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We measure Anderson localization in quasi-one-dimensional waveguides in the presence of absorption

by analyzing the echo dynamics due to small perturbations. We specifically show that the inverse

participation number of localized modes dictates the decay of the Loschmidt echo, differing from the

Gaussian decay expected for diffusive or chaotic systems. Our theory, based on a random matrix

modeling, agrees perfectly with scattering echo measurements on a quasi-one-dimensional microwave

cavity filled with randomly distributed scatterers.
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The propagation of waves through complex media is an
interdisciplinary problem that addresses areas as diverse as
light propagation in fog or clouds, to electronic and
atomic-matter waves used to transmit energy and informa-
tion. Despite this diversity, the wave character of these
systems provides a common framework for understanding
their transport properties and often leads to new applica-
tions. One such characteristic is a wave interference phe-
nomenon. Its existence results in a complete halt of wave
propagation in random media which can be achieved by
increasing the randomness of the medium. This phenome-
non was predicted 50 years ago in the framework of
quantum (electronic) waves by Anderson [1,2] and since
then has developed as a field of its own.

Despite the enormous research efforts by various groups
in measuring Anderson localization, it took nearly 40 years
to observe localization phenomena beyond any doubt. A
decisive step towards this direction was done by optics and
microwave experiments which allow a detailed study of the
Anderson localization, undisturbed by interactions or other
effects which characterize electron propagations. First ex-
periments showing photon localization [3] had the problem
of separating localization from absorption, which can be
another source of exponential decay of a propagating
electromagnetic wave. A solution to this problem was
given by Chabanov et al. in Ref. [4], where they proposed
to study the relative size of fluctuations of certain trans-
mission quantities. They found clear evidence of localiza-
tion in a quasi-one-dimensional (1D) microwave wave-
guide with randomly distributed dielectric or metallic
spheres [4] (see also Fig. 1).

This approach, although quite powerful, does not allow
the view of transport from a dynamical perspective, nor
makes a direct contact with the original ideas of Anderson
theory, which suggests probing localization by means of
the sensitivity of the system properties against small per-
turbations [5]. This approach led us in recent years to focus
on new measures that efficiently probe the complexity of
quantum time evolution. One such measure is the so-called

Loschmidt echo (LE), or fidelity, which probes the sensi-
tivity of quantum dynamics to external perturbations (for
review, see Ref. [6]). The recent literature on the subject is
vast and ranges from atomic physics [7], microwaves [8],
elastic waves [9] to quantum information [10], and quan-
tum chaos [11–15]. Formally, the LE F�ðtÞ, is defined
as [8]

F�ðtÞ � jf�ðtÞj2 ¼ jhc 0jeiH0t=@e�iH�t=@jc 0ij2; (1)

where f�ðtÞ is the fidelity amplitude, H� ¼ H0 þ �V is a
one-parameter family of Hamiltonians, H0 is the unper-
turbed Hamiltonian, �V, where hjVnmj2i ¼ 1, represents a
perturbation of strength �, and jc 0i is an initial state.
Fidelity in its original definition, Eq. (1), is hardly

accessible to any experiment where the information about

FIG. 1 (color online). Left: Experimental setup—the top plate
with two mounted antennae has been removed to show the
waveguide with scatterers. Right: The variance of the normalized
transmission intensity ~T ¼ jS21j2=hjS21j2i. Vertical dashed lines
are the mode cutoff frequencies. The numbers between are the
number of open modes. The horizontal dashed line is the
localization threshold of 7=3. The shaded region is a localized
frequency window of 6.0–7.5 GHz. Inset: Transmission distri-
bution P ð ~TÞ for the localized frequency window of 6.0–7.5 GHz.
The red dashed line is a fit (�2 ¼ 0:094) of the core to a log-
normal distribution, with a width of �2

~T
¼ 3:37.
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the system’s state is based on the measurements of certain
observables; the most popular being the scattering matrix
itself. Therefore, the notion of scattering fidelity had been
introduced as an alternative to Eq. (1) [16]. In fact, it was
shown that under certain conditions the scattering fidelity
coincides with the standard fidelity [16].

We present here the first measurements of fidelity of
localized waves. Using a quasi-1D disordered cavity in the
localized regime (see left of Fig. 1), we investigate the
fidelity decay of microwave radiation, due to small pertur-
bations � in the form of boundary displacements of the
sample, and find deviations from a Gaussian decay ex-
pected in a frequency interval associated with extended
waves. Using a banded random matrix (BRM) theory
modeling, we find that the fidelity amplitude decays as:

fðtÞ ’ ð�tÞ2csch2ð�tÞ; � ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
1:5I2

p
; (2)

where I2 ¼
R jc ðrÞj4dr / 1=l1 is the inverse participation

number (IPN), inversely proportional to the localization
length. Using a scaling analysis of � with respect to � we
extract I2 and measure the localization properties of the
sample, even if absorption is present. Our theoretical re-
sults, Eq. (2), are confirmed by our experimental measure-
ments of scattering fidelity.

The scattering fidelity amplitude is defined as

f�abðtÞ ¼ hS��abðtÞS0abðtÞi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjS�abðtÞj2ihjS0abðtÞj2i

q
; (3)

where SabðtÞ is one component of the scattering matrix in
the time domain, while the indices a and b refer to the
antennae involved. In microwave studies the Sab are di-
rectly accessible from transmission or (for a ¼ b) reflec-
tion measurements in the frequency domain. The
corresponding quantities in the time domain are obtained
by Fourier transforms. The superindices �, 0 indicate
scattering matrix elements corresponding to the perturbed
and unperturbed system, respectively. The denominator in
Eq. (3) renormalizes the fidelity decay due to absorption,
thus allowing us to trace out localization phenomena [16].
This assumes a global decay of the scattering matrix
elements due to absorption, and no correlation between
absorption and scattering. The technique is equivalent to
the one adopted in [4] to get rid of absorption.

The experiment has been performed in a quasi-1D rect-
angular waveguide (height 8 mm, width 100 mm, length
1190 mm) containing 186 randomly distributed brass cyl-
inders of radius 5 mm (see left of Fig. 1). One end of the
waveguide holds a fixed reflecting metallic wall, while at
the other end there is a moveable reflecting metallic wall,
which can be adjusted by means of a step motor. One an-
tenna was placed close to the moving wall, while another
one was placed in the center of the scattering arrangement.
Measurements have been performed in the frequency range
3 to 12 GHz. The cutoff frequency for the lowest mode is
1.5 GHz, while at the upper limit of the studied frequency
range there are 7 propagating modes. The reflection am-
plitude at the center antenna (S22) and the transmission am-

plitudes between the two antennae (S21) have been mea-
sured for different wall positions. The reflection amplitude
S22 is used in Eq. (3), and the transmission amplitudes S21
are used in transmissive studies below. The wall shift has
been performed in steps of �w ¼ 0:2 mm up to a total shift
of 18 mm. In addition, an ensemble average over 15 differ-
ent realizations of scatterer positions has been performed.
In order to get confidence that our analysis is performed

within the appropriate frequency window where localiza-
tion is present, we first investigate the variance �2

~T
of the

normalized transmission intensity ~T ¼ jS21j2=hjS21j2i [4].
Since our experiment does not probe the total transmission
but just one component of the scattering matrix, we expect
localization whenever �2

~T
exceeds the critical value of 7=3

[4]. We find (see Fig. 1) that this condition is satisfied
approximately in the frequency window 5.5–9 GHz. Above
9 GHz the waveguide modes are delocalized, while below
5.5 GHz the values of the variances are error prone, as S21
is below the precision of the vector network analyzer
(jS21j< 10�6). In the delocalized regime, random matrix
theory predictions are applicable [17], yielding a value of
�2

~T
¼ ð2N þ 1Þ2=½Nð2N þ 3Þ� � 1, where N is the num-

ber of open channels. In the limit N ! 1, the variance
approaches the value �2

~T
¼ 1, in agreement with our ex-

perimental data showing in the high frequency regime
values between 1 and 2 for �2

~T
(see Fig. 1).

We have also investigated the whole normalized trans-
mission distribution P ð ~TÞ. As expected [18], we find a
transition from a Rayleigh-like behavior (applicable in
the delocalized regime) to a broader distribution approach-
ing a log-normal behavior deep in the localized regime (see
inset of Fig. 1 showing P ð ~TÞ in the localized frequency
window of 6–7.5 GHz.).
Next, we measure the scattering fidelity in the localized

frequency window (see previous analysis), and compare
the experimental data with the LE decay law found for
chaotic or diffusive systems [6,8]. The latter reads

FðtÞ’e��2CðtÞ; CðtÞ� t2þ t�
Z t

0
d�

Z �

0
d�0b2ð�0Þ; (4)

which for small perturbations can be approximated as
FðtÞ � expð�ð�tÞ2Þ. Above, b2 is the two-point form factor
for the Gaussian orthogonal ensemble [6]. Using � as a
fitting parameter, we have attempted to fit the experimental
data with Eq. (4). We found that the overall agreement is
poor (see Fig. 2). Further analysis (see below) confirms that
Eq. (4) is inapplicable in the localized regime. On the
contrary, when fitting the experimental data with Eq. (2)
we get an excellent agreement.
The analytical calculation of fðtÞ relies on the relation

between scattering fidelity and the LE in the weak coupling
regime where our experiment operates. The LE was further
evaluated using a random matrix theory modeling for H0

and V. For diffusive or chaotic cavities, H0 and V are
modeled by matrices drawn from a Gaussian orthogonal
ensemble (GOE). Anderson localization in quasi-1D dis-

PRL 102, 253901 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
26 JUNE 2009

253901-2



ordered systems, on the other hand, is modeled by sharp
banded GOE matrices with bandwidth b for H0 and V
[19,20]. In this model, the localization length scales as
l1 � b2. Therefore, localization sets in for matrices of
rank L � b2.

Expanding the initial preparation as jc 0i ¼
P

nanj�0
ni,

where H0j�0
ni ¼ E0

nj�0
ni, it is found that the fidelity am-

plitude defined in Eq. (1) can be written as

fðtÞ ¼ X

n;m;k

��
n�kh��

mj�0
kih�0

nj��
mie�iðE�

m�E0
nÞt; (5)

where H�j��
ni ¼ E�

nj��
ni. Averaging over disordered real-

izations one further gets that

fðtÞ ¼ �
X

n;m

Lmn exp½�iðE�
m � E0

nÞt�; (6)

where � ¼ 1
l1

P
n�l1 jc 0ðnÞj2 , c 0ðnÞ are the components

of the initial preparation jc 0i in the position basis, and
Lmn ¼ jh��

mj�0
nij2 is the local density of states kernel

[21]. In order to derive Eq. (6) we have assumed statistical
independence between the eigenfunctions and eigenvalues
of our Hamiltonian, while localization enforces the follow-

ing contraction rule ��
n�k ¼ ��n;k.

For small enough perturbations, such that only nearby
(on the order of mean level spacing) energy levels are
mixed, one can approximate Lmn in Eq. (6) with a delta
function. The fidelity amplitude is then written as

fðtÞ ’ X

n

expð�ivn�tÞ ¼
Z

dvP ðvÞ expð�iv�tÞ; (7)

where vn ¼ ðE�
n � E0

nÞ=� are the so-called level velocities,
and P ðvÞ is their corresponding distribution. The latter has
been calculated in Ref. [22], and it was found that in the

localized regime it is given by the expression

Pð�Þ ¼ 	

6

	� cothð	�= ffiffiffi
6

p Þ � ffiffiffi
6

p

sinh2ð	�= ffiffiffi
6

p Þ ; (8)

where � ¼ v=�v. For localized level velocities, the vari-
ance is �v ¼ ffiffiffiffi

I2
p

[23]. Substituting the above distribution
in Eq. (7) we finally get the expression given in Eq. (2). The
latter is checked numerically for two different bandwidths
b ¼ 10, 3 and for a system size L ¼ 5000. Our numerical
results are reported in Fig. 3, together with Eqs. (2) and (4).
To confirm further the validity of our calculations, we have
fit the decay of the LE for various bandwidths b, with
Eq. (2). From the fit we have extracted �v, which we
have plotted against the IPN I2, in the inset of Fig. 3. The
observed linear behavior gives further confirmation to our
theoretical calculations.
We then analyze the decay of scattering fidelity due to

small displacements of one wall of the disordered quasi-1D
waveguide shown in Fig. 1. The shift of the wall can be
mapped onto an effective Hamiltonian H�w

with matrix

elements [16]

ðH�w
Þnm ¼ �w

Z L

0
r?½c nðyÞ�r?½c mðyÞ�dy; (9)

where w and L are the shift and length of the moving wall,
respectively, and r?c n and r?c m are the normal deriva-
tives of the wave functions at the wall. Thus��w

/ w2. The

proportionality constant is ð2Lk3=3	3Þ, for the case of
chaotic cavities in the semiclassical limit [16]. In any
case, we finally get that �w � w.
Next we proceed by fitting our experimental data on the

scattering fidelity with Eqs. (2) and (4) where �, � are used
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FIG. 3 (color online). Fidelity, Eq. (1), for Hamiltonians mod-
eled by BRM. The parameters are � ¼ 10�3, L ¼ 5000, b ¼ 10
(upper curve), and b ¼ 3 (lower curve). Circles are the numeri-
cal results. Dashed lines are best fits to Eq. (4). Solid lines are
best fits to Eq. (2), which again show a better fit. The inset shows
the variance extracted from the fit of Eq. (2), plotted against the
root of the inverse participation number. The observed linear
relation confirms the validity of Eq. (2).
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FIG. 2. Experimental scattering fidelity in the frequency win-
dow of 6 to 7.5 GHz (localized). The dots correspond to the
experimental scattering fidelity, Eq. (3), for a wall shift of
0.8 mm. The dashed line is a best fit to Eq. (4), while the solid
line is a best fit to Eq. (2). Both fits were done for the region
t � tH. Equation (2) can be seen as the better fit.
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as fitting parameters. We have extracted �, �, for various
wall shifts w and plotted them versus a rescaled shift,
w=�w. The results are summarized in Fig. 4. We find
that in the frequency window 6–7.5 GHz (where
Anderson localization is present), the best fit with Eq. (4)
gives �� �


w, with 
 ¼ 1:9� 0:05. This result violates the
theoretical expectation 
 	 1 and constitutes a direct con-
firmation that the RMT result Eq. (4) is not applicable in
the localized regime. At the same time, the best fit of the
experimental scattering fidelity with the prediction of the
BRM modeling (1) gives that �� �


w with 
� 0:92�
0:05, in agreement with our theory. The extracted slope

�=�w � ffiffiffi
I

p
2 can be used as an estimation for the localiza-

tion properties of our sample. Within the delocalized fre-
quency window 10.5–12 GHz, a fit with Eq. (4) works
perfectly well with 
 	 1:0� 0:05, in nice agreement
with theory (see inset of Fig. 4). Here we meet the situation
found for the fidelity decay observed in chaotic billiards
when moving one wall [16].

In conclusion, using echo dynamics, we isolated absorp-
tion phenomena and identified traces of localization in
random media. Our theory, based on a RMT modeling,
indicated that the IPN of localized modes dictates the
behavior of the LE which follows a novel decay law; being
experimentally distinguishable from the Gaussian decay
observed in diffusive or chaotic systems. Our experimental
measurements with disordered waveguides confirm our
theory, thus suggesting fidelity as a reliable tool to inves-
tigate localization in the presence of absorption.
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FIG. 4. Within the localized frequency window of 6–7.5 GHz,
the experimental fitting parameters—� (squares) from Eq. (2)
and � (circles) from Eq. (4)—are plotted against the rescaled
wall shift w=�w. Straight lines indicate best fit to power laws,
�� w0:92, �� w1:9. Inset: Same as main figure, but for the
delocalized frequency window of 10.5–12 GHz. As opposed to
the main figure, here �� w1:0, in agreement with Eq. (4).
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