Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

EFFECTS OF 50 HZ INTERMITTENT MAGNETIC FIELD EXPOSURE ON HUMAN PERFORMANCE AND CARDIOVASCULAR RESPONSE

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Psychology

at Massey University

Craig J. Whittington

1995

ABSTRACT

One hundred subjects (aged 18-48 years) were exposed and sham exposed to a 100 µT intermittent magnetic field, modulated sinusoidally at 50 Hz. To examine the effect of field exposure on performance, a two alternative forced-choice duration discrimination task with 3 levels of difficulty was used. Cardiovascular response was also assessed using measures of blood pressure and pulse rate. A number of factors were incorporated into the experiment with the aim of increasing sensitivity above that of past research. In particular, the experiment's statistical power was increased using several techniques (e.g., large sample size and a repeated measures design). Also, intermittent exposure was used instead of continuous, and the conditions of exposure were optimised using field parameters specified by parametric resonance theory. To measure performance during exposure, the subjects' task on each of 150 trials was to decide which of two sequentially presented light flashes had the longer duration. The base duration was 50 ms and the alternative durations were 65, 100, or 125 ms. Both reaction time and percentage of correct responses were recorded for each subject. Total exposure time lasted approximately 9 minutes. Blood pressure and pulse were measured for a minimum of 5 minutes, both before and after exposure and sham exposure. The results showed that compared to sham exposure, real exposure decreased reaction time on the hardest level of the performance task. No reliable field-related effects were observed with percentage of correct decisions or the measures of cardiovascular response. The difficulty of making comparisons with similar studies was discussed along with the need for future magnetic field research to be designed with maximum experimental sensitivity in mind given that small effects are likely.

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor, Dr. John Podd, for never refusing his time, providing a great deal of helpful discussion, and proofreading earlier drafts of this thesis.

I would also like to thank Dr. John Spicer for his help with several statistical issues. Also, thanks to Harvey Jones for his technical assistance relating to the exposure apparatus and computer programming. Thanks go to Bruce Rapley for building the magnetic field coils and for his technical assistance. Similarly, thanks go to Geoff Barnes for his help in specifying the exposure parameters. I also appreciate the efforts of various members of the Psychology Department's Workshop who built part of the exposure apparatus and related equipment.

Special thanks go to Antonia Lyons for not only helping technically with the measurement of BP, but also for voluntarily helping with proofreading and partaking in many helpful discussions. Appreciation also goes to Angelique Praat for proofreading an earlier draft.

This research was carried out with the support of the Massey University Graduate Research Fund (A94/G/36), and the Department of Psychology.

TABLE OF CONTENTS

Abstract iii • • • ••• Acknowledgements iv ••• ••• Table of Contents ... v List of Tables viii ... • • • • • • List of Figures ix ••• ••• ••• • • •

INTRODUCTION

Overview	•••	•••	•••	•••	•••	•••	•••	1
The Nature	of E	lectron	nagnet	ic Field	ls	•••	•••	3
Relations b	etwee	n Dos	e and	Respon	se			6
Mechanism	is of I	nterac	tion	•••	•••	•••	•••	10
ELF fields	and H	Iuman	Physi	ology	•••			12
ELF fields	and H	Iuman	Perfo	rmance	•••	••••		15
Design Sen	sitivi	ty and	Statis	tical Po	wer			25
Purpose an	d Rat	ionale	of the	Presen	t Stud	dy	•••	35

METHOD

40
41
43
48
50

Page

STATISTICAL ANALYSES PROCEDURE

The MANOVA Procee	•••		•••	•••	52	
Performance Data			•••	•••	•••	56
Cardiovascular Data	•••	•••		•••	•••	59
Power and Design Sen	sitivity	in the	e Prese	ent Stu	dy	61

RESULTS

	Analysis of the	FSQ	•••	•••		•••	•••	65
	Analysis of Per	formanc	e Mea	asures	•••	•••	•••	65
	Rea	action T	ime a	nd Acc	uracy			65
	Rea	action T	ime	•••	•••		•••	66
<i>(</i> (Ac	curacy	•••	•••	•••	•••		69
	Re	action T	ime a	nd Acc	uracy	by Ge	nder	70
	Ac	curacy F	Reanal	lysed		•••	•••	70
	Analyses of Ca	rdiovasc	ular N	Aeasure	es	••••	•••	72
	Statistical Powe	er	•••					75
DISCUSSIO	N							
DISCOSSIC								
	Magnetic Field	Effects	•••	•••	•••		•••	79
	Design Sensitiv	ity		•••			•••	86
	Study Limitatio	ns	•••	•••	•••		•••	88
	Future Research	ı						91

....

General Conclusion

...

...

93

Page

vii

REFERENCES	 v		 	95
APPENDIX A	Questionnaires and Information	on	 	105
APPENDIX B	Subject Instructions		 	111
APPENDIX C	SPSS\PC+ Commands	•••	 	114
APPENDIX D	Subject Data		 	117
APPENDIX E	Regression Analysis		 	123
APPENDIX F	MANOVA and ANOVA Tab	oles	 •••	128

viii

LIST OF TABLES

•

Table 1:	Electromagnetic fields and their sources	4
Table 2:	Examples of electromagnetic field sources and field	7
	strengths to which people are exposed	1
Table 3:	Summary of human behavioural and physiological effects of exposure to time-varying, ELF	
	magnetic fields	24
Table 4:	Mean reaction time and accuracy for all subjects	
	during real and sham exposure for each level of task difficulty	68
Table 5.	Mean accuracy for those subjects who showed	
	the RT effect for each level of exposure and	
	task difficulty	71
Table 6:	Mean systolic BP, diastolic BP, pulse, and MAP	
	by exposure and period	73
Table 7:	Power of selected multivariate tests of significance	76
Table 8:	Power of selected univariate tests of significance	78

LIST OF FIGURES

Page

ix

Figure 1:	Photograph of Helmholtz-type coil pair with the coil interspace distance equal to the radius	44
Figure 2:	Lollipop plot showing coil interspace. Vertical lines represent coils, horizontal lines represent homogeneity (deviations from the horizontal plane indicate decreasing homogeneity)	44
Figure 3:	Exposure apparatus, with subject facing north and inclined on an angle of 24.44 degrees	46
Figure 4:	Flow diagram of the complete exposure system	49
Figure 5:	Temporal sequence of events for one trial	49
Figure 6:	Mean reaction time as a function of exposure and task difficulty	67