Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

On Essential Self-adjointness, Confining Potentials \& the L_{p}-Hardy Inequality

A Thesis Presented in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
in
Mathematics
at Massey University, Albany, New Zealand
A.D.Ward - New Zealand Institute of Advanced Study

August 8, 2014

Abstract

Let Ω be a domain in \mathbb{R}^{m} with non-empty boundary and let $H=-\Delta+V$ be a Schrödinger operator defined on $C_{0}^{\infty}(\Omega)$ where $V \in L_{\infty, \text { loc }}(\Omega)$. We seek the minimal criteria on the potential V that ensures that H is essentially self-adjoint, i.e. that ensures the closed operator \bar{H} is self-adjoint. Overcoming various technical problems, we extend the results of Nenciu \& Nenciu in [1] to more general types of domain, specifically unbounded domains and domains whose boundaries are fractal. As a special case of an abstract condition we show that H is essentially self-adjoint provided that sufficiently close to the boundary

$$
\begin{equation*}
V(x) \geq \frac{1}{d(x)^{2}}\left[1-\mu_{2}(\Omega)-\frac{1}{\ln \left(d(x)^{-1}\right)}-\frac{1}{\ln \left(d(x)^{-1}\right) \ln \ln \left(d(x)^{-1}\right)}-\cdots\right] \tag{1}
\end{equation*}
$$

where $d(x)=\operatorname{dist}(x, \partial \Omega)$ and the right hand side of the above inequality contains a finite number of logarithmic terms. The constant $\mu_{2}(\Omega)$ appearing in (1) is the variational constant associated with the L_{2}-Hardy inequality and is non-zero if and only if Ω admits the aforementioned inequality. Our results indicate that the existence of an L_{2}-Hardy inequality, and the specific value of $\mu_{2}(\Omega)$, depend intimately on the (Hausdorff / Aikawa) dimension of the boundary. In certain cases where Ω is geometrically simple, this constant, as well as the constant ' 1 ' appearing in front of each logarithmic term, is shown to be optimal with regards to the essential self-adjointness of H.

Foreword \& Acknowledgements

I once read the foreword to someone's PhD thesis that could be paraphrased as follows:
"From the moment I arrived at the university I knew that I was in the right place. I realized almost immediately that the area of mathematics I was researching was a fruitful one and that I could make a significant contribution to it. Although I felt challenged, I also felt confident that my abilities would allow me to succeed. Pretty soon I began to feel at home amongst the doctors and established professors at the institute..."

For the benefit of any (prospective) PhD student that may read this foreword, I would like to stress that this was not my experience. I remember my first meeting with my supervisors Professor Gaven Martin and Professor Boris Pavlov. They informed me that my sole task for the first year of the PhD was to read as much material as possible so that "in twelve months time we can have a meaningful conversation". At the time I remember thinking that they had underestimated me. Now I realize that they had significantly over estimated me. It took two years before I could have a meaningful conversation with them or ask them a question that they did not immediately know the answer to. At times during those first two years it was horrible. I felt like a fraud, completely out of my depth and uncertain as to whether I had the ability to succeed. Had it not been for a combination of bizarre personal circumstance, convoluted rules and regulations concerning my scholarship and sheer geographical distance, I probably would have returned home to Europe. Then after those two years had passed, slowly, things started to come together. In the end nothing of worth comes without struggle.

Looking back at my time in New Zealand, I realize that it is necessary to thank various people. First and foremost, my thanks go to my family - Mum \& Dad, Margret \& Chris, Vicky \& Dave and Tina. Without your constant love, support and sacrifices over the years none of this would have been possible.

Next I owe a huge debt of gratitude to my supervisors Gaven \& Boris. Thank you for your guidance, advice and for being unlimited wells of mathematical insight and knowledge. One of my greatest pleasures throughout the duration of the PhD has been working along side you both and observing the different approaches to mathematics that you adopt. I can only hope that some small portion of how you address the subject has rubbed off on me.

I would also like to extend my thanks to all the individuals involved with the NZUK Commonwealth Scholarships program and everyone at the New Zealand Institute of Advanced Study. Your organizational and financial support has been invaluable.

Last but not least, I'd like to thank the big guy upstairs - he was certainly having a good day when he made New Zealand!

Contents

0.1 Introduction 7
0.2 Brief Overview 9
1 Preliminary Material 11
1.1 Hilbert Spaces \& Linear Operators 12
1.1.1 Hilbert Spaces 12
1.1.2 Linear Operators 13
1.1.3 The Adjoint Operator 14
1.1.4 Symmetric \& (Essentially) Self-adjoint Operators 15
1.2 The Axioms of Quantum Mechanics 18
1.3 Schrödinger Operators 20
1.4 Essential Self-adjointness of Schrödinger Operators on \mathbb{R}^{m} 21
1.5 Essential Self-adjointness on Domains with non-Empty Boundary 24
1.5.1 A Motivating Example 24
1.5.2 The Euclidean Distance to the Boundary 26
1.5.3 The L_{p}-Hardy Inequality 26
1.5.4 Essential Self-adjointness on $\mathbb{R}^{m} \backslash\{0\}$ 27
2 Essential Self-adjointness on Domains with non-Empty Boundary 29
2.1 Statement of the Main Theorem 30
2.2 Definitions \& Notation 32
2.3 Technical Lemmas 35
2.4 Proof of Main Theorem 40
2.5 Explicit Criteria For Essential Self-adjointness 44
2.5.1 The Candidate Function $G_{0}(t)$ 44
2.5.2 The Candidate Function $G_{1}(t)$ 45
3 The L_{p}-Hardy Inequality 51
3.1 The L_{p}-Hardy Inequality on $\mathbb{R}^{m} \backslash\{0\}$ 53
3.2 Maz'ya's Characterization of the Hardy Inequality 54
3.3 A Dimensional Dichotomy 56
3.4 Domains with Fat Boundary 58
3.5 Domains with Thin Boundary 64
3.6 The Geometric Condition of Barbatis, Filippas \& Tertikas 65
4 Minkowski Dimension, Whitney Decompositions \& the Integrability of the Distance Function 71
4.1 Whitney Decompositions \& γ-Domains 72
4.2 Covering Lemmas 74
4.3 Minkowski Dimension \& Whitney Decompositions 76
4.4 Integrability of the Distance Function 79
4.5 A γ-Domain with Inner Minkowski Measurable Boundary 83
4.6 Associated Results for the L_{p}-Hardy Inequality 87
5 The L_{p}-Hardy Constant 89
5.1 The Lemma of Barbatis, Filippas \& Tertikas 90
5.2 The L_{p}-Hardy Constant for Domains with Smooth Boundary 92
5.3 The L_{p}-Hardy Constant and the Inner Minkowski Dimension of the Boundary 96
6 Explicit Results and Optimality 103
6.1 Decomposition of the Domain of the Adjoint 105
6.2 One Dimensional Schrödinger Operators 107
6.3 Higher Dimensional Schrödinger Operators 113
6.4 Further Examples 116
7 Sequitur 119
7.1 Further Research 123
A Notions of Dimension 129
A. 1 Hausdorff Dimension 129
A. 2 Minkowski Dimension 130
A. 3 Inner Minkowski Dimension 131
A. 4 Aikawa \& Assouad Dimension 132
A. 5 Relationships Between Dimensions 133
B Capacity Measures 135
B. 1 Variational p-Capacity 135
B. 2 Riesz p-Capacity 136
C Miscellaneous 139
C. 1 Maximal Functions 139
C. 2 Strong \& Weak Solutions 140
C. 3 The Spectrum of Self-adjoint Operators 140
D Notation 143

