Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

EXPRESSION, PURIFICATION AND CHARACTERISATION OF RECOMBINANT PEPTIDE:*N*-GLYCOSIDASE F.

A thesis presented in partial fulfilment of the requirements for the degree of Master of Philosophy in Biochemistry at Massey University, New Zealand.

Trevor Stephen Loo

2000

"I have not failed. I've just found 10,000 ways that won't work."

Thomas Edison.

ABSTRACT

PNGase F (Peptide- N^4 -(N-acetyl-D-glucosaminyl) asparagine amidase F) is an amidohydrolase isolated from the extracellular medium of the Gram-negative bacterium *Flavobacterium meningosepticum*. The 34.8-kDa enzyme catalyses the complete and intact cleavage of asparagine-linked oligosaccharide chains from their associated proteins. A T7 promoter-based *E. coli* expression system was developed in which PNGase F was expressed as a fusion protein with a leader sequence from the *ompA* gene. The hexa-histidine-tagged PNGase F was correctly processed and exported to the *E. coli* periplasm and had a calculated molecular weight of 36.2 kDa. A single step purification using immobilised metal affinity chromatography yielded 8 mg of pure protein per litre of culture.

The sequence of the PNGase F coding region from the CDC strain 3352 of *F. meningosepticum* was found to differ from a published sequence from another strain of the bacterium (ATCC 33958) in 57 positions. These differences between the two strains result in eight amino acid substitutions, which are mostly conservative in nature and are on the surface of the protein. Moreover, three potential *N*-glycosylation sites not present in the ATCC strain 33958 were detected in CDC strain 3352.

The recombinant enzyme has similar characteristics of the native enzyme with a pH optimum of 8.5 and is strongly inhibited by Ag^+ , Cu^{2+} , and Fe^{3+} ions but not by sulfhydryl-targeting agents such as DTT and NEM. This indicates inhibition by these ions is probably through interactions with a histidine residue at position 193 that may be involved in substrate recognition or catalysis. The specific activity of the native PNGase F is about four times that of the recombinant protein which may be contributed to inhibition by components of the CompleteTM protease inhibitor tablets used in the enzyme preparation or due to modifications for cloning and purification. Using a discontinuous assay and a non-labelled 11-mer ovalbumin-derived glycopeptide as substrate, a rough estimate of the Michaelis constant (K_m) for the recombinant PNGase F was determined to be 2.1 μ M. An intriguing observation with the activity assays was the apparent product inhibition of enzyme activity and the inhibitor may be either peptide and/or glycan components, which require further investigations into the cause of the inhibition.

i

ACKNOWLEDGEMENTS

The many staff and students at the Institute of Molecular Biosciences to be thanked for their help and support. The following people deserve special mention:

My supervisor Dr. Gillian Norris for her invaluable advice, infinite patience and enthusiasm throughout the course of my study. Sincere thanks also to my cosupervisors Dr. Mark Patchett and Dr. Shaun Lott for their advice, encouragement and support.

I would also wish to thank my friends in X-lab: Deborah Frumau for her assistance, Julian Adams for his advice and modelling 3D structures, and F. Y. Chai for his humour and assistance. Dr. Cristina Weinberg for her encouragement as a caring friend who was forever patient with my questions, who kept me company late at night, and made me eat healthy.

Joanne Mudford for her friendship and giving me a "crash course" about her job before moving to Dunedin. Carmen Norris and David Elgar from NZDRI for giving me permission to use their HPLC system, Dr. Robert Norris for proof-reading my thesis, Associate Professor Geoff Jamerson for his generosity in equipment purchase and consumables, Associate Professor David Harding and Dick Poll for their valuable advice on chemistry and equipment loans, Dr. Catherine Day and Mrs. Carole Flyger for advice and assistance when I was working on my expression constructs, and Professor Pat Sullivan for his interest and encouragement for this work.

I should like to thank my long-suffering flatemate Desmond for enduring the chaos and his infallible efforts to keep the house habitable during house renovations and my long absences in writing of this manuscript.

Finally, thanks to my family who has always encouraged me to pursuit my interests regardless how bizarre they seemed.

ii

TABLE OF CONTENTS

i	ABSTRACT
ii	ACKNOWLEDGEMENTS
iii	TABLE OF CONTENTS
xii	LIST OF FIGURES
xvii	LIST OF TABLES
xviii	ABBREVIATIONS
xxi	ABBREVIATIONS OF AMINO ACIDS
xxiii	ABBREVIATIONS OF SUGARS
1	Chapter 1 Introduction and Literature Review
1	1.1 Protein Glycosylation
1	1.1.1 Carbohydrates
3	1.1.2 Glycoproteins
3	1.1.2.1 The Nature of Glycoproteins
4	1.1.2.2 Types of Glycosidic Linkages
5	1.1.2.2.1 Glycosylphosphatidylinositol (GPI) Anchors
5	1.1.2.2.2 N-linked Glycosylation
8	1.1.2.2.3 O-linked Glycosylation
9	1.1.2.3 Complexity and Diversity of Glycans
10	1.1.2.4 Potential Roles of Protein Glycosylation
12	1.2 Deglycosylation
12	1.2.1 Tools to Study the Roles of Glycans in Glycoprotein Functions

a contraction of

1.2.1.1 Chemical Deglycosylation	12
1.2.1.2 Enzymatic Deglycosylation	12
1.2.2 Endo <i>N</i> -acetyl-β-D-glucosaminidases (ENGases)	13
 Peptide-N⁴-(N-acetyl-β-D-glucosaminyl) asparagine amidase (PNGases) 	15
1.2.3.1 The <i>in vivo</i> Functions of PNGases	19
1.2.4 Other PROXIases	20
1.2.5 Glycosidases from <i>Flavobacterium memingosepticum</i>	20
1.2.5.1 Endo F ₁	21
1.2.5.2 Endo F_2 and F_3	21
1.2.5.3 PNGase F	21
1.2.5.3.1 Properties of PNGase F	21
1.2.5.3.2 Substrate Structure Requirements of PNGase F	22
1.2.5.3.3 The Three Dimensional Structure of PNGase F	23
1.2.5.3.4 The Active Site of PNGase F	25
1.2.6 Constructs of PNGase F	27
1.2.6.1 The First Clones of PNGase F	28
1.2.6.2 PNGase F Cloned as GST Fusions	29
1.2.6.3 A Clone of PNGase F from <i>F. meningosepticum</i> (CDC strain 3352)	29
1.2.6.4 Inclusion Bodies Formation in <i>E. coli</i>	29
1.3 Targeting and Assembly of Proteins in the Bacterial Periplasm	31
1.3.1 The Bacterial Periplasm	31
1.3.2 The Signal Peptide	32
1.3.3 The Sec Export Pathway	32
1.3.4 Protein Folding in the Periplasm	33

1.4 The Scope of this Project	35
Chapter 2 Construction of an Expression Vector for the	
Production of PNGase F in <i>E. coli</i>	37
2.1 Introduction	37
2.2 Experimental Objectives and Strategies	37
2.3 Materials	39
2.3.1 Chemicals and Enzymes	39
2.3.2 Plasmids and Bacterial Strains Used in This Study	40
2.3.3 Bacterial Growth Media	40
2.3.3.1 M9 with 0.5% Casamino Acids	41
2.3.3.2 LB Broth	41
2.3.3.3 SOB Medium	41
2.3.4 Storage and Propagation of Bacterial Cultures	41
2.4 Methods used for Cloning	42
2.4.1 Phenol:Chloroform Extraction of DNA from a DNA/Protein Mixture	42
2.4.2 Ethanol Precipitation of DNA	42
2.4.3 Size-Selective Polyethylene Glycol (PEG) Precipitation of DNA	42
2.4.4 Agarose Gel Electrophoresis	43
2.4.5 Quantitation and Size Determination of DNA Fragments	43
2.4.6 Amplification of PNGase F gene by PCR	43
2.4.7 Digestion of DNA with Restriction Endonucleases	44
2.4.8 Purification of DNA from Agarose Gels	44
2.4.9 Ligation of DNA Fragments	45

2.4.10 Preparation of Competent E. coli Cells	45
2.4.11 Transformation of Ligated Plasmids into Competent <i>E. coli</i> Cells	46
2.4.12 Small-Scale Preparation of Plasmid DNA	46
2.4.13 Sequence Analysis of DNA	47
2.5 Results	48
2.5.1 Amplification of PNGase F Gene from pT7-PNG by PCR	49
2.5.2 Restriction Enzyme Digest of the PNGase F DNA	53
2.5.3 Ligation of the PNGase F Gene into the Vector	55
2.5.4 Transformation of Competent <i>E. coli</i> Cells with Ligation Products	56
2.6 Discussion and Conclusions	59
2.6 Discussion and Conclusions	59
2.6 Discussion and Conclusions Chapter 3 Expression and Purification of PNGase F	59 63
 2.6 Discussion and Conclusions Chapter 3 Expression and Purification of PNGase F 3.1 Experimental Objectives 	59 63 63
 2.6 Discussion and Conclusions Chapter 3 Expression and Purification of PNGase F 3.1 Experimental Objectives 3.2 Materials 	59 63 63 63
 2.6 Discussion and Conclusions Chapter 3 Expression and Purification of PNGase F 3.1 Experimental Objectives 3.2 Materials 3.3 Methods used for Expression and Analysis of PNGase F 	59 63 63 63 66
 2.6 Discussion and Conclusions Chapter 3 Expression and Purification of PNGase F 3.1 Experimental Objectives 3.2 Materials 3.3 Methods used for Expression and Analysis of PNGase F 3.3.1 General Methods 	59 63 63 63 66 66
 2.6 Discussion and Conclusions Chapter 3 Expression and Purification of PNGase F 3.1 Experimental Objectives 3.2 Materials 3.3 Methods used for Expression and Analysis of PNGase F 3.3.1 General Methods 3.3.1.1 Determination of Protein Concentration 	59 63 63 66 66 66
 2.6 Discussion and Conclusions Chapter 3 Expression and Purification of PNGase F 3.1 Experimental Objectives 3.2 Materials 3.3 Methods used for Expression and Analysis of PNGase F 3.3.1 General Methods 3.3.1.1 Determination of Protein Concentration	59 63 63 66 66 66 66
 2.6 Discussion and Conclusions Chapter 3 Expression and Purification of PNGase F 3.1 Experimental Objectives 3.2 Materials 3.3 Methods used for Expression and Analysis of PNGase F 3.3.1 General Methods 3.3.1.1 Determination of Protein Concentration 3.3.1.1.1 Alkaline Copper (Lowry) Protein Assay	59 63 63 66 66 66 66 67
 2.6 Discussion and Conclusions Chapter 3 Expression and Purification of PNGase F 3.1 Experimental Objectives 3.2 Materials 3.3 Methods used for Expression and Analysis of PNGase F 3.3.1 General Methods 3.3.1.1 Determination of Protein Concentration	59 63 63 66 66 66 66 67 67
 2.6 Discussion and Conclusions Chapter 3 Expression and Purification of PNGase F 3.1 Experimental Objectives 3.2 Materials 3.3 Methods used for Expression and Analysis of PNGase F 3.3.1 General Methods 3.3.1.1 Determination of Protein Concentration 3.3.1.1.1 Alkaline Copper (Lowry) Protein Assay 3.3.1.1.2 Bicinchoninic Acid (BCA) Protein Assay 3.3.1.1.3 Coomassie Blue (Bradford) Protein Assay 3.3.1.1.4 UV Method 	59 63 63 66 66 66 66 67 67 67 68

3.3.1.3 Determination of PNGase F Activity with a Reverse Phase High Performance Liquid Chromatography (RP- HPLC) Assay	69
3.3.1.3.1 Mechanism of Assay	69
3.3.1.3.2 Preparation of Samples	71
3.3.1.3.3 Determination of Specific Activity of PNGase F	73
3.3.1.4 Polyacrylamide Gel Electrophoresis (PAGE)	75
3.3.1.5 Electroblotting of Proteins from Acrylamide Gels	75
3.3.1.6 N-Terminal Sequencing	76
3.3.1.7 Isoelectric Focusing (IEF) of Native and Recombinant PNGase F	77
3.3.1.8 Electrospray Ionisation Mass Spectrometry	77
3.3.1.9 Cell Growth and Protein Production Studies	78
3.3.2 Expression of PNGase F	78
3.3.2.1 Growth and Induction of <i>F. meningosepticum</i> Culture	78
3.3.2.2 Growth and Induction of <i>E. coli</i> Culture	79
3.3.2.2.1 Preparation of Periplasmic Fraction from <i>E. coli</i>	79
3.3.3 Purification of PNGase F	80
3.3.4 Chromatographic Methods	79
3.3.4.1 Hydrophobic Interaction Chromatography (HIC)	81
3.3.4.1.1 Hydrophobic Interaction Chromatography with Phenyl Sepharose 6 Fast-Flow (Low Substitution)	82
3.3.4.1.2 HIC with <i>t</i> -butyl-TSK	83
3.3.4.1.3 HIC Tests with Various Hydrophobic Matrices	83
A. Pharmacia HiTrap™ Test Kit	83
B. Macro-Prep <i>t</i> -butyl HIC Econo-Pac Cartridges	84
C. TSK-butyl-Toyopearl 650M	84

D. Alkyl Sepharose HR 10/10	84
3.3.4.1 Ion Exchange Chromatography (IEX)	84
3.3.4.2.1 IEX Test with various Ion Exchangers	86
A. Mono-Q HR5/5 & Uno-Q	86
B. Uno-S Polishing Column	86
C. Hydroxyapatite	87
3.3.4.3 Size Exclusion Chromatography (SEC) with Superdex 75	87
3.3.4.4 Purification of Recombinant PNGase F using Immobilised Metal Affinity Chromatography (IMAC)	89
3.3.4.5 Size Exchange Chromatography with Superdex 75	91
8.4 Results and Discussion	92
3.4.1 Verification of the Extinction Coefficient of Recombinant PNGase F	92
3.4.2 Comparison of Protein Quantitation Methods	93
3.4.3 Growth and Protein Production Studies of Transformed <i>E. coli</i> Cells	95
3.4.4 Purification of Native PNGase F	100
3.4.4.1 HIC with Phenyl Sepharose 6 Fast-Flow (Low Substitution)	100
3.4.4.2 HIC with Home-Made <i>t</i> -butyl Substituted TSK	102
3.4.4.3 HIC Tests with various Hydrophobic Matrices	103
3.4.4.3.1 Phenyl Sepharose 6 Fast-Flow (High Substitution)	103
3.4.4.3.2 Butyl Sepharose 4 Fast-Flow	105
3.4.4.3.3 Macro-Prep <i>t</i> -butyl Econo-Pac	106
3.4.4.3.4 TSK-butyl-Toyopearl 650M	107
3.4.4.3.5 Alkyl Sepharose	108

3.4.4.4 Ion Exchange Tests with various Ion Exchangers	111
3.4.4.4.1 Anion Exchange Chromatography	111
A. Mono-Q at pH 8.9	111
B. Mono-Q at pH 9.8	113
3.4.4.4.2. Uno-Q	114
A. Uno-Q at pH 8.9	114
B. Uno-Q at pH 9.8	115
3.4.4.4.3 Cation Exchange Chromatography: Uno-S at pH 7.2	116
3.4.4.4 Hydroxyapatite Column	118
3.4.4.5 HIC with Newly Synthesised <i>t</i> -butyl TSK	120
3.4.4.6 SEC with Superdex 75	121
A. Superdex 75 HR 16/60 Prep-Grade Resin	121
B. Superdex 75 HR 10/30 Super Fine Resin	122
C. Superdex 75 HR 10/30 Super Fine Resin in the presence of Thesit	123
3.4.5 Purification of Recombinant PNGase F	124
3.4.5.1 IMAC Test of various Chelating Resins	125
 A. Boehringer Mannheim Poly-His Purification Resin Chelated with Zn²⁺ 	125
B. Boehringer Mannheim Poly-His Purification Resin Chelated with Ni ²⁺	125
C. Pharmacia HiTrap™ Chelating Resin Chelated with Zn2+	126
D. Pharmacia HiTrap [™] Chelating Resin Chelated with Ni2+	127
E. Elution Profile of Recombinant PNGase F from Ni ²⁺ Charged HiTrap™ Chelating Resin	128

3.4.5.2 SEC of Recombinant Enzyme with Superdex 75 in the presence of 0.006% Thesit	128
3.5 Conclusion	135
Chapter 4 Characterisation of Recombinant PNGase F	136
4.1 Introduction	136
4.2 Experimental Objectives	136
4.3 Materials	137
4.4 Methods used in Characterisation	138
4.4.1 Comparison of Substrate Specificity	138
4.4.1.1 Detection of Deglycosylated Substrate with Digoxigenin (DIG) Glycan/Protein Double Labelling kit	139
4.4.1.1.1 Principle of Detection	139
4.4.2 Characterisation of Recombinant PNGase F	140
4.4.2.1 Effects of Temperature	140
4.4.2.2 Effects of pH	141
4.4.2.3 Effects of Metal ions and Additives	141
4.4.2.4 Shelf-Life	142
4.4.3 Determination of the Michaelis Constant (K _m) of Native and Recombinant PNGase F	142
4.5 Results and Discussion	144
4.5.1 Comparison of Substrate Specificity	144
4.5.2 Characterisation of Recombinant PNGase F	149
4.5.2.1 Effects of Temperature	149
4.5.2.2 Effects of pH	150
4.5.2.3 Effects of Metal Ions and Additives	151
4.5.2.5 Shelf-Life of Recombinant PNGase F	152

Ň

4.5.3 Determination of the Michaelis Constant (<i>K</i> _m) of Native and Recombinant PNGase F	156
4.5.3.1 Experimental Strategy	156
4.5.3.2 Results	156
4.5.3.2 Shortcomings of the Discontinuous Activity Assay	159
4.5.3.2.1 Limited Availability of the Substrate	159
4.5.3.2.2 Low Detection Sensitivity of the Assay	159
4.5.3.2.3 Other Difficulties of the Assay	159
4.5.4 Alternative Methods to Measure Activity	160
4.5.4.1 Oxidation of NADPH by L-Glutamatic Dehydrogenase	160
4.5.4.1.1 Principle of Detection	160
4.5.4.1.2 Sample Preparation	161
4.5.4.1.3 Results	161
4.5.4.2 Real Time Measurement of <i>K</i> _m using Surface Plasmon Resonance (SPR) Technology	162
4.5.4.2.1 Principle of Detection	163
4.5.4.2.2 Application of SPR to the K _m Determination of PNGase F	164
4.5.4.3 Kinetic Analysis of Ribonuclease B Products by ES-MS	164
4.5.4.4 Pre-Kinetic Analysis of PNGase F Deglycosylation Reaction by ES-MS	166
4.6 Conclusions	167
Chapter 5 Final Conclusion	170
REFERENCES	173
APPENDIX	193

LIST OF FIGURES

Figure 1.1	The different configurations of monosaccharides	2
Figure 1.2	Condensation reaction between two monosaccharides	3
Figure 1.3	The β -asparatylglucosylamine link of a glycosylated asparagine	5
Figure 1.4	Complex type N-linked glycan	7
Figure 1.5	High mannose type N-linked glycan	7
Figure 1.6	Hybrid type N-linked glycan	8
Figure 1.7	The glycosidic bond cleaved by ENGases	14
Figure 1.8	The two step cleavage reaction catalysed by PNGases	18
Figure 1.9	Topology of the PNGase F molecule	23
Figure 1.10	The PNGase F structure	24
Figure 1.11	The orientation of <i>N</i> , <i>N</i> '-diacetylchitobiose (CTB) inside the active site of PNGase F	26
Figure 1.12	Schematic diagram showing the intermolecular hydrogen bonding contacts between PNGase F, <i>N</i> , <i>N</i> '-diacetylchitobiose, and water molecules	27
Figure 1.13	Structure of PNGase F signal sequence	28
Figure 1.14	A model for protein translocation across the inner membrane	33
Figure 1.15	Model of disulfide formation catalysed by the various Dsb enzymes in the periplasm of <i>E. coli</i>	34
Figure 2.1	Map of pKS-OmpA3-His	38
Figure 2.2	An inverse image of a 12% SDS-PAGE with silver staining shows the solubility problem of recombinant PNGase F expressed in <i>E. coli</i>	48
Figure 2.3	Cloning strategy for PNGase F	50
Figure 2.4	Synthetic oligonucleotides used for PCR amplification	51
Figure 2.5	PNGase F amplified from pT7-PNG using PCR	52
Figure 2.6	Double digested vector and PNGase F DNA	53
Figure 2.7	Schematic diagram showing predicted PCR products using various primer pairs on a successfully ligated plasmid	54
Figure 2.8	PCR confirmation of successful ligation	55

Figure 2.9	Plasmid miniprep of XL1-Blue transformed with pOPH6	58
Figure 2.10	Possible nucleotide misincorporation by <i>Taq</i> polymerase during the amplification of CDC strain 3352 PCR product	61
Figure 3.1	PNGase F cleaves the amide bond in the ovalbumin glycopeptide	68
Figure 3.2	Formation of the homoserine lactone (Hsl) ring	69
Figure 3.3	Chromatogram of a typical deglycosylation activity assay	71
Figure 3.4	A summary of the purification scheme for PNGase F	90
Figure 3.5	Growth curve of <i>E. coli</i> transformed with pOPH6	94
Figure 3.6	A schematic diagram of the <i>E. coli</i> BL21(DE3) cell showing IPTG induction of PNGase F synthesis and subsequent secretion of the nascent polypeptide into the periplasm	96
Figure 3.7	PNGase F production in induced cells at different time points	97
Figure 3.8	An inverse image of a 12% SDS-PAGE with silver staining shows the protein solubility problem of pKS-PNG is resolved by secretion in pKS-OPH6	98
Figure 3.9	Standard curved used to estimate the molecular weight of recombinant PNGase F	99
Figure 3.10	Chromatogram of the elution from Phenyl Sepharose6 Fast-Flow (low substitution) of <i>F. meningosepticum</i> culture medium	100
Figure 3.11	SDS-PAGE of the PNGase F fractions from Phenyl Sepharose 6 Fast-Flow (low substitution)	100
Figure 3.12	Chromatogram of PNGase F on <i>t</i> -butyl substituted TSK	101
Figure 3.13	SDS-PAGE of fractions from <i>t</i> -butyl substituted TSK	101
Figure 3.14	Chromatogram of elution of PNGase F from Phenyl Sepharose 6 Fast-Flow (high substitution)	103
Figure 3.15	SDS-PAGE of fractions form Phenyl Sepharose 6 Fast-Flow (high substitution)	103
Figure 3.16	Chromatogram of elution from Butyl Sepharose 4 Fast-Flow	105
Figure 3.17	SDS-PAGE analysis on active fractions from Butyl Sepharose 4 Fast-Flow	105
Figure 3.18	Chromatogram of elution from <i>t</i> -butyl Econo-Pac	106
Figure 3.19	SDS-PAGE of active fractions from Bio-Rad t-butyl Econo-Pac	106
Figure 3.20	Chromatogram of elution from TSK-butyl-Toyopearl	107
Figure 3.21	SDS-PAGE analysis of active fractions from TSK-butyl- Toyopearl	108

Figure 3.22	Chromatogram of elution of PNGase F from Alkyl Sepharose	109
Figure 3.23	SDS-PAGE analysis of fractions from Alkyl Sepharose	109
Figure 3.24	SDS-PAGE analysis of native and recombinant PNGase F used for IEF	110
Figure 3.25	Isoelectrical focusing of native and recombinant PNGase F	111
Figure 3.26	Chromatogram of elution from Mono-! At pH 8.9	112
Figure 3.27	SDS-PAGE of active fractions form Mono-Q at pH 8.9	112
Figure 3.28	Chromatogram of elution from Mono-Q at pH 9.8	113
Figure 3.29	SDS-PAGE of active fractions from Mono-Q at pH 9.8	113
Figure 3.30	Chromatogram of elution from Uno-Q at pH 8.9	114
Figure 3.31	SDS-PAGE analysis of factions from Uno-Q at pH 8.9	115
Figure 3.32	Chromatogram of elution from Uno-Q at pH 9.8	115
Figure 3.33	SDS-PAGE analysis of the fractions from Uno-Q at pH 9.8	116
Figure 3.34	Chromatogram of elution from Uno-S at pH 7.2	117
Figure 3.35	SDS-PAGE analysis of fractions from Uno-S at pH 7.2	117
Figure 3.36	Chromatogram of elution from hydroxyapatite	118
Figure 3.37	SDS-PAGE analysis of fractions from hydroxyapatite	118
Figure 3.38	Charged groups distribution on the surface of native PNGase F	119
Figure 3.39	Chromatogram of elution from new <i>t</i> -butyl substituted TSK	120
Figure 3.40	SDS-PAGE analysis of fractions from new <i>t</i> -butyl TSK	121
Figure 3.41	Chromatogram of elution from Superdex 75 HR 16/60	121
Figure 3.42	SDS-PAGE analysis of fractions from Superdex 75 HR 16/60 .	122
Figure 3.43	Chromatogram of elution from Superdex 75 HR 10/30	122
Figure 3.44	SDS-PAGE analysis of fractions from Superdex 75 HR 10/30 .	123
Figure 3.45	Chromatogram of elution from Superdex 75 HR 10/30 with Thesit	123
Figure 3.46	An inverse image of a silver stained SDS-PAGE of fractions from Superdex 75 HR 10/30 with Thesit	124
Figure 3.47	SDS-PAGE of fractions from Zn^{2+} charged Poly-His resin	125
Figure 3.48	SDS-PAGE of fractions from Ni ²⁺ charged Poly-Hs resin	126
Figure 3.49	SDS-PAGE of fractions from Zn ²⁺ charged HiTrap [™] chelating resin	127

Figure 3.50	An inverse image of a silver stained SDS-PAGE of fractions from Ni ²⁺ charged HiTrap [™] chelating resin	127
Figure 3.51	Elution profile from Ni ²⁺ charged Pharmacia chelating resin	128
Figure 3.52	Chromatogram of elution from Superdex 75 HR 10/30	129
Figure 3.53	An inverse image of a SDS-PAGE stained with silver staining method shows the purity of recombinant PNGase F from Superdex 75 HR 10/30	129
Figure 3.54	The reciprocal relationship of substrate depletion and product formation in the activity assay	130
Figure 3.55	The linear relationship of product area and substrate concentration in the activity assay	130
Figure 4.1	Schematic representation of the detection principle of DIG glycan/protein double labelling kit	140
Figure 4.2	Lineweaver-Burk plot with error bars of $\pm 0.05V$	142
Figure 4.3	Hanes-Woolf plot with error bars of $\pm 0.05 V$	142
Figure 4.4	A 12% SDS-PAGE of the deglycosylated products of fetuin by recombinant PNGase F under different buffering conditions after 48 hours of incubation at 37°C	145
Figure 4.5	The deglycosylated products of different glycoproteins used in DIG glycan/protein double labelling kit	146
Figure 4.6	The detection of glycans and proteins in deglycosylated products of various glycoproteins using DIG glycan/protein double labelling kit	147
Figure 4.7	The comparison of glycoprotein deglycosylation by native and recombinant PNGase F	148
Figure 4.8	Temperature profile of recombinant PNGase F	149
Figure 4.9	pH profile of recombinant PNGase F	150
Figure 4.10	Structures of Caps and Capso buffers	150
Figure 4.11	The effects of metal ions on recombinant PNGase F activity	151
Figure 4.12	The effects of additives on recombinant PNGase F activity	152
Figure 4.13	Initial estimate of the K_m of recombinant PNGase F with ovalbumin-derived glycopeptide in small reaction volume	157
Figure 4.14	<i>K</i> _m determination of dialysed recombinant PNGase F in a large reaction volume	158
Figure 4.15	The curve generated for calculation of $K_{\rm m}$ by the program Enzfitter	158

Figure 4.16	A continuous calorimetric assay for measuring PNGase F activity through the oxidation of NADPH by <i>L</i> -glutamatic dehydrogenase (<i>L</i> -GLDH)	160
Figure 4.17	Chromatogram from the <i>L</i> -GLDH coupling assay	162
Figure 4.18	Detection of biomolecular binding events by SPR	163
Figure 4.19	Understanding the sensorgram	163
Figure 4.20	The sensor chip NTA	164
Figure 4.21	The spectrum for ribonuclease B product quantitation by ES-MS	165
Figure 4.22	The spectrum for ovalbumin glycopeptide product quantitation by ES-MS	166
Figure 4.23	Structures of Capso, glycerol, and isopropanol	168

LIST OF TABLES

Table 1.1	Some consequences of genetic defects or polymorphisms in	
	Glycosylation	4
Table 1.2	Some biological roles of oligosaccharides	11
Table 1.3	The occurrence of some endo- <i>N</i> -acetyl-β-D-glucosaminidases (ENGases)	14
Table 1.4	The occurrence of some peptide- N^4 -(N -acetyl- β -D-glucosaminyl) asparagine amidase (ENGases)	15
Table 1.5	Characteristics of known purified PNGases	16
Table 1.6	The occurrence of other PROXIases	20
Table 2.1	Colony count from transformation of pOPH6 ligation mix into <i>E. coli</i> XL1-Blue cells	57
Table 2.2	Amino acid variation between ATCC strain 33958 and CDC strain 3352	59
Table 3.1	Chromatographic supports used in purification	64
Table 3.2	PNGase activity assay gradient programme	70
Table 3.3	The nine glycoforms of hen egg white ovalbumin	73
Table 3.4	Summary of purification of native and recombinant PNGase F	132
Table 4.1	List of buffers used in the activity test	141
Table 4.2	Protease inhibitor set (Roche) was suspected to have components similar to those of the Complete [™] protease inhibitor tablets	154
Table 4.3	The effects of long-term storage on recombinant PNGase F activity	155

ABBREVIATIONS

r				
amu	Atomic mass units			
Amp	Ampicillin			
ATCC 33958	American Type Culture Collection No. 33958; sequence from this strain was published by Tarentino <i>et al.</i> , 1990.			
AUFS	Absorbance units at full scale			
BSA	Bovine serum albumin			
BCA	Bicinchoninic acid			
Caps	3-Cyclohexylamino-1-propanesulfonic acid			
Capso	3-Cyclohexylamino-2-hydroxy-1-propanesulfonic acid			
CDC strain 3352	United States Communicable Disease Centre culture collection strain 3352; the strain used in this study.			
CDI	1,1'-carbonyldiimidazole			
cfu	Colony forming units			
CIAP	Calf intestinal alkaline phosphatase			
CNBr	Cyanogen bromide			
СТВ	N,N'-diacetylchitobiose			
Dabsyl	4-(dimethylamino)-azobenzene-4'-sulfonyl			
DIG	Digoxigenin			
DNA	Deoxyribose nucleic acid			
DNTPs	Deoxyribose nucleotide triphosphates			
DMSO	Dimethyl sulphoxide			
DTT	Dithiothreitol			
EDTA	Ethylenediamine tetra-acetic acid (di-sodium salt)			
EGCase	Endoglycoceramidase			
ENGase	Endo-N-acetyl-β-D-glucosaminidase or endoglycosidase			
EPPS	N-[2-Hydroxyethyl]piperazine-N'[3-propanesulfonic acid]			
ER	Endoplasmic reticulum			
ES-MS	ElectroSpray Mass Spectrometry			
EtBr	Ethidium bromide			
FPLC	Fast protein liquid chromatography			
L-GLDH	L-Glutamic dehydrogenase			
GdmHCl	Guanidine hydrochloride			

GPI	Glycosylphosphatidylinositol			
HC1	Hydrochloric acid			
IMAC	Immobilised metal ion affinity chromatography			
IPTG	Isopropyl-1-thio-β-D-galactopyranoside			
kb	kilo base pairs			
kDa	kilo daltons			
α-KG	α-Ketoglutaric acid			
LB	Luria broth			
MW	Molecular weight			
MWCO	Molecular weight cut-off			
Mes	Morpholinoethane sulfonic acid			
MOPS	3-[N-Morpholino] propanesulfonic acid			
NaAc	Sodium acetate buffer			
NaCl	Sodium chloride			
NADPH	α -Nicotinamide adenine dinucleotide phosphate (reduced form)			
NEM	<i>N</i> -Ethylmaleimide			
NGase	β-aspartyl-N-acetylglucosamine hydrolase			
(NH ₄) ₂ SO ₄	Ammonium sulphate			
NMR	Nuclear magnetic resonance			
O-GlcNAcase	Cytoplasmic β-GlcNAcase			
PAGE	Polyacrylamide gel electrophoresis			
PCR	Polymerase chain reaction			
PEG	Polyethylene glycol			
PI	Phosphatidyl inositol			
PMF	Proton motive force			
PMSF	Phenylmethylsulfonyl fluoride			
PNGase	Peptide- N^4 -(N -acetyl- β -D-glucosaminyl) asparagine amidase F			
POGase	Peptide-O-glycanase			
Psi	Pounds per square inch			
PVDF	Polyvinylidene difluoride			
RP-HPLC	Reverse phase high performance liquid chromatography			
rpm	Revolutions per minute			
SDS	Sodium dodecyl sulfate			
SPR	Surface plasmon resonance			

Taps	(N-tris[Hydroxy-methyl]methyl-3-amino propanesulfonic acid			
TEMED	N,N,N',N'-tetramethylethylenediamine			
Tris	Tris (hydroxymethyl)-aminomethane			
TFA	Trifluoroacetic acid			
Thesit	Polyoxyethylene 9-laurylether			
TSK	Chromatography matrix copolymer of oligoethylene glycol, glycidylmethacrylate and pentaeryhtrol-dimethacrylate			
UV	Ultra violet			
X-Gal	5-bromo-4-chloro-3-indolyl-β-D-galactoside			

Amino acid	Three Letter Symbol	One Letter Symbol	MW	Side Chain Structure
Alanine	Ala	А	89	-CH ₃
Arginine	Arg	R	174	-(CH ₂) ₃ -NH-C-NH ₂ NH
Asparagine	Asn	N	132	O // -CH2-C-NH2
Aspartic Acid	Asp	D	133	-CH ₂ -COOH
Asparagine or Aspartic acid	Asx	В		
Cysteine	Cys	С	121	-CH ₂ -SH
Glutamic Acid	Glu	Е	147	-(CH ₂) ₂ -COOH
Glutamine Glutamine or glutamic acid	Gln Glx	Q Z	146	O // -(CH ₂) ₂ -C-NH ₂
Glycine	Gly	G	75	-H
Histidine	His	Н	154	-CH2-UNN
Homoserine	Hs	Hs	119	-CH ₂ -CH ₂ -OH
Homoserine Lactone	Hsl	Hsl	101	
Isoleucine	Ile	Ι	131	-CH-CH ₂ -CH ₃ CH ₃

Amino Acid Abbreviations

Leucine	Leu	L	131	CH3 -CH2-CH CH3
Lysine	Lys	K	146	-(CH ₂) ₄ -NH ₂
Methionine	Met	М	149	-(CH ₂) ₂ -S-CH ₃
Phenylanine	Phe	F	165	-CH2-
Proline	Pro	Р	115	$ \sum_{\substack{N \\ }} C $
Serine	Ser	S	105	-CH ₂ OH
Threonine	Thr	Т	119	-CH-CH3 OH
Tryptophan	Trp	W	204	-CH ₂ -
Tyrosine	Tyr	Y	181	-CH2-0H
Valine	Val	v	117	CH3 -CH CH3

Sugar	Three Letter Symbol
Fucose	Fuc
Galactose	Gal
Mannose	Man
N-acetylgalactosamine	GalNAc
N-acetylglucosamine	GlcNAc
N-acetylneuraminic (sialic) acid	NeuNAc

Sugar Abbreviations

Note: Sugar linkages are described using conventional carbon ring numbers connected by a slash and anomericity is denoted by α or β . For example, galactose β 1-4 linked to N-acetylglucosamine is written as Gal β 1-4GlcNAc.