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Abstract 

Antirrhinum majus is a model plant used in flower pigmentation studies. Anthocyanin 

pigment production is mainly control led by regulation of transcription of the anthocyanin 

biosynthetic genes. Two types of transcription factors, MYB and bHLH, together with a 

WD40 type co-regulator have been shown to regulate the transcription of the anthocyanin 

biosynthetic genes. In antirrhinum, in addition to the wild type Rosea 1 phenotype, in 

which pigmentation occurs throughout the inner and outer epidermis of the petal , other 

complex pigmentation patterns are observed, such as anthocyanins being produced only 

in the outer (abaxial) epidermis of both lobes and upper tube region of the dorsal petals 

(roseadorsea phenotype). The major objective of this research project was to understand the 

genetic regulatory system leading to the development of the two different floral 

pigmentation patterns in antirrhinum as a means to understanding differential regulation 

of gene expression in simi lar cells. 

Promoter deletion analysis coupled with l inker scanning mutagenesis identified 

the - 1 62 bp to - 1 20 bp region of the Roseal promoter as important for the regulation of 

the Roseal gene. Four putative transcription factor-binding sites within this region : a W­

box, a pyrimidine box, a DOF and a WRKY transcription factor binding site were shown 

to be important for Rosea l gene regulation. 

Promoter deletion analysis carried out on the rosea ldorsea promoter showed that the 

proximal 1 87 bp deletion was, surprisingly, not responsible for the roseadorsea phenotype. 

Cloning and characterisation of the Rosea l promoter sequence from various Antirrhinum 

species and accessions verified this finding. The rosealdorsea promoter analysis also 

indicated that - 1 5 1  bp of the promoter was sufficient for its expression as well as for the 

maintenance of petal specific expression. The rosealdorsea allele was also shown to 

encode a functional protein .  

In situ hybridisation analysis showed that Roseal transcripts were present in  the inner 

and outer epidermis of the petal tissue of both wild type and roseadorsea petal tissue. 
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Vascular expression of the Roseal mRNA is indicative of regulation of thi s  gene through 

sugar or hormonal cues. However, rosealdorsea transcript levels (in roseadorsea) were much 

lower than Roseal (wild type). Lowered expression of rosealdorsea transcripts may be 

responsible for the overal l weak pigmentation in  the roseadorsea flowers . Analysis of the 

intron sequences of the two alleles revealed that many sequence changes were present in  

the intron 2 of rosea ldorsea. These changes may lead to instabil ity or  the lower expression 

of the rosea ldorsea mRNA and may be responsible for the roseadorsea phenotype. Another 

possibility is that a fourth Myb gene may be responsible for the roseadorsea phenotype. 

The role of the Deficiens gene in direct regulation of Rosea l was analysed by RNAi and 

bioinformatics-based methods. The presence of potential MADS box binding sites in the 

intron 2 region of the Roseal allele indicated that Rosea l might be directly regulated by 

Deficiens. Initial experiments using transient assays did not support this suggestion. 

However, silencing of Deficiens in wild type antirrhinum buds led to the loss of 

anthocyanin pigments in the petals. Further analysis of the RNAi tissue using SEM 

revealed that the proper development of conical shaped epidermal cells  was also affected. 

The RNAi tissue also developed chlorophyll pigments underscoring the plasticity of petal 

identity. This work demonstrated that proper expression of Deficiens is required 

throughout flowering for anthocyanin pigment production as well as maintenance of petal 

cell identity. 

The current investigation revealed that the higher order regulation of the Rosea l alleles in 

antirrhinum petals i s  much more complex than initial ly  postulated. 
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