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Abstract

The interactions between the components of many natural and artificial systems can be described using
a graph. These graphs often have an irregular structure with non-trivial topological features. Complex
system behaviour emerges on the macroscopic scale from a large number of relatively simple interactions
on the microscopic scale. To better understand the observed behaviour of a complex system, the interactions
among its basic elements are commonly described in a computational model. As long as the interactions are
defined accurately and the number of elements is large enough for complex patterns to emerge, a simulation
based on such a model is expected to produce the same behaviour as the system under investigation.

The difficulty is often to simulate the model on a large enough scale to obtain scientifically meaningful
results. Powerful computer systems are required to calculate the effects caused by the interactions of large
numbers of elements. Supercomputers that are constructed from hundreds of thousands of processing units
can be used to update many components of the system in parallel and thus reduce the overall simulation
time, but these systems are expensive to buy and maintain. As the processor architectures used in worksta-
tions and regular desktop computers are becoming more powerful, a small cluster constructed from these
systems can be a more viable option. In recent years, the highly data parallel architecture of commodity
graphics processing units (GPUs) has received a growing amount of attention due to their high peak com-
pute throughput compared to central processing units (CPUs). New software development tools that turn
the GPU hardware into a general purpose compute accelerator have become available.

This thesis describes how GPUs can be used to accelerate scientific simulations of complex systems that
are based on irregular graph structures. New software development approaches and algorithms are needed
to fully utilise the data parallel many-core architecture of today’s GPUs. Irregular graph structures are par-
ticularly challenging, as the hardware is based on the single instruction, multiple data (SIMD) processor
design, where a group of processing elements receives the same instructions. The architecture also imposes
strict requirements on memory access patterns, making the optimisation of the memory layout for the ir-
regular data structures and associated information particularly important. Performance suffers dramatically
when the algorithm does not comply with these design restrictions.

The author proposes different software design strategies for a number of common graph problems and
discusses the advantages and disadvantages of each approach. Two complex system models are used to
demonstrate how the GPU can help to accelerate scientific simulations. The first model investigates how
the phase transition from ordered to disordered system states in a computational ferromagnet is affected
by distortions to the lattice substrate. The second model implements a large scale spiking neural network.
The findings show that it is beneficial to utilise the GPU as accelerator to the CPU in almost all scenarios,
as long as the project has a long enough run time to justify the more complex software development of
the data parallel algorithms. When the model has some regularities in its structure or when some of the
design decisions that influence the way memory is accessed can be made with the data parallel architecture
in mind, then it is possible to achieve such high performance on the graphics device that it is best to leave

the entire computational work to the GPU and use the CPU only to manage the execution of the program.






Acknowledgements

First and foremost I want to thank my parents, Helmut and Gisela, for their continuous support and en-
couragement. I also want to express my gratitude to my supervisors, Professor Ken Hawick and Associate
Professor Chris Scogings, who provided guidance throughout this endeavour. Their experience and exper-
tise have been invaluable to the success of this thesis.

I would like to acknowledge my peers, whose friendship has made the last few years so much more
enjoyable and whose knowledge and advice have helped me many times: Dr Daniel Playne, Dr Anton
Gerdelan, Dr Andrew Gilman, Dr Guy Kloss, Dr Andre Barczak, Dr Martin Johnson and all the other
members of the Complex Systems and Simulations Group at Massey University. I also want to thank
everyone who has helped to make me feel welcome and at home in New Zealand.

Finally, I would like to acknowledge the financial support from the Massey University Vice-Chancellor’s

Doctoral Scholarship and the New Zealand International Doctoral Research Scholarship.






Contents

List of Figures

List of Tables

Introduction

. Overview and Aim of this Thesis

1.1. High Performance Computing . . . . . . . . . . . ... ..
1.2. The GPU as Compute Accelerator . . . . . . . . ... .. ... ... ...
1.3. Thesis Structure . . . . . . ..o

Graph Structures

2.1. A Regular d-Dimensional Lattice . . . . . . . ... ... .. ..
2.2. Random Graphs . . . . . . . . ..
2.3. Graph Complexity . . . . . . . . . . e
24. Scale-Free Graphs . . . . . . . . . . . e
2.5. The Small-World Phenomenon . . . . . ... ... ... L
2.6. Small-World Network Models . . . . ... ... ... ... ... .. ... ... .. ..

Parallel Processing Architectures

3.1 Multi-Core CPU . . . . . L o

3.2. Cell Broadband Engine . . . . . . . . . . .. ...

3.3. Graphics Processing Units . . . . . . . . ...
3.3.1. The GPU Architecture . . . . . . . . . . .. . .. ..
3.3.2. The CUDA Programming Model . . . . . .. ... ... ... .. .........

34. TestEnvironment . . . . . . . . ... e

Parallel Graph Algorithms

Parallel Random Number Generation

4.1. The Sequential CPU Implementation . . . . . . . . .. ... ... ... ... .......
4.2. The Multi-Threaded CPU Implementation . . . . . . . ... ... ... ... .......
43. The CUDA GPU Implementation . . . . . . . ... ... ... ... ... ......
4.4. Multi-Platform Lagged-Fibonacci Performance Results . . . . . .. ... ... ... ...

11

15

17

19
19
20
21

23
23
24
25
27
28
30

33
33
34
35
36
38
40

41



Contents

4.5. GPU Performance Results . . . . .. ... .. .. ... ........

5. Parallel Graph Generation

5.1. Small-World Graphs . . . . . . ... ... ..
5.1.1. The Sequential CPU Implementation . . . ... ... .....
5.1.2. The Multi-Threaded CPU Implementation . . . . . . . ... ..
5.1.3. The CUDA GPU Implementation . . . .. ... ........
5.1.4. PerformanceResults . . . . . ... ... ... ... ......

5.2. Scale-Free Graphs . . . . . . .. .. ...
5.2.1. The Sequential CPU Implementation . . . ... ... ... ..
5.2.2. The Multi-Threaded CPU Implementation . . . . . . . ... ..
5.2.3. The CUDA GPU Implementation . . . .. ... ........
5.2.4. PerformanceResults . . . . ... ... ... ...

5.3. Memory Allocation Experiment . . . . . . ... ... ... ......

54, DISCUSSION . . . v v v vt e

6. Parallel Graph Analysis

6.1. Component Labelling . . . . .. ... ... ... ... ... ......
6.1.1. Data Structures . . . . . . . .. ...
6.1.2. CPU Implementations - Sequential & TBB . . . . .. ... ..
6.1.3. The CUDA Implementations . . . . . . .. ... ........
6.1.4. Performance Results . . . . ... ... ... ..........

6.2. Clustering Coefficient . . . . . . . . . ... ... ...
6.2.1. CPU - Sequential, PThreads & TBB . . . . . .. ... ... ..
6.22. GPU-CUDA . . . .. . . .
6.2.3. Cell Processor-PS3 . . . . ... ... ... ... ...
6.2.4. Performance Results . . . . ... ... ... ..........

6.3. Discussion . . . . . ...

I1l. Complex Systems Simulation & Analysis

7. The Rewired Ising Model

7.1. Metropolis Updates . . . . . .. ... ... ... ... ...
7.1.1. Generating the Small-World Lattice . . . . ... ... .. ...
7.1.2. Rewired Irregular Data Structure . . . . . . . ... ... ....
7.1.3. The CUDA GPU Implementation . . . .. ... ........
7.1.4. Sequential & Parallel CPU Implementations . . . . . . ... ..
7.1.5. Performance Results . . . .. ... ... ............

7.2. Wolff Cluster Updates . . . . . . .. ... ... .. ... ......
7.2.1. Rewired Irregular Data Structure . . . . . . . ... ... ....
7.2.2. The CUDA GPU Implementation . . . .. ... ........
7.2.3. PerformanceResults . . . . ... ... ... ..

7.3. Visualisation of the Rewired Ising Model . . . . .. ... ... ... ..
7.3.1. Implementation . . . . . ... ... ... ............

7.3.2. High Performance Simulation and Visualisation

7.4. Spectral Analysis . . . . . . ...



Contents 9
7.5. Ising Model Simulation . . . . . . . . . ... 132
7.5.1. Equilibration Phase . . . . . . . ... oL o 135

7.5.2. Decorrelated Measurements . . . . . . . . ... ..o e e 135

7.6. Statistics Computation with CUDA . . . . . . . . ... .. . 139
7.7. Critical TemMperatures . . . . . . . . oo v v vt e e e e e e e e e e e 140
7.7.1. Heat Capacity & Magnetic Susceptibility . . . . . . ... ... ... .. ..... 141

7.7.2. Binder CumulantResults . . . . . ... ... . o o o o 142

7.8, DISCUSSION . . . . . v v vt e e e 143

8. A Neural Network Model 147
8.1. TheModel . . . . . . . . . 148
8.2. The Network & Data Structure . . . . . . . . .. . ... 149
8.3. CUDA Implementation of the Cortical Model . . . . . .. ... .. ... ... ...... 152
8.4. Multi-GPU and Cluster Implementations . . . . . . . . . ... ... ... .. ....... 160
8.5. Performance Results . . . . ... ... . . o 162
8.6. Processing the Pseudo-EEG Signal . . . . . . ... ... .. ... ... L. 167
8.6.1. Sampling an Analog EEG Signal . . . . . .. ... ... ... . .. 167

8.6.2. Digital Signal Processing . . . . . . . . . ... 167

8.7. Visual Analysis & Interactive Simulation Control . . . . . . . .. . ... ... ...... 169
88, Discussion. . . . . ... 173
IV. Discussion & Conclusions 175
9. Discussion 177
9.1. Parallel Processing Architectures . . . . . . . . . . ... Lo 177
9.2. Data Parallel Programming Models . . . . . . ... ... ... ... ... ... . ... . 178
9.2.1. The Compute Unified Device Architecture . . . . . ... .. ... ... ..... 178

9.2.2. The Open Computing Language . . . . . . . . ... ... ... ... ....... 180

9.2.3. Other Programming Models . . . . . ... ... ... ... ... ...... 180

10. Conclusions & Future Work 183
10.1. The GPU as Compute Accelerator . . . . . . . . ... .. ... ... 183
10.2. Irregular Graph Structures on a Data Parallel Architecture . . . . . . . . ... .. ... .. 185
10.3. Opportunities for Future Work . . . . . . . . ... . L oo 187
Appendices 191
A. Milgram’s Small-World Experiment 191
B. The Small-World a-Model 193
C. Binder Cumulant Results: Continued 195
D. Different Types of Spiking Neurons 199
E. List of Publications 201
Bibliography 203






List of Figures

2.1.
2.2.
2.3.
24.

3.1.
3.2.
3.3.
3.4.

4.1.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.

5.8.

5.9

5.10.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

The simple cubic

crystal structure. . . . ... ...

A regular 2-dimensional lattice with periodic boundaries. . . . . . . . ... ... ... ..

The characteristic path length L(p) and clustering coefficient C(p) for Watts” f-model. . .

Watts’ small-world a--model. . . . . . . . . . ...

A high-level view of a multi-core CPU architecture. . . . . . . ... ... ... ......

A high-level view of the architecture of the Cell Broadband Engine. . . . . ... ... ..
A high-level view of the “Fermi” GPU architecture. . . . . . . .. ... ... .......

A detailed view of a “Fermi” Streaming Multiprocessor. . . . . . . . . ... ... ....

Random number generator: Scaling the number of TBB tasks. . . . . .. ... ... ...

A “caveman” network generated with Watts’ o--model. . . . . . ... ... ...

Graph generation:
Graph generation:
Graph generation:
Graph generation:

Graph generation:

Graph generation
allocation size.
Graph generation
network size. .
Graph generation

mean degree. .

Performance results for the oi-model when scaling parameter o.

Performance results for the ot-model when scaling the allocation size. 1.

Performance results for the ot-model when scaling the network size. . .
Performance results for the oi-model when scaling the mean degree. . .
: Performance results for the scale-free network model when scaling the
: Performance results for the scale-free network model when scaling the

: Performance results for the scale-free network model when scaling the

Allocation size performance test. . . . . . . . . ...

Component labelling: The graph data structures for the CPU and CUDA algorithms.

Component labelling: Performance when processing graphs of type Disjoint 1. . . . . . .

Component labelling: Performance when processing graphs of type Disjoint2. . . . . . .

Component labelling: Performance when processing graphs of type Disjoint3. . . . . . .

Component labelling: Performance when processing line graphs. . . . . . . ... ... ..

Component labelling: Performance when processing scale-free graphs. . . . . . . . . . ..

Component labelling: Performance when processing complex graphs 1. . . . . . . .. ..

Component labelling: Performance when processing complex graphs 2. . . . . . . .. ..

Component labelling: Performance when processing random graphs. . . . . . . . ... ..

Performance results for the ot-model when scaling the allocation size. II.

24
24
30
31

33
35
36
37

46

54
60
60
60
61
61

67

68

68
70

75



12 List of Figures
6.10. Clustering coefficient: The data structure for the Cell BE implementation. . . . . . . . .. 93
6.11. Clustering coefficient: The phases of the Cell BE implementation. . . . . .. .. ... .. 96
6.12. Clustering coefficient: Performance results for small-world graphs. . . . . . . .. ... .. 97
6.13. Clustering coefficient: Performance results for scale-free graphs. . . . . . . . .. ... .. 97
7.1. Ising model: An example of a 2-dimensional Ising system. . . . ... ... ... ... .. 104
7.2. Ising model: Rewiring procedure for the irregular lattice Ising model. . . . . . . ... .. 106
7.3. Ising model: The mapping of threads to cells used for the Metropolis algorithm. . . . . . . 106
7.4. Ising model: The vertex arrays used by the implementations of the Metropolis algorithm. . 107
7.5. Ising model: The arc arrays used by the implementations of the Metropolis algorithm. . . . 107
7.6. Ising model: Execution times for Metropolis updates with increasing rewiring probability. 111
7.7. Ising model: Execution times for Metropolis updates with increasing system size. . . . . . 112
7.8. Ising model: Execution times for the Wolff algorithm with local updates in shared memory. 120
7.9. Ising model: Execution times for Wolff updates when approaching the equilibrium state. . 120
7.10. Ising model: Execution times for Wolff updates with increasing rewiring probability. . . . 121
7.11. Ising model: Execution times for Wolff updates with increasing system size. . . . . . . . . 122
7.12. Ising model visualisation: 2D regular and rewired lattice. . . . . . .. ... ... ... .. 125
7.13. Ising model visualisation: Insidea3Dmodel. . . . .. ... ... ... ... . ... 126
7.14. Ising model visualisation: A rewired 3D model and interactive parameter changes. . . . . 126
7.15. Ising model visualisation: Wolff clusterupdates. . . . . . . . ... ... ... ... .... 127
7.16. Ising model analysis: Spherical mean of the 3D FFT. . . . . . ... ... ... ... ... 130
7.17. Ising model analysis: Cluster size distribution of the 3D Ising system. . . . . .. ... .. 131
7.18. Ising model analysis: The FFT of a 2D system visualised. . . . . . . . ... ... ... .. 131
7.19. Ising model analysis: Hyper-surfaces of the 3D FFT for a regular lattice. . . . . . ... .. 133
7.20. Ising model analysis: Hyper-surfaces of the 3D FFT for a lattice rewired in all dimensions. 133
7.21. Ising model analysis: Hyper-surfaces of the 3D FFT for a lattice rewired in one dimension. 134
7.22. Ising model analysis: Hyper-surfaces of the 3D FFT for a lattice rewired in two dimensions. 134
7.23. Ising model simulation: The equilibration phase. . . . . . . .. ... ... ... ..... 136
7.24. Ising model simulation: Histogram of the energy distribution. . . . . . . .. ... ... .. 137
7.25. Ising model simulation: Decorrelated measurements. . . . . . . . . .. ... ... .... 138
7.26. Ising model analysis: Heat capacity and magnetic susceptibility. . . . . ... .. ... .. 141
7.27. Ising model analysis: Binder cumulant results for systems with p=10"4. . . . . . . . .. 142
7.28. Ising model: The shift in the critical temperature with respect to the rewiring probability p. 144
8.1. Cortical model: The mapping of threads toneurons. . . . . . . . . ... ... ... .... 151
8.2. Cortical model: The neighbour distribution. . . . . . . ... ... ... ... .. ..... 151
8.3. Cortical model: The neighbours structure. . . . . . . . ... .. ... ... ... ... .. 151
8.4. Cortical model: Action potentials from neighbouring neurons. . . . . . . . ... ... .. 158
8.5. Cortical model: The distributed system model for multi-GPU processing. . . . . ... .. 160
8.6. Cortical model: A pseudo-EEG. . . . . . ... ... ... L 164
8.7. Cortical model: Execution times when scaling the system size. . . . . .. ... ... ... 164
8.8. Cortical model: Execution times when scaling the average degree. . . . . .. .. ... .. 164
8.9. Cortical model: Execution times when scaling the maximum neighbour distance. . . . . . 166
8.10. Windowing functions for signal processing. . . . . . . . . . .. .. ... ... 168
8.11. An interactive visual analysis tool for the cortical model. . . . . . .. ... ... ... ... 170
8.12. A visualisation of the pseudo-EEG and individual neural firing rates. . . . . . .. ... .. 172
C.1. Ising model analysis: Binder cumulant results for systems with p=10"". . . . .. .. .. 195



List of Figures 13

C.2.
C3.
C4.
C5s.

D.1.

Ising model analysis: Binder cumulant results for systems with p=1076. . . . . ... .. 196
Ising model analysis: Binder cumulant results for systems with p =107, . . . . ... .. 196
Ising model analysis: Binder cumulant results for systems with p =103, . . . . ... .. 197
Ising model analysis: Binder cumulant results for systems with p=10"2. . . . . . .. .. 197

Cortical model: The different types of spiking neurons. . . . . . . ... ... ... .... 199






List of Tables

4.1.
4.2.

5.1.

6.1.
6.2.
6.3.
6.4.
6.5.

7.1.
7.2.
7.3.
7.4.
7.5.

8.1.
8.2.
8.3.
8.4.

Random number generator: Performance comparison on different architectures. . . . . . . 50
Random number generator: Performance of different algorithms on the GPU. . . . . . . . 51
Graph generation: Performance summary. . . . . . . . . .. ... .. L L. 71
Component labelling: Summary of the component labelling algorithms. . . . . . . .. .. 81
Component labelling: The graph types used for the performance measurements. . . . . . . 82
Component labelling: The slopes of the least square linear fits to the data sets. . . . . . . . 86
Component labelling: Performance summary. . . . . . .. .. ... ... ... ...... 86
Clustering coefficient: Performance summary. . . . . . ... ... ... ... ....... 98
Ising model: Performance summary for the Metropolis algorithm. . . . . . ... ... .. 113
Ising model: Wolff and Metropolis update performance compared. . . . . . ... ... .. 121
Ising model visualisation: Performance results for single and dual GPU simulations. . . . . 128
Ising model simulation: Overview of the system configurations. . . . . ... ... .. .. 140
Ising model analysis: The critical temperatures for p=10"2top=10"". . . . . . .. .. 143
Cortical model: The device memory requirements per neuron. . . . . . . . . .. ... .. 159
Cortical model: A list of the test systems used for the performance measurements. . . . . . 165
Cortical model: The slopes of the least square linear fits to the data sets. . . . . . . .. .. 166

Cortical model: The range of frequency bands in the periodogram. . . . . . . ... .. .. 171






