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Abstract
Granulation is an industrial process where fine particles are bound together into larger

granules. The process has numerous applications including the manufacture of phar-

maceuticals and the production of cosmetics, chemicals, detergents and fertilisers. This

thesis studies aspects of wet granulation which involves the application of a viscous binder,

usually in the form of a spray, to an agitated bed of powder particles. Individual pow-

der particles may adhere together, joined by small quantities of binder fluid called liquid

bridges. By a process of collision and adherence additional particles may join the newly

formed agglomerates. Agglomerates may also coalesce together which is a process that

leads to granule formation. On the completion of this process, granules are typically

dried.

This thesis studies wet granulation on three different levels. First, micro-level investiga-

tions of liquid bridges between two and three particles are performed. For the two-particle

case, the fluid profile of static (stationary) and dynamic (moving) liquid bridges is in-

vestigated. For the static case, a numerical solution to the Young-Laplace equation is

obtained; this relates the volume of binder fluid to liquid bridge properties such as the

inter-particle force. An analytic solution is also obtained, providing the liquid bridge

profile in terms of known mathematical functions. For both solutions, the radii of the

(spherical) primary particles may be different. The dynamic case is then studied using the

Navier-Stokes equations with the low Reynolds number approximation. The motion of the

approaching particles is shown to be damped by the viscosity of the liquid bridge. Static

liquid bridges between three equally sized primary particles are then studied. Symmetry

of the problem is used to obtain a numerical solution to the Young-Laplace equation.

Liquid bridge properties are calculated in terms of the binder fluid volume. Experimental

agreement is provided.

Secondly, a model to estimate the stickiness (fractional wet surface area) of agglomerates

is proposed. Primary particles are approximated as spheres and are added one at a time

in a closely packed arrangement. The model includes parameters to control the inter-

particle separation distance and the fluid saturation state. Computational geometry is

used to obtain results which relate the number of particles and the volume of binder fluid

to the stickiness of the agglomerates.

Finally, a population balance model for wet granulation is developed by extending an

earlier model to incorporate the effects of binder fluid. Functions for the inter-particle

collision rate and drying rate are proposed, including functions which are derived from the

geometric model, described above, for the case of maximum particle consolidation. The

model is solved numerically for a range of coalescence kernels and results are presented

which show the effect of binder volume and the drying rate.
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Nomenclature

Constants and variables are defined when they first appear in the text. Commonly used

variables from Chapters 2 to 5 are listed below.

Chapter 2 Variables (Liquid Bridges Between Two Particles)

Static

Variable Description

H0 Mean curvature

∆p Pressure difference

γlv Fluid surface tension

r Vertical coordinate

x Horizontal coordinate

r1 Radii of curvature in the r − x plane

r2 Radii of curvature in the r − y plane

r0 Bridge height at x = 0

θ Contact angle

α Half angle for particle ‘A’

β Half angle for particle ‘B’

σ Scaling variable

R Non-dimensional bridge vertical coordinate

X Non-dimensional bridge horizontal coordinate

R0 Non-dimensional bridge height at X = 0

∆P Non-dimensional pressure difference

S Non-dimensional inter-particle separation distance

V Non-dimensional liquid bridge volume

A Non-dimensional liquid bridge surface area

F Non-dimensional inter-particle binding force

E Non-dimensional Gibbs free surface energy

C Non-dimensional normalised force
(

C = F
2π

)

Dynamic

Variable Description

t time

r Vertical coordinate

R Sphere radius

z Vertical Coordinate

h Separation function
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Variables used in Chapter 2 (continued)

h0 Closest separation

~v Velocity vector

ρ Fluid density

g Acceleration due to gravity

µ Dynamic Viscosity

P Pressure within liquid bridge

Pamb Ambient pressure

P Vertically averaged pressure

Re Reynolds number

Fbridge Force

V0 Constant bridge volume

Chapter 3 Variables (Static Liquid Bridges Between Three Particles)

Variable Description

H0 Mean curvature

∆p Pressure difference

γ Fluid surface tension

(X, Y , Z) Cartesian coordinates

(r, θ) Cylindrical coordinates

z Liquid bridge surface in cylindrical coordinates

Z Liquid bridge surface in Cartesian coordinates

α Contact angle

δ Half-filling angle

r0 Central point of liquid bridge

rs Intersection between the sphere and fluid

rp Intersection between the symmetry plane and fluid

C1 Contour of the three-phase contact line

C2 Contour of the symmetry plane

a Sphere radius

S Inter-particle separation distance

nsurface Fluid surface outward pointing normal vector

nsphere Sphere outward pointing normal vector

nsym Symmetry plane outward pointing normal vector

ẑ Mesh approximation to z

V Liquid bridge volume
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Variables used in Chapter 3 (continued)

S Liquid bridge surface area

F Inter-particle binding force

Chapter 4 Variables (Modelling the Agglomeration Process)

Variable Description

S Matrix containing coordinates of primary particles

σ Minimum separation distance between sphere centres

δ Fluid saturation parameter

T Tetrahedra matrix

F Face matrix

κ Skewness number

Ξ Objective function for optimisation

Si Polyhedron representation of the sphere centred at Si

Ti Polyhedron representation of the expanded tetrahe-

dron centred at Ti

Vbinder Binder volume

Abinder Agglomerate wet surface area

Aparticle Agglomerate dry surface area

W Surface wetness

V ∗ Fluid-to-solid volume ratio

N Agglomerate size (number of primary particles)

Vsolid Volume of a primary particle

Asolid Surface area of a primary particle

Chapter 5 Variables (Population Balance Modelling)

Variable Description

N Total number of particles

i, j Particle size

ni Number of particles of size i

Ki,j Coalescence kernel (in the absence of binder)

K0 Size independent component of the coalescence kernel

M Total mass of particles

mi Mass of particles of size i

N0 Initial number of particles
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Variables used in Chapter 5 (continued)

t Time

i Mean particle size

σ Variance

bi Wet binder mass for all particles of size i

Bi Wet binder mass of a particle of size i

B Total wet binder mass

Φi,j Sticking efficiency function

Φ0 Size independent component of the sticking efficiency

function

K̂i,j Coalescence kernel (in the presence of binder)

Di Drying rate of particles of size i

D0 Drying rate constant
D0
K0

Collision-to-drying ratio

smax Maximum particle size
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Chapter 1

Introduction

1.1 Granulation

Granulation is a process where fine particles are bound together into larger granules.

A list of the processes by which granulation can be achieved is given in Figure 1.1 [1].

In all of these processes, the objective is the formation of permanent bonds between

particles. Figure 1.2 shows images of lactose granules taken under microscope. Primary

applications of granulation include the manufacture of pharmaceutics and the production

of cosmetics, chemicals, detergents, and fertilisers [2,3]. Advantages of granulation include

improved product flow (flowability), uniform product composition, increased shelf-life and

improved compressibility. Ingredient segregation is also prevented which is advantageous

for shipping and handling. In chemical applications granulation is frequently used for

the production of raw ceramic mixes and the preparation of detergent and surfactant

components.

This thesis concentrates on aspects of granulation by agglomeration (see Figure 1.1) which

involves applying a binder to a bed of moving particles, either as a dry powder which melts

as the powder is heated, or as a liquid binder. Through a combination of surface tension,

capillary forces, and viscous dissipation, the binder allows agglomerates to coalesce and

to grow in size [4]. Coalescence occurs when permanent liquid bridges form between

particles. The liquid bridges eventually form solid bridges by solidification, crystallisation,

mechanical interlocking of particles within agglomerates, and glass transition upon drying.

In this thesis wet granulation is studied on three different levels. First, micro-level in-

vestigations of liquid bridges between two and three particles are presented. Secondly,

a separate geometric model is provided to estimate the wet fractional surface area (or

stickiness) of moderately large agglomerates. Finally, a population balance model for

modelling wet granulation is developed. This model incorporates functions that are de-
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Figure 1.1: Classification of granulation processes. This figure is adopted from Sherrington and
Oliver [1].

rived from the geometric agglomerate model. The motivation for this thesis is to gain

insight into the micro-level profile and properties of liquid bridges and to develop a sim-

ulation of granulation that relates the stickiness of agglomerates to the probability of

coalescence.

General background on granulation

A typical granulation circuit used in tablet making is shown in Figure 1.3. Production

can be maximised by operating the process semi-continuously. In such a cycle, bulk raw

ingredients are blended before being loaded into a granulator, which typically operates

batchwise, although Leuenberger [5] has developed a semi-continuous process with a con-

tinuous granulator and batchwise drying. On completion of granulation, an end-point

decided by the operator, the agglomerates are typically dried. A classifier may then sort

particles for suitability in a tabletting press by removing fines (under-sized particles) and

over-sized particles. The accepted product is used to make tablets while the rejected

product is ground up using a mill and fed back as an ingredient. The circuit shown

in Figure 1.3 is representative of the process; additional steps such as cooling or addi-

tional pharmaceutical processes may also be included. Laboratory-scale granules may

take product loads as small as several litres while commercial systems may granulate up

to 600 litres of product per batch. In tabletting it is common to mix active and filling

ingredients and then granulate the blend to ensure uniform dosage of active ingredients.

Kristensen et al. [3] provides a comprehensive review on pharmaceutical wet granulation.

Granulation systems can be low, medium or high-shear, referring to the magnitude of

the agitation forces exerted on the particles during granulation. High-shear systems have

a large overall intensity of agitation and the granules they produce are hard, dense,

spherical and have low porosities [6, 7]. They have shorter process times compared to

low-shear systems. Low-shear systems use a relatively small mechanical force to combine
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(a) Lactose granules formed using Polyethy-
lene glycol (PEG) as the binder.

(b) Lactose granules formed using Urea as the
binder.

Figure 1.2: Images of granules taken under microscope. (Photographed using imaging equipment
at the Horticulture and Food Research Institute of New Zealand.)

powders, relying instead on properties of the powder and binder to obtain coalescence.

Granules produced by these systems are less dense, softer, more porous and less spherical

than high-shear granules. They offer better compaction and are generally preferred for

tabletting [8].

The Würster fluidised bed is the industry standard for low-shear granulation and is il-

lustrated in Figure 1.4(a). It uses a rapid flow of gas to transform solid particles into

a fluid-like state by forcing air up through an initially stationary bed of particles [9].

Particles are recirculated by being propelled upward into a turbulent zone where inter-

particle collisions occur. The particles then fall back to the bed under gravity. Usually

the fluidising air is heated which allows inter-particle bonds to dry and for excess binder

to evaporate. This reduces the likelihood of the bed binding together as a cohesive mass.

The Lödige mixer granulator, illustrated schematically in Figure 1.4(b), is a high-shear

system with rotating blades, also called an impeller, that continually mixes particles. The

impeller blades may rotate about a vertical or a horizontal axis [10]. It is also usual for

a chopper blade to be present to control the maximum size of granules. Typical rotation

speeds for the impeller blade are between 100 and 1000 rpm and typical speeds of the

chopper are between 1000 and 5000 rpm. Continuous systems may have more than one

impeller and more than one chopper and sometimes these systems also include some

degree of fluidisation [11].

The medium-shear drum or pan granulator is illustrated in Figure 1.4(d). In this system

particles recirculate and segregate by means of a rotating drum [11]. The granule den-

sity produced by this system is between that of the fluidised bed and the Lödige mixer
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Figure 1.3: Schematic diagram of the granulation cycle. Industrial granulation systems operate
on a continuous cycle to maximise production. Adapted from the 7th Edition of Perry’s Chemical
Engineers’ Handbook [11].

granulator.

Binder choice is important in the production of granules. Liquid binders can be either

aqueous or solvent based although aqueous solutions are more commonly used due to

safety. The binder must have sufficient viscosity to promote agglomeration and growth but

also provide sufficient strength to hold dried granules together as they become increasingly

brittle as the inter-particle bonds dry. Normally an eight to twenty-four hour drying

process is used.

End-product characteristics of granules, such as the mean particle size, granule strength,

porosity and particle size distribution, are dependent on the type of granulator, the fill

level, agitation intensity and the properties of the powder, binder and the delivery of

binder [2, 11–13].

Granulation is a complex function of various stages of growth which are discussed in the

following section.

1.2 Growth Mechanisms

The mechanisms of wet granulation may be classified into the following stages: (i) wetting

and nucleation, (ii) growth and consolidation and (iii) attrition and breakage [11]. Figure

1.5 provides an overview of these mechanisms.
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(a) Würster fluidised bed granu-
lator

(b) Lödige high-shear mixer
granulator.

(c) Side-on view of a
drum granulator.

(d) End-on view of a drum gran-
ulator.

Figure 1.4: The Würster low-shear fluidisied bed granulator, the high-shear Lödige system and
the medium-shear drum (pan) granulator.
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Figure 1.5: Overview of granulation mechanisms. Application of a binder to a moving bed of
particles causes nucleates to form. As nucleates become surface wet, by consolidation, granules
may form by layering and coalescence mechanisms. Attrition and breakage represent the reverse
processes of layering and coalescence respectively.
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Sections 1.2.1-1.2.3 below provide a summary of the research that has been completed in

this area. Although this research is not directly related to the material in Chapters 2-5,

it is included here to place our work in context.

1.2.1 Wetting and Nucleation

Nucleation refers to the period of initial contact between powder and binder. The ob-

jective of wetting, also known as binder dispersion, is to distribute binder liquid evenly

throughout the powder to result in the formation of small nuclei [2].

Schæfer and Mathiesen [14] classify wetting and nucleation by comparing the relative

size of powder particles and binder droplets. If liquid droplets are large in comparison

to the diameter of powder particles, nucleation is said to occur by immersion. In this

case, powder particles penetrate into larger liquid droplets to produce saturated nuclei

which coalesce rapidly. Distribution refers to the converse situation where small binder

droplets attach to the surface of powder particles to produce highly porous agglomerates.

In practise a balance between these limiting cases is desired.

Binder can be delivered as a spray, using an atomiser, or by pouring or melting binder

directly onto a moving bed of particles. Well-dispersed binder produces a narrow, well

controlled nuclei size distribution [15]. The rate of nucleate formation and size distribu-

tion may be controlled by atomiser spray characteristics such as the spray flux, powder

flux and droplet size distribution [15,16]. Fine droplets result in improved wetting [11,15].

Increasing the spray flux has been observed to increase the mean granule size, although

high spray rates combined with large droplet sizes can result in poor quality spray charac-

teristics due to droplet overlap. Increasing the spray angle (the angle through which the

spray is dispersed) decreases the mean particle size and narrows the nuclei size distribu-

tion. This occurs because decreasing the spray density causes particles to be locally less

surface wet. Increasing the agitation intensity increases the flux of powder (passing by the

atomiser) which improves binder dispersion. Experimental studies have shown that de-

livering binder as a melt or by pouring often leads to inconsistent wetting. Downstream,

this results in preferential growth, where regions of the bed are both under- and over-

granulated. This causes end-product variation and a wide particle size distribution [15].

Thermodynamic properties

Thermodynamic properties of the powder and binder also influence wetting [15]. The

contact angle θ, a fluid property, illustrated in Figure 1.6 for a stationary fluid, is the

angle formed between solid and liquid at the three-phase contact line [17]. Perfect wetting

has a contact angle of 0o and is achieved only in the case of an ideal fluid. This corresponds
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Figure 1.6: The contact angle θ for a stationary droplet in contact with a solid. The dot represents
the three-phase contact line which is the intersection of the three interfaces. Subscripts on the
surface tension γ refer to solid, liquid and vapour interfaces.

to the fluid spreading uniformly over a solid to create a thin, continuous layer of liquid.

Partial wetting occurs for θ < 90o. Non-wetting fluids occur for 90o ≤ θ < 180o where a

fluid contacts but does not spread. Complete non-wetting, where liquid and solid contact

only at a single point, occurs for θ = 180o.

When fluid and solid are in equilibrium contact, as in Figure 1.6, the Young-Dupŕe

equation applies,

γsv − γsl = γlv cos θ. (1.1)

The subscripts refer to the interfaces as shown in Figure 1.6. (For example γlv is the

surface tension of the liquid-vapour interface.) The term γlv cos θ is called the adhesion

tension. Maximising this term results in improved wetting uniformity [11]. Low contact

angles increase the adhesion tension and are associated with improved spreading of fluid

over solid [15]. The adhesion tension may also be increased by using a different binder

or by adjusting the surfactant concentration. Increasing the binder concentration also

increases the contact angle θ although Ayala et al. [18] report that an optimum solution

can be obtained. Granulation involves dynamic wetting on a short time scale where

powder and fluid are not in equilibrium contact due to particle agitation. However,

experimental studies have verified that the results discussed above also apply in the

dynamic case [2].

Thermodynamics may be used to study the spread of a fluid over a solid [15]. The work

required to divide a material is called the work of cohesion. Figure 1.7(a) illustrates

the separation of a liquid and Figure 1.7(b) the separation of a solid. The area of the

interfaces formed is A. The work of cohesion for the liquid is Wcl = 2γlvA because

two liquid-vapour interfaces are formed. Similarly, the work of cohesion for the solid

is Wcs = 2γsvA. The work required to separate two different materials is called the

work of adhesion. The separation of a liquid and solid is illustrated in Figure 1.7(c).

Following separation, a liquid-vapour and solid-vapour interface is formed and a liquid-

solid interface is destroyed. The work of adhesion is therefore Wa = (γsv + γlv − γls)A.
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(a) The work of cohesion
for a liquid is Wcl =
2γlvA.

(b) The work of cohesion
for a solid is Wcs = 2γsvA.

(c) The work of adhesion
to separate a liquid and
solid is Wa = (γlv + γsv −
γls)A.

Figure 1.7: Figure (a) shows the separation of a liquid, (b) the separation of a solid and (c) the
separation of liquid and solid (cited in [15]).

The definitions provided above are now used to study the spreading of a droplet over a

solid. Figure 1.8 shows the initial position of a droplet as a solid outline. It later spreads

to the position marked by the dotted outline. Following spreading, a liquid-vapour surface

of area A1 is formed and a solid-liquid interface of area A2 is exchanged for a solid-vapour

interface. The work of spreading is therefore

Wls = γlv A1 + (γsl − γsv)A2. (1.2)

Assuming that A1 ≈ A2 = A, Equation (1.2) may be written using the works of cohesion

and adhesion as

Wls = Wcl − Wa. (1.3)

Spreading occurs if Wls < 0 because the energy change is exothermic. For Wls > 0

the droplet contracts. For Wls = 0 the fluid is stationary and is in thermodynamic

equilibrium.

Conditions are also derived for the solid to spread over the liquid. This is to be avoided in

granulation because it results in poor wetting. If the solid spreads, as illustrated in Figure

1.8(b), then a solid-vapour interface of area A1 is formed and a solid-liquid interface of

area A2 is exchanged for a liquid-vapour interface. The work of the solid spreading is

thus

Wsl = γsv A1 + (γls − γlv)A2. (1.4)

As above, assuming that A1 ≈ A2 = A, the work of spreading may be written as

Wsl = Wcs − Wa. (1.5)
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(a) Liquid spreading over a solid. (b) Solid spreading over a liquid
droplet.

Figure 1.8: If Wls < 0 then the liquid spreads over the solids as shown in (a). If Wsl < 0 then the
solid spreads of the liquid as shown in (b).

The solid spreads over the liquid for Wsl < 0 and recedes for Wsl > 0. For Wsl = 0 the

arrangement is in thermodynamic equilibrium and is stationary.

If Wcl > Wa and Wcs > Wa then Wls > 0 and Wsl > 0. This case corresponds to

non-wetting where the liquid and the solid make contact at a single point.

Figure 1.9 illustrates nucleation by distribution and immersion and the influence that the

works of spreading Wls and Wsl have on granulation.

Viscous properties

The viscosity of the binder is a further consideration for wetting and later growth. De-

creasing the binder viscosity enhances atomisation because finer droplets are created,

allowing nucleation to enter the drop controlled regime described by Hapgood [15]. Wet-

ting is also affected by spreading, either by impact of droplets on a powder surface or by

smearing as powder surfaces are sheared. Both processes are affected by viscosity.

Initial growth is enhanced by low binder viscosity and later growth by higher binder

viscosity [19]. Viscous binders are slow to flow through the powder pores to form saturated

nuclei. Increasing the binder viscosity generally inhibits both atomisation and binder

dispersion. Hence a viscous binder will often form large initial nuclei but will take a

long time to uniformly disperse throughout the powder. This may delay on the onset of

uniform growth but can also cause preferential growth.

Binder dispersion

Litster et al. [20] model the dispersion of binder from an atomiser. Droplets are produced

at a volumetric flow-rate of V̇ and have an average droplet diameter of d. Binder is

delivered to the powder bed with cross-sectional area A. The dimensionless spray flux
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(a) Nucleation by distribution.

(b) Nucleation by immersion.

Figure 1.9: The effect of Wls and Wsl on nucleation for (a) distribution and (b) immersion.
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provides a measure of binder coverage on the powder surface and is defined by

Ψ =
3V̇

2Ȧ d
(1.6)

where Ȧ = dA
dt . For Ψ À 1 the volume of binder added per unit powder bed is large. In

this case droplet coalescence occurs due to droplet overlap. Controlled nucleation, with a

narrow size distribution, occurs for Ψ < 1. Litster et al. [20] report that optimal results

are achieved for Ψ . 0.1.

1.2.2 Growth and Consolidation

Following nucleation, particles are sufficiently surface wet to form agglomerates. Layering

is the term used to describe growth whereby primary particles or nuclei attach to larger

agglomerates. Coalescence refers to the union of two similarly sized nucleates or granules

[11].

Layering has been described by Wauters et al. [21] as the appearance of wet spots on

the surface of granules, due to consolidation, and the adherence of fine particles to these

regions. Induction, also known as densification, refers to growth where layering is the

dominant mechanism and continues until the supply of fines is exhausted. The length of

the induction period decreases with increasing liquid content [22]. Following induction,

agglomerates increase in surface wetness which allows the particles to undergo growth by

coalescence [16]. As the mass of an incident particle is typically much less than that of

an agglomerate, layering is assumed to be successful if a wet region exists.

Coalescence has been identified as a more complex interaction than layering because the

particles involved have similar masses and because the liquid bridges become dynamic.

Following a collision several outcomes are possible: (i) the particles coalesce, (ii) the

particles rebound or (iii) one or both of the particles break into fragments. A number of

models exist in the literature to predict whether coalescence will occur following a binary

collision [4, 23–27]. Of these, the models that are suitable for modelling wet granulation

are those developed by Ennis et al. [4] and Liu et al. [26]. Both models consider a binary

collision where the particles are coated with a uniform layer of liquid. The dissipation of

the impact kinetic energy within the fluid layer is considered. Ennis et al. [4] assume that

no permanent deformation of the granule surfaces occur, which allows the model to be

applied, as an approximation, to coalescence in low-shear systems. Liu et al. [26] extend

the model of Ennis et al. [4] to account for plastic deformation which is significant in

high-shear systems. Both models are discussed in more detail in Section 1.3.3.
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Consolidation occurs when external compressive or shear forces are applied to particles.

In granulation this is caused by agitation forces, inter-particle collisions and collisions

between the particles and the walls of the granulator [2]. Consolidation causes the porosity

of granules to decrease and for the binder to migrate towards the surface of the particles.

If the binder viscosity is increased then the rate of consolidation is slowed because strong

particles, resistant to deformation, are formed. If the highly viscous binder is able to

migrate to the surface, however, the fluid can dissipate more kinetic energy of the incident

particles to increase the probability of coalescence. Thus, high-viscosity binders have been

observed to have slow initial growth but rapid long-term growth [22].

Iveson et al. [28] studied the evolution of granule size distributions obtained from low,

medium and high-shear experiments. Their analysis has identified the following classifi-

cations for growth: wetting and nucleation, induction, steady growth and rapid growth.

Iveson et al. [28] present their findings as a growth regime map for granulation which

is illustrated in Figure 1.10. This map defines approximate boundaries for the various

growth types. For fixed binder viscosity they postulate that granule growth is a function

of the Stokes deformation number Stdef and the maximum granule pore saturation smax.

The Stokes deformation number is defined as

Stdef =
1
2m̃(2u0)

2

32ã3Y
(1.7)

which is the ratio of the impact kinetic energy, resulting from a head-on binary collision

at a relative speed 2u0, to the energy loss incurred by the plastic deformation of granules.

In Equation (1.7) m̃ denotes the harmonic mean mass

m̃ =
m1m2

m1 + m2
, (1.8)

ã the harmonic mean radius

ã =
a1a2

a1 + a2
(1.9)

and Y the granule dynamic yield stress. For the regime map u0 is taken as some represen-

tative collision velocity for the ensemble. The maximum pore saturation smax is defined

as the ratio of the liquid-to-void mass when the voids are filled with liquid,

smax =
wρs(1 − εmin)

ρlεmin
, (1.10)

where w is the mass ratio of liquid to solid, ρs is the density of the solid particles, ρl

is the liquid density and εmin is the minimum porosity achieved by the granules in the

ensemble. smax increases with residence time in the granulator because of consolidation.
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Figure 1.10: Growth regime map for granulation from Iveson et al. [28] showing the dominant
growth mechanisms in terms of the Stokes deformation number Stdef and the maximum pore
saturation smax.

Steady growth occurs when granules are weak and deformable and a large contact area is

formed between the particles upon collision. Liquid is squeezed onto the surface of parti-

cles which promotes particle coalescence. Growth is approximately linear with respect to

time for steady growth and occurs for low viscosity binder fluids. Rapid growth is coales-

cence that occurs when particles become surface saturated with liquid and tends to occur

in systems that have strong, slowly consolidating granules which are formed following a

period of induction. The high surface wetness of these particles enables them to undergo

coalescence easily [28].

As may be inferred from the map, the “Dry” free flowing powder occurs in the presence of

large deformation forces but with minimal binder. The“crumb”area occurs when there is

sufficient liquid but high impact forces causing attrition and breakage (which is discussed

below). The slurry/over-wet condition occurs when the system is saturated with binder

resulting in the formation of a cohesive mass.

1.2.3 Attrition and Breakage

Attrition and layering are inverse processes. Attrition occurs when individual or small

clusters of primary particles break away from an agglomerate. Breakage refers to the in-

verse mechanism of coalescence where an agglomerate fractures into two or more similarly

sized segments [11].

The mechanisms of attrition and breakage occur when an external shear force is applied to

particles. The primary cause of breakage in high-shear systems is the contact of particles
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with the impeller and chopper blades. Attrition and breakage also result from inter-

particle collisions and collisions between the particles and the walls of the granulator.

Breakage is more common in high-shear systems [11].

Tardos et al. [29] define a simple model for the attrition and breakage of particles in wet

granulation systems. (A limitation of the model, however, is that it does not differentiate

between the mechanisms of attrition and breakage individually.) The model is based

on the work of Ennis et al. [4] and uses analogies between layering and attrition and

coalescence and breakage. Tardos et al. [29] consider an agglomerate of mass m, travelling

at speed u0 where a shear force of magnitude τ is applied. The Stokes deformation number

for attrition and breakage is defined as

Stbreak =
1
2mu2

0

V τ
(1.11)

where V denotes the volume of the agglomerate. Stbreak is equal to the ratio of the particle

kinetic energy to the internal energy of the particle available to resist deformation before

fracture occurs. It is assumed that the shear-stress propagates uniformly throughout

the particle. A critical Stokes number St∗break is defined where breakage and attrition

occurs for Stbreak > St∗break. Unlike the Ennis model, a theoretical value for St∗break is

not provided and therefore this value is determined experimentally. Tardos et al. [29]

propose that the granule will behave as a Herschel-Bulkley fluid under stress as given by

the condition

τ(γ̇) = τ0 + kγ̇n (1.12)

where τ denotes the shear stress, τ0 is the yield stress, k is an apparent viscosity, γ̇ = dγ
dt is

the shear-rate and n is a power law exponent. Herschel-Bulkley fluids respond to shear by

requiring a minimum stress τ0 to initiate flow but have the property that the shear-stress

decreases with increasing shear-rate γ̇.

It is likely that future research will develop more detailed models that will distinguish

between the mechanisms of attrition and breakage.

1.3 Micro-level Models for Granulation

1.3.1 Saturation States

For agglomeration, three states define the amount of binder internally contained in a

granule. The pendular, funicular, and capillary states refer, in increasing order, to the

fraction of internal pore space that is occupied by fluid [30]. The pendular state describes
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Figure 1.11: Pendular, funicular and capillary saturation states.

neighbouring particles that are joined together by individual pendular liquid bridges while

the capillary state refers to an agglomerate where the inter-particle voids are completely

filled with binder. The transition between these cases is known as the funicular satu-

ration state. During granulation it is usual for the saturation state to increase due to

consolidation. Classifications of saturation states higher than capillary also exist such as

droplet. This, however, refers to an overly-saturated state where the primary particles

are contained within a droplet. Since this saturation state leads directly to over-wetting

it is not preferred for granulation.

The work discussed in Section 1.3.2 and Chapter 2 considers the pendular saturation state

for liquid bridges between two particles, Chapter 3 considers the funicular saturation state

for liquid bridges between three particles and the capillary saturation state is assumed

for the geometric agglomerate model which is detailed in Chapter 4.

1.3.2 Static Liquid Bridges

Physical models of liquid bridges formed between the contact points on solid particles are

fundamental to modelling wet granulation. Historically, this problem dates to 1873 with

the work of Plateau in adsorption thermodynamics. In the work presented below, primary

particles are approximated by spheres. This approach is valid provided the particles are

approximately spherical and the surface asperties are small compared to the radius of

the primary particles. The profile of static liquid bridges formed between two spheres

are known as the nodoid of Plateau [31]. The term static implies that the fluid surface is

stationary.

Figure 1.12 illustrates a cross-section of a pendular static liquid bridge formed between

two spheres of radius a. Models of this arrangement consider liquid bridges attached to

small, rigid particles where the weight of the fluid is small compared to the surface tension

force. This allows the gravitational force to be neglected [31–35]. External forces, such

as electrostatic and Van der Waals forces, are assumed to be absent. The binder fluid is

assumed to be uniform, incompressible and in thermodynamic equilibrium with ambient
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Figure 1.12: Static liquid bridge drawn in the x − r plane between particles of radius a. The
principal radii of curvature are denoted by r1 and r2. The angle between the tangent plane to
the spheres and the fluid surface is equal to the fluid contact angle θ. The height of the bridge at
x = 0 is r0 and the half-filling angle is α.

conditions.

For the conditions described above, the relevant geometric equation, for static liquid

bridges, is the Young-Laplace equation, derived by Batchelor [17], as

H0 =
∆p

2γlv
. (1.13)

In Equation (1.13), H0 denotes the mean curvature of the liquid bridge surface, γlv the

fluid surface tension and ∆p the capillary pressure difference (or jump) caused by the

presence of the fluid. When ∆p is positive the internal bridge pressure is higher than the

external (or ambient) pressure. For static liquid bridges ∆p is constant and therefore H0

is constant.

The coordinates r and x in Figure 1.12 define the height and position of the fluid surface.

The x-axis passes through the centre of the primary particles and the origin is defined

as the point where the tangent r′(x) to the bridge surface is horizontal and the height of

the bridge is r0. The angle between the fluid surface and the horizontal x axis is given

by ψ so that r′(x) = tanψ. The bridge is rotationally symmetric about the x-axis and

therefore r = r(x). The separation distance between the particles is s and the distance

between the origin and the contact point of the fluid with the spheres is xc. From Figure

1.12, it can be shown that s = 2[xc − a(1 − cos α)].
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Equation (1.13) may be solved by rewriting it in terms of r(x) and the derivatives of r(x).

The principal radii of curvatures in the r − x and r − y planes are respectively denoted

by r1 and r2. In terms of r1 and r2 the mean curvature is

H0 =
1

2

(

1

r1
+

1

r2

)

(1.14)

where the curvature in the r − x plane is 1/r1 and the curvature in the r − y plane is

1/r2. Substituting Equation (1.14) into Equation (1.13) gives [31–35]

γlv

(

1

r1
+

1

r2

)

= ∆p. (1.15)

The liquid bridge is a surface of revolution about the x-axis. This allows vector calculus

results to be applied (see [36] for details) to write Equation (1.15) as

γlv

(

r′′

(1 + r′2)3/2
− 1

r(1 + r′2)1/2

)

= ∆p (1.16)

where r = r(x), r′ = dr
dx and r′′ = d2r

dx2 .

At x = xC , the three-phase contact line, the angle between the fluid and the tangent

plane to the spheres is equal to the contact angle θ. Figure 1.13 shows an enlarged view

of the fluid surface and sphere for x ≥ 0 and r ≥ 0. At x = xC , using Figure 1.13,

ψ
∣

∣

∣

x=xC

=
π

2
− (α + θ). (1.17)

(For concave liquid bridges ψ > 0 and for convex liquid bridges ψ < 0.) From Equation

(1.17) the boundary condition at xC is

r′(xC) = tanψ
∣

∣

∣

x=xC

= tan
(π

2
− (α + θ)

)

= cot(α + θ).

(1.18)

For fixed contact angle θ, Lian [35] integrates Equation (1.16) subject to the boundary

conditions and treats the mean curvature and half-filling angle α as parameters. Liquid

bridge properties are calculated including the volume, surface area, separation distance

and the Gibbs’ free surface energy. The maximum inter-particle distance corresponding

to rupture is also calculated in terms of the liquid bridge volume.

Chapter 2 of this thesis extends the work of Lian [35] by calculating liquid bridge prop-

erties where the radii of the primary particles may be different. (Lian [35] assumes both
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Figure 1.13: Enlarged view of the fluid contacting a primary particle of radius a at x = xC . The
tangent plane to the sphere (drawn as a dotted line) and the tangent plane to the fluid (drawn as
a dashed line) is equal to the contact angle θ. The angle ψ measures the angle of the tangent to
the fluid surface with respect to the x axis.

primary particles have the same radius.) Numerical results are obtained which show

liquid bridge properties at the point of rupture. The effect of contact angle θ is also

shown.

(i) Toroidal approximation

The standard approach taken now to solve the Young-Laplace equation, from Equation

(1.16), is to use numerical routines. Before this was possible, geometric approximations

were employed to obtain an approximate solution. The most famous of these approaches

was the toroidal approximation of Fisher [32] which is illustrated in Figure 1.14. This

method approximates the bridge profile as a circular arc such that

r(x) = r1 + r2 −
√

r2
1 − x2 (1.19)

where r1 and r2 are the radius of the circular arcs in the r− x and r− y planes as shown

in Figure 1.14. The radius r1 is calculated at the three phase contact line and r2 at x = 0.
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Geometrically, from Figure 1.14,

r1 cos(α + θ) =
s

2
+ rA(1 − cos α) (1.20)

r1 + r2 = r1 sin(α + θ) + rA sinα (1.21)

where s denotes the separation distance between the closest edges of the primary particles.

By rearrangement of Equations (1.20) and (1.21), the radii of the circular arcs is given

by

r1 =
s
2 + rA(1 − cos α)

cos(α + θ)
(1.22)

r2 = r1

[

sin(α + θ) − 1
]

+ rA sinα. (1.23)

For a zero degree contact angle (perfect wetting), Lian [35] finds that the toroidal ap-

proximation gives errors of less than 10 % when compared to the true profile provided

that the half-filling angle α ≤ 45o.

Simons et al. [24] used Equations (1.22) and (1.23) to obtain expressions for the inter-

particle binding force in terms of the rupture energy of static liquid bridges assuming

perfect wetting (θ = 0o). The following relationship was obtained between the dimen-

sionless rupture energy E∗ and the dimensionless rupture volume V ∗,

E∗ = 1.8
√

V ∗. (1.24)

Equation (1.24) was derived by evaluating the axial surface tension force and the hydro-

static force at x = 0. (An alternative approach is to use the method of Hotta et al. [34]

to evaluate these forces at the three-phase contact line.)

(ii) Liquid bridge stability

De Bisschop and Rigole [31] take a fundamental approach to studying static liquid bridges

between two particles. Instead of beginning with the Young-Laplace equation they find

the surface with minimum Gibbs free surface energy for a given volume of binder fluid v.

The solution to this isoperimetric problem is obtained using the calculus of variations [37].

The approach taken is now outlined. The Gibbs free energy E of a liquid bridge surface

is equal to the sum of (i) the free surface energy due to the liquid-vapour interface and

(ii) the free surface energy due to the liquid-solid interface [31]. For primary particles of
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Figure 1.14: Liquid bridge geometry using the toroidal approximation with circular arcs of radii
r1 and r2. The dotted line represents the true profile of the liquid bridge.

equal radii a the Gibbs free surface energy is given by

E = 2

∫ xB

0



2πγlv r

√

1 +

(

dr

dx

)2

+ 2π(γsl − γsv)uc

√

1 +

(

duc

dx

)2


 dx, (1.25)

where γ denotes the respective surface tensions, as defined in Equation (1.1), r(x) denotes

the liquid bridge profile and uc(x) is the profile of a primary particle of radius a as given

by

uc(x) =

{
√

a2 − (xc + a cos α)2 s
2 ≤ x ≤ xc

0 x < s
2

(1.26)

Equation (1.25) may be simplified, using the Young-Dupŕe equation from Equation (1.1),

to give

E = 2 × 2πγlv

∫ xB

0



r

√

1 +

(

dr

dx

)2

− cos θ uc

√

1 +

(

duc

dx

)2


 dx. (1.27)

The isoperimetric constraint on Equation (1.25) is a fixed volume of fluid v as given by

v = 2π

[∫ xC

0

(

r2 − u2
c

)

dx

]

. (1.28)
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The integrand of Equation (1.25) is denoted by I and the integrand of Equation (1.28)

by J . According to the calculus of variations, the expression

F = I − λJ (1.29)

is formed where λ is a constant called the Lagrange multiplier. The liquid bridge profile

is then obtained by solving the Euler-Lagrange equations

∂F

∂r
− d

dx

(

∂F

∂r′

)

= 0. (1.30)

Upon solving Equation (1.30), De Bisschop and Rigole [31] find that

λ − pa = γlv





r′′
(

1 + r′2
)

3
2

− 1

r
(

1 + r′2
)

1
2



 (1.31)

where pa denotes the external (ambient) pressure. Equation (1.31) is the Young-Laplace

equation where the parameter λ is equal to the pressure within the liquid phase (since

the right-hand side of Equation (1.31) is equal to ∆p from Equation (1.16).) This in-

dependently confirms the requirement for static liquid bridges to have constant mean

curvature.

The results presented in Chapter 2, along with the results obtained by Lian [35] and De

Bisschop and Rigole [31], show that for a fixed inter-particle separation distance s and

contact angle θ, it is possible for two distinct liquid bridge arrangements to be obtained

for a given fluid volume v. In theory, the calculus of variations may be used to address

this stability issue. However, the second variational problem of the Gibbs free surface

energy has not been solved analytically [35]. The Gibbs free surface energy is therefore

calculated numerically. In cases where two liquid bridge configurations are possible, for

a given volume v, the stable arrangement, which occurs physically, is that which has

minimum Gibbs free surface energy.

(iii) Larger arrangements

Provided the fluid surface is static, the Young-Laplace equation from Equation (1.13)

applies to agglomerates containing an arbitrary number of particles. The fluid surface

is required to have constant mean curvature H0 and the contact angle θ occurs at the

contact points between the primary particles and the fluid. For particles in the capillary

saturation state the pressure difference ∆p is uniform throughout the fluid. For particles
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in the pendular and funicular saturation state ∆p may differ between each continuous

portion of fluid.

Fisher [32] models liquid bridges between a collection of mono-sized particles assuming

that pendular liquid bridges occur between neighbouring particles and that individual

fluid segments do not overlap. For this simplified arrangement, the model discussed in

Section 1.3.2 may be applied repeatedly to each portion of fluid. For the more general

case, where the fluid portions merge, Fisher [32] remarks, “After the coalescence of the

separate portions of liquid into a continuous body, the problem of the nature of the

liquid surface, and of the force produced by it, in relation to the total volume of water

present, becomes one of great complexity, which has I believe never been even cursorily

examined.” Chapter 3 makes progress on this formidable problem by solving the Young-

Laplace equation for capillary state static liquid bridges between three particles. The

method used may also be extended to solve for four and five particle arrangements.

Urso et al. [38] recently provided classifications of liquid bridges between three parti-

cles. These workers do not solve Young-Laplace equation but instead approximate liquid

bridges by using circular arcs in two dimensions which is an extension of the toroidal

approximation discussed in Section 1.3.2.

1.3.3 Dynamic Liquid Bridges

Ennis et al. [4] consider two particles, each of radius a and mass m, approaching at

a relative speed of 2u0 in a head-on (or normal) collision as shown in Figure 1.15(a).

Capillary and surface tension forces are neglected; only the viscous force is considered.

The h-axis measures the separation distance between the particles. Both particles are

assumed to be coated with a uniform layer of liquid of thickness h0. They also have

surface asperities of height h1. Figure 1.15(a) shows the initial contact between the liquid

layers where the particles are separated by a distance 2h0. Due to viscous dissipation,

the fluid is squeezed outward from the gap and, as shown in Figure 1.15(b), the particles

make contact at h = 2h1 at speed u1. This causes an increase in hydrodynamic pressure

resulting in the particles deforming elastically, about their axis of symmetry, according to

the theory of linear elasticity [39]. The remaining kinetic energy is stored as elastic strain

energy [40, 41]. After the particles come to a halt this energy is released allowing the

particles to rebound. Elastic recovery of the granules occurs and there is no permanent

plastic deformation. The liquid bridge is assumed to rupture at 2h0 as shown in Figure

1.15(d). Below the equations for these various stages are studied. In the discussion the

h-axis is referenced such that h = 0 corresponds to the mid-point between the particles.
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(a) Initially the particles are travelling at speed
u0. The fluid layers contact at a separation
distance of 2h0 as shown.

(b) Viscous dissipation reduces the speed of the
particles to u1 at a separation distance of 2h1.
The remaining kinetic energy is stored as elas-
tic strain energy.

(c) The stored elastic energy is released and
the particles rebound with speed u2 = −eu1.

(d) The particles return to a separation dis-
tance of 2h0 at speed u3. The liquid bridge is
assumed to rupture at this point as shown.

Figure 1.15: Figures for the Ennis et al. [4] coalescence model showing (a) the approach stage, (b)
and (c) the viscous dissipation stage and (d) the rebound stage. This figure assumes that u3 > 0
and that rebound occurs.
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Assuming a small gap separation distance 2h0 ¿ a, and quasi-steady conditions, lubrica-

tion theory may be applied [17] to obtain the viscous retarding force of a dynamic liquid

bridge. Adams and Perchard [42] achieve this using an asymptotic solution where the

motion of the approaching spheres is divided into inner and outer regions. Deformation

occurs in the inner region but is negligible in the outer region. For a Newtonian fluid,

the viscous retarding force of a dynamic liquid bridge is obtained as

Fvis =
3πµa2

2h

dh

dt
(1.32)

where the fluid is assumed to be Newtonian and incompressible with viscosity µ.

Since the particles are identical a force balance on an individual granule is considered.

This gives

m
dua

dt
= Fvis

=
3πµa2

2h

dh

dt

(1.33)

where ua denotes the approach velocity of the particles. Rearrangement of Equation

(1.33) gives

dua

dh
=

3πµa2

2hm

=
κ

h

(1.34)

where κ = 3πµa2

2m has been introduced. Integrating Equation (1.34) gives

ua(h) = κ ln(h) + C. (1.35)

The initial condition u(h0) = u0, shown in Figure 1.15(a), is applied which gives C =

u0 − κ ln(h0). Therefore

ua(h) = u0 − κ ln

(

h0

h

)

. (1.36)

As discussed above, the approach of the particles is damped by viscous dissipation. The

particles touch at h = h1 with speed u = u1 as shown in Figure 1.15(b). From Equation

(1.36), at h = h1,

u1 = u0 − κ ln

(

h0

h1

)

. (1.37)

If, during the approach stage, u1 = 0 then the particles coalesce prior to the surfaces
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touching. From Equation (1.37) this corresponds to

u0 ≤ κ ln

(

h0

h1

)

. (1.38)

If u1 > 0 then the remaining kinetic energy of the particles is stored as elastic strain

energy [40]. Some elastic loss occurs because the particles deform; the rebound velocity

following impact is [40]

u2 = −eu1 (1.39)

where e denotes the coefficient of restitution of the particles. The viscous force of the

liquid bridge again retards the motion of the particles. From Equation (1.34), and ac-

counting for the change in direction,

dur

dh
= −κ

h
, (1.40)

where ur denotes the rebound velocity. Using the initial condition u = u2 at h = h1,

Equation (1.40) is solved to obtain

ur(h) = u2 − κ ln

(

h

h1

)

= eu1 − κ ln

(

h

h1

)

.

(1.41)

Combining Equation (1.41) and Equation (1.37) gives the rebound speed of the particles

at h = h0 as

u3 = ur(h0)

= eu1 − κ ln

(

h0

h1

)

= e

[

u0 − κ ln

(

h0

h1

)]

− κ ln

(

h0

h1

)

= eu0 − (e + 1)κ ln

(

h0

h1

)

.

(1.42)

The viscous Stokes number [40] compares the initial kinetic energy of the particles to the

energy dissipated by the liquid bridge through the collision as given by

St =
1
2m(2u0)

2

2hFvis

=
2mu0

3πµa2

=
u0

κ
.

(1.43)
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Using Equation (1.43), Equation (1.42) may be rewritten as

u3 = u0

[

e − 1

St
(1 + e) ln

(

h0

h1

)]

. (1.44)

Of interest for granulation is finding the critical Stokes number St∗ as this corresponds

to the particles coming to a halt, after rebound, at a separation distance of 2h0. Setting

u3 = 0 in Equation (1.44) and rearranging gives

St∗ =

(

1 +
1

e

)

ln

(

h0

h1

)

. (1.45)

For St ≤ St∗ collisions between particles result in coalescence. If St > St∗ the particles

rebound [4].

For the case where the particles coalesce before their surfaces come into contact (during

the approach stage shown in Figure 1.15(b)), Equation (1.38) may also be rewritten using

the Stokes number from Equation (1.43) as

St ≤ ln

(

h0

h1

)

. (1.46)

For non-identical particles, Ennis et al. [4] provide results using the harmonic mean par-

ticle mass and radius as defined in Equations (1.8) and (1.9). If it is assumed that both

particles are travelling at an initial relative speed of 2u0, the viscous Stokes number is

given by

St =
2m̃u0

3πµã2
. (1.47)

This expression reduces to the Stokes number from Equation (1.43) for identical particles.

Liu et al. [26] extend the model of Ennis to account for the plastic deformation of the

granule surfaces which becomes important in high-shear systems. The granules are as-

sumed to be simple elastic-plastic solids with an elastic modulus E and a dynamic yield

stress Y . Both properties are assumed to be independent of the stress-strain history as

detailed by Johnson [41].

The model defines two types of coalescence: type I coalescence occurs if the kinetic

energy is entirely dissipated by the liquid bridge during the approach stage and type

II coalescence occurs if the particles coalesce following the rebound. If u1 > 0 then the

particles make contact. A portion of the incoming kinetic energy causes permanent plastic

deformation while the remainder is stored as elastic strain energy.

Figure 1.16(a) shows the approach stage which is the same initial arrangement considered
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(a) Initially the particles are travelling at speed
u0. The fluid layers contact at a separation
distance of 2h0 as shown.

(b) Viscous dissipation reduces the speed of the
particles to u1 at a separation distance of 2h1.
The remaining kinetic energy causes some plas-
tic deformation and the remainder is stored as
elastic strain energy.

(c) The stored elastic energy is released and
the particles rebound with speed u2.

(d) The particles return to a separation dis-
tance of 2h0 at speed u3. The liquid bridge is
assumed to rupture at this point.

Figure 1.16: Figures for the Liu et al. [26] coalescence model showing (a) the approach stage, (b)
and (c) plastic deformation stage and (d) the rebound stage. This figure assumes that u3 > 0 and
that rebound occurs.
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by Ennis et al. [4]. That is, two particles are involved in a head-on collision and their fluid

layers come into initial contact at a separation distance of 2h0. Their motion is damped

by the liquid bridge according to Equation (1.33). Equation (1.46) gives the condition

for the particles to come to halt before the surfaces touch. Liu et al. [26] terms this as

type I coalescence.

If u1 > 0 the particles touch and the impact is assumed to be an elastic-plastic defor-

mation, meaning that a portion of the incoming kinetic energy is dissipated during the

plastic deformation while the remainder is stored as elastic strain energy. Johnson [41]

shows that the total energy absorbed is given by

1

2
m̃(2u1)

2 = Ep + Ee

=

∫ δ∗

0
pm dδ

(1.48)

where Ee denotes the elastic strain energy, Ep the plastic energy of deformation, pm is

the mean contact pressure during the impact, δ is the mean compression distance into

the particle and A is the area of contact between the flattened spheres. The values δ∗

and A∗ denote δ and A at the point of maximum deformation as shown in Figure 1.16(c).

Johnson [41] applies the approximation pm ≈ 3.0Y , obtained from experiment, allowing

the integral from Equation (1.48) to be evaluated as

Ep + Ee =
1

2
m̃(2u1)

2 =
3Y (A∗)2

4πã
. (1.49)

For δ ¿ ã, the area of contact in terms of δ is

A = 2πãδ. (1.50)

Substituting Equation (1.50) into Equation (1.48), integrating and rearranging gives the

area of contact at the point of maximum deformation as

A∗ = 2u1

(

2πãm̃

3Y

) 1
2

. (1.51)

Substituting Equation (1.51) into Equation (1.50) gives the maximum penetration dis-

tance as

δ∗ = 2u1

(

m̃

6πãY

) 1
2

. (1.52)

The amount of energy from the elastic-plastic collision, given in Equation (1.49)), which
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is stored as elastic strain energy is [41]

Ee =
2.7

√
πY 2

E∗ (A∗)
3
2

= 5.4
√

2
π

5
4 Y 2

E∗

(

2m̃ã

3Y

) 3
4

u
3
2
1

(1.53)

where

E∗ =

(

1 − ν2
1

E1
+

1 − ν2
2

E2

)−1

and E1 and E2 are the elastic moduli of the colliding particles and ν1 and ν2 are their

Poisson ratios [41].

From Equation (1.49) and Equation (1.53) the amount of energy dissipated by the plastic

deformation is

Ep =
3Y (A∗)2

4πã
− 2.7

√
πY 2

E∗ (A∗)
3
2 . (1.54)

The particles rebound due to the stored elastic energy. Therefore

Ee =
1

2
m̃(2u2)

2 (1.55)

where u2 is the rebound speed as shown in Figure 1.16(c).

Substituting Equation (1.53) into Equation (1.55) and rearranging gives

u2 =
1

m̃
1
8

(

5.4Y 2π
5
4√

2m̃E∗

) 1
2 (

2ã

3Y

) 3
8

u
3
4
1 . (1.56)

After the particles separate some elastic recovery occurs. The extent of this recovery

is [41]

δ′ =
9
√

πY

4E∗ (A∗)
1
2

=
9
√

πY

4E∗ (2u1)
1
2

(

2πm̃ã

3Y

) 1
4

(1.57)

where A∗ from Equation (1.51) has been used.

The amount of permanent plastic deformation is therefore

δ′′ = δ∗ − δ′

= 2u1

(

m̃

6πãY

) 1
2

− 9
√

πY

4E∗ (2u1)
1
2

(

2πm̃ã

3Y

) 1
4

.
(1.58)



1.3 Micro-level Models for Granulation 31

For rebound, the viscous force of the liquid bridge retards the motion of the particles. The

force exerted on the particles is dependent on the geometry of the flattened particles. For

separation distances h ¿ ã, Liu et al. [26] determine that the separation distance between

spheres is H(r) = h for the flattened portion of the particles and H(r) ≈ h− δ′′ + r2

2R for

the remaining spherical regions (see Figure 1.16(d)).

From lubrication theory [17], the equation for the viscous force exerted by a Newtonian

liquid on two axi-symmetric particles is [42]

F̂vis =
3πµ

2

dh

dt

∫ R

0

r3

H(r)3
dr (1.59)

where F̂vis is the retarding force of the liquid bridge during rebound. Liu et al. [26]

substitutes the values of H(r) into Equation (1.59) and integrates to obtain

F̂vis =
3πµã2

2

(

(δ′′)2

h3
+

δ′′

h2
+

1

h

)

dh

dt
. (1.60)

This equation reduces to the expression derived by Ennis et al. [4] in Equation (1.33) for

the case of negligible deformation δ′′ = 0. During rebound the motion of the particles is

retarded by the viscous force of the fluid according to

m̃
dur

dt
= F̂vis. (1.61)

Liu et al. [26] integrate this equation subject to the initial condition u = u2 at h = 0.

They subsequently find that the velocity u3 at the separation distance 2h0 where liquid

bridge rupture is

u3 = u2 −
3πµã2(δ′′)2

8m̃h2
0

[(

h2
0

h2
1

− 1

)

+
2h0

δ′′

(

h0

h1
− 1

)

+
2h2

0

(δ′′)2
ln

(

h0

h1

)]

. (1.62)

For u3 < 0 type II coalescence is said to have occurred. Liu et al. [26] rewrite Equation

(1.62) in terms of the Stokes deformation number and the viscous Stokes number. The

following result is obtained:

(

Y

E∗

) 1
2

St
− 9

8
def <

0.172

St

(

2ã

h0

)2 [

1 − 1

St
ln

(

h0

h1

)] 5
4

×
[(

h2
0

h2
1

− 1

)

+
2h0

δ′′

(

h0

h1
− 1

)

+
2h2

0

(δ′′)2
ln

(

h0

h1

)]

×
(

1 − 7.36

(

Y

E∗

)

(Stdef)
− 1

4

[

1 − 1

St
ln

(

h0

h1

)− 1
2

])

.

(1.63)
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Figure 1.17: Predictions of the Liu et al. [26] coalescence model showing the boundaries for (i)
type I coalescence (particle coalesce prior to contact), (ii) type II coalescence (particles coalesce
after the particles touch) and (iii) the particles rebound. This figure is reproduced from [26] and
was created used the parameters Y

E∗
= 0.01, h0

h1
= 10 and 2ã

h0
= 100.

Three regions are defined: (i) type I coalescence, (ii) type II coalescence and (iii) particle

rebound which correspond to u1 < 0, u3 < 0 and u3 ≥ 0 respectively. The results obtained

by Liu et al. [26] are reproduced in Figure 1.17. The results reduce to those of Ennis et

al. [4] for the case of negligible deformation which occurs for Stdef ¿ 1; the intercepts on

the vertical axis of this figure correspond to predictions from the Ennis model.

The results show that type II coalescence can occur at high Stokes deformation and

high viscous Stokes numbers. This occurs because more energy is dissipated in a plastic

collision if the particles are more deformable which makes coalescence more likely.

Chapter 2 presents a solution for dynamic liquid bridges between two approaching, rigid

spheres. The arrangement modelled is simpler than the cases investigated by Ennis et

al. [4] and Liu et al. [26]. Lubrication theory is not applied and the particles do not

rebound. Instead, the motion of the fluid is derived using the Navier-Stokes equations

with the low Reynolds number approximation. The liquid bridge is approximated as a

cylinder.
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1.4 Granulation Simulations

Two main approaches are taken for macro-scale modelling of granulation. They are

the population balance model and the distinct element method (DEM). The aim of both

simulations is to model the mechanisms discussed in Section 1.2 and to predict the steady-

state granule size distribution. Both models are now discussed.

Population balance models provide a statistical description of an ensemble of particles

that are undergoing the mechanisms of coalescence and breakage∗. They have numerous

applications in the engineering sciences including granulation, the coagulation of aerosols

and other fine particles (e.g. soot, ash and volcanic particles), polymerisation, and cell

growth. When the balance is solved, statistical properties, such as the particle size

distribution, are able to be obtained.

If coalescence is dependent only on particle size, where size is a continuous variable, the

following one-dimensional population balance equation for coalescence is obtained [11]:

∂n(x, t)

∂t
=

1

2

∫ x

0
K(x − y, y)n(x − y, t)n(y, t) dy −

∫ ∞

0
K(x, y)n(x, t)n(y, t) dy. (1.64)

Here x is a continuous variable that represents particle size and n(x, t) denotes the number

of particles in the size interval [x, x+dx]. n(x, t) increases when two smaller particles of the

appropriate size coalesce and decreases when coalescence occurs with any other particle.

The coalescence kernel K(x, y) gives the coalescence rate of [x, x + dx] and [y, y + dy]

particles. Particle breakage may be included by introducing the function f(x, y) which

gives the rate of [x, x+ dx] and [y, y + dy] daughter particle formation [43]. Including the

effects of breakage, the population balance equations become:

∂n(x, t)

∂t
=

1

2

∫ x

0
K(x − y, y)n(x − y, t)n(y, t) dy −

∫ ∞

0
K(x, y)n(x, t)n(y, t) dy

− 1

2
n(x, t)

∫ x

0
f(y, x − y) dy −

∫ ∞

x
n(y, t)f(x, y − x)dy.

(1.65)

Equation (1.64) and Equation (1.65) are integro-partial differential equations [43]. Ana-

lytic solutions can be found to these equations for simple K(x, y) and f(x, y) functions.

However, these generally correspond to non-physical cases. Numerical approaches are

required for more complex functions.

Numerical solutions to Equations (1.64) and (1.65) may be obtained by discretising the

continuous equations. Upon doing this, for Equation (1.64), the following system of

∗A source term for the particle addition and a sink term for particle removal may also be included [11].
In this work a closed system is considered where these terms are both equal to zero.
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ordinary differential equations is obtained:

dni

dt
=

1

2

i−1
∑

j=1

Kj,i−jnj(t)ni−j(t) − ni(t)
∞

∑

j=1

Ki,jnj(t). (1.66)

In Equation (1.66) i is an integer that denotes particle size and Ki,j is the discrete analogue

of K(x, y). The size divisions, as referenced by i, may be linear or geometric [44, 45].

Coarser grids are possible for geometric size divisions. Equation (1.66) may also be

derived directly in a discrete setting, such as granulation, by counting collisions between

particles. This is the approach taken in Chapter 5.

Multi-dimensional population balance models are used when the collision and/or coa-

lescence rate depends on more than one particle property. In the continuous setting it

is possible to write n = n(x1, x2, ...., t) where each xi represents a dependent property.

Granulation is dependent on numerous particle characteristics including shape, compo-

sition, porosity and pore saturation. Research has recently commenced into applying

multi-dimensional population balance models to granulation [44]. Care must be taken,

however, to model only the primary mechanisms. Otherwise the model may become overly

complex and make inaccurate predictions. Conventional numerical techniques may be ap-

plied to multi-dimensional balances but Monte Carlo and finite element methods (FEM)

are preferred because they are more computationally efficient [46]. In Chapter 5 of this

thesis, a hybrid two-dimensional population balance is presented where collision is depen-

dent only on particle size but coalescence is dependent on both particle size and surface

wetness (or stickiness).

The distinct element method (DEM) was developed by Cundall and Strack [47]. The ob-

jective of the DEM model is to simulate the individual particle interactions by modelling

the particle-particle contacts on a micro-scale. Newton’s second law is applied to update

the position, velocity and acceleration of the particles and determine the linear and an-

gular velocities following a particle-particle collision. DEM models have some advantages

over population balance models including the ability to define complex particle-particle

interaction laws and to allow individual particles to have unique shapes. The location

of the particles is also known throughout the simulation. However, the model is more

computationally intensive than population balance models. DEM models use a small

integration time-step so that particles only contact their nearest neighbours. Overlap

between particles is assumed to be small in comparison with their size.
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1.5 Thesis Preview

The topics studied in this thesis are (i) liquid bridges between two and three particles, (ii)

a model for moderately large agglomerates, allowing the stickiness of moderately large

agglomerates to be estimated, and (iii) an extended population balance model which

allows simulations of wet granulation to be performed. Each of these studies are now

summarised below.

Chapter 2 studies liquid bridges between two particles. The chapter is split into two

independent studies; static liquid bridges are studied in Section 2.2 and dynamic liquid

bridges are studied in Section 2.5. For the static case, the Young-Laplace equation is

solved numerically in Section 2.3 and then analytically in Section 2.5. The numerical

results obtained allow the liquid bridge volume to be related to liquid bridge properties

including the inter-particle separation distance, liquid bridge surface area, inter-particle

force and the Gibbs free surface energy. In Section 2.5 a new closed form analytical

solution to the Young-Laplace equation is obtained allowing the true shape of the liquid

bridge to be written in terms of known mathematical functions. Also in this section,

the phase portrait of the Young-Laplace equation is obtained which relates the height

and the slope of the fluid surface. The portrait is used to show that six distinct types

of static liquid bridges exist. Section 2.6 investigates the dynamic motion of a liquid

bridge between two approaching spheres where the bridge is approximated as a cylinder.

The motion of the bridge is derived from first principles using mass conservation and the

Navier-Stokes equations. The low Reynolds number approximation (Re ¿ 1) is applied.

As the spheres approach their motion is shown to be damped by the viscosity of the liquid

bridge.

Chapter 3 studies static liquid bridges between three equally sized primary particles. The

particles are equally separated and have their centres located on the vertices of an equi-

lateral triangle. Because of symmetry, the fluid surface is able to be obtained by solving,

and then appropriately reflecting, a small portion of the entire surface. As required by the

Young-Laplace equation, the fluid surface must have constant mean curvature (CMC).

The boundary conditions for the problem are (i) the contact angle of the fluid at the

three-phase contact line and (ii) the surface and its derivatives must be continuous along

the contour where the surface is reflected. The equations for the mean curvature and

boundary conditions are derived and numerically solved on a discrete mesh. The liquid

bridge surface area, volume and binding force is calculated for given values of the inter-

particle separation distance and mean curvature. Agreement with an experimental point

is provided.
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In Chapter 4 a model to estimate the stickiness of moderately large agglomerates is pro-

posed. The primary particles are added one at a time in a closely packed arrangement.

The agglomerate model has two parameters which are (i) a minimum separation distance

between spheres and (ii) a saturation parameter for the fluid. By varying these parame-

ters, for a given number of particles, results are obtained, using computational geometry,

which relate the fluid-to-solid volume ratio to the stickiness of the particles. The results

of the model are presented in Sections 4.9 and 4.10. Results for the case of maximum con-

solidation are provided in Section 4.10. These results are used in the population balance

modelling work of Chapter 5.

Chapter 5 presents a mathematical model for modelling coalescence in wet granulation

systems. The equations were independently derived by Professor Robert McLachlan

and myself in both continuous and discrete form. However, it was later revealed, by a

literature search, that a simpler model was proposed by Smoluchowski [48] in 1917. In

the text the agglomeration model is presented as an evolution of this earlier work by

adding a system of differential equations to represent the transfer and drying of binder.

The surface wetness results from Section 4.10 are used for modelling the rate of particle

coalescence. The results obtained show the effect of the fluid-to-solid ratio and the rate

of drying for several different collision rate functions.

The original work presented in this thesis is now summarised:

• Section 2.3. Numerical solution of static liquid bridges between two particles

where the radii of the primary particles may be different. Results at the point of

rupture are provided in terms of particle radii and the contact angle θ. This research

extends the work of Lian [35] who investigated the case where the particles have

the same radius.

• Section 2.5. Analytic solution and phase portrait of the Young-Laplace equation

for liquid bridges between two rigid particles. This is the first time that an analytic

solution has been obtained for this problem.

• Section 2.6. Viscous dissipation of a dynamic liquid bridge between two moving

particles. This arrangement is obtained by solving the Navier-Stokes equations and

assuming the low Reynolds number approximation. This differs to the approach

taken by Ennis et al. [4] and Liu et al. [26] who apply lubrication theory to obtain

a solution.

• Chapter 3. Numerical solution of static liquid bridges between three particles.

This is the first time that the Young-Laplace equation has been solved for this

arrangement.
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• Chapter 4. Novel, simplified geometric model for the placement of particles and

liquid bridges in moderately large agglomerates. The model enables crucial agglom-

erate properties, such as their surface area, wetness (the fractional wet surface area)

and volume, to be estimated. No comparable work exists in the literature.

• Chapter 5. Population balance model for wet granulation. This model is developed

by extending the model of Smoluchowski [48] to incorporate the effects of binder

fluid. Functions for the inter-particle collision rate and drying rate are proposed,

including functions which are derived from the geometric model (described above)

for the case of maximum particle consolidation. The model is solved numerically

for a range of coalescence kernels. Results are presented which show the effect of

binder volume and the drying rate. The extensions to the Smoluchowski model are

new.
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Chapter 2

Liquid Bridges Between Two
Particles

2.1 Introduction

Section 2.2 of this chapter studies static liquid bridges and Section 2.5 dynamic liquid

bridges between two particles. For the static case, in Section 2.3, a numerical method to

solve the Young-Laplace equation is presented where the radii of the primary particles

may, in general, be different. The solution builds on the work of [31–35] as discussed

in Section 1.3.2. In Section 2.5 an analytic solution to the Young-Laplace equation is

obtained along with an associated phase portrait. Section 2.6 investigates the dynamic

motion of a liquid bridge between two approaching spheres. The motion of the fluid

is derived using the mass conservation and Navier-Stokes equations. The low Reynolds

number approximation is applied and the bridge profile is approximated as a cylinder.

2.2 The Young-Laplace Equation

From Equation (1.13), the Young-Laplace equation, in the absence of gravitational forces,

is

H0 =
∆p

2γlv
(2.1)

where H0 is the mean curvature, γlv is the surface tension of the fluid and ∆p is the

pressure difference due to the presence of the fluid. (∆p is defined to be positive when

the internal bridge pressure is higher than the external (or ambient) pressure.) Liquid

bridges between two particles have rotational symmetry, as discussed in Section 1.3.2,
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Figure 2.1: Static liquid bridge drawn in the X − R plane between particles ‘A’ and ‘B’ with
non-dimensional radii RA and RB. The fluid has contact angle θ. The principal dimensionless
radii of curvature are denoted by R1 and R2. The height of the bridge at X = 0 is R0. In
this figure RB = 1.5RA, the half-filling angles are α and β and the non-dimensional separation
distance between the particles is S.

allowing Equation (2.1) to be written as

γlv

(

r′′

(1 + r′2)3/2
− 1

r(1 + r′2)1/2

)

= ∆p. (2.2)

The properties of liquid bridges defined by Equation (2.2) can be studied using non-

dimensional variables X = x
σ , R = r

σ and ∆P = ∆pσ
γlv

where σ is a scaling variable with

the dimensions of length. For an ensemble of particles, σ can be chosen as a characteristic

primary particle radius such as the mean particle size. Taking derivatives of the non-

dimensional variables gives dr
dx = dR

dX and d2r
dx2 = d

dx

(

dr
dx

)

= 1
σ

d2R
dX2 which allows Equation

(2.2) to be written as
R′′

(1 + R′2)3/2
− 1

R(1 + R′2)1/2
= ∆P (2.3)

where R = R(X), R′ = dR
dX and R′′ = d2R

dX2 and ∆P is the non-dimensional pressure

difference.

Figure 2.1 illustrates a pendular liquid bridge between particles ‘A’ and ‘B’ with respective

non-dimensional radii RA and RB. The origin is defined as the point where the bridge has

height R0 and tangent R′(0) = 0. The angle ψ = atanR′ measures the angle of incline

of the fluid surface with respect to the X axis (see Figure 2.2). The contact points of

the fluid and the spheres are defined by XA, XB and the half-filling angles by α and β.

The non-dimensional separation distance between the particles is S = SA +SB where the
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distances SA and SB are measured from the origin to the closest points of the spheres as

shown in Figure 2.1.

Section 2.3.1 details the calculation of the following non-dimensional liquid bridge proper-

ties: surface area A, volume V , inter-particle binding force F and the Gibbs free surface

energy E. The relationship between the dimensional and non-dimensional variables is

given by a = σ2A, v = σ3V , f = γlvσF and e = γlvσ
2E.

Extending Equation (1.18) for spheres of radius RA and RB and applying non-dimensional

variables gives the boundary conditions for this problem as:

R′(XA) = tan
(π

2
− (α + θ)

)

= cot(α + θ)
(2.4)

and

R′(XB) = tan
(π

2
− (β + θ)

)

= cot(β + θ).
(2.5)

The numerical solution of Equation (2.3), subject to the boundary conditions given in

Equations (2.4) and (2.5), is performed in the following section.

2.3 Numerical Solution

The numerical calculation of liquid bridges was performed using the Matlab ode45 inte-

grator. The vector supplied was of the form:

~y(X) = (y1, y2, y3, y4)

= (R, R′, A, V̂ )
(2.6)

where y1 denotes the height of the liquid bridge R, y2 the slope of the surface R′, y3 the

fluid surface area A and y4 the volume of revolution V̂ of the curve R(X). The volume

V̂ includes the volume of the spheres between SA and XA for particle A and SB and XB

for particle B. (The striped shaded region in Figure 2.2 illustrates the volume of particle

B which is included in V̂ .) The liquid bridge volume V is calculated in Section 2.3.1 by

subtracting the appropriate volumes of the spheres from V̂ .
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Figure 2.2: Enlarged view of the fluid contacting particle B at X = XB . The portion of the fluid
surface corresponding to X ≥ 0 and R ≥ 0 is shown. The tangent plane to the sphere is drawn
as a solid line and the tangent plane to the fluid is drawn as a dotted line. The angle between
the planes is equal to the contact angle θ. The fluid makes contact with particle ‘B’ at an angle
ψ measured with respect to the (horizontal) X-axis.
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The differential equations supplied to the solver are:

y′1 = y2 (2.7a)

y′2 = ∆P (1 + y2
2)

3
2 +

1 + y2
2

y1
(2.7b)

y′3 = 2πy1

√

1 + y2
2 (2.7c)

y′4 = πy2
1 (2.7d)

where the primes denote differentiation with respect to X, i.e. y′1 = dy1

dX .

Equations (2.7a) and (2.7b) are the Young-Laplace equation from Equation (2.3) written

as a first order system. Equations (2.7c) and (2.7d) are differential expressions for the

surface area and volume of the surface of revolution for the curve R(X) [49] (see Section

2.3.1).

Several approaches can be taken to solve Equation (2.2) subject to the boundary con-

ditions. For instance, given ∆P , integration may begin on sphere A, the fluid surface

generated, and, during integration, attempts made to fit sphere B such that a contact

angle of θ occurs. For this approach the initial condition may be determined by specify-

ing the half-filling angle α, as the starting height is then RA sinα and the starting slope

cot(α + θ). If sphere B can be fitted then the values of XB and β are determined. The

integration span required for this approach is XA + XB.

The method used in this work is more efficient than the approach described above. Defin-

ing the particles such that RA ≤ RB, Figure 2.3 illustrates how symmetry of the fluid

surface may be used to reflect particle A about the R axis. Integration starts from the

origin and attempts are made to fit both spheres during a single application of ode45.

This approach requires a total integration span of XB. The location of the boundary

conditions XA and XB are numerically determined using the Matlab event handler.

The Matlab event handler uses zeros-crossing functions D(~y) to detect the X position

of Matlab ‘events’ which correspond to D(~y) = 0. Integration may optionally terminate

when an event occurs. To define the zeros-crossing function for particle B the boundary

condition at X = XB is applied. From Figure 2.2, at X = XB,

R = RB sin β. (2.8)

Rearranging Equation (2.5) gives

β = acotR′ − θ. (2.9)
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Substituting Equation (2.9) into Equation (2.8) and rearranging gives

RB sin(acotR′ − θ) − R = 0. (2.10)

The zeros-crossing function for particle B is therefore

DB(~y) = RB sin(acot y2 − θ) − y1. (2.11)

Similarly, the zeros-crossing function for particle A at XA is defined as

DA(~y) = RA sin(acot y2 − θ) − y1. (2.12)

The zeros-crossing functions in Equations (2.11) and (2.12) are valid for both concave

and convex liquid bridges. Since RA ≤ RB it follows, from Figure 2.3 and provided a

solution exists, that XA ≤ XB. If sphere A can be fitted then an event is recorded, which

determines XA, and integration continues. If sphere B can then be fitted then XB is

determined, also using an event, and integration terminates. If RA = RB then XA = XB.

If both boundary conditions can be met then the following integrals are evaluated using

Matlab:

AA =

∫ XA

0
2πy1

√

1 + y2
2 dX AB =

∫ XB

0
2πy1

√

1 + y2
2 dX (2.13a)

V̂A =

∫ XA

0
πy2

1 dX V̂B =

∫ XB

0
πy2

1 dX. (2.13b)

These integrals are used to evaluate the liquid bridge properties which are discussed in

Section 2.3.1.

The maximum integration span allowed for the solver was Xmax = 2.5. This was sufficient

for the range of liquid bridge volumes explored in Section 2.4. If the boundary conditions

are unable to be met prior to this limit it is assumed that no physical solution exists for

the given combinations of R0, ∆P , RA, RB and θ.

For fixed θ, it was observed, numerically, that a unique fluid surface is generated for

unique combinations of R0 and ∆P . Thus, if a solution exists, a unique liquid bridge is

obtained for unique combinations of R0, ∆P , RA, RB and θ. For fixed θ, RA, RB and R0,

the free parameter corresponding to liquid bridges with different volumes V was found

to be ∆P (or H0).
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Figure 2.3: The approach taken to solve the Young-Laplace equation is to start at the origin and
attempt to fit the spheres A and B where RA ≤ RB. For this example RB = 1.5RA and θ = 20o.
The upper portion of particle A and the upper left quadrant of particle B is shown.

2.3.1 Liquid Bridge Properties

If the particles can be fitted to the fluid surface then XA, XB, α, β and the integrals

in Equations (2.13a) and (2.13a) can be evaluated. Using these integrals, the following

non-dimensional liquid bridge properties may be calculated: (i) inter-particle separation

distance S, (ii) surface area A, (iii) volume V , (iv) inter-particle binding force F and (v)

the Gibbs free surface energy E. The calculation of these quantities is now detailed.

(i) Separation distance

The inter-particle separation distance is given by

S = SA + SB. (2.14)

From Figures 2.1 and 2.2, the distances SA and SB are given by

SA = XA − RA(1 − cos α) (2.15)
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and

SB = XB − RB(1 − cos β). (2.16)

(ii) Surface area

The liquid bridge R(X) is a surface of revolution about the X axis with differential area

element [49]

dS = 2πR
√

1 + (R′)2 dX. (2.17)

The surface area of the fluid is therefore

A = 2π

(∫ XA

0
R

√

1 + (R′)2 dX +

∫ XB

0
R

√

1 + (R′)2 dX

)

= AA + AB.

(2.18)

(iii) Volume

The volume of the liquid bridge is given by

V =

(

π

∫ XA

0
R2 dX − VA

)

+

(

π

∫ XB

0
R2 dX − VB

)

(2.19)

where VB is the volume of particle B included in the integral π
∫ XB

0 R2 dX and VA is the

volume of particle A included in the integral π
∫ XA

0 R2 dX. (Figure 2.2 illustrates VB as

the striped shaded region.) Since particle B is centred at (XB + RB cos β, 0),

VB = π

∫ XB

XB−RB(1−cos β)

[

R2
B − (X − (XB + RB cos β))2

]

dX

= πR3
B

(

2

3
− cos β +

1

3
cos3 β

)

.

(2.20)

Similarly,

VA = πR3
A

(

2

3
− cos α +

1

3
cos3 α

)

. (2.21)

Using the integrals evaluated in Equation (2.13b), the bridge volume is given by

V = V̂A − VA + V̂B − VB. (2.22)
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(iv) Inter-particle binding force

The inter-particle binding force is the sum of (i) the axial component of the surface tension

force and (ii) the force resulting from the pressure difference due to the presence of the

fluid. Since the arrangement is static the inter-particle force may be evaluated at any

point X along the bridge. The expression for the force is

F (X) = 2πR(X) cos ψ + πR(X)2∆P (2.23)

where R = R(X). Equation (2.23) may be written in terms of R′ by substituting ψ =

atan (R′) to give

F =
2πR

√

1 + tan2 ψ
+ πR2∆P

=
2πR

√

1 + (R′)2
+ πR2∆P.

(2.24)

The analytic solution in Section 2.5 proves that the force F is constant along the length

of the liquid bridge. Evaluating Equation (2.23) at X = 0 gives

F
∣

∣

∣

X=0
= 2πR0 + πR2

0∆P (2.25)

where R0 = R(0). Evaluating the force at XB gives

F
∣

∣

∣

X=XB

= 2πR(XB) sin(β + θ) + π[R(XB)]2∆P (2.26)

and, at XA,

F
∣

∣

∣

X=XA

= 2πR(XA) sin(α + θ) + π[R(XA)]2∆P. (2.27)

The expressions in Equations (2.23)-(2.27) have been numerically confirmed to give the

same result. The numerical results in Section 2.4 use the expression given in Equation

(2.25) to calculate the force.

(v) Gibbs free surface energy

The expression for the Gibbs free surface energy from Equation (1.27) is non-dimensionalised

and extended to the case of RA 6= RB to give

E = 2π

(∫ XA

0
R

√

1 + (R′)2 dX − cos θ

∫ XA

SA

UA

√

1 + (UA
′)2 dX

+

∫ XB

0
R

√

1 + (R′)2 dX − cos θ

∫ XB

SB

UB

√

1 + (UB
′)2 dX

)
(2.28)
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where UA and UB denote the non-dimensional profile of spheres A and B where

UB(X) =
√

R2
B − (X − (XB + RB cos β))2 (2.29)

and

UA(X) =
√

R2
A − (X − (XA + RA cos α))2. (2.30)

It can be shown that

UA

√

1 + (UA
′)2 = RA.

Therefore, from Equation (2.28),

E =2π

(∫ XA

0
R

√

1 + (R′)2 dX − RA cos θ(XA − SA)

+

∫ XB

0
R

√

1 + (R′)2 dX − RB cos θ(XB − SB)

)

= A − 2π cos θ
(

RA(XA − SA) + RB(XB − SB)
)

.

(2.31)

2.3.2 Summary of the solution technique

For given R0 and ∆P values the following steps are performed to generate a particular

liquid bridge:

1. The spheres are defined so that RA ≤ RB. Integration begins at the origin using

the initial vector ~y0 = (R0, 0, 0, 0).

2. The Matlab event handler is used to determine the position of the spheres by locat-

ing the boundary conditions at XA and XB. The following zeros-crossing functions

are supplied to the event handler:

For particle A, at X = XA,

DA(~y) = RA sin(acot y2 − θ) − y1, (2.32)

and, for particle B, at X = XB,

DB(~y) = RB sin(acot y2 − θ) − y1. (2.33)

3. If both spheres can be fitted then α, β, XA and XB are determined. The vector ~y

is then used to evaluate the integrals given in Equations (2.13a) and (2.13b). The

liquid bridge properties are calculated as detailed in Section 2.3.1.
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2.4 Numerical Results

Figures 2.4 - 2.6 show results of parametric solutions for concave pendular liquid bridges

(R0 < 1) obtained using the solution technique from Section 2.3. Figure 2.4 shows

contours for RA = 1, RB = 1, θ = 0o (perfect wetting), Figure 2.5 contours for RA = 1,

RB = 1.5, θ = 0o and Figure 2.6 contours for RA = 1, RB = 1.5, θ = 15o. The plots

show the relationship between liquid bridge properties and the separation distance S.

Individual contours represent a fixed volume of fluid V .

Two liquid bridge solutions are possible for certain combinations of S and V . In such

cases, as discussed in Section 1.3.2, the arrangement with minimum Gibbs free surface

energy E is the stable arrangement which occurs physically. Accordingly, the branches

of the contour plots in Figures 2.4 - 2.6 are labelled stable and unstable. Figure 2.9

compares the profile of two stable and unstable liquid bridges. Figure 2.9(a) shows the

stable arrangement corresponding to RA = 1, RB = 1, θ = 0o, V = 0.5 and S = 0.8

and Figure 2.9(b) the unstable equivalent. Figure 2.9(c) shows the stable arrangement

for RA = 1, RB = 1.5, θ = 0o, V = 0.7 and S = 0.7 and Figure 2.9(d) the unstable

equivalent. Compared to the stable configurations, the unstable arrangements have, in

general, smaller R0 values and at least one of the half-filling angles α and β larger. The

unstable arrangements also have a higher surface area A, smaller inter-particle binding

force F and are observed to occur for ∆P < 0 (where the internal bridge pressure is

lower than ambient pressure). The stable and unstable branches converge at a critical

separation distance Srupture which corresponds to rupture of the liquid bridge [33,35].

For the stable arrangements and fixed fluid volume V , the contour plots in Figures 2.4-

2.6 show that decreasing the separation distance S increases R0. This is illustrated in

Figure 2.8 where, for RA = 1, RB = 1 and θ = 0o, S is decreased from S = 0.8 to

S ≈ 0 such that a constant volume of fluid V = 1 is maintained. The half-filling angles

α and β both increase as S decreases which corresponds to the fluid receding over the

spheres. The inter-particle binding force F achieves a maximum at S = 0 since R0 and

the contact area at the interface boundary are both maximised at S = 0. (The contact

area is maximised because α and β are both maximised at S = 0.)

Figure 2.10 provides plots of liquid bridge properties at the rupture condition. The cases

provided are (i) RA = 1, RB = 1, θ = 0o, (ii) RA = 1, RB = 1, θ = 15o, (iii) RA = 1,

RB = 1.5, θ = 0o and (iv) RA = 1, RB = 1.5, θ = 15o. From the plots, increasing Vrupture

increases R0, α, β and A and F . Increasing the contact angle θ is observed to increase

the rupture separation distance Srupture. The height R0 also increases and F decreases.

The plots in Figure 2.10 were generated by locating the maximum distance Srupture from
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the contours in Figures 2.4 - 2.6 in terms of the fluid volume V . The Matlab contour

and gradient commands were used to locate the turning point that separates the stable

and unstable solutions as this corresponds to the rupture condition. The corresponding

liquid bridge properties were then determined at Srupture. Some ‘jitter’ and gaps occur

in the plots; both effects are due to ∆P changing rapidly at the rupture point as shown

in Figures 2.4(b)-2.6(b). The effect was able to be minimised by using high resolution

meshes with step-sizes of 1 × 10−3 for R0 and 1 × 10−4 for ∆P .
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Contour plot for RA = 1, RB = 1 and θ = 0o. The contours represent a fixed
fluid volume V and show the relationship between the liquid bridge properties and the separation
distance S. The stable solutions have minimum Gibbs free surface energy. Rupture of the liquid
bridges occur at the maximum separation distance for a given volume. (Note: α ≡ β since
RA = RB.)
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Contour plot for RA = 1, RB = 1.5 and θ = 0o. The contours represent a fixed
fluid volume V and show the relationship between the liquid bridge properties and the separation
distance S.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Contour plot for RA = 1, RB = 1.5 and θ = 15o. The contours represent a fixed
fluid volume V and show the relationship between the liquid bridge properties and the separation
distance S.
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(a) Surface area A for RA = 1, RB = 1.5 and
θ = 0o

(b) Surface area A for RA = 1, RB = 1.5 and
θ = 15o

Figure 2.7: Contour plot showing liquid bridge surface area A for (a) RA = 1, RB = 1.5 and
θ = 0o and (b) RA = 1, RB = 1.5 and θ = 15o.

(a) S = 0.8 (R0 = 0.49, ∆P = −0.90) (b) S ≈ 0 (R0 = 0.82, ∆P = −0.66)

Figure 2.8: Liquid bridges with a fixed volume of V = 1 for RA = 1, RB = 1 and θ = 0o.
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(a) Stable arrangement for RA = RB =
1, θ = 0o, V = 0.5 and S = 0.8. (R0 =
0.31 and ∆P = −1.11.)

(c) Stable arrangement for RA = 1,
RB = 1.5, θ = 0o, V = 0.7 and S = 0.7.
(R0 = 0.43 and ∆P = −0.5023.)

(b) Unstable arrangement for RA =
RB = 1, θ = 0o, V = 0.5 and S = 0.8.
(R0 = 0.13 and ∆P = −1.75.)

(d) Unstable arrangement for RA = 1,
RB = 1.5, θ = 0o, V = 0.7 and S = 0.7.
(R0 = 0.13 and ∆P = −1.22.)

Figure 2.9: Comparison of stable and unstable arrangements. Figures (a) and (b) show stable
and unstable arrangements for S = 0.8 and V = 0.5. Figures (c) and (d) show the arrangements
for S = 0.7 and V = 0.7. The stable arrangements occur physically.
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Figure 2.10: Liquid bridge properties at the point of rupture plotted with respect to the rupture
volume Vrupture. The legend is provided in Figure (a).
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Figure 2.10: Liquid bridge properties at the point of rupture plotted with respect to the rupture
volume Vrupture (continued). The legend is provided in Figure (a).
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2.5 Analytic Solution

An analytic solution to Equation (2.3) is possible by making the substitution

U = (1 + R′2)−
1
2 . (2.34)

Differentiating U with respect to X gives

dU

dX
= − R′R′′

(1 + R′2)
3
2

. (2.35)

By applying the chain rule to Equation (2.35) we obtain

dU

dR
=

dU

dX

dX

dR
= − R′′

(1 + R′2)
3
2

, (2.36)

since dX
dR = 1

R′ .

The results in Equations (2.34) and (2.35) allow Equation (2.3) to be written as the

following first order ordinary differential equation,

dU

dR
+

U

R
= −∆P. (2.37)

Integrating Equation (2.37) gives

U =
C

R
− R∆P

2
(2.38)

where C is a constant of integration. Rearranging Equation (2.38) in terms of C and

substituting Equation (2.34) gives

C = R

(

1√
1 + R′2 +

R∆P

2

)

. (2.39)

By comparing Equation (2.39) with Equation (2.24) it is found that F = 2πC which

proves that the inter-particle force is constant along the length of the bridge.

Combining Equations (2.34) and (2.38) and rearranging gives

dR

dX
= ±

√

R2 − (C − R2∆P
2 )2

C − R2∆P
2

. (2.40)
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If ∆P = 0 (and C 6= 0) then, from Equation (2.40), for a bridge where R(X0) = R0,

∫ R

R0

dR√
R2 − C2

=

∫ X

X0

dX

C
. (2.41)

To evaluate Equation (2.41), the integral

∫ R1

R0

dR√
R2 − C2

= acosh
R

C

∣

∣

∣

∣

∣

R1

R0

(2.42)

is used [49]. It follows, from Equation (2.41), that

R(X) = C cosh

[

X − X0

C
+ acosh

R0

C

]

. (2.43)

It was confirmed that Equation (2.43) is correct by checking it with the numerical solution

obtained in Section 2.3.

If C = 0 (∆P 6= 0) then Equation (2.40) can be solved to give

X2 + R2 =

(

2

∆P

)2

(2.44)

showing that, for this case, the bridge is a sphere.

For ∆P 6= 0, after rearranging Equation (2.40), the following integral is obtained which

gives a parametric solution of the liquid bridge position X in terms of the height R,

X(R) = ∓
∫ R1

R0

C − R2∆P
2

√

R2 − (C − R2∆P
2 )2

dR. (2.45)

The integral in Equation (2.45) is now written in standard form so that it can be evaluated

using tables. The denominator is considered first. Now,

R2 −
(

C − R2∆P

2

)2

= −∆P 2

4
R4 + (1 + C ∆P )R2 − C2 (2.46)

which is a quadratic in R2. The discriminant of Equation (2.46) is δ = 1 + 2C ∆P . Since

it is required that δ > 0 it follows that C∆P > −1
2 . This gives a condition on the liquid

bridge force in terms of the pressure difference ∆P .

The roots of Equation (2.46) are

α2, β2 =
2

∆P 2

[

1 + C ∆P ∓
√

1 + 2C ∆P
]

. (2.47)
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Let

α =

√

2

∆P 2

[

1 + C ∆P +
√

1 + 2C ∆P
]

(2.48)

and

β =

√

2

∆P 2

[

1 + C ∆P −
√

1 + 2C ∆P
]

. (2.49)

Evidently, β < α. Let R be such that

β < R ≤ α.

Writing Equation (2.46) in standard form, using the roots from Equation (2.47), gives

R2 −
(

C − R2∆P

2

)2

=
∆P 2

4
(α2 − R2)(R2 − β2). (2.50)

It follows that the denominator of Equation (2.45) may be written as

√

R2 −
(

C − R2∆P

2

)2

=
|∆P |

2

√

(α2 − R2)(R2 − β2).

Therefore, from Equation (2.45),

X(R) = ∓ 2

|∆P |

∫ R1

R0

C − R2∆P
2

√

(α2 − R2)(R2 − β2)
dR

= ∓
[

2C

∆P

∫ R1

R0

dR
√

(α2 − R2)(R2 − β2)
−

∫ R1

R0

R2 dR
√

(α2 − R2)(R2 − β2)

]

.

(2.51)

To evaluate the integrals in Equation (2.51) the following integrals from Gradshteyn and

Ryzhik [50] were used:

∫ R1

R0

dR
√

(α2 − R2)(R2 − β2)
=

1

α

[

F(χ1, q) − F(χ0, q)

]

(2.52)

∫ R1

R0

R2 dR
√

(α2 − R2)(R2 − β2)
= α

[

E(χ1, q) − E(χ0, q)

]

−
√

(α2 − R2
1)(R

2
1 − β2)

R1
+

√

(α2 − R2
0)(R

2
0 − β2)

R0

(2.53)

where E and F respectively denote the Legendre-Jacobi incomplete elliptic integrals of
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the first and second kind,

χ1 = asin

(

α
√

R2
1 − β2

R1k

)

, χ0 = asin

(

α
√

R2
0 − β2

R0k

)

and

q =
k

α
, k =

√

α2 − β2.

Both integrals are valid because β < R ≤ α.

Therefore, from Equation (2.51),

X(R) =

∫ R1

R0

C − R2∆P
2

√

R2 − (C − R2∆P
2 )2

dR

=
2C

∆P

∫ R1

R0

dR
√

(α2 − R2)(R2 − β2)
−

∫ R1

R0

R2 dR
√

(α2 − R2)(R2 − β2)

=
2C

∆Pα

[

F(χ1, q) − F(χ0, q)

]

− α

[

E(χ1, q) − E(χ0, q)

−
√

(α2 − R2
1)(R

2
1 − β2)

R1
+

√

(α2 − R2
0)(R

2
0 − β2)

R0

]

.

(2.54)

Equation (2.54) is a parametric solution of the liquid bridge surface. It was confirmed

that this formula was correct by numerically evaluating Equation (2.54) and comparing

it with the numerical solution obtained in Section 2.3. Agreement was confirmed by

selecting a particular contour from the analytic solution, determining X for the integral,

and numerically integrating to obtain the corresponding liquid bridge.

2.5.1 Phase Portrait

The normalised force C is related to the height and slope of the bridge surface (R, R′) by

Equation (2.39). Boundary conditions on R and R′, along with the pressure difference

∆P , determine the contour for a particular liquid bridge. Generic contours, characterising

all possible liquid bridge configurations, can be obtained from Equation (2.39) by scaling.

After substituting R̃ = R |∆P | and X̃ = X |∆P | into Equation (2.39) it follows that

C |∆P | = R̃

(

1
√

1 + R̃′2
+

R̃

2

)

. (2.55)

The angle φ is introduced where R′ = tanφ and therefore
√

1 + R′2 = sec φ. In terms of
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φ, Equation (2.55) becomes

C |∆P | = R̃

(

cos φ +
R̃

2

)

for ∆P > 0 (2.56a)

C |∆P | = R̃

(

cos φ − R̃

2

)

for ∆P < 0. (2.56b)

For ∆P = 0, from Equation (2.39),

C = R cos φ for ∆P = 0. (2.56c)

The phase portraits for Equations (2.56a)-(2.56c) are shown in Figures 2.11(a), 2.11(b)

and 2.12. These figures theoretically predict six distinct types of static liquid bridges:

1. ‘Wavy’ Cylinder

∆P > 0 and 0 < C |∆P | < 0.5 (Figure 2.11(a)).

With reference to Figure 2.11(a), for 0 < C |∆P | < 0.5, periodic solutions exist for

|φ| < 90o. The shape of the liquid surface is that of a ‘wavy’ cylinder.

2. Cylinder

∆P > 0 and C |∆P | = 0.5 (Figure 2.11(a)).

The point C |∆P | = 0.5, φ ≡ 0o corresponds to a cylinder solution.

3. Sphere

∆P > 0 and C |∆P | = 0 (Figure 2.11(a)).

The critical contour at φ = 90o (C |∆P | = 0) is the sphere described by Equation

(2.44) which separates the cylinder and upwardly curved solutions.

4. Convex Liquid Bridge

∆P > 0 and C |∆P | < 0 (Figure 2.11(a)). For this case C = F
2π < 0 and the force

between the particles is repelling.

5. Concave Liquid Bridge

(a) ∆P < 0 and C |∆P | > 0 (Figure 2.11(b)).

(b) ∆P = 0 and C > 0 (Figure 2.12).

The liquid surface begins with initial height R0 and curves upwards reaching a

maximum height Rmax > R0.
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6. Vertical Planes

∆P = 0 and C = 0 (Figure 2.12).

For φ = 90o the solution corresponds to two vertical planes separated by fluid.
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(a) Phase portrait for ∆P > 0 where φ = arctan R′. Contour labels are values
of C |∆P |.
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(b) Phase portrait for ∆P < 0 where φ = arctan R′ is plotted against R̃.
Contour labels are values of C|∆P |.

Figure 2.11: Phase portraits for liquid bridges with rotational symmetry.
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Figure 2.12: Phase portrait of liquid bridges with rotational symmetry for ∆P = 0.



66 Liquid Bridges Between Two Particles

Figure 2.13: Figure showing two general surfaces that are approaching each other, described by
z1 = h1(r, t) and z2 = h2(r, t). The separation distances between the surfaces is h(r, t).

2.6 Dynamic Liquid Bridges

Dynamic liquid bridges have previously been studied by Ennis et al. [4] and Liu et al. [26]

as detailed in Section 1.3.3. These models apply the full asymptotic solution for the liquid

bridge viscous force from Equation (1.32) which was derived using lubrication theory. In

this section a simplified arrangement is considered. The spheres are assumed to be rigid

and the effect of rebound is not considered. The problem is solved by direct application

of the Navier-Stokes equations using the low Reynolds number approximation.

Theory is presented for two general surfaces z1(r, t) and z2(r, t) with rotational symmetry

about the z axis, as shown in Figure 2.13, and separated by a gap distance h(r, t). h0(t)

is the closest approach distance between the surfaces and f1(r) and f2(r) describe the

shape of each surface relative to a radial datum line occurring at z = −h0(t)
2 and z = h0(t)

2 .

z = 0 is defined to be midway between the closest approach points of the two surfaces.

The particular case for two approaching spheres, with a constant bridge volume V0, as

illustrated in Figure 2.14, is examined.

To study the dynamics, a simplifying approximation is made that the shape of the bridge

is a cylinder. The fluid velocity ~v is assumed to be steady and at low Reynolds number
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(Re ¿ 1) implying that the inertial force is negligible in comparison with the viscous force

of the bridge. The fluid is assumed to be incompressible with constant viscosity µ and

have uniform density ρ. Only viscous forces are studied. No other particle interactions,

such as van der Waals, surface tension, electrostatics, or the body force effect of gravity

are considered.

2.6.1 Balance Equations

Cylindrical coordinates (r, θ, z) are used and the velocity vector is ~v = (vr, vθ, vz) where

vr is the radial fluid velocity, vθ the fluid velocity about the r-z axis and vz the fluid

velocity in the z direction. For this system, the mass conservation equation from Hughes

and Gaylord [51] is used,
1

r

∂

∂r
(rvr) +

∂vz

∂z
= 0 (2.57)

where, by symmetry, there is no rotational flow about the z or r axes and therefore vθ = 0.

Neglecting inertial terms, that is assuming Re ¿ 1, the momentum equations from [51]

reduce to:

0 = −∂P

∂r
+ µ

[

∂2vr

∂r2
+

1

r

∂vr

∂r
+

∂2vr

∂z2
− vr

r2

]

(2.58)

0 = −∂P

∂z
− ρg + µ

[

∂2vz

∂r2
+

1

r

∂vz

∂r
+

∂2vz

∂z2

]

(2.59)

where P = P (r, z) is the pressure within the liquid bridge. The approximation vz ¿ vr

is applied which physically means that the bridges must have a small volume and that

a small gap distance h must separate the particles (i.e. h ¿ R). Since vz ¿ vr, and

because gravity is not considered in this approximation, a solution needs to only satisfy

Equation (2.58).

2.6.2 Velocity Profile

Consider the volume flow rate Q of fluid displaced when surfaces z1 and z2 move toward

each other. Since the surfaces have rotational symmetry,

Q =

∫ h2(r,t)

h1(r,t)
2πr vr dz. (2.60)

To determine Q, we manipulate Equation (2.60) by taking the partial derivative of Q
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Figure 2.14: The scenario in which two approaching spheres of radius R are connected together
via a dynamic liquid bridge shown by the dotted lines.

with respect to r, and dividing through by r. Upon completing this, we obtain

1

r

∂

∂r

(

∫ h2(r,t)

h1(r,t)
2πrvr dz

)

=
2π

r

∫ h2(r,t)

h1(r,t)

∂

∂r
(rvr)dz

+
2π

r

(

∂h2

∂r
vr(r, h2(r, t), t) −

∂h1

∂r
vr(r, h1(r, t), t)

)

(2.61)

where the second term in Equation (2.61) arises upon application of the fundamental

theorem of calculus and the chain rule. Now, since the fluid is unable to move through

the surfaces,

vr(r, h1(r, t), t) = vr(r, h2(r, t), t) = 0.

This reduces Equation (2.61) to

1

r

∂Q

∂r
=

2π

r

∫ h2(r,t)

h1(r,t)

∂

∂r
(rvr)dz. (2.62)

Substituting Equation (2.57) into Equation (2.62) yields

1

r

∂Q

∂r
= −2π

∫ h2(r,t)

h1(r,t)

∂vz

∂z
dz

= −2π

(

vz(r, h2(r, t), t) − vz(r, h1(r, t), t)

)

(2.63)

Assuming that the separation functions h1(r, t) and h2(r, t) may be written as the sum
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of a time dependent function h0(t) and radial functions f1(r) and f2(r), as illustrated in

Figure 2.13, it is possible to write h1(r, t) = −1
2h0(t)+f1(r) and h2(r, t) = 1

2h0(t)+f2(r).

Now

vz(r, h1(r, t), t) =
∂h1

∂t
(r = 0, t) = −1

2

dh0

dt

vz(r, h2(r, t), t) =
∂h2

∂t
(r = 0, t) =

1

2

dh0

dt
.

Therefore Equation (2.63) is equivalent to

1

r

∂Q

∂r
= −2π

(

1

2

dh0

dt
− −1

2

dh0

dt

)

= −2π
dh0

dt
. (2.64)

Integrating Equation (2.64) gives

Q(r, t) = −2π

∫ r

0
r

dh0

dt
dr = −πr2 dh0

dt
. (2.65)

For laminar flow, a parabolic radial velocity profile can be assumed,

vr(r, z, t) = A(r, t) [z − h1(r, t)] [h2(r, t) − z] (2.66)

where A(r, t) is a function determined below and h1(r, t) ≤ z ≤ h2(r, t). Substituting

Equation (2.66) into Equation (2.60) gives

Q =

∫ h2(r,t)

h1(r,t)
2πr vr dz

=

∫ h2(r,t)

h1(r,t)
2πrA(r, t) [z − h1] [h2 − z] dz

=
πr

3
A(r, t) (h2(r, t) − h1(r, t))

3 .

(2.67)

Equating Equation (2.67) with Equation (2.65) gives A(r, t) =
−3r

dh0
dt

h2−h1
. The radial velocity

profile is therefore

vr(r, z, t) =
−3r [z − h1(r, t)] [h2(r, t) − z]

[h2(r, t) − h1(r, t)]
3

dh0

dt
(2.68)

Equation (2.68) is used to find the pressure profile P in the liquid bridge.
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2.6.3 Determining the pressure

Rearranging Equation (2.58) gives

1

µ

∂P

∂r
=

1

r

∂

∂r

(

r
∂vr

∂r

)

+
∂2vr

∂z2
− vr

r2
. (2.69)

After differentiating Equation (2.68), to find ∂vr

∂r and ∂2vr

∂z2 , and substituting these results

into Equation (2.69), we obtain, after tedious algebra,

1

µ

∂P

∂r
=

[

−27

h4

∂h

∂r
+

36r

h5

(

∂h

∂r

)2

− 9r

h4

∂2h

∂r2

]

z2 dh0

dt

+

[

18

h3

∂h

∂r
− 18r

h4

(

∂h

∂r

)2

+
6r

h3

∂2h

∂r2

]

z
dh0

dt

+
6r dh0

dt

h3

(2.70)

which is valid for arbitrary surfaces f1 and f2 described by a separation function h.

The radial pressure profile ∂P
∂r for the case of equi-sized spheres of radius R is obtained

by calculating the separation distance function h(r, t) as illustrated in Figure 2.14. For

spheres,

h(r, t) = h0(t) + 2(R − Φ)

where Φ =
√

R2 − r2.

Therefore

h(r, t) = h0(t) + 2
(

R −
√

R2 − r2
)

. (2.71)

Differentiating Equation (2.71) gives ∂h
∂r = 2r√

R2−r2
and ∂2h

∂r2 = 2R2

(R2−r2)
3
2
. Substituting

these into Equation (2.70) gives

1

µ

∂P

∂r
=

dh0
dt

(R2 − r2)
3
2 h3

[

54r3 − 72rR2

h
z2 +

(

28rR2 − 36r3
)

z

]

+
r3

(R2 − r2)h4

[

144
dh0

dt
z2 − 72z

dh0

dt

]

+
6r

h3

dh0

dt

(2.72)

Equation (2.72) includes z terms which makes integration to find the pressure P difficult.

However, since the fluid layer is small in comparison to R, the vertically averaged pressure
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P provides an accurate approximation. Vertical averaging, given by

∂P

∂r
=

1

h

∫ h(r,t)

0

∂P

∂r
dz, (2.73)

removes the explicit z dependence and integration is then straightforward. Substitution

of Equation (2.72) into Equation (2.73) and integrating gives

∂P

∂r
=

6rµ(R2 + r2)

h3(R2 − r2)

dh0

dt
. (2.74)

If the pressure of the liquid bridge at some r = r0 is at ambient pressure Pamb, and the

bridge expands to r > r0 then the vertically averaged pressure is

P (r, t) = Pamb +

∫ r

r0

∂P

∂r
dr

= Pamb + 6µ
dh0

dt

∫ r

r0

r(R2 + r2)

h3 (R2 − r2)
dr.

The pressure difference is therefore

P (r, t) − Pamb = 6µ
dh0

dt

∫ r

r0

r(R2 + r2)

h3 (R2 − r2)
dr. (2.75)

2.6.4 Force

The pressure difference between the internal and external regions of the liquid bridge,

P (r, t) − Pamb, provides the force which retards the motion of the particles.

The force Fbridge is given by integrating the pressure difference over the cross-sectional

area of the liquid bridge. Using Equation (2.75), the force is

Fbridge = m
d2h0

dt2

=

∫ r0

0

(

P (r, t) − Pamb

)

dA

=

∫ r0

0

[

2πr̂

(

6µ
dh0

dt

∫ r

r0

r̂(R2 + r̂2)

h3(R2 − r̂2)
dr

)

r

]

dr̂ dr

= 6πµ
dh0

dt

[∫ r0

0

∫ r

0

2r̂(R2 + r̂2)

h3(R2 − r̂2)
r dr̂dr

−
∫ r0

0
r dr

∫ r0

0

2r̂(R2 + r̂2)

h3(R2 − r̂2)
dr̂

]

(2.76)
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or, equivalently,

d2h0

dt2
=

6πµ dh0
dt

m
{G (r0, h0) −

1

2
r0

2H (r0, h0)} (2.77)

where the functions

G(r0, h0) =

∫ r0

0

∫ r

0

2r̂(R2 + r̂2)

h3(R2 − r̂2)
r dr̂dr

H(r0, h0) =

∫ r0

0

2r(R2 + r2)

h3(R2 − r2)
dr

(2.78)

are evaluated for current radius r0 and separation h0. Fourth order Runge-Kutta inte-

gration, using the matlab ode45 subroutine, is used to evaluate the integrals on the right

hand side of Equation (2.78). (Note that the function h appearing in (2.78) is the separa-

tion function from Equation (2.71)). Once G and H are evaluated the bridge acceleration

is determined using Equation (2.77).

2.6.5 Numerical Solution

To maintain a constant liquid bridge volume of V0, the radius rf , corresponding to h0 = 0

(where the spheres are touching), is specified. The volume to be maintained is then

V0 =

∫ rf

0
2πr

(

R −
√

R2 − r2
)

dr

=

∫ R

√

R2−r2
f

2πΦ (R − Φ) dΦ

where the substitution Φ =
√

R2 − r2 has been used. It follows that

V0 = 2π

[

1

3
(R2 − r2

f )
3
2 +

1

2
Rr2

f − 1

3
R3

]

(2.79)

where V0 is the bridge volume.

The problem begins with the initial separation h0(0) specified. As the separation distance

changes, the current bridge radius r0 changes in order to maintain the constant volume

V0. If r0 and h0 are the bridge radius and separation distance at time t, we are required

to solve

V0 = 2π

[

(R2 − r2
0)

3
2

3
+

Rr2
0

2
− R

3

]

+ πr2
0h0. (2.80)

For given V0 and h0 there is a unique solution for r0 which is determined numerically.
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Equations (2.77) and (2.80) define a second order differential algebraic equation (DAE)

subject to one constraint. Integration of Equation (2.77) to obtain the bridge velocity

and separation distance is achieved using a fourth order Runge Kutta integrator.

Depending on the initial values of h0 and dh0
dt , the liquid bridge exhibits four types of

behaviour. Two cases occur for dh0
dt < 0. If a small initial gap distance separates the

particles, and, provided the magnitude of the initial velocity dh0
dt (0) is sufficiently large,

the particles will collide. However, since the fluid has no inertia, energy is not stored

in the liquid bridge and the particles do not rebound. If the initial gap separation is

too large, or the initial velocity insufficient, the bridge motion is damped by the fluid

viscosity and the particles slow but do not touch. This is due to the internal pressure of

the bridge equalising to that of external (ambient) pressure. Since no pressure difference

exists across the liquid bridge, the bridge force Fbridge = 0 (cf. Equation (2.77)) and no

further particle movement occurs. Critical values for the initial separation and velocity

are a function of the parameters for the problem (such as R, m and µ). Two cases occur

when the particles are initially moving away, i.e. dh0
dt > 0. Given this initial condition, an

escape velocity dh
dt

∗
exists such that, if dh0

dt (0) < dh
dt

∗
, the liquid bridge is able to retard the

motion and the particles will then come to a stop. If dh0
dt (0) ≥ dh

dt

∗
the particles continue

to move apart.

2.6.6 Example

In Figure 2.15 two examples are shown. The dashed line plot shows two spheres ap-

proaching, slowing and colliding. The initial conditions used are h0(0) = 0.04 mm and
dh0
dt (0) = −2.2 mms−1. The solid line case shows approaching spheres which do not

collide, using the initial conditions of h0(0) = 0.04 mm and dh0
dt (0) = −0.2 mms−1.

For both examples, the values of the parameters used are R = 1 mm, r0 = 0.7 mm,

µ = 10−3 g mm−1, and particle mass m = 0.1 g.

The equations for the motion of the fluid were obtained using the Navier-Stokes equations

with the low Reynolds number approximation. The solution obtained may be applied to

granulation systems provided that the assumptions of the model are met. It is acknowl-

edged that the models of Ennis et al. [4] and Liu et al. [26] are more suited to modelling

granulation because they include the effects of particle deformation and rebound. The

results of this model have also not been compared with the aforementioned workers.
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Figure 2.15: Two solutions from Equations (2.77)-(2.80) are plotted for an initial separation of
h0(0) = 0.04 mm. The solid line case has initial particle velocity dh0

dt
(0) = −0.2 mm s−1 and the

dashed line case dh0

dt
(0) = −2.2 mm s−1.
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Chapter 3

Static Liquid Bridges
Between Three Particles

3.1 Introduction

In this chapter the configuration of three equally sized (spherical) primary particles held

together by a capillary state static liquid bridge is investigated. The particles are equally

spaced with sphere centres arranged on the vertices of an equilateral triangle. The ar-

rangement is illustrated in Figure 3.1. For an interface at thermodynamic equilibrium

the fluid surface is required to have constant mean curvature H0 as the Young-Laplace

equation must be satisfied. In the absence of gravity this equation is

H0 =
∆p

2γlv
(3.1)

where ∆p is the pressure jump when passing from external (ambient) pressure towards

the centre of the liquid surface and γlv is the surface tension. The analogous configura-

tion of two particles, discussed in Chapter 2, has rotational symmetry. This allows the

second order ordinary differential equation from Equation (1.16) to be derived [31]. This

symmetry does not exist in the three particle case and a different approach is needed.

There is no prior work on this arrangement in the literature.

To investigate the three particle problem the surface is parameterised using cylindrical

coordinates r and θ where the height of the surface is given by z = z(r, θ). The transfor-

mation between cylindrical and Cartesian coordinates (X, Y, Z) is defined by

Z(r, θ) = (X, Y, Z) = (r, z cos θ, z sin θ) (3.2)

where Z denotes the surface in Cartesian coordinates. The Jacobian of the transformation
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Figure 3.1: Cross-section of a liquid bridge between three particles. The dotted outline shows
the boundary of the fluid surface z with constant mean curvature H0. Along contour C1, the
three-phase contact line, the angle between the sphere and the fluid is equal to the fluid contact
angle α. The fluid surface is reflected and is continuous and smooth about contour C2. The view
shown is a cross-section for θ = π

2
where the angle between C2 and the r-axis is 60o. When θ = 0o,

perpendicular to the view shown in this figure, the angle between contour C2 and the r-axis is
90o.

is given by

J(r, θ) = z. (3.3)

The problem is arranged using an r-axis aligned from the centre point of one of the

primary particles at r = 0 to the central point of the liquid bridge at r = r0. Due to

symmetry, it is sufficient to solve the problem for only 1/12 of the complete fluid surface

(the shaded region in Figure 3.1). This is because the surface is reflected (vertically)

about the Z axis and because it may be divided into the six reflected regions shown

in Figure 3.1 which are π
2 -periodic with respect to θ. The contour C2, which is called

the symmetry contour, bisects the liquid bridge between adjacent particles. Along C2,

the fluid surface z and its partial derivatives are required to be continuous. Contour C1

represents the three-phase contact line.

Figure 3.1 shows a plan view corresponding to θ = π
2 ; in this view the angle φ between

the r-axis and the symmetry contour is 60o. When θ = 0o, corresponding to an elevation

(side-on) view, the angle between the r-axis and contour C2 is 90o. For intermediate

values of θ, the angle between the r-axis and the symmetry contour C2 varies smoothly

between 60o and 90o.
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Figure 3.2: Enlarged view of Figure 3.1. The liquid bridge profile is obtained by solving for the
shaded region. This figure is for a given θ = θ0. rs is the location of the intersection between the
fluid and the sphere of radius a. rp is the intersection between the fluid and the symmetry plane
contour. S is the separation distance between spheres.

Equation (3.1) is enforced by expressing the mean curvature H0 in terms of z and the

partial derivatives of z. This leads to a second-order elliptic partial differential equation

which is required to be satisfied at all points on the fluid surface. Similarly, the boundary

conditions along C1 and C2 are written in terms of z and its partial derivatives. The

coupled non-linear system of equations are formidable to solve because of (i) full non-

linearity (ii) non-linear boundary conditions and (iii) boundary conditions which are

imposed at an unknown location. This chapter explains how to derive this system and

how to obtain a solution using a non-linear equation solver.

Figure 3.2 shows an enlarged view of the solution region. For a given θ ≡ θ0, the three

phase contact line contour C1 occurs at r = rs where the fluid intersects the sphere. The

fluid surface intersects the symmetry contour C2 at r = rp. The relationship between r0

and the inter-particle separation distance S is

r0 = rp + (r0 − rp) =

(√
3

2
+

1

2
√

3

)

(

a +
S

2

)

=
2√
3

(

a +
S

2

)

(3.4)

or

S =
√

3r0 − 2a (3.5)

where the sphere has radius a.
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3.2 Derivation of the Equations

The equations for the constant mean curvature (CMC) of the fluid surface and the bound-

ary conditions are now derived.

3.2.1 Mean Curvature

In differential geometry, surfaces may be described by two quadratic differential forms

known as the first and second fundamental forms [52]. By expressing the surface z(r, θ)

in terms of these functions a differential equation for the mean curvature may be derived.

The first fundamental form, denoted by I, represents the arc-length s on a surface and is

given by

I = ds2 = E dr2 + 2F dr dθ + G dθ2 (3.6)

with coefficients in Cartesian coordinates given by

E = Zr · Zr, F = Zr · Zθ, G = Zθ · Zθ. (3.7)

Standard notation has been used for the partial derivatives, for example Zr = ∂Z
∂r and

Zθ = ∂Z
∂θ .

The second fundamental form, denoted by II, is derived from the curvature of the surface

and is equal to

II = e dr2 + 2f drdθ + g dθ2

where the coefficients are given by

e = Zrr · Zr × Zθ, f = Zrθ · Zr × Zθ and g = Zθθ · Zr × Zθ. (3.8)

In terms of the above coefficients the mean curvature H is given by

H =
Eg − 2fF + eG

2(EG − F 2)
3
2

. (3.9)

To evaluate Equation (3.9), in the cylindrical coordinates of Equation (3.2), the following

partial derivatives are required:
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Zr =
∂Z

∂r
= (1, zr cos θ, zr sin θ)

Zθ =
∂Z

∂θ
= (0, zθ cos θ − z sin θ, zθ sin θ + z cos θ)

Zrr =
∂2Z

∂r2
= (0, zrr cos θ, zrr sin θ)

Zrθ =
∂2Z

∂θ∂r
= (0, zrθ cos θ − zr sin θ, zrθ sin θ + zr cos θ)

Zθθ =
∂2Z

∂θ2
= (0, zθθ cos θ − 2zθ sin θ − z cos θ, zθθ sin θ + 2zθ cos θ − z sin θ).

(3.10)

Substituting the above partial derivatives into Equations (3.7) and (3.8) and simplifying

gives

e = −z − zrr, f = zrzθ − zzrθ, g = z2 − zzθθ + 2z2
θ (3.11)

and

E = 1 + zr, F = zrzθ, G = z2 + z2
θ . (3.12)

Substituting Equations (3.11) and (3.12) into Equation (3.9) gives, after simplification,

the following second order non-linear elliptic partial differential equation expression,

H =
z2 − zzθθ + 2z2

θ + z2
rz2 − zzθθz

2
r + 2zzrθzrzθ − zrrz

3 − zzrrz
2
θ

2
(

z2
θ + z2(1 + z2

r )
) 3

2

=:
P

Q
(3.13)

where P and Q denote the numerator and denominator of H. In order for the surface

z(r, θ) to have constant mean curvature H0, thus satisfying Equation (3.1), Equation

(3.13) must be satisfied at all points on the fluid surface.

3.2.2 Boundary conditions

(i) Fluid contact angle

The contact angle α is a physical property of the fluid which is satisfied along contour C1

and is equal to

α = acos (nsurface · nsphere) (3.14)

where nsurface is the unit outward pointing fluid surface normal and nsphere is the unit

normal vector for the sphere as shown in Figure 3.2.

Expressions are now derived for nsurface and nsphere to allow Equation (3.14) to be written

in terms of z. Using the results from Equation (3.10) the outward pointing unit normal
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vector for the surface is given by

nsurface =
Zr × Zθ

|Zr × Zθ|
=

1
√

z2z2
r + z2

θ + z2
(zzr,−zθ sin θ − z cos θ, zθ cos θ − z sin θ) .

(3.15)

The boundary condition for the three-phase contact line occurs at the intersection between

the fluid and the sphere. In Cartesian coordinates a sphere of radius a has equation

Zsphere(r, θ) = (r, zsphere cos θ, zsphere sin θ)

=
(

r,
√

a2 − r2 cos θ,
√

a2 − r2 sin θ
) (3.16)

where the sphere in the cylindrical coordinates of Equation (3.2) is

zsphere(r, θ) =
√

a2 − r2. (3.17)

From Equation (3.16) the normal vector to the sphere is

nsphere =
1

a

(

r,
√

a2 − r2 cos θ,
√

a2 − r2 sin θ
)

. (3.18)

Substituting Equations (3.18) and (3.15) into Equation (3.14) gives an expression for the

contact angle α as

α = acos (nsurface · nsphere)

= acos





z

a
√

z2z2
r + z2

θ + z2

(

rzr −
√

a2 − r2
)



 .
(3.19)

Equation (3.19) is required to be satisfied along contour C1.

(ii) Symmetry Plane

The fluid surface intersects the symmetry plane along contour C2. It is necessary for nsym

and nsurface to be orthogonal along C2, as shown in Figure 3.2, as this condition allows

the continuity of z along with its partial derivatives. In Cartesian coordinates the unit

outward pointing symmetry contour normal is nsym = 1
2(
√

3, 1, 0). Therefore the angle
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between the fluid surface and the symmetry contour is

β = acos (nsurface · nsym)

= acos





1

2
√

z2z2
r + z2

θ + z2
zθ sin θ + z cos θ −

√
3zzr



 ≡ 90o.
(3.20)

Equations (3.13), (3.19) and (3.20) provide the necessary equations to determine the

profile of the liquid bridge surface.

3.3 Numerical Solution

The problem is solved on an n × m mesh. The discrete approximation to z(r, θ) is

denoted by ẑ(i,j) where i and j denote mesh points that correspond to r and θ values.

To approximate the derivatives for the mean curvature and the boundary conditions the

following second order central difference formulae are applied:

ẑr(i, j) =
ẑ(i+1,j) − ẑ(i−1,j)

2∆r
, ẑθ(i, j) =

ẑ(i,j+1) − ẑ(i,j−1)

2∆r
, (3.21a)

ẑrr(i, j) =
ẑ(i+1,j) − 2ẑ(i,j) + ẑ(i−1,j)

∆r2
, ẑθθ(i, j) =

ẑ(i,j+1) − 2ẑ(i,j) + ẑ(i,j−1)

∆θ2
(3.21b)

ẑrθ(i, j) =
ẑ(i+1,j+1) − ẑ(i+1,j−1) − ẑ(i−1,j+1) + ẑ(i−1,j−1)

4∆r∆θ
(3.21c)

where ∆r and ∆θ denote the step sizes of r and θ. The derivatives ẑrr and ẑθθ require

5 point numerical stencils and the derivative ẑrθ requires a 9 point numerical stencil.

Therefore, to enforce the constant mean curvature requirement, from the Young-Laplace

equation, mesh points are required on either side of the boundary contours at C1 and

C2. (Contour C1 represents the three-phase contact line and Contour C2 is the symmetry

contour which bisects the liquid bridge between adjacent particles as discussed in Section

3.1.) The solid points in Figure 3.3 represent points where constant mean curvature is

imposed and the open circles represent points where the boundary conditions are imposed.

For the j values, since 0 ≤ θ ≤ π
2 , we set j = 0 : π

2m : π
2 . The initial attempt at

solving this problem defined the r mesh for 0 ≤ r ≤ r0 using i = 0 : r0
n : r0. By

experiment, however, it was found that the solver would converge only if the value of

rs (the fluid sphere/intersection point) was close to r = 0. When rs was close to a,

the solver encountered difficultly attempting to extend the fluid surface to the left of

the fluid/sphere boundary because these mesh points are outside the physical domain.

To solve this problem, an initial solution was obtained on a rough 5 × 5 mesh using
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Figure 3.3: Illustration of the numerical solution on the initial 5×5 mesh. In this case the r mesh
ranges from 0 to r0. The mean curvature requirement is solved on internal points (solid circles)
corresponding to r 6= 0 and r 6= r0. Boundary conditions are imposed at the open circles. The
value rmin defines the starting r value for higher resolution (10×10 and 15×15) meshes. On these
meshes the constant mean curvature requirement is solved on mesh points such that r 6= rmin and
r 6= r0.

i = 0 : r0
n : r0. If a solution exists this case would converge since there are only a small

number of mesh points to the left of rs. The solution ẑ(i,j) obtained allowed the value of rs

to be estimated using the function ẑ2 (detailed in Section 3.3.2) and the minimum value

of rs on the 5 × 5 mesh was calculated as rmin. Solutions obtained on higher resolution

meshes used r values defined at i = rmin : rmin
n : r0.

The constant mean curvature requirement is solved at mesh points corresponding r 6= rmin

and r 6= r0 (or r 6= 0 and r 6= r0 on the initial 5 × 5 mesh) which provides (n − 2)m

equations. The boundary conditions each provide m equations. Together these equations

uniquely determine the problem as there are mn mesh points. The following section

details how the mean curvature and boundary conditions are imposed on the rectangular

mesh.

3.3.1 Constant Mean Curvature (CMC)

The constant mean curvature requirement is enforced by solving Equation (3.13) using

the approximations for the derivatives of z from Equations (3.21a)-(3.21c). This is given

by the condition

P̂(i,j) − Q̂(i,j)H0 = 0 (3.22)
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where P̂(i,j) and Q̂(i,j) are the numerator and the denominator of Equation (3.13) eval-

uated at mesh point (i, j). When derivatives of ẑ with respect to θ are evaluated on a

θ = 0 or θ = π
2 boundary the data is recycled since the surface is π

2 periodic with respect

to θ.

3.3.2 Boundary conditions

(i) Fluid/sphere intersection

To detect contour C1 the difference in height between the fluid surface ẑ and the sphere

zsphere is considered using

ẑ2 = ẑ − zsphere (3.23)

where zsphere is given by Equation (3.17). For each value of θ ≡ θ0, corresponding to a

particular j = j0, the position where the fluid and sphere intersect at r = rs needs to

be determined. For a given j0 this point is determined by finding the point i = is such

that ẑ2(is, j0) < 0 and ẑ2(is + 1, j0) > 0 as these mesh points are on either side of rs.

To obtain the contact angle at r = rs, Equation (3.19) is used to evaluate α̂(is, j0) and

α̂(is + 1, j0) at ẑ(is, j0) and ẑ(is + 1, j0). The contact angle α∗ at r = rs is obtained using

linear interpolation by

α∗
j0 = tα̂(i,j0) + (1 − t)α̂(i+1,j0) (3.24)

where

t =
ẑ2(i+1,j0)

ẑ2(i+1,j0) − ẑ2(i,j0)
. (3.25)

(ii) Symmetry plane

For a particular θ ≡ θ0 interpolation is also used to determine the angle β at the symmetry

contour as β ≡ π
2 when a solution is obtained. The symmetry contour has equation

zsym =

√
3(r0 − r)

cos θ
. (3.26)

Therefore to detect the position of C2, the function

ẑ3 = ẑ cos θ − zsym cos θ

= ẑ cos θ −
√

3(r0 − r)

is calculated and interpolation is used to obtain β∗ as

β∗
j0 = tβ̂(i,j0) + (1 − t)β̂(i+1,j0) (3.27)
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Figure 3.4: Regions Vsphere, Vmesh and Vwedge defined to calculate the bridge volume V . This
figure is for a particular θ = θ0. The shaded regions are Vsphere (striped grey), Vmesh (grey) and

Vwedge (light grey). The angle between the symmetry plane and the r axis is φ = atan
(

zp

r0−rp

)

.

The dotted vertical lines are representative of the numerical mesh in the r direction.

where ẑ3(ip, j0) < 0 and ẑ3(ip+1, j0) > 0 and β̂(ip,j0) and β(ip+1,j0) are solved using Equa-

tion (3.20) and

t =
ẑ3(i+1,j0)

ẑ3(i+1,j0) − ẑ3(i,j0)
. (3.28)

For the point on the symmetry plane at r = r0 and θ = π
2 the one sided difference

ẑr(n,m) ≈
3ẑ(n,m) − 4ẑ(n−1,m) + ẑ(n−2,m)

2∆r
(3.29)

is used which is O(∆r2) and is consistent with Equations (3.21a)-(3.21c).

3.3.3 Complete System of Equations

To summarise the discussion of Sections 3.3.1 and 3.3.2 the system of equations are:
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F(ẑ(i,j)) =













































α∗
1 − α

...

α∗
n − α

P̂(2,1) − Q̂(2,1)H0

...

P̂(m−1,n) − Q̂(m−1,n)H0

β∗
1 − π

2

...

β∗
n − π

2













































(3.30)

where F is the function involving constant mean curvature and boundary condition terms.

Convergence is obtained when

|F(ẑ(i,j))| ≤ ε

for a specified tolerance ε. The vector in Equation (3.30) has length nm: the first m rows

account for the fluid/sphere intersection, the following (n − 2)m rows for the constant

mean curvature requirement and the remaining m rows for the symmetry plane boundary.

In Section 3.3.5 it is confirmed numerically that second order convergence is obtained for

ẑ(i,j).

3.3.4 Liquid Bridge Properties

Given that a solution is obtained, this section discusses the numerical calculation of the

liquid bridge volume, surface area and inter-particle binding force.

(i) Volume

Numerical integration is used to calculate the volumes Vmesh, Vsphere and Vwedge. These

regions are illustrated in Figure 3.4 for a constant θ ≡ θ0 slice. Since these volumes are

portions of the solution region from Figure 3.2, the total bridge volume is given by

V = 12 (Vmesh − Vsphere + Vwedge) . (3.31)

As integrals, the volumes in Equation (3.31) are given by

Vmesh =

∫ π
2

0

∫ rp

rs

∫ z

0
z dz dr dθ (3.32a)

Vwedge =

∫ π
2

0

∫ r0

rp

∫ z

0
zwedge dz drdθ (3.32b)
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Vsphere =

∫ π
2

0

∫ a

rs

∫ z

0
zsphere dz dr dθ (3.32c)

as the Jacobian in cylindrical coordinates is |J | = z. The terms z, zsphere and zwedge denote

the respective heights of the fluid surface, the sphere and the wedge shaped portion of

the bridge.

The height of zwedge is given by

zwedge =
zp(r0 − r)

r0 − rp
(3.33)

since zwedge is a straight line segment between (rp, zp) and (r0, 0).

To numerically evaluate Equation (3.32a) the function v = 1
2 ẑ2 is introduced. Then

Vmesh =

∫ π
2

0

∫ rp

rs

∫ z

0
z dz dr dθ

=

∫ π
2

0

∫ rp

rs

[

1

2
z(r, θ)2

]z

0

dr dθ

≈
∫ π

2

0

∫ rp

rs

v dr dθ.

(3.34)

In the following equation, v(s,θ) and v(p,θ) are obtained by interpolation because, in gen-

eral, rs and rp do not occur on the mesh. The step sizes ∆rs and ∆rp refer to the distance

between the interpolated point and the following mesh point as shown in Figure 3.4. From

Equation (3.34),

Vmesh ≈ 1

2

∫ π
2

0

[

v(s,θ)∆rs + 2

p−1
∑

i=s+1

v(i,θ)∆r + v(p,θ)∆rp

]

dθ

≈ ∆θ

2
× 1

2

[

v(s,1)∆rs + 2

p−1
∑

i=s+1

v(i,1)∆r + v(p,1)∆rp

+ 2
m−1
∑

j=2

(

v(s,j)∆r1 + 2

p−1
∑

i=s+1

v(i,j)∆r + v(p,j)∆rp

)

+ v(s,m)∆r1 + 2

p−1
∑

i=s+1

v(i,m)∆r + v(p,m)∆rp

]

.

(3.35)
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From Equation (3.32b), the volume of the wedge is

Vwedge =

∫ π
2

0

∫ r0

rp

∫ z

0
zwedge dz dr dθ

=

∫ π
2

0

∫ r0

rp

1

2
z2
wedge dr dθ

=

∫ π
2

0

∫ r0

rp

1

2

(

zp(r0 − r)

r0 − rp

)2

dr dθ

=

∫ π
2

0

1

6
z2
p(r0 − rp) dθ

(3.36)

and that of the sphere, from Equation (3.32c),

Vsphere =

∫ π
2

0

∫ a

rs

∫ z

0
zsphere dz dr dθ

=

∫ π
2

0

∫ a

rs

1

2
z2
sphere dr dθ

=

∫ π
2

0

(

a3

3
− a2rs

2
+

r3
s

6

)

dθ.

(3.37)

Since the values of rs, rp and zp change with respect to θ the trapezium rule is used to

numerically integrate the expressions for the above volumes. Combining them allows the

volume V from Equation (3.31) to be calculated.

(ii) Surface Area

The surface area of the liquid bridge is given by

S = 12

∫ π
2

0

∫ rp

rs

dS

= 12

∫ π
2

0

∫ rp

rs

|Zr × Zθ| dr dθ

= 12

∫ π
2

0

∫ rp

rs

√

z2(1 + z2
r ) + z2

θ dr dθ.

(3.38)

To evaluate Equation (3.38), u =
√

ẑ2(1 + ẑ2
r ) + ẑ2

θ is introduced. Then

S ≈ 12

∫ π
2

0

∫ rp

rs

u dr dθ. (3.39)
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Using the trapezium rule to calculate Equation (3.39) gives

S ≈ 12 × 1

2

∫ π
2

0

[

u(s,θ)∆r1 + 2

p−1
∑

i=s+1

u(i,θ)∆r + u(p,θ)∆rp

]

dθ

≈ 12 × ∆θ

2
× 1

2

[

u(s,1)∆r1 + 2

p−1
∑

i=s+1

u(i,1)∆r + u(p,1)∆rp

+ 2

m−1
∑

j=2

(

u(s,j)∆r1 + 2

p−1
∑

i=s+1

u(i,j)∆r + u(p,j)∆rp

)

+ u(s,m)∆r1 + 2

p−1
∑

i=s+1

u(i,m)∆r + u(p,m)∆rp

]

.

(3.40)

(iii) Inter-particle binding force

The inter-particle force between the particles is resolved at the three phase contact line,

similar to the approach of De Bischop and Rigole [31], for the two particle case, to give,

F = 4γlv

∫ π
2

0
z(rs, θ) sin(δ + α) dθ + ∆p

∫ π
2

0

∫ z

0
z dz dθ

= 4γlv

∫ π
2

0
z(rs, θ) sin(δ + α) dθ + ∆p

∫ π
2

0

z2

2
dθ

= γlv

∫ π
2

0

(

4 z(rs, θ) sin(δ + α) + H0z
2

)

dθ.

(3.41)

In Equation (3.41), the first term is the surface tension force resolved in the r-axis direc-

tion and the factor of 4 occurs because 0 ≤ θ ≤ π
2 . The second term is the force due to

the capillary pressure. The half-filling angle between the r-axis and the point of contact

between the fluid and the sphere is δ = acos ( rs
a ).

3.3.5 Solving the System using Matlab

The non-linear system of equations given in Equation (3.30) were solved using the Matlab

fsolve command. The model parameters α, a, r0 and H0 = ∆p
2γlv

define a particular liquid

bridge. If a solution exists, for specified parameter values, the steps below were followed

to produce a solution:

1. A 5× 5 mesh is formed as detailed in Section 3.2.2 where the meshes start at r = 0

and θ = 0.

2. The solver is provided an initial guess of a cylinder where ẑ(i,j) ≡ constant.
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3. The function F from Equation (3.30) and ẑ(i,j) is supplied to fsolve which attempts

to find a solution such that

|F(ẑ(i,j))| ≤ ε (3.42)

where ε = 1×10−15. The value of rmin is determined by finding the smallest r value

for the fluid/sphere intersection with respect to θ.

4. The original ẑ(i,j) solution is interpolated onto a 10 × 10 mesh. Subsequent ẑ(i,j)

solutions are attempted on 10 × 10 and 15 × 15 meshes where the r mesh starts at

rmin at the θ mesh at 0.

5. If a solution ẑ(i,j) is obtained on the 15 × 15 mesh then the properties detailed in

Section 3.3.4 are calculated.

The algorithm used by fsolve to solve Equation (3.42) was the default option which was

‘Trust-Region Dogleg’.

(i) Convergence and Solution Checks

The following checks were made to confirm that a valid solution was obtained:

1. Second order convergence was confirmed for the solution ẑ(i,j) as the mesh step-size

was reduced. This behaviour is expected because second order expressions have

been used for the ẑ derivatives.

2. The methods used in this work were tested by solving the two particle liquid bridge

problem. This was achieved by modifying the boundary condition at C2 from a

symmetry contour to a second sphere of radius a. Figure 3.5 illustrates the ar-

rangement. The full expression for the constant mean curvature was used from

Equation (3.9). rmin was calculated in a similar fashion to the method described in

Section 3.3.

For the two particle case, the following expressions replace those of Equations (3.31),

(3.38) and (3.41) for the volume and surface area:

V = 4 (Vmesh − 2Vsphere) , (3.43)

where

Vmesh =

∫ π
2

0

∫ rs2

rs1

∫ z

0
z dz dr dθ (3.44a)

Vsphere =

∫ π
2

0

∫ a

rs1

∫ z

0
zsphere dz dr dθ (3.44b)
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Figure 3.5: Testing the solver using the known solution to the Young-Laplace equation. Boundary
conditions occur along the contours C1 and C2 where the contact angle is α.

and the surface area is given by

S = 4

∫ π
2

0

∫ rs2

rs1

dS

= 4

∫ π
2

0

∫ rs2

rs1

|Zr × Zθ| dr dθ

= 4

∫ π
2

0

∫ rs2

rs1

√

z2(1 + z2
r ) + z2

θ dr dθ.

(3.45)

The expression for the inter-particle binding force is the same as Equation (3.41).

Analogous to the approach taken in Section 3.3.4, the integrals from Equation

(3.45), (3.44a) and (3.44b) are evaluated using the trapezium rule. Agreement was

obtained between fsolve and the solution of ode45 from Chapter 2.

3. Equation (3.13) and the subroutines used to calculate the mean curvature of a

surface ẑ(i,j)(r, θ) were verified by using a sphere as a test case. Analytically it may

be shown that a sphere of radius a has constant mean curvature H0 = 1
a . The

sphere was centred at (X, Y, Z) = (0, 0, 1) and had equation

zsphere(r, θ) = sin θ ±
√

a2 − r2 − cos2 θ. (3.46)

(The sphere was displaced from the origin because a sphere at the origin has all

partial derivatives of z with respect to θ equal to zero. This is a trivial case for

Equation (3.13)). Agreement was obtained.

4. The surfaces obtained from the solver were independently checked for constant

mean curvature. This was achieved by using the file mcurvature which was writ-

ten by Ahmed Elnaggar and downloaded from the Matlab Central File exchange

(www.mathworks.com/ matlabcentral/fileexchange). Agreement was obtained with
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the code used in this work.

5. Checks regarding the scaling were made. By scaling the inter-particle separation

distance as Ŝ = ρS, particle radii as R̂ = ρR, and the mean curvature as Ĥ0 = H0
α ,

it was found that Â = ρ2A and V̂ = ρ3V . This indicates that the formulations for

the surface area and volume from Equations (3.31) and (3.38) are scaling correctly.

3.4 Results

Figure 3.6 shows solutions of static liquid bridges between three particles. The parameters

used and liquid bridge properties obtained for each of the examples are listed in the

captions of the figures. The surface tension used to calculate the force F was γlv =

63.1 mNm−1. Due to individual solutions being time consuming, a full parameter space

solution was unable to be obtained for the three particle problem. However, the inter-

particle binding force F is observed to increase when the separation distance decreases.

Figure 3.6(e) shows that the force is strongest for s ≈ 0. This prediction agrees with the

parameter space solutions obtained in Chapter 2 for static liquid bridges between two

particles.

Experimentally, for fixed a, s (or r0) and α, it was found that the free parameter corre-

sponding to liquid bridges with different volumes V is H0.

3.4.1 Agreement with Experiment

The modelling work presented in this chapter is supported by experimental work per-

formed by Damiano Rossetti and Stefaan Simons of the Department of Chemical En-

gineering, University College, London (UCL). Figure 3.7(a) shows three glass ballotini

particles, ‘A’, ‘B’, and ‘C’, of radii RA = 35.4 µm, RB = 40.8 µm and RC = 40.8 µm

with a glycerol droplet attached to particle B. The fluid has a surface tension of γlv =

63.1 mNm−1 and a contact angle of 50o (measured geometrically using Figure 3.7(a)).

The volume of the droplet was calculated to be V = 65, 596 µm3. Figure 3.7(b) shows

the formation of a liquid bridge after the primary particles were then moved closer. The

volume of the bridge volume is equal to that of the droplet.

The outline of the primary particles from Figure 3.7(b) is plotted along with X−Y coordi-

nates in Figure 3.8(a). Particle C is located at the origin, particle A at (47.38, 64.61)µm

and particle B at (86.15,−10.16)µm. The central point ‘O’ is 48.40µm from the cen-

tre of the primary particles and is located at (45.59, 16.25)µm. Measured from the
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(a) a = 39 µm, r0 = 60 µm,
s ≈ 26 µm, α = 20 o, H0 =
0.004, V = 184, 161 µm3,
A = 15, 491µm2, F =
12.84µN .

(b) Figure (a) rotated. (c) a = 39 µm, r0 = 70 µm,
s ≈ 43 µm, α = 20 o, H0 =
0.0078, V = 178, 172 µm3,
A = 16, 638µm2, F =
11.15µN .

(d) Figure (c) rotated. (e) a = 39 µm, r0 =
46 µm, s ≈ 0 µm, α =
40 o, H0 = 0.072, V ≈
80, 000 µm3, F = 13.80µN ,
(γlv = 63.1 mNm−1).

(f) a = 39 µm, r0 = 58 µm,
s ≈ 24 µm, α = 40 o, H0 =
0.0071, V ≈ 150, 000 µm3,
F = 12.21µN , (γlv =
63.1 mNm−1).

Figure 3.6: Images of liquid bridges between three particles for a range of different parameters.
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(a) (b)

Figure 3.7: Images from the experiment to verify the model. Glass ballotini are used for the
primary particles. Figure (a) shows a glycerol droplet placed onto primary particle B. In figure
(b) the particles are moved closer together to form a liquid bridge.
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(a) The location/size of primary particles from
Figure 3.7(b) with X − Y coordinates attached.
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(b) The configuration used to obtain a solution
from the model. This is based on figure (a), but
has spheres of equal size (a = R = 39µm) and
∠AOB = ∠COB = ∠COA = 120o.

Figure 3.8: Figure (a) shows the outline of the primary particles from the experiment. Figure (b)
shows the problem that was solved using the model. The liquid bridge is not shown in this figure.
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point O, the angles between the particles are ∠AOB = 120.94o, ∠COB = 127.32o and

∠COA = 111.74o.

The profile of the fluid obtained by experiment is now compared with that predicted by

the model. The experimental arrangement approximates the symmetry of the model.

However, since the symmetry is not exact, the size and location of the primary particles

are modified slightly to obtain the appropriate parameters for the model. The average

radius of the particles is R = RA+RB+RC

3 = 39µm and this is taken for the primary particle

radius a. The position of the spheres was adjusted to obtain ∠AOB = ∠COB = ∠COA =

120o while the coordinates of the points C and O and the distance r0 = 48.40 µm were

fixed. Following the adjustment particle A is located at (54.32, 63.85)µm and particle

B at (82.45,−15.11)µm. Figure 3.8(b) shows the outline primary particles after the

adjustment.

Figure 3.9 compares the experimental result with the result from the model. The solution

was generated using the parameters H0 = 0.0072 (4 d.p.), r0 = 48.40µm, α = 50o

and a = 39µm. The liquid bridge surface area and volume were calculated to be A =

6, 172µm2 and V = 65, 596µm3. The shape of the liquid bridge appears similar between

model and experiment. The inter-particle binding force is predicted by the model, using

Equation (3.41), to be F = 11.92 µN . This is stronger than that found experimentally

for two similar sized silanised glass ballotini particles which ranges between 1 and 8µN

depending on the separation distance [53]. It is believed that the additional strength is due

to the greater perimeter of contact at the interface boundary. However, measurements

of the inter-particle binding force were not taken experimentally, and it is noted that

measurements these will need to be obtained, as the result of future work, to further

validate the predictions of the model.

Extension to larger arrangements

The model provided in this chapter can be extended to static liquid bridges between

four particles by introducing an additional symmetry contour C3. The treatment of this

contour would be similar to that used for C2. Figure 3.1 shows that contour C2 makes

an angle of 60o between the X and Y axis and contour C3 would make an angle of 60o

between the X and Z axis. Symmetry of the four particle case could also be used to

obtain results for five particle agglomerates where the fifth particle is the mirror image

of the fourth particle about the X − Y axis.
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(a) (b)

Figure 3.9: The experimental arrangement (a) and the result from the model (b). The volume of
the liquid bridge is V = 65, 596µm3.
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Chapter 4

Modelling the
Agglomeration Process

4.1 Introduction

Despite the success of the direct solution to liquid bridges between three particles in the

previous chapter, a full solution to agglomerates containing an arbitrary number of liquid

bridges, by solving the Young-Laplace equation, is prohibitively expensive [32]. This

chapter proposes and develops a novel, simplified geometric model for the placement of

particles and liquid bridges in moderately large agglomerates. The liquid bridges do not

have constant mean curvature. Instead, an approximate surface is used for the fluid

surface. The model enables crucial agglomerate properties, such as their surface area,

wetness and volume, to be estimated. The results of this work are presented in Section

4.9 and they allow the agglomerate size and the volume of binder fluid to be related,

for a particular inter-particle separation distance, to the particle stickiness (or surface

wetness). The results are used later in the population balance model of Chapter 5 to

estimate the rates of particle coalescence.

The model represents agglomerates as a collection of equally-sized spherical primary par-

ticles of radius R and an approximate binder surface which is formed from a union of fluid

segments. Each of the fluid segments are individually convex and are based on a tetra-

hedron. The fluid is assumed to be in the capillary saturation state and thus uniformly

fill the agglomerate voids. The model adds primary particles to an existing agglomerate

one at a time to simulate the layering mechanism discussed in Section 1.2.2. The pri-

mary particles are bound together using tetrahedra which are added concurrently with

additional particles. The edges of the tetrahedra represent liquid bridges. The starting

arrangement is the four particle agglomerate which is illustrated schematically in Figure

4.1(a).



98 Modelling the Agglomeration Process

(a) (b)

Figure 4.1: The tetrahedron on the left defines placement of the spheres for primary particles 1-4.
When a fifth particle is added the arrangement is given by the two tetrahedra as shown on the
right. The primary particles at the points S1, S2 and S4 are illustrated as circles in Figure 4.1(a).

The model has two parameters. The first is the minimum separation distance between

the sphere centres σ. This parameter represents the consolidation state of the particle

and it is defined by σ = 2R + s where s is the minimum separation distance between

the closest points on the spheres as shown in Figure 4.1(a). The edges of the tetrahedra

are required to have a minimum length of σ. Therefore |Si − Sj | ≥ σ for all i 6= j.

The inequality occurs because it is not possible to continually pack particles in R
3 such

that neighbouring spheres are either touching or are separated by a fixed distance s [54].

When adding a particle, the total bond length of the tetrahedra edges is minimised to

minimise the overall surface area of the liquid bridges. The second parameter relates to

the saturation state of the fluid and it is denoted by δ. In Section 4.4 we explain how the

tetrahedra are ‘expanded’ to allow a variable volume of binder to exist in the particle.

The position of the spheres are independent of δ.

The placement of the particles and liquid bridges are defined in Matlab using a series

of matrices which are updated as particles are added. The coordinates of the primary

particles are stored in a matrix S as row vectors and indices of the tetrahedra vertices

are stored in a matrix T . Since the tetrahedra are based on the position of the primary

particles, each row entry t in T , defining a particular tetrahedron, references coordinates

in S. Additional tetrahedra bond to the faces of existing tetrahedra. Therefore a face

matrix F is maintained where each row f defines a face and indices are used to reference
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the vertices in S. The calculations for adding particles use the faces and therefore, for each

face f ∈ F , relevant information is stored including the unit outward pointing normal

vector ~n, an estimate point ~e (used if the face is subsequently selected to bond to a new

particle) and a flag as to whether the face is internal (1) or external (0). Faces become

internal if they bond to a particle. The estimate point for a face f is the point a distance

σ from the geometric mid-point of the face in the direction of ~n.

An edge matrix E is also maintained. However this matrix is used for drawing the

agglomerate only and is not involved in the calculations for adding particles.

Example

The matrices for the four particle agglomerate shown in Figure 4.1(a) are defined as

S = σ















0 0 1
2

√

3
2

1√
3

0 − 1
2
√

6

− 1
2
√

3
1
2 − 1

2
√

6

− 1
2
√

3
−1

2 − 1
2
√

6















,

T =
[

1 2 3 4
]

, F =















1 2 3 ~n1 ~e1 1

1 3 4 ~n2 ~e2 1

1 2 4 ~n3 ~e3 1

2 3 4 ~n4 ~e4 1















, E =

























1 2

1 3

1 4

2 3

2 4

3 4

























.

The final column of F indicates that all the faces are external for the initial arrangement.

The steps detailed in Section 4.2 are followed when adding a particle. The results for

adding a fifth particle are stated here to illustrate how the matrices are updated. The new

particle bonds to face [1 2 3]. By solving an optimisation problem the coordinates of the

new particle are S5 =
(

5σ
6
√

3
, 5σ

6 , 5σ
6
√

6

)

. A single tetrahedron is formed which has vertices

[1 2 3 5]. (More complex situations require multiple tetrahedra.) The faces formed due

to this tetrahedron are [5 1 2], [5 1 3] and [5 2 3]. The face [1 2 3] is the bonding face

so its flag is changed from external to internal. These steps update the matrices to the

following:

S = σ





















0 0 1
2

√

3
2

1√
3

0 − 1
2
√

6

− 1
2
√

3
1
2 − 1

2
√

6

− 1
2
√

3
−1

2 − 1
2
√

6
5

6
√

3
5
6

5
6
√

6





















,
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Figure 4.2: A five particle agglomerate formed by the model for s = 0 and δ = 0.6.

T =

[

1 2 3 4

1 2 3 5

]

, F =































1 2 3 ~n1 ~e1 0

1 3 4 ~n2 ~e2 1

1 2 4 ~n3 ~e3 1

2 3 4 ~n4 ~e4 1

5 1 2 ~n5 ~e5 1

5 1 3 ~n6 ~e6 1

5 2 3 ~n7 ~e7 1































, E =









































1 2

1 3

1 4

3 4

2 3

2 4

1 5

2 5

3 5









































.

The five particle agglomerate is illustrated in Figure 4.2 for σ = 2R (s = 0). The fluid

surface, discussed in Section 4.4, is also shown in this figure for a saturation state of

δ = 0.6.

4.2 Adding Particles

Agglomerates are modelled on the approximately spherical particles formed in high-shear

systems. The matrices S, T , F and E are maintained in order because additional objects

are appended to them. Therefore spherical agglomerates are formed by requiring the

incoming particle to bond with the first external face in F .

The set of faces that a particle bonds with are called the contact faces. These are de-

termined by performing tests between the initial contact face f and its neighbours. The

test consists of two scenarios which compares the shapes of the proposed tetrahedra. A

quantity called the skewness number (defined below) is introduced to measure how much



4.2 Adding Particles 101

(a) Determining the point to place par-
ticle x1 in the one particle case.

(b) Determining the point to place par-
ticles x1 and x2 in the two particle case.

Figure 4.3: Adding a single particle (a), or two particles (b) between face f , with vertices
P1, P2, P3, and a neighbouring face m with vertices P2, P3, P4.

a proposed tetrahedron deviates from a regular (or ideal) tetrahedron of the same volume.

The skewness number of a regular tetrahedron is zero. The test resulting in the lowest

average skewness number is considered to be more optimal. Although the tests do not

formally minimise the surface free energy this criteria does prevent ‘skewed’ tetrahedra

from being formed which were found to have a higher overall surface area in test cases.

The skewness number compares the volume of a tetrahedron ti, as given by

V =
1

6
|~a ·~b × ~c| (4.1)

where ~a, ~b, ~c are vectors from one vertex of the tetrahedron to the other vertices, to that

of a regular (ideal) tetrahedron containing the same volume V . The edge length of a

regular tetrahedron with volume V is

Lideal =

(

12√
2
V

) 1
3

. (4.2)

The non-dimensional skewness number κ measures the deviation in length of the six edges

from Lideal as given by

κ =

∑6
i=1 |Li − Lideal|

Lideal
. (4.3)

The model permits only one particle to be added at a time. The test therefore considers

whether it is more optimal to add one particle between f and its neighbour or two. If it

is more optimal to add two then the neighbour cannot be a contact face. Conversely, if it
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is more optimal to add one then the neighbour becomes a contact face. All contact faces

test their neighbours pairwise, excluding the parent, using the skewness criteria. This

may result in additional contact faces. Both tests are now defined in more detail.

The first scenario places one particle between the face f with vertices [P1 P2 P3] and a

neighbouring face with vertices [P2 P3 P4] as shown in Figure 4.3(a). Two tetrahedra are

required with vertices at t1 = [x1 P1 P2 P3] and t2 = [x1 P2 P3 P4]. (Note: The P vertices

exist in S. They are used here as a generic reference to vertices on the tetrahedra.) The

placement of the new particle at x1 is determined by minimising the total bond length

shown in Figure 4.3(a) which is

Ξ1 =
4

∑

i=1

|x1 − Pi| (4.4)

with constraints on the bond length

|x1 − Pj | ≥ σ (4.5)

for j = 1, 2, 3, 4. The above problem was solved using the fmincon command of the

Matlab optimisation toolbox where the objective function was given by Equation (4.4)

and the non-linear inequality constraints were given by Equation (4.5). The starting

x1 value provided was ~e from face f . The volume of t1 and t2 are calculated using

Equation (4.1) as V1 and V2. (The vectors ~a, ~b and ~c for f may be given as ~a = P2 − P1,

~b = P3 − P1 and ~c = x1 − P1 and as ~a = P2 − P4, ~b = P3 − P4 and ~c = x1 − P4 for the

neighbour.) Corresponding to V1 and V2 the skewness numbers κ1 and κ2 are calculated

using Equation (4.3) and their average is taken as κ̂1.

The second scenario positions two particles between f and the neighbour as shown in Fig-

ure 4.3(b). The three tetrahedra required have their vertices located at t1 = [x1 P1 P2 P3],

t2 = [x1 P2 P3 x2] and t3 = [x2 P2 P3 P4]. The placement of the particles at x1 and x2 is

determined by minimising the total bond length shown in Figure 4.3(b) which is

Ξ2 =
3

∑

i=1

|x1 − Pi| +
4

∑

j=2

|x2 − Pj | + |x1 − x2| (4.6)

with constraints on the bond length given by

|x1 − Pj | ≥ σ, |x2 − Pj | ≥ σ and |x1 − x2| ≥ σ. (4.7)

The starting value for x1 used ~e from f and the starting value for x2 used ~e from the

neighbouring face. The skewness of the three tetrahedra is calculated and their average
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is taken as κ̂2.

If κ̂1 < κ̂2 then the neighbour becomes a contact face. After determining the set of contact

faces the placement of the particle is obtained by minimising the objective function

Ξ3 =
3

∑

i=1

|x1 − Pi| +
nF−1
∑

j=1

|x1 − Pk(j)| (4.8)

where nF denotes the number of contact faces and the function k(j) returns the index of

the vertex on contact face j which is not common to the vertices on the existing contact

faces. The constraints on the bond lengths are

|x1 − Pi| ≥ σ and |x1 − Pk(j)| ≥ σ (4.9)

where i = 1, 2, 3 and j = 1, 2, ..., nF − 1. The starting value for x1 used ~e from face f .

Equation (4.8) and Equation (4.9) minimise the total bond length such that the particle

bonds with all contact faces.

After the placement of the particle is calculated the contact faces have their flags changed

from external to internal, the new tetrahedra and faces are added to T and F and the

position of the sphere to be added is appended to S.

4.3 Examples of Particle Placement

Figure 4.4 illustrates the algorithm discussed in the previous section when adding a pri-

mary particle to a five particle agglomerate. The original primary particles are labelled

‘1’-‘5’ in Figures 4.4(a)-(c) and the initial contact face is f = [1 3 4]. Figures 4.4(a) and

4.4(b) consider a contact face comparison between f and a neighbouring face [1 2 4].

The sphere labelled ‘A’ in Figure 4.4(a) is the position, as determined by optimisation,

when adding one particle between the faces. In Figure 4.4(b) spheres ‘B’ and ‘C’ are the

optimal placement when adding two spheres between the faces. For the one particle case

the tetrahedra required are [1 3 4 A] and [1 2 4 A]. By calculation these tetrahedra have

an average skewness of κ̂1 = 1.83 (to 2 d.p.). For the two particle case three tetrahedra

are required: [1 3 4 B], [1 4 B C] and [1 4 C 2]. By calculation the average skewness

of these tetrahedra is κ̂2 = 0.36. Since κ̂2 < κ̂1 it is more optimal for two particles to

be added between the faces; hence face [1 2 4] is not a contact face. Similarly the other

neighbours to the face [1 3 4], which are [2 3 4] and [5 1 3], also yield κ̂2 < κ̂1. Hence the

only contact face is f . Figure 4.4(d) shows the actual placement for the sixth particle by

solving Equation (4.8). Hence one new entry is added to T ([1 3 4 6]) and the face and
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edge entries in F and E are updated accordingly.

The first time more than one tetrahedra is required, when adding a particle, is when an

eight particle agglomerate is formed. For this case the initial contact face is f = [1 5 2].

The neighbouring faces to f are [1 3 5], [5 2 3] and [7 1 2]. Faces [1 3 5] and [5 2 3]

return κ̂2 < κ̂1 but the comparison between [7 1 2] and f gives κ̂2 > κ̂1. (The results of

these tests are shown as crosses and ticks in Figure 4.5(b).) Therefore [7 1 2] is a contact

face. This face tests its neighbouring faces, less the parent [1 2 5], which are [7 1 4] and

[7 2 4] but these tests result in κ̂2 < κ̂1. Therefore the contact faces are [1 2 5] and

[7 1 2]. The placement of the new particle is determined by solving Equation (4.8). The

new tetrahedra added are [1 2 5 8] and [7 1 2 8] and the contact faces [1 2 5] and [7 1 2]

have their flag changed to internal.

4.4 Defining the Fluid Surface

The fluid surface is based on the position of the tetrahedra as defined in T . The saturation

parameter δ adjusts the position of the tetrahedra faces to allow a varied volume of fluid

to exist in the agglomerate. The state δ = 0 corresponds to a minimum state where

the fluid segments are connected to the centre of the primary particles. For δ > 0 the

external faces are moved in the direction of their outward pointing normal vectors up to

a maximum value of δ = 1. For δ = 1 the faces are displaced a distance R to match the

radius of the spheres. The position of the spheres remain fixed as δ is varied.

Figure 4.6 shows a fluid segment formed for a particular t ∈ T with vertices [P1 P2 P3 P4].

To illustrate the expansion of the faces, ~n1 is used to denote the outward pointing normal

vector of face f1 with vertices [P1 P2 P3]. The expanded vertices due to this face are

shown in Figure 4.6(b) as u1 = P1 + δ~n1, u2 = P2 + δ~n1 and u3 = P3 + δ~n1. For δ 6= 0,

cylinders of radius δ connect adjacent faces together along their edges as shown in Figure

4.6(c). In Section 4.5 a computational geometry toolbox is used to calculate properties

of the agglomerates. The toolbox requires the fluid segments (and spheres) to be convex

and bounded. The objects formed in Figure 4.6(c) are convex. They may be bounded by

using a routine from the toolbox to intersect the fluid segments with half-spaces which

pass through the ui vertices (Section 4.5 discusses half-spaces). To illustrate, Figure

4.6(c) shows the vertices u6, u9 and u10 that the half-space passes through due to the

tetrahedron vertex P4. The inequality of the half-space is determined by including the

mean point of the fluid segment following the intersection. The completed fluid segment

is shown in Figure 4.6(d). The fluid segments are required to be in the same saturation

state δ for a given agglomerate. The fluid segment corresponding to tetrahedron tj is
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(a) Sphere A is the position for plac-
ing one particle between faces [1 3 4]
and [1 2 4]. In this case two tetra-
hedra are required : tetrahedra (with
vertices) [1 3 4 A] and [1 2 4 A].

(b) Spheres B and C are the place-
ment (as determined by optimisa-
tion), for placing two particles be-
tween faces [1 3 4] and [1 2 4]. In
this case, three tetrahedra are re-
quired : [1 3 4 B], [1 4 B C], and
[1 4 C 2].

(c) Diagram of the contact faces. (d) The actual position for the 6th
sphere, as determined by optimisation.

Figure 4.4: Adding a particle to a five particle agglomerate. A contact face comparison between
faces [1 3 4] and [1 2 4] is shown in figures (a) and (b). A single contact face exists for this case
([1 3 4]), with contact spheres 1, 3 and 4. Figure (c) illustrates the placement of the new particle.
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(a) Adding a particle to an 8 particle
agglomerate. The initial contact face f

is [1 5 2].

(b) The result after adding
particle to the contact
faces [1 5 2] and [7 1 2]

(c) The result after adding parti-
cle to the contact faces [5 1 2] and
[7 1 2]

Figure 4.5: Adding a new particle to a 8 particle agglomerate. In this case, there are 2 contact
faces, and 2 tetrahedra are therefore added: [5 1 2 9] and [7 1 2 9]. (The 8th particle, attached to
spheres 2, 3 and 4, is not visible in this view).
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denoted by Tj.

Originally a convex hull routine from the toolbox was used to form the half-spaces for the

spheres and fluid segments. Since the objects were already convex, however, it is more

efficient to form the objects in face-vertex format. In this format the half-spaces may

be readily obtained. We show how this was completed for the fluid segments. Faces are

defined on the segments due to the four expanded faces, shown in Figure 4.6(b), and, by

defining vertices on the cylinders, faces for the cylinders are defined by using triangular

mapping. Vertices are defined on the cylinders along circular arcs between adjacent ui

points as shown in Figure 4.7(b). We show how vertices are defined for one of the arcs.

Figure 4.7(a) shows a view from the point P4 to the points P1, P2 and P3 which lie in

the same plane. The arc γ1 centred at P2 exists between the points u5 = P2 + δ~n2 and

u11 = P2 + δ~n3 and has the equation |x − P2| = δ where x ∈ γ1. The angle between the

faces f2 and f3 is calculated as θ = acos
(

~n2·~n3
|~n2||~n3|

)

and an incremental angle ∆θ = θ
k is

defined where k is the number of vertices along the arcs. The vector ~n∗ is introduced

which is orthogonal to ~n2 as shown in Figure 4.7(a). The points along γ1 are given by

vi = P2 + δ [cos (i∆θ)~n2 + sin (i∆θ)~n∗] (4.10)

where i = 1, 2, ..., k. But now

~n3 = cos θ~n2 + sin θ~n∗. (4.11)

Therefore

vi = P2 + δ [cos (i∆θ)~n2 + sin (i∆θ) (csc θ~n3 − cot θ~n2)]

= P2 + δ [(cos (i∆θ) − sin (i∆θ) cot θ)~n2 + sin (i∆θ) csc θ~n3] .
(4.12)

The arc at the opposite end of the cylinder is denoted by γ2. Points on this arc are also

denoted by vi but for i = k + 1, ..., 2k. The steps above are repeated for the remaining

cylinders and superscripts are introduced for vi to label the corresponding edges with the

above case being denoted by (2,4)vi.

The face-vertex matrix for the fluid segments is defined by









u1 u4 u7 u10
(1,2)v1

(1,2)v1 . . . (1,2)vk−1 . . . (2,4)v1
(2,4)v1 . . .

u2 u5 u8 u11
(1,2)vk+2

(1,2)v2 . . . (1,2)vk . . . (2,4)vk+2
(2,4)v2 . . .

u3 u6 u9 u12
(1,2)vk+1

(1,2)vk+2 . . . (1,2)v2k . . . (2,4)vk+1
(2,4)vk+2 . . .









t

.

The box in the above matrix represents the shaded face shown in Figure 4.7(b). After the

objects are formed they are bounded by intersecting them with half-spaces as described
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(a) An unexpanded binder tetra-
hedra corresponding to δ = 0.

(b) Fluid tetrahedra expanded
by δ = 0.7.

(c) Cylinders added to satura-
tion state δ = 0.7.

(d) Half-space cuts are used to
produce a bounded convex ob-
ject.

Figure 4.6: Creation of a binder fluid segment

earlier.

4.5 Agglomerate Properties

An agglomerate is the union of nS primary particles with nT tetrahedra as given by

( nS
⋃

i=1

Si

)

∪
( nT

⋃

i=1

Ti

)

(4.13)

where Si denotes a sphere of radius R centred at Si and Ti denotes the expanded tetra-

hedron based on the vertices referenced by ti. The objective is to calculate properties of

this union.
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(a) Adding cylinders (b) Cylinders are created
using faces.

Figure 4.7: Adding cylinders, and the faces which make up the object.

The union in Equation (4.13) will, in general, be non-convex. However, since the individ-

ual Si and Ti components are convex, the formula for a union of convex components Ai

may be applied. This is given by [55]

⋃

i

Ai =
∑

i

Ai −
∑

i6=j

Ai ∩ Aj +
∑

i6=j 6=k

Ai ∩ Aj ∩ Ak − . . . ±
⋂

i

Ai. (4.14)

(Note: In general the union of non-convex objects can only be evaluated by first dividing

the object into convex regions and then summing properties of the convex portions piece-

wise [55]. However, this requirement has been achieved in this case because the spheres

and the fluid segments are already convex.).

The intersections on the right hand side of Equation (4.14) are now considered with the

objective of evaluating Equation (4.13). It is clear that Si ∩ Sj = ∅ for i 6= j since

σ ≥ 2R. For the Ti set, however, neighbouring tetrahedra overlap for δ > 0. As an

example, Figure 4.8(a) illustrates overlapping binder fluid segments for the five particle

case where δ = 0.7. To minimise the number of intersections required, the tetrahedra

may first be intersected with appropriate half-spaces, “cutting”them so that neighbouring

tetrahedra intersect only along the cut faces and Ti ∩Tj = ∅ for all i 6= j. If cuts are not

introduced then the number of intersections that occur for n overlapping objects is

n
∑

k=2

(

n

k

)

= 2n − n − 1.

The worst case scenario for this problem occurs when one of the central spheres, corre-

sponding to the original four particle agglomerate, is surrounded by 12 neighbours. This
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is a packing arrangement known as the kissing sphere problem in R
3 [54]. This configu-

ration results in n = 20 overlapping tetrahedra which meet at the central sphere vertex

and 1,048,555 intersections. The implementation of the cuts are discussed in Section 4.6.

The binder is equivalent after the intersections are completed because the fluid continues

to uniformly fill the internal voids of the agglomerate. The cuts reduce Equation (4.14)

to
( nS

⋃

i=1

Si

)

∪
( nT

⋃

i=1

Ti

)

=
∑

i

Si +
∑

i

Ti −
∑

i6=j

Si ∩ Tj. (4.15)

The geometric bounding toolbox (GBT) version 7 for Matlab [56] was purchased with the

intention of evaluating the union in Equation (4.15). The toolbox represents objects as

polyhedra which are bounded convex sets formed by the intersection of a finite number

of half-spaces [56]. A half-space is defined by

~n · (~x − ~x0) = 0 (4.16)

where ~n 6= ~0 is an outward pointing normal vector, ~x0 is a point on the plane and ~x ∈ R
n.

The polyhedron is the bounded region in R
3 given by the set of the half-space inequalities

~n · (~x − ~x0) ≤ 0. (4.17)

It is common to define d = ~n · ~x0 which allows Equation (4.17) to be written

~n · ~x ≤ d. (4.18)

The toolbox internally stores the half-spaces in an matrix H where each row, defining a

half-space, is given by h = [~n d].

The first attempt to evaluate Equation (4.15) used the convex hull algorithm of GBT to

form polyhedra given the vertices of the spheres Si (obtained using the Matlab sphere

command) and the vertices of the tetrahedra Ti by determining the ui and vi points as

in Section 4.4. The resolution of the objects is given by k: k vertices exist on the cylinder

arcs and k2 vertices exist on the spheres. The following GBT functions [56] were used to

evaluate the union given by Equation (4.15):

1. The intersection of two convex polyhedra. This function was used to calculate

the intersections between the spheres and fluid segments given in Equation (4.15).

(Note: The intersection of two convex polyhedra is convex.)

2. The intersection of a half-space with a polyhedron. This function was used to cut

the tetrahedra so that Ti ∩ Tj = ∅ for i 6= j. (This function is also used internally
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by the toolbox for Item 1 as two polyhedra are intersected by intersecting one of

the polyhedra with the half-spaces of the other.)

3. The surface area and volume of a polyhedron. These functions were used to calculate

the agglomerate properties required in Section 4.7.

Using GBT to solve Equation (4.15) was found to be very slow especially for high k

values∗. The efficiency problems were due to a combination of the following:

1. The convex hull algorithm was being applied even though the objects were known

to be convex. This was computationally costly because the routine requires the

smallest convex set to be obtained upon the addition of each new vertex.

2. The complete GBT code was implemented using Matlab script files (or m-files).

This had a significant impact on performance because Matlab is an interpreter and

the major routines contained nested for loops. An attempt was made to convert

the m-files into C code using the Matlab compiler, with the objective of compiling

the code into MeX, but this was not successful.

3. The calculation of the surface area and volume required faces and vertex but GBT

did not retain the face-vertex structure of the polyhedra after the objects were ini-

tially formed. Instead this was calculated on demand but this was time consuming.

This was a problem in this application because the surface area and volume of the

objects needs to be calculated repeatedly as discussed in Section 4.7.

4. The GBT routines supported arbitrary dimensions but they were not optimised for

calculations in R
3.

Item 1 was addressed by forming the half-space matrix H manually using the face-vertex

format discussed in Section 4.4. However the performance of GBT was still very poor.

Jonathan Marshall† helped with problems 2-4 by writing a custom built toolbox for

this application. It provided similar functionality to GBT but it was considerably more

efficient and supported partial wet and dry surface area calculations for polyhedra. The

toolbox was written in C++ and it is referred to now as the ‘C++ toolbox’. It was used

as a replacement for GBT.

The differences between GBT and the C++ toolbox when using them externally are:

∗In a trial run the time required to intersect two spheres with 1,000 vertices on each sphere took
approximately 4 hours on a Pentium III 1 GHz processor using GBT.

†formally of the Institute of Fundamental Sciences, Massey University, New Zealand.
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1. The C++ toolbox does not include a convex hull algorithm. Instead convex objects

are defined by using the face-vertex format as described in Section 4.4.

2. The C++ toolbox retains the face and vertices in addition to the set of half-spaces.

These are updated following half-space intersections allowing the surface area and

volume to be efficiently calculated.

3. To support partial wet and dry surface area the C++ toolbox introduced flags to

define each face on the polyhedra as of type wet, dry or cut. Wet faces contribute

to the wet surface area and dry faces to the dry surface area. Faces of type cut

occur when half-space cuts are introduced to avoid overlap between the tetrahedra.

These faces do not contribute to the surface area calculations. Faces on the spheres

Si are initialised to type dry and the faces on the tetrahedra Tj to type wet. When

a face is formed on a polyhedra, due to an intersection with a half-space, the new

face inherits the flag of the half-space. If polytope P1 is dry and polytope P2 is wet

then Adry(P1 ∩ P2) returns the area of P1 ∩ P2 which is common to P1 (the dry

area) and Awet(P1 ∩ P2) returns the area which is common to P2 (the wet area).

The dry surface area of the polyhedron P is denoted by Adry(P ) and the wet surface area

by Awet(P ). The total surface area is denoted A(P ) and the polyhedron volume by V (P ).

4.6 Half-space Intersections with the Tetrahedra

This section discusses how the fluid segments are intersected with half-spaces so that

Ti ∩ Tj = ∅ for i 6= j.

Consider a fluid segment to be added which is based on vertices referenced by t. The

k neighbouring fluid segments are based on the vertices as given by tk ∈ T . For each

neighbour, corresponding to a particular k, the common vertices between t and tk are

determined. If t and tk share three common vertices then both fluid segments are cut

along the corresponding face. If two vertices are common then the segments are cut along

an edge. If one vertex is common then both segments are cut at a point.

Figure 4.8 shows a fluid segment due to tetrahedron t2 which has been added that overlaps

with a segment formed from t1. The common face shared between t1 and t2 is denoted

by f and has normal vector ~n. The half-space used to cut the segments lies in the plane

of f and passes through the centre of the three common primary particles. The sign of

the half-space for t2 is determined by including the mean-point of the segment following

the cut. The sign is reversed when cutting the fluid segment for t1. The completed fluid

segments are shown in Figure 4.8(b).



4.6 Half-space Intersections with the Tetrahedra 113

(a) The tetrahedra fluid seg-
ments overlap for N = 5 pri-
mary particles.

(b) Cutting the tetrahedra
with the appropriate half-
spaces resolves this.

Figure 4.8: Overlap at a face for two adjacent tetrahedra. First required for N = 5 (2 tetrahedra).
(These drawings were created for a binder tetrahedron that has δ = 0.7, and a separation between
spheres of σ = 0.5). Primary particles are not drawn in this figure.

Figure 4.9 illustrates two fluid segments based on tetrahedra t2 and t3 which meet along

an edge. The t3 fluid segment has been added and, in Figure 4.9(a), the face shared

between t3 and t1 has been cut. The edge is viewed side on in Figure 4.10 as a schematic

diagram. In this figure the vertices of the tetrahedra are labelled by t1 = [P1 P2 P3 P4],

t2 = [P1 P2 P3 P5] and t3 = [P1 P3 P4 P6]. The faces from the edge are f2 = [P1 P3 P5]

and f3 = [P1 P3 P6] and they have respective outward pointing normal vectors ~n2 and

~n3. The point P∗ = P1 + 1
2 (~n2 + ~n3) shown in Figure 4.9(a) is calculated. The points

P1, P3 and P∗ lie in the plane of the half-space that is used to cut the segments. The

half-space normal vector is given by

~n∗ =
(P1 − P3) × (P∗ − P3)

|(P1 − P3) × (P∗ − P3)|
.

When cutting the segment due to t3 the mean point of the tetrahedra is included following

the half-space cut. The sign is reversed when cutting the segment due to t2.

The point cut is shown in Figure 4.11. The box shows the region where cuts have been

completed to avoid overlap. Consider two of the segments that meet at a point which

are based on t1 = [P1 P2 P3 P4] and t2 = [P1 P5 P6 P7]. The mid-point of the faces

opposite point P1 were calculated. The mid-point of the face [P2 P3 P4] on tetrahedron

t1 is denoted by P∗ and the mid-point of the face [P5 P6 P7] on t2 is denoted by P̂ . The

normal vector of the half-space is given by ~n∗ = P∗−P̂
|P∗−P̂ | and a point on the half-space by

P1.
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(a) The tetrahedra fluid segments
overlap for N = 7 primary particles.

(b) Cutting the tetrahedra with
the appropriate half-spaces resolves
this.

Figure 4.9: An edge cut. First required for N = 6 (3 tetrahedra).

Figure 4.10: Schematic diagram showing the vertices for an edge cut. In this figure tetrahedron
t1 is behind t2 and t3.

(a) Tetrahedra meeting at a
vertex.

(b) Cutting the tetrahedra
avoids overlap.

Figure 4.11: Point cut. First required for N = 9 (7 tetrahedra).
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4.7 Calculating Agglomerate Properties

Figure 4.12 shows images of agglomerates formed by this model. For each agglomerate

the objective is to calculate properties including the volume of binder fluid and the surface

area of the particle that is binder and dry particle.

The volume of binder is equal to the volume of the fluid segments less the volumes of the

intersected portions. For nT tetrahedra

Vbinder =

nT
∑

j=1

[

V (Tj) −
4

∑

i=1

V (Sξ(i,j) ∩ Tj)

]

(4.19)

where the function ξ(i, j) gives the index of the spheres in S which intersect with the fluid

segment Tj. The surface area of the binder on the particle is given by

Abinder =

nT
∑

j=1

[

A(Tj) −
4

∑

i=1

Awet(Sξ(i,j) ∩ Tj)

]

(4.20)

and the surface area that is dry particle by

Aparticle = NAsphere −
nT
∑

j=1

4
∑

i=1

Adry(Sξ(i,j) ∩ Tj) (4.21)

where A(Sξ(i,j)) denotes the total surface area of the sphere Sξ(i,j). Since the spheres have

the same radius this area is calculated as Asphere ≡ A(Sξ(i,j)) for a given resolution k.

The stickiness (or wetness) is defined as the wet fraction of the total surface area as given

by

W =
Abinder

Abinder + Aparticle
(4.22)

where Abinder is the wet surface area and Aparticle is the dry surface area of the agglom-

erate.

Example

The formulae from Equations (4.19)-(4.21) are now illustrated for the four particle ag-

glomerate shown in Figure 4.13(a). Figure 4.13(b) shows the intersected portions between

the spheres and fluid segments along with the wet and dry faces of the portion S4 ∩T1.

Now t1 = [1 2 3 4] and therefore ξ(1, 1) = 1, ξ(2, 1) = 2, ξ(3, 1) = 3 and ξ(4, 1) = 4. From

Equation (4.19), for nT = 1,

Vbinder = V (T1) −
4

∑

i=1

V (Sξ(i,1) ∩ T1). (4.23)
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(a) 4 particle agglomerate. (b) 12 particle agglomerate.

(c) 45 particle agglomerate.

Figure 4.12: Agglomerates created by the model detailed in Chapter 4.
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(a) A four particle agglomerate,
showing placement of primary par-
ticles and binder fluid.

(b) Polyhedra resulting from the intersection
between primary particles and binder fluid.

Figure 4.13: In Figure 4.13(a), primary particles and the binder tetrahedra is drawn. Figure (b)
shows the intersected portions, obtained by intersecting the spheres with the binder fluid. For
this figure δ = 0.7 and s = 0.5.

The surface area of the agglomerate that is binder (wet) is

Abinder = A(T1) −
4

∑

i=1

Awet(Sξ(i,1) ∩ T1) (4.24)

and the area of the agglomerate that is particle (dry) is

Aparticle = 4Asphere −
4

∑

i=1

Adry(Sξ(i,1) ∩ T1). (4.25)

The total agglomerate surface area is given by

Atotal = Abinder + Aparticle. (4.26)

4.8 Solving the Model

This section details the steps taken to solve the model. This model has three parameters:

the agglomerate size N , the minimum separation distance between sphere centres σ and

the fluid saturation state δ. For each σ the computationally intensive part of this problem

is evaluating the intersected portions for the N and δ parameter space. Since σ and δ are

independent the placement of the spheres and tetrahedra are calculated in Matlab for N
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primary particles. Then each node on a parallel computer‡ solves a particular σ value for

N primary particles where δ is a parameter. The steps taken are as follows:

1. For each value of σ the placement of the spheres and tetrahedra were generated in

Matlab using the steps detailed in Section 4.2. After a new particle is added the S,

T and F matrices are updated along with a script file which is used to recreate the

placement of the spheres and tetrahedra. The script file provides a list of the fluid

segments to be formed, the type of cuts required and the half-spaces required for

the cuts. For each σ value the script file and the matrices are saved to disk after

an N particle is generated in Matlab.

2. The dataset for a σ value is loaded by a C++ program which uses functions from

the C++ toolbox. Using the script file each instance of the C++ program creates

the spheres and fluid segments, intersects them as appropriate and calculates the

agglomerate properties. The C++ program is run in parallel where each node solves

a particular σ value for the two-dimensional N and δ parameter space. The N loop

is completed first (i.e. for a fixed δ value) since all the fluid segments must be in

the same saturation state δ.

3. After evaluation of a σ datafile is complete the node writes the calculated properties

to disk. Once all of the nodes are complete the data is combined for analysis in

Matlab which is the subject of the following section.

4.9 Results of the Model

In this section results are presented for the wetness of agglomerates as a function of

the number of particles N , the minimum separation distance s between particles and the

quantity of binder δ. The agglomerate model was solved using the parameters N = 50 (i.e.

agglomerates between 4 and 50 primary particles) where 0 ≤ s ≤ R (or 2R ≤ σ ≤ 3 R)

and 0 ≤ δ ≤ 1. The number of steps used for the s and δ variables was 100 so that

∆ s = 0.01R and ∆ δ = 0.01. The resolution used for the polyhedra objects was k = 30.

The results below are presented in terms of a volume ratio between the binder fluid and

the primary particles. For an N particle agglomerate, the fluid-to-solid volume ratio is

defined as

V ∗ =
Vbinder

NVsolid
(4.27)

‡The parallel computer used was the Massey University sisters Beowulf cluster which has 16 PIII
processors @ 867 MHz.
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where Vbinder is the binder volume and the volume of a primary particle is Vsolid = 4
3πR3.

The surface areas Abinder, Aparticle and Atotal are also normalised as

A∗
binder =

Abinder

NAsolid
, (4.28)

A∗
particle =

Aparticle

NAsolid
(4.29)

and

A∗
total =

Atotal

NAsolid
(4.30)

where Asolid = 4πR2. From Equation (4.26), A∗
total = A∗

binder + A∗
particle.

The dependent variables are W , A∗
binder and A∗

total and the parameters are s, δ, N and

V ∗. The graphs in Figures 4.14 - 4.18 show the response of the dependent variables to

the parameters. Results for the complete parameter space may be viewed because the

parameter along the contours is δ and subplots are used to show results for fixed values

of one of the parameters.

The figures that are presented are as follows:

1. Figure 4.14 shows the relationship between W and s. The subplots are for fixed

values of V ∗ and the curves represent agglomerates of a fixed size. The parameter

along the curves is δ as indicated.

2. Figure 4.15 shows the relationship between W and s for an agglomerate of a fixed

size (N = 30). The curves represent fixed values of V ∗ and δ.

3. Figure 4.16 shows plots of surface wetness with respect to N . Each subplot is for a

fixed value of s and the curves represent a fixed value of V ∗. The parameter along

the curves is δ.

4. Figure 4.17 plots the wet agglomerate surface area A∗
binder against N for s = 0 and

s = 0.2R. Each curve represents a fixed V ∗ value.

5. Figure 4.18 plots the total agglomerate surface area A∗
total against N for s = 0 and

s = 0.2R. Each curve represents a fixed V ∗ value.

Figures 4.14 and 4.15 were obtained by using sorting the dataset by particle size N and

then using the Matlab contour command on each of these portions. Figures 4.16-4.17

were obtained by interpolating the data for fixed values of V ∗ and repeating this all the

dataset segments (as sorted by size). The ‘jitter’ in these figures is because a non-constant



120 Modelling the Agglomeration Process

(a) V ∗ = 0.3 (b) V ∗ = 0.5

(c) V ∗ = 0.7 (d) V ∗ = 1.0

Figure 4.14: Plot of surface wetness W with respect to inter-particle separation distance s for
agglomerates composed of 10, 20, 30 and 50 primary particles. Values of V ∗ used in this figure
are V = 0.3, 0.5, 0.7 and 1.0.
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Figure 4.15: Volume contour plot of surface wetness W with respect to separation distance s for
an N = 30 particle agglomerate. There are two sets of contour labels in this figure. Contour labels
on the solid blue lines are the fluid to solid volume ratio V , while bold contour labels (drawn in
a dashed red line) are lines of constant δ.
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(a) s = 0 (b) s = 0.2R

(c) s = 0.5R (d) s = 0.7R

Figure 4.16: Graphs of wetness W with respect to particle number N for a range of s and a range
of fluids to solid ratio values V ∗.
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(a) s = 0

(b) s = 0.2R

Figure 4.17: Plot showing the wet area of agglomerates A∗

binder with respect to number of particles
N .
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(a) Plot of A∗
total versus N for s = 0

(b) Plot of A∗
total versus N for s = 0.2R

Figure 4.18: Plot showing the total area of agglomerates A∗

total with respect to number of particles.
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volume of fluid is added with each additional particle. (The volume of binder fluid added

depends on the number and placement of the fluid segments.)

The following observations are made from the figures:

Observation(s) Shown in

Figure(s)

Physical Effect

1. W increases as s is decreased

for fixed N and fixed V ∗. δ

increases.

4.14, 4.15

Decreasing s decreases the void space

causing liquid to migrate to the sur-

face of the particle.

2. W increases as V ∗ is in-

creased for fixed N and fixed

s. δ increases.

4.15

Fixing N and s fixes the void space.

Additional liquid therefore increases

the saturation state of the particle.

3. W decreases for increasing

size N for fixed V ∗ and fixed

s. δ decreases

4.16

The void space of the agglomerate in-

creases with N . For fixed V ∗, W and

δ therefore decreases.

4. The relative wet surface area

A∗
binder decreases for increas-

ing size N for fixed V ∗ and

s. δ decreases.

4.17

The relative void space of the parti-

cle increases with increasing size N .

The fluid moves to this space which

decreases the fluid surface area.

5. The relative total surface

area A∗
total decreases for in-

creasing size N for fixed V ∗

and s. δ decreases.

4.18

As above.

6. For V ∗ values below the ran-

dom packing limit (approx-

imately V ∗ = 0.42 for s =

0) the total surface area in-

creases with N until no solu-

tion can be obtained.

4.18(a)

The fluid occupies the increased void

space due to increasing N . This ex-

poses portions of the spheres which

proportionally have a higher surface

area. No solution can be obtained

when the binder volume is less than

the void space.

The observation made in item 1 supports the theory of Wauters et al. [21], described in

Section 1.2.2, where particles increase in surface wetness as consolidation occurs.

The surface wetness curves in Figure 4.16 are a function of N , V ∗ and s so that W =
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W (N, V ∗, s). The extended population balance model in Section 5.2 requires a relation-

ship of the form W = W (N, V ∗) for the probability of particle coalescence. The original

approach taken was to find the value of s, for a given V ∗ value, such that the particle had

minimum wet binder surface area Abinder. However, particles with high s and low δ values

were predicted which had a physically unrealistic appearance. The cause of this is due to

the use of the approximate binder fluid surface. The case subsequently investigated was

s = 0 which corresponds to the case of maximum consolidation. The functions fitted to

this case are given below and they used in the population balance simulation.

4.10 Fitting Functions for s = 0

Functions are now to be fitted to the curves shown in Figures 4.16(a) and 4.17(a). These

functions are used in the population balance model which is presented in Chapter 5.

Surface Wetness W

The surface wetness curve W for s = 0 shown in Figure 4.16(a) is a function of N and V ∗.

To fit a suitable family of curves, the following observations were made: (i) the curves

are approximately linear with respect to V ∗, (ii) a peak or ‘hump’ occurs for N . 20 and

(iii) the curves do not pass through the origin. Item (ii) was initially modelled using a 1
N

curve but a 1
N2 curve was found to be more suitable since it decreases more rapidly. A

curve fit was obtained to the following family of curves:

W (N, V ∗) =
k1

N2 + k4
+ k2V

∗ + k3 (4.31)

where k1, k2, k3 and k4 are constants.

The constants k1 and k4 in Equation (4.31) control the height and width of the function

modelling the ‘hump’, k2 controls the spacing of the V ∗ curves and k3 gives the vertical

intercept. The constants k1, k2 and k3 are linear but k4 is non-linear. For given k4 the

constants k1, k2 and k3 may be determined using a linear least-squares solver in Matlab.

The use of full non-linear optimisation was able to be avoided by repeating the linear

regression and finding the (approximate) k4 corresponding to a minimum residual.

The problem was setup using vectors Wi, Ni and V ∗
i corresponding to the datapoints in

Figure 4.16(a). The datapoints were labelled such that i = 1 corresponds to the datapoint

V ∗
1 = 0.1 and N1 = 4 and i = I to the datapoint at i = I to V ∗

I = 0.7 and NI = 50. The

intermediate datapoints were labelled such that 1 ≤ i ≤ I. The following matrix system
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was then formed:




























1
N2

1 +k4
V ∗

1 1

1
N2

2 +k4
V ∗

2 1

...
...

...
1

N2
i +k4

V ∗
i 1

...
...

...
1

N2
I
+k4

V ∗
I 1





































k1

k2

k3









=



























W1

W2

...

Wi

...

WI



























(4.32)

which we write as

Ak̂ = Ŵ . (4.33)

The system was solved for k̂ using matrix left division in Matlab with the command

k̂ = mldivide(A, Ŵ). The residual was then calculated as |Ak̂ − Ŵ |. As discussed above

the least-squares solution was repeated for different k4 values using k4 = 0 (50) 2000. The

value resulting in the smallest residual was k4 = 900. For this case the linear constants

were calculated as k1 = 376, k2 = 1.62 and k3 = −0.42. The curve fit was therefore

W (N, V ∗) =
376

N2 + 900
+ 1.62 V ∗ − 0.42 (4.34)

Since the wetness measures the wet fraction of the agglomerate it is necessary to restrict

the curve fit such that 0 ≤ W ≤ 1. This yields the following function:

W (N, V ∗) =















0 for V ∗ ≤ 0.26 − 232
N2+900

1 for V ∗ ≥ 0.88 − 232
N2+900

376
N2+900

+ 1.62 V ∗ − 0.42 otherwise

(4.35)

The curve fit is shown superimposed on the original data in Figure 4.19.

Wet Binder Surface Area Abinder

Figure 4.17(a) shows a plot of A∗
binder against N for s = 0 and Figure 4.20 shows log-

arithm plots of these variables. For each V ∗ the function log Abinder was found to be

approximately linear in log N §. It is observed that the spacing between the curves in

Figure 4.20 decreases with increasing V ∗ and that the curves do not pass through the

origin. This suggests a fit to the following family of curves:

log A∗
binder = k1 log N + k2(V

∗)k3 + k4 (4.36)

where k1, k2, k3 and k4 are constants. The slope of the curve fit is k1, k3 controls

§More complex functions can be used to model the curves in Figure 4.20. However, the overall curve fit,
shown in Figure 4.21, was found to be similar (when compared to a linear fit of log A∗

binder against log N).
The linear curve fit was therefore used as it resulted in a simpler formula for A∗

binder = A∗
binder(N, V ∗).
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Figure 4.19: The curve fit for W = W (N,V ∗) for s = 0.

the spacing of the V ∗ curves, k2 is the constant of proportionality between (V ∗)k3 and

log A∗
binder and k4 is the vertical intercept. The terms k1, k2 and k4 are linear while k3 is

non-linear.

The constants in Equation (4.36) are determined by using the same approach as fitting

curves to the surface wetness plot W . Using the datapoints from Figure 4.17, vectors

Wi, Ni and V ∗
i are formed where 1 ≤ i ≤ I. The non-linear term k3 is determined by

repeating the linear least-squares solution to find the k3 value which gives the smallest

residual.

The matrix system formed is:





















log N1 V ∗
1 1

...
...

...

log Ni V ∗
i 1

...
...

...

log NI V ∗
I 1





























k1

k2

k4









=





















log
(

A∗
binder

)

1
...

log
(

A∗
binder

)

i
...

log
(

A∗
binder

)

I





















(4.37)

which we write as

Ak̂ = L̂. (4.38)
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Figure 4.20: Plot of log A∗

binder versus log N .

Matrix left division in Matlab was used to solve Equation (4.38) for k̂. The residual

|Ak̂ − L̂| was calculated for k3 = 0.1 (0.1) 1 and found to be a minimum for k3 = 0.2.

For this case, the linear constants were calculated to be k1 = −0.64, k2 = 8.59 and

k4 = −6.57. Therefore, from Equation (4.36),

log A∗
binder = −0.64 log N + 8.59(V ∗)0.2 − 6.57 (4.39)

or

A∗
binder = N−0.64e

[

8.59(V ∗)0.2−6.57
]

(4.40)

The function from Equation (4.40) is shown superimposed on the original datapoints in

Figure 4.21. The figure shows that A∗
binder = 0.5 is an upper bound for the data. The

curve fit is accordingly defined as

A∗
binder = min

(

N−0.64e

[

8.59(V ∗)0.2−6.57
]

, 0.5

)

. (4.41)

The population balance model in Chapter 5 uses Abinder to calculate the rate of binder

drying. Since Abinder = NAsolidA
∗
binder, it follows, for R = 1, that

Abinder = min

(

4πN0.36e

[

8.59(V ∗)0.2−6.57
]

, 2π

)

. (4.42)

Equations (4.35) and (4.42) are used in the population balance model of Chapter 5.
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Figure 4.21: Plot of A∗

binder versus N .

4.11 Future Work

Images of wet granules taken under microscope could also be compared with the shape

and fluid surface of agglomerates predicted by this model as shown in Figure 4.12.
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Chapter 5

Population Balance
Modelling

5.1 Introduction

In 1917 Smoluchowski [48] developed a mathematical model for the coalescence of parti-

cles. He was studying the coalescence of liquid particles in a colloidal suspension. How-

ever, his model has since become established as the fundamental equation for population

modelling of particle agglomeration and has been used in numerous studies such as the

coalescence of aerosols, liquid droplets, snowflake formation, and the formation of planets

and stars [57–59]. In this chapter the Smoluchowski model is extended to include the

effects of binder fluid by adding a system of differential equations. These extensions to

the model are new.

The Smoluchowski model is a population balance or flow-box model [11]. That is, only

the number of particles of each size is recorded. The essence of the model is to track

the flow of particles as they coalesce from one size to another. In contrast, simulations

based on the distinct element method (DEM) use additional information, such as the

position, velocity, and energy of the particles, in order to determine the criteria for particle

coalescence [47,60].

The Smoluchowski model is based on the following assumptions:

1. The total number of particles N is large.

2. Each particle is an agglomeration of an integer number of primary particles. Pri-

mary particles are of equal mass. Units are used so that the mass of a primary

particle is 1. (An agglomerate formed by i primary particles is abbreviated as an ‘i

particle’.)
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3. The particles are incompressible.

4. It is a continuous population model: positions, velocities, shapes, and the consti-

tution of individual particles are disregarded. The only dependent variable is the

real number ni(t) of particles of size i. The mass of particles of size i is denoted

mi(t) = i ni(t). The independent variables are particle size i (a positive integer)

and time t (a non-negative real number).

5. Only two-particle (binary) collisions are possible.

6. Collisions occur continuously between particles of size i and j at a rate determined

by i, j, ni(t) and nj(t).

7. For fixed particle sizes i and j, each i particle has an equal chance of colliding with

a j particle.

8. Particles stick together when they collide.

9. Particles do not break apart.

Using the assumptions above the differential equations which govern the evolution of ni(t)

are now derived.

Firstly the collision rate between i and j particles is determined. A different number of

collisions occur depending on whether i 6= j or i = j. When i 6= j, using assumption

7, each i particle may collide with a j particle to result in nj(t) collisions. Since there

are ni(t) i particles the total number of collisions possible is ni(t)nj(t). When i = j,

collisions occur between particles in the same size category and care must be taken to

avoid double counting. For ni(t) particles, the number of unique collisions is given by

(ni − 1) + (ni − 2) + ... + 1 =

ni−1
∑

i=1

(

ni(t) − i
)

=
1

2
ni(t) (ni(t) − 1) ≈ 1

2
ni(t)

2 (5.1)

because the ‘first’ particle may collide with (ni − 1) particles and the ‘second’ particle

with (ni − 2) particles and so on. The approximation ni(t) − 1 ≈ ni(t) follows from

assumption 1.

Using assumption 6, and the discussion above, the collision rate between i and j particles

is Ki,jni(t)nj(t) when i 6= j and 1
2Ki,ini(t)

2 when i = j. The rate constants Ki,j should

depend smoothly on i and j and must obey Ki,j = Kj,i and Ki,j ≥ 0. The function

K is called the coalescence kernel and it is determined by the modelling of physical

processes [11]. Table 5.1 provides a list of kernels in the literature where K0 is a constant.
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Name of the kernel Physical application Kernel

Size-independent (random) [44,61] Droplet coalescence K0

Granulation
Product Polymers K0ij

Cross-sectional area (CSA) Granulation K0(i
1
3 + j

1
3 )2

Equi-partition of kinetic energy (EPKE) Granulation K0(i
− 1

2 + j−
1
2 )

Brownian motion [48] Aerosols K0(i
1
3 + j

1
3 )(i−

1
3 + j−

1
3 )

Gravitational settling [62] Aerosols K0(i
1
3 + j

1
3 )2|i

1
3 − j

1
3 | for i

1
3 > 50µm

K0(i
1
3 + j

1
3 )2|i

2
3 − j

2
3 | for i

1
3 < 50µm

Polymerisation Branched polymers K0(i + c)(j + c) where c is a constant.

Kapur [63] Granulation K0
(i+j)a

(ij)b where a, b are constants.

Sastry [64] Granulation K0
(i

2
3 +j

2
3 )

1
i
+ 1

j

Adetayo et al. [65] Granulation K0 for t ≤ t1
K0a(i + j) for t > t1: a is constant.

Adetayo and Ennis [66] Granulation K0 for w ≤ w∗

0 for w > w∗

where w∗ = (ij)a

(i+j)b : a, b are constants.

Table 5.1: Table of coalescence kernels in the literature.

Smoluchowski took Ki,j ≡ K0 so that all particles have an equal chance of colliding

together. In this case the resulting equations of agglomeration can be solved analytically

along with some simple size dependent kernels. In general, however, a numerical solution

is required.

Above a flow-box model was discussed with particles leaving sizes i and j and entering

size i + j. A differential equation for nl(t) is now derived by examining the rate at which

particles enter and leave size l. Particles leave size l when collisions occur with any particle

of size m ≥ 1. When m 6= l, each l particle coalesces with a m particle and the rate of loss

from size l is Kl,mnl(t)nm(t). When m = l, 1
2Kl,lnl(t)

2 collisions occur but two particles

leave size l for each collision. Therefore the rate of loss is 2 × 1
2Kl,lnl(t)

2 = Kl,lnl(t)
2.

The terms from both cases are the same which allows the total rate of particle loss from

size l to be written as nl(t)
∑∞

m=1 Kl,mnm(t).

Particles enter size l when m and (l−m) particles coalesce. The coalescence rate depends

on whether l is even or odd. Two cases occur when l is even: (i) m 6= l − m and (ii)

m = l −m. For m 6= l −m, which occurs for 1 ≤ m ≤ l
2 − 1, the sizes m and l −m differ

and the rate of coalescence is
∑

l
2
−1

m=1 Km,l−mnm(t)nl−m(t). When m = l − m, or m = l
2 ,

particles of the same size coalesce at the rate of 1
2K l

2
, l
2
n l

2
(t)2 (from above). When l is

odd, coalescence occurs for m 6= l − m, or 1 ≤ m ≤ l−1
2 , and the rate of coalescence is

∑

l−1
2

m=1 Km,l−mnm(t)nl−m(t).
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From the discussion above, the differential equations for the even case are:

dnl

dt
=

1

2
K l

2
, l
2
n l

2
(t)2 +

l
2
−1

∑

m=1

Km,l−mnm(t)nl−m(t) − nl(t)

∞
∑

m=1

Kl,mnm(t), (5.2)

and, for the odd case,

dnl

dt
=

l−1
2

∑

m=1

Km,l−mnm(t)nl−m(t) − nl(t)
∞

∑

m=1

Kl,mnm(t). (5.3)

Equations (5.2) and (5.3) may be combined into a single differential equation by use of

the symmetry property of the kernel, Km,l−m = Kl−m,m. For the even case, the first sum

in Equation (5.2) may be written

l
2
−1

∑

m=1

Km,l−mnm(t)nl−m(t) =
l−1
∑

m= l
2
+1

Kl−m,mnl−m(t)nm(t)

=
1

2

l−1
∑

m=1

Km,l−mnm(t)nl−m(t).

(5.4)

Similarly, for odd l, from Equation (5.3),

l−1
2

∑

m=1

Km,l−mnm(t)nl−m(t) =

l−1
∑

m= l+1
2

Kl−m,mnl−m(t)nm(t)

=
1

2

l−1
∑

m=1

Km,l−mnm(t)nl−m(t).

(5.5)

Combining Equation (5.4) with Equation (5.2) and Equation (5.5) with Equation (5.3)

gives a system of ordinary differential equations which we call the Smoluchowski equa-

tions:

dnl

dt
=

1

2

l−1
∑

m=1

Km,l−mnm(t)nl−m(t) − nl(t)
∞

∑

m=1

Kl,mnm(t). (5.6)

We solve these equations subject to the initial condition of N0 ≡ n1(0) and ni(0) = 0 for

i > 1 where N0 denotes the initial number of particles.
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Proposition 5.1 Equation (5.6) conserves total mass M =
∑∞

l=1 l nl.

Proof: We prove this by showing that dM
dt = 0.

Now

dM

dt
=

d

dt

( ∞
∑

l=1

ml(t)

)

=
d

dt

( ∞
∑

l=1

lnl(t)

)

=
∞

∑

l=1

(

l

2

l−1
∑

m=1

Km,l−mnm(t)nl−m(t) − l nl(t)
∞

∑

m=1

Kl,mnm(t)

)

.

(5.7)

The first sum adds diagonal entries of K while the second sums along rows of K. The

summation order of the first sum may be changed to match that of the second by intro-

ducing new indices p and q where p = m and q = l − m. Then

∞
∑

l=1

l−1
∑

m=1

lKm,l−mnm(t)nl−m(t) =
∞

∑

m=1

∞
∑

l=m+1

lKm,l−mnm(t)nl−m(t)

=
∞

∑

p=1

∞
∑

q=1

(p + q)Kp,qnp(t)nq(t).

(5.8)

Substituting Equation (5.8) into Equation (5.7) gives

dM

dt
=

∞
∑

p=1

∞
∑

q=1

p + q

2
Kp,qnp(t)nq(t) −

∞
∑

p=1

∞
∑

q=1

p Kp,qnp(t)nq(t). (5.9)

But now

∞
∑

p=1

∞
∑

q=1

p Kp,qnp(t)nq(t) =
∞

∑

p=1

∞
∑

q=1

q Kq,pnq(t)np(t)

=
1

2





∞
∑

p=1

∞
∑

q=1

p Kp,qnp(t)nq(t) +
∞

∑

p=1

∞
∑

q=1

q Kq,pnq(t)np(t)





=
∞

∑

p=1

∞
∑

q=1

p + q

2
Kp,qnp(t)nq(t).

(5.10)

Substituting Equation (5.10) into Equation (5.9) gives the result.
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Due to particle coalescence the total number of particles in the system N is not conserved.

However, it can be shown that N decays, and, when Kl,m ≡ K0, the total number of

particles may be calculated.

Proposition 5.2 Let N =
∑∞

l=1 nl be the total number of particles. Then dN
dt ≤ 0.

Proof:

dN

dt
=

d

dt

( ∞
∑

l=1

nl

)

=
∞

∑

l=1

dnl

dt

=
∞

∑

l=1

(

1

2

l−1
∑

m=1

Km,l−mnm(t)nl−m(t) −
∞

∑

m=1

Kl,mnl(t)nm(t)

)

=
1

2

∞
∑

p=1

∞
∑

q=1

Kp,qnp(t)nq(t) −
∞

∑

l=1

∞
∑

m=1

Kl,mnl(t)nm(t)

= −
∞

∑

p=1

∞
∑

q=1

1

2
Kp,qnp(t)nq(t)

≤ 0.

(5.11)

Corollary 5.3 For the size-independent kernel, Kl,m ≡ K0, the total number of particles

is given by

N(t) =
2N0

K0N0 t + 2
. (5.12)

Proof: From Equation (5.11), for Kp,q ≡ K0,

dN

dt
= −K0

2

∞
∑

p=1

∞
∑

q=1

np(t)nq(t)

= −K0

2





∞
∑

p=1



np(t)
2 + 2np(t)

p−1
∑

q=1

nq(t)









= −K0

2





∞
∑

p=1

np(t)





2

= −K0

2
N2.

(5.13)

Integrating Equation (5.13) gives Equation (5.12).
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Corollary 5.4 The mean particle size i is increasing.

Proof: Now

i =
M

N
=

∑∞
l=1 l nl

∑∞
l=1 nl

.

The total mass M =
∑∞

l=1 lnl is constant. From Proposition 5.2, N is decreasing and the

result follows.

To illustrate how the predictions of the model depend on the coalescence kernel, Equation

(5.6) was solved using (i) the size-independent kernel Kl,m ≡ K0 = 4 and (ii) the cross-

sectional area dependent kernel Kl,m ≡ (l
1
3 + m

1
3 )2. Both kernels are discussed below.

(Since the values of K1,1 are equal the kernels may be compared.) The initial condition

used was N0 ≡ n1(0) = 1000. Figure 5.1 plots the change in number of particles, with

respect to time, for Kl,m = K0 ≡ 4. The total number of particles N and the evolution of

particles in the first four size categories (n1, n2, n3 and n4) are shown. The N curve was

evaluated numerically using Matlab and analytically using Equation (5.12). Agreement

was obtained with both solutions.

Figure 5.2 shows number distribution plots with respect to size for different times t. The

corresponding mass distributions, where mi = ini, are shown in Figure 5.3.

From these graphs the following features and comparisons are noted:

1. The mean particle size i of the distributions is observed to be increasing. (This

observation was proved by Corollary 5.4.) The variance in the distributions is

observed to be increasing.

2. The total number of particles N is observed to be decreasing because the area under

the N curve in Figure 5.1 decreases with time. (This observation was proved by

Proposition 5.2.)

3. By numerically evaluating the area under the mass curves in Figure 5.3, it was found

that the total mass M is constant. (This observation was proved by Proposition

5.1.)

4. Coalescence occurs at a faster rate for the Kl,m ≡ (l
1
3 +m

1
3 )2 kernel because Kl,m ≡

4 ≤ Kl,m ≡ (l
1
3 + m

1
3 )2 for all l and m. By comparing the area under the number

density curves in Figure 5.2, the decay rate of total particles N is higher for the

cross-sectional area kernel. This also causes the shape of the two distributions to

differ; for instance, a peak develops in the mass distribution for Kl,m ≡ (l
1
3 + m

1
3 )2

but not for Kl,m ≡ K0 = 4.
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Figure 5.1: Plot showing the change in the number of particles for Kl,m ≡ K0 = 4 using the initial
condition N0 ≡ n1(0) = 1000. N refers to the total number of particles and n1, n2, n3 and n4 to
the first four size categories.
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(a) Kl,m ≡ K0 = 4.
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Figure 5.2: Plots showing the evolution of numbers of particles for (a) Kl,m ≡ K0 = 4 and (b)

Kl,m ≡ (l
1
3 + m

1
3 )2. Size is plotted on the horizontal axis. Figure 5.3 shows the corresponding

mass distribution plots, where mi = ini, with respect to particle size. Note that the vertical axis
scale changes with time.
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Figure 5.3: Plots showing the evolution of the mass distribution for (a) Kl,m ≡ K0 = 4 and (b)

Kl,m ≡ (l
1
3 + m

1
3 )2. The relationship between mass and particle number is mi = ini. Note that

the vertical axis scale changes with time.
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Figure 5.4: Particles of size i and j colliding, where ri ∝ i
1
3 and rj ∝ j

1
3 , for the cross-sectional

area kernel Ki,j = K0(i
1
3 + j

1
3 )2.

To conclude this section, we now provide several examples to illustrate how the coalescence

kernels Kl,m may be derived:

1. Product

This kernel applies to the coalescence of thin, straight-line (one dimensional) poly-

mers undergoing motion in R
3. The size of the particles is given by the number of

monomer units. As two particles come nearby their relative motion may be traced

out by a ribbon. If the ribbon self-intersects then the particles collide. The chance

of intersection is proportional to each of the lengths separately. The chance of

coalescence is therefore proportional to their product. Therefore Ki,j ≡ K0ij.

2. Cross-Sectional Area (CSA)

For this kernel the chance of coalescence is determined by the effective cross-

sectional area of particles. In Figure 5.4 non-deformable particles i and j are

considered with respective radii ri and rj . If particles of different sizes also have

similar shapes, then, from assumptions 2 and 3, ri ∝ i
1
3 and rj ∝ j

1
3 . A rest

frame is used where the i particle is motionless. The particles touch if the centre

of the j particle, at the closest approach of the centre of mass of the arrange-

ment, lies within in the circle ri + rj . The coalescence kernel is therefore given by

Ki,j ≡ K0(ri + rj)
2 = K0(i

1
3 + j

1
3 )2.

3. Equi-Partition of Kinetic Energy (EPKE)

This kernel applies to distributions where the kinetic energy is distributed evenly

amongst the particles. An i particle at velocity vi has kinetic energy E = 1
2 iv2

i and

therefore vi ∝ i−
1
2 . Similarly vj ∝ j−

1
2 . If it is assumed that the mutual velocities

of colliding particles add together then Ki,j = K0(i
− 1

2 + j−
1
2 ).
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5.2 Modelling the Effects of Binder Fluid

We now extend the Smoluchowski model to model the presence of a binder fluid. The

additional assumptions for the extended model are as follows:

1. Adapting assumption 4 from the model in Section 5.1, a new dependent variable

bi(t) (a real number) is added to represent the total wet binder mass of particles of

size i. Particles of the same size are assumed to contain the same amount of binder.

Therefore each i particle contains Bi(t) = bi(t)
ni(t)

units of binder.

2. Wet binder is assumed to dry into solid binder which then remains to form solid

bridges between particles. Solid binder is not tracked in the model. The rate of

drying of i particles depends only on i and bi(t). Therefore particles of the same

size dry at the same rate.

3. Each collision has a chance of sticking which depends only on i, j, Bi(t) and Bj(t).

4. Binder is transferred only when particles coalesce.

5. If either particle in a binary collision becomes more wet then the chance of sticking

can not decrease.

6. Binder combines (or adds) together as particles coalesce.

7. Two completely dry particles can not stick.

The coalescence kernel is now modified to incorporate the above assumptions into the

extended model. From assumption 3, the sticking efficiency function is introduced as

Φi,j = Φ(i, j, Bi(t), Bj(t)) (5.14)

where 0 ≤ Φi,j ≤ 1. This function gives the probability that i and j particles coalesce

together following a collision. (The original Smoluchowski model corresponds to Φi,j ≡ 1

because all particles coalesce upon collision.) In developing the extended model, we also

separate the size-independent K0 and size-dependent Ki,j components of the coalescence

kernel, writing the effective coalescence kernel as

K̂i,j ≡ K0Ki,jΦi,j . (5.15)
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The product K0Ki,j is called the collision rate function. Substituting K̂i,j from Equation

(5.15) into Equation (5.6) gives

dnl

dt
=

1

2

l−1
∑

m=1

K̂m,l−mnm(t)nl−m(t) − nl(t)
∞

∑

m=1

K̂l,mnm(t)

=
K0

2

l−1
∑

m=1

Km,l−mΦm,l−mnm(t)nl−m(t) − K0nl(t)
∞

∑

m=1

Kl,mΦl,mnm(t).

(5.16)

To eliminate an overall time scaling factor from the model, we now divide Equation (5.16)

by K0 to give

dnl(t)

d(K0t)
=

1

2

l−1
∑

m=1

Km,l−mΦm,l−m nm(t)nl−m(t) − nl(t)
∞

∑

m=1

Kl,mΦl,mnm(t). (5.17)

Equation (5.17) is the system of differential equations for the movement of particles in the

extended model. We now derive associated differential equations for the movement of wet

binder fluid. To do this, consider the binary coalescence of m and (l−m) particles. From

assumption 1, these particles contain, respectively, Bm(t) and Bl−m(t) units of binder. If

these particles coalesce, then, from assumption 4, Bm(t) units of binder depart size m,

Bl−m(t) units of binder depart size l −m and Bm(t) + Bl−m(t) units of binder enter into

size l. From assumption 2, the rate of drying of particles of size l depends on l and bl(t).

The drying rate is defined as D0Dl(bl(t)) where D0 is the size-independent component of

the drying function and Dl(bl(t)) ≥ 0 is the size-dependent portion.

Since binder is transferred as particles coalesce, it follows, from Equation (5.17), and the

discussion above, that

dbl(t)

d(K0t)
=

1

2

l−1
∑

m=1

Km,l−mΦm,l−m nm(t)nl−m(t) [Bm(t) + Bl−m(t)]

− nl(t)Bl(t)
∞

∑

m=1

Kl,mΦl,m nm(t) − D0

K0
Dl(bl(t)).

(5.18)

After simplification, Equation (5.18) becomes

dbl(t)

d(K0t)
=

1

2

l−1
∑

m=1

Km,l−mΦm,l−m

[

nl−m(t)bm(t) + nm(t)bl−m(t)
]

− bl(t)
∞

∑

m=1

Kl,mΦl,m nm(t) − D0

K0
Dl(bl(t)).

(5.19)

The active parameter D0
K0

is called the drying-to-collision ratio.
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Equations (5.17) and (5.19) are the system of equations for the extended model. They

provide a powerful and flexible means for the modelling of wet granulation.

Proposition 5.5 If there is no drying (Dl(bl(t)) = 0 for all l) then the total wet binder

mass B =
∑∞

l=1 bl is conserved by Equation (5.19).

Proof:

dB

dt
=

d

dt

(

∞
∑

l=1

bl(t)

)

= K0

∞
∑

l=1

dbl(t)

d(K0t)

= K0

(

1

2

∞
∑

l=1

l−1
∑

m=1

Km,l−mΦm,l−m

[

nl−mbm + nmbl−m

]

−
∞
∑

l=1

∞
∑

m=1

Kl,mΦl,mnmbl

)

= K0

(

1

2

∞
∑

m=1

∞
∑

l=m+1

Km,l−mΦm,l−m

[

nl−mbm + nmbl−m

]

−
∞
∑

l=1

∞
∑

m=1

Kl,mΦl,mnmbl

)

= K0

(

1

2

∞
∑

p=1

∞
∑

q=1

Kp,qΦp,q [nqbp + npbq] −
∞
∑

p=1

∞
∑

q=1

Kp,qΦp,qnqbp

)

= 0

(5.20)

Corollary 5.6 If there is drying (D0Dl(bl(t)) 6= 0 for all l) then the total wet binder

mass B =
∑∞

l=1 bl decreases.

Proof: Using Equation (5.19),

dB

dt
=

d

dt

( ∞
∑

l=1

bl(t)

)

= K0

∞
∑

l=1

dbl(t)

d(K0t)

= K0

[

1

2

∞
∑

l=1

l−1
∑

m=1

Km,l−mΦm,l−m

[

nl−mbm + nmbl−m

]

−
∞

∑

l=1

∞
∑

m=1

Kl,mΦl,mnmbl

]

− D0

∞
∑

l=1

Dl(bl(t))

(5.21)

From Equation (5.20) the term in square brackets in Equation (5.21) is equal to zero.

Therefore
dB

dt
= −D0

∞
∑

l=1

Dl(bl(t)) (5.22)

and the result follows.

To investigate solutions to the agglomeration model, functions Ki,j , Φi,j and Di are

required to close Equations (5.17) and (5.19). To achieve this, two different models are
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proposed: ‘Model 1’ is based on a minimal set of assumptions and uses only the variables

introduced so far in this chapter while ‘Model 2’ uses functions derived from the geometric

model of Chapter 4 and makes use of additional variables. Both models are investigated

for the collision rate functions (a) Kl,m ≡ l m (product), (b) Kl,m ≡ (l
1
3 + m

1
3 )2 (cross-

sectional area, CSA), (c) Kl,m ≡ 1 (size-independent) and (d) Kl,m ≡ (i−
1
2 + j−

1
2 ) (equi-

partition of kinetic energy, EPKE).

Model 1

The following assumptions determine Φi,j and Di:

1. The stickiness of an i particle is proportional to Bi(t).

2. The stickiness of an i particle is inversely proportional to size i.

3. The stickiness of particles is additive in a binary collision.

4. The drying rate of i particles is proportional to Bi(t).

5. The drying rate of i particles is inversely proportional to size i.

6. The drying rate of i particles is proportional to surface area.

Assumption 1 is a minimal assumption where the stickiness of a particle is determined

by the amount of binder it contains. For assumption 2, an i particle containing a fixed

amount of binder fluid Bi(t) was considered. It was estimated that if the size of the

particle was doubled to 2 i then it was reasonable for the stickiness of the particle to

approximately halve. Similar reasoning was used to obtain assumption 5.

From assumptions 1-3 the sticking efficiency function is

Φi,j = min

{

Φ0

(

Bi

i
+

Bj

j

)

, 1

}

(5.23)

where Φ0 is a constant. The results presented in Section 5.4 take Φ0 ≡ 1.

From assumptions 4-6 the drying rate of i particles is inversely proportional to the relative

wet fraction of i particles and proportional to the particle surface area. Therefore

Di(Bi) =
Bi(t)

i
i
2
3

= i−
1
3 Bi(t).

(5.24)
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Model 2

This model uses functions derived from the geometric model, presented in Chapter 4, for

the maximum consolidated case of s = 0 (c.f. Section 4.10).

The following assumptions determine Φi,j and Di:

1. Particles have the same shape and properties as those generated by the geometric

model for the case of s = 0.

2. The stickiness of an i particle is given by the surface wetness of an i particle, Wi.

3. Particles have a probability of coalescence unless they are both dry at the point of

contact.

4. The rate of drying of an i particle, Di(bi(t)), is proportional to the wet agglomerate

surface area (Abinder)i.

5. Internal drying of the binder does not occur.

For assumption 1, from Equation 4.35, the surface wetness of particles, as a function of

the fluid-to-solid ratio V ∗ for s = 0, is given by

W (i, V ∗) =















0 for V ∗ ≤ 0.26 − 232
i2+900

1 for V ∗ ≥ 0.88 − 232
i2+900

376
i2+900

+ 1.62 V ∗ − 0.42 otherwise.

(5.25)

To convert Bi (in mass units) to the fluid-to-solid volume ratio V ∗, the formula

V ∗ =
bi/ρb

i/ρp
= Bi

ρp

ρb
(5.26)

is applied where ρp and ρb are the particle and binder densities. For the results in Section

5.4, the values ρp = ρb = 1 were used.

For assumptions 2 and 3, the following function, which permits coalescence from wet-wet

and wet-dry particle collisions, but not from dry-dry collisions, is proposed for the sticking

efficiency function Φi,j :

Φi,j(Bi(t), Bj(t)) = WiWj + (1 − Wj)Wi + Wj(1 − Wi)

= 1 − (1 − Wi)(1 − Wj).
(5.27)

(The conversion from B to V ∗ using Equation (5.26) is implied when using Equation

(5.27).)
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Figure 5.5: Contour plot of Φi,j for Model 2 for colliding particles of size i and j. The values on
the contours are values of Φi,j . Individual plots correspond to different values of the fluid-to-solid
ratio V ∗.

Figure 5.5 shows plots of Φi,j for colliding particles of size i and j. The values on the

contours are values of Φi,j . The individual plots (a)-(d) correspond to different values of

the fluid-to-solid ratio V ∗. (Straight lines occur in plots (a) and (b) because we limit Wi

such that 0 ≤ Wi ≤ 1 from Equation (5.25).)

From assumption 4, the rate of drying is proportional to the wet surface area of agglom-

erates Abinder. From Equation (4.42), the drying function is given by

Dl(bl(t)) = min

{

4πl0.36e

[

8.59(V ∗
l

)0.2−6.57
]

, 2π

}

. (5.28)

The results from Models 1 and 2 are presented in Section 5.4.
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5.3 Numerical Solution

The steps taken to solve Equations (5.17) and (5.19) numerically are now discussed.

The maximum particle size is restricted to a finite limit of smax (a positive integer).

Following this, Equations (5.17) and (5.19) are written as

dnl

d(K0t)
=

1

2

l−1
∑

m=1

Km,l−mΦm,l−mnm(t)nl−m(t) − nl(t)

smax
∑

m=1

Kl,mΦl,mnm(t) (5.29)

and

dbl(t)

d(K0t)
=

1

2

l−1
∑

m=1

Km,l−mΦm,l−m

[

nl−m(t)bm(t) + nm(t)bl−m(t)
]

−
smax
∑

m=1

Kl,mΦl,m nm(t) bl(t) −
D0

K0
Dl(bl(t))

(5.30)

where 1 ≤ l ≤ smax.

Introducing the finite limit on particle size breaks mass conservation near the smax bound-

ary. To illustrate, consider particles of size k and l where k ≤ smax, l ≤ smax but

k + l > smax. In this case, particles can leave sizes k and l but no balancing entry term

occurs because size k + l does not exist. This mass loss is permitted, however, because

if collisions are restricted based on the arbitrary choice of smax, boundary effects are in-

troduced into the equations, which causes the profile and properties of the distributions

to change with the choice of smax. In practice a suitable value of smax is required to

minimise the mass loss.

The populations reach steady-state when all the wet binder dries into solid binder (as

given by assumption 2 of Section 5.2). The loss of wet binder, due to drying, is given by
B(t)
M(t) where B(t) and M(t) denote, respectively, the total binder and particle mass in the

simulation at time t. Binder loss due to particles exceeding smax does not affect B(t)
M(t) ,

because each pair of coalescing particles of size k and l, where k + l > smax, depart the

simulation with a net total of Bk(t) + Bl(t) units of binder (by Equation (5.19)). This

proportionally decreases B(t) and M(t) such that B(t)
M(t) remains constant. The steady-

state termination condition is therefore

B(t)

M(t)
≤ ε (5.31)

where ε > 0 is a numerical tolerance. The results presented in Section 5.4 used ε = 0.01

corresponding to drying of ≥ 99% of the wet binder at the steady-state condition.
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The results in Section 5.4 present a solution space where the fluid-to-solid ratio V ∗ and the

drying-to-collision ratio D0
K0

are parameters. For given values of V ∗ and D0
K0

, the following

solution technique was used to obtain a steady-state mass distribution:

1. Initial mass and binder distributions were supplied as vectors ~n(t) and~b(t), of length

smax, where

~n(t) =
(

n1(t), n2(t), ..., nsmax(t)
)

and

~b(t) =
(

b1(t), b2(t), ..., bsmax(t)
)

.

The results presented in Section 5.4 used the initial conditions N0 ≡ n1(0) = 1000,

ni(0) = 0 for i > 1, b1(0) = V ∗n1(0) and bi(0) = 0 for i > 1 where V ∗ denotes the

fluid-to-solid ratio.

2. The Matlab ode45 integrator was used to integrate the system of equations in

Equations (5.29) and (5.30). At each time step, MeX code (complied C++ code) was

called from the ode45 script file to evaluate the vectors d~n
dt and d~b

dt . This technique

was used because evaluation of these vectors requires double for loops (since the

sums in Equations (5.29) and (5.30) must be calculated for each size l where 1 ≤
l ≤ smax). Completing the required loops using C++ was found to be significantly

faster than using Matlab.

3. The Matlab event handler was used to monitor the drying of the binder and ter-

minate integration upon reaching the steady-state condition. (See Section 2.3 for a

discussion of the use of zeros-crossing functions in Matlab.) From Equation (5.31),

the zeros-crossing function Z was defined as

Z = B(t) − εM(t) (5.32)

where ε = 0.01. Integration was terminated if the event in Equation (5.32) was

detected.



150 Population Balance Modelling

5.4 Model Results

Steady-state mass distributions for models 1 and 2 are shown in Figures 5.6 and 5.8 using

the initial conditions of N0 ≡ n1(0) = 1000 and b1(0) = V ∗n1(0). The corresponding

times taken to reach steady-state K0t, the mean particle size i and the standard deviation

σ are shown in Figures 5.7 and 5.9. For both models, the collision rate functions compared

are (a) Kl,m ≡ l m (product), (b) Kl,m ≡ (l
1
3 + m

1
3 )2 (cross-sectional area, CSA), (c)

Kl,m ≡ 1 (size-independent) and (d) Kl,m ≡ (i−
1
2 +j−

1
2 ) (equi-partition of kinetic energy,

EPKE). In Figures 5.6 and 5.8, the individual plots, for a given kernel, correspond to

different fluid-to-solid ratio V ∗ and drying-to-collision D0
K0

values. (The D0
K0

values differ

between different cases because the kernels and models have different time-scales. The

values presented have been chosen so that the bulk portion of the mass distributions,

at steady-state, occur within in the first 100 sizes.) The distinguishing features of the

different kernels and models are now discussed.

Firstly the profile of the steady-state mass distributions are discussed. For model 1, the

product collision rate function Kl,m ≡ l m predicts the strongly monotonic distribution,

centred on size 1, as shown in Figure 5.6(a). The cross-sectional area (CSA) collision rate

function Kl,m ≡ (l
1
3 +m

1
3 )2 predicts a less strongly monotonic distribution, also centred on

size 1, as shown in Figure 5.6(b). The function Kl,m ≡ 1 predicts the peaked distribution

shown in Figure 5.6(c) while the equi-partition of kinetic energy (EPKE) collision rate

function Kl,m ≡ (l−
1
2 +m− 1

2 ) predicts the less strongly peaked distribution shown in Fig-

ure 5.6(d). This progression is due to the order maintained by the collision rate functions

where (a) the product kernel favours large-large particle collisions, (b) the CSA kernel

favours large particle collisions, but less strongly, (c) the random kernel is independent

of size and (d) the EPKE kernel favours collisions between small particles. The graphs of

mean particle size i and standard deviation σ in Figure 5.7 support these observations.

Comparing the limiting cases of the product and the EPKE kernel, the product kernel

predicts a tight, skewed distribution (where mass is spread rapidly but thinly across large

sizes) while distributions obtained using the EPKE kernel have the largest mean particle

size i and the broadest steady-state mass distributions. Distributions obtained using the

product kernel reach steady-state in the shortest time while distributions obtained from

the EPKE kernel reach steady-state in the longest time. Properties of distributions ob-

tained using the CSA and the size-independent kernel occur, in order, between these two

cases.

For Model 2, the effects described above are present, along with an additional effect

due to the sticking efficiency function Φi,j . As shown in Figure 5.5, Φi,j decreases for

collisions between large particles, for a given V ∗, causing the coalescence rate to decrease



5.4 Model Results 151

for large particles. For the CSA and product kernels, the competing effect of a collision

rate that favours large particle collisions and a sticking efficiency function which favours

coalescence with small particles is shown as the introduction of a second peak in Figure

5.8.

Both models show that increasing V ∗ for fixed D0
K0

widens the mass distribution. This is

due to coalescence being promoted by the presence of more binder. For this case, Figures

5.7 and 5.9 show that the times taken to reach steady-state increase because there is more

wet binder to dry. Both models also exhibit scaling with respect to V ∗. For instance,

the steady-state distributions in Figures 5.6 and 5.8 appear similar when viewed along

the diagonals for increasing V ∗ and D0
K0

and have comparable steady-state times. This

suggests that an increased drying rate compensates for larger values of the fluid-to-solid

ratio V ∗.

For a particular model and kernel, fixing V ∗, but increasing D0
K0

, narrows the size distribu-

tion and decreases the time taken to reach steady-state. For a particular granulator and

batch, K0 is fixed, so increasing D0
K0

corresponds to an increased drying rate. The limiting

case D0
K0

→ ∞ corresponds to all of the wet binder drying at t = 0. In this case, the

steady-state distribution is given by that of the initial particle distribution. For D0
K0

= 0

(no drying) the system maintains a constant V ∗ as proved by Equation (5.20). In this

case, steady-state distributions do not occur as particle coalescence is not restricted.
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Figure 5.6: Steady-state mass distributions for Model 1. Mass units are plotted on the vertical
axis and size on the horizontal axis. Note that the vertical axis scale differs between figures (a)
and (b).
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Figure 5.6: Steady-state mass distributions for Model 1 (continued).
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(a) Kl,m ≡ l m.

(b) Kl,m ≡ (l
1
3 + m

1
3 )2.

(c) Kl,m ≡ 1.

(d) Kl,m ≡ (l−
1
2 + m− 1

2 ).

Figure 5.7: Plots showing the time taken to reach steady-state K0t, the mean particle size i and
the standard deviation σ at steady-state for Model 1. The mass distributions at steady-state are
shown in Figure 5.6.
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Figure 5.8: Steady-state mass distributions for Model 2. Mass units are plotted on the vertical
axis and size on the horizontal axis.
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Figure 5.8: Steady-state mass distributions for Model 2 (continued).
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(a) Kl,m ≡ l m.

(b) Kl,m ≡ (l
1
3 + m

1
3 )2.

(c) Kl,m ≡ 1.

(d) Kl,m ≡ (l−
1
2 + m− 1

2 ).

Figure 5.9: Plots showing the time taken to reach steady-state K0t, the mean particle size i and
the standard deviation σ at steady-state for Model 2. The mass distributions at steady-state are
shown in Figure 5.8.
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5.4.1 Recommendations for verifying the model

To verify the sticking efficiency and drying models the “ideal” experiment would monitor

the position and size of all particles in a granulator and, in the presence of a binder,

determine the fraction of collisions that result in coalescence as the drying rate is varied.

Similarly, the collision rate function would be verified by finding the collision rate of

particles, as a function of size, in the absence of a binder. At present, however, techniques

are not available to perform these experiments. (Positron emission particle tomography

(PEPT) has been used to monitor the movements of an individual tracer particle in

low and high-shear granulators [67, 68]. This method continually monitors the decay

of a radioactive tracer particle to determine its position in a system. However, this

method monitors only the motion of one particle which is not sufficient to determine the

characteristics of an ensemble.)

Currently, the best method to verify the models would be to perform experimental work

to obtain steady-state size distributions. The profile and properties of these distributions

may be used to compare the results with the theoretical predictions made in Section 5.4.

To experimentally investigate a particular model component, the appropriate operating

variables should be varied while the others remain fixed. The value of D0
K0

, for instance,

may be investigated by varying the agitation intensity of the granulator while the fill-

level and binder delivery rate remain fixed. The resulting changes in the size distributions

may be used to determine the model parameters and hence establish whether the models

proposed are valid.
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Chapter 6

Summary, Conclusions and
Suggestions for Future Work

6.1 Summary and Conclusions

This thesis presented micro and macro-level scale studies of agglomeration. Chapter 1

provided a comprehensive review of wet granulation where the mechanisms of granule

growth, micro-level liquid bridge models and the various types of simulations were dis-

cussed. The topics subsequently investigated were (i) liquid bridges between two and

three particles in Chapters 2 and 3, (ii) an approximate model to estimate the stickiness

of moderately large agglomerates in Chapter 4 and (iii) a population balance model, ex-

tended to model the effects of binder fluid, in Chapter 5. The details and findings of each

of these studies are now summarised.

The work presented in Chapter 2 concerned a mathematical study of liquid bridges be-

tween two particles. The chapter was divided into two parts with Sections 2.2-2.5 study-

ing the static case and Section 2.6 studying the dynamic case. The static case solved the

non-dimensional Young-Laplace equation numerically and analytically. The numerical

solution enabled liquid bridge properties, such as the inter-particle binding force, to be

calculated. Results were presented showing the variation of these properties in terms of a

fixed fluid volume. This extends the work of Lian [35] who assumed particles of the same

radius. Section 2.5 presented a new analytic parametric solution and obtained a phase

portrait which related the height and the slope of the fluid surface together. Generic

results were obtained due to scaling of the pressure difference parameter. The phase

portrait predicted (theoretically) six distinct types of static liquid bridges. Section 2.6

presented a simplified solution of a dynamic liquid bridge between two particles using the

Navier-Stokes equations and the low Reynolds number approximation. The numerical

solution obtained showed the motion of the particles to be damped by the liquid bridge
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viscosity.

Static liquid bridges between three equally sized primary particles were investigated in

Chapter 3. This is the first time the Young-Laplace equation has been solved for this ar-

rangement. Due to symmetry, and an innovative choice of coordinates, the complete fluid

surface was obtained by numerically solving for 1/12 of the entire surface. Partial differ-

ential equations for constant mean curvature and boundary conditions were analytically

derived and then numerically solved on a 15× 15 mesh to calculate liquid bridge proper-

ties including the volume, surface area and inter-particle force. Independent experimental

work was conducted and visual agreement with the numerical work was obtained.

Chapter 4 presented a novel geometric model for the placement of primary particles

and liquid bridges in moderately sized agglomerates. No comparable work exists in the

literature. The approximate fluid surface was formed from a union of tetrahedral fluid

segments. The model had two parameters which represented the consolidation state of

the particle and the saturation state of the fluid. Computational geometry was used to

calculate agglomerate properties including their stickiness and wet and dry surface area.

Results were obtained and functions fitted to the data for the maximum consolidated case

of s = 0.

In Chapter 5 population balance modelling work was presented. Smoluchowski’s model

was independently derived in the discrete setting and was extended to include the effects

of binder fluid by adding a further set of equations for the binder fluid. This extension

is novel. Sample collision rate functions were derived. The approach taken to solve the

equations numerically was discussed. Results were presented for a range of collision rate

functions using two models for the coalescence and drying rate of particles. The results

presented showed the effects of changing the ratio between the drying and collision rates.

6.2 Suggestions for Future Work

Suggestions for extending the work presented in this thesis are:

1. Obtain experimental data for the inter-particle force for a static liquid bridge be-

tween three particles and compare this to the predictions of the model in Chapter

3.

2. Obtain a parametric solution to the three particle model developed in Chapter 3.

3. Solve the Young-Laplace equation for the four and five particle cases using the

method detailed in Chapter 3.
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4. Calculate the surface wetness W , as defined in Chapter 4 for the two and three

particle arrangements and compare them with the predictions of the large agglom-

erate model in Chapter 4. This will require the parameters s and δ to be defined

in Chapters 2 and 3.

5. Extend the number of particles in the Chapter 4 agglomerate model (e.g. to 500

primary particles). This could be used to determine whether the curve fits presented

for s = 0 are accurate.

6. Confirm the collision, drying and sticking models used in the population balance

model experimentally as discussed in Chapter 5.
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