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ABSTRACT 
 

The syntheses and characterisation of polynuclear metal clusters using a series of 

derivatised salicylaldoxime ligands are described in this thesis. The polynuclear iron 

clusters contain metallic cores consisting of oxo-centred triangles. It was found that 

slight modifications of the phenolic oxime ligands can lead to metal clusters with 

different nuclearities, thus producing a variety of magnetic properties within the 

materials. The predominant building block in the complexes is a triangular [Fe3O(R-

sao)3]+ (R = alkyl derivative, sao = salicylaldoxime) unit which can self-assemble into 

more complicated arrays depending on reaction conditions. 

 

A number of ligands containing a single phenolic oxime unit has been synthesised. 

These ligands have been used to form di-iron (C1), hexairon (C2), and heptairon (C3) 

complexes.  

 

A second series of ligands containing two double-headed phenolic oxime units linked 

by diamine straps has been synthesised and fully characterised. Two copper complexes 

C5 and C7 were crystallised and pyridine also took part in coordination to the copper 

centres. Three of the iron complexes formed with double-headed oxime ligands are 

heptairon compounds. The heptairon compounds were all analogous in their iron 

coordination environment. The hexairon complex (C8) formed from a double-headed 

oxime was analogous to the complex C2 formed from a single-headed oxime ligand in 

its iron coordination environment. The tri-iron complex (C10) also contains a 

metaborate ion. In each case of the heptairon complexes and the hexairon complex, the 

metallic skeleton of the cluster was based on a trigonal prism in which two [ O] 

triangles are fastened together via three helically twisted double-headed oxime ligands. 

Each of these ligands is present as (L-2H) where the oximic and phenolic O-atoms are 

deprotonated and the amino N-atoms protonated, with the oxime moieties bridging 

across the edges of the metal triangles. The identity of the metal ion has a major impact 

on the nuclearity and topology of the resultant cluster. 

 

The magnetic susceptibility measurements of these iron complexes suggest the presence 

of strong antiferromagnetic interactions between the metal centres and the Mössbauer 

analyses confirm the oxidation state of all the iron centres is 3+. The CHN analyses and 
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other general characterisation allowed verifying and / or modifying the formulae 

generated by the X-ray analyses. 
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