Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

COMMUNITY OWNED AND OPERATED RENEWABLE ENERGY SCHEMES IN RURAL NEW ZEALAND

A thesis presented in partial fulfilment of the requirements for the degree of Master of Applied Science in Natural Resource Management at Massey University, Palmerston North, New Zealand.

> Glenn Irving 2000

Errata

The following references are missing from the reference list:

Frost, W. and Aspliden, C. (1994). Characteristics of the Wind. (in "Wind Turbine Technology", ed Spera, D.A.) *ASME Press*

Gipe, P. (1993). Wind Power for Home and Business : Renewable Energy for the 1990's and Beyond. *Post Mills, VT: Chelsea Green Publishing Co.*

Riordan, C. (1995). Solar Resource Characteristics. (in "Solar Cells and Their Applications", ed Partain LD), John Wiley & Sons Inc, New York

Shaw, et.al. (1996). Final Year Research Project, Massey University

Woods, A. et. al. (1997) Development and Demonstration of a Protocol for Community Owned and Operated Green Grid Remote Area Power Systems.

ABSTRACT

Due to the introduction of the Electricity Act (1992) and its later amendments, the future security of electricity supply to rural New Zealand is under question. Lines companies are legally obliged to maintain supply to existing customers until April 1st 2013, but can disconnect unprofitable customers after this date.

One option for rural customers is to establish their own community owned and operated renewable energy schemes. This study is the first step in identifying the engineering design, ownership, and environmental issues relating to this type of scheme.

Two case study sites – one in the North Island and one in the South Island – differed in their remoteness, population density and primary income sources.

Solar radiation and wind was measured at both sites. Power consumption data was also obtained from meters installed at the sites by Industrial Research Limited.

A review of legal ownership structures suitable for community owned electricity generation schemes was made and recommendations given from a New Zealand lawyer. Environmental issues associated with the development of electricity generating plants were identified, along with the implications of the Resource Management Act for renewable energy schemes.

A computer model was designed to assist a community in understanding the supply options available. It is based on present day costs of system components, and is designed to give maximum flexibility of design to the model user depending on resource availability.

For each site a number of options were identified and the costs of these options quantified. Comparisons were made between the options to identify the best for the site.

Although this thesis has been written by me, it has been contributed to by many. In order to unravel the complexities of a community owned renewable energy scheme I have had to work with people from many different sectors of society. There are far too many to name, so generalised acknowledgements will have to suffice.

First thanks goes to my wife, Lynn, for her unwavering support, and giving me the freedom to carry out a research project that involved so much travel.

To the team at Powerflow Ltd., for welcoming me into their company and providing me with some very valuable work experience. Thanks also for covering the costs of travel and equipment and for all the advice.

To my supervisors, Assoc. Prof. Ralph Sims and Dr. John Holland, for all their advice, time and expertise.

To Technology New Zealand, for the GRIF Scholarship that enabled me to work with Powerflow Ltd. on this project.

To the communities of Kumeroa, D'Urville Island, and Akitio for their hospitality and willingness to provide me with the information I required.

To God, who gave me the opportunity to work on a thesis that was enjoyable, challenging, rewarding and will hopefully be of use to many remote rural communities throughout New Zealand in the future.

"Coming together is a beginning Keeping together is progress Thinking together is unity Working together is success"

Anonymous

Table of Contents

		Page
<u>1 IN</u>	TRODUCTION	1
11	ET ECTRUMENT NEW ZEALAND TODAY	
1.1	ELECTRICITY IN NEW ZEALAND TODAY	1
1.2	FACTORS INFLUENCING THIS STUDY	1
1.5	THE PRESENT ROLE OF RENEWABLE ENERGY SOURCES IN NEW ZEALAND	3
1.4	OBJECTIVES	4
1.5	SCOPE Denote Conversion	5
1.6	REPORT STRUCTURE	6
<u>2 DI</u>	STRIBUTED POWER SUPPLY SYSTEMS - LITERATURE REVIEW	8
2.1	THE HISTORY OF RURAL ELECTRICITY RETICULATION IN NEW ZEALAND	8
2.1.1	THE PRESENT SITUATION	10
2.2	COMMUNITY OWNED RENEWABLE ENERGY SCHEMES	11
2.2.1	OVERSEAS EXPERIENCE	12
2.2.2	COMMUNITY STRENGTHENING	13
2.2.3	URBAN DRIFT	13
2.2.4	PROJECT OWNERSHIP AND LEADERSHIP	14
2.2.5	CONSULTATION	15
2.3	RELEVANT LAW	18
2.3.1	ELECTRICITY ACT 1992	18
2.3.2	ELECTRICITY INDUSTRY REFORM ACT 1998	18
2.3.3	RESOURCES MANAGEMENT ACT (RMA) 1991	19
2.4	RENEWABLE ENERGY - THE DESIGN PROCESS	21
2.4.1	DESIGN PROCESS OVERVIEW	21
2.4.2	LOADING PATTERNS	23
2.4.3	SOLAR ENERGY	25
2.4.4	WIND ENERGY	28
2.4.5	MICRO-HYDRO ENERGY	34
2.4.6	POWER MANAGEMENT - STORAGE, REGULATION AND INVERTING	38

<u>3</u> CA	ASE STUDY SITE DESCRIPTION	41
CASE	STUDY COMMUNITY 1 – TOTARA VALLEY	41
3.1.1	REASONS FOR INCLUSION IN THE STUDY	41
3.1.2	LOCATION	41
3.1.3	PROPERTIES	42
CASE	STUDY COMMUNITY 2 – D'URVILLE ISLAND	43
3.2.1	REASONS FOR INCLUSION IN THE STUDY	43
3.2.2	LOCATION	44
3.2.3	TOPOGRAPHY AND GEOLOGY	45
3.2.4	POPULATION	45
3.2.5	EXISTING COMMUNITY STRUCTURE	45
3.3	CASE STUDY COMMUNITY 3 – AKITIO	46
3.3.1	REASONS FOR INCLUSION IN THE STUDY	46
3.3.2	TOPOGRAPHY	46
3.3.3	POPULATION	47
3.3.4	PROPERTIES	47
3.3.5	INCOME SOURCES	47
<u>4 H</u>	DUSEHOLD QUESTIONNAIRE	48
127536		
4.1	QUESTIONNAIRE SAMPLE	48
4.1.1	TOTARA VALLEY	48
4.1.2	D'URVILLE ISLAND	48
4.1.3	AKITIO	48
4.2	METHOD OF ADMINISTRATION	. 49
4.3	QUESTIONNAIRE DESIGN	49
4.4	PILOT QUESTIONNAIRE	50
4.5	FINAL QUESTIONNAIRE	51
4.5.1	TOTARA VALLEY	51
4.5.2	AKITIO	51
4.5.3	D'URVILLE ISLAND	51
4.5.4	SURVEY RESPONSE RATE	52
4.6	RESULTS AND DISCUSSION	53
4.6.1	TOTARA VALLEY	53
4.6.2	D'URVILLE ISLAND	59
4.6.3	AKITIO	65

. . .

iv

4.6.4	SUMMARY

<u>5 L</u> E	EGAL OWNERSHIP	72
5.1	LEGAL STRUCTURES SUITABLE FOR COMMUNITY ENERGY SCHEMES	72
5.2	OPTIONS FOR NEW ZEALAND COMMUNITIES	72
5.3	INCORPORATED SOCIETIES	73
5.3.1	THE EFFECTS AND BENEFITS OF INCORPORATION	74
5.3.2	REGISTRATION REQUIREMENTS	75
5.4	SPECIAL PARTNERSHIP	75
5.4.1	CHARACTERISTICS OF A SPECIAL PARTNERSHIP	75
5.4.2	ESTABLISHING A SPECIAL PARTNERSHIP	76
5.4.3	MAINTAINING A SPECIAL PARTNERSHIP	76
5.5	PRIVATE COMPANY	77
5.5.1	DEFINITION OF A PRIVATE COMPANY	77
5.5.2	ADVANTAGES AND DISADVANTAGES OF A PRIVATE COMPANY	77
5.5.3	FORMATION OF A COMPANY	78

5.6	SUMMARY AND RECOMMENDATIONS	
5.5.4	CHARGES	
5.5.3	FORMATION OF A COMPANY	

6	THE RESOURCE	MANAGEMENT ACT (1991)	
			-

81

79

79

6.1	RESOURCE CONSENTS	81
6.1.1	TYPES OF RESOURCE CONSENT	81
6.1.2	APPLYING FOR A RESOURCE CONSENT	81
6.1.3	INFORMATION REQUIRED FOR RESOURCE CONSENT APPLICATION	82
6.2	TOTARA VALLEY	83
6.2.1	DESIGNATION	83
6.2.2	TARARUA DISTRICT PLAN	84
6.2.3	HORIZONS.MW LAND AND WATER PLAN	85
6.2.4	CONSENTS REQUIRED	88
6.3	D'URVILLE ISLAND	89
6.3.1	DESIGNATION	89
6.3.2	POLICIES AND OBJECTIVES	89
6.3.3	RULES	93
6.3.4	CONSENTS REQUIRED	94

71

v

<u>7 EN</u>	VERGY RESOURCE AND ELECTRICITY DEMAND	95
71	ΤΟΤΑΡΑ VALLEY	94
711	ENERGY RESOURCES	95
712	FI ECTRICITY DEMAND	104
713	ELECTRON DELIVERD	105
7.1.5	D'UDVILLE ISLAND	100
721	ENERGY RESOURCES	111
7.2.2	ELECTRICITY DEMAND	118
<u>8 RE</u>	ENEWABLE COMMUNITIES – COMPUTER MODEL	121
8.1	ELECTRICITY DEMAND	121
8.1.1	TARIFFS	121
8.1.2	ELECTRICITY CONSUMPTION	122
8.2	HYDRO RESOURCE AND TECHNOLOGY	123
8.2.1	CALCULATIONS PERFORMED	123
8.2.2	TURBINE SUPPLIERS AND COST	124
8.2.3	RESOURCE CONSENTS	124
8.3	WIND RESOURCE AND TECHNOLOGY	125
8.3.1	REQUIRED INPUTS	125
8.3.2	WIND TURBINE DATABASE	127
8.3.3	WIND TURBINE SELECTION	127
8.4	SOLAR RESOURCE AND TECHNOLOGY	128
8.4.1	REQUIRED INPUTS	128
8.4.2	SOLAR PANEL DATABASE	130
8.4.3	PANEL SIZING	130
8.5	STORAGE, TRANSMISSION AND SITE WORKS	130
8.5.1	INPUTS REQUIRED	131
8.6	ANALYSIS	133
8.6.1	ANALYSIS OPTIONS	133
8.6.2	SYSTEM OPTIMISATION	133
8.6.3	ANALYSIS REPORT	134
<u>9 RI</u>	ESULTS AND RECOMMENDATIONS	135
9.1	TOTARA VALLEY	135

vi

9.1.1	MODEL INPUTS	136
9.1.2	RESULTS AND RECOMMENDATIONS	136
9.2	D'URVILLE ISLAND	139
9.2.1	SCENARIOS CONSIDERED	139
9.2.2	MODEL INPUTS	141
9.2.3	RESULTS AND RECOMMENDATIONS	141
<u>10 C</u>	ONCLUSIONS AND SUMMARY	145

10.1 RECOMMENDATIONS FOR FURTHER RESEARCH

List of Tables

	Page
Table 1.1: New Zealand's electrical energy sources in 1998	3
Table 2.1: A load analysis for a remote dwelling with six residents	25
Table 2.2: Correction factors for the float method of determining stream flow	
rate	35
Table 4.1: Summary of questionnaire response rates	52
Table 4.2: Energy resources on D'Urville Island as identified by property	
owners	59
Table 5.1: Charges for registering as a company in New Zealand	79
Table 5.2: Required community size and registration costs for the	
recommended legal structures	79
Table 6.1: Type of consent available under the RMA	81
Table 7.1: Flow measurements at the Totara Stream culvert	97
Table 7.2: Maximum half hourly average load and total daily electricity	
consumption during shearing days at Farms 1 and 2	109
Table 7.3: Peak loads calculated for analysis scenarios	110
Table 7.4: Head, flow and pipe length measurements for six D'Urville Island	
streams identified as being suitable for micro-hydro development	112
Table 7.5: R ² values obtained using different types of trendlines	117
Table 8.1: Head limits used to determine micro hydro turbine type	124
Table 8.2: Surface Roughness Coefficients used in the model	126

14

147

Table 8.3:	Ground reflectivity values used in the model	129
Table 9.1:	Scenarios considered for the Totara Valley community analysis	135
Table 9.2:	Cost of grid connection and renewable energy for Totara Valley	
	scenarios	136
Table 9.3:	Ratio of scenario cost allocated to each farm	137
Table 9.4:	Scenarios considered for the D'Urville Island community	140
Table 9.5:	Results of D'Urville Island analyses	141
Table 9.6:	Annualised costs of options for each community member willing	
	to be part of a renewable energy generating scheme on D'Urville	
	Island	142
Table 9 7	The percentage of the total system cost allocated to each member	143

List of Figures

	Page
Figure 1.1: Energy consumed by sectors of New Zealand society	1
Figure 1.2: New Zealand's total primary energy production in 1998	3
Figure 2.1: Consumers assisted by RERC subsidies	9
Figure 2.2: The process of establishing a community owned renewable	
energy scheme	17
Figure 2.3: The process of applying for a resource consent	20
Figure 2.4: Flow chart showing the various parts of a renewable energy	
system and the flow of electricity through the system	21
Figure 2.5: Daily loading patterns for a house (a) in mid winter and (b) in	
mid spring	23
Figure 2.6: The photovoltaic effect in a silicon cell	27
Figure 2.7: The effects of wind turbulence over various land forms	29
Figure 2.8: The relationship between wind speed and the specific power	
output of a turbine	31
Figure 2.9: The power curve of a Windflow 500kW wind turbine	32
Figure 2.10: Types of wind turbine	32
Figure 2.11: The float method of measuring flow	35
Figure 2.12: Turbine selection chart for flows less than 2001/s	37
Figure 2.13: Turbine selection chart for flows up to 10,000l/s	37

Figure 2.14: Inverter wave forms	40
Figure 3.1: Topographic map of the Totara Valley	42
Figure 3.2: Map of D'Urville Island showing location of permanent residents	44
Figure 3.3: Topographic map of Akitio	47
Figure 4.1: Level of objection to sharing electricity with other community	
members	54
Figure 4.2: Energy sources used to meet heating and cooling loads	55
Figure 4.3: Level of satisfaction with present supply	56
Figure 4.4: View of how the community works together	56
Figure 4.5: Trust of other community members	57
Figure 4.6: Involvement in the community through meetings and community	
newsletters	57
Figure 4.7: Level of support for a community owned renewable energy	
scheme	57
Figure 4.8: Uptake of energy efficient practices	58
Figure 4.9: Income sources for D'Urville Island	59
Figure 4.10: Level of objection to supplying other community members with	
electricity generated on respondents' properties	60
Figure 4.11: Level of objection to being supplied with electricity generated	
on other properties	60
Figure 4.12: Willingness of respondents to generate electricity on their own	
properties	61
Figure 4.13: Energy sources used to meet heating and cooling loads	62
Figure 4.14: Grid connected customers' satisfaction with their present power	
supply	62
Figure 4.15: View of how the community works together	63
Figure 4.16: Trust of other community members	63
Figure 4.17: Involvement in the community through meetings and	
community newsletters	64
Figure 4.18: Level of support for a community owned and operated	
renewable energy scheme	64
Figure 4.19: Uptake of energy efficient practices	65
Figure 4.20: Income sources of Akitio respondents	65

Figure 4.21: Level of objection to supplying other community members with	
electricity generated on respondents' properties	66
Figure 4.22: Energy sources used to meet heating and cooling loads	67
Figure 4.23: Grid connected customers' satisfaction with their present power	
supply	68
Figure 4.24: View of how the community works together	68
Figure 4.25: Trust of other community members	69
Figure 4.26: Involvement in the community through meetings and community	
newsletters	69
Figure 4.27: Level of support for a community owned renewable energy	
scheme	69
Figure 4.28: Uptake of energy efficient practices	70
Figure 7.1: Location of energy resources and buildings	95
Figure 7.2: The culvert used to measure flow in the Totara Stream	96
Figure 7.3: Culvert dimensions	97
Figure 7.4: The second stream identified within the Totara Valley catchment	98
Figure 7.5: The wind monitoring equipment	99
Figure 7.6: Average monthly wind speeds for Totara Valley in 1999	100
Figure 7.7: Windspeed distribution and calculated and optimised Weibull	
curves for the period 26/02/1999 to 26/02/2000	101
Figure 7.8: Percentage of the monitoring period that the wind blew from each	
direction	102
Figure 7.9: The solarimeter used to monitor global solar radiation	102
Figure 7.10: Global solar radiation in 1999	103
Figure 7.11: Monthly electricity consumption profile based on Scanpower	
data	105
Figure 7.12: The author downloading data from Siemens meters	105
Figure 7.13: Electricity consumption profiles for Totara Valley properties	106
Figure 7.14: Electricity consumption during a day of shearing at Farm 1	
(20/01/2000)	108
Figure 7.15: Electricity consumption during a day of shearing at Farm 2	
(5/12/1999)	109

x

Figure 7.16: (a) Wind monitoring equipment installed at the D'Urville Island	
site (b) the view to the saddle where the anemometer was	
sited	112
Figure 7.17: Monthly average wind speed for the D'Urville Island site	113
Figure 7.18: Wind speed distribution and calculated and optimised Weibull	
curves for the period 10/11/1999 to 01/03/2000	114
Figure 7.19: Percentage of the monitoring period that the wind blew from	
each direction	114
Figure 7.20: Average daily global solar radiation (10/11/1999 to 01/03/2000)	115
Figure 7.21: Scatter plot of D'Urville Island and Nelson Airport hourly	
average wind speed data (10/11/1999 to 31/12/1999)	116
Figure 7.22: Scatter plot of D'Urville Island and Nelson global solar radiation	
data (11/11/1999 to 29/02/2000)	117
Figure 7.23: Average daily global solar radiation levels for D'Urville Island,	
correlated from historical Nelson Airport data ($R^2 = 0.68$)	118
Figure 7.24: Location of properties where load meters were installed.	119
Figure 7.25: Annual electricity consumption of 11 D'Urville Island	
landowners willing to be part of a community scheme	120
Figure 8.1: Energy and network tariff input page	122
Figure 8.2: Hydro analysis input page	123
Figure 8.3: Wind analysis input page	125
Figure 8.4: Solar analysis input page	128
Figure 8.5: Storage and transmission and site works input pages	131
Figure 8.6: Example of a summary report prepared by the computer model	134
Figure 9.1: Cost of scenarios to each farm (including water heating))	138
Figure 9.2: The location of community members interested in being part of a	
renewable energy electricity generating scheme	139

xi