Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Bending Creep of Corrugated Fibreboard in Cycling Relative Humidity

February 1999

Andrew David McKenzie

Bending Creep of Corrugated Fibreboard in Cycling Relative Humidity

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Applied Science in Agricultural Engineering at

Massey University

Andrew David McKenzie

February 1999

Abstract

Packaging of fresh fruit for export is a major use for corrugated fibreboard manufactured in New Zealand. However the cold and humid conditions used to preserve fruit quality are particularly detrimental to the strength of corrugated packaging.

The main objective of this study was to develop a method to measure the performance of corrugated fibreboard in high and cycling relative humidity environments. This method was then used to compare the performance of three corrugated fibreboards¹.

The creep performance of corrugated fibreboard was measured by subjecting samples to four point bending stress under controlled cyclic relative humidity conditions using a computer controlled testing apparatus. A mathematical model by Urbanik (1995) and an empirical exponential model were reviewed before selecting a three term model developed by Pecht (1985) to describe the deflection of the corrugated board.

Cyclic relative humidity accelerated the rate of creep compared to a static high humidity environment. The rate of creep in the machine direction was found to be considerably lower than that in the cross machine direction. It was also found that increasing the peak relative humidity from 80% to 90% RH dramatically changed the deflection response. This provides a solution to conflicting data in the literature on relative humidity cycling effects.

Isochronous deflection curves were used to compare the creep performance of the corrugated fibreboard samples in an environment cycling between 50% and 90% RH. Corrugated fibreboard sample CB1 had a slightly lower creep stiffness than corrugated boards CB2 (p=0.0580, n=8) and CB3 (p=0.0398, n=8). However a greater number of tests would be required on a wider range of samples to conclusively determine if there were differences in board performance.

¹For commercial reasons these will be referred to as 'CB1', 'CB2' and 'CB3'

Acknowledgments

I wish to express my sincere gratitude to my supervisors, Associate Professor Cliff Studman and Dr. Rob Steadman, for their encouragement and guidance during my study. I also wish to thank Dr. Bill Sampson for his contributions towards the modelling and Ian Chalmers for his support. Thanks to Reiner Hensel for his engineering expertise in the construction of the equipment.

Thanks must also go to PAPRO for allowing me to study and Carter Holt Harvey Pulp and Paper Limited for funding the research and allowing me to use it towards a degree.

Finally, special thanks to my wife Robyn for her confidence in me and to Hamish and Erin for their patience while I was working on the thesis.

Contents

Ał	ostra	i
Ac	knov	vledgments ii
Li	st of	Figures viii
Li	st of	Tables ix
Gl	ossar	y of Terms x
1	Intr	oduction 1
	1.1	Overview
	1.2	Research Objectives
2	Bac	kground to Corrugated Fibreboard and Creep 3
	2.1	Overview of Paper Properties
		2.1.1 Manufacturing
		2.1.2 Engineering Properties
		2.1.3 Effect of Moisture on Paper
	2.2	Corrugated Fibreboard Properties
	2.3	Creep
3	Lite	rature Review 14
	3.1	Introduction
	3.2	Corrugated Fibreboard Creep Measurement Methods
	3.3	Creep Test Stressing Mode
	3.4	Mechanosorption
	3.5	Environmental Conditions
	3.6	Material Characteristics Affecting Creep
	3.7	Characteristics of Cyclic Relative Humidity Creep of Corrugated Fi-
		breboard

	3.8	Mathe	ematical Modelling of Creep	23
		3.8.1	Wood Products	24
		3.8.2	Paper and Corrugated Fibreboard	24
			3.8.2.1 Creep Response	24
			3.8.2.2 Hygroexpansive Response	28
			3.8.2.3 Analysis of Results	29
		3.8.3	Finite Element Modelling of Corrugated Fibreboard and Cor-	
			rugated Containers	31
	3.9	Summ	ary and Conclusions	32
4	Ext	oerime	ntal	34
	4.1	Corrus	gated Fibreboard Samples	34
	4.2	Exper	imental Conditions	35
		4.2.1	Environmental Conditions	35
		4.2.2	Load	36
	4.3	Exper	imental Design	37
	4.4	Data	Analysis	38
		4.4.1	Curve Fitting	38
		4.4.2	Statistical Analysis	38
	4.5	Equip	ment	39
		4.5.1	Measurements Required	40
		4.5.2	Selection of Displacement Transducer	40
		4.5.3	Relative Humidity Measurement	42
		4.5.4	Humidity Sensor Calibration	43
		4.5.5	Temperature Measurement	43
		4.5.6	Time Measurement	•44
		4.5.7	Moisture Content Measurement	44
		4.5.8	Data Logging System Hardware	44
			4.5.8.1 Analogue Inputs and Digital I/O	44
			4.5.8.2 Serial Data Communication	46
		4.5.9	Data Logging Software	46
	1.0	C	4.5.9.1 Language Attributes	46
	4.6	Creep	Tester Program	48
		4.6.1	Program Initialisation	48
	4 7	4.0.2	Program Operation	48
	4.7	Cyclic	Relative Humidity Profile Control	50
	4.8	Systen	n Operation	51

		4.8.1 Sample Setup	51
		4.8.2 PC Operation	51
	4.9	Data File Handling	53
		4.9.1 Calibration	53
2			
5	Pre	liminary Experiments to Verify Creep Apparatus, Characterise	
	Cor	rugated Fibreboard Bending Creep and Develop Model	55
	5.1		55
	5.2	Instrumentation Verification	55
		5.2.1 Plastic Hygrostability	55
		5.2.2 Laser Displacement Calibration	58
	5.0	5.2.3 Laser Displacement Transducer Stability	59 60
	5.3	Characterisation of corrugated horeboard bending creep	60
		5.3.1 Experimental f Proliminary Thiola	6U
		5.3.2 Results and Discussion of Fremmary mais	61
		5.3.2.1 Typical data set	62
		5.3.2.2 Effect of load on corrugated fibrehoard bending creep	63
		5.3.2.4 Effect of cyclic BH versus constant BH on corrugated	00
		fibreboard bending creep	63
	54	Cyclic Belative Humidity Creep Modelling - Attempts to Fit Prelim-	00
	0.1	inary Data to Existing and New Models	64
		5.4.1 Urbanik Model	65
		5.4.2 Exponential Empirical Model	66
		5.4.3 Pecht Model	68
	5.5	Summary and Conclusions	72
6	Mai	in Experiment	74
	6.1	Experimental and Test Details	74
	6.2	Experimental conditions	75
	6.3	Results	76
7	Dise	cussion	81
	7.1	Deflection Response to Moisture Sorption	81
		7.1.1 Direction of cyclic deflection response	81
		7.1.2 Cyclic deflection response shape	84
	7.2	Creep Model Fit	86
	7.3	Isometric Creep Response	88

CONTENTS

	7.4	Isochronous Creep Response	38		
8	Con	clusions 9	4		
A	Dat	a Acquisition Specifications 9	6		
	A.1	Voltage Input Module Specifications	96		
	A.2	PC DAQ Card	96		
	A.3	Data Aquisition Hardware Components	97		
в	Lab	VIEW [©] Program 9	8		
	B.1	Creep test apparatus control program	98		
	B.2	Thermoline RH control program)8		
С	C Creep Experiment Graphs 105				
Re	References 122				

 \mathbf{vi}

List of Figures

2.1	Double face corrugated board (Jönson, 1993)	3
2.2	Layout of a four drinier type paper machine (Jönson, 1993) \ldots	5
2.3	Basic directions of paper; MD, CD and ZD (Unknown source)	6
2.4	Typical moisture hysteresis isotherms for pulp and paper (Wink, 1961)	9
2.5	Corrugated board manufacture (Jönson, 1993)	11
2.6	Basic geometry and component materials of corrugated board (Luo	
	et al. (1995)	11
2.7	Example creep curve	13
3.1	FPL corrugated fibreboard creep measurement device.(Gunderson and	
	Laufenberg, 1994)	15
3.2	Bending creep in the FPL tester. (Gunderson and Laufenberg, 1994)	16
3.3	Equation 3.5 fitted to the cyclic minima of tensile creep in a cyclic	
	RH environment (Haslach et al., 1991)	27
3.4	Example creep curves	30
3.5	Example isometric curve	30
3.6	Example isochronous curve	31
4.1	Diagram of a MD test piece (Luo et al., 1995) Direction 1 is the MD,	
	2 is the CD and 'h' is the thickness	34
4.2	Diagram of a CD test piece (Luo et al., 1995)	35
4.3	Corrugated board specimen load frame	36
4.4	Four point bending creep apparatus	39
4.5	Bending creep apparatus in the Thermoline environmental cabinet	41
4.6	Data Acquisition Hardware Overview	47
4.7	Creep System Operating Screen	52
5.1	Hygrostability of creep apparatus plastic components	57
5.2	Laser displacement transducer calibration	58
5.3	Transducer RH stability	59
5.4	Typical creep deflection curve from experiment 71114 ('S'1)	61

LIST OF FIGURES

5.5	Effect of corrugated fibreboard orientation on creep response (aver-	
	aged creep curves)	62
5.6	Creep response of 'S' corrugated fibreboard for two loads	63
5.7	Constant 90% RH and cyclic RH creep at 167g load. Specimen (a)	
	conditioned at 50% RH prior to cyclic RH creep test, specimen (b)	
	conditioned at 90% RH prior to 90% RH creep test	64
5.8	Log-log scale plot of deflection data (71114'S'1) showing a straight	
	line across the peaks	66
5.9	Linear - linear plot of equation 5.1 fitted to data peaks (71114'S'1)	67
5.10	Sigmoidal exponential equation (Eq. 5.2) fitted to deflection peaks of	
	Experiment 80218 data	68
5.11	Pecht model (Equation 3.5) fitted to cyclic RH creep minima (71114'S'1)	69
5.12	Equation 5.3 fitted to cyclic RH creep data (Experiment 71114'S'1) $$.	71
5.13	Cyclic RH creep curve showing no amplitude decay (80218'R'2) $\ .$	72
6.1	Bending creep response of CB3 corrugated board in a sinusoidal cyclic	
	RH. Test loads are shown next to each curve.	77
6.2	Bending creep response of CB2 corrugated board under 397g load in	
	a sinusoidal cyclic RH over a range of 50-80% RH	78
6.3	Bending creep response of corrugated board in a square wave cyclic	
	RH (80921)	79
6.4	Bending creep response of corrugated board and wood veneer in a	
	square wave cyclic RH (81003)	79
7.1	Example of corrugated board showing cyclic deformation showing	
	lead (negative phase lag) with respect to RH (80622, CB3,1)	85
7.2	Creep times for 2mm deflection for corrugated board in a 12 hour	
	$70\pm20\%$ RH cyclic environment. CB1, CB2 and CB3 refer to the	
	corrugated board sample label.	89
7.3	50 hour isochronous data for CB1, CB2 and CB3 showing the creep	
	modulus for 50 hour 50%-90% cyclic RH creep data	90

List of Tables

3.1	Typical Features of Mechanosorption (Hoffmeyer and Davidson, 1989)	18
4.1 4.2	Sample experimental design	38 42
5.1	Conditions for preliminary creep experiments	60
6.1	Cyclic relative humidity corrugated fibreboard experimental conditions	75
6.2	Static relative humidity corrugated fibreboard experimental conditions	76
6.3	Square wave relative humidity experimental conditions $\ldots \ldots \ldots$	76
7.1	Cyclic relative humidity corrugated fibreboard creep model parameters	87
7.2	Static relative humidity corrugated fibreboard creep model parameters	87
7.3	SAS General linear model results for corrugated board 50 hour isochrones	
	up to 306g load	91
7.4	SAS General linear model results for corrugated board $\sqrt{\text{deflection}}$	
	up to 306g load	92
A.1	Voltage Input Module Characteristics	96
A.2	Data Aquisition Card Specifications	96

Glossary of Terms

Creep: deformation caused by stress applied over time

Doublebacker Linerboard glued to single face corrugated board

Furnish: the mix of fibre and chemical used to make paper

Grammage: mass per unit area in g/m^2 of an air dried sheet (also called **Basis** weight)

Hygroexpansion: dimensional changes due to the sorption of moisture

Isochronous curve: stress versus strain at constant time

Isometric curve: stress versus time at constant strain

Kraft: wood pulp made using sodium hydroxide and sodium sulphide to dissolve wood lignin

Kraft linerboard: contains not less than 80% kraft pulp fibre

- Mechanosorption: nonlinear interaction between applied stress and changing moisture content exhibited in creep behaviour
- Mechanosorptive creep: cumulative ratcheting of deformation following each change in material moisture content

Medium: Paperboard used to form the corrugated centre of corrugated fibreboard

Singleface corrugated board: Linerboard glued to corrugated medium

Single facer: First linerboard glued to corrugated medium

- Stress induced hygroexpansion: additional dimensional changes due to stress during sorption
- Viscoelastic creep: deformation caused by stress and the time required for deformation to respond to stress