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Abstract

The ultimate goal in the study of numerical methods for ODEs is the construction of such methods

which can be used to develop efficient and robust solvers. The theoretical study and investigation

of stability and accuracy for a particular class of methods is a first step towards the development of

practical algorithms.

This thesis is concerned with the use of general linear methods (GLMs) for this purpose. Whereas

existing solvers use traditional methods, GLMs are more complex due to their complicated order

conditions. A natural approach to achieve practical GLMs, is to first consider the advantages and

disadvantages of traditional methods and then compare these with a particular class of GLMs. In

this thesis, GLMs with IRKS– and F–properties are considered within the type 1 DIMSIMs class. The

freedom of choice of free parameters in IRKS methods is used here to test the sensitivity and capability

of the methods.

A complete ODE software package uses many numerical techniques in addition to the methods

considered. These include error estimation, interpolation for continuous output, etc.. Existing ODE

software is a combination of these techniques and much work has been done in the past to improve the

capability of these traditional methods. The approach has been largely heuristic and empirical. These

are developed by fitting all these techniques into one algorithm to produce efficient ODE software.

The design of the algorithm is the main interest in the thesis. An efficient solver will be in (h, p)-

refinement mode. This design includes many decisions in the whole algorithm. These include selection

of stepsize and order for the next step, rejection criteria, and selection of stepsize and order in case of

rejection. To design such a robust algorithm, the Lagrange optimisation approach is used here. This

approach for the selection of stepsize and order avoids the use of several heuristic choices and gives a

new direction for developing reliable ODE software. Experiments with this design have been carried

out on non–stiff, mildly–stiff and some discontinuous problems and are reported in this thesis.
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1
Introduction

Natural physical phenomena, from the motion of fluids in each part of the human body to the movement

of stars at vast distances, can be translated into mathematics for study; these mathematical models are

mostly systems of ordinary differential equations (ODEs). The recent deep study of such phenomena

requires classification of ODEs due to their behaviour and characteristics. The analytical solution of

ODEs in each case is not always possible or available. In these cases the existing gap in such solutions

is filled using approximate solutions. This requires a tool known as an ODE solver and to produce it,

the two necessary elements are numerical methods and computers (or other electronic machines).

The algorithm design of ODE solver, using some efficient methods, is the main interest in this

thesis. Solvers based on the traditional methods have been constructed and are used efficiently. For

example, the Matlab ODE suite, Maple solvers and some famous codes written in Fortran. Recent

research uses the general linear methods (GLMs) for this purpose.

ODE solvers are mostly task related. There exists no single algorithm that can handle every kind

of system of ODEs such as initial value problems (IVPs), boundary value problems (BVPs), discon-

tinuous problems, delay differential equations (DDEs) and differential algebraic equations (DAEs). A

general purpose ODE software should efficiently solve simple problems and should be capable of han-

dling complicated problems. How can we classify simple and complicated problems? For example, if

a discontinuity occurs in the solution of an IVP, it is no longer simple; however, a good solver should

handle this. Similarly, DDEs are a kind of discontinuous problem and should be treated in the same

way. Stiffness is another characteristic of the ODEs. Stiff problems are not simple problems and need

A-stable methods and hence particular solvers. As compared to the stiff problems, a non-stiff problem

is considered as a simple problem; although complexity occurs when a problem becomes mildly stiff,

it may be just at some point of the solution. The aim here is to test how the GLMs can be efficiently

1
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implemented to solve non–stiff problems as well as mildly stiff problems and discontinuous problems.

How could a general ODE solver handle these problems efficiently? This question is somehow

related to the design of algorithms in a solver and the requirement of the ODE due to classification.

So, it is better to understand the types of ODEs considered in this thesis, to show how these affect the

solver. This may require performing something different at some particular point(s) of the integration.

Some characteristics of ODEs are presented in the Section 1.1. In Section 1.2, without going into

the history of traditional methods and the modern theory of order and stability of methods, a brief

introduction to those traditional and non–traditional but practical classes of methods are mentioned;

these can be considered as strong competitors for GLMs. These advantages and disadvantages of the

methods and of their corresponding ODE solvers, motivates us to explore the implementation of such

a class of GLMs that has all these advantages as well as no such disadvantages; these motivations are

given in Section 1.3. The outline of the thesis is presented in Section 1.4.

1.1 Classification of ODEs

The general form of an IVP is

y′(x) = f(x, y(x)), y(x0) = y0, (1.1)

where x ∈ R, y(x) ∈ Rm and f : R × Rm → Rm and m is the dimension of the problem. The above

form is a non autonomous form because f(x, y(x)) depends explicitly on x, but can be converted to an

autonomous form without such an explicit dependence by adding the differential equation x′ = 1 to the

system. The existence and uniqueness of the solutions is related to the following Lipschitz condition

[32].

Definition 1.1.1 The function f : [a, b] × RN → RN is said to satisfy a ‘Lipschitz condition in its

second variable’ if there exist a ‘Lipschitz constant’ L and a norm ‖·‖, such that for all x ∈ [a, b] and

all y, z ∈ RN ,

‖f(x, y)− f(x, z)‖ ≤ L‖y − z‖.

This leads to the following existence and uniqueness theorem [32] along with the proof.

Theorem 1.1.1 Consider the initial value problem (1.1), where f : [a, b]×RN → RN is continuous in

its first variable and satisfies a Lipschitz condition. Then there exists a unique solution to this problem.

There are many classifications of ODEs. The classifications discussed here will be based on a few of

those characteristics of the ODEs which cause issues and need special attention during the numerical

computation at some particular point(s) of the integration or maybe for the whole interval.

1.1.1 Classification due to stiffness

For the numerical solution, classification of ODEs could be based on the amount of stiffness. Without

relating to the numerical methods, stiffness is very high damping in one or more solutions of a system
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of ODEs that occur in some part or the whole time interval. This phenomena can be observed by

the magnitude of the Lipschitz constant because stiff problems have very large values of the Lipschitz

constant. Consider an inner product on RN denoted by 〈y, z〉 and the corresponding norm defined by

‖y‖2 = 〈y, y〉. A reasonable one–sided Lipschitz constant is defined [32] as:

Definition 1.1.2 The function f : [a, b]×RN → RN is said to satisfy a ‘one–sided Lipschitz condition’

if there exists a ‘one–sided Lipschitz constant’ �, such that for all x ∈ [a, b] and all y, z ∈ RN ,

〈f(x, y)− f(x, z), y − z〉 ≤ �‖y − z‖2.

As f could have very large, negative one–sided Lipschitz constant, the following theorem [32] is very

useful in this case.

Theorem 1.1.2 If f satisfies a one–sided Lipschitz condition with one–sided Lipschitz constant l, and

y and z are both solutions of y′(x) = f(x, y(x)), then for all x ≥ x0

‖y(x)− z(x)‖ ≤ exp (l(x− x0))‖y(x0)− z(x0)‖.

This ODE characteristic is very important for numerical computation and classifies ODEs into stiff

and non–stiff problems. The latest review about the definition of stiffness is given in [83]. Stiff ODEs

can be solved by highly stable numerical methods but at high computational cost. However, in the

case of non–stiff problems, such a high stability is not required and hence less expensive methods can

be used. Our concern here is not to deal with the highly stiff problems. The question explored here

is to test the efficiency of the non–stiff solver based on the explicit GLMs in the case of mildly stiff

problems.

1.1.2 Classification due to discontinuities

Problems with discontinuities in the solution(s) and in the higher derivatives also need special attention

while solving numerically. The trouble is not with the numerical methods in this case but with the

implementation. There are two approaches to handle the crossing of discontinuities. One is to use the

general purpose ODE solvers. While crossing the discontinuity event, failures when attempting steps

tend to these solvers reducing the stepsize. In this approach, there is no a priori information given

by the user nor any event analysis in the code. The other approach is to make a special code for the

ODEs with discontinuities and design it for such event handling. In this approach, there may or may

not be a priori information given by the user though using special structures like sensitivity analysis

for event handling.

A further subclass of discontinuous problems called DDEs is also very important. Many real

life problems are presented by systems of DDEs, for example, spread of infections, immune response

models, nervous systems, neural networks and cell kinetics. These are functional differential equations

and need special structure of the solver to deal with such problems. DDEs are a kind of discontinuous

problem as defined in the following definition.
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Definition 1.1.3 A DDE is a differential equation of the form

y′(t) = f(t, y(t), y(t− d1), y(t− d2), . . . , y(t− dk)),

where di ≥ 0 for i = 1, 2, . . . , k, are called delays or lags.

Whereas, the pantograph equation is a special case of DDE and it is of the form

y′(t) = f (t, y(t), y(λt)) ,

where 0 < λ < 1. DDEs can be considered as ODEs with some consecutive open intervals of integration.

DDE solvers need to manage data of the past steps to make it available for the existing step. Such

approaches have been considered by Butcher [24] within the code STRIDE having singly implicit

Runge–Kutta (SIRK) methods in the kernel.

In this classification of ODEs, problems which are not discontinuous are called neutral problems.

A very interesting example of discontinuity, square–path problem, is used in this thesis. This problem

is very challenging and helps to check the robustness of the code.

Before going into the detail of GLMs and existing ODE software, it is necessary to discuss some of

the traditional methods. In the next Section, we only discuss those classes of methods that could be

close competitors of the GLMs considered in the thesis.

1.2 Numerical methods and ODE software

The starting point for the numerical methods for ODEs is the Euler method, which is the most

simple form of traditional method as well as general linear method (GLM). In the Euler method, the

solution depends upon the two quantities; the solution and its derivative at the previous point xn−1.

Extensions of this idea gave birth to two main traditional classes of numerical methods for ODEs. The

first approach, to extending the Euler method, is to use a linear combination of solutions at the end of

more than one previous step to approximate the solution. These are the multistep methods with the

general form

yn =

k∑
i=1

αiyn−i + h

k∑
i=0

βif(yn−i), (1.2)

called a k–step method. These methods are characterised by the polynomials:

α(z) = 1− α1z − α2z
2 − · · · − αkz

k,

β(z) = β0z
k + β1z

k−1 + · · · + βk.

Adams methods, obtained by taking all α’s zero except α1 = 1 in the α–polynomial, are one of the

best competitors. In these methods, the zeros of the β–polynomial are related to the eigenvalues of
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the matrix V of GLMs (see Chapters 2 and 3). This makes an interesting competition as both the

zeros and the eigenvalues are all zero except one. Thus both the competitors have the same property.

Another reason that makes these methods more competitive is due to variable stepsize implementation.

The adaptation of stepsize is necessary for efficient implementation and the scale and modify technique

is possible in this case which makes this class very practical.

In this thesis, Adam-Moulton pairs are taken from the Adams family and GLMs with exactly same

error constants are constructed and then compared in Chapter 6. The comparison criterion at this

starting stage is to measure the error per function evaluation. This is the intrinsic accuracy of a

method. These Adams pairs are also known as predictor–corrector pairs and are pre-Nordsieck forms

of multistep methods. Whereas the Nordsieck methods have a special input/output vector, consisting

of r scaled higher derivatives as given below, where hn is the stepsize in the nth step.

y[n] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yn

hny
′

n

h2ny
′′

n
...

hrny
(r)
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (1.3)

The second approach, to extending the Euler method, is to restrict the use of previous steps to the

leading one only and to use the linear combination of derivatives at some internal points of the existing

interval which are called stages. These are multistage methods better known as a large family of

Runge–Kutta methods. The general form is

Yi = yn−1 + h
s∑

j=1

aijf(xn−1 + cjh, Yj), i = 1, 2, . . . s, (1.4a)

yn = yn−1 + h

s∑
i=1

bif(xn−1 + cih, Yi), (1.4b)

where Yi are the stage values and yn is the final output after each step, ci’s are called abscissae,

s is the number of stages, and bi’s are called weights. With the discovery of modern theory of the

Runge-Kutta methods [32], much work has been done to find the most efficient methods. Many famous

classes of methods have been efficiently used to construct robust ODE solvers. SIRK methods are good

examples of practical multistage methods that are used in variable stepsize variable order mode in the

code STRIDE [12] and then extended [24] for DDEs as well. For variable stepsize implementation of

Runge–Kutta methods, there is no extra work required unlike the scale and modify technique required

in the case of Nordsieck methods.

In spite of these two traditional families of methods, there are some non–traditional methods as

well that were efficiently used at their time of discovery. It is said that extrapolation methods are

good only for easy or simple problems. The extrapolation technique for numerical quadrature was

successfully used by Romberg [81] in 1955 using the trapezoidal rule. Later on, Bulirsch and Stoer

[9] developed a code ODEX based on this idea. This approach was further extended in [3] for stiff
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problems. The vector rational interpolation algorithm, based on the Bulirsch–Stoer formula (scalar

approach) in [84], was developed by Sweatman in [85]. A recent variable stepsize implementation of

extrapolation of Runge–Kutta methods is numerically tested and reported in [70] by Gorgey.

Other non-traditional methods are based on Taylor series. A Taylor series method of order p is

simply the expression of the first (p+ 2) terms in the Taylor expansion given by

yn = yn−1 + hf(xn−1, yn−1) +
h2

2!
f2(xn−1, yn−1) + · · ·+

hp

p!
fp(xn−1, yn−1),

where f2, . . . , fp are derivatives of the given function. The computation of these derivatives is not

always possible or easy to achieve. These methods are expensive though the Lagrange theory for

(h, p)–control, discussed in Chapter 5, can be used in this case. This is due to the availability of good

approximations to the higher derivatives at each step on which error estimators are mainly based. So it

is possible to compare the GLMs with Taylor series methods in the same way as mentioned for the above

classes of methods. The Euler method is also the Taylor expansion up to the first two terms. So this

idea can be naturally extended with the possibility of algebraically evaluating the higher derivatives.

Some of the early famous programs based on this approach were by Gibbons [68] and Barton et al.

[4, 5, 6].

Many generalisations of these methods can be found in the literature with different advantages

and disadvantages. The most general and natural form known as general linear methods were first

introduced in 1966 by Butcher [15]. These have the flavour of both the traditional classes. So it is

possible to obtain such a class of GLMs that have all the advantages of the traditional classes and at

the same time, avoid issues that exist in the traditional methods. Such a class of GLMs is considered

in this thesis and discussed in the later chapters.

The ultimate goal in the study of numerical methods for ODEs is to produce such methods which

can be used to develop an efficient ODE solver that optimises implementation cost, accuracy and

stability. Theoretical study and investigation for obtaining stability and accuracy in a particular class

of methods is a prior stage. After all, a search for practical methods is necessary for developing a good

solver.

The invention of modern computers has made the area of numerical analysis very active, attractive

and practical. Various software have been developed to solve a wide range of differential equations,

though it is still a challenge to develop a general purpose ODE software up to the level of linear algebra

software. A brief discussion of this level–comparison is beautifully reported in [33]. For example, when

stiffness occurs in the systems of ODEs, it requires more care and in fact additional tools to solve the

problems. Nowadays, general purpose codes are used that have the adaptability property to switch

between stiff and non-stiff sections.

One famous set of codes named DIFSUB [67] was based on linear multistep methods. There are

many implementation issues, in general, for multistep methods like starting procedure, error estimation

and change of stepsize. The best feature in these methods is the vector passed from step to step which

is in Nordsieck form and which is discussed in later sections. Due to this it is possible to use the scale
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and modify technique. This technique is used to change the stepsize at a very low implementation cost.

Following the DIFSUB code, a number of scientists used Nordsieck form of methods in their codes.

These include LSODE [76] and VODE [8]. It is necessary to discuss here the work of Dahlquist [63, 64]

who gives the limitations of multistep methods. He proved that multistep methods are A–stable (a

characteristic of a method to solve stiff problems [1, 32]) only up to order 2. This restricts the use of

multistep methods in stiff solvers. Due to order barriers of multistep methods some other approaches

were also used. A famous example here is predictor–corrector pairs like P (EC)
N

E and P (EC)
N

which

are variations of the predict–evaluate–correct scheme (PEC), originally developed by Milne [79].

Multistage methods have high stability properties and due to this, they have been successfully used

for stiff and non–stiff solvers. Runge [82] first developed a method with more than one stage. After

many attempts by various mathematicians, multistage methods have got the name of Runge–Kutta

methods. And Butcher [16] developed the algebraic theory of the methods. There exist embedded pairs

of methods in the big family of Runge–Kutta methods used for error estimation. The difference between

each in the pair is used for error estimation. Although this is obtained at a very low implementation

cost, it is not asymptotically correct. Stiff codes based on Runge–Kutta methods are much more suc-

cessful compared to multistep methods but overall their implementation cost is very high. For example,

the implicit methods by Butcher [14] based on Gauss, Radau and Lobatto quadrature formulae. Later

on, Ehle [66] constructed A–stable Radau IA, Radau IIA, Lobatto IIIA, Lobatto IIIB and Lobatto

IIIC methods. These methods are then used efficiently by Hairer [75] in his famous implementation of

Radau IIA methods. Although the code works well, there are still many difficult design questions, a

few of these questions are reported in [1]. Much effort has been done to deal with the implicit nature

of these methods for stiff problems. SIRK [17] and DIRK [2] structures were also considered as an

alternative to expensive fully implicit methods. Another achievement is the STRIDE code by Burrage,

Butcher and Chipman [12] . These have some drawbacks including additional transformation cost and

misplacement of some abscissae. Butcher and Chartier [39] discussed these drawbacks using the idea

of effective order and then implemented new algorithms [42]. The famous Matlab ODE suite is also

based on Runge–Kutta methods.

Butcher [15] unified the two traditional approaches for the first time. There are many generalisations

of the traditional methods in the literature which are now special cases of the GLMs. A wider approach

to the proposed methods are DIMSIMs by Butcher [25]. Instead of generalising, a better approach is

to gather all the fruitful properties from each class and then look for such design of methods in GLMs.

One of the leading aims in the project is to construct GLMs with a special design; these are discussed

in later chapters.

1.3 Motivations

The process of developing an ODE software starts from a numerical method and needs a specific design

to construct it. The research on numerical methods for ODEs can be divided into three different areas:

construction, analysis and implementation. It is rare to work deeply in all three areas at the same

time. However, to produce an ODE software in a good form we need this to happen. This gives us a



8 Introduction

notion towards the project.

The two traditional classes have their own pros and cons. To get the advantages in unified form,

a natural desire is to combine the two extensions of the Euler design. This mainly motivates and

leads a person to explore the most general form of numerical methods for ODEs. Further, to see the

importance of the design of the GLMs considered here, we first look at the limitations of the traditional

methods. Our focus here is mainly on the implementation questions.

To understand this, we first take multistep methods. Along with the theoretical constraints of

stability barriers [63, 64], which particularly restricts their use in stiff solvers, there are many imple-

mentation constraints too. For example, it is very difficult, in general, to implement these methods in

variable stepsize and variable order mode. Although it is possible in a sense, it requires a significant

increase in cost. It is also necessary to mention here the importance of the scale and modify technique

that is very reliable and efficient for a particular type of multistep method known as the Nordsieck

methods [80]. This leads to one of the features, considered in the design of the GLMs, used in this

thesis. Furthermore, multistep methods need a starting method as well.

Contrary to multistep methods, multistage methods have high stability properties. This makes the

Runge–Kutta methods more in demand for developing software for stiff ODEs. These methods include

big families of highly stable methods such as Radau and Lobatto methods. The difficulties in the

use of these methods are again some implementation challenges. The implicit nature of the internal

stage systems makes it much more expensive when the Jacobian of the matrix appears in its nonlinear

part. This is especially true when a code rejects a stepsize or order; the expense of calculating that

Jacobian again requires additional function evaluations and hence makes the rejections unbearable in

terms of cost. Many approaches have been used to decrease the cost of these methods by keeping

the stability requirements up to an acceptable level. This struggle has produced somehow reliable

approaches to cover the gap. These include DIRK and SIRK structures of the coefficient matrix A in

the Runge–Kutta methods. It proposed the optimal structure of the matrix A in the GLMs as well. It

is expected that this will possibly preserve an acceptable stability along with much less computational

cost. Also, the Runge–Kutta methods lack a reliable error estimate in general which plays an important

role for changing the stepsize as well as the order. Interestingly, the Matlab ODE suite based on the

Runge–Kutta methods and some non–theoretical approaches of error estimations are successfully used

although they are not in variable order mode. All these pros and cons motivate the design of GLMs

considered in the thesis.

In spite of the necessities impelling us from the disadvantages of the traditional methods, there are

some requirements of the ODE software design as well. In the existing ODE solvers, mainly the variable

stepsize variable order codes, there are some heuristic approaches based on an empirical basis. For

example, the commonly used standard variable stepsize scheme is based on error estimation. However,

when it is implemented, a certain limit on the stepsize ratio r is implemented, usually bound to lie

within [0.5, 2]. This is a non–theoretical approach. This limit restricts the stepsize to not change too

quickly in any case and to avoid potentially damaging the stability of the solution.

Another design question, in (h, p)–refinement mode, is related to the switching between methods of

consecutive order which is still not deeply studied for ODE solvers. The RADAU code by Hairer [75]
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is a successful variable order code though the methods used in that code have very fluctuating order

variation. The GLMs used in this thesis are of consistent and consecutive order. But the problem

is not completely solved yet, because there is still an important question. How it can be decided to

change the method to one order higher or to jump to a method with one order smaller than the order

of the method used in the existing step?

In order to decide which method should be selected for the next step, some reliable information is

required. A reasonable choice of the method for the next step could be the one that minimises both

the cost and the error produced in that step. In other words, such a method should be chosen that

allows the use of a bigger stepsize and produces a smaller error at the same time as compared to the

values (of stepsize and error) for the other choices of methods. These two quantities, so–called reliable

information, are difficult to analyse separately, although a design was proposed by Butcher [20, 23] in

which these two quantities are efficiently combined in one frame using the optimisation approach.

The reliable information is simply the error estimation which is efficiently possible for many other

traditional methods as well. For variable order code, error estimation is required not only for the

method used in the existing step, but it is also necessary to know what the errors would have been

if the methods, with one order higher and one order lower than the order of the method used in the

existing step, were used for the next step. Such reliable error estimators are possible and available for

the GLMs considered here. So the general idea given in [20] for ODE software is used in this thesis

which is possible using the GLMs with IRKS and F–properties as a kernel.

1.4 Thesis outline

The work of this thesis can be considered as a step towards the development of ODE software using

GLMs. So it is necessary to first discuss GLMs in general, with construction of practical methods from

the general form and then their implementation. GLMs are briefly discussed in Chapter 2 along with

some existing classes of practical methods as examples.

Chapter 3 gives a detailed discussion about the design of methods. Along with this, the advantages

required from the GLMs are discussed and then described in the form of simplifying assumptions.

These conditions are then imposed on the most general form of the methods to obtain the desired

practical GLMs. At the end, an algorithm for constructing these methods is presented.

Chapter 4 is a deep discussion about the implementation of the GLMs which is always challenging

and not straight forward. Before the big goal of design of ODE software in (h, p)–refinement mode,

it is better to discuss each implementation procedure separately. These include automatic starting

procedure, stepsize control with updating the data vector, and error estimators.

In Chapter 5, the idea of the Lagrange multipliers is analysed to use for stepsize selection and for

stepsize and order selection. Using this approach, algorithms for the scale and modify technique for

variable order codes and for selection of stepsize and order are constructed and presented.

Finally in Chapter 6, the results of numerical experiments are reported which confirm the impor-

tance of the methods as well as the design based on the Lagrange multipliers.





2
General linear methods

The whole journey starting from the birth of the Euler method and its two classical generalisations and

through further generalisations leads to the general form of numerical methods for ODEs, known as

GLMs. All this struggle is to develop practical methods that can be the kernel of a good ODE solver.

In the last half a century, many theoretical and practical approaches have been used to achieve this

goal. Without going into the depth of every theoretical aspect of numerical analysis, this chapter only

discusses the necessary parts of the GLMs which are required to understand the rest of the thesis. These

include the representation of GLMs used in the thesis and a few preliminary properties of numerical

methods that are also essential for GLMs. Along with these, the stability of the methods is also very

important; this is presented in Section 2.3 including the plots of the stability regions of the methods

used in this thesis. The construction of the practical GLMs used in this thesis is presented in Chapter

3.

2.1 Representation of GLMs

A general linear method is a multistage and multivalue method which is used to approximate the

numerical solutions of a system of ODEs of the autonomous form

y′(x) = f(y(x)), y(x) ∈ Rm, f : Rm → Rm. (2.1)

Let Y
[n−1]
i , i = 1, 2, . . . ,s, be the s internal stages and y

[n−1]
j , j = 1, 2, . . . ,r, be the r outcoming

quantities computed at step number (n − 1) or input of step number n. Let h be the stepsize at the

11
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nth step, then the general linear method for approximating these quantities at the nth step is

Y
[n]
i = h

s∑
j=1

aijFj +

r∑
j=1

uijy
[n−1]
j , i = 1, 2, ...s,

y
[n]
i = h

s∑
j=1

bijFj +
r∑

j=1

vijy
[n−1]
j , i = 1, 2, ...r,

(where Fj = F (Y [n])j = f(Y
[n]
j )) or in compact form

Y [n] = h(A⊗ Im)F (Y [n]) + (U ⊗ Im)y[n−1], (2.2a)

y[n] = h(B ⊗ Im)F (Y [n]) + (V ⊗ Im)y[n−1], (2.2b)

where

Y [n] =

⎡⎢⎢⎢⎢⎣
Y

[n]
1

Y
[n]
2
...

Y
[n]
s

⎤⎥⎥⎥⎥⎦ , F (Y [n]) =

⎡⎢⎢⎢⎢⎣
f(Y

[n]
1 )

f(Y
[n]
2 )
...

f(Y
[n]
s )

⎤⎥⎥⎥⎥⎦ , and y[n−1] =

⎡⎢⎢⎢⎢⎣
y
[n−1]
1

y
[n−1]
2
...

y
[n−1]
r

⎤⎥⎥⎥⎥⎦ .

For convenience, coefficient matrices (A,U,B, V ) in (2.2) can be combined in the form of a partitioned

matrix of order (s+ r) as

M =

[
A U

B V

]
.

Here, the stage values Yi are not passed from step to step and therefore the abscissae ci, i = 1, 2, . . . , s

are posed to be within the interval [0, 1] such that

Yi = y(xn−1 + cih) +O(hq+1), (2.3)

where q is called stage-order and it is desirable to have stage-order q close to (or greater than) the

order of the method p.

2.2 Preliminaries

2.2.1 Consistency

The solutions at the nth step of a GLM depend upon the approximations at the internal stage values

and the quantities passed from step to step in general. These quantities can be solutions at the end

of previous steps, or their derivatives or higher derivatives or any combination of all these. To obtain

just the solutions of a problem, the minimum requirement is that each quantity in y[n−1] represents

y[n−1] = uy(xn−1) +O(h), (2.4a)

y[n] = uy(xn) +O(h), (2.4b)
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where u is called the pre-consistency vector. To solve the trivial one-dimensional problem y′(x) = 0

with initial condition y(0) = 1, (2.2) becomes

Y [n] = Uy[n−1],

y[n] = V y[n−1].

And therefore the least requirements (2.4) become pre-consistent conditions and leads to the following

definition[32]:

Definition 2.2.1 A general linear method (A,U,B, V ) is preconsistent if there exists a vector u such

that

V u = u, (2.5a)

Uu = 1, (2.5b)

where 1 is a vector of all ones. For consistency conditions, considering the one-dimensional problem

y′(x) = 1 with y(0) = 0, the output of (2.2) becomes

Y [n] = A1h+ Uy[n−1],

y[n] = B1h+ V y[n−1],

and consistency vector v can be determined if

y[n−1] = uy(xn−1) + vhy′(xn−1) +O(h2), (2.6a)

y[n] = uy(xn) + vhy′(xn) +O(h2). (2.6b)

Therefore, the following definition is required [32]:

Definition 2.2.2 A general linear method (A,U,B, V ) is consistent if it is preconsistent with pre-

consistency vector u and there exists a vector v such that

B1 + V v = u+ v.

2.2.2 Stability

As the dual nature of general linear methods includes multistep behaviour, it is important to study

stability. This is directly related to the coefficient matrix V ; the stability of a matrix is defined as [32]:

Definition 2.2.3 A matrix V is stable if there exists a constant k such that ‖V n‖ ≤ k, for all n =

1, 2, . . . .
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For a stable general linear method, the solution of y′(x) = 0 must be bounded. For this, the

problem (2.2) becomes

y[n−1] = V y[n−1] = V.V y[n−2],

= V ny[0].

So the stability of methods depends upon the stability of V . This gives the following definition [32]:

Definition 2.2.4 A general linear method (A,U,B, V ) is stable if there exists a constant C such that,

for all n = 1, 2, . . . , ‖V n‖ ≤ C.

2.2.3 Convergence

For practical computation, a necessary element which a method needs in the theory of numerical

analysis is convergence. This idea mainly arises in the theory of multistep methods. As general linear

methods are of a multistep nature too, it is necessary for a general linear method to be convergent.

This needs the following definition [32]:

Definition 2.2.5 A general linear method (A,U,B, V ) is convergent if for any initial value problem

(2.1) subject to the Lipschitz condition ‖f(y)− f(z)‖ ≤ L‖y − z‖, there exist a nonzero vector u ∈ Rr

and a starting procedure φ : (0,∞) → Rr, such that for all i = 1, 2, . . . , r, limh→0 φi(h) = uiy(x0),

and such that for any x̄ > x0, the sequence of vectors y[n], computed using n steps with stepsize

h = (x̄− x0)/n and using y[0] = φ(h) in each case, converges to uy(x̄).

In the construction of numerical methods, it is assumed that the stage values and solutions are at least

of order 1. This implies consistency and the remaining thing to be considered is stability as with this,

convergence will be automatically achieved according to the following theorem [32]:

Theorem 2.2.1 A general linear method is stable and consistent if and only if it is convergent.

2.3 Stability matrix of general linear methods

The scalar test problem of Dahlquist [64]

y′(x) = qy(x), where q ∈ C,

is a standard way to judge the stability of numerical methods for ODEs. The purpose of doing so is to

study the performance of a single step of the method on the existing approximations. Applying this

test to the general linear method (2.2a) and taking z = hq, it can be written as

Y [n] = zAY [n] + Uy[n−1],

(I − zA)Y [n] = Uy[n−1],
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Figure 2.1: Stability regions

and (2.2b) becomes

y[n] = zBY [n] + V y[n−1],

y[n] = (V + zB(I − zA)−1U)y[n−1].

Thus,

M(z) = V + zB(I − zA)−1U, (2.7)

is the stability matrix of a general linear method. The stability regions of the GLMs and their com-

petitive methods used in this thesis are presented in Figure 2.1.

2.4 Methods

The simplest example would be to choose p = q = r = s = 1 which is the explicit Euler method. Any

further choice of the number pqrs may not be a unique method in general. Thus, these free parameters

are not the best presentation of GLMs. However, in a particular class of GLMs, it can be used as a

generic name. One way to classify the traditional families of numerical methods for ODEs could be

• Multistage methods known as Runge–Kutta methods; these are a very big family of GLMs with

r ≤ 2 and s ≥ 1. A few Runge–Kutta methods in GLM form, used in the experiments, are given

in Table 2.1.

• The multistep methods are GLMs with r ≥ 2 and s = 1. The best competitive methods for the
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IRKS methods are Adam–Bashforth, Adam–Moulton predictor–corrector methods used in the

form of pairs. The general form of PECE pairs is

[
A U

B V

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 α∗

1 α∗

2 . . . α∗

k−1 α∗

k

α0 0 1 α1 α2 . . . αk−1 αk

α0 0 0 α1 α2 . . . αk−1 αk

0 1 0 0 0 . . . 0 0

0 0 0 1 0 . . . 0 0

0 0 0 0 1 . . . 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

These methods are given in Table 2.2.

2.5 Some practical GLMs

As mentioned before, GLMs are the most general form of methods. To get practical methods, some

simplifying assumptions are needed. To discuss the implementation issues, we consider those classes

of GLMs which have been of interest. Most of the attention nowadays is towards getting practical

methods. The approach was different in the case of the development of traditional methods. All the

traditional methods are GLMs as well, though only those classes are mentioned which are derived from

the most general form. There are several different aspects to explore within GLMs. A few practical

classes of GLMs along with their purposes, characteristics and implementation issues are discussed

below.

Diagonally implicit multistage integration methods (DIMSIMs). These methods are a big family of

practical GLMs. These methods are mainly based on some assumptions that assure the stability and

implementation of methods a priori. The set of free parameters for the construction of these methods

allows us to obtain DIMSIMs of the desired features. The structure of these methods is explained in

the next chapter. The methods used in this thesis are a sub-class of these methods. DIMSIMs might

be implemented in either parallel or in sequential arrangements. Almost all the big challenges that are

found during the implementation of the traditional methods can be overcome using these methods.

Almost Runge–Kutta (ARK) methods. ARK methods were introduced by Butcher in [30]. These

are GLMs with r = 3 which retain many properties of the Runge–Kutta methods with some extra

implementation advantages. These methods need a starting method although this is not a major issue

for implementation. Initially, ARK methods were used to solve non–stiff problems though the idea was

extended to solve stiff problems [57] by adding a constant diagonal element to the coefficient matrix

A of the method.
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G-symplectic methods. In the recent development of integrators, GLMs are also used to solve

symplectic problems i.e. a problem with a property of preserving quadratic invariants. In general,

GLMs are not symplectic and for this a condition given by Butcher [32], known as G–norm, is necessary.

Construction of G-symplectic GLMs and parasitism control are a few recent developments by Butcher

et al. [43]. However, these methods need further work to achieve the efficiency of the IRKS methods

with the F–property (see further Section 3.3.6). For example, these methods still need a starting

method.
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p RKs GLMs

1

[
0 1

1 1

] ⎡⎢⎢⎣
0 0 1 1

3
9
8 0 1 1

8
9
8 0 1 1

8
0 1 0 0

⎤⎥⎥⎦

2

⎡⎣ 0 0 1
1 0 1
1
2

1
2 1

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1
3

1
18

32
81 0 0 1 22

81
22
243

37
96

27
64 0 1 37

192
13
144

37
96

27
64 0 1 37

192
13
144

0 0 1 0 0 0
9
2 −27

4 4 0 −7
4 0

⎤⎥⎥⎥⎥⎥⎥⎦

3

⎡⎢⎢⎣
0 0 0 1
1
2 0 0 1
−1 2 0 1
1
6

2
3

1
6 1

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1
4

1
32

1
384

−111
560 0 0 0 1 391

560
391
2240

1453
53760

−7877
6720

5
48 0 0 1 12217

6720
4679
8960

20197
215040

−1839
112

61
4 −4 0 1 691

112 − 9
448 − 1091

10752

−1839
112

61
4 −4 0 1 691

112 − 9
448 − 1091

10752
0 0 0 1 0 0 0 0

−184
3

146
3 −12 1 0 71

3 0 − 7
24

48 −56 16 4 0 −12 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4

⎡⎢⎢⎢⎢⎣
0 0 0 0 1
1
4 0 0 0 1
0 1

2 0 0 1
1 −2 2 0 1
1
6 0 2

3
1
6 1

⎤⎥⎥⎥⎥⎦ A =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0

− 95448
13801525 0 0 0 0

− 304475092179
1945200735025

65769
1127528 0 0 0

10560520570469048
4472016489822475 −1632164837

648046718
5812
6897 0 0

86257049
537380 −957565

3104 240 −1045
16 0

⎤⎥⎥⎥⎥⎦

U =

⎡⎢⎢⎢⎢⎣
1 1

5
1
50

1
750

1
15000

1 5616058
13801525

5616058
69007625

11184392
1035114375

5568334
5175571875

1 10865051767827
15561605880200

75390830073
401072316500

6703960332723
194520073502500

9699767428407
1945200735025000

1 3070633790332267
26832098938934850

7324801258911
20956028537125

2680403278295063
30491021521516875

17518592829738316
1677006183683428125

1 −110518377
4299040

4957
110800 −107062919

161214000
6929867

134345000

⎤⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎣
86257049
537380 −957565

3104 240 −1045
16 0

0 0 0 0 1
−2648605

4268
595340
1067 −7265

44 0 1
26795
22 −143425

88
31025
33 −3135

16 1
−730 2545

2 −960 1045
4 4

⎤⎥⎥⎥⎥⎦

V =

⎡⎢⎢⎢⎢⎣
1 −110518377

4299040
4957

110800 −107062919
161214000

6929867
134345000

0 0 0 0 0
0 483841

2134 0 −3889
1940

92294
80025

0 −176003
528 0 0 −1753

3300
0 609

4 0 0 0

⎤⎥⎥⎥⎥⎦
Table 2.1: Classical Runge–Kutta methods and their competitive GLMs in the IRKS family with the F–property.
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p PECEs GLMs

1

⎡⎢⎢⎣
0 0 1 1
1 0 1 0

1 0 1 0
0 1 0 0

⎤⎥⎥⎦ same

2

⎡⎢⎢⎢⎢⎣
0 0 1 3

2 −1
2

1
2 0 1 1

2 0
1
2 0 1 1

2 0
0 1 0 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1
3

1
18

352
405 0 0 1− 82

405 −
82

1215
569
480

27
64 0 1−583

960 −127
720

569
480

27
64 0 1−583

960 −127
720

0 0 1 0 0 0
9
2 −27

4 4 0−7/4 0

⎤⎥⎥⎥⎥⎥⎥⎦

3

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 1 23
12 −4

3
5
12

5
12 0 1 2

3 − 1
12 0

5
12 0 1 2

3 − 1
12 0

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1
4

1
32

1
384

− 3
10 0 0 0 1 4

5
1
5

29
960

−377
240

5
48 0 0 1 133

60
199
320

817
7680

−65
4

61
4 −4 0 1 6 − 1

16 − 41
384

−65
4

61
4 −4 0 1 6 − 1

16 − 41
384

0 0 0 1 0 0 0 0
−184

3
146
3 −12 1 0 71

3 0 − 7
24

48 −56 16 4 0 −12 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 55
24−

59
24

37
24−

3
8

3
8 0 1 19

24−
5
24

1
24 0

3
8 0 1 19

24−
5
24

1
24 0

0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
A =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0

− 1572952
124213725 0 0 0 0

−1024156767257
5835602205075

65769
1127528 0 0 0

93319573112607352
40248148408402275 −1632164837

648046718
5812
6897 0 0

776670401
4836420 −957565

3104 240 −1045
16 0

⎤⎥⎥⎥⎥⎦

U =

⎡⎢⎢⎢⎢⎣
1 1

5
1
50

1
750

1
15000

1 51258442
124213725

51258442
621068625

33910136
3105343125

50471966
46580146875

1 33481007229241
46684817640600

230738737259
1203216949500

20333343979609
583560220507500

87740832818543
17506806615225000

112662125414224961
80496296816804550

67539998604439
188604256834125

738147637971439
8315733142231875

158529891478451884
15093055653150853125

1 −997521073
38691360

29893
997200 −321902677

483642000
186749449
3627315000

⎤⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎣
776670401
4836420 −957565

3104 240 −1045
16 0

0 0 0 0 1
−2648605

4268
595340
1067 −7265

44 0 1
26795
22 −143425

88
31025
33 −3135

16 1
−730 2545

2 −960 1045
4 4

⎤⎥⎥⎥⎥⎦

V =

⎡⎢⎢⎢⎢⎣
1 −997521073

38691360
29893
997200 −321902677

483642000
186749449
3627315000

0 0 0 0 0
0 483841

2134 0 −3889
1940

92294
80025

0 −176003
528 0 0 −1753

3300
0 609

4 0 0 0

⎤⎥⎥⎥⎥⎦
Table 2.2: PECE pairs and their competitive GLMs in the IRKS family with the F–property.
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Construction of efficient GLMs

3.1 Introduction

The most general form of numerical methods for ODEs, known as general linear methods, were first

introduced by J. C. Butcher, almost 50 years ago [15]. There is no straightforward algorithm yet

to construct methods of the form of systems of (2.2) or eqs. (3.3) and (3.4). The reasons include

complicated order conditions, though low order methods can be constructed with certain conditions.

Once, such a method is constructed, the next task is to deal with the implementation issues. The

implementation issues of the existing GLMs addressed in the past have scope for further improvement

to be more robust and efficient.

On the other hand, the two main classes of numerical methods for ODEs, namely multistep methods

and multistage methods, have been the centre of interest for computational scientists; the available

ODE solvers are also based on these classes. Many generalisations of these classes have been explored

to enhance the theory and practice. Each of these well–studied classes have their own pros and cons.

Thus it can be said that enhancement in the field of numerical methods for ODEs is equivalent to

achieving the same goal by one of two different trajectories. One way is to start with the classical

methods, overcome their difficulties and generalise or improve the results. The other way is to efficiently

screen out the advantages and disadvantages of the two families of classical methods and gather these

advantages and at the same time, the strategies of overcoming the known disadvantages, into one

frame. Then we need to look for some practical methods in the general class to explore such GLMs

that fit into that frame. One such frame (with practical methods) has been considered by J. C. Butcher

[28]. This big family of implementable GLMs is known as diagonally implicit multi-stage integration

methods (DIMSIMs).

21
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3.2 DIMSIMs

These methods were introduced by Butcher [28] as a unified approach of the practical methods within

the two traditional classes of numerical methods for ODEs. DIMSIMs are one of the biggest families

of GLMs that are efficiently implementable. Why is the unified approach possible and how can the

methods be unified? This will be discussed in the rest of this section.

3.2.1 Motivation for DIMSIMs

Before the discovery of these methods, much research was directed towards obtaining highly accurate,

(highly) stable and cost efficient methods. These qualities are achievable in the two traditional classes

(multistep methods and Runge–Kutta methods) but the challenge is to obtain all of these on one

platform. Here are a few of the challenges with multistep methods.

• Practical multistep methods are limited by Dahlquist’s first barrier [63] which is the relation

between the number of steps and the order of the method.

• The A-stable multistep methods are restricted by Dahlquist’s second barrier [64] which states

that A-stable methods cannot be of order greater than one.

• It is not possible to implement multistep methods in variable stepsize mode without additional

cost.

It is possible to overcome the Dahlquist first barrier by cyclic composition of multistep methods [65]

and the further second barrier can be overcome by the implicit case of these methods [7].

On the other hand, multistage methods have their own pros and cons. A few challenges for the

Runge-Kutta methods are as follows:

• It is not possible to construct an explicit Runge-Kutta method of order p > 4 with the number of

stages equal to the order of the method. This makes high–order explicit Runge-Kutta methods

expensive in terms of cost.

• For high–order explicit Runge–Kutta methods, error estimation is not possible.

• For implicit methods, high–order methods with high stage order are needed. The collocation

methods are fully implicit methods including Gauss, Radau and Lobatto families. These are

highly stable and acceptable in terms of order, though reduction of order causes their failure.

Furthermore, none of these methods have been implemented efficiently e.g. these methods lack

reliable error estimation techniques.

• Other methods with high stage order are known as SIRK methods. But these methods have

some disadvantages as the abscissae are proportional to the zeros of the Laguerre polynomials

outside the interval [0, 1] (or beyond the step). This was overcome in [62, 42] by the methods

known as ESIRK or DESIRE methods.
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• There exist cost efficient methods known as diagonally implicit Runge–Kutta (DIRK) methods.

Though it is hard to find methods of this type with order greater than 4. They suffer from order

reduction due to low stage order.

There exist methods in the literature that originate as multistage methods but are of multivalue nature

as well. For example, consider the following Runge–Kutta method of order 4 with 5 stages in the form

of the Butcher tableau

0
1
3

1
3

2
3 −1

3 1

1 1 −1 1

1 1
8

3
8

3
8

1
8 0

b 1
8

3
8

3
8

1
8 0

b̂ 0 3
4 0 -14

1
2

which is

Y1 = yn−1,

Y2 = yn−1 +
1

3
hf(Y1),

Y3 = yn−1 −
1

3
hf(Y1) + hf(Y2),

Y4 = yn−1 + hf(Y1)− hf(Y2) + hf(Y3),

Y5 = yn−1 +
1

8
hf(Y1) +

3

8
hf(Y2) +

3

8
hf(Y3) +

1

8
hf(Y4),

yn = yn−1 +
1

8
hf(Y1) +

3

8
hf(Y2) +

3

8
hf(Y3) +

1

8
hf(Y4),

ŷn = yn−1 +
3

4
hf(Y2) −

1

4
hf(Y4) +

1

2
hf(Y5). (3.1)

When this method is implemented, the input to step number n would be simply yn−1. As c1 = 0 and

c4 = 1, the first stage derivative is exactly the same as the last stage derivative of the previous step.

This is known as the FSAL property (first same as last) of Runge–Kutta methods. So it would be

efficient to use that value, calculated in the (n − 1)th step, again during the calculation of the nth

step, instead of calculating it again. And thus the input to the nth step would be a vector of two

quantities [yn−1, hf(Y5)]. This means that from an implementation point of view, this 5-stage single

value method is actually a 4-stage 2-values method and its GLM form is

c
T

=
[

1
3

2
3 1 1

]
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1
3

1 0 0 0 1 −1
3

−1 1 0 0 1 1
3
8

3
8

1
8 0 1 1

8
3
8

3
8

1
8 0 1 1

8

0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with error estimator of order 3 given by

‖yn − ŷn‖ = −
3

8
hf(Y1) +

3

8
hf(Y2) +

3

8
hf(Y3)−

1

2
hf(Y4) +

1

8
y
[n−1]
2 .

Such kinds of natural generalisation motivates the exploration of such multistage-multivalue methods

that are analogous to the existing multistage-singlevalue methods and one-stage-multivalue methods

with rich theory in literature and practice.

Thus, in each of the multistage and multivalue methods, there are limits upon how well we can

address all of the above issues at the same time. In other words, the disadvantages of one traditional

class are advantages of the other and vice versa. This motivates us to look for a class of methods that

is above the traditional classes. Such a class should have multistage and multivalue behaviour. In that

class the available knowledge of the traditional classes could be implementable. All this was made

possible by Butcher [28], theoretically and practically, in the most general form of numerical methods

for ODEs.

3.2.2 Formulation of DIMSIMs

As GLMs in general are very complex and difficult to construct, we impose some assumptions to

achieve a reasonably simple form of order conditions. Conditions are applied to the coefficient matrices

(A,B,U, V ) to obtain the desired results. The design of DIMSIMs proposed in [28] can be summarised

as follows.

• The four quantities pqrs are nearly equal. A fifth quantity t could be considered here presenting

the type of DIMSIMs. These types are discussed further in this section.

• To guarantee the stability, the spectrum of the matrix V should be {0, δi} where δi lies in an

open unit disk.

• High stage order is required, at least close to the order of the method.

• The very first condition is on the matrix A; the matrix of the coefficients of the stage derivatives.

The complexities (nonlinearity) of the internal stage-derivatives system occurs in the implemen-

tation of the Runge–Kutta methods with full matrix A. To avoid this in DIMSIMs, it would be

necessary to have the matrix A of diagonal structure with zero entries at least in the upper tri-

angular part and constant diagonal element λ ≥ 0 which is the eigenvalue of A (DIRK structure
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[2]). Thus the general structure of matrix A for DIMSIMs is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0 . . . 0

a21 λ 0 . . . 0

a31 a32 λ . . . 0

...
...

...
. . .

...

as1 as2 as3 . . . λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.2)

Further, DIMSIMs are divided into 4 types depending upon the structure of the matrix A. This division

is mainly to cover two targets:

First. This division is due to a characteristic of ODEs which differentiates between stiff and non–stiff

problems, as given in Subsection 1.1.1. The methods are constructed for both kind of problems,

separately.

Second. The second target is related to large scale computing techniques. The existing theory on

SIRK methods concludes that the efficient implementation of multistage methods could be either

by sequential or parallel programming. So both cases will be considered here.

Thus to cover these two goals, there will be 4 possible acceptable combinations and hence 4 types of

the structure of matrix A which are as follows:

Type1. For solving non-stiff problems, explicit methods are constructed by taking λ = 0 in (3.2). This

will produce an explicit type of DIMSIMs for solving non-stiff problems by sequential computing

of the internal stage systems.

Type2. Take matrix A as it is with λ �= 0 in (3.2), for solving stiff problems via a sequential process

of computing the internal stage system.

Type3. For parallel computing, in the case of non-stiff problems, it would be best to consider all the

lower triangular entries of the matrix in (3.2) equal to zero along with λ = 0 i.e. A = O.

Type4. Take the matrix A to be strictly diagonal with constant diagonal element λ on the main

diagonal. With this form of matrix A, the method will remain implicit, necessary for solving stiff

problems, and the internal stage system can be solved using parallel computing.

The DIMSIMs considered in the rest of the chapter will be of type 1. A more specific design is briefly

mentioned in Section 3.3. One of the primary aims of considering such a design of GLMs is to simplify

the order conditions which, in general, are very complex to handle. To make this easier, the matrix

form of order conditions are presented in Subsection 3.3.2. To deal with such a matrix form and

design, doubly companion matrices were introduced by Butcher and Chartier in [39]. This matrix is

discussed in Subsection 3.3.3; it helps to connect the eigenvalue problem of the matrices A and V . Due

to the condition of IRKS, there are conditions on the eigenvalues of the matrix V ; this is discussed in
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Subsection 3.3.4. Along with IRKS, we impose another property in the design that efficiently reduces

the cost; this property is called property–F for GLMs [34] and is discussed in Subsection 3.3.6. Also

the use of doubly companion matrices enables us to transform the matrices (A,U,B, V ). Why we need

this transformation and how it works, is discussed in Subsection 3.4.2.

3.3 Construction of type 1 DIMSIMs

When applying traditional methods, two sorts of information are used to approximate the solution

of an IVP from point xn−1 to xn. One sort is a linear combination of function evaluations of F at

some points within the step i.e. [xn−1, xn]; these points are called stages and the methods are called

multistage methods or Runge–Kutta methods. The other sort of information is based on the solutions

at some previous steps for multistep methods or a combination of values at those points which is in

the form of a vector which is passed from step to step; these are known as multivalue methods.

If r is the number of elements in the input/output vector passed from step to step and s is the

number of stages, then the most general form of method is

Y
[n]
i = h

s∑
j=1

aijFj +
r∑

j=1

uijy
[n−1]
j , i = 1, 2, ..., s, (3.3)

y
[n]
i = h

s∑
j=1

bijFj +

r∑
j=1

vijy
[n−1]
j , i = 1, 2, ..., r, (3.4)

where Fj = F (Y [n])j = f(Y
[n]
j ). The compact form of eqs. (3.3) and (3.4) is[

Y [n]

y[n]

]
=

[
A U

B V

] [
hF (Y [n])

y[n−1]

]
.

In matrix notation a GLM is

M =

[
A U

B V

]
.

This notation was introduced by Butcher and Burrage in 1980 [11]. Along with this, another important

notation in the literature is in the form of a quadruple (pqrs). In this quadruple, p represents the

order of the method, q represents stage order of the method, r represents the number of elements in

the Nordsieck vector, and s represents the number of stages.

Construction of a GLM will be complete if it is possible to determine coefficients of the matrices

(A,U,B, V ) satisfying the order conditions. The search for coefficients depends upon the design of the

method and that design should be practical and efficient. One such frame of design is considered here.

3.3.1 Design of GLMs with the IRKS property

In order to obtain practical GLMs, some assumptions are required to be imposed on the general form

that ease the construction of methods. The advantages which we look for in this general class must
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not be less than what we achieved using classical methods. Along with this, the disadvantages of the

classical methods should be overcome here. Keeping these two goals in mind, the design, which consists

of the following assumptions on GLMs, will be used in the rest of the work.

1. In GLMs, the data vector passed from step to step is either a combination of approximate solu-

tions y(x) calculated in the previous steps or the values other than that. It can be a combination

of both as well. The vector considered here, in a method of order p, consists of p scaled deriva-

tives of the solution known as the Nordsieck vector. This was introduced by Nordsieck [80] for

multivalue methods and is given by

y[n−1] =

⎡⎢⎢⎢⎢⎣
y(xn−1)

hy′(xn−1)
...

hpy(p)(xn−1)

⎤⎥⎥⎥⎥⎦+O(hp+1).

This gives additional information relating the length of Nordsieck vector r and the order p, i.e.

r = p + 1. Not all the multivalue methods can be used in variable stepsize mode. This special

Nordsieck form has the advantage of efficiently adjusting the step size. This is further discussed

in the section on the scale and modify technique (see Section 4.3.1) which shows how efficiently

the vector D(r)y[n] can be used as an input vector to step (n + 1) with stepsize rh where the

diagonal matrix D(r) = (1, r, r2, . . . , rp).

2. In the unifying design of existing practical GLMs, there are two choices for stage order q, either

p or p − 1. We select q = p to obtain high stage order. There are two advantages for efficient

implementation of the methods. This allows us to use the last abscissa cs = 1 which is cost

efficient, because in that case the last stage-derivative value, in practice, can be used as the

second component of the data vector. This further guarantees the use of property–F given in

Section 3.3.6. Another advantage is due to the error estimators used here. These are based on

stage derivatives and higher stage order assures the reliability of the estimator.

3. The number of stages and the length of Nordsieck vector are equal (s = r). The advantage of

this relation is that it helps to construct a suitable error estimator. The error term in a method

of order p consists of the (p+1)st derivative of y and this maximum value of r equal to s enables

us to use (p+1) stage-derivatives in the existing step, to estimate the error using the estimators

in Section 4.5.

4. The matrix A in GLMs represents the coefficients of the stage derivatives in the method. Here, A

is lower triangular with constant diagonal element in the case of implicit methods whereas in the

case of explicit methods, as we use here, it is strictly lower triangular. Thus, we are considering

the DIMSIMs of type 1. The full matrix A produces implicit methods that are very costly and

need additional algorithms to solve the nonlinear system of internal stage derivatives.
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5. The stability matrix of a GLM is

M(z) = V + zB(I − zA)−1U.

To assure the stability, a priori to construction, the eigenvalues of M(z) are assigned to be all

zero except one which is R(z) where

R(z) =
N(z)

(1− λz)p+1
,

N(z) = exp (z)(1− λz)p+1 +O(zp+1).

This is similar to the stability of well known Runge–Kutta methods with the structure of matrix

A used here. This condition is easy to impose during construction of methods.

6. The method has the F– property given in Subsection 3.3.6. There is again a practical advantage

of using this property. This enables us to choose cs = 1 as it produces the same coefficients for the

last stage and the first Nordsieck element. Thus the advantage occurs during the implementation

by taking the last stage value as the first component of the Nordsieck vector. Similarly the second

component in the Nordsieck vector is an approximation to hy′(x) which is equivalent to hf(y).

Instead of approximating this quantity, the last scaled stage derivative can be used as the second

component in the Nordsieck vector. As this component is obtained without using any coefficients

of the method, so the second row of matrix B must be all zero except the last element b2s which

must be exactly 1 in this case.

3.3.2 Stage and order conditions

The very first requirement for construction of GLMs is to find the order conditions. Here, we are

working on DIMSIMs of type 1 and type 2 and the stage order must be equal to the order of the

method. Thus the stages Y and the output vector y[n] must follow,

Y = Cy[n−1] +O(hp+1),

y[n] = Ey[n−1] +O(hp+1),

where

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 c1
c21
2! · · ·

c
(p−1)
1

(p−1)!
cp1
p!

1 c2
c22
2! · · ·

c
(p−1)
2

(p−1)!
cp2
p!

...
...

...
...

...

1 cp
c2p
2! · · ·

c
(p−1)
p

(p−1)!
cpp
p!

1 cp+1
c2p+1

2! · · ·
c
(p−1)
p+1

(p−1)!

cpp+1

p!

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, E = exp (K) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1!

1
2! · · · 1

(p−1)!
1
p!

0 1 1
1! · · · 1

(p−2)!
1

(p−1)!

0 0 1 · · · 1
(p−3)!

1
(p−2)!

...
...

...
...

...

0 0 0 1
1!

1
2!

0 0 0 · · · 1 1
1!

0 0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 0

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 0 0 0

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= K

T

.

Using these conditions in the method (2.2) and using functions of complex variables, the following very

useful result [26] is obtained before imposing any other design criteria.

Theorem 3.3.1 A GLM in Nordsieck form has order and stage order p if and only if

exp (cz) = zA exp (cz) + UZ +O(zp+1), (3.5)

exp (z)Z = zB exp (cz) + V Z +O(zp+1). (3.6)

where the exp (cz) in (3.5), is the vector with components given by exp (ciz), i = 1, 2, . . . , s and

Z =
[
1 z z2 · · · zp−1 zp

]T

.

It can be easily derived from the above results that

U = C −ACK

V = E −BCK

}
(3.7)

These relations (3.7) between matrices (A,U,B, V ) are linear and restrict the search to two matrices to

construct a method. Here, matrices A and B are constructed first, using the requirements mentioned

in the design. Then it is easy to obtain matrices U and V from (3.7). For example, taking an explicit

case, for which λ = 0, with p = 1 then s = p+1 = 2 and hence c
T

= [c, 1]. Using the design mentioned

in the previous section, matrix A is [
0 0

a 0

]
,

and using eqs. (3.23) and (3.24) in property-F, matrix B would be

B =

[
a 0

0 1

]
,

where

C =

[
1 c

1 1

]
, K =

[
0 1

0 0

]
, E =

[
1 1

0 1

]
.
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Thus using (3.7),

U = C −ACK =

[
1 c

1 1− a

]
,

V = E −BCK =

[
1 1− a

0 0

]
.

Therefore the method is

M =

⎡⎢⎢⎢⎢⎣
0 0 1 c

a 0 1 1− a

a 0 1 1− a

0 1 0 0

⎤⎥⎥⎥⎥⎦ .

Up to here, we have used all the conditions except the sixth one which is related to an a priori stability

condition. So the above method would be a DIMSIM of type 1 if a and c are properly chosen. With

larger p, the situation would be more complex. So further (linear) relations between the coefficients

are required. To guarantee the stability we need further special matrices to construct such a method,

as discussed in the following section.

3.3.3 Doubly companion matrices

Doubly companion matrices were first used in the construction of some extensions of classical methods,

known as ESIRK methods, by J. C. Butcher and P. Chartier [38, 39]. A (singly) companion matrix is

an analogous form for one polynomial. A doubly companion matrix is made using two polynomials.

Definition 3.3.1 A doubly companion matrix X(α, β) has the general form,

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α1 −α2 −α3 · · · −αp −αp+1 − βp+1

1 0 0 · · · 0 −βp

0 1 0 · · · 0 −βp−1

...
...

...
...

...

0 0 0 · · · 0 −β3

0 0 0 · · · 0 −β2

0 0 0 · · · 1 −β1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.8)

The two polynomials associated with the matrix X are

α(ω) = 1 + α1ω + α2ω
2 + · · ·+ αp+1ω

p+1, (3.9)

β(ω) = 1 + β1ω + β2ω
2 + · · · + βp+1ω

p+1. (3.10)

If all αi = 0 or alternatively all βi = 0 then this matrix is simply a companion matrix. Doubly

companion matrices are very useful for construction of methods and one important reason is the

following theorem [32].
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Lemma 3.3.1 The coefficients in the characteristic polynomial of a doubly companion matrix X,

P (ω) = det(ωI −X) = ωp+1 + γ1ω
p + γ2ω

p−1 + · · · + γp+1 are given by

1 + γ1z + γ2z
2 + · · ·+ γp+1z

p+1 = det(I − zX) = α(z)β(z) +O(zp+2). (3.11)

The zeros of P (ω) are the eigenvalues of X and these are free parameters in the construction of

methods. We select values borrowed from the stability of SIRK methods, as discussed earlier. It is the

requirement of the design of the GLMs to construct matrix A with a one point spectrum {λ}. The

matrix X would be easier to achieve if X has the same spectrum. Thus from the design, (from def.

of IRKS) P (ω) = (ω − λ)p+1. As the β’s are also free parameters, the α’s can be calculated using

(3.11) i.e. α(ω) = (ω − λ)p+1β−1(ω). This is possible if a similarity transformation can be applied to

the matrix A. In this case it is possible to decompose X into Jordan canonical form using generalised

eigenvectors. The relation is given in the following theorem given in [39].

Lemma 3.3.2 Given the column eigenvector φ(λ) and row eigenvector χ(λ)
T

, the doubly companion

matrix X has characteristic polynomial

P (ω) = (ω − λ)p+1

if X can be decomposed as follows

X = Ψ(J + λI)Ψ−1 (3.12)

where Ψ and Ψ−1 are the unit upper triangular matrices

Ψ =
[

1
p!φ

(p)(λ) 1
(p−1)!φ

(p−1)(λ) · · · φ′(λ) φ(λ)
]
= β(K) exp (λK−),

Ψ−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

χ(λ)
T

χ′(λ)
T

...
1

(p−1)!χ
(p−1)(λ)

T

1
p!χ

(p)(λ)
T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= exp (−λK−)β(K)−1,

where

K− =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 p 0 · · · 0 0 0

0 0 p− 1 · · · 0 0 0

0 0 0 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 0 2 0

0 0 0 · · · 0 0 1

0 0 0 · · · 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus doubly companion matrices have a strong connection with the matrix A. It is necessary to

mention here that the transformation described above, is to achieve the structure of A. Another trans-
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formation for achieving a particular spectrum of a sub-matrix of V is discussed in Section 3.3.5. First

it is convenient to see how doubly companion matrices can be used to obtain IRKS along with other

design features.

3.3.4 IRKS property for GLMs

The name of this property was first suggested by W. Wright [86] as IRKS property, inherent Runge–

Kutta stability. The conditions of IRKS, in fact, formulate relations between matrices of the GLMs

to assure that the stability of a method is identical to the stability of a known Runge-Kutta method.

Here, stability of SDIRK methods is considered for this purpose, a priori to the construction. So, we

use the existing knowledge of classical methods in this investigation. In the case of GLMs, we have a

stability matrix rather than stability function as in the Runge–Kutta methods. Also the eigenvalues

of the stability matrix play the role of stability functions. To obtain GLMs that inherit the stability

of the Runge–Kutta methods, all the eigenvalues of M(z) = V + zB(I − zA)−1U must be zero except

one. Thus, the goal is to achieve such GLMs that follow the theorem given below [86].

Theorem 3.3.2 If a method has IRKS then its stability matrix satisfies

ρ(V + zB(I − zA)−1U) = {R(z), 0},

where R(z) is the stability of known Runge–Kutta methods.

To achieve this, much work has been done by Butcher and Wright [59, 60] and reported in the thesis

by Wright as well [86]. Here, all this is summarised and we will start from the order conditions.

Multiplying (3.5) by zB, and (3.6) by (I − zX), and then adding we get

zB exp (cz) + exp (cz)(I − zX)Z = z2BA exp (cz) + zBUZ

+ z(I − zX)B exp (cz) + (I − zX)V Z +O(zp+1),

⇒ exp (cz)(I − zX)Z = z2(BA−XB) exp (cz)

+ z(BU + V X −XV )Z + V (I − zX)Z +O(zp+1),

⇒ (exp (cz)I − V )(I − zX)Z = z2(BA−XB) exp (cz) + z(BU + V X −XV )Z +O(zp+1).

(3.13)

This relation gives a lot of information. First the left hand side contains the matrix V which is, in

turn, related to M by M(0) = V . So, to impose stability conditions on the method, the matrix V will

be considered. This can be achieved if the spectrum of V lies inside a unit disc or more specifically

σ(V ) = {1, 0} for DIMSIMs of types 1 and 2. Thus to achieve this, it is necessary to consider the

matrices on the right hand side of (3.13) as well. In addition, all the elements of the matrices BA−XB

and BU−XV +V X must be zero except their first rows. For this, the following definition is necessary

for the basis of IRKS.

Definition 3.3.2 A GLM satisfying V e1 = e1 has IRKS if
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BA ≡ XB, (3.14)

BU = XV − V X + e1ξ
T

, (3.15)

for some matrix X and s–dimensional row vector ξ
T

and

det(ωI − V ) = ωp(ω − 1)

where e1 =
[
1 0 0 · · · 0

]T

.

Here, ≡ sign means that the corresponding elements of the matrices on both sides are equal except

their first rows. Further, it was proved [86] that X has a special form related to polynomial α and β,

which is given in the following theorem.

Theorem 3.3.3 Given a GLM in Nordsieck form with q = p, then the most general matrix X satisfying

BA ≡ XB,

BU ≡ XV − V X,

is of doubly companion form (3.8).

Without loss of generality, we assume that βp+1 = 0. The first row of BA − XB is not nonzero as

stated in the following result [86]:

Lemma 3.3.3 Given the coefficients β1, β2,. . . ,βp, the coefficients α1, α2,. . . , αp+1, are chosen so

that the characteristic polynomial of X is of the form det(ωI − X) = (ω − λ)p+1. Then BA ≡ XB

implies

BA = XB. (3.16)

Now, which matrix should be constructed first or what procedure should be used to obtain linear

conditions? It is necessary to mention again that the aim is to first build matrices A and B as

(3.7) provides a straightforward way of obtaining the other two matrices U and V . Also from (3.16),

A = B−1XB, so A is also easy to obtain, thus the only matrix required is B. It is convenient to start

from the first IRKS condition (3.16) and using the transformation (3.12), we get

Ψ−1BA = (J + λI)Ψ−1B, (3.17)

Let B = ΨB̃, thus (3.17) becomes,

B̃A = (J + λI)B̃, (3.18)

where B̃ is lower triangular as (J+λI) and A are lower triangular matrices in (3.17). Further, it would

be convenient to obtain the IRKS condition in terms of matrix B only. So, using (3.16) and (3.7) in

(3.15), it is easy to obtain

BC(I −KX) = XE − EX + e1ξ
T

, (3.19)
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and it is straightforward to observe that all the entries of the resultant matrices on both sides are zero

except for their last columns. Thus, p conditions are obtained from the IRKS conditions. A further

condition on the matrix V̈ obtained by removing the first two rows and the first two columns of V is

due to the definition of IRKS. The reason for cancelling the two rows and columns is explained in the

later Section 3.3.6.

3.3.5 Condition for spectral radius of V̈

As explained before, a GLM would be zero-stable if all the eigenvalues of V̈ are zero. For this purpose,

the Schur transform is used in the construction of methods i.e.

T−1V̈ T = Q,

where Q is an upper triangular matrix and T is a unitary matrix. Now, T can be decomposed as PLŬ

(Ŭ being different from the matrix U of the GLM) so

(PLŬ)−1V̈ PLŬ = Q,

Ŭ−1L−1P−1V̈ PLŬ = Q. (3.20)

As the right hand side matrix Q is upper triangular and the matrix T transforms matrix V̈ into upper

triangular form, we have to deal with the lower triangular part of (3.20) so the Ŭ factor has no effect

on the structure. Therefore we can consider T = PL without loss of generality. So, (3.20) becomes

L−1P−1V̈ PL = Q. (3.21)

Hence, during practical construction of methods, T should be a permuted lower triangular matrix PL

(L being lower triangular with 1’s on the diagonal). For example, if p = 4 then possible choices for T

can be any one of the following⎡⎢⎢⎢⎢⎣
1 0 0

∗ 1 0

∗ ∗ 1

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
∗ 1 0

1 0 0

∗ ∗ 1

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
∗ ∗ 1

1 0 0

∗ 1 0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
∗ 1 0

∗ ∗ 1

1 0 0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
∗ ∗ 1

∗ 1 0

1 0 0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
1 0 0

∗ ∗ 1

∗ 1 0

⎤⎥⎥⎥⎥⎦ .

where ∗ is a nonzero element in general. When ∗ are zero, T = I which is also a possible choice.

3.3.6 Property-F for GLMs

In the case of Runge–Kutta methods, the FSAL property is very useful from an implementation point

of view. It can be extended in the case of GLMs as
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Definition 3.3.3 An IRKS method has property–F if

cs = 1, (3.22)

e
T

1B = e
T

p+1A, (3.23)

e
T

2B = e
T

p+1. (3.24)

where ei is the unit column vector with all elements zero except its ith element which is equal to one.

The conclusion of this definition gives βp = 0. Further, use of (3.23) in (3.7) yields,

e
T

p+1U = e
T

p+1C − e
T

p+1ACK,

e
T

1V = e
T

1E − e
T

1BCK.

As, cs = 1 so e
T

p+1C = e
T

1E and thus

e
T

p+1U = e
T

1V.

Similarly, (3.24) yields e
T

2V = O. Now due to this, the second diagonal element of V is automatically

zero. Along with this, from the definition of IRKS, V e1 = e1. Thus, the first two eigenvalues are

somehow defined by the design and it is required that all the other eigenvalues must be zero. For this,

it would be enough to apply the transformation in Section 3.3.5 to the matrix V̈ only, obtained by

cancelling the first two rows and columns of V .

3.4 Practical derivation of methods

The ultimate aim of developing the theory of DIMSIMs and then its subclass, the GLMs with IRKS, is

to practically produce the implementable methods. The conditions discussed so far are implementable

and exactly fit into the desired frame. However, a specific procedure is needed to completely find a

method. The first step in this procedure is to select the values of some free parameters. A few of these

could be restricted by the design of methods and the rest might be still free to choose. But, what

should be chosen in the existing case? This will be discussed in the following subsection.

3.4.1 Design choices

The following is the list of free parameters:

• p–the order of the method

• λ–the eigenvalue of the matrix A, to achieve A–stability

• ε–the error constant of the method, to obtain small error constants (in the case of explicit

methods) and L–stability (in the case of implicit methods)

• c–the abscissae vector such that each abscissa lies in the interval [0, 1]

• β–the last column of doubly companion matrix X
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• T–the (p − 1)× (p − 1) matrix

Order p, eigenvalue λ and error constants ε. Depending upon the accuracy requirements, the

value of p is the very first choice to construct an IRKS method. This is important as the

number of stages s = p+1 and length of Nordsieck vector r = p+1 are then defined in terms of

it. Next is to choose the stability and accuracy parameters, λ and ε. The analysis of the λ values

is available in the literature for very highly stable methods which are usually required for stiff

problems. The error constant ε is chosen here for a fair comparison with competitive methods.

Though it is not necessary to always choose the same values.

Abscissae vector c. From the practical implementation of DESI methods (a generalisation of SIRK

methods) it is desirable that the abscissae should be inside the interval [0, 1]. For efficient

implementation, the F-property of GLMs restricts the last abscissa cs to be exactly equal to 1.

For the rest of the abscissae, we consider two possible choices:

• i
s for i = 1, 2, . . . , s− 1,

• i
s−1 for i = 1, 2, . . . , s− 1.

We restrict ourselves to only the first option, in the construction of GLMs, used in this thesis.

Vector β. The β-vector is also very important as some of the elements of matrix B directly depend

upon the β-terms, e.g. bss = 1/β1 always. However, in the existing algorithm, the β-terms are

selected here on the criterion of a fair comparison with the existing competitive methods.

Transformation matrix T . This matrix is still a free parameter and there is no particular choice

considered yet except to find such a matrix T that produces small coefficients in the method.

Focusing on the conditions described in the previous section, a reliable and practical algorithm is

required to construct the classes of GLMs under the desired conditions. The aim here is to construct

the coefficient of the matrices (A,U,B, V ).

3.4.2 Conditions on B̃

After selection of free parameters, it is straight forward to construct the matrices which depend only

upon the free parameters, these include J,K,E,C,Ψ,X. Next we need to construct the elements of

the method. Up to now, the conditions are the following:

e
T

2B = e
T

s , (F2)

BC(I −KX) = XE − EX + e1ξ
T

, (IRKS)

T−1V̈ T = Q. (zero stability)

The conditions (F2) and (IRKS) are already relating to matrix B. It is easy to convert the third one

to relate to B, using V = E −BCK. Therefore, all the matrices (A,U,B, V ) can be written in terms
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order stages n(F2) n(IRKS) n(zero stability) n(B̃) difference

p s s (s − 1) (s−1)(s−2)
2

s(s+1)
2 0

1 2 2 1 – 3 0
2 3 3 2 1 6 0
3 4 4 3 3 10 0
4 5 5 4 6 15 0
5 6 6 5 10 21 0
6 7 7 6 15 28 0

Table 3.1: Number of conditions n required for each p to obtain the elements of the matrix B̃

of B. Then the transformation Ψ is applied to all the three conditions to obtain linear relations in

terms of elements of B̃. As compared to Runge–Kutta methods, GLMs are in the form of matrices.

In addition, conditions are applied in the form of matrices, although these are then simplified and

reduced to a comparatively smaller number. In the present case, the size of a GLM is 2s× 2s. Though

the required number of linear conditions are equal to the number of elements in B̃ i.e. s(s+1)/2 which

is somewhat less than 2s× 2s = 4s2. After simplifications, the above 3 conditions (in matrix or vector

form) give exactly the same number of linear relations in terms of the elements of B̃. Table 3.1 shows

the number of conditions n for each value of p. Thus,

n(F2) + n(IRKS) + n(zero stability) = n(B̃).

Once the values of B̃ are obtained, it is easy to find all the numbers in (A,U,B, V ). Thus this procedure

can be written in the form of an algorithm as follows:

3.4.3 Algorithm for method computation

Step 1. Set p, λ, ε, c, β, T

Step 2. Set βp = 0 and make β(z) := 1 + β1z + β2z
2 + · · · + βp−1z

p−1

Step 3. Set α(z) := (1−λz)p+1

β(z) +O(zp+1)

Step 4. Calculate ξ(z) := α(z)(exp(z)− 1)− εzp+1 +O(zp+2)

Step 5. Construct C, J,K and the following:

Ψ = β(K),

X = Ψ(λI + J)Ψ−1,

E = exp(K).

Step 6. Construct lower triangular B̃ symbolically and then find matrices (A,U,B, V ) in terms of ele-

ments of B̃.

Step 7. Solve the conditions on B̃.
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Step 8. Calculate the matrices in the following order

B = ΨB̃,

A = B−1XB,

U = C −ACK,

V = E −BCK.

3.4.4 Example

For example,

Step 1. Take the explicit case with p = 2 then λ = 0, r = s = 3 and q = 2 is obvious. As we are

considering equally spaced abscissae so here c
T

=
[
1
3 ,

2
3 , 1

]
. The transformation matrix T is of

dimension one and has no effect on the construction of method of order two.

Steps 2-4. As, βp = 0 by design, so α- and β- polynomials are

β(z) = 1 + zβ1,

α(z) =
1

β(z)
+O(zp+1),

= 1− zβ1 + z2β1
2 +O(z3),

ξ(z) = α(z)(exp(z)− 1)− εzp+1 +O(zp+2),

= 1 + (
1

2
− β1)z + (

1

6
−

1

2
β1 + β1

2 − ε)z2

Step 5. So,

C =

⎡⎢⎢⎢⎣
1 1

3
1
18

1 2
3

2
9

1 1 1
2

⎤⎥⎥⎥⎦ , J =

⎡⎢⎢⎢⎣
0 0 0

1 0 0

0 1 0

⎤⎥⎥⎥⎦ ,K =

⎡⎢⎢⎢⎣
0 1 0

0 0 1

0 0 0

⎤⎥⎥⎥⎦ ,

E =

⎡⎢⎢⎢⎣
1 1 1

2

0 1 1

0 0 1

⎤⎥⎥⎥⎦ ,Ψ = β(K) =

⎡⎢⎢⎢⎣
1 β1 0

0 1 β1

0 0 1

⎤⎥⎥⎥⎦ ,X =

⎡⎢⎢⎢⎣
β1 −β1

2 β1
3

1 0 0

0 1 −β1

⎤⎥⎥⎥⎦ .

Step 6. Let

B̃ =

⎡⎢⎢⎢⎣
b̃11 0 0

b̃21 b̃22 0

b̃31 b̃32 b̃33

⎤⎥⎥⎥⎦
then
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B = ΨB̃ =

⎡⎢⎢⎢⎣
β1b̃21 + b̃11 β1b̃22 0

β1b̃31 + b̃21 β1b32 + b̃22 β1b̃33

b̃31 b̃32 b̃33

⎤⎥⎥⎥⎦ , A = B−1XB =

⎡⎢⎢⎢⎢⎣
0 0 0

b̃11
b̃22

0 0

− b̃11 b̃32−b̃21 b̃22
b̃22 b̃33

b̃22
b̃33

0

⎤⎥⎥⎥⎥⎦ ,

U = C −ACK =

⎡⎢⎢⎢⎢⎣
1 1

3
1
18

1 −1
3

−2 b̃22+3 b̃11
b̃22

−1
9

−2 b̃22+3 b̃11
b̃22

1
b̃11 b̃32−b̃21 b̃22−b̃222+b̃22 b̃33

b̃22 b̃33

1
6

2 b̃11 b̃32−2 b̃21 b̃22−4 b̃222+3 b̃22 b̃33

b̃22 b̃33

⎤⎥⎥⎥⎥⎦ ,

V =

⎡⎢⎢⎢⎣
1 −β1b̃21 − β1b̃22 − b̃11 + 1 1

2 −
1
3 β1b̃21 −

1
3 b̃11 −

2
3 β1b̃22

0 −β1b̃31 − β1b̃32 − β1b̃33 − b̃21 − b̃22 + 1 1− 1
3 β1b̃31 − 1/3 b̃21 −

2
3 β1b̃32 −

2
3 b̃22 − β1b̃33

0 −b̃31 − b̃32 − b̃33 1− 1
3 b̃31 −

2
3 b̃32 − b̃33

⎤⎥⎥⎥⎦ .

Step 7. There are 6 unknown elements in B̃. Thus, 6 linear relations are required to complete the

method. First, the zero stability condition will be applied. In this example the matrix V̈ is a

single element. This must be zero, i.e.

1−
1

3
b̃31 −

2

3
b̃32 − b̃33 = 0 (3.25)

From the F2 condition we have,

β1b̃31 + b̃21 = 0,

β1b̃32 + b̃22 = 0,

β1b̃33 − 1 = 0.

From the modified form of the IRKS condition (3.19),

1

3
β1b̃11 +

1

18
b̃11 −

1

6
+ ε = 0,

1

3
β1b̃21 +

2

3
β1b̃22 +

1

18
b̃21 +

2

9
b̃22 −

1

2
= 0.

Step 8. Solving these 6 equations for b̃ij’s and using those values in the 4 matrices, the following form of

the GLM is obtained.

A =

⎡⎢⎢⎣
0 0 0

−2(6 ε−1)

(6β1
2
−5β1+2)(6β1+1)

0 0

−3(36 β1
4
−18 β1

3+2β1
2+6 ε+β1−1)

6β1+1

3β1(6β1
2
−5β1+2)
2 0

⎤⎥⎥⎦ ,

B =

⎡⎢⎢⎣
−3(36 β1

4
−18 β1

3+2β1
2+6 ε+β1−1)

6β1+1

3β1(6β1
2
−5β1+2)
2 0

0 0 1
3(6 β1

2
−4β1+1)
β1

−3(6β1
2
−5β1+2)

2β1

1
β1

⎤⎥⎥⎦ ,
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U =

⎡⎢⎢⎣
1 1

3
1
18

1 2
3

36β1
3
−24β1

2+18 ε+7β1−1

(6β1
2
−5β1+2)(6β1+1)

2(36 β1
3
−24β1

2+18 ε+7β1−1)

9(6β1
2
−5β1+2)(6β1+1)

1 108β1
4
−36β1

3
−9β1

2+36 ε+12β1−4
2(6 β1+1)

12 β1
3
−10 β1

2+12 ε+4β1−1
2(6 β1+1)

⎤⎥⎥⎦ ,

V =

⎡⎢⎢⎣
1 108β1

4
−36β1

3
−9β1

2+36 ε+12β1−4
2(6 β1+1)

12β1
3
−10β1

2+12 ε+4β1−1
2(6 β1+1)

0 0 0

0 −1
2

18β1
2
−9β1+2
β1

0

⎤⎥⎥⎦ .

The method obtained for β1 = 1
4 , is used in this thesis. This value is taken from the theory of PECE

pairs (for p = 2) so that a fair comparison with the IRKS methods can be obtained. In the same way,

methods of different orders can be constructed. However, it is not feasible yet to write the matrix in

a general form or even for each value of p.
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Implementation of GLMs

The challenges of implementation arise in almost every class of numerical methods for ODEs. These

include starting procedures, storage of data at the right time of integration and many other design

questions in the coding. In the literature, most of the techniques used for the implementation of GLMs

are the standard techniques that exist for the implementation of the traditional methods. Although

the features of the IRKS methods with the F–property give advantages to look for a better implemen-

tation. The aim of this thesis is to study the case of variable stepsize, variable order implementation

of the GLMs. To understand the deep design of the (h, p)–algorithm, it is necessary to discuss each

essential aspect that is required for the implementation. For this, it is essential to first present the

standard techniques. Along with this, in each section, it is discussed how the GLMs can be used for

reliable implementation as compared to standard techniques.

The starting procedure of an (h, p)–controller is not a straightforward process. It includes initial

stepsize, initial input vector, starting vector, starting method and maybe even the starting order as

well. Although, in the implementation of the GLMs, not all these inputs are necessary. For example,

starting method can be avoided for variable order implementation; this is discussed in detail in Section

4.2.

A reliable ODE solver consisting of a method or a set of methods, needs a reliable procedure for

adjusting the stepsize. However, this is not enough for adjusting the stepsize. A change in stepsize may

cause instability due to that method and is not useful without the scale and modify technique. For

this, the Nordsieck vector is rescaled by powers of r = (hnew/hold), for adjusting the stepsize. These

adjustments are required due to β–terms in (4.8). These β’s are free parameters chosen during the

construction of methods, used in the doubly companion matrix (3.8). Each one of these is separately

41
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presented in Section 4.3.

A reliable ODE solver also needs an asymptotically correct error estimator. Usually, in the existing

ODE solvers, error estimation is computed at some additional cost. Here, due to high stage order and

use of the Nordsieck form of a data vector, it is possible to construct reliable error estimators, not only

for the method of order p but also for the method of order p + 1. On the basis of the estimators, we

can adjust the stepsize. All these essentials are discussed in Section 4.5. Before this, it is necessary to

understand how the errors are produced; this is presented in Section 4.4.

The order control is mainly explored in the next chapter in which the main goal is to make the

heuristic numbers more logical and rational. Here, in Section 4.6, the need for a variable order code,

along with some existing order controllers is presented. However, before all this, it is appropriate to

see some of the software issues for ODEs.

4.1 ODE software issues

Here are a few of the current challenges faced in the field of numerical analysis for methods of ODEs

and software.

• The ultimate aim in the development of various classes of numerical methods for ODEs is to

develop the ODE software. Once a new class is developed, the next step required is to focus on

implementable methods. In other words, the implementation issues of the numerical methods

for ODEs change the requirements and hence the direction of research in developing the theory.

This used to happen from time to time in the past and it is still occurring.

• Much theory has been developed in this field but the ODE software is still far from producing

theoretical behaviour. One of the reasons is the wide variety of characteristics of ODEs. This,

in fact, divides or somehow produces gaps in the theory to stay on a common point. Thus,

depending upon the characteristics of ODE, software is built because each characteristic has its

own requirements, such as accuracy, etc.

• There are many algorithmic decisions that we make on heuristic data in the ODE software. For

example changing the stepsize with extreme changes, changing of order, rejection criteria, etc..

These will all be discussed in this chapter and also in the next chapter on a theoretical basis.

• There is no benchmark for available ODE software. For a standard in the ODE software, we need

standard numerical methods. This requires us to first identify what is the most general form of

numerical methods for ODEs. Then we need to repeatedly mould it until it fulfils almost all the

implementation requirements.

• One of the main issues in developing ODE software is the design of algorithms.

• In a user–friendly ODE solver, there should be options for the users to select some of the param-

eters. For example, the tolerance scaling method, initial stepsize etc.. What is the default value

for the tolerance scaling method? It depends on the problem. Though it is necessary to categorise

which possible tolerance definition can be used for each class of problems. This might make it
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easier to conclude which value should be the default one. Naturally, it would be the one with

the highest efficiency output so is expensive. Although it could be of the user’s choice, the one

that suits the problem to obtain accuracy requirements. Another example of the options arises

from a question; how to select the initial stepsize h0? It is not bad to consider the user–supplied

value as one of the practical approaches. Though a good solver should automatically select the

initial stepsize as well.

Considering the issues mentioned above in the rest of the chapter, the implementation techniques are

discussed that can be efficiently used in the case of existing GLMs. The starting procedure of a good

solver should first give the option to the user to either choose some of the parameters or to decide

to use the default values. How to set these values, is discussed in the following section. Only those

elements of the starting procedure that are essential for the design of code considered in this thesis,

are presented here.

4.2 Starting procedure

For the GLMs considered here, a modified approach of Gladwell et al. [69] is used for automatically

calculating the initial stepsize. Usually in the implementation of GLMs, we require a starting method

as well and this requires additional work. In our case this can be easily avoided by using an initial

order equal to one. How can the starting method can be avoided? This will be discussed later in this

section; first let us discuss the scheme for initial stepsize.

4.2.1 Initial stepsize

Initial stepsize and order are very important information required at the start of our code. Initial

stepsize is required in the variable stepsize implementation of every type of method and design of ODE

solver. It is required in the case of GLMs as well. In a user–friendly and flexible ODE solver, there

must be open options given to the users. One of the options should be the selection of the initial

stepsize. The two possibilities for selecting the initial stepsize should be either (i) a user–supplied

value or (ii) an automatic selection of h0 by a separate module of the code.

The later approach does not simply mean the use of a default fixed value of h0 but it depends

upon a specified procedure for calculating its value. In this case the only information we have is the

initial conditions and we do not want to go beyond one or two function evaluations. Many approaches

have been made to select h0 automatically. A reliable automatic code should be able to analyse the

problem and select the initial stepsize automatically. If the initial stepsize is unacceptable or not

properly supplied by the user, the code should have the capability of quickly adjusting the stepsize

instead of resulting in too many rejections or too many accepted steps before achieving the correct

stepsize sequence.

On the other hand, a user–supplied value is based on the experience and knowledge of the user

whereas this knowledge includes the same initial value which is supplied to the solver at the start.

Using a user–defined value, there is a chance of too many rejections before the stepsize-curve reaches
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the ideal and smooth trajectory. The main reason would be poor knowledge or experience, particularly

about ODE solvers. On the other hand, a good stepsize controller could be effective in quickly achiev-

ing the ideal trajectory. Thus there should be options so that either users supply h0 based on their

knowledge; or otherwise the solver has a reliable approach for selecting h0 in the form of a separate

module.

Because our code starts with a method of order one, so the initial stepsize h1 can be selected by

modifying the approach used by Gladwell et al. [69]. In this approach the fact that the initial order is

one (p0 = 1), is used. For this method, the error term, using the Taylor series formula, is 1
2h

2
1y

′′(x0).

To obtain the maximum possible stepsize for which the norm of the error term is close to the prescribed

tolerance, it is assumed that ∥∥∥∥12h21y′′(x0)
∥∥∥∥ = tol,

where y′′(x0) is a vector quantity. So, practically, we can estimate the value of h1 by properly scaling

this quantity and using a suitable norm. Here the norm ‖.‖sc is defined in subsection 4.3.1. Then,

h1 =

√
2

‖y′′(x0)‖sc
, (4.1)

For this, we need an approximation to y′′(x0) which can be obtained from

y′′(x0) ≈
f (x0 + h0, y0 + h0f(x0, y0))− f(x0, y0)

h0
,

and this requires h0 which corresponds to the stepsize for a method of order zero (note that the usual

notation for initial stepsize is h0, but in this Subsection, it is h1). For this order, the error term would

be h0y
′(x0). This value is simply a function evaluation at x0. So,

h0 = ‖f(x0, y0)‖
−1
sc ,

Thus, two function evaluations are required to calculate the initial stepsize from (4.1). This is only

possible if the initial order is one. Other advantages of taking p0 = 1, are discussed in the following

subsection.

4.2.2 Initial order

Regardless of the order varying behaviour of a code based on GLMs, if the solver is starting with a GLM

of higher order, than 1, then it is necessary to use a starting method as well, and in particular for the

fixed order codes based on GLMs. The reason is very straightforward. GLMs are in general multivalue

methods. The initial conditions of a problem supplied by the user are not enough to take the first step.

For example, the GLMs considered here are in Nordsieck form and if a method of order 4 is used in the

first step, it is necessary to calculate the approximate values of hy′(x0), h
2y′′(x0) and h3y′′′(x0) in order

to take the first step. For this purpose a starting method is used before using the main integration
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algorithm. One of the advantages of the design we are considering for the implementation of GLMs is

that we do not need a separate starting method, as we start the code with a method of order 1. In

this case the input vector to step number 1 consists of initial value y(x0) and its first scaled derivative,

which is equal to hf(x0), and this is available without any additional cost. Thus all we need to start

a code is a good scheme for the initial stepsize.

4.2.3 Initial input vector

The initial conditions for an ODE are very important information for starting numerical integration

because they provide an exact solution at the initial point. The classical Runge–Kutta methods need

just this initial value to start the numerical code. This is true with Runge–Kutta method of any order

and even in variable order design settings, for example, the RADAU code in [75]. This is possible

only when the quantity we are approximating with the method, depends upon information which is

calculated locally (like the internal stages in the case of classical Runge–Kutta methods) to produce

the numerical solution at the end of a step. The starting case is not that simple for every type of

method and in particular when the input required by the method consists of more than one data value

i.e. r > 1. For example, take a multistep method with k steps where k ≥ 2. The very first step to

be taken by this k-step method needs the solutions at k previous steps (in other words, it needs the

initial input vector consisting of solutions at k previous steps). So an additional starting method or

procedure is required to obtain this initial input vector before the use of the main method. Many

extensions and generalisations of Runge–Kutta methods also need a starting method for this reason.

The starting method produces the initial (Nordsieck) vector for the main method. The order of

the starting method must be at least equal to the order of the main method. The main method should

not be built on results of lower order. This low accuracy would not be able to achieve consistency.

In the design of DIMSIMs, r and p are almost equal. The implementation of higher–order DIMSIMs

also needs starting methods in the fixed–order environment. The existing GLMs with IRKS, a subclass

of DIMSIMs, are in Nordsieck form and their fixed order implementation also requires a starting method

or procedure. The initial Nordsieck vector consists of the first p–scaled derivatives of the solution y(x),

where p is the order of the method. For higher order GLMs, it is not possible to construct the full

Nordsieck vector at the initial point. However, the first and second element of the Nordsieck vector

are possible to find without any additional procedure. The first value of the Nordsieck vector is simply

the initial value and the second value h0y
′(x0) is the product of the initial stepsize and one function

evaluation of the given ODE at x0. Thus, in the case of p0 = 1, no starting method is required and

the input vector is available at the cost of single function evaluation.

As the GLMs with IRKS will be implemented in a variable stepsize variable order environment,

so it will be efficient to start with method of order 1, as discussed above. Further the methods of

consecutive order are possible and are used here as well. It is possible to start the code with a method

of order 1 and then increase the order gradually, without disruptive fluctuation in order, according to

the rational design presented later in the thesis. This dynamical starting of the code is analogous to

driving an automatic gear–controlled car which starts in first gear and then automatically adjusts the

gear according to the requirements.
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4.3 Stepsize control

In ODE software, variable stepsize is a characteristic feature. Adaptivity of stepsize plays one of

the important roles in obtaining minimal computational cost of the methods, although it requires

computational stability as well. The question is why do we need adaptive strategies in an ODE solver?

A simple answer would be to avoid fixed stepsize. In general, the behaviour of the solution of a DE

may not be same throughout the integration interval. So if we are bound to use a fixed stepsize then

the value of that stepsize would be the minimal one which can work for any subinterval where accuracy

is impossible to achieve with bigger step sizes. Contrary to this, in a variable stepsize scheme, the

controller automatically adjusts the stepsize to keep the local error bounded by a prescribed tolerance.

In other words, using a variable stepsize controller, an optimal stepsize for the next step would be the

one for which the norm of the local error estimation is equal to the prescribed tolerance.

The existing codes impose limits on the stepsize ratio r = hnew/hold e.g. rmin = 0.5 and rmax = 2.

These values are imposed for two important reasons. Firstly, an abrupt change in stepsize can cause

problems in producing asymptotic error estimations. These are favourably multipurpose and thus are

very important. Secondly, over large values of r will certainly affect the solution of problems with

discontinuities which sometimes occur at unknown points. These limits are discussed in Section 4.3.1;

the first thing to understand at this point is the standard scheme for stepsize control.

4.3.1 Standard stepsize control scheme

The standard stepsize controller is used for adjusting the stepsize automatically. Almost all other

controllers are modifications and generalisations of it. It is based on the error estimate. Thus reliability

of error estimation is very important for this purpose. Here, in the case of GLMs, an analytical approach

to error estimation is possible, rather than heuristic techniques used in the past such as the embedded

technique. An approximation to the local truncation error of a pth order method is

errn−1 = Cn−1h
p+1
n−1y

(p+1)
n−1 . (4.2)

Given tolerances can be used to find the maximum possible step size for the next step hn i.e. Cn−1h
p+1
n y

(p+1)
n

should be chosen so that its norm is approximately equal to Atol + ‖y[n]‖Rtol = sc, where Atol and

Rtol are vectors of dimension N , usually defined by users. And(
hn−1

hn

)p+1

= ‖errn−1‖sc, (4.3)

must be satisfied, where the norm is defined as

‖err‖sc =

√√√√ 1

N

N∑
i=1

(
erri
sci

)2

,
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From (4.3),

hn =

(
1

‖errn−1‖sc

) 1
p+1

hn−1. (4.4)

We are taking a risk in an assumption that y
(p+1)
n−1 = y

(p+1)
n and that can cause rejections. To avoid

unnecessary rejections of steps a safety factor γ is included and (4.4) becomes

hn = γ

(
1

‖errn−1‖sc

) 1
p+1

hn−1, (4.5)

where γ is the safety factor used (practically) for avoiding unnecessary rejection of steps. Later in this

chapter, we will discuss how we can avoid γ. Here, it is necessary to discuss the limitations of the

change in stepsize ratio r = hnew/hold used (practically) in the standard control scheme. An abrupt

change in a stepsize can cause rejection. So limits are used to avoid too small or too large a change in

step size. There are two cases. For example, we may take rmin = 0.5 and rmax = 2 with the standard

stepsize control scheme. Using this combination, after a successful attempt of a step, the standard

stepsize scheme will estimate the stepsize hnew for the next step. If hnew < hold then (r < 1). So,

rmin = 0.5 limits r to a decrease of less than a factor of a half so that there is no big reduction in the

stepsize. Similarly, rmax = 2 limits r to a increase of less than a factor of a two so that there is no big

increase in the stepsize. Hence, these limits help to produce smooth stepsize trajectories. This stepsize

scheme is not useful to implement without the following technique.

4.3.2 Scale and modify technique

This technique is essential for using variable stepsize schemes for GLMs in Nordsieck form. Adaptive

time-stepping is not the only ingredient required when avoiding constant stepsize. Before going into

the detail of Scale and modify, it is better to explain why the nature of the Nordsieck vector requires

Scale and modify.

In a variable stepsize integrator, the output vector, in Nordsieck form, at the end of the nth step,

with stepsize hn = xn − xn−1, is

y[n] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y
[n]
1

y
[n]
2

y
[n]
3
...

y
[n]
p+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yn

hny
′

n

h2ny
′′

n
...

hpny
(p)
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.6)

It is not possible to use the same vector as an input to the (n+1)th step. This is due to the variation

in stepsize so that the stepsize in the next step is hn+1 = rhn which is different from hn (in general).
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So the input to the (n+ 1)th step must be

y[n] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yn

rhny
′

n

rh2ny
′′

n
...

rhpny
(p)
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.7)

But (4.6) is an approximation to

y[n] ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y(xn)

hny
′(xn)

h2ny
′′(xn)− βp−1h

p+1
n y(p+1)(xn)

...

hpny(p)(xn)− β1h
p+1
n y(p+1)(xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= y[n](xn)− βhp+1

n y(p+1)(xn). (4.8)

In other words, the Nordsieck vector on the right hand side of (4.6) obtained from the numerical

method is in fact an approximation to the above vector (4.8). The β’s occurring as coefficients of the

(p+1)st–derivative terms are the same as those we used in the construction of that particular method.

This result is given by Wright [86] which is stated as follows.

Theorem 4.3.1 The vector β which satisfies

y[n] = y[n](xn)− βhp+1
n y(p+1)(xn) +O(hp+2),

is given by

β =
[
βp βp−1 βp−2 · · · β1

]T

,

where the βi are the free parameters from the doubly companion matrix X.

It is important to mention here that according to the design of the existing GLMs, βp = βp+1 = 0, so

the first two elements of the vector in (4.8) do not contain (p+1)st–derivative terms. Hence these two

elements need only scaling. Thus,

y[n] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(xn)

hy′(xn)

h2ny
′′(xn)− βp−1h

p+1
n y(p+1)(xn) +O(hp+2

n )

h3ny
(3)(xn)− βp−2h

p+1
n y(p+1)(xn) +O(hp+2

n )
...

hpny(p)(xn)− β1h
p+1
n y(p+1)(xn) +O(hp+2

n )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

= y[n](xn)− βhp+1
n y(p+1)(xn) +O(hp+2

n ). (4.9)
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Recalling to mind that the value of approximation to the above vector is obtained using (2.2b). This

is an output vector from the nth step. Before starting the next step, the new stepsize hn+1 = rhh

is obtained from the stepsize controller. Due to variable stepsize, the stepsize ratio r might not be

exactly 1. Thus, the input vector to the (n+ 1)th step must be scaled correctly. This is only possible

if suitable approximations to hp+1y(p+1)(xn) are available. Thus, for the adjustment of stepsize i.e.

when hn → rhn, we rescale the Nordsieck vector and it becomes

y[n] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(xn)

rhny
′(xn)

(rhn)
2y′′(xn)− βp−1r

2hp+1
n y(p+1)(xn) +O((rhn)

p+2)

(rhn)
3y(3)(xn)− βp−2r

3hp+1
n y(p+1)(xn) +O((rhn)

p+2)
...

(rhn)
py(p)(xn)− β1r

php+1
n y(p+1)(xn) +O((rhn)

p+2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.10)

= D(r)
(
y[n](xn)− βhp+1

n y(p+1)(xn) +O((rhn)
p+2)

)
, (4.11)

where

D(r) = diag(1, r, r2, . . . , rp).

But this is not exactly what we need. The β–terms are not scaled properly and instead of (4.11) we

require

y[n] = D(r)
(
y[n](xn)

)
− βr

p+1hp+1
n y(p+1)(xn) +O((rhn)

p+2). (4.12)

So, rescaling on its own is not enough for adjusting the stepsize. A proper adjustment of stepsize will

be completed in two steps: scaling as in (4.11), and modifying. Modifying consists of two parts; (i)

we have to somehow remove the wrongly scaled β–terms and then (ii) we need to add properly scaled

β–terms. Thus, in removing the wrong terms, (4.10) or (4.11) becomes,

y[n] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(xn) +O((rhn)
p+2)

rhny
′(xn) +O((rhn)

p+2)

(rhn)
2y′′(xn)− βp−1r

2hp+1
n y(p+1)(xn) + βp−1r

2hp+1
n y(p+1)(xn) +O((rhn)

p+2)

(rhn)
3y

′′′

(xn)− βp−2r
3hp+1

n y(p+1)(xn) + βp−2r
3hp+1

n y(p+1)(xn) +O((rhn)
p+2)

...

(rhn)
py(p)(xn)− β1r

php+1
n y(p+1)(xn) + β1r

php+1
n y(p+1)(xn) +O((rhn)

p+2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.13)

= D(r)
(
y[n](xn)− βhp+1

n y(p+1)(xn)
)
+D(r)βhp+1

n y(p+1)(xn) +O((rhn)
p+2). (4.14)
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And by adding the correct terms,

y[n] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(xn)

rhny
′(xn)

(rhn)
2y′′(xn)− βp−1r

2hp+1
n y(p+1)(xn) + βp−1r

2hp+1
n y(p+1)(xn)− βp−1(rhn)

p+1y(p+1)(xn)

(rhn)
3y

′′′

(xn)− βp−2r
3hp+1

n y(p+1)(xn) + βp−2r
3hp+1

n y(p+1)(xn)− βp−2(rhn)
p+1y(p+1)(xn)

...

(rhn)
py(p)(xn)− β1r

php+1
n y(p+1)(xn) + β1r

php+1
n y(p+1)(xn)− β1(rhn)

p+1y(p+1)(xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+O((rhn)

p+2), (4.15)

= D(r)
(
y[n](xn)− βhp+1

n y(p+1)(xn)
)
+D(r)βhp+1

n y(p+1)(xn)− β(rhn)
p+1y(p+1)(xn) +O((rhn)

p+2),

(4.16)

= D(r)y[n](xn) + (D(r)− r
p+1I)βhp+1

n y(p+1)(xn) +O(hp+2
n ). (4.17)

The scale and modify technique is necessary from many aspects. From the implementation point of

view, it is very important to approximate hp+1y(p+1)(xn) asymptotically correctly, as it is used for

multi-purposes including stepsize control, and error estimation of method of order p as well as p + 1.

It is discussed further in Section 4.5 how the approximations to hp+1y(p+1)(xn) depend on the stage

derivatives and the elements of the output Nordsieck vector at the end of a step. Wrongly scaled

β-terms in (4.8) would definitely affect the reliability of the estimators. Another important aspect is

due to stability which is explained in the following section.

4.3.3 Scale and modify technique effect on stability

The scale and modify technique is necessary for producing stable results. A GLM will be stable if

‖V n‖ lies in a unit circle. Here, the same thing can be viewed from a different angle. Let us say that

when a Nordsieck vector, obtained from (2.2b), is scaled by D(r), the following two changes happen:

B −→D(r)B +ΔB some modification to B,

V −→D(r)V +ΔV some modification to V.

For stability, we need to settle these modifications. This can be done by choosing ΔV so that D(r)V +

ΔV = V .

For simplicity, consider the one-dimensional problem y′ = 1 and let y[0] be the initial Nordsieck

vector; then the first output vector is

y[1] = V y[0],

and, as explained in the previous section, due to variable stepsize implementation, the input vector to
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the second step would be

y[1] = D(r1)V y[0].

Similarly the input to the third step is

y[2] = D(r2)V.D(r1)V y[0].

In the same way the input to nth step is

y[n−1] = D(rn−1)V.D(rn−2)V . . . D(r2)V.D(r1)V y[0],

and for stable results ∥∥∥∥∥
n∏

i=1

D(ri)V

∥∥∥∥∥ ≤ constant.

As discussed in the previous section, the first two elements of the Nordsieck vector need neither scaling

nor modification, due to βp = βp+1 = 0. So instead of the whole matrix V , the stability effect is related

to only V̈ and so ∥∥∥∥∥
n∏

i=1

D̈(ri)V̈

∥∥∥∥∥ ≤ constant,

where double dot means the matrix obtained by removing the first two rows and the first two columns

of that matrix. So, if this product for each step is defined as a function of r, i.e.

V̈ (r) = D̈(r)V̈ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r
2v31 r

2v32 . . . r
2v3(s−1) r

2v3s

r
3v41 r

3v42 . . . r
3v4(s−1) r

3v4s
...

...
. . .

...
...

r
p−1v(s−1)1 r

p−1v(s−1)2 . . . r
p−1v(s−1)(s−1) r

p−1v(s−1)s

r
pvs1 r

pvs2 . . . r
pvs(s−1) r

pvss

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

this product must be power bounded for stability. For this the eigenvalues of V̈ must lie in [−1, 1].

Therefore they satisfy

|det (ωI − V̈ (r))| ≤ 1.

This will certainly give some restrictions on the stepsize ratio r, so that r ∈ [rmin, rmax] which may

vary from one method to another. These restrictions on r must be imposed for numerical stability and

this is not a practical approach. Fortunately these restrictions can be avoided if proper scaling and

modification of the Nordsieck vector is performed after the first step and before the second step.

Furthermore, it is not necessary that only hp+1y(p+1)(xn)-terms are to be considered for the

scale and modify process. It might be a combination of hp+1y(p+1)(xn) with other quantities like

hp+2y(p+2)(xn) and hp+2f ′(yn)y
(p+1)(xn). This is discussed in [56]. Thus further terms can be consid-

ered for more efficient scale and modify to further refine the estimators.

In order to test the potential loss of zero stability for the methods due to scale and modify, the

analysis for the methods of order 2, 3 and 4 are presented in the Figure 4.1. For each of these methods,
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Figure 4.1: Possible stepsize ratio r for each of the methods of order two to four.

the eigenvalue with maximum absolute value of V̈ (r) is plotted on the y axis. Whereas y = 1 indicates

the stable boundary. For example, the graph shows that the method of order 4 can produce unstable

computations in the case where the step size is increased by a factor of more than 1.2 over many

consecutive steps.

4.3.4 PI (proportional-integral) controller

The purpose of a stepsize controller is to minimise the computational cost by maintaining the accuracy

requirements. The standard stepsize controller gives a stepsize for the next step which is based on the

stepsize and the error estimate for the existing step. This means that proper values of these two items

are necessary and particularly the value of the error estimate. In other words, this controller is in fact

an error controller. Without discussing the definition of norm used in a code, we will first think about

error estimation. In the case of IRKS methods, we have very promising estimators. Thus the goal is

to keep the error in a step close to the specified tolerance. In the mechanism of this controller, the

reason for rejection of a stepsize is not straightforward; it is too big a stepsize. It might be too small

a prediction of the stepsize which may be due to too big an estimation of error. If the error produced,

and hence correctly estimated, is too much smaller than the tolerance, then it may produce too big a

stepsize for the next step. Ultimately there will be a chance of unnecessary rejection of steps. Another

reason would be an abrupt change in the value of stepsize ratio r. This can also cause an abrupt change
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in the stepsize and hence the error produced in the next step. Usually to avoid these disadvantages or

chances of failure of the scheme, the stepsize ratio r is bounded by an upper and lower limit. These

two values are another example of heuristic approaches to software design.

In the work by Gustafsson et al. [71], a stepsize control algorithm is analysed from a control theory

point of view this is known as a PI controller. According to these authors, the standard stepsize control

needs analysis and improvements. The selection of stepsize can be treated as an automatic control

problem so that we can study it in the control theory. In terms of control theory, the standard stepsize

control is simply I-control (integral) which depends on the error estimation of the most recent step.

On the other hand, in PI-control, the error estimation of the two most recent steps are involved i.e.

rn =

(
tol

estn−1

)α/(p+1)

.

(
tol

estn−2

)β/(p+1)

where α + β = 1. PI control is a sophisticated stepsize control used in modern solvers. We are going

to implement PI-control along with a Lagrange controller. The changes we need to make are not that

complex. We only need to change the formula with restrictions given below. In the PI-controller, we

take β = 0 in the following cases:

� At the start of the integration.

� When a step is rejected.

� When the order changes.

In order to study the local discretisation errors in a step with method of order p and one order higher

(p + 1), it is necessary to first discuss the error growth of the general linear methods. Then these

results are applied to the estimation of local discretisation errors. The following section contains some

of these results.

4.4 Error propagation

One of the aims in this chapter is to discuss the error estimators and for this it is necessary to first

see how the error propagates when the GLM is used for numerical integration. Another reason for

this study is for the maintenance of the Nordsieck vectors due to variable stepsize implementation.

The GLMs considered here are with s = p+ 1 stages and r = s values in the Nordsieck vector, which

is up to the pth derivative (scaled) of y(x). A combined need of these two reasons is to analyse the

quantities passed from step to step to within O(hp+2). To investigate the error propagation in variable

stepsize mode, it is very straight forward in the case of multistage methods. However, in the case of

the GLMs, it is necessary to amend the solution vector y[n]. The input Nordsieck vector from xn−1 to
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xn is

y[n−1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y(xn−1) +O(hp+2)

hy′(xn−1)− δ1h
p+1y(p+1)(xn−1) +O(hp+2)

h2y′′(xn−1)− δ2h
p+1y(p+1)(xn−1) +O(hp+2)

...

hpy(p)(xn−1)− δph
p+1y(p+1)(xn−1) +O(hp+2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.18)

where these δ–terms must be considered for discussing error estimation (see (4.8)). It can be easily

observed that there is no error term of order (p + 1) in the first component of the Nordsieck vector.

This is due to the design choice βp+1 = 0. Therefore, the scale and modify process is not required to

touch the first component. For this reason it is convenient to partition the Nordsieck vector as

y[n] =

[
yn

y[n]

]
.

Using (4.18) and the result in [86] that δi = βp+1−i for i = 1, 2, . . . , p, we have

y[n−1] = z(xn−1, h)− (β ⊗ I)hp+1y(p+1)(xn−1) +O(hp+2) (4.19)

where

z(x, h) =

⎡⎢⎢⎢⎢⎣
hy′(x)

h2y′′(x)
...

hpy(p)(x)

⎤⎥⎥⎥⎥⎦ .

And with this, we can partition the coefficient matrix as

[
A U

B V

]
=

⎡⎢⎣ A 1 U

b
T

1 v
T

B 0 V

⎤⎥⎦ ,

and therefore,

Y = yn−11 +AhF + Uy[n−1],

yn = yn−1 + b
T

hF + v
T

y[n−1],

y[n] = BhF + V y[n−1],

where Y and F are vectors of length s consisting of approximations to y(xn−1+cih) and y′(xn−1+cih)

for i = 1, 2, . . . , s. And y[n−1] and y[n] are approximations of order p to the exact Nordsieck vectors

z(xn−1, h) and z(xn, h) respectively. As the stage order q is equal to the order of the method p in the
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GLMs, it is necessary to consider the vector ξ of stage errors such that

Y = y(xn−11 + ch)− ξhp+1y(p+1)(xn−1) +O(hp+2),

hF = hy′(xn−11 + ch) − ξhp+2f ′(yn−1)y
(p+1)(xn−1) +O(hp+3),

where f ′(yn−1) =
∂f(y(xn−1))

∂y denotes the matrix of partial derivatives ∂f
∂y evaluated at yn−1. Now these

stage derivatives, with error terms of hp+2, are used to calculate the Nordsieck vector at the end of

step number n, so it is necessary to consider a few more terms in (4.19) as the solution propagates,

which leads to the following [56]:

Theorem 4.4.1 Suppose the input to step number n consists of

yn−1 = y(xn−1),

y[n−1] = z(xn−1, h)− αn−1h
p+1y(p+1)(xn−1)− βn−1h

p+2y(p+2)(xn−1)

− γn−1h
p+2f ′(yn−1)y

(p+1)(xn−1) +O(hp+3).

Then the stage values, scaled stage derivatives and the output values are given by

Y = y(xn−11 + ch) − ξhp+1y(p+1)(xn−1) +O(hp+2),

hF = hy′(xn−11 + ch)− ξhp+2f ′(yn−1)y
(p+1)(xn−1) +O(hp+3),

yn = yn−1(xn)− εhp+1y(p+1)(xn)− ρhp+2y(p+2)(xn)− σhp+2f ′(yn)y
(p+1)(xn) +O(hp+3),

y[n] = z(xn, h)− αnh
p+1y(p+1)(xn)− βnh

p+2y(p+2)(xn)− γnh
p+2f ′(yn)y

(p+1)(xn) +O(hp+3),

where

ξ =
cp+1

(p+ 1)!
−

Acp

p!
+ Uαn−1,

ε =
1

(p+ 1)!
−

b
T

cp

p!
+ v

T

αn−1,

ρ =
1

(p+ 2)!
−−

b
T

cp+1

(p+ 1)!
+ v

T

βn−1 − ε,

σ = b
T

ξ + v
T

γn−1,

αn = Ep −B
cp

p!
+ V αn−1,

βn = Ep+1 −B
cp+1

(p+ 1)!
+ V βn−1 − αn,

γn = Bξ − εe1 + V γn−1.

Note that the coefficients (αn, βn, γn) of the perturbed quantities introduced in the nth step, are

different from α’s and β’s used in the construction of GLMs. These coefficients converge to fixed values

(α̃, β̃, γ̃) in the limiting case as used in the following theorem. This theorem gives these relations and

describes those terms which should be used for the scale and modify procedure in the existing case.
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Theorem 4.4.2 Assume that the input to step n, for which the stepsize will be hn = xn − xn−1,

consists of yn−1 and y[n−1] given by

y[n−1] = ẑ(xn−1, hn),

= z(xn−1, hn)− α̃hp+1
n y(p+1)(xn−1)− β̃hp+2

n y(p+2)(xn−1)

− γ̃hp+2
n f ′(ym−1)y

(p+1)(xn−1) +O(hp+3
n ),

where

α̃ = (1− V )−1

(
Ep −B

cp

p!

)
,

β̃ = (1− V )−1

(
Ep+1 −B

cp+1

(p+ 1)!
− α̃

)
,

γ̃ = (1− V )−1 (Bξ − εe1) .

Then the result of applying the scaling D(r) to hnBF + V y[n−1] is

ẑ(xn−1, hn+1)− θ1(r)h
p+1
n y(p+1)(xn)− θ2(r)h

p+2
n y(p+2)(xn)

− θ3(r)h
p+2
n f ′(yn)y

(p+1)(xn) +O(hp+3
n ),

where

θ1(r) =
(
D(r)− r

p+1I
)
α̃,

θ2(r) =
(
D(r)− r

p+2I
)
β̃,

θ3(r) =
(
D(r)− r

p+2I
)
γ̃.

4.5 Error estimation

In general, it is not easy or reliable to estimate the error in the case of Runge–Kutta methods. In the

case of Runge–Kutta methods it is much more difficult to estimate the error for a method other than

the one used in the existing step. This is because when we want to change the order, we need a reliable

error estimation for that method. That is, we want to predict what the error would be if a different

order method has been used in the existing step. This helps us not only to decide to change the order

but also to select a suitable stepsize for the next step with a method of new order. For the methods

considered here, error estimation plays one of the key roles to practically and efficiently implement

these methods in (h, p)-refinement mode.

In a design test of an ODE solver, the main focus is towards achieving or testing the stability,

accuracy and computational efficiency of the method. However, to measure accuracy, it is required

to measure the errors properly. Here we have to rely on the error estimations which are analytically

reliable in the case of GLMs. A point to be noted is how to measure a proper/suitable norm and

scaling of the error.
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4.5.1 Estimation of higher order terms hp+1y(p+1)(x) and hp+2y(p+2)(x)

The Nordsieck vector in our design of methods is of length (p + 1), consisting of the first p (scaled)

derivatives of y(x). In order to implement GLMs in variable step size variable order mode, one more

higher derivative term hp+1y(p+1)(x) is to be estimated for the following purposes:

� to estimate error

� for selection of step size in the next step using standard step size control

� to estimate hp+2y(p+2)(x)

Use of the F-property gives the advantage of using c0 = 0 and hF0 = y
[n−1]
0 and the result in [58, 35]

can be expressed as follows.

Theorem 4.5.1 The error estimates of the scaled-higher derivatives are:

δ
T

hF + ψy
[n−1]
2 = hp+1y(p+1)(xn) +O(hp+3), (4.20)

r

(r + θ − rθ)

(
y(p+1)(xn)− r

p+1y(p+1)(xn−1)
)
= hp+2y(p+2)(xn) +O(hp+3), (4.21)

where ψ = −
∑s

i=1 δi and r = hn/hn−1. The coefficients δ and ψ in (4.20) satisfy

δ
T

C + ψe1 = 0, δ
T

ε = 0, δ
T cp

p!
= 1, (4.22)

C is the Vandermonde matrix (see Section 3.3.2), and θ in (4.21) satisfies

δ
T cp+1

(p+ 1)!
= θ. (4.23)

Proof.

δ
T

hF + ψy
[n−1]
2 = δ

T
(
hy′(xn−1 + hci)− εhp+2f ′(y(xn−1))y

(p+1)(xn−1) +O(hp+3)
)

+ ψ
(
y
[n−1]
2 (xn−1) +O(hp+3)

)
.

Using the Taylor series,

= δ
T

(
Cy[n−1](xn−1) +

cp

p!
hp+1y(p+1)(xn−1) +

cp+1

(p + 1)!
hp+2y(p+2)(xn−1)

−εhp+2f ′(y(xn−1))y
(p+1)(xn−1) +O(hp+3)

)
+ ψ

(
y
[n−1]
2 (xn−1) +O(hp+3)

)
,

=
(
δ

T

C + ψe1

)
y[n−1](xn−1) +

(
δ

T cp

p!

)
hp+1y(p+1)(xn−1)

+ δ
T

εhp+2f ′(y(xn−1))y
(p+1)(xn−1) +

(
δ

T cp+1

(p+ 1)!

)
hp+2y(p+2)(xn−1) +O(hp+3). (4.24)
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In order to obtain the quantity on the right hand side in (4.20), the above result induces that

δ
T

C + ψe1 = 0,

δ
T

ε = 0.1

Now to obtain the result in (4.21), we consider

δ
T

hF + ψy
[n−1]
2 = hp+1y(p+1)(xn) + θhp+2y(p+2)(xn) +O(hp+3),

and comparing this with (4.24) gives

δ
T cp+1

(p+ 1)!
= θ.

For this, we need to consider (hn = rh)

estp+1
n = hp+1

n y(p+1)
n ,

= (rh)p+1
(
y(p+1)(xn−1) + (1− θ)(rh)y(p+2)(xn−1)

)
+O(hp+3), (4.25)

= (rh)p+1y(p+1)(xn − θrh) +O(hp+3). (4.26)

Now to estimate hp+2
n y(p+2)(xn), the difference of estp+1

n and estp+1
n−1 at the end of steps n − 1 and n

can be used where hn = rh. Then at the end of step n− 1 (4.26) would be

estp+1
n−1 = hp+1

n−1y
(p+1)
n−1 ,

= hp+1
(
y(p+1)(xn−2) + (1− θ)hy(p+2)(xn−2)

)
+O(hp+3), (4.27)

= hp+1y(p+1)(xn−1 − θh) +O(hp+3),

= hp+1y(p+1)(xn − rh− θh) +O(hp+3). (4.28)

Therefore using (4.26) and (4.28),

estp+1
n − r

p+1estp+1
n−1 = (rh)p+1y(p+1)(xn − θrh)− r

p+1
(
hp+1y(p+1)(xn − rh− θh)

)
+O(hp+3),

= (rh)p+1
(
y(p+1)(xn − θrh)− y(p+1)(xn − rh− θh)

)
+O(hp+3),

= (rh)p+1
(
y(p+1)(xn)− θrhy(p+2)(xn)− y(p+1)(xn) + (r + θ)hy(p+2)(xn)

)
+O(hp+3),

= (rh)p+1 (r + θ − rθ)hy(p+2)(xn) +O(hp+3),

r(estp+1
n − r

p+1estp+1
n−1)

(r + θ − rθ)
= (rh)p+2y(p+2)(xn) +O(hp+3), (4.29)

orestp+2
n =

r(estp+1
n − r

p+1estp+1
n−1)

(r + θ − rθ)
.

1The case in which it is non–zero naturally, is not discussed here.
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Figure 4.2: Relative errors using method of order 2 with problems A2(top–left), A3(top–right), A3–2D(bottom–
left) and A3–3D(bottom–right).

The practical approach of calculating the coefficients δi, i = 0, 1, . . . , p + 1 and θ leads to the matrix

L given in [35]. This matrix is obtained by using the conditions given in (4.22) and (4.23)

L =

⎡⎢⎢⎢⎢⎢⎣
ε0 1 c0

1
2c

2
0 . . . 1

p!c
p
0

1
(p+1)!c

p+1
0

ε1 1 c1
1
2c

2
1 . . . 1

p!c
p
1

1
(p+1)!c

p+1
1

...
...

...
...

...
...

εp+1 1 cp+1
1
2c

2
p+1 . . . 1

p!c
p
p+1

1
(p+1)!c

p+1
p+1

⎤⎥⎥⎥⎥⎥⎦ .

For example this matrix L for p = 3 is⎡⎢⎢⎢⎢⎢⎢⎢⎣

53
6144 1 0 0 0 0

39
640 1 1

4
1
32

1
384

1
6144

2019
10240 1 1

2
1
8

1
48

1
384

1
192 1 3

4
9
32

9
128

27
2048

⎤⎥⎥⎥⎥⎥⎥⎥⎦
In order to check the quality of the error estimators, the linear problems A2, A3 and the autonomous

forms of A3 (see Appendix) are used for testing. These problems are tested for the interval [0, 1]. The
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Figure 4.3: Relative errors using method of order 3 with problems A2(top–left), A3(top–right), A3–2D(bottom–
left) and A3–3D(bottom–right).

relative error at the end of the interval is calculated using the error estimator mentioned in this section

and trivial error estimator. The relative errors (along vertical axis on logarithmic scale) for the time

interval [0, 1] (along horizontal axis) are shown in Figures 4.2, 4.3 and 4.4 for methods of order two,

three and four respectively. For this, a pseudo variable stepsize scheme is used with a stepsize pattern

of five consecutive step sizes, selected using the step sizes ratios r = [1, 2, 5, 2]. This is repeated for 25,

50, 100 and 200 steps.

4.6 Stepsize and order control

An (h, p)-controller in an ODE solver decides when it should switch between methods of different order

and how to adjust the stepsize accordingly. This is a part of the main question addressed in [20]. Before

going ahead, a few questions that could naturally arise are narrated here.

Why variable order? Instead of only using adaptive time stepping (for optimising cost), another

practical approach is to change the order of the method ( or in other words, change the method) during

the integration. This is because not all the ODE problems can be efficiently solved using a fixed order

method. Sometimes it is required to achieve a very high accuracy, and in this case, low order methods

use very small step sizes that can greatly affect the cost. On the other hand, if the tolerance is quite
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Figure 4.4: Relative errors using method of order 4 with problems A2(top–left), A3(top–right), A3–2D(bottom–
left) and A3–3D(bottom–right).

low and higher order methods (in fixed order mode) are used, then the error estimates will be less

accurate. This will result in bigger step sizes and thus rejections will occur. Hence, a robust ODE

solver should be flexible enough to switch between a set of methods varying from lower order to higher

orders. It should have the ability to choose a proper method that suits the best for that particular

problem or particular interval of a problem. Now the question is how to decide whether low order

methods or higher order methods can solve a particular problem efficiently. But before this, questions

can be raised regarding the disadvantages of lower order methods and higher order methods.

Why not higher order methods always? This is to avoid use of higher order methods in a particular

subinterval of the integration where not such a high accuracy required. To understand this, it is better

to consider the case of fixed order first. Suppose we are solving an ODE using a method of order p.

This problem can be solved using the methods of order less than p. The reason that we prefer order p

is simply to achieve the required accuracy. However, it may be possible that in a particular problem,

and in a particular sub interval of the integration, the required accuracy can be achieved by lower order

methods. Now the question is, what is the benefit of using lower order methods in such sub intervals?

A simple answer would be ’to decrease the number of function evaluations and thus to save time and

computational effort’.
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Why not lower order methods always? In contrast, if very high accuracy is required in some sub

intervals of the problem, low order methods take very small step sizes and might even not work. Also

higher order methods could possibly take larger step sizes where accuracy is required.

Why not fixed order? This could be considered as a combined answer to the above two questions.

The variation of the order is also dependent upon the stepsize. In a variable stepsize code with fixed

order, the desire is to keep the h-graph smooth. Definitely, there is an optimal set of step sizes for an

ODE problem, although it may not be possible to follow it due to the fixed order method. Though,

variable order implementation can help to widen the stepsize choices and thus achieve what is optimal

in terms of step sizes. Also, the step sizes are dependent upon the error estimation so the use of a

variable order scheme can produce better asymptotic error estimations. Thus all we need is a variable

order scheme that can optimise what is the best choice of the pair (h, p) for the next step.

How to implement variable order? The next question is how to change the order. The answer is

not that straightforward. For example, if a step is accepted then we have three options about selecting

the order for the next step. These are either to increase the order, decrease the order or to keep the

order the same. Also a criterion is needed to select the correct one. In the existing codes, many

heuristic approaches have been used which are interestingly successful. There is a large gap between

practice and analysis in this area. This question can be considered as an optimisation problem, though

a suitable optimisation method is still required for this problem.

Is an optimisation method possible for selection of order? For optimising this, we need to take

account of what we want to achieve. We want to achieve accuracy and efficiency (cheap cost). For

accuracy, we need to bound the local error to a minimum called tolerance, and for efficiency we need

to minimise function evaluations. To achieve this, the next thing is to see what is required and what

is available to achieve this. In general, we have an error estimation at the end of a successful step.

Depending upon this estimation, the new stepsize can be predicted using a standard stepsize controller.

At this stage if this predicted stepsize is not the optimal one or close to it, there are options to switch

between the methods with orders higher or lower. These may not be sophisticated enough to switch

the methods with orders more than one order higher or lower as for the RADAU code [75]. In order

to switch the method to a method of different order, all we need is to predict the stepsize for the new

method. This requires reliable information as to what the error would have been in the completed step

if the same stepsize had been used, with this new method.

Is it possible in the case of IRKS methods? For the GLMs under consideration, it is very easy to

get this information reliably due to the Nordsieck form in the methods. For the error estimation for

higher order methods, the work has been done by J. C. Butcher and H. Podhaisky [58] and in [56].

Using this information, we can find the predicted step sizes for the next step, not only for the method

used in the completed step but also for the methods of one order higher or lower.
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How these questions are dealt with in the existing codes, is presented in the following section.

4.6.1 Some existing controllers

Before discussing the new order control, a few (h, p)-controllers of some ODE solvers will be discussed

that are effectively used although they require a sophisticated approach. The aim here is not to find

the drawbacks of the codes. However, to emphasise the claim made in the thesis, it is useful to signify

the design of a few existing codes and a few reasons of setting the design parameters. For this purpose,

the Radau code by Hairer based on the Runge–Kutta methods and some existing codes based on GLMs

are presented as follows.

Controller in the Radau code

This code is thoroughly analysed in [1] from a software design and (h, p)-control point of view. Here

are a few of the features.

1. The Radau methods used in this code are of order 1, 3, 5, 9 and 13. The orders are fluctuating

and varying unequally. So this code may incur very high cost due to abrupt changes in the order.

2. Selection of order depends upon the convergence rate θ of the Newton method which is bounded

by another number 0.8. There is no theoretical rationale behind this condition.

3. Further heuristic numbers include the restriction on stepsize not to change when the stepsize

ratio r lies between 0.8 and 1.2.

4. For error estimation, the embedded technique is used using a lower order method although there

are methods of fluctuating the order used in the code.

In spite of all these design questions, this variable stepsize variable order code works and is used for

stiff problems. However, the design of this software is made on an empirical basis and demands more

sophisticated approaches.

Controller in the DIM18 code

In this code, the variable order scheme depends upon the error estimation in the existing step with

method of order p as well as the estimation of the error if the method of order (p− 1) were to be used

in the same step. This is possible due to the Nordsieck form of the method. So the ratio is

ratio =
‖estp(xn)‖

‖estp−1(xn)‖
, (4.30)

and the order changes according to the following algorithm.
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Algorithm 1 p–control of DIM18

if (ratio > rmin) and (p < pmax) and (previous step is not rejected) then

increase the order by 1

else if (ratio < rmax) and (p > 1) then

decrease the order by 1

else

do not change the order

end if

where rmin = 0.9 and rmax = 1.1 are the limits on (4.30). Also the rejection criteria is as follows:

Algorithm 2 Rejection criteria of DIM18

if (est > 1) and previous step has been accepted then

nrej = 1 and do not change the order

else

p = p− (nrej − 1)

nrej = nrej + 1

end if

hnew = hn ∗min (facmin, fac ∗ ropt)

The heuristic numbers in this case are facmin, fac and ropt (fac is a safety factor as in Subsection

4.3.1). Again this design of order control is not supported by any theoretical background.

Controller in the thesis [86] by William Wright.

In this thesis, the order changing criteria is based on maximising the stepsize per unit of computational

cost. This cost is equal to the number of stages in the case of the GLMs. So it is in fact a measure

of the distance covered per stage. Thus, if the method of order p is used in the existing step then the

order for the next step would be an element of {p−1, p, p+1}. The ratios (distance covered per stage)

for each of the methods would be

hn+1,p−1

p
,
hn+1,p

p+ 1
,
hn+1,p+1

p+ 2
,

respectively. A value from {p − 1, p, p + 1} is chosen to be the order for the next step for which the

corresponding value of the ratio is maximum. Along with this a safety factor is also used to avoid too

rapid change in the order. Further restriction is applied on increasing the order. In addition, the order

is not increased unless the stepsize remains the same in three consecutive successful steps.

4.6.2 An order control paradigm

From all the explanations above, it is easy to conclude that switching of order in fact depends upon

the optimal selection of stepsize. Thus we can say that order control is in fact optimisation of stepsize.



4.7 Conclusion 65

To further explain this consider an example. Let the (n− 1)th step be accepted with method of order

p and with stepsize h(n−1,p). In variable stepsize fixed order mode, it is easy to propose the stepsize for

the next step using standard schemes. Here we are discussing variable stepsize variable order mode. So

we have the option to either decrease the order, increase the order or keep the order the same. Thus a

variety of pairs (h, p) are available. We restrict ourselves here to choose the same method of order p or

change it by at most order 1. Thus the possible choices of order for the next step are {p− 1, p, p+1}.

Now we need to predict three corresponding step sizes for the next step i.e. {h(n,p−1), h(n,p), h(n,p+1)}.

Out of these three, the middle one is the easy one and can be calculated the same way as we did in

the fixed order case. The other two require some further information. We need a reliable estimator

that can guide us as to what the error estimate would be at the end of the (n− 1)th step if the same

stepsize h(n−1,p) had been used for the method of order (p − 1) or (p + 1). For any order, lower than

p, the error term is

Em = Cmhm(n−1,p)y
(m)(xn−1), (4.31)

where m = p, p − 1, . . . , 2 and Cm are the error constants of the corresponding methods available in

the code. Also, reliable approximations to the scaled derivatives hm(n−1,p)y
(m)(xn−1) are available in

the Nordsieck vector. Thus, in this case, there is no need for a separate error estimator formula or any

additional function evaluations to get the approximations to the quantities in (4.31). For estimating

the error with method of (p+1) (or higher), we need a good estimator for the higher scaled derivative

hm(n−1,p)y
(p+2)(xn−1). This has been done in [58] and is explained in Section 4.5.1.

4.7 Conclusion

Our aim is to implement the GLMs with IRKS– and F–properties, in variable stepsize and variable

order mode. For this we need an efficient and robust control for optimising stepsize and order. How

this can be decided using optimisation methods will be addressed in the next chapter. The Lagrange

multipliers can be helpful to find the optima. However, this is not possible without reliable error

estimators, not only for the method used in the existing step but also (possibly) for the method of one

order higher and lower. This is possible in the case of existing GLMs. Thus, along with the automatic

starting procedure, variable stepsize stability and reliable error estimators, it is possible to use the

IRKS methods as a kernel of a robust algorithm presented in the next chapter.





5
Software design; a multivariable

optimisation approach

The ultimate aim of the theory of numerical methods for ODEs is to produce practical algorithms for

the solution of initial value problems. Such algorithms should attempt to fulfil all the requirements

of stability, accuracy and efficiency. The stability is a built–in property with the existing methods.

Thus it remains to balance the other two quantities. There are no practical ODE solvers, that can

balance these two quantities at the same time, in a sophisticated way. A control paradigm, based on

the Lagrange optimisation approach, that can make a balance between the accuracy and efficiency,

accordingly with our desire, is discussed in detail in this chapter. The scope of this chapter is to explain

the theoretical parts of the optimisation approach that can help to understand, develop and implement

the new design.

A general ODE solver consists of different techniques for different purposes. Here are a few of the

techniques and the reason why these are required for developing a complete ODE software.

• For numerical integration of ODEs, a numerical method or a suite of methods is required.

• For obtaining continuous output of the solution, a suitable interpolation technique is required.

• For error estimation, some suitable approximations to the higher derivatives are required. For

example, finite differences which are trivial estimators.

• For solving the implicit internal stage systems, a numerical method for nonlinear systems is required,

in the case of stiff solvers. For example, the Newton method, the Krylov subspace method etc..

◦ For variable order mode of an ODE solver, a suitable design of the whole algorithm is required.

This design is empirical in the existing solvers and there is no single ODE solver based on a

theoretically studied approach.

67



68 Software design; a multivariable optimisation approach

Thus, in practice, there is no use of the theory of numerical analysis in the last requirement, i.e. the

design of the whole algorithm. To overcome this, we need a sophisticated approach that can fill this

gap. For this we need to first point out those features of the design of existing practical algorithm

which are empirical and specific to the problem or the method. For example, the RADAU code is

made for stiff problems and implicit methods are used in it. Many design features are set to deal with

the stiff problems. Such features, in the (h, p)–control RADAU code, are reported in [1]. We use an

optimisation approach for developing a paradigm of a variable order algorithm. One main goal of this

thesis is to explore and implement the Lagrange optimisation approach for designing an algorithm for

the IRKS methods with F–properties. However, the paradigm presented in this chapter is not practical

for the traditional methods.

One of the serious issues arising in traditional methods is the design of the algorithms. Many

existing ODE solvers are based on empirical or heuristic design features. There are many design

parameters used for making very important decisions in the code. These include selection of stepsize

and order for the next step, accepting or rejecting a step etc.. For example, if a step is accepted, the

selection of stepsize and order for the next step can be considered as one case. In the case of rejection,

the situation is not exactly the same and it may not be suitable to increase the order at rejections.

This case can be considered analogous to driving an automatic gear car in which the gear does not

jump to higher gear when brakes are applied. A question is how we can design an algorithm for ODEs

on the basis of this hypothesis?

Another feature is the safety factor, used in the standard stepsize controller, considered to avoid

too much change in the error estimates or to decrease the risk of rejection. A big change in stepsize

may cause too big a change in the error estimation which will further cause too big changes in the

next step sizes and hence increase the chance of rejections. For this, we use a safety factor less than

but close to one. This safety factor has different values in different codes. For example, its value is 0.9

in the DIM18 code , 0.9 × (2kmax + 1)/(2kmax + k) (where k is the number of Newton iterations) in

the RADAU code. This value is 0.85 in the preliminary testing of the Euler–Lagrange theory for stiff

problems in [58].

Without going into further details of existing codes, it would be valuable to first address what is

required from an automatic code. In general, the tolerance (which may or may not be user supplied)

is a very important guide. A stringent tolerance indicates that the user needs high accuracy whereas

expenses are, at least, not the first priority. On the other hand, a crude value for tolerance indicates

that high accuracy is not so important and cheap results must be obtained. How can an automatic

code address these (two needs) using one single guideline? The aim is not to achieve both the goals

at the same time but there should be one guideline that can be used to balance the two goals. An

automatic code should be able to decide the criteria to be followed.

In an adaptive code, how could the stepsize and order be selected in each step on the basis of

accuracy and expense. It was first proposed by Butcher [20] and developed further in [23] that this

optimisation is a multivariate problem and can be achieved by optimising the function E+TW where

E represents total error and W represents total work or cost. The Lagrange multiplier T has the
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role of tolerance. The significance of this function is explained in Section 5.1. The Lagrange stepsize

controller is a bit relaxed in the sense that it can select the stepsize without any heuristic bounds or

safety factors as are used in the case of a standard stepsize controller. The Lagrange stepsize controller

is presented in Section 5.2.

An efficient adaptive controller needs an appropriate criterion for rejecting the steps that are

producing too much error. Traditionally, this criterion is based on a user supplied tolerance. It is not

always advantageous to reject a step on the basis of this tightened criterion. As rejections are expensive,

it is necessary to reconsider the criterion and consider the possibility that it may be advantageous to

accept a traditionally rejected step, the idea is presented in Subsection 5.2.1. An important decision

after rejection is how to reduce the stepsize. This is presented in Subsection 5.2.2.

Our aim is to implement the GLMs with IRKS– and F–properties, in variable stepsize and variable

order mode. This requires a sophisticated procedure for changing the stepsize or/and order. For this we

need an efficient and robust control for optimising stepsize and order. So multivariable optimisation is

a possible way to attempt this in an adaptive ODE code. How can this be decided using optimisation

methods? We have chosen the Lagrange multipliers for this purpose. The Lagrange approach is

reliable in switching the order as well, using the existing GLMs of consecutive orders. This is discussed

in Section 5.3.

However, due to the (h, p) refinement mode, we need to adjust the stepsize for the method of one

order higher or lower than the method used in the existing step. A change of method in the next step

causes a change in stepsize as well. This needs a sophisticated procedure for the scale and modify

technique. This is due to change of β–terms in the Nordsieck vector. The approach is presented in the

form of an algorithm in Subsection 5.3.2.

5.1 Lagrange multiplier controller

In the theory of optimisations, there are two ways to solve constrained optimisation problems based on

multiple objective functions. One is a substitution method in which a problem in multiple variables is

converted into a single variable problem by a simple substitution method. The other method is to use

the idea of Lagrange multipliers. This method is used here not only for variable stepsize implementation

but also for designing an automatic algorithm for controlling the stepsize and order in an adaptive ODE

solver.

Basically, the Lagrange multiplier approach is used in constrained optimisation. In this approach,

a constrained optimisation problem is first converted into an unconstrained problem. If the problem,

in general, is to

minimize, y = f(x1, x2),

subject to g(x1, x2) ≤ k,

then using a Lagrange multiplier T , the problem would be to

optimize, z = f(x1, x2) + Tg(x1, x2), (5.1)
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by obtaining critical points from ∇f(x1, x2) = −T∇g(x1, x2). The augmented function (5.1) is known

as a Lagrange function. The Lagrange multiplier T gives additional information about the problem.

This value is very appropriate for the present situation and is discussed later in this section. Before

this it is important to find the objective function which is to be optimised. Also it is equally important

to decide about the constraint. A straightforward idea of calculus of variations is used for this purpose.

However, it is necessary to mention the practical design of this approach which is presented later in

this chapter.

5.1.1 Lagrange function; (E + TW ) as cost function

The goal is to optimise stepsize h and order p for each step. The approach considered here, proposed

by J. C. Butcher [32], is based on the Lagrange multipliers. For this, consider an initial value problem

over the interval [a, b]. The method starts from the initial value y(a) and the goal is to approximate

the solution of the problem at the end point of the interval i.e. y(b). In a variable stepsize code, the

stepsize for the next step is required. This is based on the error estimation in the existing step. It is

possible to estimate the truncation error sufficiently accurately when a step is taken from x to x+ h.

If p is the order of the method, the norm of the error can be written as C(x)hp+1, where C(x) is the

norm of C (the error constant of the method) times the approximate value of y(p+1)(x). So, if H(x) is

the function for calculating sufficiently small values of h for each step and W (H) represents the work

then an approximation of the truncation error and total work from a to b is

E(H) =

∫ b

a
C(x)H(x)p dx, (5.2)

W (H) =

∫ b

a
H(x)−1 dx. (5.3)

An efficient code must produce the lowest values of the above two integrals. So, an ideal case would be to

optimise the value of stepsize h after each step that minimises the value of both the integrals. However,

it is not possible to minimise both at the same time, but from the existing theory of optimisation, it

is possible to minimise one quantity by imposing some constraint on the other quantity. Thus, this

problem can be viewed as the following dual problem:

primal problem. Impose limit on the cost W (a constraint) and minimise the error E

dual problem. Impose limit on the error E (a constraint) and minimise the work W

These two problems are somehow diametrically opposed. In the primal problem, minimising E means

that small values of h are needed. In the dual problem, minimising cost W means that larger values

of h are needed. The central role is played by the parameter tol that determines the balance of focus

between these two. So we need to devise a design that can work for both situations. How can these

two problems be fitted into one frame? This was considered by Butcher [23] in 1990. This idea is to

minimise (error + T × work) per unit step i.e.

Φ(H) =
E(H) + TW (H)

H
, (5.4)
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The function E(H) + TW (H), where T is a Lagrange multiplier. It is shown later in this section that

T is a proportion of the tolerance, which is quite reasonable because in an ODE solver

• when T is small in (5.4), then finding the minimum of Φ(H) means that high accuracy is required

from the solver and thus error should be minimised. Or we can say, within limited resources i.e.

cost (constraint), best results (least value of global truncation error) should be achieved.

• when T is large in (5.4), then finding the minimum of Φ(H) means that high efficiency is required

from the solver and therefore work should be minimised. In other words, to achieve the required

accuracy (constraint), cost should be minimised.

Thus in both cases, the Lagrange objective function is to be minimised. The very next requirement

for implementation is to find the value of the Lagrange multiplier T . It is necessary to mention as

to how this method would be helpful to design an algorithm for controlling stepsize as well as order.

Usually when a real world optimisation problem is solved using any method, some critical values of

the objective function are obtained first and then, using those critical values, optima of the objective

function are obtained. In the present case, the implementation of the method is slightly different. It

is necessary to implement this method after each step so that the optimal value of h (and p) can be

obtained for the next step, while the Lagrange multiplier remains the same throughout the interval.

For this it is necessary to a priori decide what this Lagrange multiplier represents for the existing

optimisation problem in an abstract way.

5.1.2 Lagrange multiplier: a proportion of tolerance

As discussed before, in this optimisation method, the values of the Lagrange multiplier and the optimal

values can be obtained from partial derivatives of the objective function. The work done is considered

to be equal to the number of function evaluations, and, as our methods hold property-F, so (p + 1)

function evaluations are calculated in each step. Thus, the work done per unit step is constant.

Therefore the objective function (5.4) becomes

Φ(H) = C(x)Hp(x) +
T (p+ 1)

H(x)
. (5.5)

So to calculate the value of T ,

∂Φ

∂H
= 0,

pC(x)Hp−1(x)−
T (p+ 1)

H2(x)
= 0,

C(x)Hp+1(x) = T
(p + 1)

p
. (5.6)

Thus, the value of truncation error C(x)Hp+1(x) should be kept close to some proportion of T . Using

traditional methods, this value is kept close to a constant which is simply the user supplied tolerance.
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Therefore, in the case of existing GLMs it should be kept close to some proportion of the tolerance i.e.

(p + 1)/p.

As T is playing the role of tolerance, it means that (5.6) can be interpreted as the truncation error

should be kept close to the slightly perturbed tolerance. This can give a chance to accept those steps

which are unnecessarily rejected by the traditional controllers. However, we can see later in Subsection

5.2.1, that the accept–reject criterion decides this according to what minimises the cost function.

The next step is to find the variable stepsize scheme and the rejection criteria using the Lagrange

approach. This is presented in the following section.

5.2 Lagrange Stepsize control

The above explained interpretation of (5.6) can be alternatively used to find the optima. It gives the

optimal stepsize formula which is

hn =

⎛⎝T (p+1)
p

E

⎞⎠1/(p+1)

hn−1. (5.7)

The above result is the same as the classical controller in Subsection 4.3.1 with tolerance T (p + 1)/p

so is the norm of the estimated error. As compared to the classical controller, the Lagrange controller

(5.7) gives a slightly larger stepsize that can tolerate the required accuracy limit. Also, we use some

safety factor in (4.4). However, this heuristic value is not required in (5.7). The difference obtained by

equating these two controllers is tolerance factor (p+1
p )1/(p+1). This factor obtained by the Lagrange

approach is to be used for optimal cost. Along with the optimal value of stepsize for the next step, it

is also possible to check which order method is the best for calculating the next step; this is discussed

in Section 5.3. Before this it is discussed in the following section when it is optimal to accept or reject

a step using the cost function.

5.2.1 Acceptance and rejection of steps

Criteria for accepting and rejecting a step are required in the case of the variable stepsize scheme. The

standard stepsize control scheme is used for this purpose. In this scheme the criteria for accepting or

rejecting a step are very simple and usually straight forward; a step is accepted if the estimated error

in that step is less than or equal to the specified tolerance, otherwise it is rejected. Thus, there are

only two options in the standard control.

One of the desired goals here is to implement the GLMs in variable stepsize variable order mode.

In this mode, when a step is completed, there are a few decisions that the solver has to make, e.g.

accept the step, reject the step, increase the order, and decrease the order. Out of these, rejection is a

very serious action. When an error occurs or something non-smooth, we should avoid (or decrease) the

chance of heading towards rejection. Perhaps, increasing the order is not suitable in such a situation.

Furthermore, we do not increase the order unless and until everything is going smoothly and well, only
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the other three options should be considered up to that point.

Here, we are discussing the Lagrange controller point of view given by J. C. Butcher [32], in the

case of GLMs with IRKS– and F–properties. According to this book, while using Lagrange theory for

(h, p)-control, the criteria for accepting or rejecting a step are based on the stepsize ratio r (or on the

ratio (E/T )). The aim here is, to avoid too early rejections and look for alternatives. For this, first,

remove the safety factor. Accept the step when the ratio of error to the tolerance (E/T ) is not ‘too

great’. We need to decide what is ‘too great’. The criterion is based on minimising the rate:

rate of increase of obj =
(E + TW )

h
. (5.8)

Now we need to calculate the value of the above rate in both cases; acceptance and rejection of this

step, and then compare both to get the required criteria. Assume that a step with stepsize h has been

carried out and W = (p+ 1) for the GLMs. Also, from Lagrange theory

E =

(
p+ 1

p

)
T. (5.9)

Case I. First, suppose the step is accepted and the actual error is slightly different from what is

expected i.e.

E = K

(
p+ 1

p

)
T.

Then from (5.7) the stepsize ratio would be,

r =

⎛⎝
(
p+1
p

)
T

E

⎞⎠
1

p+1

,

= K
−

1
p+1 ,

as the right hand side of (5.9) plays the role of tolerance. Also, in this case, W = 0 is considered.

However, (p+1) function evaluations have been performed here. We are considering the rate of change

of the objective function and these (p + 1) function evaluations are performed prior to deciding the

acceptance or rejection of the step, hence would be considered constant and so can be ignored. Thus

the expenditure (linear combination of error and work) would be increased by

r
−(p+1)

(
p+ 1

p

)
T

and

rate of increase of obj =
r
−(p+1)

h

(
p+ 1

p

)
T (5.10)

Case II. Let the step be rejected. The new proposed stepsize is rh. In covering the distance rh, the
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p (p + 1)−1/p (p+ 1)(p+1)/p

1 0.5 4.0
2 0.57735027 5.1961524
3 0.62996052 6.3496042
4 0.6687403 7.4767439
5 0.69882712 8.5858145
6 0.72302003 9.6816129
7 0.74299714 10.767202
8 0.75983569 11.844666
9 0.77426368 12.915497
10 0.78679344 13.980798

Table 5.1: Optimal values for the stepsize ratio and the ratio of estimated error to the tolerance for accepting
a step for each order p.

rate of work is increased by (p+ 1)/r. So,

obj =

(
p+ 1

p

)
T + (p + 1)T,

=
(p + 1)2

p
T,

and

rate of increase of obj =
(p + 1)2

p(rh)
T (5.11)

To find the criteria for acceptance or rejection of the step, (5.10) and (5.11) are compared and it is

concluded that the step should be accepted if

r
−(p+1)

h

(
p+ 1

p

)
T ≤

(p+ 1)2

p(rh)
T, (5.12)

r ≥ (p+ 1)−
1
p . (5.13)

which depends on the stepsize ratio r (and the order p). Alternatively, this criteria can be expressed

in terms of the ratio of estimated error to the tolerance. For this, consider the above relation again,

r
−1 ≤ (p + 1)

1
p ,

r
−(p+1) ≤ (p + 1)

p+1
p ,

E(
p+1
p

)
T

= r
−(p+1) ≤ (p + 1)

p+1
p . (5.14)

Thus, the step should be accepted if this ratio does not exceed (p+1)(p+1)/p. The values of (p+1)−1/p

and (p+ 1)(p+1)/p are given in Table 5.1.
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hn−1 hn

xn−1 xn xn+1

En−1 En En+1

Figure 5.1: (Case when solution at xn is accepted.)

5.2.2 Criteria for reducing the stepsize after rejection.

One of the natural/classical ways of reducing the stepsize, after rejection, is performed by simply

reducing the rejected stepsize by a fixed factor (for example, it is reduced to 50% in the Matlab ODE

codes and DIM18, and it is reduced to 10% in the Radau code). In principle, this (new) reduction of

stepsize is based on the standard stepsize control but with the most recently available error estimation

and stepsize. In order to explain this way of reducing the stepsize after rejection, it is better to see

what we do when a step is accepted. Suppose a step is accepted from xn−1 to xn (see Figure 5.1) using

stepsize hn−1. Then, using a standard stepsize controller, we estimate the stepsize for the next step

using the value of error estimation En at xn i.e.

hn =

(
En

T

)
−

1
p+1

× hn−1. (5.15)

Now consider the case of rejection at xn (see Figure 5.2). If the step is rejected, it means that the

estimated error En is too large and we need to somehow reduce hn−1 to get a new value of stepsize

h∗n−1 for the same step. Before this rejected step, hn−1 has been calculated depending upon En−1.

This time, we have to again use the same formula (5.15) with the recent values of hn−1 and En i.e.

h∗n−1 =

(
En

T

)
−

1
p+1

× hn−1. (5.16)

h∗n−1

hn−1

xn−1 xnx∗n

En−1 En

Figure 5.2: (Case when solution at xn is rejected.)
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5.3 Variable order algorithm

An adaptive code must have a reliable controller for efficiently changing the stepsize from step to step.

Along with this, a code would become robust by the possible addition of variable order design. Unlike

the existing heuristic designs of variable order ODE solvers, it is possible to rationally choose the

optimal method (value of p) using the objective function (5.4) (or (5.5)). For this the use of (5.6) in

(5.5) gives

Φ(H) =
T (p+1)

p

H(x)
+

T (p + 1)

H(x)
,

=
T (p+ 1)2

pH(x)
, (5.17)

which is to be minimised. In (5.17), T is constant for all values of p so can be ignored. The alternative

form to that of (5.17), which can be used, is to maximise the reciprocal of it.

5.3.1 Stepsize and order control

In our algorithm, we have to calculate the value of the function (5.4) not only with the order p of the

existing step but also for the methods of order p− 1 and p+1, available in the suite of methods of the

code. This is only possible if we are able to find what the stepsize(s) would be in the next step if the

method of order p+1 or p− 1 is used. If the order is kept the same then the stepsize for the next step

can be simply obtained using (5.7). This requires a reliable error estimation which is possible in the

case of the existing GLMs. So, if the order is to be changed then the estimates of errors with methods

of order p+1 and p− 1 are needed. The error estimate for the method of order p− 1 is of the order p

i.e. Cph
py(p)(xn). This quantity is simply the product of the error coefficient of the method of order

p − 1 and the last component of the Nordsieck vector. Similarly, the error estimator for the method

of order p + 1 is the product of the error coefficient Cp+1 and hp+2y(p+2)(xn). A reliable estimator

of this higher derivative is discussed in Subsection 4.5.1. Therefore, it is possible to obtain the step

sizes for the next step with methods of order p− 1, p and p+ 1. This is one of the advantages in this

implementation due to the design of our methods. So we have to find a pair (h, p) which minimises

the function (5.4) for the next step. This is presented in Algorithm 5.3.1.

Let S = {1, 2, . . . , pmax} be the set of orders of the methods used in the code and p be the order of

the method used in the existing step and ‘est=[esti]’ be the vector of available error estimates (scaled

by tolerance) for i ∈ {p−1, p, p+1} ⊂ S. Then Algorithm 5.3.1 can be used to implement the Lagrange

controller to find the optimal stepsize and order for the next step and the accept–reject criterion. In

this algorithm, holdp is used to hold the order p of the method used in the existing step from increasing

to p+ 1 for a certain number of consecutive accepted steps. It somehow measures the strong evidence

of increasing the order so that order–oscillations can be avoided. This is further explained in Chapter

6 with experimental evidence.
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Algorithm 5.3.1: LagrangeController (h, p, est, T )

comment: First, select the possible order(s), for the next step, from S.

if
(
estp ≤ (p+ 1)

p+1
p

)

then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
if (psteps ≥ holdp)

then pset ← {p − 1, p, p + 1} ⊂ S

if (psteps ≤ holdp)

then pset ← {p}

else pset ← {p− 1, p} ⊂ S

comment: Now, for each possible order, calculate the cost.

for each i ∈ pset

do

⎧⎪⎪⎨⎪⎪⎩
ri ← min (2,max (0.5, (esti)

−
1

i+1 ))

hi ← rih

obji ←
(
T (i+1)2

ihi

)
comment: Now, select the order and corresponding stepsize that minimises the cost.

j ← index (min (obji))

pnew ← j

hnew ← hj

if (j �= p or step is rejected)

then psteps ← 0

else psteps ← psteps + 1

return (hnew, pnew)

.

As this algorithm is variable stepsize as well, it is necessary to use a sophisticated version of the scale

and modify technique. This is presented in the following Subsection.

5.3.2 Algorithm for the scale and modify technique in variable order mode

At the end of a successful calculation of a step (acceptable), the next task is to select the stepsize and

order. In both cases, stepsize varies on the basis of the stepsize control scheme. Due to the variable

stepsize, it requires a scale and modify process as well.

On the basis of Lagrange theory, we have to select the new pair (h, p). A reasoned change of the

order depends upon the information available. In our design of methods, it is possible to have enough

information to increase or decrease the order by 1. This is a better option than the approach used

in the RADAU code. In that code, methods of order 1, 3, 5, 9, 13 are used and order varies unequally.

In our design of code, if p is the order of methods used in the existing step then we have enough

information available to increase or decrease the order by 1. This causes a smooth change in the order
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and hence produces asymptotically correct solutions and error estimation. Consequently, it helps to

produce better interpolation. Thus, the possible choices of order are p− 1, p, p+1 with corresponding

β vectors βp−1, βp, βp+1. If the order of a method changes, the stepsize for the step also changes. So in

variable order mode, it is necessary to make a slight change in the scale and modify technique. First

we will see a few steps of this technique:

Step1 (scaling): y[n] = D(r)y[n]

Step2 (removing): y[n] = D(r)y[n] +D(r)βhp+1y(p+1)
n

Step3 (adding): y[n] = D(r)y[n] +D(r)βhp+1y(p+1)
n − β(rh)p+1y(p+1)

n ,

(scale and modify): = D(r)y[n] + (D(r)− r
p+1I)βhp+1y(p+1)

n . (5.18)

Usually, instead of doing this process in three steps, only (5.18) is used during implementation. How-

ever, in variable order mode we need to make some small changes as presented in algorithm 5.4.1.

5.4 Design of software for ODEs using GLMs

Generally in mathematical software there must be options for the user to either use all the default

values, or some subset of them, or perhaps none of them. Thus when a solver is initiated, all the

options must be initialised and the user should choose either the default ones or provide their own

based on available information.

5.4.1 Generic functions

There are many ODE solvers in various programming languages including Matlab, Fortran, C,

etc.. It is easy to implement the numerical methods for ODEs in Matlab. Here, the GLMs are

implemented and tested in Matlab. Most of the ODE solvers consist of a single large file or a couple

of files (functions). Another approach is to define each task as a separate function with a generic name.

In this way, it would be easy to call a function or functions when required. For example, the scaling of

various quantities is required many times, and at many places, during the execution of an ODE code.

5.4.2 (h,p)-algorithm

We try to avoid heuristic numbers as much as we can, although there are a few such numbers in the

design of this algorithm which are still unavoidable. For example, the upper and lower limits on the

stepsize ratio denoted by rmin and rmax. These numbers are necessary because these are related to

error control. We are using asymptotic error estimators so we cannot bear values of r too different

from 1. Also, because of roundoff-errors, we cannot use too small a value for the stepsize. Another

reason is that we are aiming to use our methods to track the behaviour of discontinuities in a problem.

For example, the square–path problem may not behave well if we use a value other than rmin = 0.5.

This square–path problem is the ultimate test of our code. The setting rmax = 2 can be helpful for

producing smooth behaviour of the estimators.
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Algorithm 5.4.1: ScaleAndModify (pnew, r, y
[n], hp+1y

(p+1)
n )

p ← length(y[n])

if (pnew = p+ 1)

then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Do scaling and removing

y[n] ← D(r)y[n] +D(r)βhp+1y
(p+1)
n

Adjust the length of Nordsieck vector

i.e. add the hp+1y(p+1) term as last component of y[n]

else if (pnew = p− 1)

then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Do scaling and removing

y[n] ← D(r)y[n] +D(r)βhp+1y
(p+1)
n

Adjust the length of Nordsieck vector

i.e. truncate the last component of y[n] i.e. hpy
(p)
n

else

{
Do usual scaling and modifying:

y[n] ← D(r)y[n] + (D(r)− r
p+1I)βhp+1y

(p+1)
n

return (y[n])

5.5 Conclusion

The purpose of this chapter is to describe and analyse the development of a variable stepsize variable

order algorithm for ODE solvers. It is developed with the design that fits all the necessary implemen-

tation techniques presented in the previous chapter and avoids several heuristics including variable

order control and safety factor used in the traditional stepsize controllers. The order selection criteria

are based on the optimisation function instead of the empirical criteria used in the existing controllers,

a few of which are presented in Subection 4.6.1. It also gives a new stepsize controller (tested in the

next chapter) which gives a better control to balance the work and accuracy of the results. Hence it

gives a solid frame to design such a numerical algorithm for ODEs based on IRKS methods which is

robust and efficient as well as sophisticated.





6
Numerical experiments

Comparison of numerical results using various numerical methods or/and different techniques requires

a set of fair criteria. These different techniques involve many design questions as explained in Chapters

4 and 5. The experiments recorded in this chapter are performed using fairly available competitive

techniques. These experiments are performed to verify that variable stepsize variable order implemen-

tation of IRKS methods with the F–property in the Lagrange design of optimisation approach is a

step towards considering GLMs and the Lagrange design as a kernel and the structure of a competitive

code, respectively.

6.1 Framework

The problem set used for these experiments consists of some non–stiff problems from the DETEST set

of Hull et al. in [77], a new discontinuous problem named the square path problem and some mildly

stiff problems. This set is given at the end of this thesis in the Appendix. This is a preliminary stage

and testing of the Lagrange approach. So, all the numerical results are obtained by implementing the

IRKS methods in Matlab only.

The first set of experiments compares the classical methods with equally weighted competitors in

the family of IRKS methods. These results verify the order of the methods with fixed order and are

presented in Section 6.2.

The second set of experiments includes the verification of the (Lagrange) variable stepsize imple-

mentation of the IRKS methods with the F–property using the Lagrange theory. For variable stepsize,

an automatic initial stepsize scheme is necessary. A modification of such a scheme given in [69], is also

tested and reported. A preliminary comparison of fixed order of the Lagrange stepsize and its rejection

criteria, tests these against standard techniques. This is presented at the end of Section 6.3.
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p
(
p+1
p

)
n n =

(
p+1
p

)
n

1 2
1 60 120

120 240

240 480

2 3
2 60 90

120 180

240 320

3 4
3 60 80

120 160

240 320

4 5
4 60 75

120 150

240 300

Table 6.1: Number of steps taken for each of the IRKS and Runge–Kutta methods

The third and main set of experiments comprises of the implementation of the IRKS methods

with the whole Lagrange design, i.e. in variable stepsize variable order manner. This set includes

the performance of the solution components in each step, along with the step sizes and the order of

the methods. A few geometric problems are also tested and their phase portraits are presented in

Subsection 6.4.2. The SQUARE problem is also tested to check the robustness of the code. Finally,

the behaviour of the Lagrange design is also reported here by comparing the (h, p)–sequences obtained

using numerical results, with the ideal and optimal sequences.

6.2 Experiments with fixed stepsize

In the first set of experiments, Runge–Kutta methods and PECE pairs are compared with IRKS

methods with the F–property. These methods are given in Chapter 2. The experiments in this section

are performed with fixed stepsize.

6.2.1 GLMs vs Runge–Kutta methods

For fair comparison between IRKS and Runge–Kutta methods, we need to take care of a few quantities.

One quantity is the rate of doing work. This quantity is measured in terms of function evaluations. For

example, there are (p+ 1) function evaluations in each step of a GLM whereas in the case of Runge–

Kutta methods, there are p function evaluations in each step, where p is the order of the method. For

fair comparison, we need this quantity to be equal for each class with equal intervals of integration.

For this, let h be the stepsize used in a GLM of order p then

rate of producing error = εhpy(p+1), (6.1)

rate of doing work =
p+ 1

h
, (6.2)
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p ε = 1
(p+1)! ε = ε

(
p

p+1

)p

1 1
2

1
4

2 1
6

2
27

3 1
24

9
512

4 1
120

32
9375

Table 6.2: Error coefficients for each of the IRKS and Runge–Kutta methods

whereas in the case of Runge–Kutta methods,

rate of producing error = εh
p
y(p+1), (6.3)

rate of doing work =
p

h
. (6.4)

Stepsize and number of steps. Equating (6.2) and (6.4),

h =

(
p

p+ 1

)
h, (6.5)

which is the stepsize to be taken in the case of Runge–Kutta methods. So for the Runge–Kutta

methods, we take a smaller stepsize. Thus if n is the number of steps taken with fixed stepsize over

the interval of length l = (xend − x0), in the case of GLMs then

n =
l

h
,

and the corresponding number of steps n in the Runge–Kutta methods of same order is

n =
l

h
,

=

(
p+ 1

p

)
l

h
,

=

(
p+ 1

p

)
n.

Table 6.1 gives the number of steps to be taken for each class for a fair comparison.

Error coefficients. Similarly, the rate of producing error must be the same. For this, use (6.5) to

combine (6.1) and (6.3), and we obtain

ε = ε

(
p

p+ 1

)p

.

As, in the case of GLMs, the error coefficient is a free parameter, and we select a set of GLMs with an

error coefficient that satisfies the above relation. For the Runge–Kutta methods described in Chapter

2, we will take ε = 1
(p+1)! . Table 6.2 gives the values of error coefficients for a fair comparison. Thus,

using the stepsize in (6.5) for the Runge–Kutta methods and number of steps given in Table 6.1, the
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p
(
p+1
2

)
n ñ =

(
p+1
2

)
n

1 2
2 60 60

120 120

240 240

2 3
2 60 90

120 180

240 320

3 4
2 60 120

120 240

240 480

4 5
2 60 150

120 300

240 600

Table 6.3: Number of steps taken for each of the IRKS and PECE pairs

number of function evaluations are equal for comparing the GLMs with Runge–Kutta methods.

6.2.2 GLMs vs PECE pairs

There are (p+1) function evaluations in each step of a GLM whereas in the case of PECE pairs, there

are 2 function evaluations in each step. For a fair comparison, we need this quantity to be equal for

each class. Following (6.1) and (6.2), in the case of PECE pairs,

rate of producing error = ε̃h̃py(p+1), (6.6)

rate of doing work =
2

h̃
, (6.7)

Stepsize and number of steps. Comparing (6.2) and (6.7),

h̃ =

(
2

p+ 1

)
h, (6.8)

which is the stepsize to be taken in the case of PECE pairs. So in this case, we take a smaller stepsize.

So, if n is the number of steps taken with fixed stepsize over the interval of length l = (xend − x0), in

the case of GLMs then

n =
l

h
,

and then the corresponding number of steps ñ in PECE pairs of the same order is

ñ =
l

h̃
=

(
p+ 1

2

)
l

h
,

=

(
p+ 1

2

)
n.
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p ε̃ ε = ε̃
(

2
p+1

)p

1 1
2

1
2

2 − 1
12 − 1

27

3 1
24

1
192

4 − 19
720 − 19

28125

Table 6.4: Error coefficients for each of the IRKS and PECE pairs

Table 6.3 gives the number of steps to be taken for each class for a fair comparison.

Error coefficients. Similarly, the rate of producing error must be same. For this use (6.8) to combine

(6.1) and (6.6), and we obtain

ε = ε̃

(
2

p+ 1

)p

.

As, in the case of GLMs, the error coefficient is a free parameter, and we select a set of GLMs with an

error coefficient that satisfies the above relation. For the PECE pairs, described in Chapter 2, and the

competitive GLMs, Table 6.4 gives the values of error coefficients for a fair comparison.

Using the above tables of error coefficients for GLMs (p = 2, 3, 4), two new sets of GLMs are

constructed. Using stepsize h = 60 × 2−t, where t = 1, 2, . . . , 8, these problems are solved and the

exact error at xend are plotted for each value of h, on the log–log scale. Then these values of h are

used to obtained competitive step sizes for Runge–Kutta methods and PECE pairs, using (6.5) and

(6.8), respectively.

For these two classes, the step sizes are smaller as compared to the step sizes for GLMs. Due to

this, there is a shift in the graphs of these two classes when they are drawn against GLMs. To remove

this, the plots are shifted by − log ( p
p+1)

p in the case of Runge–Kutta methods and − log ( 2
p+1)

p in the

case of PECEs.

For comparison of the IRKS methods and the Runge–Kutta methods, the results are calculated

and reported in Figures 6.1 to 6.4 for methods of order 1 to 4 on the problems A1, A3, A3-2D, A3-3D,

PR(i), PR(ii), C1 and C2. In Figure 6.1, the four plots in the first column of the plots, show the

graphs for methods of order 1 to 4 (top to bottom) on problem A1. Similarly, the other columns in

Figures 6.1 to 6.4, present the rest of the above mentioned problems. On the basis of this fair criteria

of comparison, we can see in these figures that the IRKS methods perform equally well as compared

with the classical Runge–Kutta methods with fixed stepsize.

For comparison of the IRKS methods and the PECE pairs, the results are calculated and reported

in Figures 6.5 and 6.6 for methods of order 1 to 4 on the same set of problems. In Figure 6.5, the three

plots in the first row of the plots, show the graphs for methods of order 2 to 4 (left to right) on problem

A1. Similarly, the other rows in Figures 6.5 and 6.6 present each of the rest of the problems. Again,

this comparison shows that the IRKS methods work equally well when compared with the PECE pairs

with fixed stepsize.
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Figure 6.1: Global error (fixed stepsize) for the problems A1 and A3 (left to right) using the IRKS and Runge–
Kutta methods of order one to four (top to bottom).
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Figure 6.2: Global error (fixed stepsize) for the problems A3–2D and A3–3D (left to right) using the IRKS and
Runge–Kutta methods of order one to four (top to bottom).
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Figure 6.3: Global error (fixed stepsize) for the mildly stiff problems PR(i) and PR(ii) (left to right) using the
IRKS and Runge–Kutta methods of order one to four (top to bottom).
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Figure 6.4: Global error (fixed stepsize) for the problems C1 and C2 (left to right) using the IRKS and Runge–
Kutta methods of order one to four (top to bottom).
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Figure 6.5: Global error (fixed stepsize) for the problems A1, A3, A3–2D, A3–2D and PR(i) (top to bottom)

using the IRKS methods and PECE pairs of order two, three and four (left to right).
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Figure 6.6: Global error (fixed stepsize) for the problems PR(ii), C1 and C2 (top to bottom) using the IRKS
methods and PECE pairs of order two, three and four (left to right).

6.3 Experiments with variable stepsize, fixed order

In this set of experiments, variable stepsize controllers for the implementation of the GLMs (in Table

2.2) of (fixed) order 2, 3 and 4 are tested. The Lagrange stepsize controller (5.7) and the acceptance

rejection criteria given in Subsection 5.2.1, are used. However, to start any variable stepsize scheme,

an initial stepsize is necessary. This is customarily specific to the nature of the method. The automatic

scheme for initial stepsize given in Subsection 4.2.1 is used in the rest of this chapter. Before this it is

tested on a few problems, as follows.

6.3.1 Initial stepsize

The selection of initial stepsize plays an important role in the ODE solvers. A good choice for the

initial stepsize h0, helps to efficiently obtain the desired trajectory of smooth step sizes without any

rejections. For variable stepsize implementation (in this section and in Section 6.4), the modified form

of the automatic selection of initial stepsize approach by Gladwell et al. [69], is used (Subsection 4.2.1).
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Atol 10−8 10−12

problem \ approach trivial automatic trivial automatic

Pend. 3 0 9 0
Bubble. 6 0 12 0
Bruss. 5 0 12 0
Kepler.(ε = 0.1) 5 0 12 0
Kepler.(ε = 0.3) 6 0 12 0
Kepler.(ε = 0.5) 7 0 13 0
Kepler.(ε = 0.7) 7 0 14 0
Kepler.(ε = 0.9) 10 0 17 0
VPol. 4 0 11 0
3-Body. 6 0 12 0
HO. 3 0 10 0

Table 6.5: Number of rejected steps occurring only in the start of the integration (p0 = 1), using a trivial and
the modified automatic approach for h0.

To investigate this scheme, some physical problems are used. To check the performance of the initial

stepsize, we need to measure the number of rejections occurring during the start of the integration.

The GLM code starts with p = 1, even with higher fixed order, used in the main part of the code. So

any rejections due to initial stepsize, only occur with the method of order one. Thus for any value of

p = 1, 2, 3, 4, the number of rejections due to initial stepsize would be same.

The modified approach of Gladwell. et al. [69] presented in Subsection 4.2.1 and a trivial

choice h0 = (xend − x0)/1000, are tested. The rejections have been recorded for (absolute toler-

ance) Atol = 10−8 and Atol = 10−12 whereas (relative tolerance) Rtol = Atol. Table 6.5 records the

number of rejected steps in the start of the integration, for each of the two choices for initial stepsize

for a number of different problems. When the trivial value for h0 is taken, there are a few rejections

in the start of integration. Whereas, with the use of the automatic scheme, there are no rejections

occurring in the start of integration.

Thus, to achieve our aim, the modified automatic scheme works for avoiding unnecessary rejections.

Along with this, the stepsize controller is also very important. For avoiding unnecessary rejections, a

slightly relaxed controller should be capable of accepting a step when it is too early to actually reject it.

How this is possible using the Lagrange stepsize controller? This is examined in the following section.

6.3.2 Lagrange stepsize controller

For practical methods, it is necessary to verify the order of a method, numerically. A numerical

verification of the order of methods is completed as in Section 6.2 but with a fixed stepsize. To verify

the order, obtained by a method, in variable stepsize mode, the Lagrange theory can be used. Here

it is necessary to mention that the aim is to verify the numerical order using the Lagrange stepsize

controller in (5.7), so we need to use the Lagrange theory for its verification as well. Such experiments

are presented in [32] for ARK methods.
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Figure 6.7: IRKS methods of order two, three and four (top to bottom) using the Lagrange stepsize controller

and its rejection criteria, on problems A2, A3, A4, C1, PR(i), PR(ii) and mild1.
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As, the aim in the variable stepsize implementation is to keep the norm of the error close to the

tolerance provided, so, referring to (5.6),

C(x)Hp+1 = T
(p+ 1)

p
.

Using this relation in (5.2),

E(H) =

∫ b

a
C(x)

⎛⎝T
(
p+1
p

)
C(x)

⎞⎠
p

p+1

dx,

= T

(
p

p+1

) ∫ b

a

(
p+ 1

p

) p
p+1

(C(x))
1

p+1 dx,

E ∝
∼ T

(
p

p+1

)
(6.9)

Thus in variable stepsize mode, this relation can be used to verify the numerical order of a method.

For this, using a particular problem, the exact (global) error at xend is to be recorded for different

values of the tolerance. On a double logarithm scale, the slope of the line, obtained by plotting the

recorded errors for each of the tolerances, should be approximately p/(p + 1).

So using the Lagrange stepsize scheme (5.7) and its rejection criteria in Section 5.2.1 described in

terms of the Lagrange theory, the slopes in the log–log plots of the relation in (6.9) must be close to

p/(p + 1). Various problems with exact solutions are used to verify the result. Initially, some linear

problems including A2, A3 and A4 of the DETEST are used. On successful verification of these simple

problems, the multi dimensional forms of the problem A3 and problem C1 are tested and the test set

is further extended to a few mildly stiff problems including the PR problems and mild1. These results

are presented in Figure 6.7 by plotting the exact error at the end of the integration interval for each

value of the tolerance from Atol = 10−6 to Atol = 10−14. The numerical values of the slopes, for

the methods of order two, three and four (top to bottom in Figure 6.7), are quite close to the value

p/(p + 1), where p is the order of the method.

After the verification of order for the new implementation techniques, the next step is to test the

advantages of these new techniques over the standard ones, this is presented in the following Subsection.

6.3.3 Comparing the Lagrange and standard approaches

As mentioned in Chapter 5, the Lagrange approach for variable stepsize works as it gives a relaxation

to avoid unnecessary rejections of steps and hence gives the optimal step sizes. To check the efficiency

(fixed order) of the Lagrange stepsize controller and its rejection criteria (given in the Section 5.1),

the first step is to compare it with the standard techniques (given in Section 4.3). Although the use of

standard approaches for the implementation of the IRKS methods is itself efficient, due to the reliable

error estimators, to get the full advantage of these estimators, the Lagrange optimisation approach

must be used for the implementation of IRKS methods.
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Lagrange standard
problem na nr ns CPU time na nr ns CPU time

A3 180 0 180 0.226 293 8 301 0.289
A3–2D 127 4 131 0.121 195 21 216 0.163
A3–3D 208 0 208 0.099 337 0 337 0.161
PR(i) 26 0 26 0.016 34 0 34 0.017
PR(ii) 176 5 181 0.097 277 12 289 0.127
mild1 43 1 44 0.027 57 0 57 0.022
B2 79 2 81 0.051 109 0 109 0.058
C1 77 0 77 0.047 119 0 119 0.064
C2 100 2 102 0.053 127 3 130 0.075
Bubble 50 0 50 0.030 73 0 73 0.042
Kepler(e = 0.1) 208 0 208 0.109 336 0 336 0.149
Kepler(e = 0.3) 232 0 232 0.117 375 0 375 0.163
Kepler(e = 0.5) 272 0 272 0.137 443 0 443 0.191
Kepler(e = 0.7) 334 0 334 0.151 547 3 550 0.248
Kepler(e = 0.9) 474 3 477 0.231 769 15 784 0.373
VPol 143 0 143 0.075 231 2 233 0.137
3-Body 567 0 567 0.292 936 0 936 0.510
HO 66 0 66 0.032 102 0 102 0.041

Table 6.6: For the IRKS method of order two, number of accepted steps (na), number of rejected steps (nr),
total number of steps (ns) and CPU time, using the Lagrange and standard approaches (Atol

= 10−5).

Lagrange standard
problem na nr ns CPU time na nr ns CPU time

A3 387 3 390 0.328 623 10 633 0.426
A3–2D 257 4 261 0.173 407 10 417 0.235
A3–3D 444 0 444 0.212 720 0 720 0.32
PR(i) 42 0 42 0.0181 62 0 62 0.0259
PR(ii) 367 0 367 0.178 595 7 602 0.281
mild1 71 0 71 0.0324 111 0 111 0.0452
B2 140 0 140 0.0811 216 0 216 0.0966
C1 153 0 153 0.0716 241 0 241 0.116
C2 151 2 153 0.0801 216 3 219 0.104
Bubble 92 0 92 0.0389 140 0 140 0.0559
Kepler(e = 0.1) 443 0 443 0.205 716 0 716 0.31
Kepler(e = 0.3) 496 0 496 0.232 803 0 803 0.367
Kepler(e = 0.5) 586 0 586 0.271 950 0 950 0.443
Kepler(e = 0.7) 723 0 723 0.337 1173 0 1173 0.544
Kepler(e = 0.9) 1009 0 1009 0.492 1639 0 1639 0.765
VPol 303 0 303 0.145 490 0 490 0.241
3-Body 1244 0 1244 0.62 2028 0 2028 0.983
HO 134 0 134 0.0656 214 0 214 0.0938

Table 6.7: For the IRKS method of order two, number of accepted steps (na), number of rejected steps (nr),
total number of steps (ns) and CPU time, using the Lagrange and standard approaches (Atol

= 10−6).
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Lagrange standard
problem na nr ns CPU time na nr ns CPU time

A3 827 4 831 0.543 1340 12 1352 0.752
A3–2D 536 2 538 0.332 867 15 882 0.447
A3–3D 952 0 952 0.429 1545 0 1545 0.69
PR(i) 80 0 80 0.0326 125 0 125 0.0529
PR(ii) 791 6 797 0.374 1281 8 1289 0.596
mild1 145 0 145 0.0627 231 0 231 0.093
B2 280 0 280 0.136 441 0 441 0.194
C1 314 0 314 0.16 501 0 501 0.246
C2 271 2 273 0.147 417 5 422 0.199
Bubble 179 0 179 0.081 280 0 280 0.131
Kepler(e = 0.1) 947 0 947 0.46 1535 0 1535 0.712
Kepler(e = 0.3) 1062 0 1062 0.504 1723 0 1723 0.767
Kepler(e = 0.5) 1256 0 1256 0.593 2038 0 2038 0.945
Kepler(e = 0.7) 1551 0 1551 0.747 2516 0 2516 1.28
Kepler(e = 0.9) 2168 0 2168 1.07 3518 0 3518 1.78
VPol 647 0 647 0.305 1047 0 1047 0.505
3-Body 2687 0 2687 1.42 4370 0 4370 2.56
HO 281 0 281 0.143 453 0 453 0.221

Table 6.8: For the IRKS method of order two, number of accepted steps (na), number of rejected steps (nr),
total number of steps (ns) and CPU time, using the Lagrange and standard approaches (Atol
= 10−7).

In this comparison, we cannot simply conclude that the approach causing fewer rejections works

better. A controller might avoid unnecessary rejections but might take more accepted steps using step

sizes which are too small. Thus, along with the number of rejected steps, it is essential to count the

number of accepted steps and consider the total number of steps.

The safety factor used in the standard controller is 0.9 whereas there is no safety factor used in the

Lagrange controller. Without using the safety factor (or taking its value equal to one) in the standard

stepsize controller, there are too many rejections. This number of rejections decreases, as the value

of the safety factor is decreased from 1 to 0.8. Although a fixed heuristic value of 0.9, works better.

The difference between the two controllers is the (p+1
p )

1
p+1 , appearing in the Lagrange controller. This

factor works well, practically, as a safety factor and is different for each method. The results show its

effectiveness.

Tables 6.6 to 6.14 record the number of steps taken by the code using the Lagrange and the

standard approaches, for each of the methods of order two, three and four respectively. For each of

the two approaches, the number of accepted steps na, number of rejected steps nr and total number

of steps ns = na + nr, are shown. A column for CPU time is also added for each approach. These

timings are not always very reliable because they can change when an experiment is repeated. The

tests are run with three different tolerances 10−5, 10−6 and 10−7 and Rtol=Atol. These are tested on

different problems including a few simple problems, a few moderate problems as well as some mildly

stiff problems. The Kepler problem is also tested, with eccentricity 0.1, 0.3, 0.5, 0.7 and 0.9. Further

problems include the Van der Pol problem, 3-body problem and harmonic oscillator. Here, holdp = 0
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Lagrange standard
problem na nr ns CPU time na nr ns CPU time

A3 86 3 89 0.199 129 8 137 0.242
A3–2D 64 1 65 0.107 95 8 103 0.12
A3–3D 88 0 88 0.0431 133 0 133 0.0598
PR(i) 16 0 16 0.0112 19 0 19 0.0146
PR(ii) 69 0 69 0.0386 100 1 101 0.0544
mild1 34 1 35 0.0181 36 10 46 0.0241
B2 49 2 51 0.033 56 0 56 0.0356
C1 41 0 41 0.0231 57 0 57 0.0343
C2 74 5 79 0.0555 81 10 91 0.06
Bubble 32 0 32 0.017 41 0 41 0.028
Kepler(e = 0.1) 80 0 80 0.035 122 0 122 0.0605
Kepler(e = 0.3) 98 0 98 0.0516 151 0 151 0.0884
Kepler(e = 0.5) 127 3 130 0.0658 191 20 211 0.113
Kepler(e = 0.7) 162 6 168 0.0819 247 41 288 0.137
Kepler(e = 0.9) 231 15 246 0.134 360 79 439 0.207
VPol 70 3 73 0.0439 100 6 106 0.0734
3-Body 290 10 300 0.148 420 58 478 0.249
HO 29 0 29 0.0178 40 0 40 0.0248

Table 6.9: For the IRKS method of order three, number of accepted steps (na), number of rejected steps

(nr), total number of steps (ns) and CPU time, using the Lagrange and standard approaches (Atol
= 10−5).

as we are using fixed order. The results indicate that the Lagrange approach is efficient as compared

to the standard approaches.

For the method of order two with Atol= 10−5, the Lagrange controller is cost efficient for the

problems in Table 6.6. There are always fewer rejections using the Lagrange controller except for the

problems mild1 and B2. The problem mild1 causes one rejection using the Lagrange controller whereas

there is no rejection in the case of the standard controller. Similarly, B2 has two rejections. However,

the total number of steps are always less in the case of the Lagrange controller and the standard

controller takes more steps to complete the integration. The Lagrange controller also takes less CPU

time for all the problems except the problem mild1.

For the method of order two with Atol= 10−6 and Atol= 10−7, the Lagrange controller is cost

efficient for all the problems as in Tables 6.7 and 6.8. In this case, the Lagrange controller takes less

steps (accepted, rejected and hence total number of steps) to complete the integration. For these two

tolerances, the Lagrange controller is efficient in terms of CPU time.

For the method of order three with Atol= 10−5, the Lagrange controller is cost efficient for the

problems in Table 6.9 except problem B2. There are two rejected steps using the Lagrange controller

for solving problem B2, though the standard controller takes more accepted steps to complete the

integration.

For the method of order three with Atol= 10−6, the Lagrange controller is cost efficient for the

problems in Table 6.10 except problems mild1 and 3-Body. For each of these problems, there is one
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Lagrange standard
problem na nr ns CPU time na nr ns CPU time

A3 152 4 156 0.223 221 15 236 0.278
A3–2D 111 4 115 0.11 164 7 171 0.144
A3–3D 154 0 154 0.0723 233 0 233 0.122
PR(i) 20 0 20 0.0106 26 0 26 0.0123
PR(ii) 117 0 117 0.063 174 1 175 0.0938
mild1 35 1 36 0.0187 39 0 39 0.019
B2 65 0 65 0.0387 89 0 89 0.0531
C1 65 0 65 0.0383 93 0 93 0.0522
C2 86 5 91 0.0538 108 8 116 0.081
Bubble 48 0 48 0.026 67 0 67 0.0325
Kepler(e = 0.1) 142 0 142 0.0682 215 0 215 0.121
Kepler(e = 0.3) 176 0 176 0.0911 268 0 268 0.124
Kepler(e = 0.5) 216 0 216 0.0972 332 0 332 0.161
Kepler(e = 0.7) 280 3 283 0.142 420 3 423 0.217
Kepler(e = 0.9) 410 9 419 0.202 600 15 615 0.308
VPol 113 0 113 0.0695 171 3 174 0.0963
3-Body 472 1 473 0.243 719 0 719 0.371
HO 47 0 47 0.0237 68 0 68 0.0296

Table 6.10: For the IRKS method of order three, number of accepted steps (na), number of rejected steps

(nr), total number of steps (ns) and CPU time, using the Lagrange and standard approaches
(Atol = 10−6).

rejection using the Lagrange controller. Whereas, there is no rejections in the case of the standard

controller, however, the standard controller takes more accepted steps to complete the integration.

Again, CPU time is always less using the Lagrange controller as compared to the standard controller.

For the method of order three with Atol= 10−7, the Lagrange controller is cost efficient for all the

problems as in Tables 6.11. In this case, the Lagrange controller takes less steps (accepted, rejected

and hence total number of steps) and CPU time to complete the integration.

For the method of order four with Atol= 10−5, the Lagrange controller takes fewer accepted steps

for the problems as in Table 6.12 except for problems C2 and Bubble. When the Lagrange controller is

used to solve C2, it took slightly more accepted steps as compared to the standard controller. However,

the Lagrange controller causes fewer rejections and overall, performs better. For the Bubble problem,

both the controllers take an equal number of steps to complete the integration. The problem A3–3D

takes one extra rejection in the case of the Lagrange controller, though again, the standard controller

takes, comparatively, more total steps to solve this problem. With this value of tolerance, the Lagrange

controller takes less CPU time to solve each problem.

For the method of order four with Atol= 10−6, the Lagrange controller is efficient for the problems

as in Table 6.13 except for problems A3–3D. For this problem, it causes three rejections when the

Lagrange controller is used whereas there is no rejection when the standard controller is used. However,

the Lagrange controller has overall better performance due to fewer total steps taken. With this value

of tolerance, the Lagrange controller takes less CPU time to solve all the problems.
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Lagrange standard
problem na nr ns CPU time na nr ns CPU time

A3 261 0 261 0.272 392 6 398 0.367
A3–2D 189 0 189 0.144 283 8 291 0.199
A3–3D 271 0 271 0.137 409 0 409 0.197
PR(i) 29 0 29 0.0158 40 0 40 0.0183
PR(ii) 203 1 204 0.101 305 5 310 0.159
mild1 45 0 45 0.0235 63 0 63 0.0283
B2 102 0 102 0.0542 145 0 145 0.0803
C1 107 0 107 0.0631 155 0 155 0.0765
C2 116 4 120 0.0796 153 4 157 0.0828
Bubble 76 0 76 0.0414 107 0 107 0.0496
Kepler(e = 0.1) 250 0 250 0.127 378 0 378 0.188
Kepler(e = 0.3) 312 0 312 0.156 473 0 473 0.247
Kepler(e = 0.5) 387 0 387 0.191 588 0 588 0.292
Kepler(e = 0.7) 488 0 488 0.25 744 0 744 0.375
Kepler(e = 0.9) 694 0 694 0.348 1059 0 1059 0.527
VPol 198 0 198 0.109 298 0 298 0.152
3-Body 840 0 840 0.431 1285 6 1291 0.673
HO 79 0 79 0.0369 116 0 116 0.0528

Table 6.11: For the IRKS method of order three, number of accepted steps (na), number of rejected steps

(nr), total number of steps (ns) and CPU time, using the Lagrange and standard approaches
(Atol = 10−7).

For the method of order four with Atol= 10−7, the Lagrange controller is efficient for almost all

the problems as in Table 6.14 in terms of number of accepted steps. Though, the Lagrange controller

causes a few extra rejections for some of the problems including C2, Kepler with e = 0.5 and e = 0.7,

and 3-Body problems. However, the total number of steps is always less in these problems, except for

the problem C2. Also, the Lagrange controller takes comparatively less CPU time for all the problems,

except for the problem C2.

For most of the problems, there are no rejections for very small values of tolerances using either

controller. Although the Lagrange controller is much more efficient in terms of number of steps or

function evaluations. Based upon these experiments, we have been successful in reducing the heuristic

safety factor used in the standard controllers with an improved controller (the Lagrange controller).
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Lagrange standard
problem na nr ns CPU time na nr ns CPU time

A3 55 3 58 0.199 73 8 81 0.222
A3–2D 48 3 51 0.0892 59 8 67 0.112
A3–3D 56 2 58 0.0315 76 1 77 0.0463
PR(i) 13 0 13 0.00768 14 0 14 0.00804
PR(ii) 69 5 74 0.0335 69 5 74 0.037
mild1 65 3 68 0.0299 67 10 77 0.0396
B2 59 0 59 0.0409 63 3 66 0.0417
C1 32 0 32 0.0241 37 0 37 0.0292
C2 149 2 151 0.0895 144 12 156 0.0906
Bubble 34 0 34 0.0168 33 1 34 0.0226
Kepler(e = 0.1) 58 0 58 0.0306 70 0 70 0.0423
Kepler(e = 0.3) 71 3 74 0.0435 93 7 100 0.06
Kepler(e = 0.5) 78 6 84 0.0419 116 19 135 0.0664
Kepler(e = 0.7) 89 6 95 0.0504 139 31 170 0.0891
Kepler(e = 0.9) 94 8 102 0.0475 183 37 220 0.121
VPol 47 2 49 0.0419 63 7 70 0.045
3-Body 94 3 97 0.0546 266 50 316 0.165
HO 18 0 18 0.0106 23 0 23 0.0126

Table 6.12: For the IRKS method of order four, number of accepted steps (na), number of rejected steps (nr),
total number of steps (ns) and CPU time, using the Lagrange and standard approaches (Atol

= 10−5).

Lagrange standard
problem na nr ns CPU time na nr ns CPU time

A3 83 4 87 0.202 115 11 126 0.257
A3–2D 64 2 66 0.113 90 12 102 0.127
A3–3D 85 3 88 0.0489 121 0 121 0.0564
PR(i) 14 0 14 0.00767 17 0 17 0.011
PR(ii) 76 4 80 0.0455 85 8 93 0.0576
mild1 66 2 68 0.0351 69 3 72 0.0443
B2 68 1 69 0.0372 76 5 81 0.0528
C1 40 0 40 0.0285 56 0 56 0.0394
C2 146 2 148 0.0986 149 16 165 0.1
Bubble 36 0 36 0.019 45 0 45 0.0227
Kepler(e = 0.1) 76 0 76 0.0406 111 0 111 0.0586
Kepler(e = 0.3) 99 0 99 0.0514 145 0 145 0.0794
Kepler(e = 0.5) 128 5 133 0.0682 184 20 204 0.112
Kepler(e = 0.7) 163 8 171 0.0879 240 41 281 0.141
Kepler(e = 0.9) 232 15 247 0.137 354 77 431 0.209
VPol 70 2 72 0.0444 97 4 101 0.0676
3-Body 291 10 301 0.162 408 39 447 0.242
HO 26 0 26 0.0143 37 0 37 0.0179

Table 6.13: For the IRKS method of order four, number of accepted steps (na), number of rejected steps (nr),
total number of steps (ns) and CPU time, using the Lagrange and standard approaches (Atol

= 10−6).
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Lagrange standard
problem na nr ns CPU time na nr ns CPU time

A3 125 2 127 0.243 176 10 186 0.273
A3–2D 100 2 102 0.124 138 10 148 0.141
A3–3D 129 0 129 0.067 189 0 189 0.0956
PR(i) 18 0 18 0.0096 24 0 24 0.0119
PR(ii) 86 0 86 0.0441 129 4 133 0.0888
mild1 68 2 70 0.0335 69 9 78 0.0351
B2 81 1 82 0.0469 95 3 98 0.0523
C1 59 0 59 0.0525 82 0 82 0.0534
C2 150 5 155 0.102 157 3 160 0.0882
Bubble 49 0 49 0.0276 66 0 66 0.034
Kepler(e = 0.1) 119 0 119 0.0634 174 0 174 0.104
Kepler(e = 0.3) 155 0 155 0.0823 229 0 229 0.125
Kepler(e = 0.5) 199 3 202 0.111 286 0 286 0.144
Kepler(e = 0.7) 259 6 265 0.146 368 4 372 0.198
Kepler(e = 0.9) 380 12 392 0.201 535 32 567 0.291
VPol 103 0 103 0.0668 151 0 151 0.0869
3-Body 434 4 438 0.239 635 0 635 0.345
HO 39 0 39 0.0229 55 0 55 0.0308

Table 6.14: For the IRKS method of order four, number of accepted steps (na), number of rejected steps (nr),
total number of steps (ns) and CPU time, using the Lagrange and standard approaches (Atol
= 10−7).

To compare the overall efficiency of the Lagrange controller, we need to check how well it can

balance the accuracy and the cost without using the safety factor. And to check this effect, we need

to compare it again with the standard stepsize controller using the safety factor (fac = 0.9).

Figures 6.8 and 6.9 record the number of function evaluations (horizontal axis) versus the global

error (vertical axis) on a double logarithmic scale. To check the efficiency of the Lagrange controller,

it is compared with the standard controller. These tests are run with Atol = 10−j , j = 5, . . . , 10 where

Rtol = Atol. The three columns in Figures 6.8 and 6.9, represents the results of methods of order two,

three and four respectively. Whereas, each row represent a specific problem as mentioned in the title

of each plot and in the figure caption.

Most of these plots shows that the Lagrange controller is efficient in terms of function evaluations.

However, this efficiency, due to the Lagrange controller, is gained with some reduction of global error

as compared to the standard controller. Here, it is necessary to mention that the aim of the Lagrange

controller is not to achieve higher accuracy as compared to the standard approaches. However, the aim

is to check how well the Lagrange stepsize controller can balance the accuracy and the cost without

using the safety factor. Now the question is how much accuracy should be achieved using the Lagrange

controller and whether the code is achieving it or not? This is verified in Subsection 6.3.2.
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Figure 6.8: Comparison of the Lagrange and standard controllers for methods of order two, three and four

(column–wise left to right) on the problems A2, A4, A3, A3–2D and A3–3D (row–wise top to

bottom), respectively.
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Figure 6.9: Comparison of the Lagrange and standard controllers for methods of order two, three and four
(column–wise left to right) on problems B2, C1, C2, PR(i) and PR(ii) (row–wise top to bottom),

respectively.
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6.4 Experiments with variable stepsize, variable order

Implementation of the (h, p)–controller is not as straight forward as in the case of the fixed order

controller. The optimisation approach of the Lagrange controller makes it technical to design. In the

case of the fixed–order variable–stepsize solver, it is straight forward to choose an initial stepsize and

calculate the next step. If a step is rejected, the standard controller may take some time to again attain

the asymptotic stepsize behaviour. Contrary to this, in variable–stepsize variable–order mode, there

are at least five natural cases that can arise. Three possible cases can occur when a step is accepted;

the controller may choose to increase the order, decrease the order or may keep the order the same.

Similarly in the case of rejection, the two possibilities would be to either keep the order the same or to

decrease it (by one). There are many implementation issues that are to be considered in each of the

cases. Instead of considering all five cases together, it is better to divide them in to the two traditional

categories; acceptance and rejection cases.

However, it is necessary to first summarise the implementation approaches used for different tasks

in the code, these are presented as follows.

6.4.1 GLM code

The whole code, written in Matlab, consists of many techniques from Chapters 4 and 5. These are

used for the implementation of the GLMs with IRKS– and F–properties presented in Table 2.2. The

start of this GLM code is quite unique due to the design of GLMs used here. It is best to summarise

the whole code that is used for performing the experiments with the Lagrange (h, p)–controller in this

section. A few of the techniques are briefly explained in Chapters 4 and 5, these are just referred to

here. The rest are presented in more detail.

Initial stepsize and order. The whole starting procedure is as in Section 4.2. The initial stepsize

is chosen using the approach in Section 4.2.1. Naturally, a starting method is not required and

the code starts with p0 = 1 and therefore, with the exact initial Nordsieck vector.

Error estimation of the (p + 1)st and (p+ 2)nd derivatives. For this, the results in Section 4.5.1

are used. The (p+1)st derivative is estimated in every step. The (p+2)nd derivative is estimated

only after a few consecutive accepted steps when a change of order is allowed.

Acceptance and rejection criterion. This is described in Section 5.2.1 or more precisely accepted

when the condition (5.14) is true.

Checking h for the final step. When an adaptive ODE solver is close to the end of the interval of

integration, the new stepsize (hnew = xn+1 − xn) proposed by the controller may be bigger than

the remaining length of integration, i.e. (xend − xn). In this case, the stepsize for the final step

might be slightly outside the interval of integration. To overcome this, we use

xfinal=abs(xend-x-h);

hnew=min(hnew,xfinal);
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Selection of stepsize and order for the next step. This is described in Algorithm 5.3.1.

Adjusting the length of the Nordsieck vector. When the order changes, the length of Nordsieck

vector also changes. In the case of decreasing the order, length is simply adjusted by dropping

the last element of the Nordsieck vector. When the stepsize increases, the length of Nordsieck

vector is to be increased by one. This additional element is obtained, without any additional cost,

as a reliable approximation of the (p+1)st derivative that is available as described in Algorithm

5.4.1.

Scale and modify technique. For this purpose, the algorithm 5.4.1 is used.

Use of holdp. This is described with each experiment.

With these implementation techniques, the whole code is tested for various purposes. An initial test

for the performance of the (h, p)–controller, is to check the solution at each step and the corresponding

stepsize and the order chosen for that step. A few problems are tested in this way and presented as

follows.

6.4.2 Performance of the Nordsieck elements

A straight forward initial test of the Lagrange (h, p)–controller, is to check the (h, p) sequences. How-

ever, it is also convincing to see the solutions at each step, using these sequences. For this, the first two

Nordsieck elements of each solution component of the problem are compared with the exact solution

at each step.

First, one–dimensional problems A2, A4 and A3 are tested as shown in Figures 6.10, 6.11 and 6.12

respectively. In each figure, there are four plots. The performance of the first two Nordsieck elements

are shown in the third and the fourth plots respectively, and their corresponding step sizes including

rejected step sizes and the corresponding order, chosen by the Lagrange controller, are shown in the

first and the second plots, respectively. The reason that we require the approximations to just the first

two Nordsieck elements i.e. y(x) and hy′(x), is due to variable order mode. The maximum number

of Nordsieck elements available at each step must be equal to the size of the Nordsieck vector with

method of order one, i.e. r = p+ 1 = 2.

For the experiment on the problem A2, Atol = 10−6 = Rtol. The first two plots, from the top,

in Figure 6.10 show the selection of stepsize and order at each step. It can be easily observed that

the Lagrange controller goes to the method of maximum order four and stays there till the end of the

integration. After setting to the maximum order, the stepsize increases gradually for the rest of the

interval without any rejection of stepsize. Overall, it takes 29 steps or 135 function evaluations for this

problem. The performance of the first two Nordsieck elements is also shown in the last two plots of

Figure 6.10 by comparison with the exact solutions at each step. Similarly, the problem A4 is tested

with Atol = 10−6 = Rtol as shown in Figure 6.11. For this problem, the order increases gradually

from one to the maximum order four at the start and remains at four till the end of the interval. No

rejections occur and it takes 21 steps or 94 function–evaluations for this problem.
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Figure 6.10: Stepsize control, order control and the first two Nordsieck elements for problem A2.
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Figure 6.11: Stepsize control, order control and the first two Nordsieck elements for problem A4.
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Figure 6.12: Stepsize control, order control and the first two Nordsieck elements for problem A3.

When the problem A3 is solved using Atol = 10−6 and Rtol = 0, the results are very interesting.

There are 6 rejections and it takes 97 steps or 495 function–evaluations for this problem. We can see in

Figure 6.12 that unlike the problems A2 and A4, after reaching the maximum order four, there are a

few order–oscillations followed by a few rejections. The important question in this situation is whether

the Lagrange controller should decrease the order at these points or not? The Lagrange controller

depends upon the optimisation function (5.4) which is based on the error estimation. Thus to analyse

this, it is necessary to first see the behaviour of the Cih
i+1y(i+1)(x) for i = 3, 4 for the problem A3.

As hi+1 is a very small quantity, we scale by it in each case.

Figure 6.13 shows the comparison of C3y
(4)(x) and C4y

(5)(x) for problem A3 where C3 and C4

are error constants for the methods of order three and four respectively, and y(4)(x) and y(5)(x) are

the exact higher derivatives of the solution. This comparison helps us to find which quantity could

possibly minimise the cost function. In other words, this indicates which order of methods could be

selected by the controller at each time step. As A3 is a periodic problem with period 2π, Figure 6.13

shows that it happens many times that the third order error term C3y
(4)(x) is less than the fourth

order term C4y
(5)(x) though for very small intervals of time. Due to this, there are order–oscillations

at some of these small intervals when we solve problem A3 using variable order (second plot of Figure

6.12).

For this problem, we also need to check the behaviour of estimations to the quantities C3y
(4)(x) and
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Figure 6.13: For problem A3, error analysis for the methods of order three and four.

C4y
(5)(x) using error estimators. For example, first take C3y

(4)(x), the estimation to this quantity is

simply the error estimation E3 in the method of order three divided by h4. Due to variable–order, E3

is estimated using either the method of order three or the method of order four, depending upon the

selection by the Lagrange controller. For this, we first estimate E3 using p = 3 and p = 4 separately.

From these quantities we compare the theoretical and the numerical results of C3y
(4)(x) as shown

in the top–left and bottom–left plots of Figure 6.14. These show the quality behaviour of the error

estimators. Similarly, the error estimations E4 are calculated using p = 3 and p = 4 separately . The

top–right and bottom–right plots of Figure 6.14 present the theoretical and numerical comparison of

C4y
(5)(x) which are also very reliable.

Thus the order–oscillations in the problem A3 are due to the theoretical behaviour of the problem

and hence the Lagrange controller is following it. However, these order–oscillations occur only when

a step ends inside these small intervals where the method of order three has a low value for its fourth

derivative. Moreover, these order–oscillations are not so necessary and the Lagrange controller should

only change the order when the order should decrease, theoretically, for long intervals.

These order–oscillations are overcome in [58] by giving some privilege to the existing order in a

step to keep the order the same for the next step. For example, if a method of order p is used in a

step and in the next step, the controller has three choices (in general) depending upon the values of

the optimisation function for three different methods of order p − 1, p or p + 1. As we are using the

maximisation form of (5.17) so to use the idea for controlling order–oscillations, in [58], maximum of

the following should be chosen by the controller.

(p− 1)hp−1

T (p)2
, α

php
T (p+ 1)2

,
(p+ 1)hp+1

T (p+ 2)2

where α = 1.2 for the methods used by the authors of that paper. The purpose here is to avoid too

many or unnecessary order changes. In other words, the order should only be changed when there is

a comparatively strong evidence that the change in order now would be overall efficient and it is not

just for a few steps. This gives a notion to use another idea of controlling the order–oscillations. This

is to keep the order the same for a couple of such consecutive steps in which the Lagrange controller
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Figure 6.14: For problem A3, error analysis for the methods of order three and four.

decides to change the order in the same direction. This could be stronger evidence for changing the

order. To hold the order p for a few consecutive steps (in a direction) we set a new parameter as holdp.

So if holdp = 2, it means that the order will not be changed to p + 1 or p − 1, unless the Lagrange

controller indicates to do so for 2 consecutive steps in the same direction.

To test this, A3 is repeated with the same value of Atol and Rtol. To control the order–oscillations,

in A3, both the above mentioned techniques have been tested separately as well as in combination.

It is observed that for holdp > 2, for various tolerances, there may be a delay in increasing the order

up to maximum order, especially at the start of the integration. This means that we need to use

the minimum value of holdp as much possible. For holdp = 1 and α = 1.2, problem A3 shows no

order–oscillations and a smooth and almost periodic stepsize pattern is obtained as shown in Figure

6.15. Now, it takes 3 rejections and 98 steps or 488 function–evaluations for this problem.

A few multi–dimensional problems are also used to test the performance of the controller and are

reported in the same way. First, the 2D–form of problem A3 is tested as shown in Figure 6.16. In

this problem, the first solution component is periodic whereas the second component is equal to the

time elapsed. The first two plots of Figure 6.16 show the stepsize and the corresponding order of the
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Figure 6.15: Stepsize control, order control and the first two Nordsieck elements for problem A3 (without

order–oscillations).

methods used in each step to solve the problem A3–2D. The last two plots compare the exact and the

numerical results of the first scaled derivatives of the solution components, respectively. The numerical

results for the first two Nordsieck elements of the two components of the problem A3–2D are matching

with the exact behaviour of the problem, at each step. For this problem, it is observed that using

holdp = 2 order–oscillations can be avoided, however it causes order–delays for some crude tolerances.

Using the same values holdp = 1 and α = 1.2, the results are similar to the ones obtained for problem

A3 as shown in Figure 6.16.

Similarly, the 3D–form of A3 is examined. For this figure we use the same value of tolerance as

used for A3, interestingly, the results are better with holdp = 0 and α = 1, i.e without any technique

as shown in Figure 6.17. The three solution components are periodic but with different periods. The

numerical solution of these three components matches at each step with the exact solution. The

stepsize sequence is also periodic as shown in the first plot of Figure 6.17, whereas these step sizes

are chosen for method of order four throughout. No rejections occur and it takes 100 steps or 490

function–evaluations which is almost the same as for the previous two forms of A3.

Following the same scheme, the three dimensional problem B2, is tested as shown in Figure 6.18.

For this problem, Atol= 10−12, Rtol= 10−8, holdp = 0 and α = 1, i.e without any technique. This is a

decay problem in which all the solution components decay to zero very quickly in the interval [0, 20].

The GLM code starts with the method of order one and the Lagrange controller quickly increases this
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Figure 6.16: Stepsize control, order control and the first two Nordsieck elements for problem A3-2D.

to order four, in the start of integration. The initial stepsize is also very small and increases as the

time increases.

As cases of mildly stiff problems, the PR–problems are tested and presented in Figure 6.19 using

Atol = Rtol = 10−8. For PR(i), λ = −0.1 and μ = −0.1 are used and we set no parameter for

controlling order–oscillations. There are no rejections and the numerical accuracy is not destroyed at

any point. The stepsize increases as the time increases. For PR(ii), λ = −4 is used. This problem has

a periodic solution. And the stepsize sequence obtained by the Lagrange controller is also periodic.

For this problem, we take holdp = 1 and α = 1 and the order remains four throughout the interval.

Whereas, without using holdp, there are periodic order–oscillations and rejections as well.



112 Numerical experiments

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

h

 

 

stepsize

0 2 4 6 8 10 12 14 16 18 20
0

2

4

p

 

 

order

0 2 4 6 8 10 12 14 16 18 20
0

2

4

y  (1
)

 

 numerical
exact

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

y  (2
)

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

y  (3
)

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

hD
y  (1

)

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

hD
y  (2

)

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

hD
y  (3

)

Time of integration

Figure 6.17: Stepsize control, order control and the first two Nordsieck elements for problem A3-3D.
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Figure 6.18: Stepsize control, order control and the first two Nordsieck elements for problem B2
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Figure 6.19: Stepsize control, order control and the first two Nordsieck elements for the problems PR(i) (top)

and PR(ii) (bottom)
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Figure 6.20: Motion in two–dimensions of the 2–body problem (top-left), 3–body problem (top-right), harmonic

oscillator (bottom-left) and Van der Pol problem (bottom-right) using the GLM code.

6.4.3 Experiments on physical problems with motion in two dimensions

Some physical problems are tested to observe the performance of the automatic initial stepsize in

Subsection 4.2.1. A few of these problems are again tested to see the performance of the GLM code.

These include, the 2–body, 3–body, harmonic oscillator and Van der Pol problems. Here, Atol =

Rtol = 10−8. In the Van der Pol problem, μ = 1. For these problems, none of the techniques has

been used against order–oscillations. The order increases in the start to the maximum order four and

remains four with smooth stepsize patterns.

6.4.4 Robustness of the controller

For this problem, holdp = 1 and Atol=Rtol= 10−6. To explore the robustness of the Lagrange

controller, the square path problem is examined thoroughly which is a two dimensional problem. Ge-

ometrically, this path is of square shape with centre at the origin and vertices (1, 1), (−1, 1), (−1,−1)
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Figure 6.21: Stepsize control, order control and the first two Nordsieck elements for the square path problem.

and (1,−1), respectively (counter clockwise on the xy-plane).

For the experiments on the square problem, the initial value is [1, 0]. Thus, the trajectory of the

square path starts from the point (1, 0) on the x-axis, represented by a black dot in Figure 6.22, and

travels upward and then turns to the left at the point (1, 1). Due to this turn, discontinuity in the

first derivative of the solution occurs. Naturally, the steps should be rejected at these turns (corners)

by an efficient code and it should turn properly. This is the main interest here, to see how the GLM

code handles this discontinuity which is unknown to the code a priori.

Before the first rejection at the corner, the code should attempt a bigger step and should go outside

the square path in the upward direction beyond the turning point point (1, 1). Eventually this step

fails to be accepted and a prescribed reduction in the stepsize should occur. This discontinuity should

cause failure of a sequence of steps until the required accuracy is achieved. And this phenomena should

happen at all the four corners of the square path.

Thus, the step should be rejected when a discontinuity occurs and each time the stepsize should

be reduced. This discontinuity is efficiently handled with the GLM code as shown in Figure 6.22. The

first plot in Figure 6.21 shows that the step sizes are rejected and reduced each time, near (just before)
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Figure 6.22: Motion in two–dimensions of the square path problem.

the corners.

After the start, and after each turn on the square path problem, the stepsize increases but the order

remains 1 throughout. This is also of main interest and we should discuss the reason the order remains

1 along the sides of the square. In this case, when the step sizes increases rapidly, the Lagrange opti-

misation controller has two choices to either jump to order 2 or to keep the order the same, i.e. 1. The

error term of the method of order one is the norm of 1
2h

2y′′(x). One of the second derivative compo-

nents is zero along each side of the square and so only one component is contributing to the error. Also,

the error term of the second order method is zero. Thus the Lagrange controller, when minimising the

rate of E+T (p+1), will find that there is the same contribution from the error term for each p. How-

ever, the minimum value of p, will minimise the cost and hence the method of order one will be selected.

While travelling upward from the start, one solution component is constant and hence it has zero

derivatives. Here, the order remains 1 throughout which is an expected result. This is because one

of the solution components has zero derivatives and thus has no contribution in the error. Because of
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Figure 6.23: Motion in two–dimensions of the square path problem (rotated at 10◦, 20◦, 30◦ and 45◦, respec-
tively).

the zero derivatives, there is a doubt whether the order is not increasing due to the problem rather

than the code or methods. To clear this doubt, we also test a modified form of this square problem by

rotating it through an angle θ = 10◦, 20◦, 30◦, 45◦ as shown in Figure 6.23. For example, at θ = 10◦, the

order of the method remains one throughout and similar rejections occur before crossing the corners

of the square path. This shows the robustness of the code. Similar results are found when the square

is rotated at the other three different angles.

6.4.5 Comparison of optimal sequences with the Lagrange controller

In order to check the performance of the Lagrange controller, it is first better to see what is expected

from the controller and then to compare it with the numerical results of the code. So, the first step is

to explain what the optimal sequence of the pair (h, p) would be using a set of methods. In order to

understand this we need to focus on just the optimisation problem. In simple words we can say that

this is a comparison of the results obtained from the Lagrange controller using the true values versus
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the numerical values obtained from the implementation of the GLMs.

In the start of the code p = 1, to avoid the need for a starting method. There will be two choices

of stepsize after the first few steps when the order is allowed to increase and the order will be changed

if the controller selects order two. In general, there are three choices of methods after each successful

step. Before optimising the order, the three step sizes, of each possible order, are calculated as it is

possible in the present case. Using these three predicted step sizes (based on very reliable information),

an optimal order is selected to make a pair (h, p) for the next step. The proposed step sizes for the

next step are calculated using the formula in (5.7) which are mainly based on error estimators or more

precisely on the (p + 1)st derivative(s) for each order p. The optimal controller selects the pair that

minimise the cost function in (5.4).

To understand this, it is better to first take a suitable ODE problem (taken here to be A3), fix

pmax = 2 and analyse the following steps one by one. The main aim is to check the performance of the

new controller. Before going ahead, it is important to mention about the four different (h, p) sequence

graphs in each of the next results. Each step is presented in each of the four plots.

Step1. (The true h–graphs) For each possible value of p, these graphs are plotted using the exact

values of the higher derivatives in (5.7). The graphs plotted in this step are not (h, p)–sequence

graphs though. These are just (h)–sequence graphs multiplied by some constant. Instead of

the minimisation problem in (5.4), this optimisation problem can be easily converted into a

maximisation problem, by multiplying the stepsize (for a method of order p) with a factor p/(p+

1)2. Such graphs for methods of order 1 to pmax (calculated with exact solutions) are shown in

the first plot of the each of the next sets of figures in this section.

Step2. (Optimal upper cover of the h graphs or the optimal (h, p) sequences) As the cost

function is to be maximised, so the ideal selection of step sizes and order is the upper cover of

the first plot in step 1 as shown in the second plot.

Step3. (Optimal cover by the Lagrange controller with exact solutions) Before going to a

problem using the GLM code, it is best to see what the Lagrange controller will do if the exact

values of the step sizes (as in the first plot) of the possible orders are provided to the controller at

each point. This would produce the true (h, p) sequence using the Lagrange controller as shown

in plot 3. (Whereas the ideal (h, p) sequence in plot 2 is without using the Lagrange controller.)

Step4. (Optimal cover by the Lagrange controller with numerical solutions) Using the

GLM code, the numerical values of the the higher derivatives are used in the Lagrange controller

to obtain the optimal sequences.

We are looking for a problem that can better explain the switching of methods of various orders. In

favourable circumstances, the Lagrange controller will switch the order from p to (p + 1) or (p − 1)

depending upon the objective function in (5.4). This can be explained in a better way with a problem

in which the stepsize graphs of different orders fluctuate and cross each other frequently. This will help

to analyse the working of the (h, p)-controller.
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Figure 6.24: Variable–order analysis for problem A3
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As the above four plots are for a maximising problem, so it is better to use an upper limit l on

the optimisation function, in some of the problems. For these tests, problems A3, PR(ii), B2 and C2,

are used. Here, l = 0.1 for the A3 problem, and for the PR problems it is l = 0.05. For problems B2

and C2, l = 0. The experiments in this section are recorded mostly with tol = 10−4, unless otherwise

mentioned.

Experiments with pmax = 2

For example, take the PR(ii) problem. In the first plot of Figure 6.25, the pink graph represents the

step sizes for the method of order one times a factor p/(p+1)2 = 1/4. Whereas the red graph represents

the same quantity for the method of order two. The next three plots are obtained by plotting the three

different graphs in each case so that the difference from the exact one can be observed.

The maximum of the two graphs in plot 1 is the upper cover of the whole of plot 1 which is

highlighted in the second plot and the black circles represents the points of integration where the order

should be switched. For example, the order switches from one to two in the start and remains two

before x = π and then quickly drops back to one. It can be easily observed that, in this problem, the

order switches six times in the whole interval.

Now we have to check the performance of the Lagrange controller based on the exact values of the

higher derivatives in (5.7). The results are plotted in the third plot of Figure 6.25 which is quite close

to the ideal upper cover in the second plot. This graph indicates what the Lagrange controller should

do in the GLM code.

Finally, when the numerical results are generated using the GLM code and used in the Lagrange

controller, the optimal cover is plotted in the fourth plot which is very similar to the third one.The

slightly low values of the step sizes are due to some limits on the step sizes ratio r, for example the

use of PI-control restricts the stepsize so it does not increase in exactly that ratio which the original

stepsize controller predicts. Furthermore, the stepsize ratio is also bounded to avoid abrupt changes.

Similarly the (h, p) sequences for problems A3 and PR(ii) are presented in the Figures 6.24 and

6.25 respectively. In these three examples, pmax is fixed to two so that there are just two choices for p.

By doing this, the behaviour of the controller is more easily understood. Now for the next few results,

we will directly jump to pmax = 4, to observe the performance of the code.

Experiments with pmax = 4

For this the problem B2 is tested. As there is no order variation after the time x = 9 and above the

value of 1 of the objective function, so the plots in the Figure 6.26 are plotted by fixing the axes to

these limits. This figure shows that the theoretical and the numerical (h, p) sequences presented in the

third and the fourth plot are quite close to each other. Similarly, problem C2 is tested with its own

restricted axes as shown in Figure 6.27. This graph also shows almost the same behaviour.



122 Numerical experiments

0 2 4 6 8 10 12 14 16 18 20
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 

 
p=1
p=2

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 

 

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 

 

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 

 

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

 

 
pNUMERIC

Figure 6.25: Variable–order analysis for problem PR(ii)
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Figure 6.26: Variable–order analysis for problem B2 with pmax = 4.
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Figure 6.27: Variable–order analysis for problem C2 with pmax = 4.
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Figure 6.28: Variable–order analysis for problem A3 with pmax = 4.

Figure 6.28 examines problem A3 with pmax = 4, Atol= 10−6 and Rtol= 0, in the same way except,

for this, the objective function for the minimisation problem is used. In the top–first plot of Figure

6.28, the true graphs for methods of order three and four only are shown as these two methods are

mutually switched during the numerical integration. The optimal lower cover is drawn, with extra

width, switching from one order to another at black circled connectors. This cover indicates what

order should be followed by the method. When the Lagrange controller is used with the integrators,

the path followed is almost the same as shown by the dashed lines of the same colour as defined for

each order. However, sometimes, it is not easy to see exactly where the orders are switching. For this,

the second plot of Figure 6.28 shows the discrete selection of the order in each step using the numerical

methods. We can see that these order–oscillations are occurring when it should actually theoretically

change. To overcome this, we use the strategies explained in the initial experiments of this section.

For holdp = 1 and α = 1.2, this experiment is repeated and no order–oscillations are found as shown

in the third plot of Figure 6.28.
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6.5 Conclusions

Conclusions of this chapter are:

1. The IRKS methods performs equally well (in case of fixed stepsize) as compared to the classical

methods including the Runge–Kutta methods and PECE pairs.

2. In the case of variable stepsize, it is possible to use the automatic starting procedure presented

in Section 4.2 without any starting method. The automatic initial stepsize controller performs

efficiently.

3. The Lagrange stepsize controller and its rejection criteria works for methods of order one to

four with fixed order, without the safety factor used in the traditional controllers. This has

been tested and found that for each order, the numerical results obtained with fixed order, are

following what we theoretically expect.

4. The Lagrange stepsize controller and its rejection criteria outperform when it is compared with

the standard controller and the rejection criteria for IRKS methods with fixed order.

5. The Lagrange approach for variable order (presented in Section 5.3) has been tested for non–stiff

problems as well as a discontinuous problem, physical problems and a few mildly stiff problems.

The IRKS methods have been implemented using the Lagrange variable order algorithm which is

efficient and robust for solving the above mentioned problems. This is verified in the numerical

results presented.



7
Conclusions and future work

The main aim of this thesis is to construct a practical class of general linear methods that can be

implemented and preliminarily tested in variable stepsize variable order manner using the Lagrange

optimisation approach. The experiments on the test problems considered in this thesis, provide us

grounds to consider the class of GLMs used in this thesis to be suitable as the kernel of a general ODE

solver.

Chapter 1 consisted of a brief classification of the ODEs which are to be considered whilst solving

the ODEs numerically. This chapter was a review of those traditional methods that are successfully

used in the existing numerical solvers for various types of problems. Along with this, the advantages

and disadvantages of such methods were discussed. On the basis of these, it was shown that we need to

look for a better class in the most general form of numerical method known as general linear methods.

Chapter 2 was a brief review of general linear methods. In spite of repeating the whole theory of

GLMs, the only theoretical part that needs some attention before the construction of methods in the

next chapter, is to know about the stability matrix in the case of GLMs. This was briefly presented

along with a few plots of the stability regions of all the numerical methods used in this thesis including

a table of those methods as well.

Chapter 3 was a detailed review of the construction of practical GLMs with IRKS– and F–

properties; a subclass of type 1 DIMSIMs. At the start, it was presented how a few of the classical

methods behave naturally like special GLMs and this motivates us to look for a big family of practical

methods known as DIMSIMs. A design of these methods was also presented here. The order conditions

for constructing GLMs are very complex. For ease of these, some simplifying assumptions were also

presented including the F–property for GLMs. On the basis of all these conditions, practical derivation

127
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of these GLMs is summarised in the form of an algorithm along with an example for the method of

order three.

Chapter 4 was based on many implementation techniques related to GLMs. In this chapter, some

implementation issues of the existing solvers were presented. The starting procedure of an ODE solver

is not straight forward, it requires many parameters to be set either by the user or automatically by the

code. An ideal procedure consisting of a few automatic techniques was presented here that just starts

with the initial value as an input and neither a starting vector from the user nor a special starting

method are required for it. How this type of procedure is possible to use with the GLMs used in this

thesis, was discussed in detail. Stepsize controllers were also presented along with the techniques of

balancing the data vector to avoid the loss of stability. To construct the efficient and reliable error

estimators, the growth of errors due to the methods were presented here. This was followed by a

theorem showing the possible and reliable construction of the error estimators required of each of the

GLMs in tables 2.1 and 2.2. These estimators were also preliminarily tested and reported in this

chapter. At the end of this chapter, it was discussed in detail why variable stepsize variable order

design of the ODE solvers are needed. Along with this, some of the existing variable order designs

were presented which are mostly based on heuristic approaches.

Chapter 5 was the main development in which it was discussed how the variable stepsize variable

order implementation of the numerical methods for ODEs forms a dual problem of optimisation. Using

the theory of multivariate calculus, it was justified how the selection of the pair, stepsize and order,

after each acceptable step can be considered as an unconstrained optimisation problem. Further it was

discussed and shown how the actual tolerance used for any particular order is related to the Lagrange

multiplier in the optimisation problem. Also, a stepsize controller based on the Lagrange approach

was constructed and this helps to avoid some heuristic parameters like the safety factor used in almost

every standard controllers. Along with this, a rejection criteria was developed which allows us to

give some relaxation to the standard acceptance criteria so that too early rejections can be avoided.

This rejection criteria is based on the stepsize ratio r rather than the estimated error as in the case

of standard techniques. At the end, a variable stepsize variable order algorithm based on the above

mentioned design techniques of Lagrange theory was presented. It was followed by another algorithm

for the scale and modify technique that is necessary for the implementation of variable stepsize variable

order code.

Chapter 6 investigated the new methods and implemented these with the new design based on

the Lagrange theory. At the start, the numerical verification of the order(s) of the new methods in

the simple case of fixed stepsize were reported. The code was then extended to the variable stepsize

option. A modified approach for initial stepsize that is possible and automatic in the existing case

was also tested and this worked better than the trivial approach. In the variable stepsize mode, it

was verified (numerically) using the Lagrange theory and multivariate calculus that the methods show

the correct order behaviour. Also, a preliminarily comparison of the Lagrange approaches for stepsize

and rejection with the standard techniques was reported and it was found that the new approaches

are very efficient in comparison. The last section reported the main results of the thesis in which the

whole design of Lagrange approaches were used to implement the IRKS methods with F–properties.
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For this, first some linear single dimensional and then some multidimensional problems including the

mildly stiff PR-problems were tested. For each problem, the behaviour of the solution components

were compared with the exact solution at each point of integration. Along with this the step sizes,

rejections and the order of the methods used in each step were also presented in the form of graphs.

After the satisfactory validation with these problems, some physical problems were tested. To check

the robustness of the (h, p) controller, an interesting discontinuous problem named the square path

problem was examined in depth. It was discussed in detail and thoroughly investigated that the GLM

code handled the discontinuities at the corners of the square efficiently. To check the performance of

the optimisation controller, the (h, p) sequences obtained from the numerical results were compared

with the optimal sequences.

This thesis studies the use of Lagrange optimisation approach for the implementation of IRKS

methods for solving a set of non–stiff problems, discontinuous problems, mildly stiff problems and

some geometric problems. Here are a few conclusions:

• It is possible to implement GLMs in a variable order mode, in a sophisticated way, which is not

possible in the case of Runge–Kutta methods.

• The Lagrange approach for a variable stepsize controller has been successfully used for the efficient

implementation of the GLMs. The results shows that the unnecessary rejections due to empirical

safety factors in the standard controller, can be successfully avoided using the Lagrange controller.

• The order–oscillations in the variable–order mode of the solver, for example in problem A3, (using

the Lagrange controller) are theoretically correct and can be avoided.

• This code not only solves the non–stiff problems efficiently but is also capable of handling mildly

stiff problems and discontinuous problems.

• We replace some heuristic values which occur in the design of the ODE software with automatic

selections. These include the safety factor used for avoiding too many rejections while selecting

the new stepsize. Another important feature are the rejection criteria necessary for variable

stepsize implementation (with either fixed or variable order). Now, the new rejection criteria are

more logical and comparatively relaxed in a sense that they allow us to accept the step as long

as the error is not ‘too much’ beyond the required accuracy. This ‘too much’ is precisely defined

in terms of Lagrange theory which is a (p + 1)/p proportion of the tolerance for the GLMs.

All these conclusions collectively give a significant notion that the implementation of the IRKS methods

with F–properties, in the Lagrange design can be considered a step towards making the GLMs the

kernel of a general ODE solver. Here are a few directions for future work, we would like to work on:

• Construct the GLMs with IRKS and F–property of higher order. For this some sophisticated

search routines can be used that can help to find suitable free parameters. For example, the

methods used in this thesis are of explicit nature and as these are IRKS methods, the spectrum
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of the matrix V was set to have just one nonzero eigenvalue. This idea can be extended to more

than one non–zero eigenvalue inside the unit disc. This will give further opportunities to explore

a wider range of methods in the search for the most efficient methods.

• Review of the Lagrange (h, p)–control techniques for higher order methods.

• Evaluation of this code by comparing with other standard methods on some standard test sets.

• Review of the designs of stiff codes and extending the techniques used in the non–stiff case.

• Construct an efficient and robust implementation of the methods for stiff and non–stiff cases in

high-level languages using stiffness switching.

• As the GLM code can handle discontinuities, so it can be reviewed on DDEs these being a sub

class of discontinuous problems.



Appendix

Test problems

The problem set can be considered as a set of three types of problems; non-stiff problems, mildly stiff

problems and some discontinuous problems. First, the DETEST set is included here consisting of six

problem classes. The problems have interval [0, 20] unless otherwise mentioned.

A1. the exponential

y′ = y, y(0) = 1,

A2. a special case of the Riccatti equation

y′ = −
y3

2
, y(0) = 1,

A3. an oscillatory problem

y′ = y cos (x), y(0) = 1,

A3-2D. 2D–version of A3 (autonomous form)

y′1 = y1 cos (y2),

y′2 = 1,

y1(0) = 1,

y2(0) = 0,

A3-3D. 3D–version of A3 (autonomous form)

y
′

1 = y1y2,

y
′

2 = −y3,

y
′

3 = y2.

y1(0) = 1,

y2(0) = 1,

y3(0) = 0,

A4. a logistic curve

y′ =
y

4
(1−

y

20
), y(0) = 1,

B2. Linear chemical reaction

y
′

1 = −y1 + y2,

y
′

2 = y1 − 2y2 + y3,

y
′

3 = y2 − y3,

y1(0) = 2,

y2(0) = 0,

y3(0) = 1,
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C1. a radioactive decay chain

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y′1
y′2
...
...

y′10

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 . . . . . . 0

1 −1
. . .

...

0 1
. . .

. . .
...

...
. . .

. . . −1 0

0 . . . 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2
...
...

y10

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, y(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

0
...
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

C2. another radioactive decay chain

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y′1
y′2
...
...

y′10

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 . . . . . . 0

1 −2
. . .

...

0 2
. . .

. . .
...

...
. . .

. . . −9 0

0 . . . 0 9 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2
...
...

y10

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, y(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

0
...
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Kepler problem. Kepler’s Orbit equations

y
′

1 = y3,

y
′

2 = y4,

y
′

3 = − y1
(y21+y22)

3/2 ,

y
′

4 = − y2
(y21+y22)

3/2 ,

y1(0) = 1− e,

y2(0) = 0,

y3(0) = 0,

y4(0) =
√

1+e
1−e .

where e is eccentricity.

E2. Van der Pol
y′1 = y2,

y′2 = (1− y21)y2 − y1,

y1(0) = 2,

y2(0) = 0,

with x ∈ [0, 8].

3-body problem.

y
′

1 = y4,

y
′

2 = y5,

y
′

3 = y6,

y
′

4 = 2y5 + y1 −
μ(y1+μ−1)

(y22+y23+(y1+μ−1)2)3/2
− (1−μ)(y1+μ)

(y22+y23+(y1+μ−1)2)3/2
,

y
′

5 = −2y4 + y2 −
μy2

(y22+y23+(y1+μ−1)2)3/2
− (1−μ)y2

(y22+y23+(y1+μ−1)2)3/2
,

y
′

6 = − μy3
(y22+y23+(y1+μ−1)2)3/2

− (1−μ)y3
(y22+y23+(y1+μ−1)2)3/2

,

where μ = 1
81.45 and x ∈ [0, 19.14045706162071] .

y1(0) = 0.994,

y2(0) = 0,

y3(0) = 0,

y4(0) = 0,

y5(0) = −2.0015851063790825224,

y6(0) = 0.
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Pend. Simple Pendulum

y′1 = sin (y2),

y′2 = y1,

y1(0) = 0,

y2(0) = 1.

HO. Harmonic Oscillator
y′1 = −y2,

y′2 = y1,

y1(0) = 0,

y2(0) = 1.

Brusselator.
y′1 = 1 + y21y2 − 4y1,

y′2 = 3y1 − y21y2,

y1(0) = 1.5,

y2(0) = 3.

Bubble. A model of cavitating bubble is

dy1
dx = y2,

dy2
dx =

5 exp (−x
x∗ )−1−1.5y22

y1
− ay2+D

y21
+ 1+D

y3γ+1
1

.

y1(0) = 1,

y2(0) = 0.

x∗ =
0.029

R0
,

a =
4× 10−5

R0
,

D =
1.456 × 10−4

R0
,

γ = 1.4,

R0 = 10−3.

Square. (
y′1
y′2

)
=

(
(χ(y1, y2)− 1) sgn(y2)

χ(y1, y2)sgn(y1)

)
y1(0) = 1,

y2(0) = 0.

where

χ(y1, y2) =

{
1 if |y1| > |y2|

0 otherwise

with x ∈ [0, 8] so that the length of interval is exactly equal to the perimeter of a square of side

two units.

PR. This problem is use to examine the stability behaviour of the numerical methods

y′ = λ(y − f(x)) + f ′(x), with true solution y(x) = f(x).
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Here two cases are considered:

(i)f(x) = exp (μx) where y(0) = 1, λ = −0.1, μ = −0.1,

(ii)f(x) = sin (x) where y(0) = 1, λ = −4.

mild1.

y′1 = −16y1 + 12y2 + 16 cos (x)− 13 sin (x),

y′2 = 12y1 − 9y2 − 11 cos (x) + 9 sin (x),

with

y(0) = [1, 0]
T

and x ∈ [0, π] .
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