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Vitamin A deficiency affects many children in the developing world, 

and is preventable via food or pharmaceutical supplementation. The 

main technical barrier to the fortification of food with vitamin A is its 

susceptibility to oxidation and isomerization, which result in loss of 

nutritional efficacy. This review discusses recent technological 

avenues for stabilizing vitamin A in foods. 
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Introduction 

‘Vitamin A’ refers to a group of polyunsaturated hydrocarbons with 

important nutritional roles in humans. The main compounds in this 

group are the retinoids, which are chemical derivatives of retinol (Fig. 

1), and provitamin A carotenoids, which are partially converted to 

retinoids in vivo. 

Adequate intake of vitamin A is vital to childhood development 

because of its role in vision and ocular health, immune system 

development, and neurological function. Vitamin A deficiency is a 

major cause of death and disease in the developing world, especially 

among mothers and infants.. Supplementation with large, 

pharmaceutically administered doses of vitamin A can substantially 

reduce the incidence and severity of some infectious diseases 

(Villamor & Fawzi, 2005).  
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Fortification of foods is another strategy for combating vitamin A 

deficiency, but fortification is not straightforward, for several reasons. 

Firstly, as vitamin A is accumulated in the adipose tissue and high 

levels are acutely toxic, the fortification of processed foods must be 

regulated to avoid excessive vitamin A intake (Dary & Mora, 2002). 

Secondly, vitamin A is poorly dispersible in aqueous systems such as 

beverages and high moisture foods. Finally, vitamin A is highly labile 

under ambient conditions, a problem that affects both food and 

pharmaceutical supplementation routes. Large losses of vitamin A 

activity can occur during processing, transportation and storage of 

fortified foods (Dary & Mora, 2002). Adding vitamin A above the 

intended fortification level to compensate for losses is undesirable 

because of the potential for overdosing. 
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Technologies that enhance the stability of vitamin A in foods are 

required for ensuring the safety and efficacy of the vitamin A 

fortification of foods. This paper briefly discusses the factors affecting 

vitamin A stability and then discusses the present state of the art in 

vitamin A delivery technologies. 

Chemical instability of vitamin A 

The conjugated double bond system of retinoids (Fig. 1) and 

carotenoids presents an electron-dense region that is attractive to 

electron-deficient species, especially radicals. Retinoid degradation 

displays characteristics that are typical of radical reactions – catalysis 

by light, transition metals and free-radical-producing substances, and 

inhibition by free-radical-quenching chemicals. Principles developed 
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in the study of polyunsaturated lipid reactions are relevant to retinoid 

chemistry because of the common polyene chain (see Frankel, 

(2005). The oxidation pathways for retinoids have been discussed in 

a number of reviews, e.g. El-Agamey et al. (2004). 
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The double bonds in the polyene chain of retinoids can undergo 

cis−trans isomerization, especially at positions 9, 11 and 13. All-trans 

retinoids are predominant in food but minor amounts of other isomers 

may also be present (Brinkmann, Dehne, Oei, Tiebach, & Baltes, 

1995). All-trans retinol has maximal vitamin A activity, but 

isomerization during the processing and storage of food (Ball, 1998) 

results in partial loss of activity (Table 1). Several reaction schemes 

for geometric isomerization have been proposed, e.g. Rozanowska 

et al. (2005), but mechanistic understanding of isomerization 

reactions is limited. Heat-induced isomerization of retinoids produces 

mainly 13-cis isomers in milk (Panfili, Manzi, & Pizzoferrato, 1998).  

Oxygen accelerates photo-catalysed degradation of retinoids under 

some circumstances, but degradation in the presence of oxygen is 

relatively slow without a catalyst such as light or chemically 

generated free radicals (Failloux, Bonnet, Perrier, & Baron, 2004). 

Degradation of vitamin A in foods is accelerated by exposure to light, 

especially ultraviolet light at wavelengths below 415 nm (Garcia-

Fuentes, Torres, & Alonso, 2003). Retinoids are degraded faster 

under ultraviolet-A light (UV-A, 315−400 nm) than under ultraviolet-B 

light (UV-B, 280−315 nm) (Failloux et al., 2004).  
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Technologies for stabilizing retinoids  89 
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The degradation of retinoids in aqueous solution is rapid (Semenova, 

Cooper, Wilson, & Converse, 2002), and the solubility of retinoids in 

aqueous solvents is poor because of their low polarity. Dispersibility 

and stability can be improved by incorporating retinoids into colloidal 

carrier particles. Carriers include single and double emulsions, 

liposomes, solid lipid nanoparticles and polymeric micro- or 

nanoparticles. Complexing retinoids with molecular carriers, such as 

cyclodextrins and proteins, can also improve their stability. 

Many of these technologies have been developed for cosmetic or 

pharmaceutical applications and their performance in food systems is 

poorly characterized. For example, the degradation of stabilized 

retinoids is often evaluated in model cosmetic emulsions or gels. 

The efficiency with which an active agent (AA) is incorporated into a 

carrier matrix is expressed as a percentage, referred to as the 

entrapment efficiency: 

100
 AAtotal

 AAdunentrappe - AA totalefficiency  entrapment ×=  105 

106 

107 

108 

The capacity of an encapsulation system to carry an AA, or ‘loading 

capacity’, is expressed as the percentage by weight of the ‘capsule’ 

phase (entrapped AA + matrix) that comprises AA: 

100
matrix AAentrapped

 AAentrappedcapacity loading ×
+

=  109 
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1. Emulsion systems 110 
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Retinoids can be incorporated into foods as emulsions using an oil-

based carrier. The choice of carrier material is important because the 

oxidative stability of the incorporated retinoid is influenced by droplet 

physical characteristics (e.g. solid/liquid state, interfacial layer 

thickness) and chemical characteristics (e.g. degree of unsaturation, 

fatty acid chain length, presence of natural antioxidants). The basic 

principles of emulsion preparation and stabilization have recently 

been reviewed (McClements, Decker, & Weiss, 2007) and are not 

discussed here. 

Surprisingly few applications of oil-in-water (O/W) emulsions to 

encapsulate retinoids are detailed in the scientific literature.  A model 

cosmetic vehicle was developed in the work of Carlotti, Rossatto, and 

Gallarate (2002), in which vitamin A palmitate was dissolved in octyl 

octanoate and emulsified in water with Montanov 68 EC® (cetearyl 

alcohol and cetearyl glucoside). Vitamin A palmitate degraded 

slightly faster in an O/W emulsion than in bulk octyl octanoate, which 

was attributed to localization of vitamin A palmitate at the oil−water 

interface (Carlotti et al., 2002). 

Several patents for the use of O/W emulsions to deliver fat-soluble 

vitamins into foods or pharmaceuticals have been filed (Hähnlein, 

Hanse, & Olesen, 1998; Yaghmur et al., 2007). 

Microemulsions are thermodynamically stable mixtures of water, oil 

and one or more amphiphiles, which assemble spontaneously into 
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nanometre-scale droplets (Flanagan & Singh, 2006). Suitable food-

grade surfactants include ethoxylated mono- and diacylglycerides 

and phospholipids. Ethanol may be required as a co-surfactant to 

solubilize long chain triglycerides (Flanagan, Kortegaard, Pinder, 

Rades, & Singh, 2006). 
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O/W microemulsions are an efficient vehicle for incorporating 

hydrophobic nutrients into aqueous systems, e.g. lycopene (Garti, 

Yaghmur, Aserin, Spernath, Elfakess, & Ezrahi, 2004) and β-

carotene (Szymula, 2004). On exposure to sunlight, lycopene 

degrades more slowly in O/W microemulsions than in an organic 

solvent (Garti et al., 2004). However, Szymula (2004) reported that β-

carotene degradation in sunlight was fastest in O/W microemulsions, 

followed by water-in-oil (W/O) microemulsions and pure pentanol. 

Szymula (2004) suggested that the high concentration of β-carotene 

in oil droplets of the O/W microemulsion promoted degradation. 

Similar results have been reported with retinol in liposomes 

(Tesoriere, Darpa, Re, & Livrea, 1997). 

A patent for the use of O/W or W/O microemulsions to deliver 

nutraceutical ingredients in foods has been granted (Garti, Abraham, 

Spernath, & Idit, 2007), and the technology is marketed by 

NutraLease Ltd (http://www.nutralease.com). 

A double emulsion comprises either oil droplets inside water droplets, 

suspended in an oil-based continuous phase (oil-in-water-in-oil, 

O/W/O), or water droplets inside oil droplets in an aqueous 

continuous phase (water-in-oil-in-water, W/O/W).  
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Yoshida, Sekine, Matsuzaki, Yanaki, and Yamaguchi (1999) made 

O/W/O emulsions in which the outer oil phase contained an 

organophilic clay and a non-ionic surfactant. Retinol was 

incorporated into different types of emulsions, and stability decreased 

in the order O/W/O > W/O > O/W.  Yoshida et al. (1999) attributed 

the stabilizing effect of the O/W/O emulsion to the exclusion of 

oxygen from the inner oil phase by a surrounding water layer. Retinol 

in the outer continuous phase of the W/O emulsion was more stable 

than retinol in the disperse phase of the O/W emulsion, which does 

not seem to be consistent with this theory. Retinol stability was 

thought to be inadvertently compromised by lipid peroxide impurities 

in the surfactant and metallic impurities in the clay, and stability was 

improved by both water-soluble and oil-soluble antioxidants (Yoshida 

et al., 1999). 
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2. Solid lipid nanoparticles 

Solid lipid nanoparticles (SLNs) with diameter 50−1000 nm have 

been used for the delivery of lipophilic drugs and cosmetics because 

they are well tolerated by the body (Müller, Mäder, & Gohla, 2000). 

The carrier particles are made from lipids that solidify at room 

temperature to form a crystalline or amorphous undercooled matrix in 

which the AA is incorporated. To prepare SLNs, the AA (in this case 

retinol, retinoic acid or a retinol ester such as retinyl palmitate) is first 

solubilized in melted lipid, forming a ‘melt’, and nanoparticles are 

prepared from the melt in one of three ways (Müller et al., 2000). 
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• Hot homogenization: the melt is dispersed in a hot aqueous 

solution of surfactant, homogenized at high pressure and then 

cooled to room temperature. 
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• Cold homogenization: the melt is cooled to room temperature and 

ground to microparticles. These are dispersed in cold surfactant 

solution and homogenized, which produces cavitation forces that 

are sufficient to break microparticles into nanoparticles. 

• Microemulsion technique: the melt is dispersed in hot surfactant 

solution to generate a microemulsion, which is then added to a 

cold aqueous medium, causing solid lipid particles to precipitate. 

Patents have been granted for the manufacture of SLNs by hot or 

cold homogenization (Lucks & Müller, 1996) and by the 

microemulsion technique (Gasco, 2002). Retinoid-loaded SLNs have 

been produced by hot homogenization (Carlotti, Sapino, Trotta, 

Battaglia, Vione, & Pelizzetti, 2005; Jenning & Gohla, 2000; Lim, Lee, 

& Kim, 2004) and the microemulsion technique (Carlotti et al., 2005).  

Three models of drug incorporation into the SLN matrix have been 

proposed: a homogeneous matrix, the outer shell enriched with AA 

and the inner core enriched with AA (Müller et al., 2000). The three 

models are illustrated and discussed in more detail by McClements 

et al. (2007). 

A number of parameters affect the internal and membrane structure 

of SLNs, their stability against aggregation and the protection 

imparted to an entrapped AA. Cortesi, Esposito, Luca, and Nastruzzi 
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(2002) investigated the effect of numerous processing parameters on 

SLN size, recovery and morphology.  
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 Manufacture method 

Cold homogenization favours a homogeneous matrix. In hot 

homogenization methods, a shell rich in AA is formed if the lipid 

crystallizes before the AA. If the AA crystallizes at a lower 

temperature than the matrix, an enriched core forms. All-trans retinol 

melts at 62−64°C (Schwieter & Isler, 1971). 

 Surfactant system 

Lim and Kim (2002) reported that the incorporation of all-trans 

retinoic acid into tricaprin SLNs was improved at higher surfactant 

levels (which also produced smaller particles). They took this to 

indicate that retinoic acid was incorporated into the surfactant layer 

rather than into the lipid matrix. At constant surfactant level and 

composition, retinol stability improved with decreasing particle size 

and increasing total surface area (Müller, Radtke, & Wissing, 2002), 

in agreement with the findings of Lim and Kim (2002). 

The stability of SLNs against aggregation is affected by the ionic 

strength of the continuous phase and the charge density at the 

lipid−water interface (Garcia-Fuentes et al., 2003; Lim & Kim, 2002). 

A large zeta potential (positive or negative) helps to stabilize SLNs 

against aggregation, but non-electrostatic effects such as steric 

stabilization may also be important (Garcia-Fuentes et al., 2003). 
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Lim and Kim (2002) reported that the aggregation stability of SLNs 

loaded with all-trans retinoic acid could be optimized by altering the 

balance of surfactants. Stability was further improved by the inclusion 

of distearoylphosphatidyl ethanolamine–N-poly(ethylene glycol) 

(DSPE−PEG), a polymer with both steric- and electrostatic-stabilizing 

effects. In freeze-dried SLNs, retention of all-trans retinoic acid was > 

90% after 3 months of storage at 4°C (Lim et al., 2004). 
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 Lipid type 

The loading capacities of SLNs are limited by expulsion of the AA 

from lipid matrices as they crystallize (Müller et al., 2000). Jenning 

and Gohla (2000) entrapped retinoids in a range of glycerides and 

waxes. Retention of the AA within the lipid matrix was poor with the 

waxes and tripalmitate, the lipids forming relatively pure crystals. 

Mixed lipids form less perfect crystals, and the AA can be retained in 

the space created by crystal imperfections (Müller et al., 2000). This 

type of SLN is sometimes termed a ‘nanostructured lipid carrier’ 

(NLC) or ‘oil-loaded SLN’. Three types of structures are formed on 

cooling the lipid mixtures: imperfect crystals containing many 

imperfections, amorphous undercooled lipid and liquid lipid droplets 

in a solid lipid matrix (McClements et al., 2007). 

Jores, Haberland, Wartewig, Mäder, and Mehnert (2005) found 

evidence that solid lipids in mixed-lipid SLNs crystallized in a platelet 

shape, expelling liquid lipid droplets to the surface. Liquid droplets 

containing a lipophilic marker were poorly protected from the external 

aqueous environment (Jores et al., 2005). However, Garcia-Fuentes, 
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Alonso, and Torres (2005) produced tripalmitin SLNs with a short 

chain triacylglycerol that appeared to form oily domains within SLNs. 
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In the work of Jenning and Gohla (2001), the stability of retinol in 

glyceryl behenate SLNs was improved by adding a low melting 

medium chain triglyceride. Jenning and Gohla (2001) also reported 

that the stability of different retinoids in mixed-lipid SLNs followed the 

order of polarity: retinyl palmitate > retinol > retinoic acid. 

Hu, Jiang, Du, Yuan, Ye, and Zeng (2005) produced nanoparticles 

from a mixture of stearic and oleic acids, and reported that increasing 

oleic acid content produced smoother particles with decreased 

crystallinity and increased drug loading capacity. Jenning and Gohla 

(2001) reported that adding 5−10% liquid lipid to SLNs improved the 

retinol loading capacity and stability, and postulated the existence of 

liquid and solid lipid domains within particles.  

Carlotti et al. (2005) and Sapino, Carlotti, Pelizzetti, Vione, Trotta, 

and Battaglia (2005) tested the stability of retinyl palmitate in cetyl 

palmitate, glyceryl behenate and palmitic acid SLNs during exposure 

to UV light or prolonged storage. Stability was evaluated in model 

cosmetic systems – an O/W emulsion (Carlotti et al., 2005) and a 

hydroxyethylcellulose gel (Sapino et al., 2005). Retinyl palmitate in 

SLNs degraded more slowly than free retinyl palmitate. SLNs made 

with different lipids had similar light-scattering properties but the least 

polar lipid, cetyl palmitate, best protected retinyl palmitate against UV 

irradiation. This may have been due to improved retention of retinyl 

palmitate in the lipid matrix. 
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Mixed-lipid nanoparticle carriers have apparently not been patented. 280 
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3. Liposomes 

Liposomes can be made by adding buffer to powdered phospholipid 

or a dried phospholipid film formed by rotary evaporation of an 

organic solvent. The organic solvents used in film formation are not 

acceptable in food. 

Entrapment of retinoids in the lipid bilayers of multilamellar liposomes 

has been shown to improve their stability in the presence of oxygen 

(Lee, Yuk, Lee, Lee, Hwang, & Ludescher, 2002). Incorporation of 

retinol into liposomes at a retinol:phospholipid ratio of 1:100 is up to 

99% efficient, but liposomes offer little protection in acidic conditions 

or at temperatures at or above ambient (Lee et al., 2002). The 

process used to manufacture liposomes in this case used chloroform 

and methanol (Lee et al., 2002). Retinol shows greater affinity than 

retinyl palmitate for entrapment into liposomes (Singh & Das, 1998). 

Young and Gregoriadis (1996) reported that incorporating retinol into 

liposomes accelerated photodegradation relative to free retinol in 

methanol. Similarly, Tesoriere et al. (1997) found an increase in the 

retinol degradation rate with increasing concentration of liposome-

encapsulated retinol. It was suggested that degradation reactions 

involving two retinol molecules were accelerated by concentrating 

retinol in liposomes (Young & Gregoriadis, 1996). 

Liposome encapsulation can be combined with other mechanisms to 

enhance stability. Loukas, Jayasekera, and Gregoriadis (1995) 
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reported that the rate of riboflavin degradation under UV light was 

reduced up to 75% by incorporation into liposomes. Complexing 

riboflavin with γ-cyclodextrin slowed degradation by a further 80% at 

the expense of an approximately 50% reduction in entrapment 

efficiency (Loukas, Jayasekera, & Gregoriadis, 1995). McCormack 

and Gregoriadis (1998) reported 19% efficient entrapment of a 

retinol−hydroxypropyl β-cyclodextrin complex in liposomes but did 

not examine the effect on retinol oxidation or isomerization. 
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Liposomes can be stabilized against aggregation by coating with 

chitosan and incorporating them into microparticles (Ruan, Ng, & 

Feng, 2004). They can also encapsulate other particles, e.g. 

polymeric vesicles of palmitoyl glycol chitosan (McPhail, Tetley, 

Dufes, & Uchegbu, 2000). 

In a related technology, lipid-soluble compounds can be incorporated 

into vesicles of a non-ionic surfactant (niosomes). Encapsulation of 

β-carotene in niosomes comprising cholesterol and Tween or Span 

surfactants slows its degradation in sunlight and hydrogen peroxide 

solution, relative to free β-carotene (Palozza, Muzzalupo, Trombino, 

Valdannini, & Picci, 2006). Manconi, Valenti, Sinico, Lai, Loy, and 

Fadda (2003) tested a range of non-ionic surfactants for their ability 

to stabilize all-trans retinoic acid in niosomes irradiated with UV light, 

and found that two of the formulations improved stability relative to 

retinoic acid in methanol. However these authors used chloroform to 

manufacture niosomes, and for that reason the process is not 

suitable for food applications. 
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4. Cochleates 329 
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Cochleates are micro- or nanoparticles consisting of phospholipid 

bilayers stacked as sheets and rolled into a spiral configuration with 

aqueous solutions of multivalent cations between each sheet 

(BioDelivery Sciences International, 2008). This is illustrated 

schematically in Fig. 2. Cochleates are prepared by slowly 

introducing polyvalent cations into anionic liposome suspensions, 

causing the liposomes to fuse. 

In the ‘trapping’ method, calcium chloride is added dropwise to a 

liposome suspension, and cochleate formation is indicated by an 

immediate increase in turbidity (Evans & Zasadzinski, 2003). Small 

unilamellar liposomes prepared by film hydration give more uniform 

cigar-shaped cochleates than multilamellar liposomes from powdered 

phospholipids (Zarif, 2005). 

For the ‘hydrogel process’, liposomes are mixed with a polymer such 

as dextran and injected into a solution of a second, non-miscible 

polymer, e.g. PEG. Calcium is added to the water-in-water emulsion 

and diffuses slowly from the PEG continuous phase into the 

dispersed dextran−liposome phase, producing nanocochleates 

(Santangelo et al., 2000). Sub-micrometre cochleates can be 

produced with this method whereas the trapping method gives larger 

cochleates. 

Cochleates are most frequently made with dioleoyl phosphatidyl 

serine and calcium chloride – natural ingredients that are acceptable 

in food systems (Evans & Zasadzinski, 2003; Walker, Kennedy, & 
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Zasadzinski, 1997). Calcium can be replaced with zinc ions (Zarif, 

Jin, Segarra, & Mannino, 2005) or organic cations (Jin, 2004). 
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Substances in the interior of liposomes are encapsulated in the 

cochleate when the cation is added. Santangelo et al. (2000) 

prepared cochleates from liposomes containing amphotericin B, a 

hydrophobic antimycotic drug. They used the hydrogel method, 

which gave cochleates with mean diameter 407 nm. The cochleate-

encapsulated drug was highly effective against fungal infections in 

mice (Santangelo et al., 2000). It appears that encapsulating 

retinoids in cochleates had not been attempted at the time of writing. 

Cochleates can be used as intermediates for encapsulating small 

liposomes or colloidal particles, thus double-encapsulating labile 

substances (Evans & Zasadzinski, 2003; Walker et al., 1997). 

Cations are chelated when EDTA is added to a suspension of 

colloidal particles and cochleates, causing the cochleates to unroll 

and close into vesicles around the particles. Walker et al. (1997) 

attached colloidal particles to cochleate phospholipids with specific 

ligand-receptor molecules, but the encapsulation efficiency was poor. 

The company BioDelivery Sciences International Inc. has filed 

several US and international patents related to the incorporation of 

vitamin A in nanocochleates to enhance stability. Cochleate 

manufacture with the hydrogel method is claimed (Mannino & 

Krause-Elsmore, 2004), as is incorporation of liposomes into 

cochleates (Krause-Elsmore & Mannino, 2005) and several other 

applications (Zarif et al., 2005). 
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5. Cyclodextrin inclusion complexes 379 
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Cyclodextrins (CDs) are rings of α-1,4 bonded glucose molecules 

with a slightly hydrophobic interior that can entrap molecules less 

polar than water (Szejtli, 1998). Natural, underivatized CDs contain 

six, seven or eight glucose molecules and are referred to as α-, β- 

and γ-CDs respectively. Methods for forming complexes between 

CDs and nutritional or pharmaceutical AAs have been reviewed by 

Szente (1996).  

Retinoid−CD complexes have been prepared by mixing solutions at 

room temperature in aqueous ethanol (Semenova et al., 2002) or 

methanol (Guo, Ren, Fang, & Liu, 1995). Another method is to form a 

film of retinoid on the surface of a flask, add aqueous CD solution to 

the flask and stir for several days (McCormack & Gregoriadis, 1998; 

Munoz-Botella, Martin, Del Castillo, Lerner, & Menendez, 2002). 

Inclusion of unstable or poorly water-soluble molecules in CDs can 

improve their solubility in aqueous systems. For example, the 

aqueous solubility of all-trans retinoic acid increases by more than 

100 times after complexation with β-CD (Qi & Shieh, 2002) and more 

than 10 000 times after complexation with hydroxypropyl β-CD (Lin, 

Chean, Ng, Chan, & Ho, 2000). The solubility of the β-CD−retinoic 

acid complex is better at neutral pH than acidic pH (Lin et al., 2000; 

Yap, Liu, Thenmozhiyal, & Ho, 2005). This may be because COO− 

groups of retinoic acid molecules, which are more ionized at neutral 

pH, can interact with the hydroxyl groups of CDs (Lin et al., 2000). 
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The solubility of β-CD complexes can be improved by organic salts. 

Qi and Shieh (2002) reported a 26-fold increase in β-CD−retinoic 

acid complex with the addition of 1.5% sodium acetate. Sodium 

acetate also improves the solubility of hydrocortisone in β-CD, with 

an optimum concentration of 2% (Loftsson, Matthiasson, & Masson, 

2003). Some organic polymers enhance the solubilizing effect of 

CDs, e.g. carboxymethylcellulose (Qi & Shieh, 2002) and poly(vinyl 

pyrrolidone) (Loftsson & Brewster, 1996).  
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CDs have found widespread application in chromatographic methods 

and as drug carriers (Szejtli, 1998). Complexation of retinoids with 

CDs has been demonstrated by several groups (McCormack & 

Gregoriadis, 1998; Munoz-Botella et al., 2002; Yap et al., 2005). 

Semenova et al. (2002) reported good encapsulation and protection 

of all-trans retinol with two cyclodextrin formulations, but did not show 

sufficient data to verify this. 

Association constants for several retinoid-cyclodextrin complexes are 

shown in Table 2. Binding is most favourable at neutral pH (Lin et al., 

2000). Cyclodextrin binding studies have also been carried out on 

several cis-retinoids (Munoz-Botella et al., 2002; Yap et al., 2005) 

and carotenoids (Polyakov, Leshina, Konovalova, Hand, & Kispert, 

2004) 

Complexing retinoids with CDs inhibits photoisomerization (Munoz-

Botella et al., 2002) and photodegradation (Yap et al., 2005). The 

retinoid polyene chain is held in the CD cavity (Yap et al., 2005), 

which dampens the torsion and rotation required for isomerization 
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(Munoz-Botella et al., 2002). CD complexes of all-trans retinaldehyde 

photoisomerize preferentially to the 13-cis form but retinoic acid−CD 

complexes isomerize to a mixture of 9-, 11- and 13-cis isomers 

(Munoz-Botella et al., 2002). 
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The molar ratio of CD to retinoid molecule in the inclusion complex is 

usually 1:1 or 2:1 (Guo et al., 1995; Munoz-Botella et al., 2002), but 

ratios as high as 4.5:1 have been reported (McCormack & 

Gregoriadis, 1998). The stoichiometry of the inclusion complex can 

change as a function of CD concentration, e.g. hydroxypropyl β-CD 

forms complexes with all-trans retinoic acid in a molar ratio of 1:1 at 

low CD concentration and in a molar ratio of 2:1 at higher CD 

concentration (Lin et al., 2000). 

CDs are already used in foods to encapsulate colours, flavours and 

polyunsaturated fatty acids, and to prevent turbidity in drinks. 

The stabilizing effect of CDs on vitamin A has been known for some 

time, and was claimed in a 1955 US patent (Schlenk, Sand, & 

Tillotson, 1955). A number of Japanese patents have claimed 

methods for stabilizing vitamins with CD complexes, e.g. Takeshi and 

Okihiko  (1994). In 1994, a US patent for a method of enhancing 

complexation between lipophilic food additives (including vitamin A) 

and CDs using natural or synthetic hydrophilic polymers was granted 

(Loftsson, 1994). Complexes of retinol or retinyl esters with γ-CDs 

are described in a 1999 US patent (Moldenhauer, Regiert, & 

Wimmer, 1999). 
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6. Polymer encapsulation 452 

453 

454 

455 

456 

457 

458 

459 

460 

461 

462 

463 

464 

465 

466 

467 

468 

469 

470 

471 

472 

473 

474 

475 

Polymers used for encapsulating retinoids in solid particles include 

proteins, polysaccharides and synthetic polymers. The choice of 

polymer in food systems is restricted by food regulations, and only 

food-safe solvents may be used in particle manufacture. 

Encapsulation of lipophilic drugs in polymer particles can be 

improved by complexation with CDs (Duchene, Ponchel, & 

Wouessidjewe, 1999). 

Hwang, Oh, and Oh (2005) and Lee, Oh, Moon, and Bae (2001) 

successfully entrapped retinol in 0.5−10 μm silica particles made 

using a multiple emulsion technique. Encapsulation efficiencies of 

7.4–30.9% (Hwang et al., 2005) and 35.9–44.0% (Lee et al., 2001) 

were achieved. In a similar procedure, Ribeiro, Neufeld, Arnaud, and 

Chaumeil (1999) produced chitosan-coated alginate microspheres, 

with mean diameter 500−800 μm, containing soybean oil droplets 

and an oil-soluble marker dye. The marker dye was released slowly 

at pH 1.2 and faster at pH 7.5, and the speed of release depended 

on the thickness of the coating (Ribeiro et al., 1999). 

Polymer particles can be prepared by coacervation, which is also 

referred to as nanoprecipitation, drowning out or solvent 

displacement. In this technique, the polymer and the AA are 

dissolved in an organic solvent, which is emulsified in an aqueous 

surfactant solution. The solvent is evaporated from the O/W emulsion 

and the polymer precipitates, forming solid particles.  
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Biodegradable copolymers of lactic acid and glycolic acid (PLGA) 

have been widely used in drug delivery applications, and at least two 

research groups have encapsulated retinoids in copolymer 

microparticles (Cirpanli, Unlu, Calis, & Hincal, 2005; Jeong et al., 

2003). Particles of 1−100 μm were prepared with the coacervation 

technique, and an encapsulation efficiency of up to 74% was 

reported (Cirpanli et al., 2005; Jeong et al., 2003). However, the 

solvents commonly used to dissolve PLGA polymers are not 

permitted in food systems. 
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Since the 1950s, vitamin A has been encapsulated in solid gelatin 

beadlets for incorporation into animal feeds. In this process, an 

emulsion containing antioxidants, starch, gelatin and sugars, is spray 

congealed and the beadlet is cross linked by thermal or chemical 

means. Other protein encapsulants include collagen and gliadin. 

Gliadin is a hydrophobic wheat protein that is insoluble in water but 

soluble in 70% ethanol. Hydrophobic AAs can be entrapped in gliadin 

nanoparticles by coacervation. Gliadin particles of about 500 nm with 

a payload of 76.4 μg of retinoic acid per milligram of protein were 

prepared by Duclairoir, Irache, Nakache, Orecchioni, Chabenat, and 

Popineau (1999). These workers demonstrated controlled release of 

retinoic acid over 3 h, but did not examine degradation of the 

entrapped retinoic acid. Preparation of gliadin-coated lipid particles 

using a salting-out method has also been reported (Mauguet, 

Legrand, Brujes, Carnelle, Larre, & Popineau, 2002). 
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Swatschek, Schatton, Müller, and Kreuter (2002) used microparticles 

of marine sponge collagen (120−300 nm) as carriers for retinol 

adsorbed on the surface. In a model cosmetic cream containing 

retinol-loaded collagen particles, retention was over 50% after 8 

weeks at 21°C. 
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It was recently reported that nanoparticle complexes can be formed 

in mixtures of gum arabic and sodium caseinate, and that the particle 

characteristics can be tailored by manipulating the ratio of caseinate 

to gum arabic (Ye, Flanagan, & Singh, 2006). Such 

protein−carbohydrate nanoparticle complexes may be suitable 

vehicles for vitamin A encapsulation. 

Encapsulation of lipophilic substances in polymer beads has been 

the subject of several patents. Mandralis and Tuot (1997) patented a 

process for encapsulating AAs in biopolymer particles by high 

pressure gelation of a natural polymer encapsulant. Catron and 

Mann (2000) produced beads loaded with hydrophobic AA by heat 

setting or chemically cross linking emulsion droplets. Lim and Moss 

(1983) devised a process in which alginate-containing emulsion 

droplets are solidified by immersion in alcoholic solutions of 

multivalent cations. A similar method using a mixture of cationic and 

anionic polymers is the subject of a patent application (Cattaneo, 

2005). 
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7. Protein binding 522 
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In living organisms, retinoids are non-covalently bound by proteins of 

the ‘lipid-binding protein’ family, which transport fatty acids and other 

small hydrophobic ligands in plants, animals and bacteria (De Wolf & 

Brett, 2000). Retinol may also be bound to proteins in food matrices, 

especially those containing lipid-binding whey proteins, e.g. β-

lactoglobulin and bovine serum albumin (BSA). 

β-Lactoglobulin exists in bovine milk as a dimer at pH 6.5 with two 

binding sites per dimer, and has a tertiary structure very similar to 

those of retinol-binding proteins in the human body (Perez & Calvo, 

1995). The fluorescence of retinol is enhanced by β-lactoglobulin, 

because binding restricts the mobility of the retinol molecule, and 

fluorescence enhancement can be used to quantify binding affinity 

(Collini, D'Alfonso, Molinari, Ragona, Catalano, & Baldini, 2003). 

Retinoic acid dissociates from the retinoic acid−β-lactoglobulin 

complex below pH 7.0 because of conformational changes in the 

protein, and will re-associate on neutralization (Zsila, Bikadi, & 

Simonyi, 2002). 

Chemical derivatization of β-lactoglobulin can alter its functional 

properties, including retinoid binding. Methyl- or ethyl-alkylation of β-

lactoglobulin improves the binding of retinol, retinoic acid, retinyl 

acetate and β-carotene (Dufour & Haertle, 1991). Hattori, Okada, and 

Takahashi (2000) reported that conjugating carboxymethyl CD to β-

lactoglobulin improved the emulsifying activity and pH stability. 
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Antioxidant properties and retinol binding were not affected (Hattori 

et al., 2000). 
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In the work of Shimoyamada, Yoshimura, Tomida, and Watanabe 

(1996), retinoic acid or retinol complexed with β-lactoglobulin 

degraded more slowly than the uncomplexed retinoids during 6 h of 

UV irradiation. Hattori, Watabe, and Takahashi (1995) reported that 

β-lactoglobulin protected retinol during irradiation and exposure to 

high temperature or acidic pH. Retinol retention was > 60% after 5 h 

at 60ºC (compared with 30% without β-lactoglobulin); higher 

temperatures denatured the protein and destroyed the protective 

effect. More than 80% of the initial retinol was retained after 5 h at 

37ºC and pH 3−9 (Hattori et al., 1995).  

BSA also binds retinoids, resulting in enhanced fluorescence. BSA 

inhibits light-induced degradation of retinol to a similar extent to β-

lactoglobulin, but does not protect retinoic acid (Shimoyamada et al., 

1996).  

Carotenes are bound to lipoproteins in some vegetables, 

cyanobacteria, animals and crustaceans. The structure and the 

biological function of carotenoproteins have been discussed in the 

literature (Flower, 1996), and there is potential to use them as means 

of encapsulating labile nutrients (De Wolf & Brett, 2000). 

8. Glassy matrix encapsulation 

Encapsulation of β-carotene in amorphous trehalose (a disaccharide) 

has been shown to slow degradation during extended storage, 
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provided the trehalose can be prevented from absorbing moisture 

and crystallizing (Elizalde, Herrera, & Buera, 2002). A process for 

encapsulating vitamins or minerals in glassy fructo-oligosaccharides 

has been patented (Leusner, Lakkis, van Lengerich, & Thomas, 

2002). 
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9. Antioxidants 

Some antioxidants improve the stability of retinoids during exposure 

to light or oxygen. Butylated hydroxytoluene (BHT) is an oil-soluble 

phenolic antioxidant that competes with radical propagation 

reactions. Carlotti et al. (2002) reported that BHT slowed the 

degradation of retinyl palmitate under UV irradiation in a sealed 

container, but Failloux et al. (2004) found no effect in oxygenated 

retinol solution exposed to UV-A light. Retinoid destruction in 

oxygenated solutions kept in the dark was slowed by α-tocopherol 

but not by β-carotene or ascorbic acid in the work of Ihara, 

Hashizume, Hirase, and Suzue (1999). 

Antioxidants work well as an adjunct to other encapsulation 

techniques. For example, the retinol stability in O/W/O emulsions is 

improved by both oil-soluble (BHT) and water-soluble (sodium 

ascorbate) antioxidants (Yoshida et al., 1999). 

Summary and conclusions 

Vitamin A supplementation via foods and/or pharmaceuticals has the 

potential to prevent disease and ensure healthy childhood 

development in developing countries. Technical barriers to delivering 
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vitamin A in foods include its poor dispersibility in aqueous systems 

and its vulnerability to degradation during processing, transport and 

storage. As the risk of overdosing precludes high dose fortification to 

compensate for losses, there is a need for technologies that slow 

vitamin A degradation. 
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Slowing the degradation of vitamin A relies on protecting it from 

influences that accelerate degradation, particularly UV light, chemical 

catalysts (especially metal contaminants and lipid hydroperoxides) 

and oxygen. Much of the research into technologies for protecting 

vitamin A does not examine the mechanistic rationale for an 

improvement in stability, but instead takes a ‘screening’ approach. 

Vitamin A supplementation via foods requires that the amount of 

vitamin A present at the time of consumption is sufficiently high to be 

therapeutic and sufficiently low to minimise the risk of overdosing. 

Maintaining vitamin A activity within the bounds of safety and 

effectiveness requires limiting the loss of activity through oxidation 

and isomerization. It is therefore important to assess both the loading 

capacity of an encapsulation system (which depends on entrapment 

efficiency) and the stability of encapsulated vitamin A under 

conditions relevant to food processing and storage.  

Table 2 summarises the loading capacity, entrapment efficiency and 

stability improvement of a range of vitamin A protection technologies 

discussed here. It is evident from table 2 that the entrapment 

efficiency of encapsulation systems is seldom measured. This is 

important because a significant proportion of vitamin A mixed with an 
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encapsulant can remain free in solution or adsorbed on surfaces, 

where it will be exposed to conditions that catalyse oxidation and/or 

isomerisation. Without a knowledge of encapsulation efficiency it is 

impossible to evaluate true loading capacity, and therefore difficult to 

compare the effectiveness of different systems. It is not possible to 

evaluate the commercial potential of diverse technologies based on 

information in the academic literature because the costs of 

ingredients are never disclosed in articles. 
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Also notable in Table 2 is a scarcity of technologies that use food-

safe manufacturing processes. This probably results from the fact 

that much vitamin A stabilization research is oriented towards 

pharmaceutical applications, in which doses are low, or cosmetic 

products that are applied dermally and not consumed.  

Emulsions can act as a vehicle for dispersing large amounts of 

hydrophobic material in an aqueous system. The photostability of 

labile nutrients is sometimes improved by emulsification, and synergy 

between oil- and water-soluble antioxidants is enhanced in these 

systems. Microemulsions and multiple emulsions have shown some 

promise in stabilizing hydrophobic nutrients, and warrant further 

investigation.  

SLNs provide a physical barrier between retinoids and oxidation 

catalysts, and their light-scattering properties (Müller et al., 2002) 

reduce the intensity of light reaching the AAs entrapped in them. 

SLNs made with anionic stabilizers tend to aggregate at low pH, but 

non-ionic polymers can provide sufficient steric stabilization to 
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overcome this. Amphiphilic polymer stabilizers such as PEG 

derivatives and copolymers of polyoxyethylene and polyoxypropylene 

(trade names Pluronic, Poloxamer) provide effective steric 

stabilization at low pH. 
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Stabilization in solid lipid particles requires efficient incorporation and 

retention in the lipid matrix, which is best achieved with mixed lipids 

that form impure crystals, undercooled melts or oil droplets within a 

solid matrix. The lipid-soluble antioxidants butylated hydroxyanisole, 

BHT, propyl gallate and α-tocopherol can further enhance the 

stability of lipid-encapsulated retinoids. 

Entrapment in liposomes protects vitamin A under some conditions, 

but little protection is afforded at acidic pH and ambient or higher 

temperature. Some authors have reported accelerated degradation 

of vitamin A in liposomes, relative to free vitamin A. This has been 

speculatively attributed to the high local concentration inside 

liposomes, which presumably accelerates autoxidation. 

Methods for preparing liposomes in the laboratory often use solvents 

that are unacceptable for food systems, and published results may 

be difficult to reproduce in food-safe systems. Liposomes can be 

made more robust with a protective coating (Ruan et al., 2004) or by 

incorporation inside a multilayer encapsulation system (Evans & 

Zasadzinski, 2003). 

Lipid cochleates are very effective at protecting and delivering drugs, 

but to date there have been no applications in foods, probably 
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because existing processes for making cochleates use toxic 

solvents. Cochleates may be useful as intermediates in the 

preparation of ‘vesicles in vesicles’ (Evans & Zasadzinski, 2003). 
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Retinoids may be more stable dispersed or dissolved in an aqueous 

phase than in lipid droplets or particles, for two reasons: (1) oxygen 

is less soluble in water than in lipids, and (2) lipid hydroperoxides are 

absent in the aqueous phase. Stability would be compromised if 

retinoids were brought into close contact with aqueous oxidation 

catalysts such as transition metal ions. The aqueous solubility of 

vitamin A is greatly improved by complexing with CDs.  

Vitamin A has been incorporated into solid particles of proteins 

(gelatin, collagen, gliadin), carbohydrates (alginate, chitosan) and 

synthetic polymers (silicates, PLGA copolymers). Encapsulation 

processes have been reported and, in some cases, patented, but the 

stability of polymer-encapsulated vitamin A is not often evaluated in 

the literature. Polymer particles range in size from hundreds of 

nanometres to hundreds of micrometres, which may not be suitable 

for liquid foods. 

Carotenoids are often complexed with proteins in biological systems, 

and vitamin A will form water-soluble complexes with certain 

proteins. BSA and β-lactoglobulin offer some protection against 

photo-oxidation, heating and acidic pH. Other plant or animal 

proteins may also form soluble complexes with retinoids that 

preserve vitamin A activity in food systems. 
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It is uncommon to find ‘silver bullet’ solutions to food preservation 

problems; a combination of approaches such as the ‘hurdle-

technology’ concept (Leistner & Gorris, 1995) is more often 

successful. Protecting vitamin A is just such a problem, because 

retinoids and carotenoids must be stabilized against several chemical 

and physical degradation catalysts, and protection is often achieved 

at the expense of loading capacity. Synergistic protective effects are 

seen when individual technologies are combined, such as 

incorporating antioxidants into emulsions or SLNs, and encapsulating 

CD complexes inside liposomes. In our opinion, the most promising 

advances in vitamin A protection in foods will come from 

consideration of the multifaceted nature of vitamin degradation and 

the potential to combine technologies in ways that take advantage of 

their individual strengths. 
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Fig. 1. Structure of selected retinoids, where R is one of: A, retinol; 

B, retinoic acid; C, retinaldehyde; D, retinyl palmitate. 
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Fig. 2. Schematic representation of nanocochleate structure. 
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Table 1. Relative vitamin A activity of retinyl acetate isomers.  1064 

RAa isomer Relative vitamin A activityb

 Ames et al. (1955) Weiser and Somorjai 

(1992) 

all-trans 100 100 

13-cis   75 76 

11-cis    31 

9-cis   22 19 

7-cis  18 

9,13-di-cis   24 16 

11,13-di-cis   23 18 

 1065 
1066 
1067 
1068 

aRA, retinyl acetate 
bthe activity of the all-trans isomer is arbitrarily designated as 100% 
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1069 

reference technology food 
safe? 

AAa loading 
capacityb

% w/w 

entrapment 
efficiencyc

% 

stability improvement 

Yoshida et al. (1999) O/W/O emulsion ? RO 0.47 83.5 after storage at 50°C for 4 weeks, 60% of retinol 
remained, while retinol in paraffin was completely 
degraded. 

Jenning & Gohla 
(2001) 

glyceryl behenate 
SLN 

yes RO 10d NDe after storage at 40°C for 160 days, 60% of retinol 
remained, compared with 50% of retinol in an 
O/W emulsion 

Carlotti et al. (2005) cetyl palmitate SLN 
in cosmetic O/W 
emulsion 

? RP 9d ND after UV irradiation for 120 min, 70% of retinol in 
SLN remained, compared with 8% of retinol in an 
O/W emulsion 

 glyceryl behenate 
SLN in cosmetic O/W 
emulsion 

? RP 9d ND after UV irradiation for 120 min, 51% of retinol in 
SLN remained, compared with 8% of retinol in an 
O/W emulsion 

 palmitic acid SLN in 
cosmetic O/W 
emulsion 

? RP 5.6d ND after UV irradiation for 120 min, 66% of retinol in 
SLN remained, compared with 8% of retinol in an 
O/W emulsion 

Table 2. Ability of various encapsulation systems to entrap and protect vitamin A. 
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Lee et al. (2002) PC and soybean oil 
liposomes 

no RO 0.99 99.25 ± 0.47 after 8 days at 25°C, pH 7.0 without light, 50% of 
retinol in liposomes remained, while free retinol in 
buffer was completely degraded 

      after 8 days at 25°C, pH 7.0 under UV light, 20% 
of retinol in liposomes remained, while free retinol 
in buffer was completely degraded 

       

Munoz-Botella et al. 
(2002) 

β-cyclodextrin 
complex 

no ATRA 0.13d ND after exposure to light for 60 min, 44.3% of ATRA 
with β-CD remained in all-trans form, compared 
with 31.8% for ATRA in ethanol 

 DM-β-cyclodextrinf 
complex 

no ATRA 0.11d ND after exposure to light for 60 min, 54.6% of ATRA 
with DM-β-CDf remained in all-trans form, 
compared with 31.8% of ATRA in ethanol 

Lin et al. (2000) 2-HP-β-cyclodextring 
complex 

yes ATRA 0.57d ND after exposure to light at 40°C for 6 h, 22% of 
ATRA with HP-β-CDg remained, compared with 
18% of ATRA in methanol 

Lee et al. (2001) silica microspheres no RO 2.23-2.82 35.9-44.0 not tested 

Hwang et al. (2005) silica microspheres no RO not reported 7.4-30.9 not tested 

Jeong et al. (2003) polymer particles no ATRA 1.66-8.83 27.1-54.9 not tested 

Duclairoir et al. gliadin nanoparticles yes ATRA 7.64 75 not tested 
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(1999) 

Shimoyamada et al. 
(1996) 

β-lactoglobulin 
complex 

yes RO 1.3d,h ND after 6 h under UV light, 92% of retinol remained, 
while 45% or free retinol remained. 

Hattori et al. (1995) β-lactoglobulin 
complex 

yes RO 0.7d,h ND after holding at 50°C for 5 h, 80% of retinol with β-
lactoglobulin remained, while 25% of retinol in 
buffer remained. 

      after exposure to fluorescent light for 5 h, 36% of 
retinol with β-lactoglobulin remained, while 20% 
of retinol in buffer remained. 

 

 1070 



52 

1071 

hcalculated from concentrations of β-lactoglobulin and retinol using the molecular weight of β-lactoglobulin-A reported in Farrell et al., 
2004 

aactive agent: RO, retinol; RP, retinyl palmitate; ATRA, all-trans retinoic acid 

fDM-β-cyclodextrin, DM-β-CD: heptakis (2,6-O-dimethyl)-beta-cyclodextrin 

dnominal loading capacity, assuming 100% entrapment efficiency 

gHP-β-cyclodextrin, HP-β-CD: hydroxypropyl-beta-cyclodextrin 

c  100
AAtotal

 AAdunentrappe - AA totalefficiency  entrapment ×=  

b  100
matrix AAentrapped

 AAentrappedcapacity loading ×
+

=  

enot determined 
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