Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Development of a Decision Support System for the Design of Good Indoor Air Quality in Office Buildings

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Product Development at Massey University, Turitea, New Zealand.

Volume One

Robyn A. Phipps

2001

ACKNOWLEDGEMENTS

I would like to thank Professor Peter Robertson, who was my first supervisor and helped steer the original direction of this research, and Professor Gavin Wall and Dr Ian Laird who asked the critical questions and supervised the completion of this thesis.

I would also like to express my gratitude to the following list of people who generously shared their expertise on indoor air quality and/or development of environmental design tools:

Mike Donn, Victoria University, Wellington;

Nigel Isaacs and Roman Jacques, Building Research Association of New Zealand, Judgeford, New Zealand;

Barbara Lippiatt, National Institute of Standards, USA;

Elizabeth Kemp and Daniela Mehandjiska-Stavreva, Institute of Information Sciences and Technology, Massey University;

Gary Raw, Building Research Establishment, Watford, UK;

David Tong, Building Use Studies, London, UK;

Kent Stevens, Ove Arups, London, UK;

Pat O'Sullivan, Barttlet School of Architecture, London, UK;

Clive Broadbent, Clive Broadbent and Assoc., ACT Australia;

Derek Croombe, University of Reading, Reading, UK;

Alistair Robertson, University of Birmingham, Birmingham, UK;

Alan Hedge, Cornell University, Itacha, USA;

Joe Clark, Alex Duffy and John Hand, University of Strathclyde, UK;

Peter Barnard, Fletcher Healthy Buildings, Auckland, New Zealand;

Martin Liddement and Mark Limb, Air Infiltration and Ventilation Centre,

International Energy Agency, Coventry, UK and

Tedd Nathanson, Public Works Canada, Ottawa, Canada.

The reviewers of the HEAD-Start all gave very valuable feedback and I am very appreciative of their contribution of time and critical thought. Their positive feedback was very reassuring and helped provide the impetus for the final stages of the production of this thesis. These individuals are;

Dr Nigel Isaacs, Building Research Association of New Zealand, Judgeford, New Zealand;

Tedd Nathanson, Public Works Canada, Ottawa, Canada;

Associate Professor Martin Hooper, Murdoch University, Melbourne, Australia;

Dale Gilbert, Public Works, Queensland, Australia;

Professor Peter Robertson, University of Central Lancashire, Preston, UK;

Professor George Beard, Victoria University, Wellington; and

Professor Gary Raw, Building Research Establishment, Garston UK.

I would also like to extend my gratitude to Mike, Jean, Gaeline and David, who have all been very generous with their support and encouragement.

ABSTRACT

Office buildings are complex entities. Design decisions can affect the quality of the indoor air (IAQ) throughout the life of the building. Poor IAQ affects approximately 30% of all office buildings and is ranked within the five greatest risks to human health in developed countries.

Despite a vast and growing body of scientific literature on IAQ, there is a large gap between the current knowledge and the application of this knowledge in building practices. The USA Environmental Protection Agency identified a high priority need for design and educational tools to assist building designers who are not experts in IAQ issues to create healthy buildings. In this study a Decision Support System (DSS) for the design of good IAQ in office buildings was developed.

The DSS leads building designers through a structured question database on building attributes that affect IAQ. Full justification for each design decision is given in order to prompt designers to select building features that lead to low indoor concentrations of volatile organic compounds, gaseous pollutants, microbiological contaminants and respirable particulates. The DSS was developed for new office buildings in New Zealand conditions, with either natural or mechanical ventilation.

An exisiting methodology for the development of DSS was used. The problem was approached from the perspective of the building users under the broad headings of site and external factors, building envelope, building infrastructure, interiors, and heating ventilating and air-conditioning. Each of these topics was subdivided into finer layers of detail until conclusions on the potential impact of each building element on the IAQ could be inferred.

The hierarchy for decision-making placed highest priority on the elimination or reduction of pollutants at source. Opportunities for pollutants to enter from outside or spread within the building were also controlled. If either of these strategies were not found acceptable, then mitigation techniques were recommended.

A panel of independent national and international experts validated the DSS for correctness and completeness. The reviewers reported that the system was very comprehensive, drew correct conclusions and would assist building designers without IAQ expertise, to design office buildings with good IAQ. The DSS was also considered to have a significant educational component for users.

TABLE OF CONTENTS

1	1 INTRODUCTION		
	1.1	The Significance of Indoor Air Quality	1
	1.2	Indoor Air Quality Standards	5
	1.3 The Need for Indoor Air Quality Design Assistance		8
	1.4 The Nature of a Decision Support System		
	1.5 DSS for Good IAQ in Office Environments		11
	1.6 Research Aim		15
1.7 Research Perspective		16	
1.8 Structure of the Thesis		16	
			18
			c .
	2.1	Indoor Air Quality and Factors Affecting the Design of Healthy Off	
	Buildi		18
	2.1.	1 Ventilation	19
	2.2	Gas Phase Contaminants	22
	2.2.	l Carbon Dioxide	22
	2.2.2	2 Carbon Monoxide	23
2.2.3		3 Nitrogen Dioxide	24
	2.2.4	4 Ozone	24
	2.2.	5 Sulphur Dioxide	25
	2.2.0	5 Radon	25
	2.2.7	7 Sewer Gases	26
	2.2.8	Summary of Control of Gaseous Pollutants	26
	2.3	Volatile Organic Compounds	27
	231	Guidelines and Standards for VOCs	29

Lľ	TERA	TURE REVIEW - DECISION SUPPORT SYSTEMS	92
2.7	Con	nclusion	90
2.6	Con	nprehensive IAQ Solution Strategies	88
2.5	5.11	Summary of Control of Particulate Matter	87
2.5	5.10	Particle Source Control and Removal	80
2.5	5.9	Guidelines and Standards for Indoor Particulate Matter	79
2.5	5.8	Particles and Microbiological Contaminants	79
2.5	5.7	Particles and Gas Phase Pollutants	78
2.5	5.6	Macromolecular Organic Dust	77
2.5	5.5	Particle Behaviour	77
2.5	5.4	Particle Size and Health Effects	76
2.5	5.3	Particles and Building Parameters	76
2.5	5.2	Personal Exposure	75
2.5	5.1	Sources of Particles	71
2.5	Par	rticulates	70
2.4	4.6	Summary of Control of Biological Contaminants	68
2.4	4.5	Control of Microbiological Aerosols	59
2.4	4.4	Mammalian, Avian and Insect Allergens	58
2.4	4.3	Bacteria and Viruses	55
2.4	4.2	Sources of Fungi and Dissemination	51
2.4	4.1	Fungi	49
2.4	Bic	ological Contaminants	48
2.2	3.10	Summary of Control of VOCs	47
2.3	3.9	Removal of VOCs	44
2	3.8	Source Isolation	42
2.:	3.7	Source Control	39
2.:	3.6	VOC Interactions and Dynamics	38
2.	3.5	Sink Effect	36
2.	3.4	Indoor Sources of VOCs	33
2.	3.3	Benzene	33
2.	3.2	Formaldehyde	31

vii

	3.1	Design of a Decision Support Systems	93
	3.2	Validation of a Decision Support System	95
	3.2.	1 Validation Approaches	97
	3.3	Conclusions	101
4	ME	THODOLOGY	103
	4.1	Knowledge Acquisition and Assimilation	103
	4.2	Development of a Decision Support System for the Design of Healthy	<i>y</i>
	Office Buildings		104
	4.3	Validation of the Decision Support System	109
5	RES	SULTS	115
	5.1	Knowledge Acquisition	115
	5.2	Development of the DSS	116
	5.2.1	The Structure of Problem Domain	116
	5.2.2	2 The Question Database	116
	5.2.3	The Common Solution Approach: The Indoor Air Quality Cycle	117
	5.2.4	The Design Criteria	118
	5.3	Validation of HEAD-Start	126
	5.3.1	Reviewers' Results	128
	5.4	Conclusions of Results	138
6	DIS	CUSSION OF RESULTS	140
	6.1	Knowledge Acquisition	140
	6.2	Development of HEAD-Start	142
	6.3	The Indoor Air Quality Cycle]44
	6.3.1	Comparison of the IAQ Cycle with Other Solution Approaches	144
	6.3.2	Implications of IAQ Cycle	146
	6.3.3	Importance Factors	152

7	7 CONCLUSIONS		162
	6.4.2	The Validation Process	160
	6.4.1	Validation Results	154
(5.4 Va	lidation of HEAD-Start	154

8 REFERENCES 166

LIST OF FIGURES

	Figure 2-1 Conditions for the alleviation or propagation of fungal matter	70
	Figure 2-2 Achieving Optimum IAQ	89
	Figure 4-1 Flow of IAQ knowledge from context trees to conclusions	107
	Figure 5-1 The major elements of the Indoor Air Quality Cycle	118
Figure 5-2 Reviewers' responses to "Does (this section) adequately identifies		
	how components of the building could contribute to the generation of	each
	type of pollutant"	128
Figure 5-3 Reviewers' responses to "Does (this section) adequately identifies		
	how the components of the building could form a pathway for the	
	movement around the building of each type of pollutant"	129
Figure 5-4 Reviewers' responses to "Does (this section) draw correct conclusions		
	on the effects which each type of pollutant that originates within the	
	(section) can have on the indoor environment"	130

LIST OF TABLES

Table 2-1 Proposed dose response relationship between discomfort/health	
effects and exposure to TVOC mixtures	30
Table 2-2 Formaldehyde exposure levels and symptoms	32
Table 2-3 International Standards and Guidelines for Particulates	80
Table 4-1 Allocation of reviewers to section topics	111
Table 5-1 Sections completed by each reviewer	127
Table 5-2 Reviewers' responses to above questions	131
Table 5-3 Reviewers' responses to "What is the weakest point of this sectio	n?"
	132
Table 5-4 Reviewers' responses to "What is the strongest point of this secti	on?"
	134
Table 5-5 Reviewers' responses to "Does this section have any important"	
omissions?"	136

LIST OF APPENDICES

Appendix 1Literature Matrix

Appendix 2 Indoor air quality and Decision Support System experts interviewed Appendix 3 Instructions for reviewers from New Zealand Royal Society of Science Appendix 4 Context trees

rippendix i context trees

Appendix 5 Question database

Appendix 6 Reviewers' proforma

Appendix 7 Detailed comments from Reviewer C and responces

Appendix 8 Conference paper 1: Phipps R.A. (1997) Decision Support System for the Design of Healthy Office Buildings. Healthy Buildings and Indoor Air Quality '97, the joint American Society of Heating Refrigeration and Air Conditioning Engineers and International Society of the Indoor Air Quality and Climate's fifth International Conference on Healthy Buildings. Washington DC 27th Sept. -2 Oct. 1997. Vol 2, pp 347-352.

Appendix 9 Conference paper 2: Phipps R.A., Wall G.L., Laird I. (2001) Decision support for healthy office building design. International Council for Research and Innovation in Building and Construction, International Congress. Wellington, New Zealand, $2^{nd} - 6^{th}$ April 2001

LIST OF ABBREVIATIONS

AHU	Air handling unit
AI	Air intake
ASHRAE	American Society of Heating Refrigeration and Air Conditioning
	Engineers
BRI	Building related illness
CAV	Constant air volume
CFD	Computation fluid dynamics
CIB	Council for Research and Innovation in Building and
	Construction
DSS	Decision support systems
EPA	Environmental Protection Agency
ES	Expert system
ETS	Environmental tobacco smoke
HEAD-Start	Healthy Environments – Alternative Designs
HEPA	High efficiency particulate air
HSE	Health and Safety in Employment Act
HVAC	Heating ventilating and air conditioning
IAQ	Indoor air quality
ISIAQ	International Society of Indoor Air Quality and Climate
MMMF	Man-made mineral fibre
NIOSH	National Institute of Occupational Safety and Health
PM	Particulate matter
PM ₁₀	Particulate matter within the size range less than 10µm
PM _{2.5}	Particulate matter within the size range less than $2.5 \mu m$
PM _{7.5}	Particulate matter within the size range less than 7.5µm
RA	Return air stream
SA	Supply air stream
SBS	Sick building syndrome
SVOC	Semivolatile organic compounds
TLV	Threshold limit values
TVOC	Total volatile organic compounds
VAV	Variable air volume
VDT	Visual display terminals
VOC	Volatile organic compounds
VVOC	Very volatile organic compounds
WHO	World Health Organisation