Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A DEM BASED INVESTIGATION OF MASS MOVEMENT SEDIMENT DELIVERY

A thesis presented in partial fulfilment of the requirements for the Degree of Master of Applied Science in Soil Science, Massey University, Palmerston North, New Zealand.

Leyton Richard Lovell, March 1998

ABSTRACT

Environmental legislation in New Zealand has required local and regional government to place a greater emphasis upon the external effects of land use. For New Zealand hill country this means a quantitative understanding of accelerated soil erosion in terms of its effects upon downstream sedimentation and subsequent flood events. This study was an investigation into the spatial distribution of soil slip erosion (NZLRI) for the Waipaoa River Catchment (~2204km²), East Cape, New Zealand. A combined Remote Sensing and GIS approach using orthorectified aerial photographs and digital elevation models was employed to investigate the topographic attributes influencing the spatial pattern of erosion, utilising a series of classified erosion maps. Of the variables examined, slope, aspect, elevation, and the soil moisture index (SMI) were quantitatively reaffirmed as controlling influences upon mass movement. The erosion maps in conjunction with hydrological flow accumulation images were also found to objectively determine thresholds for identifying stream channel networks from the DEM. The erosion maps when combined with historical data were used to construct sediment delivery ratios and sediment budgets for each landsystem investigated. The most significant influences upon landsliding were combined in a data driven model to assign a probability of landsliding for each pixel, which can later be used to create landslide susceptibility maps and assist in the allocation of soil conservation resources.

Keywords:

ORTHORECTIFIED AERIAL PHOTOGRAPHS, DEMs, SOIL SLIP EROSION, SEDIMENT DELIVERY RATIOS, SEDIMENT BUDGETS

ACKNOWLEDGEMENTS

I would like to thank the following people that I have had the pleasure of working with throughout the past year:

- Mr. Mike Tuohy for facilitating the relationship with Landcare Research Ltd, his advice regarding the direction, outcomes, and delivery of the project, and his good humour.
- Mr. John Dymond for his continual support, encouragement, advice on quantitative matters, and interpretation of my often incoherent ramblings, as well as his uncanny ability to always say the right thing at the right time.
- Mr. Mike Page for furnishing many historical data, and accompaniment into the field for an introduction of the hillslope processes of the Waipaoa River catchment.
- Mr. Murray Jessen for his geomorphological advice, professional opinion, and his advice upon the importance of field cuisine and correct field posture.
- Dr. Alan Palmer for tailoring material prior to commencement of this project.
- Mr. Harley Betts for his assistance in the field, friendship, and support in our attempt to consume the greatest number of cheesecakes by any field party ever.
- Mr. Terry Crippen for introducing me to the majestic world of alpine climbing.
- Likewise, to anybody else on the top floor of Landcare Research Ltd. that I might have harassed during the course of the year.
- Helen E. Akers Scholarship committee for enabling me to lead a fulfilling lifestyle.

TABLE OF CONTENTS

Page

4.5

Analysis

Table List o		i iii iv vi vi vi
CHA	APTER ONE	
1.0 I	ntroduction	1
1.1	Objectives	4
СНА	APTER TWO	
2.0 A	An overview of DEMs, and GIS applications of landslide analysis	5
2.1	Digital Elevation Models	5
2.2	GIS and Landslide Analysis	9
СНА	APTER THREE	
3.0 V	Waipaoa River catchment	13
3.1	Geology and Geomorphology	13
3.2	Land management practices	15
3.3	Catchment Analysis	17
3.4	Accelerated Erosion	17
СНА	APTER FOUR	
4.0 N	Materials and Method	20
4.1	Data	20
4.2	Equipment	21
4.3	Study site selection	21
4.4	Classification	23

4.6	Sediment Delivery ratios and sediment budgets	28
4.7	Landslide probability	29

CHAPTER FIVE

5.0 R	lesults			30
5.1	Bare g	ground classification		30
5.2	Topographic variables as controls upon landsliding		31	
	5.2.1	Slope		31
	5.2.2			37
	5.2.3	T 1		42
	5.2.4	Slope configuration	*****	46
	5.2.5	Flow accumulation		47
	5.2.6	Flow path length		52
	5.2.7	Soil Moisture Index		54
5.3	Sedim	ent budgeting		56
5.4	Lands	lide probability		58

CHAPTER SIX

6.0 Discussion		62
6.1	Achievements of the project	62
6.2	Potential limitations	63
6.3	Contributions to existing knowledge	67

CHAPTER SEVEN

7.0 Conclusions	 69
REFERENCES	 71

78

APPENDIX I AMLs

LIST OF FIGURES

PAGE

2.1	DEM structure formats	6
2.2	Spatial modelling approaches	11
3.1	Waipaoa River catchment, Coloured shaded relief	14
3.2	Waipaoa River catchment, Studied landsystems	18
4.1	Erosion Classification, Te Arai landsystem	24
5.1	PBG of erosion scars vs slope angle	33
5.2	Slope angle frequency distribution	35
5.3	Slope angle cumulative frequency distributions	36
5.4	PBG of erosion scars vs aspect	38
5.5	PBG of erosion scars vs aspect (radar plots)	41
5.6	PBG of erosion scars vs elevation	43
5.7	Slope angle vs elevation	45
5.8	Slope form elements (slope configuration)	46
5.9	PBG of erosion scars vs slope configuration	48
5.10	Catchment area cumulative frequency distribution	50
5.11	PBG of erosion scars vs catchment area	51
5.12	PBG of erosion scars vs flow path length.	53
5.13	PBG of erosion scars vs Soil Moisture Index	55

LIST OF TABLES

3.1	Landsystem physiography	15
3.2	Current vegetative cover of the Waipaoa River catchment	16
3.3	Landsystem biogeographical data	17
3.4	Landsystem erosion data	19
4.1	Airphoto/Study site data	22
5.1	DN values of bare ground for study sites	30
5.2	PBG data for the slope variable	34
5.3	PBG data for the aspect variable	39
5.4	PBG data for the elevation variable	42
5.5	Initial PBG values for flow accumulation variable	49
5.6	Average scar depth measurements	56
5.7	Landsystem study site sediment budgets	56
5.8	Sediment delivery ratios	57
5.9	Correlation coefficients and standard error of estimates	59
5.10	Slope variable curve function	60
5.11	Aspect variable curve function	60
5.12	SMI variable curve function	60
5.13	Predictive erosion model	61