Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

DISTRIBUTION OF CADMIUM IN LONG-TERM DAIRY SOILS, ITS ACCUMULATION IN SELECTED PLANT SPECIES, AND THE IMPLICATIONS FOR MANAGEMENT AND MITIGATION

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Soil Science

at Massey University, Palmerston North, New Zealand

Aaron David Stafford

2017

ABSTRACT

Accumulation of cadmium (Cd) in agricultural soils, and in pasture, fodder and horticultural crop species is an on-going management concern for New Zealand agriculture. Recent implementation of a new National Cd Management Strategy (MAF, 2011) has increased awareness of this issue. Of key concern are long-term dairy farms in some of NZ's most productive farming districts, where future land-use and trade limitations might be apparent due to their intensive phosphorus (P)-fertiliser application history. The research described in this thesis was undertaken to improve national understanding of; i) soil Cd variability within long-term dairy farms, ii) variability in Cd accumulation between different forage plant species and the consequent risk to livestock grazing these forages, and iii) soil / environmental factors and management / mitigation options that can influence Cd phytoavailability.

Two long-term dairy farms on contrasting soils in the Waikato and Canterbury regions of New Zealand showed wide variability in soil total Cd concentrations (Waikato: 0.48-1.64 mg kg⁻¹, Canterbury: 0.15-0.64 mg kg⁻¹). The strong correlation (R² = 0.84-0.85) between soil total Cd and total P concentrations indicated the importance of P fertilisation history on soil Cd variability. However, within blocks of common P fertiliser management history, there was also a strong effect of soil type on soil Cd concentration. Slope class only exerted an influence on soil total Cd concentration when slope exceeded 15°, while application of dairy shed effluent did not appear to have any consistent influence on soil Cd accumulation. All paddocks should be tested independently (based on predominant soil type) to allow Cd-enriched zones to be identified for remediation or alternative management purpose. Individual results can be areaweighted to provide a property-mean soil Cd concentration, where this is required.

For both properties, soil Cd concentrations decreased with depth, however this was effect was stronger and more consistent in the Waikato due to its lack of tillage history. Models

developed from visible and near-infrared reflectance spectroscopy (NIRS) scanning of intact soil cores (collected to 400-600 mm depth) were able to successfully predict soil total carbon (C) $(R^2 = 0.91 - 0.95)$ and total nitrogen (N) concentrations $(R^2 = 0.91 - 0.92)$. This technique shows promise for identifying paddock-specific tillage history, and based on the strong correlation between measured soil total Cd and total C and/or total N within each property (R² = 0.83-0.90), for identifying Cd distribution within the soil profile. Such information could be used to quantify the tillage depth required to dilute Cd-enriched topsoil to a desired target. A glasshouse trial on 12 common animal forage species revealed that chicory and plantain accumulated significantly (P < 0.05) greater tissue Cd concentrations than other plant species. A subsequent survey of commercial farms across New Zealand validated these findings, with mean tissue Cd concentrations decreasing in the order chicory (1.82 mg kg⁻¹ DM) > plantain $(0.80 \text{ mg kg}^{-1} \text{ DM}) > \text{ryegrass } (0.11 \text{ mg kg}^{-1} \text{ DM}) > \text{white clover } (0.07 \text{ mg kg}^{-1} \text{ DM})$. A very large range in tissue Cd concentrations for chicory and plantain (0.40-4.50 and 0.23-2.40 mg kg⁻¹ DM, respectively) indicating the sensitivity of these species to soil Cd phytoavailability, although only chicory tissue Cd concentration could be satisfactorily explained ($R^2 = 0.745$) by the variables soil total Cd concentration, pH and total carbon content.

Although soil redox potential is known to influence Cd solubility, a pot trial on two different soils types (Kereone (Allophanic) and Topehaehae (Gley)) revealed that there was no significant difference in 0.05 M CaCl₂ soil extractable Cd or plantain tissue Cd concentrations between cyclical flooded (3 days flooded, 11 days drained) and non-flooded (continuously drained) irrigation regimes. However, there was a large difference in soil extractable Cd concentration between the two soils types, with this difference appearing to be driven by differences in soil pH and organic matter content (and possibly clay mineralogy).

Ultra-fine elemental sulphur and hydrated lime soil amendments were used to produce a wide range in soil pH (approximately 5.0-6.5) in two field trials on contrasting soils. There was a

strong negative (linear) correlation (R^2 = 0.64-0.82) between 0.05 M CaCl₂ soil extractable Cd concentration and soil pH. Plant tissue Cd concentration was poorly explained by soil pH (chicory R^2 = 0.35-0.52, ryegrass R^2 = 0.19-0.42) and 0.05 M CaCl₂ soil extractable Cd concentration (chicory R^2 = 0.11, ryegrass R^2 = 0.28). Perennial ryegrass Cd concentrations remained low (<0.3 mg kg⁻¹) regardless of soil pH, suggesting that animal Cd accumulation risk is low when grazing this plant species, even in Cd-enriched soils at low pH. However, soil pH should be increased to a minimum of 6.5 to decrease livestock dietary Cd exposure when grazing chicory. Mean chicory Cd concentrations were significantly (P < 0.05) greater following a period of increased soil moisture, consistent with the increases in Cd solubility observed in the pot trial following soil re-wetting.

This research highlights that Cd accumulation in soil and plants poses a real risk to New Zealand's primary production industries. Existing animal Cd accumulation models indicate that when grazing Cd-accumulating forage species such as chicory and plantain, lamb kidneys may exceed food standard maximum levels in animals much younger than the current meat industry 30-month offal discard age. Understanding Cd accumulation in Cd-sensitive species such as chicory and plantain is important for farmers to be able to manage livestock dietary Cd exposure. Manipulation of soil pH to decrease soil Cd phytoavailability, and utilisation of deep inversion-tillage to bury Cd-enriched topsoil stand out as the most practical management strategies available to farmers. Animal grazing trials on Cd-enriched chicory crops are recommended to evaluate partitioning of ingested Cd, to validate and/or improve the predictions of existing animal Cd accumulation models. Plant breeding opportunities should be a priority focus, to produce chicory / plantain varieties that accumulate lower Cd concentrations in their vegetative tissues.

ACKNOWLEDGEMENTS

There are a number of people who have either directly or indirectly assisted me throughout the course of this study and I take this chance to thank you all. Without your support, this journey would have undoubtedly taken a much more tortuous route!

First of all, thanks to my supervisors at Massey University, Assoc. Prof. Chris Anderson, Prof. Mike Hedley and Dr. Jeya Paramsothy. Your initial positive, proactive response towards my thought of undertaking further study was a massive confidence boost. Thanks for your support to help develop an initial skeleton of an idea into a research proposal, and for providing sound advice and guidance through to its completion. Thanks also to other staff at Massey University who contributed towards this research, notably Dr. Alan Palmer for providing his expertise to the detailed soil surveys carried out within my two case study farms.

My employer Ballance Agri-Nutrients as well as the Fertiliser Association of New Zealand (FANZ) deserve recognition and thanks for supporting this research project, especially given its importance to the fertiliser industry and New Zealand farmers. Without the funding provided by FANZ and the time-allowance provided by Ballance, this project simply would not have been possible. Similarly, I would also like to thank Dr. Roger Hill and Hill Laboratories staff for their analytical support and guidance. Hopefully the knowledge gleaned and new capability created rewards the investments made by these organisations. Significant 'subject matter expert' contributions were made throughout this journey by Prof. Richard McDowell (AgResearch) and Dr. Jo-Anne Cavanagh (Landcare Research), while thanks also goes to Chris Frampton for providing valuable guidance on statistical analysis.

My colleagues at Ballance deserve recognition for their assistance; however as there are too many to name, a generic 'thanks' will have to suffice. In particular, a number of Field

Consultants who were quick to assist in providing farmer contacts, and in some cases, helping

me out with some of the more labour-intensive activities such as all-paddock testing and intact soil core sampling.

Lastly, but most importantly, thanks of course to my family who were happy to lend a hand throughout the course of this work. In particular, my wonderful wife Kirsty (who had to take on more than her share of the 'home-duties') and also my father, both of whom assisted me hugely in carrying out all-paddock-testing as well as in establishing / harvesting field trials. Last but not least, thanks to our children Hannah and Liam (the latter whom arrived part-way through this study) for their patience throughout...I know this project distracted me from you guys at times, despite my determination not to let it!

TABLE OF CONTENTS

Abstract	
Acknowledgements	V
Table of contents	vii
List of figures	xvii
List of tables	XXV
Chapter 1 : Introduction	1
1.1 Research focus	4
1.2 Thesis structure	4
Chapter 2 : Literature review	5
2.1 Introduction	5
2.1.1 Why is cadmium a problem for New Zealand agriculture?	7
2.1.1.1 Guideline values for managing soil Cd	8
2.1.1.2 Tiered Fertiliser Management System	9
2.2 Factors affecting soil Cd phytoavailability	11
2.2.1 Specific and non-specific sorption of Cd	11
2.2.2 Role of clay minerals and organic matter as sorption sites	12
2.2.3 Factors affecting Cd sorption & desorption	14
2.2.3.1 Influence of soil pH	14
2.2.3.1.1 Liming to reduce soil Cd phytoavailability	16
2.2.3.2 Influence of soil redox	17
2.3 Factors affecting plant Cd uptake and accumulation	18
2.3.1 Transport of Cd from soil solution across the root membrane	19
2.3.2 Translocation from the root to other plant tissues	21

2.3.2.1 Cadmium accumulation in vegetative tissues - shoot Cd 'excluders' versus	
'translocators'	22
2.3.3 Effect of plant growth rate / yield on tissue Cd concentration	23
2.4 Cadmium in New Zealand agriculture	24
2.4.1 Cadmium in New Zealand agricultural soils	24
2.4.1.1 Soil Cd by soil type, region and land use	24
2.4.1.2 Cadmium accumulation rates	26
2.4.1.3 Cadmium distribution with soil depth	27
2.4.1.3.1 Cadmium leaching	28
2.4.1.4 Spatial variability in soil cadmium	30
2.4.2 Cadmium in New Zealand agricultural plant species	31
2.4.2.1 Cadmium accumulation in different plant species and cultivars	32
2.4.2.2 Variability in plant tissue Cd concentration	35
2.4.2.2.1 Spatial variation in pastoral Cd concentration	35
2.4.2.2.2 Seasonal variation in pastoral Cd concentrations	36
2.4.2.2.3 Direct effects of recent P fertiliser application on plant Cd uptake	36
2.4.2.3 Assessing soil cadmium phytoavailability	38
2.4.3 Cadmium accumulation in grazing livestock	39
2.4.3.1 Contribution of forage versus soil ingestion to livestock Cd intake	41
2.4.4 Modelling Cd accumulation	41
2.4.4.1 Soil Cd accumulation - CADBAL	42
2.4.4.2 Animal Cd accumulation	43
2.5 Summary	46
2.5.1 Conclusions and research questions	48
Chapter 3 : Variability of soil cadmium in two long-term dairy farms	51
3.1 Abstract	51

3.2 Introduction	52
3.3 Case study farm descriptions	54
3.3.1 Waikato farm	54
3.3.1.1 General management history	54
3.3.1.2 Effluent and P fertiliser management	57
3.3.1.3 Soils	57
3.3.2 Canterbury farm	59
3.3.2.1 General management history	59
3.3.2.2 Effluent and P fertiliser management	61
3.3.2.3 Soils	61
3.4 Methodology	63
3.4.1 Inter-paddock variability	63
3.4.2 Intact soil cores	64
3.4.3 Intra-paddock soil Cd variability testing	65
3.4.4 Soil analysis	67
3.4.4.1 Total Cd	67
3.4.4.2 Total P	67
3.4.4.3 Total organic carbon and nitrogen	68
3.4.4.4 Plant available P (Olsen-P)	68
3.4.4.5 Soil pH	68
3.4.4.6 Phosphate retention (P retention)	69
3.4.4.7 Cation exchange capacity (CEC)	69
3.4.5 Statistical analysis	69
3.5 Results	70
3.5.1 Waikato farm	70
3.5.1.1 Spatial variability in soil Cd concentrations	70

	71
3.5.1.1.2 Effect of slope on soil Cd concentration	74
3.5.1.1.3 Effect of land management history within soil types	75
3.5.1.1.4 Intra-paddock variability (intensive soil sampling)	77
3.5.1.2 Soil Cd variation with depth	80
3.5.2 Canterbury farm	82
3.5.2.1 Spatial variability in soil Cd concentrations	82
3.5.2.1.1 Effect of soil type on soil Cd concentration	83
3.5.2.1.2 Effect of land management history within soil types	83
3.5.2.2 Soil Cd variation with depth	87
3.6 Discussion	90
3.6.1 Factors influencing the spatial variability of soil Cd	90
3.6.1.1 P fertiliser management	90
3.6.1.2 Effluent management	91
3.6.1.3 Soil type	93
3.6.1.4 Slope	94
•	
3.6.2 Variation in soil Cd distribution with depth	96
3.6.2 Variation in soil Cd distribution with depth	97
3.6.2 Variation in soil Cd distribution with depth	100
3.6.2 Variation in soil Cd distribution with depth	97 100
3.6.2 Variation in soil Cd distribution with depth	100101 and livestock
3.6.2 Variation in soil Cd distribution with depth	97100101 and livestock103
3.6.2 Variation in soil Cd distribution with depth	97100101 and livestock103
3.6.2 Variation in soil Cd distribution with depth	97100101 and livestock103103

	4.3.2 Trial management and analyses	. 108
4	.4 Results and discussion	. 110
	4.4.1 Soil total Cd and Olsen-P	. 110
	4.4.2 Plant yield	. 110
	4.4.3 Plant tissue Cd concentration – effect of plant species	. 112
	4.4.4 Plant tissue Cd concentration – effect of superphosphate rate and yield	. 115
	4.4.5 Relationship between soil and plant tissue Cd concentrations	. 116
	4.4.6 Implications of this data set for agricultural management	. 117
	4.4.6.1 Modelling lamb kidney Cd accumulation	. 118
	4.4.6.2 Use of soil total Cd for Cd risk management	. 120
4	.5 Conclusions	. 121
Cha	pter 5: Field survey of cadmium concentrations in chicory, plantain, ryegrass and whit	е
clov	er	. 123
5	.1 Abstract	. 123
5	.2 Introduction	. 124
5	.3 Methodology	. 126
	5.3.1 Sampling methodology	. 128
	5.3.2 Chemical analysis	. 129
	5.3.2.1 Plant tissue Cd	. 129
	5.3.2.2 Soil total Cd, total C and pH	. 129
	5.3.3 Statistical analysis	. 130
5	.4 Results and discussion	. 130
	5.4.1 Soil characteristics of survey sites	. 130
	5.4.2 Plant tissue Cd concentration ranges	. 132
	5.4.2.1 Relationship of plant tissue Cd concentration to soil variables	. 136
	5.4.2.1.1 Soil total Cd as a single variable	136

5.4.2.1.2 Prediction of plant tissue Cd concentration based on soil total Cd, pH and	
total C13	8
5.5 Conclusions	3
Chapter 6: Prediction of total carbon, nitrogen and cadmium concentrations with soil depth	
using visible and near-infrared reflectance spectroscopy14	5
6.1 Abstract	5
6.2 Introduction	6
6.3 Methodology14	8
6.3.1 Soil core analysis14	8
6.3.1.1 NIRS assessment of intact cores for soil total carbon and nitrogen14	8
6.3.1.2 Elemental analysis of intact soil core subsections	9
6.3.2 Statistical analysis	9
6.4 Results and discussion	0
6.4.1 Relationships between soil total Cd and total C or total N from laboratory analysis o	f
intact soil core sections	0
6.4.2 Relationship between measured and NIRS-predicted soil total C and total N15	1
6.4.3 Prediction of soil total Cd using NIRS-predicted soil total C and total N15.	5
6.4.4 Soil total Cd with depth – measured versus NIRS-predicted	5
6.4.5 Application of NIRS technology for soil Cd assessment	7
6.5 Conclusions	9
Chapter 7: Influence of soil moisture status on soil cadmium phytoavailability and	
accumulation in plantain (<i>Plantago lanceolata</i>)16	1
7.1 Abstract	1
7.2 Introduction	2
7.3 Methodology	4
7.3.1 Pot design	5

7.3.2 Soils	166
7.3.3 Experimental layout and management	167
7.3.4 Soil sampling and plant harvest	168
7.3.5 Chemical analysis	168
7.3.5.1 Plant tissue Cd concentration	168
7.3.5.2 Soil extractable Cd concentration	169
7.3.6 Quality control	169
7.3.7 Statistical analysis	170
7.4 Results	170
7.4.1 Soil extractable Cd concentration	170
7.4.2 Soil extractable Cd concentration over time	173
7.4.3 Plantain tissue Cd concentration, yield and Cd uptake	173
7.5 Discussion	175
7.5.1 Change in soil extractable Cd as a function of irrigation events	175
7.5.2 Change in soil extractable Cd as a function of time	176
7.5.3 Effect of soil type on Cd phytoavailability and uptake	178
7.5.4 Implication of these findings to Cd management in agricultural soils	180
7.6 Conclusions	182
Chapter 8 : Cadmium accumulation in chicory and ryegrass with modification of	pH in two soils
	183
8.1 Abstract	183
8.2 Introduction	184
8.3 Methodology	186
8.3.1 Field trial	186
8.3.1.1 Treatments and trial design	186
8.3.1.2 Management	188

8.3.1.2.1 Plant tissue harvests	190
8.3.1.2.1 Soil sampling	190
8.3.2 Chemical analysis	194
8.3.2.1 Plant tissue Cd and soil extractable Cd	194
8.3.2.2 Soil pH	194
8.3.2.3 Soil pH buffer capacity	195
8.3.2.4 Other soil analysis	195
8.3.3 Statistical analysis	195
8.4 Results	196
8.4.1 Main effect of soil type and plant species	196
8.4.2 Main treatment effects	197
8.4.2.1 Plant tissue Cd concentration over time	199
8.4.2.1.1 Chicory	199
8.4.2.1.2 Ryegrass	202
8.4.3 Relationship between soil extractable Cd concentration and pH	205
8.4.4 Relationship between plant tissue Cd concentration, soil pH and extra	ctable Cd
concentration	206
8.4.4.1 Chicory	206
8.4.4.2 Ryegrass	207
8.5 Discussion	208
8.5.1 Effectiveness of hydrated lime and elemental sulphur treatments	208
8.5.1.1 Soil pH	208
8.5.1.2 Soil extractable Cd and plant tissue Cd concentrations	211
8.5.2 Prediction of chicory tissue Cd concentration based on total Cd total C	, and pH 214
8.5.3 Tissue Cd concentrations over time	216
8 5 4 Implications for agricultural management	218

	8.6 Conclusions	. 221
С	hapter 9: Integrated discussion - key research findings, implications and suggestions for	
fι	uture research	223
	9.1 Introduction	22 3
	9.2 Key research findings	224
	9.2.1 Soil total Cd concentrations are highly variable in the soil profile and across	
	paddocks	224
	9.2.2 Cadmium concentrations in chicory and plantain were several fold higher than	
	ryegrass and white clover	226
	9.2.3 Fluctuating soil moisture has only a minor effect on Cd solubility, but increased	soil
	moisture may still increase plant Cd uptake	227
	9.2.4 There is long-term risk of increased soil Cd bioavailability if soil pH declines	228
	9.2.5 NIRS is a promising technique for rapid, low cost assessment of soil management	nt
	history and the relative distribution of Cd in the soil profile	230
	9.3 Implications of this research for Cd management	231
	9.3.1 Animal Cd accumulation	231
	9.3.2 Remediating high Cd soils	231
	9.3.2.1 Phytoremediation	231
	9.3.2.2 Manipulation of soil pH and use of soil carbon amendments	233
	9.3.2.3 Inversion-tillage	234
	9.4 Future research requirements	239
	9.5 What does this research mean for New Zealand farmers?	241
R	eferences	24 3
A	ppendix 1 : Soil profile descriptions	273
	A1.1 Waikato farm	27 3
	A1 1 1 Karaana silt laam (Ka)	272

A1.1.2 Topehaehae sandy clay loam (T)	274
A1.1.3 Pakarau silt loam (P)	275
A1.1.4 Morrinsville clay loam (M)	276
A1.1.5 Tauwhare hill soil (Tw)	277
A1.2 Canterbury farm	278
A1.2.1 Wakanui silt loam over fine sandy loam (Wk1)	278
A1.2.2 Wakanui silt loam on silty clay loam (Wk2)	279
A1.2.3 Wakanui fine sandy loam (Wk3)	280
A1.2.4 Temuka silty clay loam (Tm1)	281
A1.2.5 Temuka silty clay loam over peaty loam (Tm2)	282
A1.2.6 Waimairi peaty loam (Wm1)	283
A1.2.7 Waimairi peaty loam on sand (Wm2)	284
A1.2.8 Templeton fine sandy loam (Te1)	285
Appendix 2 : Soil pH buffer capacity analysis for field trial soils	287
Appendix 3 : Soil pH versus soil extractable Cd concentration at the field trial midpoint	289
Appendix 4 : Statement of contribution to Doctoral thesis containing publications	291

LIST OF FIGURES

Figure	e 2.1. Effect of pH and soil solution Cd concentration on sorption of Cd to a New Zealand	t
Al	llophanic soil (redrawn and adapted from Naidu et al. (1994))	16
Figure	e 2.2.a) Variation in soil total Cd concentration with soil depth, and b) the effect of soil	
sa	ampling depth on total soil total Cd concentration in an allophanic, P fertilised hill-count	ry
ра	asture soil (adapted from Zanders et al. (1999)).	28
Figure	e 2.3. Cd content in the liver of lambs aged 3, 6, 17, 28 months, after feeding low-Cd	
(n	mean 0.18 mg kg ⁻¹ DM) or high-Cd (mean 0.52 mg kg ⁻¹ DM) pasture from 3 months of ag	e
(L	ee <i>et al.,</i> 1996)	41
Figure	e 2.4. Influence of plant tissue Cd concentration on Cd accumulation in lamb kidney and	
liv	ver, as predicted using the models of Lee et al. (1996). Assumed model parameters: fee	d
in	$take = 1 kg DM d^{-1}$, soil intake = 0.1 kg DW d^{-1} , soil Cd concentration = 0.6 mg kg ⁻¹ DW,	
Ti	ime = 120 days (post weaning)	44
Figure	e 3.1. Farm map for the Waikato property showing management blocks and 'all-paddoc	k
te	esting' soil testing transects (numbered blue lines).	55
Figure	e 3.2. Farm map for Waikato property showing slope classes derived from the digital	
el	levation model, 5m contour lines and 'all-paddock testing' soil testing transects	
(n	numbered blue lines)	56
Figure	e 3.3. Detailed soil map for the Waikato farm. Also shown on the map are 'all-paddock	
te	esting' soil testing transects (blue lines) and sites where intact soil cores were collected	
fo	or analysis (light blue circles).	58
Figure	e 3.4. Farm map for the Canterbury property showing management blocks and 'all-	
n	addock testing' soil testing transacts (numbered blue lines)	ഹ

Figure 3.5. Detailed soil map for the Canterbury farm. Also shown on the map are fall-paddock
testing' soil testing transects used for assessing soil Cd concentrations within the property
(blue lines) and sites where intact soil cores were collected for analysis (light blue circles).
6
Figure 3.6. Improvised soil core sectioning device used to separate 0-75 mm and 75-150 mm
sub-samples (photograph courtesy of the author)6
Figure 3.7.a) Device used to collect intact soil cores from the field, and b) Example of intact so
core (still inside the corer) and adjacent PVC pipe used to transport the intact cores
(photographs courtesy of Michael Hedley)6
Figure 3.8. Soil sampling patterns used for intra-paddock soil Cd variability assessment in a)
paddock 18, and b) paddock 6. Five metre contour lines are shown for topographic
reference6
Figure 3.9. Range in soil total Cd concentrations within the Waikato farm for sampling depths
of 0-75, 75-150 and 0-150 mm. Box and whisker plots represent data quartiles, black
diamond and associated value is the mean. ANOVA P value provided for comparison of
means. Letters in brackets indicate where means are significantly different ($P < 0.05$)7
Figure 3.10. Inter-paddock soil total Cd (mg kg ⁻¹) variability within the Waikato farm (0-150 mr
sampling depth)
Figure 3.11. Inter-paddock variability for total P (mg kg ⁻¹) within the Waikato farm (0-75 mm
sampling depth)7
Figure 3.12. Range in soil total Cd concentrations for each soil type within the Waikato farm (0
150 mm sampling depth). Box and whisker plots represent data quartiles, black diamond
and associated value is the mean (except for soils only represented by one transect).
ANOVA P values provided for comparison of means for the predominant Kereone and
Topehaehae soils

Figure 3.13. Range in soil total Cd concentrations for different slope classes within the Kereone
soil type (0-150 mm sampling depth). Box and whisker plots represent data quartiles, black
diamond and associated value is the mean. ANOVA P value provided for comparison of
means
Figure 3.14. Range in soil total Cd concentrations for each land management by soil type
grouping within the Waikato farm (0-150 mm sampling depth). Box and whisker plots
represent data quartiles, black diamond and associated value is the mean. ANOVA P value
provided for comparison of means between groups with more than 1 sample. Letters in
brackets indicate where means are significantly different ($P < 0.05$)
Figure 3.15. Relationship between soil total Cd and total P within the Waikato farm (0-75 mm
sampling depth)77
Figure 3.16. Intra-paddock variability in soil total Cd concentration (mg kg ⁻¹) for paddock 18,
Waikato farm (0-150 mm sampling depth). 5 m contour lines shown in black
Figure 3.17. Intra-paddock variability in soil total Cd concentration (mg kg ⁻¹) for paddock 6,
Waikato farm (0-150 mm sampling depth). 5 m contour lines shown in black
Figure 3.18. Soil Cd concentration with depth for different sites within the Waikato farm (mean
of 3 samples, error bars represent standard deviation)
Figure 3.19. Range in soil total Cd concentrations within the Canterbury farm for sampling
depths of 0-75, 75-150 and 0-150 mm. Box and whisker plots represent data quartiles,
black diamond and associated value is the mean. ANOVA P value provided for comparison
of means
Figure 3.20. Inter-paddock soil total Cd (mg kg ⁻¹) variability within the Canterbury farm (0-150
mm sampling depth)
Figure 3.21. Inter-paddock variability for total P (mg kg ⁻¹) within the Canterbury farm (0-75 mm
sampling depth)

Figure 3.22. Range in soil total Cd concentrations for each soil type within the Canterbury farm
(0-150 mm sampling depth). Box and whisker plots represent data quartiles, black
diamond and associated value is the mean. ANOVA P values provided for comparison of
means across soil types. Letters in brackets indicate where means are significantly
different (<i>P</i> < 0.05)
Figure 3.23. Range in soil total Cd concentrations for each land management by soil type
grouping within the Canterbury farm (0-150 mm sampling depth). Box and whisker plots
represent data quartiles, black diamond and associated value is the mean. ANOVA P value
provided for comparison of means between groups with more than 1 sample. Letters in
brackets indicate where means are significantly different ($P < 0.05$)
Figure 3.24. Relationship between soil total Cd and total P within the Canterbury farm (0-75
mm sampling depth)
Figure 3.25. Soil Cd concentration with depth for different sites within the Canterbury farm
(mean of 3 samples, error bars represent standard deviation)
Figure 4.1. Mean tissue Cd concentration for all plant species. Error bars represent the 95%
confidence interval. Means with the same letter indicate differences are not significant
from one another (<i>P</i> < 0.05)
Figure 5.1. Geographic overview of sampling sites used in the field survey
Figure 5.2. Tissue Cd concentration ranges for chicory, plantain, ryegrass and white clover
across the survey sites. Box and whisker plots represent data quartiles. Black diamond and
associated value represent the mean tissue Cd concentration for each plant species.
Means with the same letter indicate differences are not significant from one another (P
<0.05)
Figure 5.3. Relationship between tissue Cd concentration (mg kg ⁻¹ DM) and soil total Cd
concentration (mg kg ⁻¹) for a) chicory, b) plantain, c) ryegrass, and d) white clover137

Figure 5.4. Predicted versus actual tissue Cd concentrations for chicory, based on a) soil total
Cd (Tissue Cd = 1.860[Soil total Cd] + 0.467), and b) soil total Cd, pH and total C (Tissue Cd =
1.828[Soil total Cd] - 1.391[Soil pH] - 0.054[Soil total C] + 8.729)
Figure 5.5. Relationship between soluble Cd concentration ([Cd]S) (Gray et al., 1999d) and
chicory Cd concentration across the field survey sites; a) log-transformed (for consistency
with Gray et al. (1999a)), and b) back-transformed from logarithmic data 142
Figure 6.1. Comparison of measured (50 mm depth increments) versus NIRS predicted (10 mm
depth increments) total C and total N concentrations with depth, for sites 10 Ke(A) and 2
T(A) at the Waikato property. Error bars represent the standard deviation 153
Figure 6.2. Comparison of measured (50 mm depth increments) versus NIRS predicted (10 mm
depth increments) total C and total N concentrations with depth, for sites 13 Tm2 and 30
Tm1 at the Canterbury property. Error bars represent the standard deviation 154
Figure 6.3. Comparison of measured (50 mm depth increments) versus NIRS-predicted (10 mm
depth increments) total Cd with depth for sites 10 Ke(A) and 2 T(A) within the Waikato
property, and 13 Tm2 and 30 Tm1 within the Canterbury property. Error bars represent
the standard deviation
Figure 7.1. Design of pots (left, completed; right, partially complete showing the slit in the
internal drainage tube) used for generating cyclical 3-day flooded, 11-day drained soil
conditions (photograph courtesy of the author) 166
Figure 7.2. Daily mean, maximum and minimum temperatures recorded at Tauranga airport
(NIWA 'CliFlo' climate station 1615) over the duration of the trial period 167
Figure 7.3. Mean 0.05 M CaCl ₂ soil extractable Cd concentrations (μg kg ⁻¹) at each sampling
date under Flooded and Non-flooded conditions for a) Topehaehae Planted, b)
Topehaehae Unplanted, c) Kereone Planted, and d) Kereone Unplanted treatments.
ANOVA P values are provided for comparison of means at each sampling date. Error bars
represent the 95% confidence interval

Figure 8.1. Site selection for the trials sites located on the a) Kereone, and b) Topenaenae soil.
In the top photo, the Topehaehae site can be seen next to the fence line in front of the
trees and creek in the distant, lower-lying part of the paddock (photographs courtesy of
the author)
Figure 8.2.a) Application of hydrated lime and elemental sulphur treatments to individual plots
at the Topehaehae trial site, and b) harvest 2 (11 December 2015) of the Topehaehae trial
site (photographs courtesy of the author)193
Figure 8.3. Rainfall and temperature profile for the district where the trial site was located
(Rainfall data: Matamata aerodrome, courtesy of Waikato Regional Council); temperature
data: NIWA 'CliFlo' climate station 23908)194
Figure 8.4. Mean chicory Cd concentrations for all alkali/acid treatments within the Kereone
soil. Error bars represent the standard error. Treatment means within a harvest followed
by the same letter are not significantly different from one another ($P < 0.05$). Note:
Replicates of the '4x alkali' treatment from the 2 nd harvest were lost prior to analysis,
hence there is a missing data point for this treatment
Figure 8.5. Mean chicory Cd concentrations for all alkali/acid treatments within the
Topehaehae soil. Error bars represent the standard error. Treatment means within a
harvest followed by the same letter are not significantly different from one another ($P <$
0.05)201
Figure 8.6. Mean ryegrass Cd concentrations for all alkali/acid treatments within the Kereone
soil. Error bars represent the standard error. Treatment means within a harvest followed
by the same letter are not significantly different from one another ($P < 0.05$)204
Figure 8.7. Mean ryegrass Cd concentrations for all alkali/acid treatments within the
Topehaehae soil. Error bars represent the standard error. Treatment means within a
harvest followed by the same letter are not significantly different from one another (P <
0.05)204

Figure 8.8. Relationship between soil extractable Cd concentration and soil pH for the Kereone
and Topehaehae soil types
Figure 8.9. Relationship between chicory tissue Cd concentration and a) soil pH for the
Kereone and Topehaehae soils independently, and b) soil extractable Cd concentration
across the Kereone and Topehaehae soils combined
Figure 8.10. Relationship between ryegrass tissue Cd concentration and a) soil pH for the
Kereone and Topehaehae soils independently, and b) soil extractable Cd concentration
across the Kereone and Topehaehae soils combined
Figure 8.11. Mean change in soil pH for each acid/alkali treatment replicate relative to the
mean pH of control, assessed across plant species within each site ($n = 8$ for each
treatment). a) Kereone soil, and b) Topehaehae soil. Error bars represent the standard
deviation. Means with the same letter indicate differences are not significant ($P < 0.05$).
Figure 8.12. Relationship between actual chicory tissue Cd concentrations determined for
individual replicates in this trial and those predicted using the regression equation from
Chapter 5 (Chicory tissue Cd = 1.828[Soil total Cd] - 1.391[Soil pH] - 0.054[Soil total C] +
8.729))
Figure 9.1. Soil profile Cd concentrations for site 4 Ke (A) Eff; Current (black dashed line) and
following homogenisation-tillage (blue dashed line) or inversion-tillage (red dashed line) to
200 mm depth. Solid lines in the respective colours represent the 0-150 mm average tCd
concentration for each tillage scenario
Figure A2.1. For the Kereone soil; a) full pH buffer curve with all data points, and b) data subset
used to derive the soil pH buffer capacity (29.4 mmol kg ⁻¹ pH ⁻¹)287
Figure A2.2. For the Topehaehae soil; a) full pH buffer curve with all data points, and b) data
subset used to derive the soil pH buffer capacity (16.8 mmol kg ⁻¹ pH ⁻¹)288

Figure A3.1. Relationship between 0.05 M CaCl₂ soil extractable Cd concentration and soil pH for selected treatments (ryegrass 'control', '3x acid' and '4x alkali' treatments) across both soil types at the trial mid-point soil sampling (24 November 2015)......289

LIST OF TABLES

Table 2.1. Guideline values for management of soil Cd in New Zealand.
Table 2.2. Cadmium management tiers and tier boundary trigger values with the TFMS
(Cavanagh, 2012)
Table 2.3. Summary inorganic and organic sorption surfaces within soil colloids 1
Table 2.4. Factors influencing Cd / metal ion sorption and desorption
Table 2.5. Summary of studies investigating soil Cd concentrations in New Zealand soils 2
Table 2.6. Summary of soil Cd concentrations reported internationally
Table 2.7. Examples of New Zealand studies that have quantified Cd accumulation rates in New
Zealand soils
Table 2.8. Cadmium leaching and variation in soil Cd concentration with depth for six New
Zealand pastoral agricultural soils (adapted from Gray et al. (2003b))
Table 2.9. Summary of research on the spatial variability of soil Cd in New Zealand grazed
pastoral systems
Table 2.10. Summary of New Zealand studies investigating accumulation of Cd in different
plant species and cultivars within species
Table 2.11. Summary of New Zealand research investigating relationships between extractable
soil Cd and plant Cd tissue concentrations
Table 3.1. Summary of the FANZ-recommended soil sampling protocol for soil Cd assessment
under the TFMS (FANZ, 2016) 5.
Table 3.2. Summary of soil types and their respective areas within the Waikato farm 5
Table 3.3. Summary of soil types and their respective areas within the Canterbury farm 6
Table 3.4. Spearman coefficient of correlation and significance between soil total Cd and
various soil parameters within the Waikato farm (0-75 mm sampling depth $n = 38$) 7

Table 3.5.a) Spearman coefficient of correlation and significance between soil total Cd and
Total P or Total C, and b) Stepwise regression analysis for the prediction of soil total Cd
concentration based on the independent variables soil total P and total C, for grid soil
sampling data (n = 26) from paddock 18 of the Waikato farm79
Table 3.6. Spearman coefficient of correlation and significance between soil total Cd and
various soil parameters within the Canterbury farm (0-75 mm sampling depth, $n = 34$)83
Table 3.7. Estimates of Cd applied in effluent to relevant blocks of the Waikato and Canterbury
farms
Table 3.8. Estimates of Cd applied in P fertiliser to effluent and non-effluent blocks of the
Waikato and Canterbury farms93
Table 3.9. Mean soil total Cd, total P, pH, total C, total N, CEC and P retention for different soil
types within common land management units of the Canterbury and Waikato properties.
94
Table 3.10. Comparison of soil total Cd concentrations assessed at 0-150 mm and 0-75 mm by
various authors in New Zealand grazed pastoral systems96
Table 3.11. Comparison of property-mean soil Cd concentrations determined using different
assessment criteria, for the Waikato and Canterbury farms98
Table 4.1. Description and characteristics of soil used in the trial
Table 4.2. Plant species assessed in the trial
Table 4.3. Effect of rate of superphosphate on soil Olsen-P (mg L ⁻¹) and total Cd (mg kg ⁻¹), and
plant yield (kg DM ha ⁻¹) and tissue Cd concentration (mg kg ⁻¹ DM) for individual plant
species. Mean yield (kg DM ha ⁻¹) and tissue Cd concentration (mg kg ⁻¹ DM) are also
presented by plant species. Numbers followed by the same letter are not significantly
different from one another $(P < 0.05)$

Table 4.4. Linear regression coefficients of determination and significance for the relationship
between plant Cd concentration (mg kg ⁻¹ DM) and a) plant yield (kg DM ha ⁻¹), or b) soil
total Cd concentration (mg kg ⁻¹)
Table 4.5. Variables used in determining kidney Cd concentration for lambs finished on
different forages, using the equation of Lee et al. (1996)
Table 5.1. Summary of field survey sampling sites by plant species and soil order (separated
into North and South Island sites)
Table 5.2. Summary of field survey sampling sites by plant species and land use history 127
Table 5.3. Summary of soil characteristics for sampling sites used in the field survey (150 mm
sampling depth)
Table 5.4. Soil total Cd concentration (mg kg ⁻¹) upper quartile and lower quartile ranges, mean
Cd concentrations within these quartile ranges, and the difference between the mean soil
Cd concentration within each of the upper and lower quartile ranges, by plant species. 138
Table 5.5. Relationships between plant tissue Cd concentration and the independent variables
soil total Cd, pH and total C as determined using stepwise regression with backwards
elimination
Table 6.1. Variation in total C (%), total N (%) and total Cd (mg kg ⁻¹) within all 50 mm soil depth
increments at the Waikato and Canterbury sites as determined through laboratory
analysis
Table 6.2. Relationship between soil total Cd (mg kg ⁻¹) and total C (%) or total N (%) from linear
regression analysis across all 50 mm soil core sections
Table 6.3. Relationship between measured (Lab) and predicted (NIRS) soil total C (%) and total
N (%) for 50 mm soil core sections
Table 6.4. Best fit relationship between measured soil total Cd (Lab-Cd (mg kg ⁻¹)) and NIRS
predicted total C (NIRS-C (%)) and/or total N (NIRS-N (%)) for 50 mm soil core sections,
determined using stenwise regression analysis 155

Table 7.1. New Zealand Soil Classification and characteristics of the two soils used in this study.
Table 7.2. Mean soil extractable Cd concentration (μg kg ⁻¹) representing; i) Overall mean, ii)
Mean of pre-irrigation samplings, iii) Mean of +3 day samplings, and iv) Mean difference
between +3 day and pre-irrigation samplings; in addition to v) Mean plant tissue Cd
concentration (mg kg ⁻¹ DM), vi) Plant yield (g DM pot ⁻¹), and vii) Plant Cd uptake (μg Cd pot
1). Means with the same letter indicate differences are not significant from one another (P
< 0.05)
Table 7.3. Treatment mean soil extractable Cd concentration ($\mu g \ kg^{-1}$) for pre-irrigation and +3
day soil samplings, for individual flood irrigation cycles. Means with the same letter
indicate differences are not significant from one another ($P < 0.05$)
Table 7.4. pH of 0.05 M CaCl ₂ extracts assessed periodically throughout the trial. Means with
the same letter indicate differences are not significant from one another ($P < 0.05$) 176
Table 7.5. Prediction of soil solution Cd concentrations for the soils in this study based upon
total Cd, organic matter and pH, using the Cd solubility equation of Gray et al. (1999d). 180
Table 8.1. Description and characteristics of the soils at two trial site locations
Table 8.2. Treatments used in the two field trials and target soil pH values187
Table 8.3. Comparison between soil types ('control' replicates only) of mean soil pH and
extractable Cd concentration (assessed at final harvest) and mean tissue Cd concentrations
for ryegrass and chicory (assessed using data from all 3 harvests)196
Table 8.4. Kereone site treatment mean soil pH and extractable Cd concentration (mg kg ⁻¹) as
assessed at the final harvest, and mean tissue Cd concentration (mg kg ⁻¹ DM) and total
yield (kg DM ha ⁻¹) for chicory and ryegrass assessed over three harvests. Means followed
by the same letter are not significantly different from one another ($P < 0.05$)
Table 8.5. Topehaehae site treatment mean soil pH and extractable Cd concentration (mg kg ⁻¹)
as assessed at the final harvest, and mean tissue Cd concentration (mg kg ⁻¹ DM) and total

yield (kg DM ha ⁻¹) for chicory and ryegrass assessed over three harvests. Means followed
by the same letter are not significantly different from one another ($P < 0.05$)
Table 8.6. Chicory mean tissue Cd concentration (mg kg ⁻¹ DM) and mean yield (kg DM ha ⁻¹) at
each harvest, for both the Kereone and Topehaehae soil types
Table 8.7. Ryegrass mean tissue Cd concentration (mg ${\rm kg}^{\text{-1}}$ DM) and mean yield (kg DM ${\rm ha}^{\text{-1}}$) at
each harvest, for both the Kereone and Topehaehae soil types
Table 9.1. Estimated cost of reducing soil Cd phytoavailability using lignite as a soil
amendment234
Table 9.2. Determination of the required inversion-tillage depth to produce 0-150 mm total Cd
concentrations less than 0.8 mg kg ⁻¹ , for initial 0-150 mm total Cd concentrations of; 1.64
(maximum tCd concentration determined in APT of the Waikato property) 2.0, 2.5 and 3.0
mg kg ⁻¹ . Where cells are shaded orange, 0.8 mg kg ⁻¹ has been exceeded, meaning tillage
depth is insufficient. Extrapolation of 0-150 mm average total Cd concentrations to 350
mm soil depth in 50 mm depth increments was performed using soil Cd depth distribution
data from intact soil core sampling sites 4 Ke(A) Eff, 10 Ke(A) and 22 Ke(B) 237
Table 9.3. Cost of remediation via inversion-tillage
Table A2.1. Calculation of CaCO ₃ or elemental S requirement to shift pH by 0.5 units for the
Kereone soil
Table A2.2. Calculation of CaCO₃ or elemental S requirement to shift pH by 0.5 units for the
Tarahashas asil