Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Experiences in Data-Parallel Simulation and Analysis of Complex Systems with Irregular Graph Structures

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in

Computer Science

at Massey University, Albany New Zealand.

Arno Leist

2011

Abstract

The interactions between the components of many natural and artificial systems can be described using a graph. These graphs often have an irregular structure with non-trivial topological features. Complex system behaviour emerges on the macroscopic scale from a large number of relatively simple interactions on the microscopic scale. To better understand the observed behaviour of a complex system, the interactions among its basic elements are commonly described in a computational model. As long as the interactions are defined accurately and the number of elements is large enough for complex patterns to emerge, a simulation based on such a model is expected to produce the same behaviour as the system under investigation.

The difficulty is often to simulate the model on a large enough scale to obtain scientifically meaningful results. Powerful computer systems are required to calculate the effects caused by the interactions of large numbers of elements. Supercomputers that are constructed from hundreds of thousands of processing units can be used to update many components of the system in parallel and thus reduce the overall simulation time, but these systems are expensive to buy and maintain. As the processor architectures used in workstations and regular desktop computers are becoming more powerful, a small cluster constructed from these systems can be a more viable option. In recent years, the highly data parallel architecture of commodity graphics processing units (GPUs) has received a growing amount of attention due to their high peak compute throughput compared to central processing units (CPUs). New software development tools that turn the GPU hardware into a general purpose compute accelerator have become available.

This thesis describes how GPUs can be used to accelerate scientific simulations of complex systems that are based on irregular graph structures. New software development approaches and algorithms are needed to fully utilise the data parallel many-core architecture of today's GPUs. Irregular graph structures are particularly challenging, as the hardware is based on the single instruction, multiple data (SIMD) processor design, where a group of processing elements receives the same instructions. The architecture also imposes strict requirements on memory access patterns, making the optimisation of the memory layout for the irregular data structures and associated information particularly important. Performance suffers dramatically when the algorithm does not comply with these design restrictions.

The author proposes different software design strategies for a number of common graph problems and discusses the advantages and disadvantages of each approach. Two complex system models are used to demonstrate how the GPU can help to accelerate scientific simulations. The first model investigates how the phase transition from ordered to disordered system states in a computational ferromagnet is affected by distortions to the lattice substrate. The second model implements a large scale spiking neural network. The findings show that it is beneficial to utilise the GPU as accelerator to the CPU in almost all scenarios, as long as the project has a long enough run time to justify the more complex software development of the data parallel algorithms. When the model has some regularities in its structure or when some of the design decisions that influence the way memory is accessed can be made with the data parallel architecture in mind, then it is possible to achieve such high performance on the graphics device that it is best to leave the entire computational work to the GPU and use the CPU only to manage the execution of the program.

Acknowledgements

First and foremost I want to thank my parents, Helmut and Gisela, for their continuous support and encouragement. I also want to express my gratitude to my supervisors, Professor Ken Hawick and Associate Professor Chris Scogings, who provided guidance throughout this endeavour. Their experience and expertise have been invaluable to the success of this thesis.

I would like to acknowledge my peers, whose friendship has made the last few years so much more enjoyable and whose knowledge and advice have helped me many times: Dr Daniel Playne, Dr Anton Gerdelan, Dr Andrew Gilman, Dr Guy Kloss, Dr Andre Barczak, Dr Martin Johnson and all the other members of the Complex Systems and Simulations Group at Massey University. I also want to thank everyone who has helped to make me feel welcome and at home in New Zealand.

Finally, I would like to acknowledge the financial support from the Massey University Vice-Chancellor's Doctoral Scholarship and the New Zealand International Doctoral Research Scholarship.

Contents

Lis	st of Figures	11	
Lis	st of Tables		
I.	Introduction	17	
1.	Overview and Aim of this Thesis	19	
	1.1. High Performance Computing	19	
	1.2. The GPU as Compute Accelerator	20	
	1.3. Thesis Structure	21	
2.	Graph Structures	23	
	2.1. A Regular <i>d</i> -Dimensional Lattice	23	
	2.2. Random Graphs	24	
	2.3. Graph Complexity	25	
	2.4. Scale-Free Graphs	27	
	2.5. The Small-World Phenomenon	28	
	2.6. Small-World Network Models	30	
3.	Parallel Processing Architectures	33	
	3.1. Multi-Core CPU	33	
	3.2. Cell Broadband Engine	34	
	3.3. Graphics Processing Units	35	
	3.3.1. The GPU Architecture	36	
	3.3.2. The CUDA Programming Model	38	
	3.4. Test Environment	40	
11.	. Parallel Graph Algorithms	41	
4.	Parallel Random Number Generation	43	
	4.1. The Sequential CPU Implementation	44	
	4.2. The Multi-Threaded CPU Implementation	45	
	4.3. The CUDA GPU Implementation	46	
	4.4. Multi-Platform Lagged-Fibonacci Performance Results	48	

	4.5.	GPU Performance Results	50
5.	Para	allel Graph Generation 5	53
	5.1.	Small-World Graphs	54
		5.1.1. The Sequential CPU Implementation	54
		5.1.2. The Multi-Threaded CPU Implementation	55
		5.1.3. The CUDA GPU Implementation	56
		5.1.4. Performance Results	59
	5.2.	Scale-Free Graphs	52
		5.2.1. The Sequential CPU Implementation	52
		5.2.2. The Multi-Threaded CPU Implementation	53
		5.2.3. The CUDA GPU Implementation	54
		5.2.4. Performance Results	56
	5.3.	Memory Allocation Experiment	59
	5.4.	Discussion	70
6.	Para	allel Graph Analysis 7	′3
	6.1.	Component Labelling	13
		6.1.1. Data Structures	14
		6.1.2. CPU Implementations - Sequential & TBB	14
		6.1.3. The CUDA Implementations	16
		6.1.4. Performance Results	31
	6.2.	Clustering Coefficient	36
		6.2.1. CPU - Sequential, PThreads & TBB	37
		6.2.2. GPU - CUDA) 0
		6.2.3. Cell Processor - PS3)3
		6.2.4. Performance Results) 7
	6.3.	Discussion) 9
 -	I. Co	omplex Systems Simulation & Analysis 10	1
1.	1 ne	Rewired Ising Model	13
	/.1.	7.1.1. Concepting the Small World Lettice)5)5
		7.1.2. Derviced Imagener Data Structure)S
		7.1.2. Rewired Integular Data Structure	סנ דר
		7.1.4. Semential & Devillel CDU Luchementations)/
		7.1.4. Sequential & Parallel CPU Implementations	10
	7.0		11
	7.2.		13
		7.2.1. Rewired Irregular Data Structure	14
		7.2.2. The CUDA GPU Implementation	14
		7.2.3. Performance Results	18
	7.3.	Visualisation of the Rewired Ising Model	22
		7.3.1. Implementation	23
		7.3.2. High Performance Simulation and Visualisation	23
	7.4.	Spectral Analysis	29

	7.5.	Ising Model Simulation	132
		7.5.1. Equilibration Phase	135
		7.5.2. Decorrelated Measurements	135
	7.6.	Statistics Computation with CUDA	139
	7.7.	Critical Temperatures	140
		7.7.1. Heat Capacity & Magnetic Susceptibility	141
		7.7.2. Binder Cumulant Results	142
	7.8.	Discussion	143
8.	ΑN	eural Network Model	147
	8.1.	The Model	148
	8.2.	The Network & Data Structure	149
	8.3.	CUDA Implementation of the Cortical Model	152
	8.4.	Multi-GPU and Cluster Implementations	160
	8.5.	Performance Results	162
	8.6.	Processing the Pseudo-EEG Signal	167
		8.6.1. Sampling an Analog EEG Signal	167
		8.6.2. Digital Signal Processing	167
	8.7.	Visual Analysis & Interactive Simulation Control	169
	8.8.	Discussion	173
١V	. Di	scussion & Conclusions	175

I١

9.	Disc	cussion					177
9.1. Parallel Processing Architectures						 177	
	9.2.	Data P	arallel Programming Models				 178
		9.2.1.	The Compute Unified Device Architecture				 178
		9.2.2.	The Open Computing Language				 180
		9.2.3.	Other Programming Models		•	•	 180
10	. Con	clusion	s & Future Work				183
	10.1	. The GI	PU as Compute Accelerator				 183
	10.2	. Irregul	ar Graph Structures on a Data Parallel Architecture				 185
	10.3	. Opport	unities for Future Work				 187
A	pper	ndices					191
А _І А.	pper Mil	ndices gram's S	Small-World Experiment				191 191
А А. В.	pper Milg The	ndices gram's s small-	Small-World Experiment World $lpha$ -Model				191 191 193
А _І А. В. С.	pper Mil The Bind	ndices gram's : Small- der Cun	Small-World Experiment World $lpha$ -Model nulant Results: Continued				191 191 193 195
А ₁ А. В. С. D.	Diff	ndices gram's : Small- der Cun erent T	Small-World Experiment World α-Model nulant Results: Continued ypes of Spiking Neurons				191 191 193 195 199
A A. B. C. D.	Diff Diff List	ndices gram's s Small- der Cun erent T of Pub	Small-World Experiment World α-Model nulant Results: Continued ypes of Spiking Neurons lications				 191 191 193 195 199 201

List of Figures

2.1.	The simple cubic crystal structure.	24
2.2.	A regular 2-dimensional lattice with periodic boundaries.	24
2.3.	The characteristic path length $L(p)$ and clustering coefficient $C(p)$ for Watts' β -model	30
2.4.	Watts' small-world α -model	31
3.1.	A high-level view of a multi-core CPU architecture.	33
3.2.	A high-level view of the architecture of the Cell Broadband Engine.	35
3.3.	A high-level view of the "Fermi" GPU architecture.	36
3.4.	A detailed view of a "Fermi" Streaming Multiprocessor.	37
4.1.	Random number generator: Scaling the number of TBB tasks.	46
5.1.	A "caveman" network generated with Watts' α -model.	54
5.2.	Graph generation: Performance results for the α -model when scaling parameter α	60
5.3.	Graph generation: Performance results for the α -model when scaling the allocation size. I.	60
5.4.	Graph generation: Performance results for the α -model when scaling the allocation size. II.	60
5.5.	Graph generation: Performance results for the α -model when scaling the network size	61
5.6.	Graph generation: Performance results for the α -model when scaling the mean degree	61
5.7.	Graph generation: Performance results for the scale-free network model when scaling the	
	allocation size.	67
5.8.	Graph generation: Performance results for the scale-free network model when scaling the	
	network size.	68
5.9.	Graph generation: Performance results for the scale-free network model when scaling the	
	mean degree	68
5.10.	Allocation size performance test.	70
6.1.	Component labelling: The graph data structures for the CPU and CUDA algorithms	75
6.2.	Component labelling: Performance when processing graphs of type Disjoint 1	83
6.3.	Component labelling: Performance when processing graphs of type Disjoint 2	83
6.4.	Component labelling: Performance when processing graphs of type Disjoint 3	84
6.5.	Component labelling: Performance when processing line graphs	84
6.6.	Component labelling: Performance when processing scale-free graphs	84
6.7.	Component labelling: Performance when processing complex graphs 1	84
6.8.	Component labelling: Performance when processing complex graphs 2	85
6.9.	Component labelling: Performance when processing random graphs	85

6.10. Clustering coefficient: The data structure for the Cell BE implementation	93
6.11. Clustering coefficient: The phases of the Cell BE implementation.	96
6.12. Clustering coefficient: Performance results for small-world graphs	97
6.13. Clustering coefficient: Performance results for scale-free graphs	97
7.1 Joing model: An example of a 2-dimensional Joing system	104
7.1. Ising model: An example of a 2-unichsional Ising system.	104
7.2. Ising model. The menning of threads to calls used for the Metropolis algorithm	100
7.5. Ising model. The mapping of threads to cens used for the Metropolis algorithm	100
7.4. Ising model. The vertex arrays used by the implementations of the Metropolis algorithm.	107
7.5. Ising model: The arc arrays used by the implementations of the Metropolis algorithm	107
7.6. Ising model: Execution times for Metropolis updates with increasing rewiring probability.	111
7.7. Ising model: Execution times for Metropolis updates with increasing system size	112
7.8. Ising model: Execution times for the Wolff algorithm with local updates in shared memory.	120
7.9. Ising model: Execution times for Wolff updates when approaching the equilibrium state.	120
7.10. Ising model: Execution times for Wolff updates with increasing rewiring probability	121
7.11. Ising model: Execution times for Wolff updates with increasing system size	122
7.12. Ising model visualisation: 2D regular and rewired lattice	125
7.13. Ising model visualisation: Inside a 3D model	126
7.14. Ising model visualisation: A rewired 3D model and interactive parameter changes	126
7.15. Ising model visualisation: Wolff cluster updates	127
7.16. Ising model analysis: Spherical mean of the 3D FFT	130
7.17. Ising model analysis: Cluster size distribution of the 3D Ising system	131
7.18. Ising model analysis: The FFT of a 2D system visualised	131
7.19. Ising model analysis: Hyper-surfaces of the 3D FFT for a regular lattice	133
7.20. Ising model analysis: Hyper-surfaces of the 3D FFT for a lattice rewired in all dimensions.	133
7.21. Ising model analysis: Hyper-surfaces of the 3D FFT for a lattice rewired in one dimension.	134
7.22. Ising model analysis: Hyper-surfaces of the 3D FFT for a lattice rewired in two dimensions.	134
7.23. Ising model simulation: The equilibration phase.	136
7.24. Ising model simulation: Histogram of the energy distribution	137
7.25. Ising model simulation: Decorrelated measurements.	138
7.26. Ising model analysis: Heat capacity and magnetic susceptibility.	141
7.27. Ising model analysis: Binder cumulant results for systems with $p = 10^{-4}$.	142
7.28. Ising model: The shift in the critical temperature with respect to the rewiring probability <i>p</i> .	144
8.1. Cortical model: The mapping of threads to neurons	151
8.2. Cortical model: The neighbour distribution.	151
8.3. Cortical model: The neighbours structure.	151
8.4. Cortical model: Action potentials from neighbouring neurons.	158
8.5. Cortical model: The distributed system model for multi-GPU processing	160
8.6. Cortical model: A pseudo-EEG	164
8.7. Cortical model: Execution times when scaling the system size	164
8.8. Cortical model: Execution times when scaling the average degree.	164
8.9. Cortical model: Execution times when scaling the maximum neighbour distance	166
8.10. Windowing functions for signal processing.	168
8.11. An interactive visual analysis tool for the cortical model.	170
8.12. A visualisation of the pseudo-EEG and individual neural firing rates.	172
C.1. Ising model analysis: Binder cumulant results for systems with $p = 10^{-7}$.	195

C.2.	Ising model analysis: Binder cumulant results for systems with $p = 10^{-6}$	196
C.3.	Ising model analysis: Binder cumulant results for systems with $p = 10^{-5}$	196
C.4.	Ising model analysis: Binder cumulant results for systems with $p = 10^{-3}$	197
C.5.	Ising model analysis: Binder cumulant results for systems with $p = 10^{-2}$	197
D.1.	Cortical model: The different types of spiking neurons.	199

List of Tables

4.1. 4.2.	Random number generator: Performance comparison on different architectures	50 51
5.1.	Graph generation: Performance summary	71
6.1.	Component labelling: Summary of the component labelling algorithms.	81
6.2.	Component labelling: The graph types used for the performance measurements	82
6.3.	Component labelling: The slopes of the least square linear fits to the data sets	86
6.4.	Component labelling: Performance summary	86
6.5.	Clustering coefficient: Performance summary	98
 7.1. 7.2. 7.3. 7.4. 	Ising model: Performance summary for the Metropolis algorithm. Ising model: Wolff and Metropolis update performance compared. Ising model: Wolff and Metropolis update performance results for single and dual GPU simulations. Ising model simulations. Ising model simulation: Overview of the system configurations. Ising model simulations.	113 121 128 140
7.5.	Ising model analysis: The critical temperatures for $p = 10^{-2}$ to $p = 10^{-7}$	143
8.1. 8.2.	Cortical model: The device memory requirements per neuron	159 165
8.3.	Cortical model: The slopes of the least square linear fits to the data sets	166
	Controlar model. The stopes of the feast square mean his to the data sets	