamma point only. All ionic and (in case of
the crystal) unit cell degrees of freedom are optimized such that the remain-
ing forces on the atoms are below 5 meV/Å. The DFT exchange-correlation
energy is described using the PW91 functional [40], as it reasonably describes
hydrogen bonds in crystalline ice, see section 3.2: geometric properties are
usually in very good agreement with experiment, even though the binding
energy at least in crystalline ice is overestimated significantly.

Ab initio MD simulations are performed using VASP: a 64 molecule su-
per cell is constructed such that it has the mass density of water at room
temperature: ϱ = 0.99707g/cm3. The ionic kinetic energy is normalized to
correspond to a temperature of T = 298K. Pre-optimized liquid water from a
classical MD simulation using the TIP4P pair interaction potential [71] serves
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as input for an ab initio equilibration; structural snapshots are then obtained
every 200 fs from a 4 ps production run. Ab initio water MD simulations
as suggested in chapter 3 are not feasible yet. The quality of the “DFT-MD
water” used here, i.e. its agreement with the real liquid on the microscopic
level can thus not be assessed directly. As mentioned above, however, the
comparison of calculated observables (like optical excitation spectra) with
experimental data is a valuable option to evaluate the theoretical methods
used.

6.2.2 Excited state calculations

Based on the ground state DFT calculations, optical absorption spectra are
calculated, including many-body effects. Depending on size and dimension
of the system, this is done either by performing GW and Bethe-Salpeter (BSE)
type calculations [215], occupation-constrained DFT (∆SCF) calculations in
VASP, or wave function based symmetry-adapted cluster configuration in-
teraction (SAC-CI) calculations using GAUSSIAN03 [31, 216].

Green’s function method for optical spectra of ice

The Green’s function formalism is used for infinite chains and bulk ice, uti-
lizing the implementation outlined in Refs. [62, 209], and described here in
more detail.

The electronic self energy is calculated in the GW approximation, as out-
lined in section 2.5.3. As described there, the self energy operator Σ is not
calculated self-consistently, but instead in a “one-shot” iteration Σ = G0W0

from the DFT-derived quantities G0 and W0. The self energy Σ is then treated
as a perturbation of the Kohn-Sham Hamiltonian, and the quasi-particle en-
ergies are obtained from equation (2.105). The computationally most expen-
sive part in the calculation of the screened interaction W0 is determining the
inverse of the microscopic dielectric function ϵ−1

0 (q, ω) at every frequency
value ω. However, W0 = ϵ−1

0 v contains an integral over all frequencies, so
that the details of the frequency dependence of ϵ(q, ω) are not expected to
be important. For those reasons, ϵ(q, ω) is approximated here by a model
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dielectric function [55]

ϵ(q, n) = 1 +

[
1

ϵ0 − 1
+

5q2

4q2
TF

+
3q4

4k2
Fq2

TF

]−1

, (6.1)

that depends via the Fermi wave vector kF and the Thomas-Fermi wave vec-
tor qTF on the local electron density n. Despite being a static approximation,
ϵ(q) from (6.1) gives remarkably good results over a wide range of mate-
rials, in part probably due to the fact that it interpolates between the free
electron gas for large values of |q|, a Thomas-Fermi like behaviour for small
values of |q|, and the static dielectric constant ϵ0 for q = 0. Another promi-
nent approximation for ϵ0(q, ω) is the plasmon-pole approximation, where
the dielectric function is described by a single peak at a plasmon frequency
ωp [56].

The model dielectric function from (6.1) comes with one adjustable param-
eter: the static dielectric constant ϵ0. For all GW and BSE calculations of
ice, a constant of ϵ0 = 2.0 is chosen. Thus we choose ϵ0 to be close to the
high-frequency dielectric constant of ice, which is appropriate considering
the energy range and time scales of the electronic excitations that are studied
here.

Occupation-constrained DFT for optical spectra of water clusters

The ∆SCF, or occupation-constraint DFT method, allows for calculations of
excitation energies at the computational cost of a standard self consistency
loop for the ground state. In short, the Kohn-Sham equations (2.64) are
solved for a set of occupation numbers { fi} that do not correspond to the
ground state, but to a desired excited state, for instance an excitation from the
highest occupied into the lowest unoccupied molecular orbital of a molecule.
Since the equations (2.64) are solved self-consistently, as usual, all correla-
tion effects between the excited electron and the hole are included in the
total energy. The difference between the total energy of the excited state
configuration and the ground state energy equals to the excitation energy.
Transition dipole moments are calculated from the ground state DFT wave
functions, i.e. final state effects are not taken into account. The ∆SCF method
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6 The optical spectrum of water and ice

is a means to calculate excitation energies of molecules and clusters at the
computational cost of a self-consistency step. Each transition, however, has
to be treated independently. Occupation constraint DFT is not applicable to
excitations in extended systems, due to the usual problem of describing a
single electronic excitation within a periodic boundary framework.

For the water molecule and small water clusters, ∆SCF calculations are
performed using VASP, and utilizing the geometries obtained as described in
the previous section. For excited states, large box sizes are necessary to avoid
interaction between the (more delocalized) excited electrons in adjacent su-
per cells. The box sizes mentioned previously were tested for converged first
excitation energies.

6.3 Solid state: crystalline ice Ih

For all excited state calculations of ice we use the ground state geometry from
DFT calculations, as introduced in section 3.2. In particular, the irreducible
orthorhombic part of Morrison’s 16 molecule super cell is used: it contains
eight water molecules.

See Figure 6.3 for the electronic band structure of ice, obtained both from
DFT eigenvalues, and using quasi-particle energies from the perturbative
treatment of the electronic self energy in the GW approximation. The valence
bands can be matched to the molecular orbitals 1b2, 3a1, and 1b1 they origi-
nate from. They show (with the exception of the 3a1 bands) little dispersion.
In DFT, ice is an insulator with a direct band gap of 5.50 eV at the Gamma
point of the Brillouin zone. Quasi-particle energy correction lead to a quasi-
rigid shift of the conduction band energies, opening the band gap by about
4.5 eV. The quasi-particle gap of ice is calculated to be 10.12 eV. In Figure 6.4,
the quasi-particle energy shifts ∆ϵnk are plotted versus the corresponding
DFT eigenvalues. The ∆ϵnk depend linearly on the eigenvalues ϵnk, however
with a gap of about 4 eV between valence and conduction bands. The en-
ergy shifts are more irregular for higher energetic conduction bands which
correspond to quasi-free electronic states.

The optical spectrum of ice is first calculated on single particle level, from
DFT wave functions and eigenvalues. Transition energies and oscillator
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Figure 6.3: Electronic band structure of hexagonal ice Ih: left, from DFT-GGA
calculations; right: including quasi-particle energy corrections from GW cal-
culations. Black lines: valence bands; red lines: conduction bands. Energies
are in eV, and normalized to valence band maximum energy (the Fermi level
εF is positioned within the band gap).

strengths are determined for sets of random k-points, which in compari-
son with ordered k-point sets avoid over-emphasized high-symmetry spec-
tral features, and give spectra which converge monotonously with increased
number of k-points towards the dense k-point limit. The spectra are shown
in Figure 6.5, which also serves as a benchmark to determine the necessary
number of conduction bands and k-points to obtain converged spectra. From
Figure 6.5, we conclude that 48 conduction bands (the unit cell has 64 va-
lence electrons, hence 32 valence bands) and 64 random k-points yield a well
converged spectrum up to an excitation energy of about 20 eV. Naturally,
the spectrum does not agree very well with experimental data: its onset of
absorption occurs at about 6 eV, and the dominant first excitation peak is
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-5.0 0.0 5.0 10.0 15.0

ε
DFT

 - ε
VBM

 [eV]

-4.0

-2.0

0.0

2.0

4.0

∆
ε n

k
 =

 ε
Q

P
 -

 ε
D

F
T
 [

e
V

]

Figure 6.4: Hexagonal ice Ih: quasi-particle energy shifts ∆ϵnk from GW cal-
culations vs. DFT eigenvalues ϵDFT, normalized to valence band maximum
ϵVBM.

missing. Instead, the majority of oscillator strength forms a distinct peak at
around 14 eV.

To go beyond DFT, it is possible to calculate an optical spectrum using
the quasi-particle energies from a GW calculation. The spectra obtained,
however, does not go beyond the random phase approximation, and would
certainly not improve agreement with experiment. This is only achieved
when taking the interaction between excited electron and hole into account,
i.e. by solving the Bethe-Salpeter equation. For these calculations, we use
the computational parameters determined above from the DFT spectra cal-
culations: 32 valence and 48 conduction bands, and (the same) 64 ran-
dom k-points. The excitonic Hamiltonian matrix (2.117) thus has a rank of
N = 32 × 48 × 64 = 98, 304. However, we restrict the calculation to transi-
tions with a quasi-particle gap of at most 25 eV. That reduces the matrix size
to about 70,000 at the equilibrium lattice constant of ice. Solving the initial-
value problem for the macroscopic dielectric function is then possible with
about 40GB of computer memory.

The spectra obtained from the GW and BSE approach are compiled in
Figure 6.6, together with the DFT spectrum and experimental data from
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Figure 6.5: Hexagonal ice Ih: single particle spectrum from DFT; convergence
tests with respect to number of k-points (left panel, with number of conduc-
tion bands Nb = 32) and conduction bands (right panel, with number of
k-points Nk = 32).

Ref. [217]. All calculated spectra are convoluted with a broadening of 0.5 eV.
The GW spectrum is basically a blue-shifted version of the DFT spectrum;
this is to be expected as the GW quasi-particle correction mainly results in
a rigid blueshift of the conduction bands, see Figure 6.3. Agreement with
experiment does not improve significantly. Including the electron-hole cor-
relation leads, however, to a spectrum that agrees very well with the experi-
mental data: the excitonic first absorption peak at 8.7 eV, and the subsequent
peaks at 10.3 eV, 12.0 eV, and 14.3 eV coincide with the experimental features.
Mind that the BSE spectrum is likely to lack oscillator strength in the high
energy region, due to the energy cutoff of 25 eV for quasi-particle transition
energies. It does, however, reproduce the experimental blueshift of water’s
absorption onset within experimental uncertainty. Although using a two-
particle picture proves essential and valuable in reproducing water’s optical
spectrum, it inherently leads to a breakdown of the one-particle picture of
“occupied state”, “excited state”, and transition energies involved. It is thus
much more difficult to dissect the spectral features. A recent work [210] inter-
preted ice’s blueshift in terms of delocalization of the bound exciton between
excited electron and hole in the crystal, thus leading to a reduced excitonic

103
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Figure 6.6: Hexagonal ice Ih: Optical absorption spectrum calculated by DFT,
DFT+GW, and DFT+GW+BSE, and compared to experiment, from [217].

binding energy compared to the gas phase molecule. This would then cause
a blueshift of the excitonic absorption peak. After discussing the optical spec-
tra of gas phase water cluster structures in the next section, we introduce a
model system that not only reproduces ice’s optical spectral features but also
allows for much easier interpretation of the spectral features.
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6.4 Gas phase: water molecule, clusters, and infinite chain
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Figure 6.7: Water molecule in the gas phase: Optical excitation spectrum,
calculated from various methods.

Excitation DFT ∆SCF SAC-CI Experiment
1b1 → 4a1 6.16 (0.007) 7.25 7.13 (0.049) 7.4 (0.050)
3a1 → 4a1 8.22 (0.026) 9.45 9.45 (0.107) 9.7 (0.073)
3a1 → 2b2 9.64 (0.003) 10.97 11.20 (0.033)
1b2 → 4a1 12.02 (0.055) 13.05 13.34 (0.149)

Table 6.1: Water molecule: Excitation energies (in eV) and transition dipole
moments in brackets (in a.u.), from various methods and experiment [218].
∆SCF transition dipole moments are the same as obtained from DFT.

6.4 Gas phase: water molecule, clusters, and

infinite chain

For the water molecule in the gas phase, ∆SCF calculations using VASP are
compared to SAC-CI calculations using GAUSSIAN03 [216]. The latter use
augmented correlation consistent valence double-zeta basis sets [125]. The
∆SCF method allows for the calculation of optical spectra over the whole de-
sired energy range, whereas the SAC-CI calculations had to be restricted to
solving the CI secular equations for the 20 lowest excitations. The different
approaches account comparably for self-energy and excitonic effects: While
DFT predicts the optical gap of the water monomer at 6.16 eV, we obtain
7.24 eV from ∆SCF, and 7.15 eV from SAC-CI, both close to the experimental
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Figure 6.8: Optical absorption spectra of small compact water clusters (see
structures on the left), from ∆SCF calculations.

value of 7.4 eV. Figure 6.7 compiles these spectra: not only compare the exci-
tation energies of SAC-CI and ∆SCF very well, but also the relative oscillator
strengths are in good agreement. Table 6.1 lists the excitation energies and
transition dipole moments that were used to produce the spectra of Figure
6.7. The good agreement of occupation constraint DFT not only with high-
level quantum chemical calculations but also experimental data justifies its
application to computing excitation spectra of larger water clusters. In the lit-
erature, a recent EOM-CCSD(T) calculation for the water monomer obtained
7.54 eV for water’s first excitation energy [219].

The optical absorption spectra of small water clusters are calculated to
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6.4 Gas phase: water molecule, clusters, and infinite chain

study the effect of molecular nucleation on the absorption onset. It is
certainly of interest to explore whether small water clusters already show
the interesting feature of the extended phases, an optical spectrum that is
blueshifted with respect to the gas phase molecular spectrum. Thus, we
study cluster structures that “fill up” the first coordination shell of a water
molecule. Going beyond a water pentamer, however, exceeds the computa-
tional resources available. The investigated structures are shown in the left
panel of Figure 6.8. All structures are (at least local) minima on the respec-
tive potential energy surface. The dimer structure is the global minimum,
and compares very well to existing data: the OO distance (rOO = 2.87Å),
total binding energy (Eb = 0.24 eV), and angular deviation from a linear hy-
drogen bond (δHOO = 6.6◦) agree well with experiment [220] and quantum
chemical calculations [221].

Upon increasing cluster size, the three main excitations of the monomer
are split and the absorption onset is redshifted towards slightly smaller en-
ergies, see Figure 6.8. In every cluster, the highest occupied (HOMO) and
lowest unoccupied molecular orbitals (LUMO) are localized on a hydrogen-
bond donating and accepting molecule, respectively. The HOMO-LUMO ex-
citation is an inter-molecular transition that occurs (most clearly for the pen-
tamer (H2O)5) between cluster surface states. The influence of these surface
transitions can be expected to fade with further increased cluster size: spa-
tial separation of the surface molecules and a decreasing surface-to-bulk ratio
will contribute to this effect. For the infinite crystal, no surface effects occur.
However, this trend is not observed for the (rather small) clusters studied
here. The results thus indicate that compact clusters are no suitable model
to explain the optical absorption of extended water phases, in particular the
shift of the absorption onset to about 8.2 eV (in the liquid phase) and 8.7 eV
(in the solid phase).

According to Ref. [10], most molecules of liquid water form hydrogen
bonded chains or rings. Thus, the optical response of finite chains up to
(H2O)7 and of an infinite molecular chain are calculated. The geometries of
the finite chains could not be optimized (they would revert into smaller ring
structures), and were thus kept frozen as cut-out from a crystalline struc-
ture. They feature OH bond lengths of 0.975Å and OH · · ·O hydrogen bond
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Figure 6.9: Optical absorption spectra of finite and infinite water chains (see
structures on left), from ∆SCF and Green’s function calculations.

lengths of 1.75Å. The infinite water chain is a 1-D periodic structure, with
two molecules in the unit cell. The optical spectra of the finite chains were
calculated using VASP and the ∆SCF method; the infinite chain’s absorption
spectrum was calculated by solving the Bethe-Salpeter equation, and obtain-
ing the macroscopic dielectric function along the chain direction. The spectra
obtained are compiled in Figure 6.9, which also contains sketches of the clus-
ter’s and the infinite chain’s geometries.

Similar to the compact clusters discussed above, the onset of the optical
absorption of finite chains is found to occur below the monomer value. How-
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6.5 Modelling electrostatic interactions in water and ice

ever, the onset is blueshifted with increased chain length. This is the visible
result of the spatial separation of HOMO and LUMO (which are localized at
opposing ends of the water chain), and thus a quenching of the related opti-
cal excitation. But even so, the first absorption band with noticeable oscillator
strength occurs at energies below the first monomer absorption energy. For
the heptamer chain (H2O)7, a broad absorption band can be seen between 6.5
eV and 9 eV. This broad band also appears in the many-particle spectrum of
the infinite water chain. The latter, however, is dominated by a strong exci-
tonic peak at 4.3 eV, see Figure 6.9. Obviously, chains of under-coordinated
water molecules in vacuum are not suitable either to explain the optical re-
sponse of liquid water.

6.5 Modelling electrostatic interactions in water

and ice

The chain and cluster structures studied so far have not proven suitable
model systems to connect the gas phase with the extended liquid or solid
phases. This is hardly surprising, however: to start with, they do not experi-
ence the long-range electrostatic interaction with a surrounding aqueous en-
vironment [222]. Including this part of the hydrogen bond interaction with a
water cluster calculation would enable one to calculate localized excitations,
while also accounting for the dielectric environment. Thus, it would be pos-
sible to study separately the influence of local fields and hydrogen bonds on
the optical absorption. The electrostatic energy of a water molecule in ice is
to more than 90% accounted for by its interaction with surrounding water
molecules’ dipole moments [223]. Therefore, including the dipole field of the
aqueous environment of a water cluster should give a much more realistic
model to study extended water phases’ optical excitations. This construction
does not only consider the electrostatic contribution to the hydrogen bond,
but also (at least partially) the orbital delocalization. Other contributions to
the total binding energy such as dispersive or closed shell repulsion inter-
actions are, of course, not included; the results presented below justify in
retrospect the neglect of these parts of the hydrogen bond interaction. The
dipole electrostatic field around a water cluster is constructed by placing
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Figure 6.10: Hexagonal ice Ih: Optical absorption spectrum, calculated from
Green’s function formalism, and from SAC/SAC-CI for water molecule in-
cluding electrostatic environment. Experiment from Ref. [217].

point charges at the positions of oxygen and hydrogen atoms both of the op-
timized ice structure and liquid water MD snapshots. Their magnitudes are
adjusted to account for the enhanced dipole moment of water in ice [224] and
the liquid [225]. The optical spectra of a water molecule or cluster embedded
in this way are then calculated.

6.6 Embedded molecule absorption spectra

6.6.1 Crystalline ice spectrum

The local structural environment of a water molecule in crystalline ice is
taken from DFT calculations. A spherical cluster of water dipole moments
is constructed from this structural information, and placed around a cen-
tral water molecule or cluster. The optical spectrum is then calculated us-
ing the SAC/SAC-CI method as implemented in the GAUSSIAN03 program
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6.6 Embedded molecule absorption spectra

Figure 6.11: Plots of water’s single-particle orbitals: 1b1 HOMO in (a) vac-
uum, and (b) ice-like electric field; 4a1 LUMO in (c) vacuum, and (d) ice-like
electric field. Isosurface value 0.06 a.u. Right column plots also show posi-
tions of hydrate shell point charges.

suite [31, 216]. The spectrum of a single water molecule is found to be con-
verged when including the dipole moments of the water molecules of the
three closest coordination shells. For the spectra presented here, eight coordi-
nation shells of dipole moments were included. In Figure 6.10, the spectrum
of the embedded water molecule is compared to the BSE result presented
in section 6.3 and experiment. We find excellent agreement with both the
sophisticated two-particle calculation and the experimental data. The elec-
tric field induced by the surrounding hydrate environment of crystalline ice
shifts the absorption onset of the water monomer from 7.2 eV to 8.6 eV, which
is in very good agreement with the data available for ice Ih. Excitation peaks
at 8.6, 10.8, (12.7) and 14.2 eV also agree very well with the calculated solid
state spectrum and experiment.

Figure 6.11 illustrates on the single-particle level the influence of the dipole
electrostatic environment on the shapes of molecular HOMO and LUMO:
while the 1b1 HOMO is almost unchanged (being only slightly delocalized),
the 4a1 LUMO is significantly quenched upon repulsive interaction with
neighboring, hydrogen-bonded molecules. Table 6.2 confirms this trend: sin-
gle particle orbital energies are listed from both DFT and HF calculations of
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6 The optical spectrum of water and ice

DFT Orbital energies [eV] HF Orbital energies [eV]
Molecular Orbital in vacuum in dipole field in vacuum in dipole field

4a1 -1.28 -0.17 0.94 1.83
1b1 -7.20 -7.41 -13.74 -13.88
3a1 -9.24 -9.27 -15.55 -15.69
1b2 -12.94 -12.44 -18.92 -18.61
2a1 -24.92 -24.67 -36.19 -36.06
1a1 -511.61 -511.39 -560.13 -559.90

Table 6.2: Single particle orbital energies, from DFT and HF calculations, both
in vacuum and in crystalline electrostatic field.

a water molecule, both in vacuum and in the electrostatic dipole field of the
crystalline ice environment. Although the absolute values of the orbital en-
ergies are not helpful in obtaining reasonable values for the optical gap, their
shifts under the influence of the dipole electric field certainly illustrate the
effect described above – a significant raise in energy for the 4a1 LUMO state,
and a lowered energy for the 1b1 HOMO state. The reason for this effect is
the high directionality of the hydrogen bonds in ice, that leads to strong local
electric fields that in turn influence the molecular energy levels as decribed
above. Since all bound excitations in Figure 6.10 are dominated by single-
particle excitations into the LUMO, all are shifted similarly under the influ-
ence of the surrounding aqueous environment. It is interesting to note that
the blueshift of the optical absorption upon aggregation of water molecules
to ice explained by many-body effects in Ref. [210] can thus be understood
already in a single-particle picture, provided the local electrostatic environ-
ment is taken into account.

The influence of the dipole electric field is corroborated by calculations for
a water pentamer cluster (the geometry of which was taken fixed “as is” from
the crystalline ice structure) embedded in the crystalline dipole field. The ab-
sorption onset of the cluster is shifted from 7.0 eV to 8.7 eV, see Figure 6.12,
again very close to the value of crystalline ice. A similar explanation holds
here: All low-energy excitations populate the LUMO and LUMO+1 states
that are combinations of water’s molecular LUMO’s; these are quenched sim-
ilarly under the influence of the aqueous environment. Note that the spectra
in Figure 6.8 and Figure 6.12a differ in parts because of the pentamers’ differ-
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Figure 6.12: Low-energy excitations of a water pentamer (a) in vacuum, and
(b) in electric field of surrounding crystalline ice from SAC-CI calculations.

ent structures, but mostly because the SAC-CI method used for the latter is
restricted to the 20 lowest transitions. Both spectra feature dominant peaks
at 6.5-7.0 eV and 8 eV, but the higher energy region is not accessible to the
SAC-CI method.

6.6.2 Liquid water spectrum

Based on the excellent agreement between experiment and the electrostatic
embedding calculations for crystalline ice, this methodology is now applied
to the ab initio liquid phase. The liquid water absorption spectrum is obtained
by accumulating spectra of MD snapshot configurations until the spectral
features are converged in line shape and position. For each snapshot, 64 ab-
sorption spectra are calculated for the 64 individual molecules in the MD
supercell. For each of these calculations, all other molecules in the unit cell
and in the surrounding unit cells are replaced by their dipole moment (again
modelled by point charges at the hydrogen and oxygen atoms’ positions).
The spectra were found to be converged after averaging over 20 structural
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Figure 6.13: Absorption spectra of a single water molecule (a) in vacuum,
(b) in electric field of surrounding crystalline ice, and (c) in electric field of
surrounding liquid water. Inset compares absorption onset from these SAC-
CI calculations with experimental data [196–199].

snapshots. The result is shown in the lower panel of Figure 6.13, where
it is also compared to the SAC-CI spectra of a gas phase water molecule,
and water in the crystalline electrostatic environment. For the liquid phase,
the first absorption peak is redshifted with respect to crystalline ice to 8.3
eV, very close to the experimental value of 8.2 eV. The other main peaks at
10.5 and 13.9 eV are also close to experimentally identified maxima at 10.0
and 13.7 eV [198]. We failed to achieve a similar degree of agreement with
experiment on the basis of a two-fold coordinated water molecule embed-
ded in an appropriate electrostatic environment, unless the density of the
liquid was drastically reduced (by at least 25%) compared to the experimen-
tal value. The excellent agreement of the optical response calculated for the
ab initio liquid with the measured absorption certainly strongly supports the
conventional picture of fourfold coordinated water molecules in the liquid.
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6.7 Conclusions

This result complements XA spectra calculations which usually probe dipole
transitions of a different character [226]. However, given the large number
of adjustable parameters, the possibility of alternative structural models for
the liquid phase of water cannot be ruled out completely on the basis of the
optical absorption data alone, even though we believe that it is most unlikely.

6.7 Conclusions

In conclusion, first principles calculations show that the onset of the optical
absorption of a network of undercoordinated water monomers in vacuum
is redshifted with respect to the monomer excitation. This effect is related
to intermolecular transitions involving edge or surface molecules that give
rise to low-energy absorption peaks. These are suppressed for long water
chains, however, infinitely long chains feature a strong excitonic peak at low
photon energy. The local electric fields caused by the hydrate shell surround-
ing water monomers or clusters, however, are responsible for a large (more
than one eV) competing shift of the optical absorption to higher energies. In
fact, the calculations identify the local electric fields in the condensed water
phases as the major force opening the optical transmission window of liquid
and solid water compared to the gas phase. The ab initio structural model of
nearly fourfold coordinated molecules in the liquid phase of water is found
to be consistent with the optical absorption experiments.
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I have seen too much not to know that the im-
pression of a woman may be more valuable
than the conclusion of an analytical reasoner.

Sir Arthur Conan Doyle

7
Conclusions

Describing aqueous systems correctly from first principles computer simula-
tions has been and will remain challenging: the unique properties of the hy-
drogen bond, which create the vast number of physical and thermodynami-
cal anomalies of water and ice, are difficult to grasp. It is, however, possible
to achieve accurate ab initio results, provided care is taken when choosing
computational methods and procedures.

The present work treats a heterogeneous ensemble of problems associated
with the theoretical description of water and ice. Combining tools and meth-
ods from quantum chemistry and solid state physics proved necessary to
achieve good agreement with experiment, and ultimately lead to a better un-
derstanding of ground- and excited-state properties of the systems studied.

Crystalline ice was studied using an incremental approach for the treat-
ment of the correlation energy on many-body perturbation and coupled clus-
ter levels of theory. It was shown that the many-body decomposition of
the correlation energy essentially converge after summation of the two-body
terms. Contributions from the three-body summation are much smaller,
and were shown in the case of water clusters to be cancelled out by four-
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body terms. Accordingly, excellent agreement with experimental data was
achieved for the first time. Compared to results from DFT, significant im-
provement mainly of the binding energy, but also for structural parameters,
was achieved. The fast convergence of the correlation energy in terms of the
many-body decomposition hints at the possibility to simulate ab initio water,
using periodic Hartree-Fock calculations together with a parametrized two-
body potential for the correlation energy. The construction of such a potential
is, however, beyond the scope of this work.

Adsorption of water molecules on the surface of ice was studied in a pe-
riodic framework from DFT calculations. Non-crystallographic surface ad-
sorption sites were shown to provide binding energies higher than a simple
bond counting argument would suggest, thus lowering the surface energy,
and favouring the formation of rough surfaces. Possible follow-ups for this
work could look into kinetic effects such as surface diffusion rates and bar-
riers, and pre-melting of the surface at temperatures below the bulk melting
point.

Studying excess charge localization is a very demanding task for theory
and experiment alike. Excess electrons are present in the upper atmosphere
as a result of the impact of ionizing cosmic radiation. Their influence on
surface-assisted atmospheric reactions has, however, still to be assessed. It
was shown that the correct treatment of excess charges needs to overcome the
self-interaction issues present in DFT calculations. A partial self-interaction
correction scheme was introduced and implemented, which proved crucial
to avoid unphysical results. The localization of excess electrons at the surface
of ice was found to be favourably supported by co-adsorbed water molecules
as investigated in the previous chapter.

Optical excitation processes are a challenge for theoreticians. Apart from
time-dependent DFT, the Green’s function method offers the only feasible
methodology for calculating optical spectra beyond the random phase ap-
proximation for extended systems. In water, the anomalous blueshift of the
absorption onset upon condensation presented a long-standing challenge for
theoretical descriptions. However, in this research, the optical spectrum of
ice was calculated in very good agreement with experimental data by solv-
ing the Bethe-Salpeter equation for the two-particle polarization function. In
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7 Conclusions

spite of this, due to the two-particle nature of the theory, there is a certain
loss of self-evidence behind the optical spectrum’s features. Thus, the two-
particle spectrum served as a benchmark for an embedding model, which re-
duces the hydrogen bond interaction to its main part: the electrostatic dipole
interaction. This model was found to sufficiently describe all main features
of the optical spectrum of ice. Consequently, it was applied to a study of the
optical spectrum of liquid water, which yielded a spectrum in quantitative
agreement with experiment. Not only is this the first study to present quan-
titatively correct optical spectra for water in all three states of matter, but
it also allowed the identification of the driving force in water’s anomalous
optical blueshift. Furthermore, it was thus shown that water structures from
first principles molecular dynamics simulations yield correct optical shifts and
spectra. With regard to the ongoing discussion in the literature about the co-
ordination of water in the liquid state, it seems unnecessary, based on the
findings of this research, to abandon the quasi-fourfold coordinated picture
in favour of a twofold coordination scenario. However, if water simulations
were able to produce such a twofold coordinated structure (which is not pos-
sible at present), the electrostatic embedding model introduced in this work
could certainly be utilized, and would yield a spectroscopic fingerprint for
useful comparison with experiment.
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