Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Wireless Sensors Network Based Physiological Parameters Monitoring System

A Project Report Submitted in partial fulfilment of the requirements for the Degree of

Master of Engineering

In

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

By

Karandeep Malhi

SCHOOL OF ENGINEERING AND ADVANCED TECHNOLOGY MASSEY UNIVERSITY PALMERSTON NORTH NEW ZEALAND JULY 2010 To my family

ABSTRACT

Continuous technological innovation in research and development in the last two decades has resulted in development of different smart systems for heath monitoring for individuals at their home with wireless technology. A wearable non-invasive device has been developed to monitor physiological parameters (such as body-temperature, heart rate, detection of fall) of a human subject. The system consists of an electronic device which is worn on the wrist and finger, by the person to be monitored. The system can be used by elderly or the person at risk or even by a normal person for the monitoring of physiological parameters. Using several sensors to measure different vital signs, the person can be wirelessly monitored within his own home, may be defined as a smart home. A heart-rate sensor has been developed to monitor the heart rate continuously. An accelerometer has been used to detect falls. The device has the capability to determine the stressed condition of the person and may be used to send an alarm signal to a receiver unit that is connected to a computer. This sets off an alarm which can go to a care-giver, allowing help to be provided to the person. Since no vision sensors (camera or infra-red) are used, the system is non-invasive, respects privacy and it is expected that it will find wide acceptance. The system can be used in combination with the bed sensor (part of the home monitoring system) to monitor the person during the night. The complete system will help to monitor the person during day and night and will be suitable to an elderly living alone at home.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisors Associate Professor Dr. Subhas Mukhopadhyay and Senior Lecturer Dr. Gourab Sen Gupta, who have given me encouragement and assistance to complete this work. I am deeply indebted to Associate Professor Dr. Subhas Mukhopadhyay, for his continuous support and supervision of my research work and providing me with valuable advice and expert guidance, and above all for his technical feedback. Without his help, this work would not have been possible.

I sincerely thank Senior Lecturer Dr. Gourab Sen Gupta since part of my research work presented in this thesis was done in close consultation with him. I would like to express thanks to him for his valuable advice for technical matters, guidance related to microcontroller programming and numerous fruitful suggestions.

I would like to acknowledge the efforts of Mr. Ken Mercer, Mr. Colin Plaw, Bruce Collins, Anthony Wade and Clive Bardell. I would like to thank the SEAT IT support staff for providing me with required IT tools to run software for my study.

I would also like to thank Mathias Haefke, summer exchange trainee from Rostock University, Germany, whose work on development of GUI, using ZigBee communication has been very useful for this project. Also I would like to thank Julia Schnepper (summer exchange trainee) from Rostock University, Germany, for her efforts on testing sensors used in this work.

Special thanks to my husband Satinder Gill, for his constructive advice throughout the year. I wish to acknowledge Alexander Keerl and Kathleen Lennie, for their careful reading of an early draft of project thesis.

Finally and most importantly I would like to thank my parents, for their unconditional love and support throughout my time at university. Thank you for all the sacrifices you have made to give me a better chance in life.

CONTENTS

ABSTRACT	3
ACKNOWLEDGMENTS	4
CONTENTS	
LIST OF FIGURES	8
LIST OF TABLES	10
CHAPTER 1: INTRODUCTION	12
1.1 Introduction to Sensor	12
1.2 Literature research	15
1.3 Project Overview and Scope	22
1.4 Organization of thesis	24
CHAPTER 2: MEASUREMENT OF HUMAN BODY TEMPERATURE	25
2.1 Introduction	25
2.2 Measurement of Human Body Temperature	26
2.3 Temperature Sensor	28
2.4 Construction	29
2.5 Temperature sensing Technique	31
2.6 Experimental Results	32
CHAPTER 3: HEART RATE MEASUREMENT	39
3.1 Introduction	39
3.2 The Heart rate Sensor	40

5

3.3 Construction	42
3.4 Technique	44
3.5 Experimental Results	44
CHAPTER 4: IMPACT SENSOR	49
4.1 Introduction	49
4.2 Motion Detection Sensor (Impact Sensor)	50
4.3 Construction	51
4.4 Technique	52
4.5 Experimental Results	53
CHAPTER 5: BED SENSORS	58
5.1 Introduction	58
5.2 Bed Sensors	59
5.3 Construction	60
5.4 Technique	62
5.5 Experimental Results	64
CHAPTER 6: INTEGRATION OF SENSORS	76
6.1 Prototype hardware Design	77
6.1.1 Sensor Unit	77
6.1.2 Microcontroller	81
6.2 Receiver Unit	84
6.2.1 ZigBee Modules	85
6.2.2 XBee Module	86
6.3 Final Prototype	87 6

CHAPTER 7: COMMUNICATION	92
7.1 Communication between Sensor Unit and Micro-controller	92
7.2 Software and Algorithms	94
7.2.1 Temperature Sensor Algorithm	94
7.2.2 Impact Sensor Algorithm	95
7.2.3 Heart rate sensor Algorithm	95
7.3 Receiver Algorithms	96
7.3.1 XBee Configuration with X-CTU and settings	97
7.3.2 XBee Communication Protocol	100
7.3.3 GUI of the Serial Port Communication Program	101
7.3.4 Database	104
7.3.5 Algorithm of the code	105
7.3.6 String Mode	105
7.3.7 Binary Mode	106
CHAPTER 8: CONCLUSIONS	108
CHAPTER 9: REFERENCES	112
CHAPTER 10: APPENDIX	117
10.1 Schematics and PCB Layouts	117
10.1.1 Sensor Unit	117
10.2 Parts List	120
10.3 Microcontroller Code	120
10.3.1 Wrist Band	120
10.4 Receiver Unit (ZigBee GUI)	128

LIST OF FIGURES

Figure 1-1: The Sensing Process: A measured input energy or signal is evaluated by	a
sensing device, giving an output energy or signal as a result of the sensing process1	2
Figure 1-2: Classification of sensors-Applications [1]1	4
Figure 1-3: The world population projection1	6
Figure 1-4: Block diagram of system	2
Figure 2-1: Vascular Apparatus of Skin (Thermoregulation) [38]2	6
Figure 2-3: Circuit application2	9
Figure 2-2: Top view of DS600 Pin Configuration2	9
Figure 2-4: Voltage output characteristics	0
Figure 2-5: Transfer function of DS600	1
Figure 2-6: DS600 IC PCB layout in Altium Protel software	2
Figure 2-7: DS600 IC on Printed Circuit Board	2
Figure 2-8: Response time of the DS600 temperature sensor	3
Figure 2-9: Test results of Temperature sensor on 3 male and 3 female subjects	4
Figure 2-10: Temperature difference from reference temperature	5
Figure 2-11: Skin temperature of female & male subjects	6
Figure 2-12: Skin temperature of female while and after running	7
Figure 2-13: Temperature & Impact sensor of subject	7
Figure 2-14: Temperature & Impact sensor of subject in GUI	8
Figure 3-1: ECG waveform showing PQRST phases of the pulse	9
Figure 3-2: Application of NIR light in a NIRS [45]4	2
Figure 3-3: Block Diagram of Heart Rate Sensor4	2
Figure 3-4: Circuit Diagram of Heart Rate Sensor4	3
Figure 3-5: Types of LED's, phototransistor used4	4
Figure 3-6: The heart rate signal at the collector of the photo-transistor and at the output	ıt
(Heart_Rate_signal)	5
Figure 3-7: Heart rate signal before filtering4	7
Figure 3-8: BPM after filtering4	7
Figure 3-9: BPM result4	8
Figure 3-10: Accuracy of Heart Rate Sensor: A heart rate change can be detected ver	y
quickly using the developed sensor system4	8
	8

Figure 4-1:ADXL213 accelerometer	50
Figure 4-2: Functional Block Diagram of ADXL213	51
Figure 4-3: Circuit Diagram of motion detection sensor	52
Figure 4-4: Theory of operation	53
Figure 4-5: Various positions of user	54
Figure 4-6: Duty cycle values of accelerometer in oscilloscope	55
Figure 4-7: Impact sensor output in GUI	55
Figure 4-8: Duty cycle variation under dynamic transitions	56
Figure 4-9: Difference in duty cycle on falls	57
Figure 5-1: Sensor driving circuit	60
Figure 5-2: Bed Sensor Circuit Diagram	61
Figure 5-3: Force to Voltage characteristics	62
Figure 5-4: FlexiForce® sensor	63
Figure 5-5: Resistance Curve	64
Figure 5-6: Conductance Curve	64
Figure 5-7: Experimental Setup	65
Figure 5-8: Sensor response displayed on LCD in grams	66
Figure 5-9: Cells along the X and Y axis	66
Figure 5-10: Zone allocation with respect to X-Y axis	67
Figure 5-11: Sensor 1 response	68
Figure 5-12: Sensor 2 response	69
Figure 5-13: Sensor 3 response	69
Figure 5-14: Sensor 4 response	70
Figure 5-15: Combined results of all the four sensor outputs	71
Figure 5-16: Zone Allocation	71
Figure 5-17: Calculation of position (p)	73
Figure 5-18: GUI for activity monitoring	74
Figure 5-19: RF Module/ Port Pins	75
Figure 6-1: Sensor unit/system overview	76
Figure 6-2: Cicuit diagram of Heart rate sensor	77
Figure 6-3: Schematics for Impact Sensor and Temperature Sensor	78
Figure 6-4: PCB Layout of sensor unit (top and bottom layers)	79
	9

Figure 6-5: Top Layer of the PCB (sensor unit)	79
Figure 6-6: Bottom Layer of the PCB (sensor unit)	80
Figure 6-7: PCB layout of Sensor (Temperature) unit	80
Figure 6-8: Sensor unit PCB	80
Figure 6-9: C8051F020 System Overview [62]	82
Figure 6-10: Block Diagram of C8051F020 [62]	83
Figure 6-11: C8051F020 board and XBee module	84
Figure 6-12: System Data Flow Diagram	85
Figure 6-13: XBee Module	85
Figure 6-14: XBee Electrical connection layout	87
Figure 6-15: Final Prototype unit on a user	88
Figure 6-16: A sensor unit	89
Figure 6-17: Heart rate sensor (finger unit)	89
Figure 6-18: Temperature sensor and Emergency button (wrist unit)	90
Figure 6-19: SensorData displayed from one unit/system in GUI	90
Figure 7-1: Communication algorithm	93
Figure 7-2: Impact sensor interfacing	95
Figure 7-3: Heart rate (BPM) sensor interface	96
Figure 7-4: Receiver unit process	97
Figure 7-5: XBee Configuration with X-CTU	98
Figure 7-6: Test/Query window	99
Figure 7-7: Modem Configuration tab	00
Figure 7-8: Data Packet composition	01
Figure 7-9: GUI of the Serial Port Communication program10	02
Figure 7-10: Displaying data in the GUI of the Serial Port Communication program 10	02
Figure 7-11: Sensor settings	03
Figure 7-12: Sensor data can be retrieved easily in the GUI of the Serial Po	ort
Communication Program	04
Figure 7-13: Data display window showing three sensors data	07

LIST OF TABLES

Table 1-1: Energy types and corresponding Measurands [1]	13
Table 1-2: Sensor Technologies [1]	15
Table 1-3: Various PHMS for Health care [19], [17]	18
Table 2-1: Measurement Errors	35
Table 3-1: Experimental Results	46
Table 5-1: Experimental observation of locating the weight	72
Table 5-2: Location of the weight	73
Table 6-1: C8051F020 Features	
Table 7-1: Database field Description	
Table 7-2: t_save description	