
Copyright is owned by the Author of the thesis. Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only. The thesis may not be reproduced elsewhere without 
the pennission of the Author. 



AN APPROACH TO SOFTWARE MAINTENANCE SUPPORT USING A 

SYNTACTIC SOURCE CODE ANALYSER DATA BASE 

This thesis is presented in a partial fulfillment of 

the requirements for the degree of Master of Arts in 

Computer Science at Massey University. 

PETER VIVIAN PARKIN 

1987 



ABSTRACT 

In this thesis, the development of a software 

maintenance tool called a syntactic source code 

analyser (SSCA) is summarised. An SSCA supports other 

maintenance tools which interact with source code by 

creating a data base of source information which has 

links to a formatted version of program source code. 

The particular SSCA presented handles programs written 

in a version of COBOL. 

Before developing a SSCA system, aspects of software 

maintenance need to be considered. Hence, the scope, 

definitions and problems of maintenance activities are 

briefly reviewed and maintenance support through 

environments, software metrics, and specific tools and 

techniques examined. A complete maintenance support 

environment for an application is found to overlap 

considerably with the application documentation system 

and shares some tools with development environments. 

Program source code is also identified as the 

fundamental documentation of an application and 

interaction with this source code is a requirement of 

many maintenance support tools. 



ACKNOWLEDGEMENTS 

I wish to record my gratitude to Professor Graham Tate 

for his guidance and supervision of this thesis. 

Also, I would like to thank 

June Verner for her interest and support in this 

research; 

My flatmates for encouraging my endevours; 

and Massey University for providing the necessary 

facilities required for this thesis. 



TABLE OF CONTENTS 

Page 

CHAPTER 1. Introduction 1 

CHAPTER 2. An Overview of Software Maintenance 8 

2.1. A Maintenance Definition and Reasons for 8 

Maintenance 

2.1.1. A General Definition of Maintenance 8 

2.1.2. The Reasons for Maintenance 9 

2.1.3. Problems with the General Maintenance 11 

Definition 

2.2. Maintenance Classification 14 

2.3. General Problems of Maintenance 20 

2.3.1. Factors within the Overall Environment 20 

2.3.2. Factors intrinsic to the Maintenance 23 

Task 

2.3.3. Conclusions on Software Maintenance 24 

Problems 

2.4. Maintenance Life Cycles and Steps 

2.4.1. A General Maintenance Life Cycle 

2.4.1.1. The System Life Cycle 

2.4.1.2. The Maintenance Life Cycle 

2.4.2. The Software Modification Task 

2.4.2.1. Software Modification Steps 

2.5. Software Modification 

25 

25 

25 

26 

28 

29 

34 



2. 5 .1. 

2.5.1.1. 

2.5.1.2. 

2.5.1.3. 

2.5.2. 

2.5.2.1. 

2. 5.2 .2. 

2. 5. 3. 

Software Modification Influences 

The Influence of Documentation 

The Influence of Maintainability 

The Influence of Testability 

Maintenance Quality 

Quality Assurance 

Modification Phenomena 

The Implementation of Software 

Modifications 

35 

37 

39 

40 

43 

44 

46 

50 

2.5.3.1. Omissions when Implementing Changes 50 

2.5.3.2. A Modification Example 52 

2.5.3.3. Methods of Implementing Software 57 

Modifications 

2.6. The Role and Goals of Maintenance 

CHAPTER 3. General Maintenance Support 

3.1. Maintenance Metrics 

61 

63 

63 

3.1.1. Standard Metrics 64 

3.1.1.1. Lines of Code 65 

3.1.1.2. McCabe's Cyclomatic Number 66 

3.1.1.3. Halstead's Software Science Measures 68 

3.1.2. Types of Metrics 71 

3.1.2.1. Instruction Mix Metrics 72 

3.1.2.2. Program Form Metrics 73 

3.1.2.3. Control Flow Metrics 75 

3.1.2.4. Data Reference Metrics 80 



3.1.2.5. Control Flow/ Data Flow Interaction 82 

Metrics 

3.1.3. Composite Measures of Complexity 88 

3.1.4. A Discussion of Complexity Metrics 95 

3.2. A Documentation Support Environment 101 

3.2.1. Document Groups 102 

3.2.2. A Documentation Scheme 104 

3.2.3. Problems with Automated Support 109 

3.3. Maintenance Support Tools 112 

3.3.1. Classification according to Activity 112 

3.3.2. Classification according to 116 

3.4. Syntactic Analysis 

3.4.1. Static Analysis 

Documentation Used 

3.4.2. A Syntactic Analysis Tool 

CHAPTER 4. Development of a Prototype 

Syntactic Analyser 

4.1. Choice of a Programming Language 

4.1.1. Development of a reduced COBOL 

4.1.2. Some properties of COBOL 

4.2. Data Base Content 

4.2.1. COBOL Entities and Relationships 

4.2.1.1. Language Definition Entities 

4.2.1.2. Language Definition Attributes 

4.2.1.3. Navigation and Usage Entities 

121 

121 

127 

136 

137 

139 

141 

146 

146 

146 

152 

154 



4.2.1.4. Relationships between Entities 158 

4.2.2. Maintenance Enquiries for a SSCA DB 164 

4.2.3. SSCA Database Implementation 166 

4.2.3.1. A Database Management System 166 

4.2.3.2. Relations and Implementation 170 

Considerations 

4.3. Analysis of Source Code 176 

4.3.1. SSCA Subsystems and Implementation 176 

Considerations 

4.3.2. The SPEX Subsystem 

4.3.3. The Format Subsystem 

4.3.4. The Analyse Subsystem 

4.3.5. Metric Calculation and the SSCA 

4.3.5.1. COBOL Metrics for the Metric 

Calculator 

4.3.5.2. SSCA and SSCA DB Implications 

CHAPTER 5. Conclusions 

5.1. Maintenance in General 

5 .2. Software Metrics 

5. 3. Maintenance Support through Tools 

5. 4. The Prototype SSCA System 

5. 4 .1. SSCA Development 

5. 4. 2. Use of the SSCA DB 

5. 5. General Conclusion 

179 

184 

195 

199 

200 

206 

209 

209 

212 

213 

216 

216 

219 

222 



APPENDIX 1. The PURGE Program and its 

Modifications 

APPENDIX 2. Maintenance Tools 

223 

249 

APPENDIX 3. A Reduced COBOL Language 271 

3A. Omissions from Standard COBOL 271 

3B. Language Description 278 

APPENDIX 4. COBOL Source Code Information 296 

4A. Entities and Attributes for Information in 296 

a COBOL Program 

4B. Standard Phrases for Formatting 311 

BIBLIOGRAPHY 314 



TABLE OF FIGURES 

Page 

2.4. A Model of Operational and Maintenance 27 

3.2. 

3. 3. 

3. 4. 

Activities 

An Application Documentation Scheme 105 

Application Documentation and Tools 117 

A possible Structure for a Static Analysis 130 

System 

4.2.1. Examples of Section, Paragraph, 151 

Statement-Groups and 

Statement Instances 

4.2.2. Relationships derived from Program 161 

Structure 

4.2.3. Relationships derived from Data 

Declaration 

162 

4.2.4. Relationships derived from Branching 163 

4.2.5. Relationships derived from Data 163 

4. 2. 6. 

4. 3.1. 

4. 3. 2. 

4. 3. 3. 

Reference 

Types of Relationships 

The SPEX Subsystem 

The Format Subsystem 

The Analyse Subsystem 

167 

179 

185 

196 



Al.1. Data and Program Structures for Program 247 

PURGE - File Structures 

Al.2. Program Structure 248 



1 

CHAPTER 1. INTRODUCTION. 

This thesis is concerned with software maintenance and 

tools and techniques for the support of software 

maintenance. This chapter briefly outlines the areas 

covered by later chapters and their sections. 

Software maintenance is an expensive area of the system 

life cycle consuming an estimated 32% of system costs 

[MCK84]. Although maintenance is now beginning to be 

recognised as important, the amount of direct 

maintenance research which has been carried out is 

limited. Exactly what constitutes a maintenance task is 

still not completely defined especially the demarcation 

between maintenance and redevelopment. The emphasis of 

Chapter 2 is on defining and describing various aspects 

of maintenance (particularly aspects which are 

considered problematic), examining the relationship 

between development and maintenance and attempting to 

identify general principles for the modification of 

software. 

In Section 2.1 a broad definition of maintenance is 

given and discussed. Reasons for maintenance are also 

examined in this section. The reasons suggest that 

maintenance is fundamental to most computer systems. 



2 

Although it could be supported by general tools, like 

fourth generation languages (4GLs), maintenance will 

certainly not disappear in the future [TAT85]. 

A task which has been identified as maintenance can be 

further classified using a number of categorisation 

schemes. These schemes, and some of the benefits and 

dangers in using them, are investigated in Section 2.2. 

Source code produced in maintenance costs between 10 

and 100 times more than in development [CON84]. High 

code production costs and maintenance backlogs of up to 

2.5 years [TIN84] suggest that particular problems 

occur in maintenance which hamper increases in 

productivity. Several surveys of DP managers and/or 

programmers [CHA85] [LIE78] [REU81] have been carried 

out in an attempt to identify maintenance problems. 

Results from these surveys and suggestions from other 

researchers are discussed in Section 2.3. 

Section 2.4 helps to further define maintenance in 

terms of its place within the system life cycle. In 

this section, the steps or actions associated with any 

software modification task (i.e. maintenance task) are 

also identified. The definition of aspects of 

maintenance is completed in Section 2.5 with an 

examination of direct influences on the process of 



software modification and 

phenomena known as "ripple 

decay". 

3 

a description of the 

effect" and "structural 

Section 2.6 and part of Section 2.5 are devoted to 

discussing 

maintenance. 

principles 

principles for 

Difficulties 

are illustrated 

achieving successful 

with identifying such 

through the design and 

implementation of modifications to a particular COBOL 

program (the program is given in Appendix 1). 

Having defined maintenance and its problems in Chapter 

2, tools and techniques to support various aspects of 

maintenance are presented in Chapter 3. Static 

complexity metrics (usually applied to individual 

programs) have been suggested as measures of the 

difficulty in understanding source code in maintenance 

and producing debugged source code in development. 

These metrics are directly applicable in maintenance as 

the code exists whereas for most development operations 

they must be estimated. The metrics range from simple 

counts of language tokens in a program through measures 

requiring the application of complex algorithms for 

their calculation. Section 3.1 reviews and compares 

many proposed complexity metrics. 



4 

Various documentation is used by managers, users and 

maintainers to aid understanding of an application 

system. As well as using documents, maintenance is 

concerned with keeping documents up-to-date and 

consistent. Program source code itself is a form of 

documentation. Several systems or environments have 

been proposed for general documentation support (these 

are summarised in Appendix 2). Aspects of documentation 

support relevant to maintenance, including document 

categorisation, are discussed in Section 3.2. 

Software tools can automate or, at least, support many 

maintenance related tasks including reformatting, 

control and data flow analysis, restructuring and 

dynamic analysis of programs. Such tools are often 

useful both in development and maintenance (e.g. RXVP 

[EBE80] and SADAT [VOG80]). A number of tools are 

briefly summarised in Appendix 2. In Section 3.3, these 

tools are classified and general maintenance support 

through tools is examined. 

Syntactic analysis of a program's source code is a 

feature of many tools. Frequently, tool functions make 

use of a pool of syntactic information gathered 

earlier. For example, the control and data tracing 

features of MAP [WAR82] and program instrumentation for 

dynamic analysis in RXVP [EBE80]. Syntactic analysis 



5 

and the production of a syntactic data base are tasks 

worth isolating in 

Section 3.4, the idea 

single 

of a 

purpose software tool. In 

program analysis system 

composed of a variety of tools, most of which make use 

of syntactic data base information, is explored. The 

logical contents of such a data base are also 

identified in this section. 

Chapter 4 summarises the implementation of a Syntactic 

Source Code Analyser (SSCA) and it's database (SSCA DB) 

for a version of COBOL. Such a system is a first step 

toward a maintenance support system based on static 

analysis. Availability of a SSCA DB should encourage 

development of more advanced COBOL analysis tools and 

provide a measure of integration between these tools. 

COBOL was chosen as the language to analyse because of 

the large number of commercial programs written in it 

(approximately 80% according to Al-Jarrah and Torsun 

[TOR79]). However, the proposed revised X3.23-Sept. 

1981 COBOL language definition [COB81] defines a large 

and complex language composed of a nucleus and eleven 

functional modules. For a prototype SSCA, it was 

considered desirable to reduce this 

removing many special purpose modules and 

some language features. The reduction 

outlined in Section 4.1 and Appendix 3A. 

standard by 

simplifying 

process is 

Appendix 3B 



6 

contains the reduced COBOL language definition. 

Part of developing a SSCA system involves selection of 

an appropriate Data Base Management System (DBMS) for 

the SSCA DB and detailed data design for the SSCA DB. 

Section 3.4 has already presented a logical view of 

what should be in this database. In Section 4.2 this 

view is elaborated for application to COBOL. The new 

data model is then used for the selection of a DBMS 

(the INGRES relational system was chosen) and, finally, 

an implementation data model is prepared. 

Section 4.3 describes the methods employed to build a 

syntactic analyser and formatter for COBOL programs. 

The implementation was carried out using a number of 

construction devices available on a VAX 11/750 running 

ULTRIX-32. ULTRIX-32 is a trademark of the Digital 

Equipment Corporation. The construction tools included 

C (a general purpose programming language), AWK (a 

pattern matching language), LEX (a lexical analysis 

preprocessor for C), YACC (a grammar parsing 

preprocessor for C) and EQUEL (a C/INGRES interaction 

language). Extensive use was also made of the technique 

for transferring data between executing processes known 

as piping. 



7 

Chapter 5 presents conclusions from the research 

carried out in this thesis. The conclusions cover areas 

such as maintenance in 

through software tools 

general, maintenance 

and evaluation of 

development presented in Chapter 4. 

support 

the SSCA 




