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Abstract

This thesis presents a novel approach for detecting an internal object using non-

invasive surface measurements of the reflection coefficients. The low cost and safety

of the low power microwave detection system may be practically suited to first level

breast cancer screening with further development. The significant difference in the

dielectric properties of a malignant tumour compared to healthy breast tissue makes

it possible to estimate the size and position of a tumour using microwave frequen-

cies.

Incident and backscattered electromagnetic waves are analysed using three coordi-

nate systems. Starting from a plane wave reflection model, this approach advances to

obtain mathematical solutions to the nonlinear scattering problems of cylindrically

and spherically-shaped objects. The solution to the inverse problem for finding the

position, size and electrical properties of the unknown microwave scatterer is deter-

mined using Newton’s iterative method. Both of the forward and inverse algorithms

are tested using simulations before proceedings to an experimental application.
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Chapter 1

Introduction and background

information

1.1 Introduction

This thesis presents a non-invasive method to detect a foreign object concealed

within a largely homogeneous material. The object is illuminated by a microwave

signal applied from the outside boundary of the host medium. Using the electromag-

netic fields at the surface of the scattering object, the analytic expressions are de-

rived for its scattered fields. The detailed characteristics of the scattered waves with

respect to the different boundary conditions and the location of the internal object

are considered. Three scattering problems are solved using one-dimensional, two-

dimensional and three-dimensional coordinate systems. The back-scattered waves

convey useful information about the scatterer and so the mathematical solutions we

develop here can extract some parameters which may be useful for many engineering

and medical applications.

The approach of this project has a potential, with further developments, for

application to some in-vivo situations such as detecting a breast tumour in its early
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stage. As microwave radiation is a form of non-ionising radiation and, as it can

have low power, the use of microwave imaging in the medical field and everyday life

poses fewer health risks than ionising radiation in forms such as X-rays.

A simple model is used to represent a physical system for detecting an internal

object. Then, using physical theory, the results of microwave measurements are

predicted. This problem of prediction is called the simulation problem or the forward

problem in this thesis. When developing the solutions to the forward problems,

some existing theories in electromagnetism are used with appropriate references.

The novelty of the work presented in the thesis is the subsequent expansion of these

results for the proposed application (section 1.6). The inverse problem first uses

the simulated results and then uses the actual results of measurements to infer the

necessary parameters which characterise the system (size, position and electrical

properties).

The microwave application model represents the measurement system and the

host material. In this set-up, the measurement system provides the microwave

signal to the antenna system which radiates the radio signal into the host material.

The backscattered signal from the internal structure of the host is received by the

same antenna system and sent back to the measurement system for analysis. The

measured data is then processed using an inverse algorithm.

A general introduction to microwave detection and the related information is

given at the beginning of this chapter (sections 1.3 and 1.4). This study is mul-

tidisciplinary, spanning mathematics and engineering. Therefore, the discussions

here are elementary at the beginning but more detailed situations are explained in

subsequent chapters.
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1.2 Electromagnetic radiation

In general, the electromagnetic (EM) radiation is a wave propagation in space with

electric and magnetic components which oscillate in directions at right angles to

each other. Electromagnetic radiation is classified in the electromagnetic spectrum

according to the frequency of the wave. In order of increasing frequency, this spec-

trum consists of radio waves, microwaves, terahertz radiation, infrared radiation,

visible light, ultraviolet radiation, X-rays and gamma rays. There are many dif-

ferent mechanisms which generate electromagnetic radiation and transfer energy to

the outside world. The sun is a good example. It generates an enormous amount

of electromagnetic radiation due to its nuclear reactions and transfers the energy to

the earth. The behaviour of EM radiation depends on its wavelength which is the

distance between two neighbouring points of the same phase in consecutive cycles

of a wave.

Many technologies have been developed using microwave frequencies. Some of

the applications are dielectric heating with microwave radiation, transmission of in-

formation for broadcasting and television, radar detection, telecommunication pur-

poses such as microwave relay, satellite communication and mobile and wireless

networks. Other major uses of microwaves are the quality control of food, foreign

object detection and structural abnormalities and cavity detection in the engineer-

ing industry. Apart from these, there are many applications in medical fields such

as tumour detection, inflammation and abnormality detection and treatments in

the human body. More information on microwave applications can be found in

references [1-6].
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1.3 Electrical properties of materials

At high frequencies, measurements of the dielectric properties of materials provide a

basis for developing methods to detect physical properties. The dielectric properties

have frequency dependent characteristics. These properties differ from material to

material. They have a high correlation with water content at microwave frequencies.

Using this phenomenon, physical properties such as bulk density, moisture content

and temperature can be determined.

Materials are classified using three basic properties: permittivity ε, permeability

µ and electrical conductivity σ. The materials having large values of σ are called

conductors and those having small values of σ are called insulators or dielectrics.

Again, the conductors are characterised as perfect conductors when σ is very large,

considered infinite, and dielectrics are perfect dielectrics when σ = 0. Light is

electromagnetic in nature and its velocity is denoted by c. In metric units, in a

vacuum c is approximately 299,792,500 metres per second (1,079,252,900 km/h), a

value obtained from measurements. In free space,

c =
1

√
µ0ε0

, (1.1)

where ε0 is the capacitivity or permittivity and µ0 is the inductivity or permeability

of a vacuum. By definition, µ0 = 4π × 10−7 Henries per metre (H/m). The value

for ε0 = 8.854 × 10−12 Farads per metre (F/m) which is obtained from equation

(1.1). In other media, ε is always greater than that of a vacuum, ε0. The relative

capacitivity or dielectric constant εr = ε/ε0 and similarly, the relative inductivity or

relative permeability µr = µ/µ0.

Magnetic materials are classified relative to the permeability of free space, µ0.

The materials for which µ is slightly less than µ0 are called diamagnetic, those

where µ is slightly greater than µ0 are called paramagnetic and those where µ

is much larger than µ0 are called ferromagnetic. The ferromagnetic metals are
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extremely lossy materials and they also have a nonlinear characteristic with respect

to complex permeability. Therefore these metals are not suitable for use with radio

frequencies. In most linear matter (where properties are frequency non-dispersive),

µ is approximately equal to µ0 and therefore µr = µ/µ0 is approximately equal to

unity unless the material is ferromagnetic.

The complex permittivity ε̂ is a function of ω, where ω = 2πf and f is the

frequency and, can be expressed in both rectangular and polar forms [8]:

ε̂(ω) = ε′ − jε′′ = |ε̂|e−jδ, (1.2)

where j =
√
−1, ε′, ε′′ and δ are real quantities and are called the a-c (alternating

current) capacitivity, the dielectric loss factor and the dielectric loss angle, respec-

tively. The real part (ε′) contributes to the stored energy and the imaginary part

(ε′′) contributes to energy loss in the material. Microwave materials are usually

characterized by specific relative permittivity εr [7], ε′ = εrε0, and loss angle δ at a

certain frequency which has been defined as

δ = tan−1 ε
′′

ε′
. (1.3)

In perfect dielectrics the dielectric loss is equal to zero (ε′′ = 0). The materials for

which ε′ is almost constant and ε′′ is very small at radio frequencies are called good

dielectrics and the materials for which the values of ε′ and ε′′ at radio frequencies

are variable, with ε′′ 6= 0 are called “lossy dielectrics” [8]. We frequently use the

terms “permittivity” or “relative permittivity” throughout this thesis to indicate

the permittivity relative to that of free space, ε0. Thus, for example, the relative

permittivity of water below the microwave range of frequencies is about 78 (relative

permittivity has no units).

Similarly, the complex permeability µ̂ can be expressed as

µ̂(ω) = µ′ − jµ′′ = |µ̂|e−jδm , (1.4)
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where µ′, µ′′ and δm are real quantities and are the a-c inductivity, the magnetic loss

factor and the magnetic loss angle, respectively. The real part (µ′) relates to stored

energy and the imaginary part (µ′′) relates to power dissipation in the material.

There are a number of uses of these properties in both engineering and medical

applications. Experimental studies have shown that most materials differ in their

material properties [9-11]. These property differences cause the individual materials

to act differently when excited by microwave signals. Therefore, the information

about hidden objects, disorder conditions and abnormalities of many materials can

be detected using the differences in electrical properties.

There are three basic constitutive relationships for field vectors and this deriva-

tion is based on Maxwell’s equations. For any material media having an electro-

magnetic field, the complex form of these relationships is

D = ε̂(ω)E, B = µ̂(ω)H, J = σ̂(ω)E, (1.5)

where E (volts/m) is the complex electric intensity and H (amperes/m) is the

complex magnetic intensity. From these relations, the complex values of D the

electric flux density (coulombs/m2), B the magnetic flux density (webers/m2) and

J the electric current density (amperes/m2) are related to the complex values of

the permittivity, permeability and conductivity, respectively. (Note that vectors are

shown in bold font in this thesis.)

1.4 Wave functions of scattering problems

The physical basis for the microwave imaging is the contrast between the dielectric

properties of the object being imaged and those of its surrounding host material.

The incident microwave signal can be reflected, refracted or scattered from the

boundaries where discontinuity occurs in any electrically inhomogeneous medium

depending upon the size and the shape of its boundary. The amount of wave re-
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flection and absorption changes with the electrical properties upon the two sides of

the reflecting boundary between the media. The refraction of a microwave signal

depends upon the refractive index of the refracting material and the incident angle

of the wave [1, 12, 13]. In this study we are mostly focusing on microwave reflection

and scattering at different object boundaries.

Microwave scattering mainly depends upon the dielectric property, as well as the

shape, size and the position of the scattering object, with respect to the incident

signal. In general, the solutions to the problems of microwave scattering at a plane

boundary are solved in cartesian coordinatescoordinates and the subsequent wave-

forms are associated with rectangular wave functions more commonly referred to as

plane waves [14, 15]. Similarly, the scattering problems of cylindrical boundaries

are solved using cylindrical coordinate systems and their subsequent waveforms are

associated with cylindrical wave functions.

The Bessel functions of the first and the second kinds form a basis of cylindrical

wave functions. These are quasi-periodic functions with multiple zeros and are

very similar to sine and cosine functions which represent standing waves. Linear

combinations of Bessel functions of the two kinds are called the Hankel functions [16]

and one of these functions (H(2)
n ) may be used to represent the outward-travelling

waves as these waves vanish as x → ∞ (x is the distance from the boundary of

the scattering object, see Appendix B for more details). Therefore, an appropriate

selection of the wave functions with asymptotic conditions for large distances is

very important for solving many scattering problems. In this study, the scattering

problems of the cylindrically and spherically-shaped objects are solved using the

infinite series of these wave functions and their modified functions in cylindrical and

spherical coordinates, respectively. When the scattering problem is associated with

a spherical object, it is necessary to use Legendre functions to solve the associated

scattering problem (see Appendix D for details).
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1.5 Literature review

In this section we discuss the information found in literature related to microwave

imaging and the recent developments in imaging technology [4, 17-25]. Many of

these studies are focused on breast cancer detection. The purpose of this review

is to find suitable ideas and directions which may possibly support achieving the

project goals. We first discuss the general microwave imaging methods and some

existing imaging techniques and then consider their uses and drawbacks.

1.5.1 Microwave imaging

Microwave imaging can be divided into two categories: passive microwave imaging

and active microwave imaging. Passive imaging is based on sensing the microwaves

that are naturally occurring in the environment. A good example is microwave

radiometric imaging which is used to monitor atmospheric conditions [26-29]. The

other category is active microwave imaging which uses a generated microwave signal

to interact with the target being imaged [30]. (These categories are further discussed

in section 1.5.2.2.)

In general, the existing imaging techniques are categorized into two types: mono-

static imaging and bistatic imaging. Monostatic imaging is based on the back reflec-

tion of the forward signal and the measurements are taken using the same antenna for

transmission and reception. Bistatic imaging uses physically separate transmission

and reception antennas and can provide information on waves transmitted through

the object as well as backscattered waves [23, 31]. However, both of these categories

are active microwave imaging techniques and these techniques are based on the wave

interaction with the dielectric properties of materials. The measurements that are

taken for active imaging are based on the signal propagation, reflection, diffraction

and scattering of the incident wave which has been transmitted from the source.

Our interest in this study is to develop a ‘monostatic active microwave imaging
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technique’ to detect a foreign object inside a host material.

There are many detection methods available at present such as reflectometry,

microwave tomography, and radar techniques. The reflectometry is used for cavity

detection, localising damage and cable faults and many other similar types of appli-

cation [1-3, 23, 32]. Microwave tomography is an imaging method based on contrast

in dielectric properties of materials (more details are given in section 1.5.2.2). Image

construction is achieved using a number of sensors but the quality of the image de-

pends upon the spectral resolution of the receiving system. Most of the tomographic

systems developed before the 1980s used ionising radiations from an isotope of an

X-ray source and therefore these systems are bulky, expensive and have safety limi-

tations [33]. The X-ray technique is used for obtaining tomographic images based on

the density differences among the materials. In medical applications the important

physical characteristics such as temperature, blood content and blood oxygenation

cannot be differentiated by X-ray tomography. However, since microwave tomogra-

phy is based on the dielectric properties and is often sensitive to such characteristics,

this method can distinguish these conditions in biomedical applications [4, 30, 34,

35]. Long-term researches have been carried out in active microwave tomography

systems operating in frequency-domain. When exposed to microwaves, the high wa-

ter content of malignant breast tissues cause significant microwave scattering than

normal tissues. More details are given in section 1.5.2.2.

1.5.2 Microwave application for breast imaging

Breast cancer begins in the breast tissue and forms a lump or mass called a tumour.

Cancers are a group of diseases that cause cells in the body to change and grow

out of control [41]. Breast cancer is considered a non-skin malignancy and is the

most prevalent cause of female cancer mortality. According to the published data

from cancer research in the UK, each year almost 44,100 cases of breast cancer are
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diagnosed there of which 43,760 are female cases. This disease causes more than

12,500 deaths each year in the UK [36]. According to recent reports [37-39], breast

cancer is the most common cancer in women in the US, accounting for nearly 1 in

3 cancers diagnosed. The World Health Organization says (in their 2006 report)

[39] that there were a total of 58 million deaths worldwide in the year 2005 of

which breast cancer accounts for 502,000 of these deaths. One in ten women in

New Zealand will develop breast cancer in their lifetime. For 75 percent of these

cases, the candidate will be over 50 years of age. Simple mathematics implies that

25 percent of cases still occur before the age of 50 [40].

There are a number of diagnosing methods for breast tumours at present. Among

these existing technologies, X-ray mammography is the most usually available method

and it is regarded as the ‘gold standard’ for breast cancer detection. However it suf-

fers from a number of drawbacks [42-45]. According to the studies carried out by

Christiansen et al. [46, 47], there were 6.5% false-positive mammograms found

among 9747 screening mammograms of 2227 women, over a 10-year period. De-

pending upon the adjustments for the patient at the test, the characteristics of

the radiologist and the testing method, the false-positive and false-negative rates

vary. The accuracy of the test depends upon many factors including the breast

compression when taking a mammogram, adjustments for the patient at the test,

the characteristics of the radiologist or the doctor who make the decision and the

testing method [11, 46]. In mammograms the breast is kept between the source

and the receiver and compression is required to reduce the image blurring to obtain

acceptable test results. Breast compression is uncomfortable and painful for the

examinee whilst there is also a limit upon the number of exposures to the ionising

radiation that may be safely undertaken.

To diagnose breast cancer a specimen is taken from the suspected lump (biopsy).

Again a false diagnosis is possible: the final decision is usually taken by an experi-
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enced doctor referring to other test results. These laboratory tests are not always

accurate because it is very difficult to take an exact specimen if the lump is very

small and hidden inside the breast tissue. However, given positive test results, a

series of other follow-on tests may be conducted before proceeding to the subse-

quent treatment. There are some other approaches such as Digital Tomosynthesis,

Sestamibi (Miraluma), Ductal Lavage, Positron Emission Tomography (PET) and

Computerized Axial Tomography (CAT) scans [48, 49]. Some details of three elec-

tromagnetic breast imaging techniques with test results have been discussed in [50].

1.5.2.1 The electrical properties of cancer cells

A precise knowledge of the dielectric properties of human breast tissue is impor-

tant for many microwave imaging methods. Studies of the electrical properties of

biological materials began more than 100 years ago. As a result, there is useful

information in the literature which can be used to develop microwave detection

methods for medical and biomedical applications [51-53]. Chaudhary et al. [54]

have measured the dielectric properties using excised breast tissues obtained from

15 patients of different age groups and found that the relative dielectric constant

of malignant tissue is strikingly higher than that of normal tissue. They have also

found that the conductivity is considerably higher than that of normal tissue. Also

both of these properties are frequency dependent.

According to their observations, the difference between the relative dielectric

constant of normal and malignant tissue is much larger at frequencies below a few

MHz. However, this difference remains almost constant up to frequencies of a few

GHz and begins to reduce at frequencies higher than 2GHz. In this range (less than

2GHz) the relative dielectric constant of the malignant tissue is about 6-8 times

higher than that of the normal tissue. According to this study [54], the conductiv-

ity of the malignant tissue maintains almost a constant difference with that of the
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normal tissue (malignant tissue is about 6-7 times higher) up to a few GHz frequen-

cies but the conductivity of the malignant tissue increases dramatically thereafter.

The reports of the substantial contrast of the measured dielectric properties of nor-

mal and malignant breast tissues have promoted a great deal of interest in microwave

techniques for breast cancer detection [55, 56].

The dielectric properties of breast carcinoma were measured by Andrzej et al.

[53] using the specimens taken from seven different patients. The samples were

taken from different locations of the breast using surgical procedures and dielectric

properties have been determined using the reflection coefficients measured with a

network analyser. They have used a range of frequencies from 20-100 MHz. A sum-

mary of their results is given in Table 1.1. (Here, the conductivity is given in milli

Siemens per cm and the dielectric constant has no units.) There is a large spread

of dielectric data for different specimens and these results have revealed significant

differences in dielectric properties between the samples taken from different loca-

tions. Andrzej et al. [53] suggest that these differences can be associated with the

cellular heterogeneity and structural differences of the tested samples. They have

also suggested that the radio frequency impedance imaging can potentially be used

as a diagnostic modality for the detection of human breast carcinoma.

The breast is filled with normal breast fat and fibrograndular tissue and is

bounded by a skin layer of some thickness (a few millimetres). The malignant

tumours have high protein hydration [6], therefore an increased dielectric permit-

tivity inside the tumour can be expected. The fat density of the normal breast

tissue is significantly higher and therefore the electrical properties of the normal

tissue are significantly smaller compared to those of malignant breast tissue. The

ex-vivo measurements which have been taken by Keam et al. [57] using the Keam

Holdem VE2 analyzer show that a tumour has a significant difference in complex

dielectric permittivity to that of healthy breast tissue. These measurements have
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Table 1.1 Measured electrical properties of a breast tumour at low-frequency. 

 

Type of the 

measured 

property 

 

Tumour tissue 

 

Tissue surrounding 

the centre of  the tumour 

  

Normal breast 

tissue (2 cm from 

tumour) 

 

Conductivity 

 

4-5 mS/cm 

(between 100 KHz 

and 100 MHz) 

 

5-7 mS/cm (between 

100 KHz and 100 MHz) 

 

< 1 mS/cm at 

 100 KHz 

 

Dielectric 

constant  

 

2×10
3
 - 6×10

3
  

(at 100 KHz) 

 

2.5×10
3
 - 8×10

3
  

(at 100 KHz) 

 

<500 at 100 KHz 

 

 

 

 

 

 
 

Figure 1.1: Measured reflection coefficients for breast tumours (shown in milli units;

1000mu=1) for 15 patients (Reproduced with permission from Keam Holdem Asso-

ciates, New Zealand).
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been highly influenced by the dielectric properties of the clinical samples of the tu-

mour. The results of the measured reflection coefficients by patient are shown in

Figure 1.1. The measured samples were categorised with the patient’s age and the

type of carcinoma. These results confirm that there is a significant difference in the

microwave response at the tumour. In general, the tumour has a higher moisture

content compared to that of normal tissue and therefore, the tumour’s response at

a given microwave frequency is significantly higher than that of the normal breast

tissue. However, the difference in the reflection coefficient between healthy breast

tissue and the tumour varies with the type of carcinoma and the patient’s age.

1.5.2.2 Microwave breast cancer detection

Breast cancer detection using microwaves relies on the dielectric property difference

between the normal and malignant tissue in the breast. During the past few years,

this area of research has made considerable progress and therefore there are hopes

of successful clinical implementations to conventional mammography in the near

future [11, 30, 51, 58-60]. There are three main approaches in microwave detection

and these are called hybrid, passive and active breast imaging methods [61, 62].

Hybrid methods:

Thermo-acoustic tomography falls into the category of a hybrid method. In this

method a microwave signal is used to heat the tumour and an image is constructed

based on the ultrasound approach. Malignant tissue has high conductivity. There-

fore, when the breast is illuminated by microwaves more energy is deposited in

tumours resulting in selective heating of the lesions of the malignant tissue. Then,

the tumour expands and generates pressure waves. These waves are detected by

ultrasound transducers kept around the breast.

The basis of this approach depends on the change in the dielectric property of the

tissue with temperature. Previous research has revealed that the dielectric property
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of biological tissue varies with the temperature [63-65]. Therefore any imaging

method which monitors the dielectric properties may also be able to determine

a temperature distribution in biological tissue. In order to achieve this, inverse

scattering methods have been introduced [66, 67]. Many of these approaches use

Newton’s iterative method for Hybrid Element (HE) image reconstruction and they

require the derivation of inverse problem solutions.

Two methods for the reconstruction of the image have been proposed. In Com-

puted Thermo-acoustic Tomography (CTT) [68-70], the breast is immersed in a

water bath and illuminated at a given microwave frequency. Kruger et al. [68] used

434 MHz frequency. Tiny pulses of period 0.5 µs are used to generate ultrasound

waves. The ultrasound transducers are placed around a hemispherical bowl and

record data as this bowl rotates through 3600. The reconstruction of the image is

achieved using the filtered back-projection algorithm which was adopted from X-ray

computed tomography. In Scanning Thermo-acoustic Tomography (STT), images

are obtained using focused transducers to record the ultrasound waves [70, 71].

Microwave radiometry falls into the category of passive microwave imaging [21,

25, 69]. The imaging is based on the temperature increase of the tumour compared

to that of the normal breast tissue. An example of passive microwave imaging is

ONCOSCAN [2], a non-invasive test of thermal activity in the breast, where the

microwave emission is measured by passive radiometry [22]. In this method the

radiometric data is obtained from a transducer placed on the patient’s abdomen.

The scanning probe is placed in one position and held 15 seconds before going to

the next position. For each patient, 20 position scans are performed for each breast.

The clinical results obtained from each breast are compared. The ONCOSCAN has

the potential to assist in the diagnosis of other methods such as mammograms.

Active Microwave Imaging:

Active microwave imaging techniques use several transmitters to illuminate the scat-
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tering object and measure the scattered fields from the receivers kept at different

locations. The shape and the location of the scattering object are found using the

spectral distribution of the complex permittivity obtained from the information from

the transmitted and received signals. In general, active microwave imaging can be

categorized into two different techniques. One is the construction of breast images

using near-field tomographic image reconstruction algorithms. The other technique

is to collect the backscattered data using a short pulse transmitted towards the

scattering object. This pulse is called an Ultra-Wide-Band (UWB) pulse because

it has very small pulse-width, and therefore the transmitted signal requires a wider

bandwidth [72-74].

Microwave tomography

Microwave tomography has been a major topic of breast image reconstruction for

many years [11, 75]. Meaney et al. [76] have designed and constructed this type

of prototype breast imaging interface which can be applied as a comfortable breast

examination method, when compared to X-ray mammography. In this method the

scanning object is immersed inside a water-coupled clinical interface and microwave

measurements are taken using a number of receiving antennas. A fixed antenna ar-

ray has been used to examine the breast from the nearest point to the chest wall up

to the nipple. The examinations have been carried out without compression, while

the patient lies in a prone position with the breast pendant in the coupling fluid.

Generally, a tomographic method needs a large number of antennas to scan over pla-

nar or cylindrical surfaces. The microwave signals in the range from 300-1000 MHz

in 100 MHz increments have been transmitted through the breast by 16 antennas

and received by 16 antennas (altogether 32 channels) and both of these waves were

measured to reconstruct the image of the breast. Each of the antennas operates

in both transmit and receive modes. The reconstruction is made according to the

dielectric distribution throughout the scanning area and this has been achieved by
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matching the measured data with the computed data. Some iterative methods have

been used for the reconstruction algorithm. The computed data have been obtained

using the numerical methods based on a model with estimated material properties.

The tomographic methods use narrow band microwave signals and the forward

and backward signals are analysed in the frequency domain. As the scattering waves

have differences depending upon the properties and the boundary condition of the

object, it is necessary to solve the scattering problem using suitable algorithms for

the forward problem. Similarly, the subsequent inverse scattering problem is also

required to be solved iteratively for successful image reconstruction. In general this

is an ill-posed problem and needs suitable mathematical approaches in order to

obtain meaningful solutions [76-78].

The microwave tomographic method presented by Bulyshev et al. in [78] uses

a large number of transmit and receive antennas (in one, three or five rows of

transmitters with 32 transmitters in each row and 32 rows of receivers with 32

receivers in each row) around a hemisphere of their dielectric breast model. The

scalar Helmholtz equation is used to describe the electromagnetic waves and a point

source has been considered as the incident field. Even if this solution is simple from

a mathematical point of view, as the computations of the inverse method involve the

data from a large number of receivers, an efficient inverse method such as Newton’s

iterative scheme is hardly applicable because the computations with this data are

extremely time-consuming in the 3-D case. However, the approach presented in

this thesis does not have such time consuming computations for Newton’s method.

The incident wave problems are solved using Helmholtz equations in cylindrical

and spherical coordinates. Extracting unknown critical parameters of the object

is achieved using the data obtained from a single antenna using several different

frequencies. Also, Bulyshev et al. [78] use a coupling medium in the model on

the outside of the breast and solve for the permittivity from the experimental data
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whereas our method directly measures the reflection coefficient through the air and

solves for a small number of unknowns.

Radar-based approaches

Recent research into a radar-based approach for breast cancer detection has made

good progress. In this approach an ultra-wideband pulse (UWB) is transmitted and

the backscattered data are collected from different receiving antennas. The data

collected from the forward and backward waves are analysed in the time domain

for image reconstruction. The time domain analysis of the scattering signal suffers

from a number of drawbacks due to multiple scattering and the complex behaviour

of the signal caused by the inhomogeneous structure of the breast.

The Confocal Microwave Imaging (CMI) method was first introduced by Hagness

et al. [79, 80]. They also have used the dielectric permittivity difference between

tumour and normal breast tissue for this analysis. The back-scattered energy from

the tumour has been monitored using a short-pulse transmitted towards the tumour.

They have presented the Finite Difference Time Domain (FDTD) [81] simulation

results of both two-dimensional and three-dimensional modelling of the breast for

detecting tumours to a depth of 5 cm. The back-scatter response levels tabulated

in their three-dimensional study (based on simulations) have shown good results.

(That is, in the worst case, the response is seen to be -115 dB relative to the

source power [80].) The tumour response with respect to tumour depth shows

linear decreases for all the tumour sizes, but in practical applications such a linear

response could not be expected due to noise and interference within the system.

In the study of CMI for breast imaging by Fear et al. [82], the breast is modelled

with planar and cylindrical configurations and methods are developed to detect and

localise tumours in three dimensions. In this approach the FDTD method has been

used to compute the back-scattered data. The practical application of this method is

similar to the microwave tomographic breast scanner method [76] but most of those
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techniques have very challenging computation and application difficulties. Fear et

al. [82] have used an UWB signal for confocal microwave imaging of the breast. In

the modelling of their study [83], they have assumed that the contrast between the

malignant and the normal breast tissue is 5:1 in relative permittivity and 10:1 in

conductivity. The scanning data from the breast have been obtained using a bow-

tie antenna [80, 84]. In this method an UWB pulse is excited from each antenna

position. This pulse is of the form [82]

V (t) = V0 (t− t0)e−(t−t0)2/τ2

, (1.6)

where V0(t − t0) is the voltage adjustment of the pulse, τ is equal to 62.5 ps and

t0 = 4τ . The width of this pulse is 0.17 ns. The current is recorded during and

following the excitation in both the planar and cylindrical configurations. The

image formation depends upon the time contents of the recorded pulse, mainly the

reflection from the skin, tumour backscatter and the backscatter due to clutter.

In this method a very robust signal processing algorithm is needed for the image

reconstruction. However, the results vary with the number of antennas positioned

in both planar and cylindrical models (testing has been conducted with 25, 41 and

45 antennas).

Li et al. [85] reviewed the status of Microwave Imaging Space-Time (MIST)

beamforming for breast tumour detection. They have used two configurations; one

is to assess the tumours adjacent to the chest wall (while the patient is in the supine

position) and the other is to access the full volume of the breast while the patient is

lying in the prone position. In this approach, a microwave signal is focused at one

point and the position of this point is scanned throughout the breast by adjusting

the beamformer for each new focal point. Similarly, a systematic procedure is used

to scan the breast from point to point using the beamformer. The FDTD method

was used to evaluate this MIST beamforming to detect small tumours in numerical

breast models.
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Li et al. have also simulated back-scattered signals obtained experimentally using

physical breast phantoms. The UWB antenna sequentially scanned 49 different

positions in the 1-11GHz frequency range to record the back-scattered data. In

both analytical and experimental studies they have recovered the image from the

tumour (using an analytical or synthetically designed object) which was kept in a

fixed location among the breast tissue. Both the results very closely agree with the

realisable energy distribution within the system considered.

Another set of methods of microwave imaging has been proposed by Xie et

al. [86-87] for early breast cancer detection. These are the Multistatic Adaptive

Microwave Imaging (MAMI) methods. In this application, a number of antennas

transmit UWB pulses while all other antennas are used to receive the reflected

signals. The pulses transmitted from different antennas are displaced so that the

transmitted pulses are orthogonal to each other. The MAMI method can be con-

sidered as a special case of the Multi-Input Multi-Output (MIMO) method. The

transmission and reception patterns of MAMI and MIMO antennas are different to

each other. However, according to the interference coming from the breast skin, nip-

ple and other scattering mechanisms, this method also needs robust data-adaptive

algorithms to achieve high resolution.

In general, the UWB radar methods have more advantages for breast screening

compared to conventional mammography and MRI methods, but there are still many

challenges associated with UWB methods. Problems associated with the antenna

array are common for this method as well as for the microwave imaging methods.

As these approaches need a large number of antennas, to be kept in fixed positions

or to be used by moving to different positions within the measuring environment,

there exist focusing and location difficulties. Apart from the scattering from the

tumour, there are other scattering mechanisms such as breast skin, chest wall, cell

structures with high-density, etc. These would generate scattering responses apart
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from the tumour response. Therefore in a practical application, apart from the

signal processing requirement, more robust solutions are required for the practical

problems such as positioning and focusing of the antennas to obtain better results.

The management of aperture size and the scan time can play a major role in this

imaging approach. Also, designing the antenna array is a challenging task as there

are a large number of antennas in it.

In most of the time-domain applications [20, 21, 58, 74, 88, 89] an array of broad-

band antennas is placed surrounding the breast and an UWB microwave pulse is

transmitted into the breast. As the pulse is very small, the transmitted signal must

have a large bandwidth. When a higher frequency (eg. 10 GHz) is used for this, a

large path-loss must be expected. The loss of the signal depends upon the distance

between the antenna array and the target object and also on the characteristics

of the propagation medium. Therefore, extracting the required information from

a weak signal is a challenging task in practical applications. Again, the proposed

method does not required such a high frequency. However, the signal’s wavelength

is important here as it must be long enough to cover the scanning range of the host

material within which the target object is likely to found.

1.5.3 Other microwave applications

There are other applications based on microwave reflection from different dielectric

materials. With the use of estimating the difference of forward and backward waves

of such reflections, the sensing of grain and seed moisture, soil moisture and many

other applications are performed in industry [9, 27, 90]. An experiment carried

out by Keam et al. [91] for microwave salt and moisture measurement has given

promising results. They have used their VE2 microwave analyser to measure the

content of the moisture of butter in a production line. Figure 1.2 shows the in-line

measurement results of butter moisture using one particular microwave frequency.
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Figure 1.2: Microwave measurement of butter moisture (Reproduced with permis-

sion from Keam Holdem associates, New Zealand).

These results have a good association with the results of the traditional gravimet-

ric oven method with a maximum least square error of less than 0.2% and mean

least square error of less than 0.05%. The dielectric properties of the materials de-

pends upon the amount of moisture and water content in their molecular structure.

Microwave reflection from these materials have a very high correlation with their

dielectric properties.

A similar experiment has been carried out by Senaratne and Mukhopadhyay

[92] to investigate the microwave interaction with dielectric materials such as fats,

protein, water and ice using a planar type electromagnetic sensor. The result of

this experiment has confirmed that the proximity of any dielectric material has a

significant effect on the field of the sensing coil which results in change to the transfer

impedance of the sensor. The calculated transfer impedance of some materials

having different relative permittivity values are given in Table 1.2.

The feasibility of the surface measurement of soil moisture using microwaves has
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Table 1.2 Transfer impedance of a few cases 

Relative premittivity Real part of transfer 

impedance (Ω) 

Imaginary part of 

transfer impedance (Ω) 

1.0 461.11 3776.6 

3.0 597.0 3961.0 

15.0 369.0 3549.4 

80.0 319.39 3379.0 

 

been studied by Holdem et al. [93]. A soil moisture profile has been obtained to

a depth of 1.5 cm by inverting, through function optimization, a simulation of the

reflection coefficient from layered dielectric materials. This is a frequency-domain

approach and the depth of penetration of radio waves into the soil is determined

by the frequency. This method can have a low implementation complexity and

therefore it is expected to be of interest to soil researchers and horticulturalists.

A model-based approach to improve the spatial solutions for imaging buried

objects using microwave measurements has been proposed by James and Christian

[94]. This is an example of another extension of active microwave imaging to the

geophysical area for the detection and identification of buried inhomogeneities using

electromagnetic waves. Nondestructive evaluation and nondestructive testing are

some of the other fields in which microwaves can play a further increasing role [95].

In most of these applications, an improved inversion technique for electromagnetic

evaluation and testing can play a significant role for the success of the method [96].
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1.6 The proposed method: microwave object de-

tection (MOD)

Most of the microwave imaging methods found in the literature consider the di-

electric property differences between the internal object and its surrounding host

material. When the waves are scattered from the object boundary, the resulting

backward waves can have a nonlinear characteristic. That is, these waves have non-

linear magnitude variations with respect to the distance of the object from the wave

source. The proposed method analyses the forward and backward wave functions in

detail to study these effects using the mathematical solutions to these forward and

inverse scattering problems.

1.6.1 Methodology

This method falls into the category of monostatic imaging and its application is

based on the scattering of microwave signals applied to the surface of the host. The

forward wave penetrates through the non-homogeneous internal structure of the

host. The approach analyses the behaviour of both forward and backward signals

and computes the size of the scattering object and its distance from the surface of

the host material. The behaviour of the signal with different material properties

has led to general equations which can be obtained from the well-known theory of

electromagnetic wave propagation [14, 15]. Those equations contain information

on the electrical properties of the internal structure and can be used to develop

algorithms to compute the unknown parameters of the internal object. The front-

end microwave measurements provide the required information which is needed to

identify and then compute these parameters. Theoretical developments and associ-

ated analytical and experimental tests of this method are discussed in the following

chapters in this thesis.
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Figure 1.3: Experimental set-up for microwave measurements.

1.6.2 The microwave application system

The experimental set-up for the microwave application system is shown in Figure

1.3. The measurement system provides the microwave signal to the antenna system

which sends the radio signal into the host material. The back-scattered signal from

the internal structure of the host is received by the same antenna system which

sends it back to the measurement system for analysis. Microwave measurements

are obtained using a network analyser and the results are analysed in the frequency

domain in this study.

The measured data is then processed using the reconstruction algorithms. In

both the two-dimensional and three-dimensional situations, the phase and magni-

tude of the reflection coefficient is measured using this measurement system. In

order to test the algorithms for these studies, analytical and experimental tests

were conducted using a number of microwave signals with different frequencies. In

these tests, the application system is almost identical except that the host is treated
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differently according to the shape, size and the distance of the scattering mechanism

of the internal object considered. The modelling of each approach and subsequent

analytical and practical tests are discussed in separate chapters of this thesis.

1.7 Thesis summary

Three main cases are studied. One is to solve the forward and inverse problems

of a one-dimensional multi-layered plane wave reflection model. The other two

cases consider the internal object as cylindrically and spherically-shaped scatterers

and solve the associated two-dimensional and three-dimensional forward problems

in cylindrical and spherical coordinates, respectively. In each case, the subsequent

inverse problems are solved to compute the unknowns.

In the second chapter, the one-dimensional approach is explained using a model

for plane wave propagation. Simple canonical geometries are used initially in order

to illustrate the general approach. The one-dimensional study is straightforward but

helps the understanding of the practical difficulties with accuracy when working with

plane wave measurements. This study is important because the computed results

of the forward and inverse algorithms provide an insight into the subsequent two-

dimensional and three-dimensional cases. Further, some of the equations developed

in this chapter are required in the subsequent chapters. Newton’s iterative method

is used for computing the unknowns and this method is outlined in this chapter.

The third chapter solves the two-dimensional scattering problem of a cylindrically-

shaped scatterer. This study is performed by modelling the host with an internal

object in a cylindrical coordinate system. The forward problem of microwave scat-

tering is solved using the Helmholtz equation and the field equations are obtained

from the cylindrical wave functions. The forward equations are obtained for both

plane and cylindrical waves and subsequently, these solutions are modified for the

case of a non-conducting cylinder. Then, the inverse problem of finding the un-



27

knowns is discussed in detail using the calculated results of the forward equations.

The simulated results in each case are presented in a separate section in this chapter.

A more realistic study is discussed in the fourth chapter using a spherical coor-

dinate system. The host is modelled using a spherically-shaped object as a wave

scatterer. Here, a three-dimensional coordinate system is used to develop a solution

to this scattering problem. The solutions for both the forward and reflected waves

are found using constructed solutions based on spherical wave functions. Firstly, the

scattering problems of both plane and cylindrical waves are solved by considering

the internal object to be a perfectly conducting sphere. Then, the same study is

carried out using a dielectric sphere. Subsequently, an inverse method is developed

to find the unknown shape and location of the scatterer. This algorithm is tested

using a number of simulations.

In Chapter 5, the asymptotic conditions of the forward and inverse algorithms

are studied for different situations. The field received at the measuring point is

studied in detail with respect to the variables associated with the scattering object

such as its radius and the distance of the object from the antenna. Using the

data generated from the forward equations, the robustness of the inverse method

with respect to the initial guess values is further studied. Also, using this data,

the stability of calculating the unknowns in the presence of errors in the measured

data is investigated. In order to use the algorithms for computing the unknowns, a

scanning method is developed in this chapter. This is useful in practical applications

as the information available for the unknown object is limited in many cases.

A laboratory experiment was conducted to test the mathematical solutions. In

Chapter 6 this experiment and the results are discussed in detail. Here, the mea-

sured data is used to test for agreement with the data generated analytically from

the corresponding forward equations. In this chapter, the effects of the other reflec-

tions when measuring the reflection coefficient of the scattering object are discussed.
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These results and the subsequent analysis of the measured data for both the cylinder

and the sphere are discussed in this chapter.

Chapter 7 presents the calculated results for the unknowns using the measured

data. In order to construct the general equations, the previous solutions were incor-

porated with an experimental model to obtain the corresponding forward equations.

Then, the calculated and measured data were compared. Finally, the inverse algo-

rithm incorporated with the scanning method was used to find the unknowns using

the measured data of the conducting cylinder and these results are compared with

the actual values. The difference in the reflections from plane and cylindrical waves

using both calculated and measured results are discussed.

Finally, the conclusions with an overall discussion including possible future work

are given in Chapter 8 of this thesis.



Chapter 2

Plane wave reflection

A microwave reflection problem of a plane wave incident upon a number of plane

boundaries is considered in this chapter. The purpose here is to illustrate the method

in an idealised one-dimensional geometry. The forward problem is analysed using

fundamental wave theory (see Harrington [8] and Ramo et al. [99]). The subsequent

inverse problem is solved to calculate the unknown distances to the reflecting layers

from the measurement plane and therefore to determine the thicknesses of the layers.

2.1 Reflection from plane boundaries

2.1.1 Wave solutions

In electromagnetic wave theory the time-varying field vectors can be mathemat-

ically analysed using complex-valued functions of the electric and magnetic wave

components [97, 98, 14, 10]. As the fields are often considered to have sinusoidal

time variations, a time variation of the form ejωt can be assumed. Then, in a source-

free, linear, isotropic and homogeneous region the electric and magnetic field vectors

(E and H, respectively) can be expressed using Maxwell’s equations which can be
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written as

∇× E = −ẑ(ω)H,

∇×H = ŷ(ω)E,
(2.1)

where ẑ(ω) and ŷ(ω) are complex valued functions which specify the electromagnetic

characteristics of the medium. Specifically,

ẑ = jωµ̂,

ŷ = σ + jωε̂,
(2.2)

where j =
√
−1, ω = 2πf , σ is the conductivity, ε̂ is the complex permittivity and

µ̂ is the complex permeability of the medium as explained in section 1.2. Here, the

region is considered to be linear, that is ẑ and ŷ are independent of |E| and |H|;

homogeneous, that is ẑ and ŷ are independent of position; and isotropic, that is ẑ

and ŷ are scalars.

The two equations in (2.1) determine the complex fields E and H, where E is

the complex electric field intensity (volts per metre) and H is the complex magnetic

field intensity (amperes per metre). Using equation (2.1) the complex vectors E and

H satisfy

∇× (∇× E)− k2E = 0,

∇× (∇×H)− k2H = 0,
(2.3)

where k is the wave number for the propagating medium and is defined using equa-

tion (2.2) as k =
√
−ŷ ẑ.

Using the vector identity ∇× (∇×A) = ∇(∇ ·A)−∇2A and the fact that E

and H are both divergence-free, we obtain

∇2E + k2E = 0,

∇2H + k2H = 0 .
(2.4)

The rectangular components of E and H in equation (2.4) therefore satisfy the
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Helmholtz equation

∇2ψ + k2ψ = 0 . (2.5)

Here, the symbol ψ is used to denote the wave functions, that is solutions to equation

(2.5), and ∇2 is the Laplacian operator. For a perfect dielectric medium, ŷ = jωε

and ẑ = jωµ (where µ and ε are real) and so

k = ω
√
µε. (2.6)

If E only has an x -component independent of x and y, so that E = (Ex(z), 0, 0),

then the first equation of (2.4) reduces to

d 2Ex
dz2

+ k2Ex = 0 . (2.7)

From this equation, two independent solutions to the x -component of the electric

field vector E can be found and

Ex(z) = E+e−jkz + E−ejkz, (2.8)

where E+ and E− are arbitrary constants. The first and second terms of the right

hand side of equation (2.8) represent the electric fields of travelling waves in the

positive and negative z directions, respectively. Similarly, the y-component of the

magnetic field vector H = (0,Hy(z), 0), can be found using the curl equation (2.1)

and equation (2.8) as

Hy(z) =
1

η
[E+e−jkz − E−ejkz], (2.9)

where η is the wave impedance of the plane wave, and is defined as

η =

√
µ

ε
· (2.10)

For uniform plane waves, this impedance is also taken as the intrinsic impedance

of the medium [7]. In free space, η = 377 Ω. The electric and magnetic vectors are

orthogonal to each other and also orthogonal to z, the direction of propagation, and

therefore this type of wave is called a transverse electromagnetic (TEM) wave.
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For a lossy medium, the plane waves are affected by the conductivity of the

medium and, therefore, with the wave number found using equation (2.2), the first

equation of (2.4) can be written as

∇2E + ω2µε(1− jσ

ωε
)E = 0 . (2.11)

Thus, for a lossy medium the x -component, when it is independent of x and y,

satisfies in this case

d2Ex
dz2

− γ2Ex = 0 , (2.12)

where γ is the propagation constant defined as

γ = α + jβ = jω
√
µε

√
1− j σ

ωε
. (2.13)

Here, α (the attenuation constant) and β (the phase constant) determine the mag-

nitude and phase changes of the travelling wave, respectively. From equation (2.13)

α = ω

√√√√√(µε
2

)√1 +
(
σ

ωε

)2

− 1

 , β = ω

√√√√√(µε
2

)√1 +
(
σ

ωε

)2

+ 1

. (2.14)

Note that in the lossless case (the perfect dielectric case with σ = 0), γ = jβ =

jk = jω
√
µε.

With equation (2.13), the solution to equation (2.12) is found to be

Ex(z) = E+e−γz + E−eγz . (2.15)

Equation (2.15) represents the x -component of E field to the z direction. Similarly,

using equation (2.9), the y-component of H field to the z direction is found to be

Hy(z) =
1

η
(E+e−γz − E−eγz) , (2.16)

where

η =

√
µ

ε

 1√
1− jσ

ωε

 . (2.17)
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Figure 2.1: Reflection from a plane of discontinuity

The expression in (2.17) is the intrinsic impedance which is complex in the lossy

medium. The first and second terms on the right hand side of equations (2.15)

and (2.16) represent the electric and magnetic waves travelling in the positive and

negative z directions, respectively, within a lossy medium.

2.1.2 Plane of discontinuity

Figure 2.1 shows the reflection of a plane wave when it is normally incident upon a

plane boundary. Assume the medium 1 to be homogeneous. Consider the origin of a

coordinate system at z=0, on which there is a discontinuity of the field. Propagation

of a plane wave, and its reflection from such a boundary of discontinuity in electrical

properties, are analogous to voltage and current variation along a transmission line

[99]. Therefore, the ratio of electric to magnetic fields in the wave analysis can be

considered to be analogous to the ratio of voltage to current which is called the
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impedance in transmission-line analysis.

Consider the electric field of the incident wave to be along the x direction and

the wave to be travelling in the z direction. If this wave is incident upon a perfectly

conducting plane boundary, it will be reflected fully from the boundary. Therefore

there will be no transmitted wave in medium 2. Then the load impedance at the z

= 0 plane can be found using equations (2.15) and (2.16) as

ZL =
Ex(0)

Hy(0)
=
η
(
1 + E−

E+

)
(
1− E−

E+

) . (2.18)

From equation (2.18),

E−

E+
=
ZL − η
ZL + η

. (2.19)

The ratio E−

E+ found in equation (2.19) is the reflection coefficient of the dielectric

medium of intrinsic impedance η when the wave is terminated at the load impedance

ZL. Now, a solution for the input impedance at a distance d (for z=-d) from the

z = 0 plane can be found using equations (2.15) and (2.16) as,

Zi =
Ex(−d)

Hy(−d)
=
η(E+e−γz + E−eγz)

E+e−γz − E−eγz

∣∣∣∣∣
z=−d

. (2.20)

By substituting the reflection coefficient found in equation (2.19) into equation (2.20)

and further simplifying we obtain

Zi =
Ex(−d)

Hy(−d)
=
η (ZL cosh(γd) + η sinh(γd))

η cosh(γd) + ZL sinh(γd)
=
η (ZL + η tanh(γd))

η + ZL tanh(γd)
. (2.21)

For a loss-free medium, the attenuation constant in equation (2.13) can be assumed

to be equal to zero and therefore,

γ = jβ , β = ω
√
µε. (2.22)

Thus, the impedance of a loss-free medium at a distance d from the reflecting

boundary can be found using equations (2.21) and (2.22) as

Zi =
η (ZL + jη tan(βd))

η + jZL tan(βd)
, (2.23)
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since tanh(j θ) = j tanθ.

The impedance ZL in equation (2.23) is the load impedance at z=0. When

a wave travelling in medium 1 is normally incident upon a plane boundary with

medium 2, which has different dielectric properties, the corresponding impedance

at distance d from the boundary can be found to be

Z1 = η1

(
Z2 + jη1 tan(βd)

η1 + jZ2 tan(βd)

)
, (2.24)

where Z2 is the impedance at the front face of the reflecting boundary in medium 2

and η1 is the intrinsic impedance of medium 1.

2.2 Modelling for plane wave reflection

When the antenna, which is on the surface of the front layer, radiates the host with

a microwave signal, the host will be filled with positively and negatively travelling

waves. The behaviour of the field components of these waves can be analysed

using the basic wave theory described in section 2.1. In a practical application, the

reflection coefficients are calculated using the measured values of the forward and

backward waves through the front-end antenna system. The reflection coefficient at

the front surface of the model for any given profile may be found as

Γ(f) =
Zin(f)− Z0

Zin(f) + Z0

, (2.25)

where f represents the frequency of the microwave signal, Zin(f) is the complex

electrical impedance into the surface of the host and Z0 is the complex electrical

impedance of the measurement system. In practice, the reflection coefficient Γ(f)

can be found by microwave measurements, whereas Z0 can be found by a proper

calibration method of the measurement system. This procedure has been explained

in Keam et al. [91, 100].

The one-dimensional plane wave reflection model is shown in Figure 2.2. The

internal structure of the host material is represented using a number of layers, each
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Figure 2.2: Plane wave reflection model. The host modelled with thin layers is

shown at the top of the Figure. The detailed distribution of the layers is shown just

below the host model.

of which is homogeneous. In particular, we assume that the electrical properties are

constant throughout each of these layers. The layers inside the model are specified

with individual material properties. These are the permittivity ε, permeability µ

and conductivity σ. In this study, the properties of the foreign object embedded in

the host are assumed to be very different from those of the internal structure of the

host.

The microwave signal applied from the front surface of the host penetrates

through the layers and, if the properties of any two layers differ from each other, it

reflects back from the boundary between them. In order to find the reflection from

the surface of the host, it is necessary to perform a series of impedance transforma-

tions at the layer boundaries. The impedance transformation towards the front-end

can be seen as a belt with n cascaded strips, as shown in Figure 2.2.

The front-end impedances of the layers are indicated as Z(.) (looking from the
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front) and the first and last layer impedances are taken as Zin and Zn+1, respectively.

Consider the host internal structure to be loss-free (σ = 0) for the electromagnetic

waves. Therefore, from equation (2.13), the propagation constant γ is purely imag-

inary. For simplicity, in the remainder of this discussion the magnetic permeability

µ is assumed to be unity, but this is not a restriction for the application.

2.3 Forward problem for plane wave reflection

The forward problem is associated with the plane wave reflection from dielectric

boundaries. The wave reflection depends upon the number of reflecting layers, layer

thickness and their respective electrical properties. In practical applications, the

impedance at the front-end Zin of the host may be known from the microwave

measurements. Therefore this forward problem is solved by looking at the wave

reflection from the impedance viewpoint considering changes of the impedance with

respect to the dielectric properties through each of the reflecting layers in this model.

2.3.1 Layer impedance transformation

Consider any three layers with thickness of dn−1, dn and dn+1. The recursive equation

to find the electrical impedance at the front of the nth layer of the model, that has

a width of dn, is found using equation (2.24)

Zn(f) = ηn(f)

(
Zn+1(f) + jηn(f) tan[βn(f)dn]

ηn(f) + jZn+1(f) tan[βn(f)dn]

)
, (2.26)

where ηn(f) is the intrinsic impedance of the nth layer found using equation (2.10),

with ε = ε(n)
r ε0 and µ = µrµ0,

ηn(f) =
η0√
ε

(n)
r

. (2.27)

where the constant η0 =
√

µ0

ε0
is the intrinsic impedance of a vacuum (approximately

equal to 377 Ohms), µ0 and ε0 are the permeability and permittivity of the free space
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and ε(n)
r is the relative permittivity of the nth layer. We assume µr, the relative

permeability, is unity and σ = 0 for all layers. From equation (2.14) α = 0 and

βn(f), the phase constant of the nth layer, can be found from equation (2.13) as

βn(f) =
2πf

√
ε

(n)
r (f)

c
. (2.28)

Here, c is the velocity of light (approximately 3× 108 m/s) as given in equation (1.1)

and f is the frequency of the microwave signal. Equation (2.26) can be considered

as the forward equation for the plane wave reflection. This can be used to solve the

reflection problem of a multi-layered context.

Now consider the next layer, that is the layer to the front of the previous layer

of the model. Similar to the nth layer, the front-impedance at the (n− 1)th layer is

Zn−1(f) = ηn−1(f)

(
Zn(f) + jηn−1(f) tan[βn−1(f)dn−1]

ηn−1(f) + jZn(f) tan[βn−1(f)dn−1]

)
. (2.29)

The front-impedance of the (n − 1)th layer can then be found by substituting Zn

from equation (2.26) into equation (2.29). So, then

Zn−1(f) =

ηn−1(f)



(Zn+1(f) [ηn(f)− ηn−1(f) tan(βn(f)dn) tan(βn−1(f)dn−1)]

+ηn(f)j[ηn(f) tan(βn(f)dn) + ηn−1(f) tan(βn−1(f)dn−1)])

(Zn+1(f)j[ηn−1(f) tan(βn(f)dn) + ηn(f) tan(βn−1(f)dn−1)]

+ηn(f)[ηn−1(f)− ηn(f) tan(βn(f)dn) tan(βn−1(f)dn−1)])


.(2.30)

Equation (2.30) calculates the front-impedance without explicitly finding the

front-impedance Zn of the middle layer. Similarly, the front-impedance of the next

layer in front (layer (n-2)) at frequency f can be found using Zn−1 in equation

(2.30). This procedure can be continued up to the first layer to calculate the front-

end impedance, Zin(f). The final equation using this process would be a large and

complicated equation with a significant number of unknowns. However, it is possible
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to obtain i equations for i different frequencies and these equations can be used to

find i unknowns.

2.4 Inverse algorithm for the plane wave reflec-

tion problem

The inverse algorithm is used to find unknowns related to the object inside the host

with data from microwave measurements. When there is more than one unknown,

it is not possible to obtain a solution using a single equation. This problem involves

solving for multiple values of d and β. Therefore, an algorithm based on Newton’s

iterative method [101] is used in view of its capability for fast convergence. Solving

for more than one unknown is achieved by forming multiple equations using multiple

frequencies. This section illustrates the procedure of this method by taking the

thicknesses of two layers as the unknowns.

In order to find n unknowns at least n equations are needed. This is possible

using equation (2.29) with n frequencies. Since β = 2πf
√
µε, one can choose the

correct β for each frequency.

First, the general equation is formed using the solution to the forward problem

and the front-impedance which is assumed to be available from the measurement

results. This can be achieved by subtracting the right hand side of the forward

equation (equation (2.30), when there are three layers) from the measured value of

the front impedance. However, in the analytical study, the front-impedance values

are calculated from the forward equation in order to test the inverse algorithm.

Newton’s method is a standard procedure. The routine of finding the inverse

solutions is shown in Figure 2.3. What follows are the main steps of the inverse

algorithm for our problem. If only the widths of the layers are considered to be the

unknowns, the set of equations for n unknowns is
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Figure 2.3: Inverse computing method for the calculation of unknowns.
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F(X) =



F1(d1, d2, ...., dn)

F2(d1, d2, ...., dn)

...

Fn(d1, d2, ...., dn)


=



0

0

...

0


, X =



d1

.

.

dn


. (2.31)

The n× n Jacobian matrix of the above system of equations is

J = [Jk,l] , (2.32)

where Jk,l = ∂Fk/∂dl and k, l = 1, 2,...., n. This is found explicitly by differentiating

∂F1/∂d1, ∂F1/∂d2, ...∂F2/∂d1, ∂F2/∂d2, ....∂Fn/∂dn, the values are shown later in

Chapter 4.

The next iterate X(N+1) is given by

X(N+1) = X(N) − J(X(N))−1 F(X(N)), (2.33)

assuming J is non-singular [67, 101, 102].

A code written in MATLAB is used to run the iteration process for this al-

gorithm. Using the initial guess for X( 0) = (d1
0, d2

0, ., dn
0)
T

, we carry out the

iterations to search for the solution to F(X) = 0. The solution of the above system

often needs several iterations, the number of iterations is dependent mainly upon

the number of unknowns and the value of the initial guess. The above procedure

is repeated until the vector X(N) satisfies some suitable stopping criterion, of X as

a solution of F(X) = 0. A more detailed discussion on this method using a simple

example is given below.

Consider the host to have three layers: the thicknesses d1, d2 are the unknowns.

Take a simple case. Assume the front-impedance of the third layer is equal to zero,

so that Zn+1 = 0 when n = 2 in this case. Then using equation (2.30), a general
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equation is obtained as

j[η1(fi)]
2 tan[β1(fi)d1] + Z1(fi)η2(fi) tan[β1(fi)d1] tan[β2(fi)d2]

−Z1(fi)η1(fi) + jη1(fi)η2(fi) tan[β2(fi)d2] = 0 ,

(2.34)

where fi is the microwave frequency applied at each measurement, and i=1,2. The

intrinsic impedance η and phase constant β of each layer at the measuring frequency

can be found by knowing the properties of the layers. Assume the properties of the

layers are known. Then, there are two unknowns, d1 and d2, in equation (2.34) and

the corresponding two equations are of the form

F(X) =

 F1(d1, d2)

F2(d1, d2)

 =

 0

0

 . (2.35)

Equation (2.35) in full with two general equations is, F1(d1, d2)

F2(d1, d2)

 =



j[η1(f1)]2 tan[β1(f1)d1] + Z1(f1)η2(f1) tan[β1(f1)d1]tan[β2(f1)d2]

−Z1(f1)η1(f1) + jη1(f1)η2(f1) tan[β2(f1)d2]

j[η1(f2)]2 tan[β1(f2)d1] + Z1(f2)η2(f2) tan[β1(f2)d1]tan[β2(f2)d2]

−Z1(f2)η1(f2) + jη1(f2)η2(f2) tan[β2(f2)d2]


=



0

0


.

(2.36)

There are in just four equations here if we considered the equations separately with

their respective real and imaginary parts being zero. We do not take advantage of

this possibility here and later, but acknowledge we could have done so. In practice

we solve for complex values of di, i = 1, 2 but accept only values for which the

imaginary part is very close to zero.

As before, the subscripts of η, β and Z represent the layer number. The algorithm

starts with selecting the initial guess values d
(0)
1 , d

(0)
2 . These values are substituted
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for d1 and d2 in equation(2.36). Next, the vector X(0) is formed with the set of

initial guess values,

X(0) =

 d
(0)
1

d
(0)
2

 . (2.37)

Then the Jacobian matrix is found with these guess values according to

J(X(0)) =


∂F1(d

(0)
1 ,d

(0)
2 )

∂d1 (0)

∂F1(d
(0)
1 ,d

(0)
2 )

∂d
(0)
2

∂F2(d
(0)
1 ,d

(0)
2 )

∂d
(0)
1

∂F2(d
(0)
1 ,d

(0)
2 )

∂d
(0)
2

 . (2.38)

J−1F(X) = J−1



j[η1(f1)]2 tan[β1(f1)d1] + Z1(f1)η2(f1) tan[β1(f1)d1]tan[β2(f1)d2]

−Z1(f1)η1(f1) + jη1(f1)η2(f1) tan[β2(f1)d2]

j[η1(f2)]2 tan[β1(f2)d1] + Z1(f2)η2(f2) tan[β1(f2)d1]tan[β2(f2)d2]

−Z1(f2)η1(f2) + jη1(f2)η2(f2) tan[β2(f2)d2]


.

(2.39)

This calculates the new values for d1 and d2 in the vector X(1) = X(0)−J−1(X(0))F(X(0)).

Next, these calculated values are used as the new guess values and we repeat the

same procedure. This process is continued until a suitable stopping criterion is met

(such as, when the successive iteration values are sufficiently close). It is required

that F(X) tends to zero, as well as the calculated values of the unknowns remain

real and positive for a satisfactory result.

The selection of the guess values to form the initial vector X(0) has to be made

carefully as these values make a significant impact on the acceptable results of the

process. A further analysis of this effect is carried out using the calculated values

of the forward equation and these details are discussed in Chapter 5.
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2.5 Results and discussion

There are two main results in this study: the calculated front impedance of the model

using the forward equation and the calculated unknowns using the inverse algorithm.

Computations to obtain these results have been performed using computer programs

written in MATLAB.

2.5.1 Front-impedance

In order to find the effect of the front-impedance with respect to the electrical

properties of the internal structure of the host, a simple test was carried out with

the results in section 2.3.1. Using equation (2.26), the front-impedances of 10 layers

were calculated recursively. Starting with the last layer n = 10, the calculations

were carried out from layer to layer up to the first layer Z1 = Zin. The results

of the calculations are shown in Figure 2.4. Two plots are shown: (1) the layers

have identical properties (2) the last layer has different properties to all other layers

(which remain identical to each other). At the end of the iterative process, the results

show that there is a significant difference in the calculated value of front-impedance

when the permittivity of the last layer is 50 rather than 10 as in the other layers.

For simplicity, the scenario where only the permittivity differs significantly between

the host and the foreign object is considered. However, using equation (2.13), the

permittivity and permeability could both be included in the forward equation.

The high contrast observed in the front-impedance calculation provides promis-

ing results for microwave object detection. When the host contains a foreign object

with a higher permittivity, a large value for the front-impedance in the microwave

measurement can be expected compared to the value obtained from the host with

no object inside.
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Figure 2.4: Plot of the layers’ front-impedances.

2.5.2 Distance calculation

The thicknesses of two layers (n=2) within the reflection model have been calculated

using the inverse method as discussed in section 2.4. In this analytical study, the

front-impedances of the first layer were calculated using equation (2.26) for two

different frequencies. The thickness of the second layer and of the first layer are

taken to be 0.002 and 0.004 metres, respectively. Thus, from the values of Z1(fi)

at the two different frequencies, the values of d1 and d2 may be estimated. In

a practical application, the Z ’s are obtained by measurements and so the distance

can be found without prior knowledge. Starting with a set of initial values (d1=0.009

and d2=0.01m), the estimation process was carried out to find the unknowns. The

simulation results obtained using MATLAB are plotted in Figure 2.5. The two

graphs show that the approximations to d1 and d2 in F1 and F2 rapidly approach

the exact values of d1=0.002 metres and d2=0.004 metres.
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Figure 2.5: Computed results of layer thickness, d1 and d2 (which have imaginary

part zero). Each plot shows the values of the calculated layer thicknesses of 32

iteration cycles.
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When there are more layers in the host, the equation for the layer thickness

calculation is more complicated. Once the forward equation is formed, calculating

the individual thicknesses of the layers is only a matter of running a few iteration

cycles using the inverse method. The test conducted using the inverse method has

calculated only two unknowns but there is no restriction for finding other unknowns

(such as permittivity of the layers) using the front-impedance. Again, this will need

more general equations and these equations can be formed using a large range of

frequencies.

The results achieved in this chapter provide useful insight before developing more

complicated methods in the following chapters. In addition, the equations presented

in this chapter will be used throughout the subsequent discussions in the chapters

to come.
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Chapter 3

The two-dimensional scattering

problem

A microwave scattering problem of a cylindrically-shaped object is discussed in this

chapter. The host is modelled with a foreign object through it, assumed to be a long

circular cylinder, whose length is sufficiently large that it can be treated as infinite

in the model. The microwaves scattered from the boundary of the cylinder consist

of both electric and magnetic fields. These fields vary in both magnitude and phase

with respect to the distances through which the waves propagate.

The application system is similar to that shown in Figure 1.3. There are two

main cases:

(1). Firstly, the object inside the host is assumed to be a conducting circular cylin-

der to formulate and analyse the associated forward problem.

(2). Then, a non-conducting cylinder is considered so as to analyse the problem for

a more realistic situation.

Both of these cases are solved for the scattering of plane waves as well as cylindri-

cal waves. For the detection process, an inverse method is developed. We tested

this method using data generated analytically and the results are discussed in this
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Figure 3.1: The circular cylindrical coordinate system.

chapter.

3.1 Wave functions at cylindrical boundaries

The field distribution in regions with boundaries having cylindrical surfaces can be

mathematically expressed using a cylindrical coordinate system. In the literature,

many solutions to this kind of scattering problems have been obtained using the

scalar Helmholtz equation.

Figure 3.1 shows the coordinate system of a circular cylindrical object of radius

p. Consider a point O on the surface of the cylinder so that the line joining the

origin to its projection on the plane z=0 has an angle φ with the x axis. Equation

(2.5) for this geometry can be written with the Laplacian expressed in cylindrical
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coordinates and it is of the form [99]

1

p

∂

∂p

(
p
∂ψ

∂p

)
+

1

p2

∂2ψ

∂φ2
+
∂2ψ

∂z2
+ k2ψ = 0. (3.1)

This equation is called the scalar Helmholtz equation in cylindrical coordinates. In

order to solve equation (3.1) a method of “separation of variables” can be used

similar to Harrington [8]. The solutions are assumed to be of the form,

ψ (p, φ, z) = P (p)Φ(φ)Z(z). (3.2)

Then equation (3.1) separates into three ordinary differential equations:

p
d

dp

(
p
dP

dp

)
+
[
(kpp)

2 − n2
]
P = 0 (3.3)

d2Φ

dφ2
+ n2Φ = 0 (3.4)

d2Z

dz2
+ k2

zZ = 0 (3.5)

where kp is defined by

k2
p = k2 − k2

z (3.6)

and kz is a constant and n is an integer. Equation (3.3) is Bessel’s equation of order

n and equations (3.4) and (3.5) are harmonic equations. The solutions to these

equations can be found as

P (p) = Bn(kpp) , Φ(φ) = e±jnφ, Z(z) = e±jkzz. (3.7)

The solutions in equation (3.7) are three elementary wave functions. The term

Bn(kpp) is a solution to Bessel’s equation of order n (n is an integer since Φ must be

periodic in φ with period 2π). This may take the forms: Jn(kpp) the Bessel function

of first kind and Yn(kpp) the Bessel function of second kind or H(1)
n (kpp) the Hankel

function of the first kind and H(2)
n (kpp) the Hankel function of the second kind. More

details on the Bessel functions are given in Appendix B. The other terms e±jnφ and

e±jkzz are harmonic functions.
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Now, a complete solution to Helmholtz’s equation can be formed using equation

(3.2). As the field has to be finite at p = 0 (see Figure 3.1), the wave solution is a

linear combination of solutions of the form

ψ(p, φ, z) = Jn(kpp)e
jnφejkzz. (3.8)

Here, the function Jn(kpp) is selected because this is the only function which is finite

at p = 0 (for positive, zero and negative integers n).

3.2 Plane wave scattering from a conducting

cylinder

A block diagram of the application system is shown in Figure 3.2. The host is mod-

elled with a circular conducting cylinder to represent the unknown internal object

(see Figure 3.3). In this discussion, the wave incident upon the conducting cylinder

is assumed to be a plane wave. The antenna is connected to the measuring sys-

tem (see Figure 3.2) where the reflection coefficient is calculated using the forward

and backward signals at the antenna. In practical applications, in order to find

the location of the object, there should be a number of antenna positions in the

array. This study is carried out with only one antenna in an idealised situation,

that is, the antenna is assumed to be perfectly aligned with the object inside the

host material. In a practical application the distances to the centre of the object

from each individual antenna may be calculated with the data obtained from the

microwave measurements. Then, using the geometry of the situation, the exact

location of the object can be found. However, when obtaining microwave measure-

ments, each antenna must be properly aligned with the target object, that is, at the

position where the maximum response from the scattering object is received at the

measuring instrument. This is a requirement of this model and a limitation of the
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Figure 3.2: Block diagram of the application system.

approach taken here. The scattered fields are calculated for the study in this section

but the measured results are used in subsequent investigations and these details are

discussed in Chapters 7 and 8.

3.2.1 Forward problem of plane wave scattering

The cylindrical coordinate system of the two-dimensional model is shown in Figure

3.3. The circle inside the model is the conducting cylinder (C is the centre) repre-

senting the unknown object. The z -axis of the cylindrical coordinate system is not

shown but it is perpendicular to the xy-plane out of the page. The coordinate orien-

tation is similar to that in Figure 3.1 but here, the point O is outside the cylinder.

The wall shown in the model represents a reflecting plane behind the object. The

effect of the backreflection from this plane is considered later in this thesis.

Consider a uniform plane wave incident upon the conducting cylinder: assume
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Figure 3.3: Plane wave reflection model with the cylindrical coordinate system.

the wave to be z -polarized so that the electric fields are parallel to the z -axis and

travelling in the x -direction towards the cylinder. This means E = (0, 0, Ez(x, y))

is independent of z and kp = k. Then, using equation (2.8), for the incident plane

wave of frequency f1,

Ei
1,z(p, φ) = E0e

−jk1x = E0e
−jk1p cosφ, (3.9)

where k = k1 is the wave number of the medium outside the cylinder given by

k1 = 2πf1
√
µ1ε1 , (3.10)

where ε1 and µ1 are the permittivity and permeability of the medium.

Consider the coordinate system in Figure 3.3. This wave has a finite value E0

at C, the centre of the cylinder, and it is periodic in φ with period 2π. As the wave

is incident upon a cylindrical boundary, we first express this in terms of a wave

function in cylindrical coordinates [8]. This can be obtained using the elementary
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wave functions as given in equation (3.7). Consider the singularity condition of the

wave at the point C. That is for the wave to be finite at C, the Bn(kpp) in equation

(3.7) should be Jn(kpp) (only these functions are finite at p = 0). Therefore, the

solution for the field of the incident wave at the point O can be expressed using the

infinite series of the elementary wave functions of the form

E0e
−jk1p cosφ = E0

∞∑
n=−∞

unJn(k1p)e
jnφ , (3.11)

where the un are constants and can be evaluated as

un = j−n . (3.12)

(See Appendix C for details.) Thus, for the incident field

Ei
1,z(p, φ) = E0

∞∑
n=−∞

j−nJn(k1p)e
jnφ. (3.13)

The wave which is incident upon the perfectly conducting cylinder will be com-

pletely scattered away from its boundary. Thus, the scattered wave field must be

composed of the H(2)
n (k1p) as these are the only Hankel functions which tend to zero

at infinity (see Appendix B). Therefore, the field of the outward travelling wave due

to the scattering at the cylinder boundary is

Es
1,z(p, φ) = E0

∞∑
n=−∞

j−nanH
(2)
n (k1p) e

jnφ , (3.14)

where the an’s are constant. The total field at point O is the sum of the incident

and scattered field, that is

E1,z = Ei
1,z + Es

1,z . (3.15)

Using equations (3.13) and (3.14), equation (3.15) can be written as

E1,z(p, φ) = E0

∞∑
n=−∞

j−n
[
Jn(k1p) + anH

(2)
n (k1p)

]
ejnφ . (3.16)

The constants an can be found by considering the boundary conditions on the

scattering object. On the boundary of the conducting cylinder the resultant field
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should equal zero, that is, E1,z = 0 at p = a. Therefore, from equation (3.16), the

constants an can be found as

an = − Jn(k1a)

H
(2)
n (k1a)

. (3.17)

Using equation (3.17) the total field at point O is therefore

E1,z(p, φ) = E0

∞∑
n=−∞

j−n
[
Jn(k1p)−

Jn(k1a)

H
(2)
n (k1a)

H(2)
n (k1p)

]
ejnφ . (3.18)

Suppose the point O is rotated to O′ so that φ = π. Then it will lie along

the x -axis. As discussed earlier, this is the ideal situation such that the antenna is

properly aligned with the scattering object (to receive the maximum response from

the scattering object). Accordingly, the distance p becomes d1 which is the distance

to the centre of the cylinder from the antenna point. (From here onward, d1 is used

to represent the distance between the centre of the cylinder and the antenna.) The

new equation is

E1,z(d1, π) = E0

∞∑
n=−∞

jn
[
Jn(k1d1)− Jn(k1a)

H
(2)
n (k1a)

H(2)
n (k1d1)

]
. (3.19)

This solution is applicable when a single antenna is used for both transmission

and receiving the microwave signal. However, equation (3.18) gives a more general

solution which can be used when the received field is measured from a different

location using a separate antenna.

The computational cost can be reduced by combining terms with positive and

negative values of n. Using the identities of the Bessel function of first kind and the

Bessel function of second kind (Appendix B);

J−n(z) = (−1)nJn(z) , Y−n(z) = (−1)nYn(z) , H(2)
n (z) = Jn(z)− jYn(z) , (3.20)

equation (3.19) can be written as

E1,z(d1, π) =

E0

[
J0(k1d1)− J0(k1a)

H
(2)
0 (k1a)

H
(2)
0 (k1d1)

]
+ E0

∞∑
n=1

[
Jn(k1d1)− Jn(k1a)

H
(2)
n (k1a)

H(2)
n (k1d1)

]
2jn .

(3.21)
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Equation (3.21) is the field equation for the antenna position one with frequency

f1 and this can be used to find the unknowns using the inverse algorithm. In the

forward problem, if a, d1 and the properties of the medium are known, the field

components Ei,z for different frequencies fi can be numerically calculated using

equation (3.21). In a practical application, Ei,z can be found using the reflection

coefficient measurements. The procedure for obtaining microwave measurements is

explained in section 6.2.

3.2.2 Inverse problem of plane wave scattering

The inverse problem is to find unknowns using the information embedded in the

data obtained from microwave measurement. A method for constructing a suitable

algorithm to solve this inverse problem is discussed in this section.

3.2.2.1 The general equation

The general equation may be formed from the difference of the field vectors obtained

by subtracting the calculated field component from the measured electrical fields.

Figure 3.4 shows the procedure for forming the general equation. For simplicity, the

electrical properties of the host are assumed to be known in this study. There is

no restriction to prevent taking these properties as unknowns although the subse-

quent construction is complicated and requires more data obtained with additional

frequencies. In this study we aim to find the two unknowns, the cylinder radius a

and its distance d1 from the surface of the host (measured towards the centre of the

cylinder). As discussed in section 2.4, at least two frequencies are needed to find

these two unknowns. For antenna position 1, the general equation is of the form

F = ∆E =


∆E1,z(a, d1)

∆E2,z(a, d1)

 =


0

0

 , (3.22)
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Figure 3.4: Procedure for both analytical study and practical application.

where we now use the subscripts 1 and 2 of Ez to indicate the two different frequen-

cies. Using equation (3.21), for antenna one position the general equation to find

the two unknowns a and d1 is

E1 − E0

∞∑
n=1

[
Jn(k1,1d1)− Jn(k1,1 a)

H
(2)
n (k1,1 a)

H(2)
n (k1,1d1)

]
2jn

−E0

[
J0(k1,1d1)− J0(k1,1 a)

H
(2)
0 (k1,1a)

H
(2)
0 (k1,1d1)

]

E2 − E0

∞∑
n=1

[
Jn(k1,2d1)− Jn(k1,2a)

H
(2)
n (k1,2 a)

H(2)
n (k1,2d1)

]
2jn

−E0

[
J0(k1,2d1)− J0(k1,2 a)

H
(2)
0 (k1,2 a)

H
(2)
0 (k1,2d1)

]


=



0

0


(3.23)

where E1 and E2, for frequency f1 and f2, respectively, are either measured values

or calculated field components and k1,1 and k1,2 are the wave numbers at the two

different frequencies which can be found as

k1,1 = 2πf1
√
µ1ε1 , k1,2 = 2πf2

√
µ1ε1 . (3.24)
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3.2.2.2 Solutions to the inverse problem

Finding solutions for the unknowns in equation (3.23) is possible using several fre-

quencies. At every antenna point it is necessary to record a sufficient number of

amplitude and phase measurements for each frequency. By using this data in the

inverse algorithm a successful reconstruction of the internal object may be achieved.

This procedure is very similar to the method in section 2.4. We start from

an initial approximation to our unknowns, X(0) = (a0, d1,0)T . The subsequent im-

provements to this approximation X(N) = (aN , d1,N)T , N =1,2,..., are obtained as

indicated in Figure 2.3. In this inverse method, the values for a and d1 are updated

iteratively starting from the initial approximation a0, d1,0, and then successively

a1, d1,1, then a2, d1,2 and so on. The complete routine of finding unknowns is sum-

marized as follows:

(1). Using equation (3.15), compute the field components E1,z based on the sum

of the incident Eincident
1,z and the scattered Escattered

1,2 fields. The circular boundary

of the cylinder is the potential cause of the scattering and the angle φ determines

the receiver location for the measuring system. The wave number k is frequency

dependent and there exists a different vector field for each frequency.

(2). Form the difference of the field vectors by subtracting the calculated field

components from the measured electric fields.

(3). Construct the n × n Jacobian matrix (equation (2.32)). Use n=2 in this

case.

(4). Obtain the updated vector by Newton’s method (equation (2.33)). (This

procedure is explained in section 2.4.)

(5). Repeat steps 1-4 until the vector X(N) satisfies some suitable stopping

criterion (this will be further discussed later in this chapter and also in Chapter 5).

The final results of this computation depend upon the initial guess values. In

order to test the convergence we ran the inverse algorithm using different guess
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values. The algorithm followed the above procedure and it is similar to the ex-

ample explained in section 2.4. The results are expected when |∆E1,z (a, d1)| and

|∆E2,z (a, d1)| are sufficiently small. The results are presented in section 3.6.1.2.

3.3 Plane wave scattering from a non-conducting

cylinder

In this section, a more realistic approach for a microwave application is considered

using the dielectric property difference between the scattering object and the host

material. The circular object inside the model is assumed to be a non-conducting

cylinder with internal properties similar to that of a foreign object.

3.3.1 Forward problem of the non-conducting cylinder

In order to construct a solution for the wave reflection from the non-conducting

cylinder, its boundary condition with respect to the two sets of properties inside

and outside the cylinder is considered. Here, the same coordinate system as in

Figure 3.3 is used but the object inside the model is assumed to be a non-conducting

cylinder. In order to find a solution for the scattered waves from the boundary in

this situation, the wave impedances on both the sides of the non-conducting cylinder

are found using a single term (the n-term) of the series for the incident and scattered

waves (we call this the modal impedance). The procedure is as follows:

Assume the two regions, region 1 (outside the cylinder) and region 2 (inside the

cylinder) are source-free and homogeneous. Consider the wave to be z-polarised and

travelling in the x direction. For transverse magnetic (TM) incident plane waves,

the modal impedance (for the nth mode) outside the cylinder is

Z1,n =
Ez,1
Hφ,1

=
Eincident
z,1 + Escattered

z,1

H incident
φ,1 +Hscattered

φ,1

, (3.25)
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where Ez,1 and Hφ,1 are the non-zero electric and magnetic field components in

region 1, respectively. For the inward-travelling wave, the modal impedance inside

the cylinder is

Z2,n =
Ez,2
Hφ,2

, (3.26)

where Ez,2 and Hφ,2 are the non-zero electric and magnetic field quantities in region

2, respectively.

The E and H fields can be represented in terms of the wave function ψ. Consider

a field with Hz = 0 so that it is TM to the z direction. Let the electric vector

potential be F = 0 and the magnetic vector potential be A = uzψ where uz is a

unit vector in the z direction. Then E and H fields can be represented in terms of

A (equation (A.23) in Appendix A) as

E = −ẑA+1
ŷ
∇ (∇ ·A) ,

H =∇×A,
(3.27)

where ẑ = jωµ, ŷ = jωε are the characteristics of the perfect dielectric media

(section 2.1.1). By expanding equation (3.27) in Cartesian coordinates for the TM

plane wave incident at the non-conducting cylinder, for the cylindrical coordinate

system in Figure 3.3, we obtain (see also equation (A.24) in Appendix A)

Ez = 1
ŷ

(
∂2

∂z2
+ k2

)
ψ,

Hφ = −∂ψ
∂p
,

(3.28)

where ŷ1 = j2πf1ε, ε = ε1 or ε2, and k is the wave number. A set of linearly

independent solutions for ψ has been obtained in equation (3.8). Now, taking ψ =

ψ(p, φ) = E0j
−n[Jn(k1p) + CnH

(2)
n (k1p)]e

jnφ, the fields are found using equations

(3.28) and, using equation (3.25), the wave modal impedance on the outside of the

cylinder at p = a is found as

Z1,n = − k1(Jn(k1a) + CnH
(2)
n (k1a))

ŷ1(J ′n(k1a) + CnH
(2)
n
′(k1a))

, (3.29)
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where k1 is the wave number of the host material and Cn is the modal coefficient

of the scattered wave (nth mode of the series is taken here). Similarly, taking

ψ = ψ(p, φ) = E0j
−nJn(k2p)e

jnφ in equation (3.28) we obtain the wave modal

impedance on the inside of the cylinder at p = a as

Z2,n = − k2
1Jn(k2a)

ŷ1k2J ′n(k2a)
. (3.30)

The terms J ′n (.) and H(2)
n
′ (.) denote the derivatives of Jn(.) and H(2)

n (.), respec-

tively. Using the identities of the Bessel functions and Hankel functions [8, 16], as

given in Appendix B, the above derivatives can be found as

J ′n(kia) =
1

2
(Jn−1(kia)− Jn+1(kia)) , (3.31)

H(2)
n
′(kia) =

1

2

(
H

(2)
n−1(kia)−H(2)

n+1(kia)
)
, (3.32)

where i = 1, 2.

The boundary conditions on the cylinder surface p = a require that the tangential

components of electric and magnetic fields are continuous and so, Z1,n = Z2,n and,

using equations (3.29) and (3.30), the modal coefficient Cn is found as

Cn =
−Jn(k1a)

H
(2)
n (k1a)


ε2J ′n(k2a)
ε1k2Jn(k2a)

− J ′n(k1a)
k1Jn(k1a)

ε2J ′n(k2a)
ε1k2Jn(k2a)

− H
(2)
n
′
n(k1a)

k1H
(2)
n (k1a)

 , (3.33)

Cn = anRc,n, (3.34)

where

Rc,n =
(ε2k1Jn(k1a)J ′n(k2a)− ε1k2Jn(k2a)J ′n(k1a))H(2)

n (k1a)(
ε2k1H

(2)
n (k1a)J ′n(k2a)− ε1k2Jn(k2a)H

(2)
n
′(k1a)

)
Jn(k1a)

(3.35)

and an = −Jn(k1a)

H
(2)
n (k1a)

, as found in equation (3.17). This modifies equation (3.14) and so,

for the outward-travelling wave, the scattered field of the non-conducting cylinder

is

Es
1,z(p, φ) = E0

∞∑
n=−∞

j−nanRc,nH
(2)
n (k1p) e

jnφ, (3.36)
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where Rc,n and an are given by equations (3.35) and (3.17), respectively. From

equation (3.19), the new equation for the total field at distance d1 along the x axis

with frequency f1 is

E1,z(d1, π) = E0

∞∑
n=−∞

jn
[
Jn(k1d1) + anRc,nH

(2)
n (k1d1)

]
. (3.37)

For this case, the wave numbers k1 and k2 are given for frequency f1 by

k1 = 2πf1
√
µ1ε1 , k2 = 2πf1

√
µ2ε2 , (3.38)

where ε1, µ1 are the permittivity and permeability outside the non-conducting cylin-

der and ε2, µ2 are the permittivity and permeability inside the non-conducting cylin-

der.

Equation (3.37) is the solution for the forward problem of the non-conducting

cylinder. In a practical application, the properties outside the cylinder are assumed

to be the same as those of the host material and the properties inside the cylinder

are assumed to be the same as those of the target object. From equation (3.35), one

can see that equation (3.37) approaches the case of a conducting cylinder when ε2,

the permittivity inside the cylinder boundary, is large (when ε2 → ∞, Rc,n → 1).

Computation of the unknowns using this solution is described in section 3.6.2.

3.3.2 Inverse problem of plane wave scattering from the

non-conducting cylinder

The inverse problem for the case of a non-conducting cylinder is similar to that

of the conducting cylinder. However, compared to the previous case, the inverse

solution associated with this forward equation needs more iterations to converge to

a reasonable solution.
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3.3.2.1 The general equation

We recall that the form of general equation is:

∆Ez =

 ∆E1,z(a, d1)

∆E2,z(a, d1)

 =

 0

0

 , (3.39)

Using equation (3.37), the general equation to find the two unknowns a and d1 are
E1,z − E0

∞∑
n=−∞

jn
[
Jn(k1d1) + anRc,n,1H

(2)
n (k1d1)

]
E2,z − E0

∞∑
n=−∞

jn
[
Jn(k3d1) + anRc,n,2H

(2)
n (k3d1)

]
 =

 0

0

 . (3.40)

The field components E1,z and E2,z are either measured values or are calculated.

Here, k1 and k3 are the wave numbers of the medium outside the non-conducting

cylinder at frequency f1 and frequency f2, respectively. The modal coefficients Rc,n,1

and Rc,n,2 at frequency f1 and frequency f2 are found as

Rc,n,1 =
(ε2k1Jn(k1a)J ′n(k2a)− ε1k2Jn(k2a)J ′n(k1a))H(2)

n (k1a)(
ε2k1H

(2)
n (k1a)J ′n(k2a)− ε1k2Jn(k2a)H

(2)
n
′(k1a)

)
Jn(k1a)

(3.41)

and

Rc,n,2 =
(ε2k3Jn(k3a)J ′n(k4a)− ε1k4Jn(k4a)J ′n(k3a))H(2)

n (k3a)(
ε2k3H

(2)
n (k3a)J ′n(k4a)− ε1k4Jn(k4a)H

(2)
n
′(k3a)

)
Jn(k3a)

. (3.42)

When the frequency f1 is used, k1 and k2 are the wave numbers of the medium one

outside the cylinder and medium two inside the cylinder, respectively, and can be

found in equation (3.38). Similarly when the frequencyf2 is used, k3 and k4 are the

wave numbers of the medium one outside the cylinder and medium two inside the

cylinder, respectively, and can be found as

k3 = 2πf2
√
µ1ε1 , k4 = 2πf2

√
µ2ε2 . (3.43)
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With the two frequencies, the derivatives of Bessel and Hankel functions in equation

(3.42) can be found from equations (3.31) and (3.32) with i = 3, 4.

J ′n(k3a) =
1

2
(Jn−1(k3a)− Jn+1(k3a)) , J ′n(k4a) =

1

2
(Jn−1(k4a)− Jn+1(k4a))

(3.44)

H(2)
n
′(k3a) =

1

2

(
H(2)
n−1

(k3a)−H(2)
n+1

(k3a)
)
, H(2)

n
′(k4a) =

1

2

(
H

(2)
n−1(k4a)−H(2)

n+1(k4a)
)
.

(3.45)

3.3.2.2 Solutions to the inverse problem

The procedure of solving the inverse problem is similar to the previous approaches.

Again, for simplicity, only a and d1 are considered as unknowns assuming that

the electrical properties of the regions in both the sides of the cylinder are known.

However, there is no restriction against including these properties as unknowns in

the inverse algorithm. The Jacobian matrix is constructed and it is of the form

J =


A1(a, d1) A2(a, d1)

A3(a, d1) A4(a, d1)

 , (3.46)

where

A1(a, d1) =
∂

∂a

(
E1 − E0

∞∑
n=−∞

jn
[
Jn(k1d1) + anRc,n,1H

(2)
n (k1d1)

] )
, (3.47)

A2(a, d1) =
∂

∂d1

(
E1 − E0

∞∑
n=−∞

jn
[
Jn(k1d1) + anRc,n,1H

(2)
n (k1d1)

] )
, (3.48)

A3(a, d1) =
∂

∂a

(
E2 − E0

∞∑
n=−∞

jn
[
Jn(k2d1) + anRc,n,2H

(2)
n (k2d1)

] )
, (3.49)
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Figure 3.5: The source generating the cylindrical waves (a) Current filament (b)

Coordinate system.

A4(a, d1) =
∂

∂d1

(
E2 − E0

∞∑
n=−∞

jn
[
Jn(k2d1) + anRc,n,2H

(2)
n (k2d1)

] )
. (3.50)

Note the Rc,n,i(i = 1, 2) is a function of a as given in equations (3.41) and (3.42).

Once the Jacobian matrix is formed from (3.40) the rest of the inverse method is

similar to that of the conducting cylinder.

3.4 Cylindrical wave scattering from a conduct-

ing cylinder

A wave having its phase constant over cylindrical surfaces is called a cylindrical

wave. A source independent of the z -coordinate can generate cylindrical waves.
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When a microwave signal is excited from a current source, the waves in the nearby

region are cylindrical waves. Therefore, if the object is placed closer to the source,

the scattering from its boundary would be caused by cylindrical waves rather than

plane waves. However, when the object is further away from the source, one can

consider that the scattering has resulted from plane waves.

In this section, the scattering problem of a cylindrical wave is discussed. Again a

conducting cylinder is chosen as the object inside the host (Figure 3.3). An infinitely

long current filament placed parallel to the cylinder is taken as the source which

generates the cylindrical waves. This is similar to the method used by Harrington

in [8]. The source and its coordinate system are shown in Figure 3.5.

3.4.1 Forward problem of cylindrical wave scattering

The field generated from the source is expected to be TM to the z -direction (so

the field has Hz = 0) and can be expressed in terms of a magnetic vector potential

having only a z -component. The wave function is also symmetric and independent

of φ and z (see Figure 3.5) and so Az = ψ(p). The wave function for the outward

travelling wave can be written using equation (3.8) as

ψ(p) = GH
(2)
0 (kp), (3.51)

where k is the wave number of the medium and G is a constant which can be found

by considering the current I of the source filament.

The electromagnetic field component Ez can be expressed in terms of wave func-

tions ψ associated with cylindrical coordinates as

Ez =
1

ŷ

(
∂2

∂z2
+ k2

)
ψ. (3.52)

(see the Appendix A1). Consider a perfect dielectric medium with σ = 0. Then,

using equations (2.2) and (3.51), and by simplifying the equation (3.52) we obtain

Ez(p) = EH
(2)
0 (kp), (3.53)
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Figure 3.6: Cylindrical coordinate system for cylindrical wave functions.

where

E =
k2G

jωε
. (3.54)

Equation (3.53) gives the field component Ez at a point which has a distance p from

the source. Now we shall use this wave to illuminate the cylindrical object inside

the host. The source and the cylindrical coordinate system are shown in Figure 3.6.

Here, the z axis is not shown but it is perpendicular to the xy-plane and lies out of

the page with C as the origin.

Consider the source filament to be placed not along the z axis but at a point O ′

and parallel to the z axis. Our aim is to find a field solution at the point O (shown

in Figure 3.6) due to the field excited from the source at O .́ Therefore equation

(3.53) can be used by replacing p with the distance from O to O .́ We specify the

field point at O and the source point at O´ using the radius vector notation as

r = uxx + uyy and r′ = uxx
′ + uyy

′, respectively. The distance from source point
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O´to field point O is

|r− r ′| =
√

(x− x ′)2 + (y − y ′)2 =
√
p2 + p ′ 2 − 2pp ′ cos(φ− φ ′), (3.55)

where p and p ′ are the distances form O to C and O ′ to C, as indicated in Figure

3.6. Equation (3.53) can be written for the incident field at point O due to the

source at Ó as

Ei
z = EH

(2)
0 (k |r− r ′|). (3.56)

Then, for p < p ′, from the addition theorem [8, 16],

Ei
z (p, p ′, φ, φ ′) = E

∞∑
n=−∞

H(2)
n (kp ′)Jn(kp)ejn(φ−φ ′). (3.57)

The field component Ei
z in equation (3.57) is for the incident wave at the field point

O due to the wave source at point O ′.

Now we use the asymptotic condition in the field equation: as x→∞,

H(2)
n (x) ≈

√
2j

πx
jne−jx . (3.58)

Therefore, as p ′ →∞ for φ ′ = 0, equation (3.57) becomes

Ei
z ≈ E

√
2j

πkp ′
e−jkp

′
∞∑

n=−∞
jnJn(kp)ejnφ. (3.59)

In equation (3.59) we can see that Ei
z has become the field of a plane wave. This

result is to be expected when the source that generates the cylindrical waves is far

away from the field point.

The scattered field at point O can be found by replacing Jn(.) in equation (3.57)

with H(2)
n (.) and the result is

Es
z (p, p ′, φ, φ ′) = E

∞∑
n=−∞

anH
(2)
n (kp ′ )H(2)

n (kp)ejn(φ−φ ′), (3.60)

where the an are constants. Using equations (3.57) and (3.60), the total field at

point O is found to be

Ez (p, p ′, φ, φ ′) = Ei
z (p, p ′, φ, φ ′) + Es

z (p, p ′, φ, φ ′) =

E
∞∑

n=−∞

[
H(2)
n (kp ′)Jn(kp) + anH

(2)
n (kp ′)H(2)

n (kp)
]
ejn(φ−φ ′) .

(3.61)
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which is valid for p < p ′. Again the constants an can be found by considering the

boundary condition of a perfectly conducting cylinder: an = − Jn(k1a)

H
(2)
n (k1a)

. Equation

(3.61) is the forward equation for the scattering of cylindrical waves from a con-

ducting cylinder. This gives total field component Ez which can be measured from

the field point.

The forward problem of wave scattering from cylindrical waves has now been

solved. Knowing the distance p and the angle φ, this result can be used to find the

field component at any point. Similarly, the source point can also have any location

with p ′ > p. As an example, suppose the points O and O ′ are rotated through

angles π−φ and π−φ ′, respectively. Then these points lie along the x axis. These

new positions and the distances from the centre of the cylinder are shown in Figure

3.6 (see also Figure 7.5 (ii) in section 7.2.2). The solution for the field point at a

distance d along the x axis is

Ez (d, d ′) = E
∞∑

n=−∞

[
H(2)
n (kd ′)Jn(kd) + anH

(2)
n (kd ′)H(2)

n (kd)
]
, (3.62)

where d′ is the distance to the source point from the centre of the object (Figure 3.6).

Equation (3.62) can be used only if the source and the field points are collinear with

the centre of the object. In practice this may be hard to achieve but we presume

that it is possible to do this by aligning the antenna for the purpose of this modal.

The result in equation (3.61) may be used to find unknowns using data obtained

from field measurements. In order to find the angles φ and φ ′, it is necessary to

record the source and the receiver locations very accurately in the measurement

plane. A detailed practical development is beyond the task of this study. However,

these solutions have been tested with the data obtained from both analytical cal-

culations and experimental measurements. The results are discussed later in this

thesis (sections 3.7 and 7.4).
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3.5 Cylindrical waves with a non-conducting cylin-

der

Here, a non-conducting cylinder is used as the scattering object inside the model.

Again, in this case we consider the boundary condition with respect to the two sets

of properties inside and outside the non-conducting cylinder.

Similar to the method used in section 3.3, the field components at point O can

be found using a frequency f1. Then the equation for the total field that can be

measured from antenna one is

Ez,1(p1, d1
′, φ1, φ1

′) =

E
∞∑

n=−∞

[
H(2)
n (k1d1

′)Jn(k1p1) + anRc,n,1H
(2)
n (k1d1

′)H(2)
n (k1p1)

]
ejn(φ1−φ1

′),
(3.63)

where an are the constants given in equation (3.17), Rc,n,1 is the coefficient at fre-

quency f1 which can be found in equation (3.41), p1 is the distance to the field point

and d′1 is the distance to the source point. These distances are measured from the

centre of the cylinder. The constants k1 and k2 are the wave numbers for frequency

f1 which can be found using equation (3.38). Similarly, the forward equation with

frequency f2 is

Ez,2(p1, d1
′, φ1, φ1

′) =

E
∞∑

n=−∞

[
H(2)
n (k3d1

′)Jn(k3p1) + anRc,n,2H
(2)
n (k3d1

′)H(2)
n (k3p1)

]
ejn(φ1−φ1

′),
(3.64)

where Rc,n,2 (which depends on k3, k4) is the coefficient at frequency f2 which can be

found in equation (3.42) and k3 and k4 are the wave numbers of the media outside

and inside of the non-conducting cylinder, respectively, for frequency f2 as found in

equation (3.43).
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Figure 3.7: Plot of the calculated E fields using the forward equations of the con-

ducting cylinder. (1): |E1| for a = 0.002m, d1 =0.06m. (2): |E1| for a = 0.002m, d1

=0.04m. (3): |E2| for a = 0.002m, d1 =0.06m. (4):|E2| for a = 0.002m, d1 =0.04m.

3.6 Results and discussion: plane wave scattering

3.6.1 Results with a conducting cylinder

The solutions to the forward and inverse scattering problems of a conducting cylinder

have been obtained in section 3.2. This section presents the results of calculations

to test these solutions.

3.6.1.1 Calculation of field vectors

The field equations for the two frequencies f1 and f2 are obtained from equation

(3.23). We use two sets of reasonable values for a and d1 (a = 0.002 m, d1 = 0.04

m and a = 0.002 m, d1=0.06 m) and calculate the two corresponding values each of

E1 and E2 with f1 = 2.0 GHz and f2 = 2.2 GHz frequencies. Also, we assume that

µr = 1 and εr = 10 in the medium of the wave propagation. The solutions to the
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system of equations (3.23) have been computed using the infinite series indexed by

n until they converge towards a constant value (from n = 1 to n = 20 terms in the

series). These calculations were performed by using code written in MATLAB and

the results are shown in Figure 3.7. (E1 and E2 are normalised with E0 = 1 volts

m−1.) This illustrates that |E1| and |E2| can be determined to sufficient accuracy

by truncation of the series after 10 terms. In the study, these values, instead of

measured results, are used to test the inverse algorithm.

3.6.1.2 Calculation of the unknowns

The inverse algorithm developed in section 3.2.2 was tested by calculating the cylin-

der radius a and the distance d1 to antenna one from the centre of the cylinder. A

computer program written in MATLAB was used for this calculation. The iteration

process follows the sequence given in Figure 2.3. First, a set of guess values was

chosen for a and d1. Then these values were substituted into the algorithm to run

the whole process. According to the general equations in (3.23), at the end of the

iteration cycle we seek solutions to a and d1 as the residual tends to zero. If the

solutions are not acceptable, another set of guess values can be chosen to run the

same process. We have used several values for a and d1 in the neighbourhood of

the true values and found that there are limits on those guess values for which we

can expect a reasonable solution for the unknowns. Figure 3.8 illustrates the results

of the iteration process using two different sets of guess values. These plots show

the two unknowns a and d1 converging towards their exact values (a=0.002 and

d1=0.04 m). The two sets of graphs in Figure 3.9 show the plots of |∆E1| (residual

of (3.23)1) and |∆E2| (residual of (3.23)2) versus the number of iterations. Both

|∆E1| and |∆E2| converge towards zero as a and d1 approach 0.002m and 0.04m,

respectively, after approximately 15 iterations.
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Figure 3.8: Calculated values of a and d1 of the conducting cylinder. Results with

two sets of guess values.
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Figure 3.9: Calculated values of |∆E1| and |∆E2| of the conducting cylinder.
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3.6.2 Results with a non-conducting cylinder

First, we calculated Rc,n,1, the modal coefficient for frequency f1, and Rc,n,2, the

modal coefficient for frequency f2, for different values of ε1, the permittivity outside

the cylinder and ε2, the permittivity inside the cylinder. Equations (3.41) and

(3.42) were used for these calculations with a= 0.01 m and d1=0.16m. The results

are summarised as follows.

(1). Both Rc,n,1 and Rc,n,2 increase when the permittivity of the medium inside

the cylinder increases.

(2). Rc,n,1 = Rc,n,2 = 0 when ε1, the permittivity outside the cylinder, and ε2,

the permittivity inside the cylinder, are the same.

(3). The magnitudes of Rc,n,1, Rc,n,2 → 1 when permittivity inside the cylinder

is very large (when ε2 →∞).

These results also agree with equation (2.19). When the electrical properties

on both the sides of the reflecting boundary are the same one can expect a zero

reflection as in (2) above. Similarly when the dielectric property of the reflecting

medium is very large, assuming the permittivity makes the main contribution, a full

reflection can be expected as in (3) above.

3.6.2.1 Calculations of the field vectors

The solution to the scattering problem of a non-conducting cylinder which has been

obtained in section 3.3.1, was used to calculate the field components. Using equation

(3.37), the field components for the two different frequencies are

E1 = E0

∞∑
n=−∞

jn
[
Jn(k1d1) + anRc,n,1H

(2)
n (k1d1)

]

E2 = E0

∞∑
n=−∞

jn
[
Jn(k2d1) + anRc,n,2H

(2)
n (k2d1)

]
,

(3.65)

where Rc,n,1 and Rc,n,2 are the modal coefficients for frequency f1 and frequency f2

as given in equations (3.41) and (3.42), respectively. The calculated E1 and E2 for
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Figure 3.10: Calculated field components E1 for the non-conducting cylinder.
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Figure 3.11: Calculated field components E2 for the non-conducting cylinder.
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two sets of a and d1 values are plotted in Figures 3.10 and 3.11, respectively (E1

and E2 are normalised with E0 = 1 volts m−1).

Taking the partial series from n = -N to N, the expressions (3.65) for E1 and

E2 need approximately N = 15 to converge to a constant value. As the computer

code has more variables, these simulations needed more computing time compared to

those with the conducting cylinder. However, these results may be more appropriate

for a realistic application in detecting a foreign object.

3.6.2.2 Calculation of unknowns

In order to calculate unknowns, we used the inverse algorithm developed in section

3.3.2. The general equations obtained in equation (3.40) need field components E1

and E2 given by (3.65) for the subsequent iteration process of the inverse method.

In a practical application these components would be measured. In order to test

the inverse method, these field components were calculated using the field equations

in (3.65). Again, the inverse method we used is similar to the method explained in

sections 2.4 and 3.2.2. However, the Jacobian matrix and the subsequent explicit

function are rather complicated compared to those used in the inverse algorithms

of the conducting cylinder. We tested with two sets of guess values for a and d1 in

the neighbourhood of their true values.

Figure 3.12 shows the calculated results of the two unknowns. With guess values

a = 0.0015 m, d1 = 0.035 m and a =0.003 m, d1 =0.046 m as initial guesses both

|∆E1| (residual of (3.40)1) and |∆E2| (residual of (3.40)2) converge towards zero as

a and d1 approach 0.002m and 0.04 m, respectively (a = 0.002m and d1 = 0.04m

are the true values). Figure 3.13 shows the plots of |∆E1| and |∆E2| versus number

of iterations for these two sets of guess values.
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Figure 3.12: Calculated values of a and d1 using inverse algorithm for the non-

conducting cylinder. Results are shown for two different sets of guess values.
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Figure 3.13: Plots of |∆E1| and |∆E2| when tested with two different sets of guess

values.
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3.7 Results and discussion: cylindrical wave scat-

tering

The forward equation developed for the cylindrical wave scattering from a conduct-

ing cylinder is given in equation (3.61). Unlike the case with the plane waves, the

solution for the forward problem has three basic variables. These are a the radius

of the cylinder, p the distance to the centre of the cylinder from the measuring

point and p ′ the distance to the source point from the centre of the cylinder. The

magnitude values of the field component which can be measured at the measuring

point can be changed with φ , the angle that the field point makes with the axis

of the source point (see Figure 3.6). Therefore, apart from calculating the field

components with different frequencies, we also determined the field components at

different positions of the field point. The value of the field components vary with

respect to frequency of the wave, position of the field point and the position of the

source point.

3.7.1 Calculation of field components of the cylindrical waves

Consider the field point O and the source point O ′ to be rotated by angles π and

π − φ′, respectively (Figure 3.14). Then the source point lies along the x axis and

the field point O makes an angle −(φ − φ′) with the direction of the source point.

Then the two field components for frequency f1 and frequency f2 can be obtained

using equation (3.61) as

E1 (p, d′, φ′) = E
∞∑

n=−∞

[
H(2)
n (k1d

′)Jn(k1p)−

Jn(k1a)

H
(2)
n (k1a)

H(2)
n (k1d

′)H(2)
n (k1p)

]
e−jn(φ−φ′),

(3.66)
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Figure 3.14: Scattering with cylindrical waves: The field point and the source point

are shown after rotation.
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Figure 3.15: Calculated |E1| with a frequency of f1= 2.0 GHz for cylindrical wave

scattering from a conducting cylinder.
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Figure 3.16: Calculated |E2| with a frequency of f2= 2.2 GHz for cylindrical wave

scattering from a conducting cylinder.

E2 (p, d′, φ′) = E
∞∑

n=−∞

[
H(2)
n (k2d

′)Jn(k2p)−

Jn(k2a)

H
(2)
n (k2a)

H(2)
n (k2d

′)H(2)
n (k2p)

]
e−jn(φ−φ′),

(3.67)

where k1 and k2 are the wave numbers for frequency f1 and frequency f2 , respec-

tively. For these calculations, we used a set of reasonable values: the cylinder radius

a = 0.0065 m and the distance to the field point from the centre of the cylinder p=

0.04 m. We calculated the two corresponding values of |E1| and |E2| with f1 = 2.0

GHz and f2 = 2.2 GHz frequencies and these results, as a functions of the number

of terms in the series expansions (3.66) and (3.67) have been plotted in Figures 3.15

and 3.16, respectively.
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3.7.2 Summary of the simulation results of the cylindrical

waves

The convergence of these field components of the cylindrical waves is similar to

the results we obtained with plane waves but the values of the calculated field

components now depend, not only on k, a and p but also on the angle φ and the

position of the source point O′ which has a distance d ′ from the centre of the

cylinder. A number of simulations have been carried out using the field equations

in order to observe the changes in fields with respect to the positions of the field

point and the source point. Here, we have not produced all the simulated results

but some of the observations can be summarised as follows:

(1). When p < d ′ , both |E1| and |E2| converge to constant values after a reasonable

number of iterations.

(2). The number of iterations in (1) above is minimum when φ = 0. As φ increases

in magnitude |E1| and |E2| need more iterations.

(3). As φ increases in magnitude the corresponding computed values of |E1| and

|E2| decrease. (Plots are marked with the angle φ. See Figures 3.15 and 3.16.)

(4). When d ′ ≤ p, there are no results. (This is not valid according to the forward

equation.)

(5). As φ→ 0, the magnitude values of |E1| and |E2| are maximised.

We observed that the magnitude and phase values of E1 and E2 depend upon

the position of O and O′. These changes have been studied in detail to investigate

the scattering difference between plane waves and cylindrical waves. This will be

further discussed in Chapter 7.



Chapter 4

Three-dimensional scattering

problem

A three-dimensional scattering problem of a spherically-shaped object is considered

in this chapter. A simple host model was used. Similar problems to this have been

solved previously and the results are available in literature [7, 8, 14, 15]. We used

some of those results to obtain a solution to the forward scattering problem of a

uniform sphere inside our model. The application system is similar to that used in

the cylindrical case (Figure 3.2). The object is illuminated by a microwave signal

which is applied from the surface of the host.

The forward and inverse solutions provide the necessary base for a possible prac-

tical application. First, the object is assumed to be a conducting sphere and the

associated forward problem is solved. Then the result is modified for a more realistic

situation using a non-conducting sphere. The inverse scattering problems in both

cases are then solved to compute the unknown size and the location of the object.

At the beginning of this chapter, some equations in wave theory found in Harrington

[8] are used. The full derivations are given for completeness.
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Figure 4.1: The spherical coordinate system.

4.1 Wave functions at spherical boundaries

The spherical coordinate system (r, θ, φ) corresponds to the spherical wave functions

and is shown in Figure 4.1. Consider a point O with a distance r from C the centre

of the coordinate system. The Helmholtz equation in spherical coordinates which

can be obtained using the Laplacian of ψ, is of the form

1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
+ k2ψ = 0. (4.1)

In order to solve equation (4.1) we use the method of separation of variables. It is

assumed that the solution is a product of three functions of the form,

ψ (r, θ, φ) = R(r)Θ(θ)Φ(φ). (4.2)

Using equations (4.1) and (4.2), three separated equations can be found

d

dr

(
r2dR

dr

)
+
[
(kr)2 − n(n+ 1)

]
R = 0, (4.3)
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1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

[
n(n+ 1)− m2

sin2 θ

]
Θ = 0, (4.4)

d2Φ

dφ2
+m2Φ = 0, (4.5)

where m and n are constants. The above three equations have solutions which are

each functions of one variable: r, θ and φ, respectively. Equations (4.3) and (4.4) are

related to Bessel’s equation and Legendre’s equation [8, 103], respectively. Equation

(4.5) is the harmonic equation which has a solution of the form

Φ(φ) = Φm(φ) = ejmφ, (4.6)

where m is an integer. This ensures the solution is periodic with a period of 2π as

it clearly should be since Φ(φ+ 2π) = Φ(φ).

The solutions to the Bessel’s equation are called spherical Bessel functions, de-

noted by bn(kr), and n is a positive integer, since the functions in the solutions for

Θ are not finite at θ = 0, π unless this is so (this will be discussed in section 4.2.1).

The spherical Bessel functions are related to the ordinary Bessel functions Bn+1/2

by [103]

bn(kr) =

√
π

2kr
Bn+1/2(kr). (4.7)

The solutions to Legendre’s equation (4.4) are called the associated Legendre func-

tions and, in general, these are denoted by Lmn (cos θ). There are two linearly inde-

pendent families of solutions for Legendre’s equation:

• Pm
n (cos θ) which are the associated Legendre functions of the first kind,

• Qm
n (cos θ) which are the associated Legendre functions of the second kind.

Now, the solutions to the Helmholtz equation can be found using the product in

equation (4.2) as

ψ (r, θ, φ) = bn(kr)Lmn (cos θ)ejmφ. (4.8)
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The appropriate function for Lmn (cos θ) is selected from the two solutions Pm
n (cos θ)

and Qm
n (cos θ) by considering the singularities in their domains. The solutions to

Legendre’s equation have singularities when θ = 0 or θ = π except Pm
n (cos θ) with

n as an integer (see Appendix D). We seek solutions for ψ to be finite in the range

from θ = 0 to θ = π (this problem will be discussed in the next section). Therefore,

Lmn (cos θ) must be Pm
n (cos θ) and not the Qm

n (cos θ) as this is not finite at θ = 0 and

θ = π (see [8,16]). A general solution can be formed using a linear combination of

all possible wave functions over n and m as

ψ (r, θ, φ) =
∞∑
n=0

∞∑
m=−∞

Zn,mbn(kr)Pm
n (cos θ)ejmφ, (4.9)

where Zn,m are constants. Equation (4.9) represents a linear combination of all the

possible elementary wave functions. According to equation (4.9), there are three

different wave functions (of one variable) associated with the spherical coordinate

system.

4.2 Forward equation: scattering from plane waves

The model for the host and the internal object with a spherical coordinate system

is shown in Figure 4.2. The internal object is considered to be a conducting sphere

with radius a (C is the centre) illuminated by an incident plane wave. This sphere

represents the unknown object whose size and location are determined using a set of

microwave measurements obtained from the surface of the host. This study is carried

out with a single antenna. In a practical application, a number of antennas could

be used and the location of the object found using the geometry of the situation.

The spherical coordinate system for the scattering sphere inside the host is shown

in Figure 4.3. Consider the wave to be x -polarized and travelling in the z direction

toward the conducting sphere. Then the incident plane wave of E and H fields are
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Figure 4.2: Three-dimensional modelling for the scattering from the spherical object.

given by scalar parameters:

Ei
x = E0e

−jkz = E0e
−jkr cos θ , (4.10)

H i
y =

E0

η
e−jkz =

E0

η
e−jkr cos θ , (4.11)

where η =
√

µ
ε

and k = ω
√
µε are the intrinsic impedance and the wave number of

the medium outside the sphere, respectively. The subscripts x on E and y on H

represent their polarized directions, respectively.

Figure 4.3 shows a conducting sphere illuminated by an incident plane wave.

From the coordinate system, the r -component of the incident electric field along

OC can be written as

Ei
r (r, θ, φ) = Ei

x cosφ sin θ. (4.12)

Using equations (4.10) and (4.12),

Ei
r (r, θ, φ) =

E0

jkr
cosφ

∂

∂θ

(
e−jkr cos θ

)
. (4.13)
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Figure 4.3: Incident wave in spherical coordinate system.

Consider the plane wave incident upon the boundary of the sphere. Then, similar

to the method used for the cylindrical coordinate system in section 3.2.1, this wave

can be expressed in terms of spherical wave functions. As this wave is travelling

in the z direction, it is independent of φ and therefore, m = 0 and equation (4.4)

becomes the form of the ordinary Legendre’s equation. Then, Pm
n (cos θ) becomes

Pn(cos θ), the Legendre polynomials of the first kind [8, 16] and, since all Pm
n (cos θ)

= 0 for m > n, the integer n must be a positive number.

The spherical Bessel function can be of the form of either an inward or an

outward-travelling wave. As the wave is taken to be finite at r = 0, we select the

spherical Bessel function jn(kr) for bn(kr) to represent the possible field inside the

sphere. Thus,

e−jkz = e−jkr cos θ =
∞∑
n=0

gnjn(kr)Pn(cos θ ), (4.14)

where jn(kr) are spherical Bessel functions (these are the only spherical Bessel
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functions finite at r = 0 [8]) and gn are constants which can be evaluated (Appendix

C) as

gn = j−n(2n+ 1). (4.15)

Therefore, from equations (4.14) and (4.15), the plane waves can be expressed in

terms of spherical wave functions as

e−jkz = e−jkr cos θ =
∞∑
n=0

j−n(2n+ 1)jn(kr)Pn(cos θ ). (4.16)

The incident field Ei
r can be obtained by substituting equation (4.16) in equation

(4.13), and this yields

Ei
r (r, θ, φ) =

E0

jkr
cosφ

∞∑
n=0

j−n(2n+ 1)jn(kr)
d

dθ
Pn(cos θ ). (4.17)

As ∂
∂θ
P0(cos θ ) = 0, the term at n = 0 within the summation vanishes to give

Ei
r (r, θ, φ) =

E0

jkr
cosφ

∞∑
n=1

j−n(2n+ 1)jn(kr)
d

dθ
Pn(cos θ ). (4.18)

4.2.1 Radial components of the field

The field components generated by the scattering of waves from the sphere are asso-

ciated with spherical boundary conditions. Therefore, the field at any point in the

neighbourhood of C depends upon the values of r, θ and φ. In order to represent

electromagnetic fields in terms of wave functions ψ, we let ψ be a rectangular com-

ponent of magnetic vector potential A or electric vector potential F and then the

field is constructed as a superposition of two parts (this will be discussed further in

this section). For this, we choose A = Arur and F = Frur where ur is a unit vector

in the radial direction. When Aθ, Aφ = 0, Ar 6= 0 and Fr = 0, the field is transverse

magnetic (TM ) to r. Similarly, when Aθ = Aφ = 0, Fr 6= 0 and Ar = 0, the field

is transverse electric (TE) to r (see Appendix A for more details on TM and TE

fields).
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Now consider point O in Figure 4.3 which has a radial distance r from C, the

centre of the sphere. In order to find the electromagnetic fields in the r -direction,

it is convenient to construct solutions in terms of the magnetic vector potential

A and the electric vector potential F. This type of construction is fundamental

electromagnetic theory and some of the relevant formulae are given in Appendix A.

Here, some of these fundamental equations are used, similar to Harrington [8], to

obtain field equations which represent E and H in terms of the vector potentials A

and F.

If the wave function ψ is considered to be a rectangular component of a vector

potential A or F, there will be fields either TM to the z direction or TE to the z di-

rection, respectively. However, we need the radial component of the electromagnetic

field in order to construct a solution for the scattering problem in this coordinate

system. Therefore it is convenient to consider a possible field in the r direction as

a result of a superposition of fields TM to r and TE to r. Consider the two general

equations for these vector potentials (equation (A.17) in Appendix A),

∇× (∇×A)− k2A = −ŷ∇Φa, (4.19)

∇× (∇× F)− k2F = −ẑ∇Φf , (4.20)

where k = ω
√
µε, Φa and Φf are arbitrary scalar functions. The electromagnetic

fields of E and H can be obtained in terms of vector potentials A and F (equations

(A.19) and (A.20)) as

E = −∇× F +
1

ŷ
∇× (∇×A), (4.21)

H = ∇×A +
1

ẑ
∇× (∇× F). (4.22)

Letting A = Arur, that is, A is a vector potential for a spherical wave and

expanding equation (4.19), we obtain

∂2Ar
∂r∂θ

= −ŷ ∂Φa

∂θ
, (4.23)
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∂2Ar
∂r∂φ

= −ŷ ∂Φa

∂φ
. (4.24)

We can see that Φa satisfies both equations (4.23) and (4.24) if

Φa = −1

ŷ

∂Ar
∂r

. (4.25)

Using the vector identity ∇2A = ∇(∇ ·A)−∇× (∇×A) , equation (4.19) can be

expanded as

∇ (∇ ·A)−∇2A− k2A = −ŷ∇Φa. (4.26)

As (∇2A)r 6= ∇2Ar, we use the component of ∇× (∇×A) in the radial direction

which in spherical coordinates is

∇× (∇×A)|r =
1

r2 sin θ

∂

∂θ

(
sin θ

∂Ar
∂θ

)
+

1

r2 sin2 θ

∂2Ar
∂φ2

. (4.27)

Now, using this result in equation (4.19) and substituting for Φa from equation

(4.25), the resultant equation simplifies to

∂2Ar
∂r2

+
1

r2 sin θ

∂

∂θ

(
sin θ

∂Ar
∂θ

)
+

1

r2 sin2 θ

∂2Ar
∂φ2

+ k2Ar = 0. (4.28)

In spherical coordinates, the Laplacian of Ar/r can be written as

∇2(Ar/r) =
1

r2

∂

∂r

(
r2∂(Ar/r)

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂(Ar/r)

∂θ

)
+

1

r2 sin2 θ

∂2(Ar/r)

∂φ2
.

(4.29)

Equation (4.29) is simplified to

∇2(Ar/r) =
1

r

(
∂2Ar
∂r2

+
1

r2 sin θ

∂

∂θ

(
sin θ

∂Ar
∂θ

)
+

1

r2 sin2 θ

∂2Ar
∂φ2

)
. (4.30)

Using the results in equation (4.30), equation (4.28) can be written as

(
∇2 + k2

) Ar
r

= 0. (4.31)

According to equation (4.31), Ar
r

is a solution to the scalar Helmholtz equation.

Similarly, using the dual relationship, the radial component for F = urFr satisfies

the equation (
∇2 + k2

) Fr
r

= 0, (4.32)



92

and Fr
r

is a solution to the scalar Helmholtz equation. Accordingly, the field solutions

to the scalar Helmholtz equation should be ψa = Ar
r

and ψf = Fr
r

. Thus, the

solutions to E and H fields can be formed by choosing the field vectors A = rψa

and F = rψf where r = rur is the radius vector from the origin. Therefore, with

these field solutions, the field equations for E and H are found from (4.21) and

(4.22), respectively, as

E = −∇× (rψf ) +
1

ŷ
∇× (∇× (rψa)), (4.33)

H = ∇× (rψa) +
1

ẑ
∇× (∇× (rψf )), (4.34)

where ψa and ψf are the wave functions of A and F, respectively.

From equations (4.33) and (4.34) we can see that the field ψ in both E and

H equations is always multiplied by r = rur. Therefore, there is another kind of

alternative spherical Bessel function which has been defined by Schelkunoff [97] and

later used by Harrington [8]. The spherical Bessel functions relate to the alternative

spherical Bessel functions B̂n(kr) as

B̂n(kr) = krbn(kr). (4.35)

Here for convenience, B̂n(.) is used to distinguish this alternative spherical Bessel

function from the ordinary Bessel function Bn(.). Recall that the spherical Bessel

functions relate to the ordinary Bessel functions [16] (see Appendix B) as

bn(kr) =

√
π

2kr
Bn+1/2(kr). (4.36)

Therefore, from equations (4.35) and (4.36) the alternative spherical Bessel functions

are related to the ordinary Bessel functions as

B̂n(kr) =

√
πkr

2
Bn+1/2(kr). (4.37)

The alternative form of differential equation (4.3) can be obtained by substituting

bn using equation (4.35) into the Bessel equation:

d

dr

r2
d
(
B̂n
kr

)
dr

+
[
(kr)2 − n (n+ 1)

] B̂n

kr
= 0. (4.38)
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Then, the general form for Ar and Fr in terms of spherical Bessel function in equation

(4.37) is
∞∑
n=0

gnB̂n(kr)Pn(cosθ). Multiplying equation (4.38) by k/r and further

simplifying we obtain [
d2

dr2
+ k2 − n(n+ 1)

r2

]
B̂n = 0. (4.39)

Equation (4.39) is the differential equation that the spherical Bessel functions de-

fined in equation (4.37) satisfy. Therefore jn (kr) in equation (4.18) should be re-

placed with Ĵn(kr) that can be found from equation (4.35), with B̂n(kr) replaced

with Ĵn(kr), as

Ĵn(kr) = krjn(kr). (4.40)

Thus, the field which satisfies the wave function relationship in equation (4.18) is

Ei
r (r, θ, φ) =

−jE0

(kr)2
cosφ

∞∑
n=1

j−n(2n+ 1)Ĵn(kr)
d

dθ
Pn(cos θ ), (4.41)

where Ĵn(kr) is the alternative spherical Bessel functions of first kind, as defined in

equation (4.40). The function Ĵn(.) was selected because the field must be finite at

r = 0. The function Pn(.) was selected because the field must be finite at θ = 0 and

π. The function e−jkz was selected because the input field is in the form of a wave

that is x -polarized and travelling in the z direction.

The point is described by spherical coordinates and so we need to find the elec-

tromagnetic field at O in terms of the wave functions ψ found in equation (4.9).

By taking ψ as a rectangular component of A or F, the field components can be

constructed. The explicit formulas for some field components in terms of Ar and

Fr can now be found by expanding equations (4.21) and (4.22) with A = Arur and

F = Frur. The solutions for the incident vector potentials are,

1. in terms of the TM mode with Fr = 0:

Er =
1

ŷ

(
∂2

∂r2
+ k2

)
Ar, (4.42)
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2. in terms of TE mode with Ar = 0:

Hr =
1

ẑ

(
∂2

∂r2
+ k2

)
Fr, (4.43)

and,

3. with both Ar and Fr 6= 0:

Eθ = − 1

r sin θ

∂Fr
∂φ

+
1

ŷr

∂2Ar
∂r∂θ

, Hθ =
1

r sin θ

∂Ar
∂φ

+
1

ẑr

∂2Fr
∂r∂θ

, (4.44)

Eφ =
1

r

∂Fr
∂θ

+
1

ŷr sin θ

∂2Ar
∂r∂φ

, Hφ = −1

r

∂Ar
∂θ

+
1

ẑr sin θ

∂2Fr
∂r∂φ

, (4.45)

where ŷ and ẑ represent the characteristics of the medium as defined in equa-

tion (2.2). Equation (4.42) can be written as

Er =
1

ŷ

(
∂2

∂r2
+ k2 − n(n+ 1)

r2

)
Ar +

n(n+ 1)

ŷr2
Ar. (4.46)

According to equation (4.39), the first term of Ar on the right hand side of equation

(4.46) vanishes to yield, for the incident wave,

Ei
r =

n(n+ 1)

ŷr2
Air. (4.47)

Then, by substituting for Ei
r from equation (4.41)

Air (r, θ, φ) =
E0 cosφ

ωµ

∞∑
n=1

cnĴn(kr)
d

dθ
Pn(cos θ ), (4.48)

where

cn =
j−n(2n+ 1)

n(n+ 1)
. (4.49)

Equation (4.48) gives the r-component of the magnetic vector potential of the

incident wave in terms of the TM mode. Using a similar procedure with the magnetic

field H i
r, the r -component of the electric vector potential of the incident wave can

be found as

F i
r (r, θ, φ) =

E0 sinφ

k

∞∑
n=1

cnĴn(kr)
d

dθ
Pn(cos θ ), (4.50)
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where the constant term cn is the same as given in equation (4.49). This is the

solution for the vector potential of the incident wave in terms of the TE mode. The

r-component of the vector potentials of the scattered field in terms of both the TM

and TE modes, can be found as

Asr (r, θ, φ) =
E0 cosφ

ωµ

∞∑
n=1

snĤ
(2)
n (kr)

d

dθ
Pn(cos θ ), (4.51)

F s
r (r, θ, φ) =

E0 sinφ

k

∞∑
n=1

enĤ
(2)
n (kr)

d

dθ
Pn(cos θ ), (4.52)

where sn and en are constants and Ĥ (2)
n is the Hankel function of second kind

associated with equation (4.37) which are chosen since Ĥ (2)
n (kr) → 0 as r → ∞.

The total r -components of the vector potentials are found from equation (4.48),

(4.50), (4.51) and (4.52) as

Ar (r, θ, φ) =
E0 cosφ

ωµ

∞∑
n=1

[
cnĴn(kr) + snĤ

(2)
n (kr)

] d
dθ
Pn(cos θ ), (4.53)

Fr (r, θ, φ) =
E0 sinφ

k

∞∑
n=1

[
cnĴn(kr) + enĤ

(2)
n (kr)

] d
dθ
Pn(cos θ ). (4.54)

Now we use the boundary conditions on the conducting sphere, with r = a, to

find the constants sn and en. At the boundary (at r = a where a is the radius of the

sphere), Eφ = Eθ = 0. We have found the relationship of Ar and Fr with the field

components Eθ and Eφ in equations (4.44) and (4.45), respectively. Accordingly, by

using these boundary conditions in equations (4.53) and (4.54), the two constants

are found as

sn = −cn
Ĵ ′n (ka)

Ĥ
(2)
n
′(ka)

, (4.55)

en = −cn
Ĵn (ka)

Ĥ
(2)
n (ka)

. (4.56)

Using the solution in equation (4.37), the functions Ĵn(kr) and Ĥ (2)
n (kr) can be

written in terms of ordinary Bessel functions as

Ĵn(kr) =

√
πkr

2
Jn+1/2(kr), (4.57)
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Ĥ (2)
n (kr) =

√
πkr

2
H

(2)
n+1/2(kr). (4.58)

Now we substitute these formulas for Ĵn(kr) and Ĥ (2)
n (kr) in equations (4.53) and

(4.54) to obtain equations for Ar and Fr in terms of ordinary Bessel functions. Thus,

Ar (r, θ, φ) = −E0 cosφ sin θ

ωµ

√
πkr

2

∞∑
n=1

[
cnJn+1/2(kr) + snH

(2)
n+1/2(kr)

]
P ′n(cos θ ),

(4.59)

Fr (r, θ, φ) = −E0 sinφ sin θ

k

√
πkr

2

∞∑
n=1

[
cnJn+1/2(kr) + enH

(2)
n+1/2(kr)

]
P ′n(cos θ ),

(4.60)

since

d

dθ
Pn(cos θ ) = − sin θP ′n(cos θ ). (4.61)

4.2.2 Field components

In order to find the field component of Er, we substitute for Ar from equation (4.59)

in equation (4.42), then simplify further to yield

Er (r, θ, φ) = 1
ŷ
E0 cosφ sin θ

4rωµ

√
πk
2r

( ∞∑
n=1

[
cnJn+1/2(kr) + snH

(2)
n+1/2(kr)

]
P ′n(cos θ)

−k
∞∑
n=1

[
cnJ

′
n+1/2(kr) + snH

(2)
n+1/2

′(kr)
]
P ′n(cos θ)

− k2
√
r
∞∑
n=1

[
cnJ

′′
n+1/2(kr) + snH

(2)
n+1/2

′′(kr)
]
P ′n(cos θ)

)

− 1
ŷ
k2E0

ωµ

√
πkr

2
cosφ sin θ

∞∑
n=1

[
cnJn+1/2(kr) + snH

(2)
n+1/2(kr)

]
P ′n(cos θ)

,

(4.62)
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where

J ′n+1/2(kr) =
J
n−1/2

(kr)−J
n+3/2

(kr)

2
,

J ′′n+1/2(kr) =
J
n−3/2

(kr)−2J
n+1/2

(kr)+J
n+5/2

(kr)

4
,

H
(2)

n+1/2
′(kr) =

H
(2)

n−1/2
(kr)−H (2)

n+3/2
(kr)

2
,

H
(2)

n+1/2
′′(kr) =

H
(2)

n−3/2
(kr)−2H

(2)

n+1/2
(kr)+H

(2)

n+5/2
(kr)

4
.

(4.63)

Similarly, the field component Eθ is found by substituting for Ar and Fr from

equations (4.59) and (4.60), respectively, in equation (4.44) and further simplifying

to yield

Eθ (r, θ, φ) = E0

kr
cosφ

√
πkr

2

∞∑
n=1

[
cnJn+1/2(kr) + enH

(2)
n+1/2(kr)

]
P ′n(cos θ)

− E0

ŷrωµ
cosφ cos θ 1

2

√
πk
2r

∞∑
n=1

[
cnJn+1/2(kr) + snH

(2)
n+1/2(kr)

]
P ′n(cos θ)

− E0

ŷrωµ
cosφ cos θ

√
πkr

2
k
∞∑
n=1

[
cnJ

′
n+1/2(kr) + snH

(2)
n+1/2

′(kr)
]
P ′n(cos θ)

+ E0

ŷrωµ
cosφ sin2 θ 1

2

√
πk
2r

∞∑
n=1

[
cnJn+1/2(kr) + enH

(2)
n+1/2(kr)

]
P ′′n (cos θ)

+ E0

ŷrωµ
cosφ sin2 θ

√
πkr

2
k
∞∑
n=1

[
cnJ

′
n+1/2(kr) + enH

(2)
n+1/2

′(kr)
]
P ′′n (cos θ) .

(4.64)

In order to find Eφ, we substitute for Ar and Fr from equations (4.59) and (4.60),

respectively, in equation (4.45). The resulting equation found for Eφ is
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Eφ (r, θ, φ) = −E0

kr
sinφ cos θ

√
πkr

2

∞∑
n=1

[
cnJn+1/2(kr) + enH

(2)
n+1/2(kr)

]
P ′n(cos θ)

+E0

kr
sinφ sin2 θ

√
πkr

2

∞∑
n=1

[
cnJn+1/2(kr) + enH

(2)
n+1/2(kr)

]
P ′′n (cos θ)

+ E0

2ŷrωµ
sinφ

√
πk
2r

∞∑
n=1

[
cnJn+1/2(kr) + snH

(2)
n+1/2(kr)

]
P ′n(cos θ)

+ E0

ŷrωµ
sinφ

√
πkr

2
k
∞∑
n=1

[
cnJ

′
n+1/2(kr) + snH

(2)
n+1/2

′(kr)
]
P ′n(cos θ) .

(4.65)

4.2.3 Final solution for the total field

The field components Er, Eθ and Eφ are the possible fields at point O in this coordi-

nate system. The total field depends upon the position of the point O concerned. In

other words, these field components can be changed in both magnitude and phase,

depending upon the distance r and the angles θ and φ. Therefore, the total field E

at the point O is

E = urEr + uθEθ + uφEφ, (4.66)

where Er, Eθ and Eφ are the field components found in equations (4.62), (4.64) and

(4.65) and ur, uθ and uφ are the unit vectors to r, θ and φ-directions, respectively.

Using an approach similar to the method used in the scattering problem of

a cylindrical object, we now find a solution for the scattering field of the sphere

at the measuring point. According to the set-up of the measuring system, the

field is measured at the same antenna point from which the microwave signal is

transmitted. Again, the need for an accurate alignment of the antenna applies here.

As described in the two-dimensional approach, this result applies appropriately if

the system is properly aligned to receive the maximum scattering response from the

internal object. Suppose point O is rotated to O ′, (i.e. θ changes by an angle π−θ)
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Figure 4.4: The spherical coordinate system with the field point O rotated to mea-

suring point.

then this point will lie along the z axis and the distance r becomes d1, the distance

to the centre of the sphere from the antenna point one. The spherical coordinate

system after the rotation is shown in Figure 4.4. The new equation for the total

field E at point O ′ is

E = [urEr + uθEθ + uφEφ] θ=π
r=d1

(4.67)

where Er, Eθ and Eφ are the field components at O′ which can be found using

equations (4.62), (4.64) and (4.65), respectively, with φ = 0, θ = π, and r = d1.

Therefore, E = (0, Eθ, 0). Thus, the total field at O ′ is

Eθ = E0

√
π

2kd1

∞∑
n=1

(
cn
(
1− j

2kd1

)
Jn+1/2(kd1)

+
(
en − j sn

2kd1

)
H

(2)
n+1/2(kd1)− j

(
cnJ

′
n+1/2 (kd1) + snH

(2) ′

n+1/2(kd1)
))
P ′n(−1) .

(4.68)
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In order to find the constants sn, we substitute for cn from equation (4.49) in

equation (4.55) and, by replacing Ĵ ′n (ka) and Ĥ (2)
n
′(ka) with J ′n(ka) and H (2)

n
′(ka),

respectively using equation (4.37), and with further simplification we obtain

sn = −j
−n(2n+ 1)

n(n+ 1)

(
J ′n+1/2(ka) + 1

2ka
Jn+1/2(ka)

)
(
H

(2) ′

n+1/2(ka) + 1
2ka
H

(2)
n+1/2(ka)

) . (4.69)

Similarly the constants en are found using equations (4.49), (4.56) and (4.37), and

further simplifying to yield

en = −j
−n(2n+ 1)

n(n+ 1)

Jn+1/2(ka)

H
(2)
n+1/2(ka)

. (4.70)

Now we substitute for the constants cn, sn and en, from equations (4.49), (4.69)

and(4.70), respectively, in equation (4.68), and obtain

Eθ = E0

√
π

2kd1

∞∑
n=1

j−n (2n+1)P ′n (−1)
2

((
1− j

2kd1

)
Jn+1/2(kd1)−H (2)

n+1/2(kd1)
Jn+1/2(ka)

H
(2)

n+1/2
(ka)

+

(
2kaJ ′

n+1/2
(ka)+J

n+1/2
(ka)

2kaH
(2) ′
n+1/2

(ka)+H
(2)

n+1/2
(ka)

) (
j

2kd1
H

(2)
n+1/2(kd1) + jH

(2) ′

n+1/2(kd1)
)
− jJ ′n+1/2(kd1)

)
.

(4.71)

Equation (4.71) gives the solution for the scattering problem of the sphere inside

the host when the field point is at the new positionO ′. This result is now appropriate

for the use of a single antenna for both the transmit and receive signals. This is

further explained in Chapter 6. However, using equation (4.66), this method can

be generalised to obtain a solution for the forward problem at any point in the

scattering field around the neighbourhood of the centre of the sphere (it is C in

this model). If we apply this model for internal object detection, then a and d1 in

equation (4.71) represent the radius of the object and its distance from the surface of

the host (the subscript “1” in d1 is for antenna one). Similar to the two-dimensional

wave problem, the forward equation found for the spherical waves also has an infinite

series of wave functions. A reasonable solution can be obtained by computing partial

sums of the series in equation (4.71) until they approach a constant value.
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4.3 Inverse scattering problem of the conducting

sphere

The inverse problem associated with the scattering from a sphere has to deal with

the solutions obtained for forward problems in previous sections. There are field

components in three different directions r, θ and φ. When obtaining measurements

in a location apart from the position of the antenna of transmission (when two

antennas are used: one for transmission and one for receiving), then the angles φ and

θ depend upon the position of the receiving antenna. With these data, the inverse

method can compute the radius of the object and its distance from the measuring

point. Again, the antenna alignment is very important here. It should be noted

that the solution to the forward problems we obtained are for an ideal situation and

therefore, in order to achieve good results, the microwave measurements must be

obtained only after aligning the antenna to receive the maximum response from the

foreign object.

The solutions to this inverse problem are found using the same iterative proce-

dure explained previously in the one-dimensional and two-dimensional cases. How-

ever, the development of the inverse algorithm and computation of the unknowns

are much harder compared to the previous cases as the forward equations need more

terms in order to converge to sufficient accuracy. Again, for simplicity, we take the

case with just two unknowns.

4.3.1 The general equation

Using the solutions to the forward problem obtained in equation (4.71), we form

two general equations with two frequencies of the form

∆E =

 M1 − E1

M2 − E2

 =

 0

0

 , (4.72)
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where E1 and E2 are found from equation (4.71) with k = ki (where ki are the wave

numbers which can be found from equation (3.24) with frequencies fi for i = 1, 2)

and Mi for i = 1, 2 are the measured field components with these two frequencies.

Equations for E1 and E2 in (4.72) are

Ei = −E0

√
π

2kid1

∞∑
n=1

j−n (2n+1)P ′n (−1)
2

((
1 + j

2kid1

)
Jn+1/2(kid1)

−
H

(2)

n+1/2
(kid1) Jn+1/2(kia)

H
(2)

n+1/2
(kia)

−
(

2kiaJ
′
n+1/2

(kia)+J
n+1/2

(kia)

2kiaH
(2) ′
n+1/2

(kia)+H
(2)

n+1/2
(kia)

)
×

(
j

2kid1
H

(2)
n+1/2(kid1)− jH (2) ′

n+1/2(kid1)
)

+ jJ ′n+1/2(kid1) ),

(4.73)

where i = 1, 2.

4.3.2 Jacobian matrix and the iterative procedure

The procedure of calculating the unknowns is very similar to that we used in the

previous chapters and therefore the explanation here is limited. Consider

F1 = ∆E1 = M1 − E1,

F2 = ∆E2 = M2 − E2.
(4.74)

We construct the Jacobian matrix of the form

J(a, d1) =

 J1,1(a, d1) J1,2(a, d1)

J2,1(a, d1) J2,2(a, d1)

 , (4.75)

where

J1,1(a, d1) =
∂E1

∂a
, J1,2(a, d1) =

∂E1

∂d1

, J2,1(a, d1) =
∂E2

∂a
, J2,2(a, d1) =

∂E2

∂d1

,

(4.76)

in which we use the expression for the fields E1 and E2 (these are for two frequencies)
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given by equation (4.73). (For convenience, we use only two variables to demon-

strate the procedure of solving for unknowns.) The derivatives are explicitily

J1,1(a, d1) =

E0

√
π

2k1d1

∞∑
n=1

j−n(2n+1)
2

P ′n(−1)

 H
(2)

n+1/2
(k1d1)(

H
(2)

n+1/2
(k1a)

)2

(
H

(2)
n+1/2(k1a)k1J

′
n+1/2(k1a)−

Jn+1/2(k1a)k1H
(2)

n+1/2
′(k1a)

)
+

j

(
H

(2)

n+1/2
(k1d1)

2k1d1
−H (2)

n+1/2
′(k1d1)

)
(
H

(2)

n+1/2
′(k1a)+ 1

2k1a
H

(2)

n+1/2
(k1a)

)2×

(
H

(2)
n+1/2

′(k1a) + 1
2k1a

H
(2)
n+1/2(k1a)

) (
k1J

′′
n+1/2(k1a) + 1

2a
J ′n+1/2(k1a)−

Jn+1/2(k1a) 1
2k1a2

)
−
(
J ′n+1/2(k1a) + 1

2k1a
Jn+1/2(k1a)

)
×

(
k1H

(2)
n+1/2

′′(k1a) + 1
2a
H

(2)
n+1/2

′(k1a)−H(2)
n+1/2(k1a) 1

2k1a2

) )
,

(4.77)
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J1,2(a, d1) =

E0

√
π

2k1d1

∞∑
n=1

j−n(2n+1)P ′n(−1)
2

(
−k1J

′
n+1/2(k1d1)

(
1 + j

2k1d1

)
+ Jn+1/2(k1d1) j

2k1d21
+

k1H
(2)

n+1/2
′(k1d1)

J
n+1/2

(k1a)

H
(2)

n+1/2
(k1a)

+ j

(
J ′
n+1/2

(k1a)+ 1
2k1a

J
n+1/2

(k1a)

H
(2)

n+1/2
′(k1a)+ 1

2k1a
H

(2)

n+1/2
(k1a)

)
×

(
H

(2)

n+1/2
′(k1d1)

2d1
−

H
(2)

n+1/2
(k1d1)

2k1d21
− k1H

(2)
n+1/2

′′(k1d1)

)
− jk1J

′′
n+1/2(k1d1)

)

−E0

√
π

2k1d31

∞∑
n=1

j−n(2n+1)P ′n(−1)
2

(
−Jn+1/2(k1d1)

(
1 + j

2k1d1

)
+

H
(2)

n+1/2
(k1d1)J

n+1/2
(k1a)

H
(2)

n+1/2
(k1a)

+

j

(
J ′
n+1/2

(k1a)+ 1
2k1a

J
n+1/2

(k1a)

H
(2)

n+1/2
′(k1a)+ 1

2k1a
H

(2)

n+1/2
(k1a)

) (
H

(2)

n+1/2
(k1d1)

2k1d1
−H (2)

n+1/2
′(k1d1)

)
− jJ ′n+1/2(k1d1)

)
,

(4.78)

J2,1(a, d1) =

E0

√
π

2k2d1

∞∑
n=1

j−n(2n+1)
2

P ′n(−1)

 H
(2)

n+1/2
(k2d1)(

H
(2)

n+1/2
(k2a)

)2

(
H

(2)
n+1/2(k2a)k2J

′
n+1/2(k2a)−

Jn+1/2(k2a)k2H
(2)

n+1/2
′(k2a)

)
+

j

(
H

(2)

n+1/2
(k2d1)

2k2d1
−H (2)

n+1/2
′(k2d1)

)
(
H

(2)

n+1/2
′(k2a)+ 1

2k2a
H

(2)

n+1/2
(k2a)

)2×

(
H

(2)
n+1/2

′(k2a) + 1
2k2a

H
(2)
n+1/2(k2a)

) (
k2J

′′
n+1/2(k2a) + 1

2a
J ′n+1/2(k2a)−

Jn+1/2(k2a) 1
2k2a2

)
−
(
J ′n+1/2(k2a) + 1

2k2a
Jn+1/2(k2a)

)
×

(
k2H

(2)
n+1/2

′′(k2a) + 1
2a
H

(2)
n+1/2

′(k2a)−H(2)
n+1/2(k2a) 1

2k2a2

) )
,

(4.79)
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J2,2(a, d1) =

E0

√
π

2k2d1

∞∑
n=1

j−n(2n+1)P ′n(−1)
2

(
−k2J

′
n+1/2(k2d1)

(
1 + j

2k2d1

)
+ Jn+1/2(k2d1) j

2k2d21
+

k2H
(2)

n+1/2
′(k2d1)

J
n+1/2

(k2a)

H
(2)

n+1/2
(k2a)

+ j

(
J ′
n+1/2

(k2a)+ 1
2k2a

J
n+1/2

(k2a)

H
(2)

n+1/2
′(k2a)+ 1

2k2a
H

(2)

n+1/2
(k2a)

)
×

(
H

(2)

n+1/2
′(k2d1)

2d1
−

H
(2)

n+1/2
(k2d1)

2k2d21
− k1H

(2)
n+1/2

′′(k2d1)

)
− jk2J

′′
n+1/2(k2d1)

)

−E0

√
π

2k2d31

∞∑
n=1

j−n(2n+1)P ′n(−1)
2

(
−Jn+1/2(k2d1)

(
1 + j

2k2d1

)
+

H
(2)

n+1/2
(k2d1)J

n+1/2
(k2a)

H
(2)

n+1/2
(k2a)

+

j

(
J ′
n+1/2

(k2a)+ 1
2k2a

J
n+1/2

(k2a)

H
(2)

n+1/2
′(k2a)+ 1

2k2a
H

(2)

n+1/2
(k2a)

) (
H

(2)

n+1/2
(k2d1)

2k2d1
−H (2)

n+1/2
′(k2d1)

)
− jJ ′n+1/2(k2d1)

)
.

(4.80)

Each derivative consists of an infinite series indexed by n. Also, the Bessel functions

and Hankel functions have first and second order derivatives given by

J ′n+1/2(kia) =
1

2

(
Jn−1/2(kia)− Jn+3/2(kia)

)
, (4.81)

H
(2)

n+1/2
′(kia) =

1

2

(
H

(2)
n−1/2(kia)−H (2)

n+3/2(kia)
)
, (4.82)

J ′′ n+1/2(kia) =
1

4

(
Jn−3/2(kia)− 2Jn+1/2(kia) + Jn+5/2(kia)

)
, (4.83)

H
(2)

n+1/2
′′(kia) =

1

4

(
H

(2)
n−3/2(kia)− 2H

(2)
n+1/2(kia) +H

(2)
n+5/2(kia)

)
, (4.84)

where i = 1, 2. A code was written in MATLAB for the above system. Each infinite

series needs to be truncated at a point at which the truncation error is negligible.

Once the Jacobian matrix is formed, the rest of the procedure is very similar to the

method used in sections 2.4 and 3.2.2.
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Again, this system needs a set of guess values for computing the unknowns.

Starting from the initial guess values, the program runs for a number of iterations

until the stopping criterion is satisfied. Here we use the minimum values of the

difference of the field components, |∆E1| and |∆E2|, for the stopping criterion.

We have developed a scanning method for calculating unknowns and this will be

discussed in Chapter 5.

4.4 Plane wave scattering from a non-conducting

sphere

Here, we consider the object to be a non-conducting sphere. Similar to the approach

for the non-conducting cylinder, we solve for the boundary condition of the object.

The host model and its coordinate system are the same as in Figure 4.2 except that

the circular object inside the model is assumed to be a non-conducting sphere.

4.4.1 Forward problem

The electrical properties inside and outside the non-conducting sphere are assumed

to be same as those of the object and the host, respectively. The corresponding

coordinate system is the same as in Figure 4.3. Here, the modal coefficients are

found using the incident and scattered waves. Again, this approach is similar to the

procedure used for the dielectric cylinder in section 3.3.1.

In equations (4.44) and (4.45), the solutions to Eθ and Hφ (with both Ar, Fr 6= 0)

have been obtained by expanding equations (4.21) and (4.22). For the transverse

magnetic (TM) mode, Fr = 0 and therefore, by substituting for Ar from equation

(4.48) in equations (4.44) and (4.45) and further simplifying, the impedance for the

nth mode of the radially directed inward and outward-travelling waves at r = a
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outside the sphere is obtained as

Z1,n = −Eθ
Hφ

=
k1
ε1
k1Ĵ

′
n(k1a) + k1

ε1
CTM
s,n Ĥ

(2)′
n (k1a)

Ĵn(k1a) + CTM
s,n Ĥ

(2)
n (k1a)

, (4.85)

where ε1 and k1 are the permittivity and the wave number of medium one (the host)

outside the sphere, respectively, and CTM
s,n is the modal coefficient of the scattered

wave for TM mode. Here, the media are assumed to be perfect and also µ = 1.

Similarly, the modal impedance for a radially directed wave inside the sphere, at

r = a is

Z2,n = −Eθ
Hφ

=
k2
ε2
Ĵ ′n(k2a)

Ĵn(k2a)
, (4.86)

where ε2 and k2 are the permittivity and the wave number of the medium inside the

dielectric sphere (the object), respectively. The boundary conditions of the surface

of the sphere r = a require the tangential component of the electric and magnetic

fields to be continuous and so, Z1,n = Z2,n and, using equations (4.85) and (4.86),

the modal coefficient CTM
s,n is found as

CTM
s,n = − Ĵ ′n(k1a)

Ĥ
(2) ′
n (k1a)


ε2Ĵn(k2a)

ε1k2Ĵ ′n(k2a)
− Ĵn(k1a)

k1Ĵ ′n(k1a)

ε2Ĵn(k2a)

ε1k2Ĵ ′n(k2a)
− Ĥ

(2)
n (k1a)

k1Ĥ
(2)′
n (k1a)

 . (4.87)

Equation (4.87) is simplified to yield

CTM
s,n = qnR

TM
s,n . (4.88)

where qn = −Ĵ ′n(k1a)

Ĥ
(2) ′
n (k1a)

and

RTM
s,n =

(ε2k1Ĵn(k2a)Ĵ ′n(k1a)− ε1k2Ĵn(k1a)Ĵ ′n(k2a))H(2)
n
′(k1a)

(ε2k1Ĵn(k2a)Ĥ
(2)
n
′(k1a)− ε1k2Ĵ ′n(k2a)Ĥ

(2)
n (k1a))Ĵ ′n(k1a)

. (4.89)

Similarly, for the transverse electric (TE) mode, Ar = 0 and therefore, by sub-

stituting for Fr from equation (4.50) in equations (4.44) and (4.45) and further

simplifying, the modal impedances outside and inside the sphere for the nth mode

of the radially directed inward and outward-travelling waves at r = a are found and
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subsequently the modal coefficient for the TE mode is found as

CTE
s,n = − Ĵn(k1a)

Ĥ
(2)
n (k1a)


√
ε2Ĵ ′n(k2a)
√
ε1Ĵn(k2a)

− Ĵ ′n(k1a)

Ĵn(k1a)
√
ε2Ĵ ′n(k2a)
√
ε1Ĵn(k2a)

− Ĥ
(2) ′
n (k1a)

Ĥ
(2)
n (k1a)

 . (4.90)

CTE
s,n = anR

TE
s,n , (4.91)

where an = −Ĵn(k1a)

Ĥ
(2)
n (k1a)

and

RTE
s,n =

(
√
ε2Ĵ

′
n(k2a)Ĵn(k1a)−√ε1Ĵ

′
n(k1a)Ĵn(k2a))H(2)

n (k1a)

(
√
ε2Ĵ ′n(k2a)Ĥ

(2)
n (k1a)−√ε1Ĥ

(2) ′
n (k1a)Ĵn(k2a))Ĵn(k1a)

. (4.92)

Now, the scattered fields for the dielectric sphere are found using the modal

coefficients in equations (4.88) and (4.91) with constants sn and en in equations

(4.55) and (4.56), respectively. That is,

cnC
TM
s,n = cn qnR

TM
s,n = snR

TM
s,n ,

cnC
TE
s,n = cn anR

TE
s,n = enR

TE
s,n .

Thus, the new equations for the total vector components Ar and Fr analogous to

equations (4.59) and (4.60) are

Ar(r, θ, φ) =
E0 cosφ

ωµ

∞∑
n=1

[
cnĴn(kr) + snR

TM
s,n Ĥ

(2)
n (kr)

] d
dθ
Pn(cos θ ), (4.93)

Fr(r, θ, φ) =
E0 sinφ

k

∞∑
n=1

[
cnĴn(kr) + enR

TE
s,n Ĥ

(2)
n (kr)

] d
dθ
Pn(cos θ ), (4.94)

where the constants sn and en have been replaced with snR
TM
s,n and enR

TE
s,n , respec-

tively. The constants RTM
s,n and RTE

s,n modify equations (4.53) and (4.54) so that the

parameters for the properties of both regions, inside and outside the sphere, appear

inside the equations. The functions Ĵn(.), Ĥ(2)
n (.) and their derivatives are given in

equations (4.57), (4.58) and (4.63), respectively. Once these modified equations are

obtained, the rest of the procedure for finding equations for the total field at the

measuring point is similar to the procedure for the conducting sphere discussed in

section 4.2.2.
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Again, as in the case of the non-conducting cylinder, one can see that, when the

permittivity inside the sphere is large, that is when ε2 in equations (4.87) and (4.90)

is large, the coefficients RTM
s,n and RTE

s,n tend to unity and therefore equations (4.93)

and (4.94) become similar to equations (4.53) and(4.54) which have been obtained

for the case of a conducting sphere.

4.5 Inverse problem of the non-conducting sphere

The solutions to the inverse problem of the non-conducting sphere are found using

the same iterative method we used previously. The two general equations are found

from equation (4.72) with the new forward equations. These equations can be found

by using the vector components found in equations (4.93) and (4.94) and following

the same procedure discussed in sections 4.2.2 and 4.2.3. Thus, equation (4.68) is

modified to obtain the field components at O′ for frequency f1 and frequency f2 as

Eθ,1 = E0

√
π

2k1d1

∞∑
n=1

(
cn
(
1− j

2k1d1

)
Jn+1/2(k1d1)+

+
(
enR

TE
s,n,1 −

jsnRTMs,n,1
2k1d1

)
H

(2)
n+1/2(k1d1)− j

(
cnJ

′
n+1/2(k1d1)+

snR
TM
s,n,1H

(2)
n+1/2

′(k1d1)))P ′n(−1)) ,

(4.95)

Eθ,2 = E0

√
π

2k3d1

∞∑
n=1

(
cn
(
1− j

2k3d1

)
Jn+1/2(k3d1)+

+
(
enR

TE
s,n,2 −

jsnRTMs,n,2
2k3d1

)
H

(2)
n+1/2(k3d1)− j

(
cnJ

′
n+1/2 (k3d1)+

snR
TM
s,n,1H

(2)
n+1/2

′(k3d1)))P ′n(−1)) ,

(4.96)

where RTM
s,n,1 and RTE

s,n,1 are the coefficients for frequency f1 which can be found from
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equations (4.89) and (4.92) and RTM
s,n,2 and RTE

s,n,2 are the coefficients for frequency f2

which can be obtained with k1 replaced with k3 and k2 replaced with k4, respectively.

Equations for RTM
s,n,2 and RTE

s,n,2 are

RTM
s,n,2 = (ε2k3Ĵn(k4a)Ĵ ′n(k3a)−ε1k4Ĵn(k3a)Ĵ ′n(k4a))H

(2)
n
′(k3a)

(ε2k3Ĵn(k4a)Ĥ
(2)
n
′(k3a)−ε1k4Ĵ ′n(k4a)Ĥ

(2)
n (k3a))Ĵ ′n(k3a)

,

RTE
s,n,2 = (

√
ε2Ĵ ′n(k4a)Ĵn(k3a)−√ε1Ĵ ′n(k3a)Ĵn(k4a))H

(2)
n (k3a)

(
√
ε2Ĵ ′n(k4a)Ĥ

(2)
n (k3a)−√ε1Ĥ(2) ′

n (k3a)Ĵn(k4a))Ĵn(k3a)
.

(4.97)

The constants cn, sn and en in equations (4.95) and (4.96) can be found from

equations (4.49), (4.55) and (4.56), respectively. Wave numbers k1 and k2 for fre-

quency f1 and k3 and k4 for frequency f2 can be found from equations (3.24) and

(3.43), respectively. The rest of the procedure to find solutions for the inverse prob-

lem with the non-conducting sphere is similar to the method we explained in sections

3.3.2 and 4.3.

4.6 Results and discussion: spherical wave scat-

tering

The forward equations of the conducting and non-conducting spheres obtained in

the previous sections, were tested using MATLAB programs and the results are

discussed in this section. A set of data which have been calculated using simulations

was used to test the inverse algorithms.

4.6.1 Calculation of the field components

The two forward equations of the conducting sphere for frequency f1 and frequency

f2 are found from equation (4.73). Using this result, the real and imaginary values

of the field components of E1 and E2 were calculated for two sets of a and d1 values

(a and d1 are the radius of the sphere and the distance to the measuring point from
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Figure 4.5: Plots of the real parts of E1, E2 calculated using the forward equation

for a spherically-shaped object, with two different frequencies f1 and f2.

the centre of the sphere, respectively) and the results are plotted in Figures 4.5

and 4.6, respectively. (E1 and E2 are normalised with E0 = 1 volts m−1.) Note:

convergence here is subjective - it is the level of accuracy to which we are looking

(the level of convergence depends upon the number of terms used). We can see

that the field components have converged after approximately sixteen terms. These

results are acceptable.

4.6.2 Calculation of unknowns

Figures 4.7 and 4.8 show the plots of the calculated values of a, the radius of the

sphere, and d1, the distance to the centre of the sphere from the measuring point,

respectively. Similar to the previous results for the calculation of unknowns, the

corresponding values of |∆E1| and |∆E2| for frequencies f1 and f2, respectively, ap-

proach zero as can be seen in Figure 4.9. The inverse algorithm discussed in section

4.3 was used to obtain these results. For this test, two sets of guess values were
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Figure 4.6: Plots of the imaginary parts of E1, E2 calculated using the forward

equation for a spherically-shaped object, with two different frequencies f1 and f2.

used: a=0.0035 m, d1=0.045 m and a=0.0025 m, d1=0.035 m and, in the Figures

4.7, 4.8 and 4.9, the corresponding results are marked as (a) and (b), respectively.

With each set of these guess values, the simulation process ran for 31 iterations.

In both of these simulation cycles, the algorithm has converged to the exact

values a and d1 (a=0.003 m and d1 =0.04 m) to machine accuracy. Also at the

same time the corresponding values of |∆E1| and |∆E2| have reached zero (Figure

4.9). In practical applications, the measured data can have errors due to noise.

Here we investigate the effect of this noise for the calculation of unknowns using the

inverse method. With a = 0.002 m and d1 = 0.04 m, we calculated Eθ,1 and Eθ,2

from equations (4.95) and (4.96), respectively. Then errors were added into these

calculated values and the unknowns were found using the inverse method of the

sphere. The guess values were taken as a =0.0022 m and d1 =0.044 m while the real

values of a and d1 are: a =0.002 m and d1 =0.04 m. The unknowns were calculated

with 7, 3 and 0 percent errors added into the calculated values of Eθ,1 and Eθ,2.



113

5 10 15 20 25 30 35
2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

-3

R
a
d
iu

s
 a

 i
n
 m

e
tr

e
s

Number of iterations

Calculated values on unknowns

(a)

(b)

 

Figure 4.7: Plot of the calculated values of radius a of the sphere using the inverse

method. Plot (a) with guess values a=0.0035 m, d1=0.045 m and (b) with a=0.0025

m, d1=0.035 m (shown from the first iteration).

The errors were added into the real and imaginary values of the calculated Eθ,1 and

Eθ,2 as a percentage. It was found that the results still converges to values a and d1

close to the original exact values but with some errors. The results are plotted in

Figures 4.10 and 4.11. The calculated value of a is more sensitive to noise compared

to that of d1. One should realise that the size of a we used here is equal to 1/20 of

the size of d1 in metres. This effect is further investigated using the results of the

cylindrical object and will be discussed in the next chapter.

We have calculated a and d1 with different sets of guess values. From these

results we observed that the accuracy of the calculated values depends upon the

guess values. If they are very far from the actual values one needs more iterations

for the same accuracy. These limitations in the convergence process need to be

further investigated and are discussed in the next chapter.

Solutions to the scattering problem of a non-conducting sphere discussed in
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Figure 4.8: Plot of the calculated distance d1 of the sphere using the inverse method.

Plot (a) with guess values a=0.0035 m, d1=0.045 m and (b) with a=0.0025 m,

d1=0.035 m (the initial guess and first iterations are outside of the scale used).
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Figure 4.9: Values of |∆E1| and |∆E2| for each iteration within the inverse method.
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Figure 4.10: Calculated sphere radius a with errors added into the field components.

this chapter may be appropriate for a more realistic situation. Even though the

unknowns calculated here are only the radius of the sphere and its distance from

the measuring point, we can also, in principle, find some other unknowns (such

as electrical properties) using several frequencies. If the permittivities inside and

outside the object are also included as unknowns, then there would be four unknowns

and the algorithm could have a 4×4 Jacobian matrix constructed from four general

equations by using four different frequencies.

The derivatives of the Jacobian matrix have many terms that include series of

Bessel functions, Hankel functions and Legendre functions and therefore the itera-

tion process is more complicated. On the other hand, if the guess values are closer

to the exact values of the unknowns, then the results can easily (with a lesser num-

ber of terms) converge to constant values. This is not the case when the guess

values are far away from the exact values of unknowns. In practical situations there

may be only limited information available for the unknowns. Therefore, in the next
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Figure 4.11: Calculated sphere distance d1 with errors added into the field compo-

nents.

chapter we develop a method to support the computation of the unknowns. This

process scans for possible unknowns over certain ranges within which the values of

the unknowns can be expected.



Chapter 5

Scattering response and

computational stability

In previous chapters, both the forward and inverse problems of two-dimensional

and three-dimensional scattering have been discussed. Here we further investigate

the behaviour of the incident and backscattered field components with respect to

variables such as the size of the object, the distance of the object from the measuring

point and the dielectric properties of both the host and the scattering object. Also,

an analysis is carried out for the inverse method to investigate the computational

robustness with respect to the selection of guess values. In experimental or practical

situations the data obtained with microwave measurements can have errors due to

noise. Therefore the stability of the inverse method is further investigated with

respect to errors added into phase and magnitude values of the field components.

Overall, the motivation for these studies is to refine the forward and inverse methods

for use in experimental and practical applications. We will use a two-dimensional

case of a cylinder for illustration purposes.
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5.1 Investigation on scattering response

According to the forward equations obtained in the previous chapters, both field

components, E1 and E2 (for frequency f1 and frequencyf2, respectively), can vary

with the dielectric properties inside and outside the object as well as with the values

of a and d1. In practice the size and the location of the object is not known but some

information for the possible ranges within which these unknowns are expected may

be available. When using the inverse method for computing unknowns, having this

prior knowledge of the behaviour of the field components with respect to different

values of the unknowns may be useful. In this section the response of the fields

E1 and E2 is investigated when the scattering object takes different sizes, as well

as different distances from the measuring point. Both the case of the object being

a conducting cylinder and the subsequent modification of this to a non-conducting

cylinder are considered. The latter case is tested by calculating Rc,n for the asymp-

totic values when ε2, the relative permittivity inside the cylinder, is large.

5.1.1 Field effect from the scattering object

The field components E1 and E2 were calculated using the forward equation (3.21)

with frequency f1 = 2.0 GHz and f2 = 2.2 GHz of the of the conducting cylinder

with different values of a and d1. For six pairs of a and d1 the corresponding field

components were calculated using two different frequencies. For each pair of a and

d1 the calculation process used sixteen terms after which E1 and E2 had converged

to sufficient accuracy. The calculated results for the magnitudes of E1 and E2 are

plotted in Figure 5.1 (E1 and E2 are normalised with E0 = 1 volt m−1).

The first three subplots show three sets of magnitudes for E1 calculated with

two sets of a and d1 values (set (1): a = 0.004 m and d1 = 0.02 m, a = 0.004 m

and d1 = 0.025 m, and a = 0.004 m and d1 = 0.03 m; set (2): a = 0.002 m and d1

= 0.025 m, a = 0.002 m and d1 = 0.025 m, and a = 0.002 m and d1 = 0.03 m).
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Figure 5.1: The calculated results of E1 and E2 (Magnitude) for different values of

a and d1 (Plot (1) for a=0.004 m, Plot(2) for a=0.002 m).
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Figure 5.2: The calculated results of E1 and E2 (Phase) for different values of a and

d1 (Plot (1) for a=0.004 m, Plot(2) for a=0.002 m).
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Similarly, the second three subplots show three sets of calculated magnitudes of E2

with the same two sets of a and d1 values. In each plot the x -axis shows N, the

number of terms in the calculation process. Similarly, the phase values of the field

components E1 and E2 were calculated and the results are plotted in Figure 5.2.

In order to study the variations of E1 and E2 further, we solved the forward

equation using a large range of a and d1. The results are plotted in Figures 5.3

and 5.4. The magnitude values of E1 and E2 oscillate trending downwards with

respect to the distance d1. The phase values of E1 and E2 increase steadily with

the distance of the object from the antenna. For convenience, we have plotted the

phase values in a range between ±π (one can see that the phase values have sudden

jumps of 2π and this is purely because we have presented the results modulo 2π).

The oscillations observed in magnitude and also the rate of change of the phase

are related to the frequency of the signal used in the equations of E1 and E2. The

magnitude oscillation repeats at a distance of one half of the wavelength of the

microwave frequency, while the phase changes from −π to +π at a distance equal

to the wavelength of the microwave frequency. (The wavelengths of E1 and E2 are

approximately 15 cm and 13.6 cm, respectively.)

5.1.2 Field effect from dielectric properties

In this section the response of the scattered field with respect to the dielectric

properties of the object inside the host is investigated. The modifications made to

the forward equations using a non-conducting cylinder in Chapter 3 have been taken

into consideration for this analysis. The values of Rc,n,1 and Rc,n,2 in equations (3.41)

and (3.42) were calculated with different values of permittivities inside and outside

the non-conducting cylinder. The simulation process needs a similar approach to

that used in the previous calculations as there are terms containing Bessel and

Hankel functions in these equations. We found that at least 30 terms were needed
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Figure 5.3: Calculated values (magnitude) of E1 for 2.0 GHz and E2 for 2.2 GHz as

functions of d1.
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Figure 5.4: Calculated values of E1 and E2 (Phase) as functions of d1.
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for the series to converge to sufficient accuracy.

We used two frequencies and a set of reasonable values of a and d1 for these

calculations. The relative permittivity outside the object (ε1) was kept constant at

10 while the relative permittivity inside the object (ε2) was changed logarithmically

up to a very large value (from 10 to 1015 in 14 steps). The results obtained using

equation (3.35) are plotted in Figure 5.5 (Rc,n,1 and Rc,n,2 have no units.). This

figure illustrates some of the features of the magnitude of the coefficient Rc,n:

1. The magnitudes of Rc,n,1 and Rc,n,2 increase as the relative permittivity ε2

increases.

2. When ε1 = ε2, Rc,n,1 = Rc,n,2 = 0.

3. As ε2 →∞, magnitudes of Rc,n,1, Rc,n,2 → 1.

With large values of ε2, the calculated values of field components E1 and E2 are

approximately equal to those calculated with a conducting cylinder.

5.2 Limitations of the inverse method

When calculating the unknowns using the inverse method, we encounter a number

of limitations. Here we analyse those factors in order to develop a robust system

for the detection process. Consider the initial guess values of a and d1. These have

a large influence on the convergence to the solution. In section 3.6.1.2, Figure 3.8

illustrates the calculation of unknown a and d1 values using two different sets of

initial guess values. The results are acceptable as both sets of iterations converge

to the actual values of a and d1. However, for guess values further from the actual

values this method does not converge.

Using the inverse method, we have computed a set of unknowns from different

guess values. A set of known values (a = 0.01 m and d1 = 0.16 m) was taken for
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Figure 5.5: Calculated values of Rc,n with different values of permittivity inside the

object. (Note: the values have exceeded unity because of numerical error.)
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Figure 5.6: Calculated values of the distance d1 for a range of guess values. (The

exact value of d1 is 0.16m.)
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Figure 5.7: Calculated values of the radius a for a range of guess values.(The exact

value of a is 0.01m.)

this computation. Each pair of guess values is iterated 30 times to compute a and

d1. The total simulation process was then run for all pairs of guess values within a

range. Final results of this simulation are plotted in Figures 5.6 and 5.7. Plot (1)

was obtained with the guess values of a = 0.006 m and d1 from 0.06 to 0.23 m in

steps of 0.01 m, and plot (2) was obtained with the guess values of a = 0.013 m and

d1 from 0.06 to 0.23 m in steps of 0.01 m. These figures indicate that the calculated

values of a and d1 are correct only within a certain range of guess values. Both

calculated values of a and d1 are equal to their exact values only when the selected

guess values of d1 are within 0.13 to 0.19 m.

For each set of exact values of a and d1, there is a specific range of initial guess

values within which the algorithm can calculate acceptable values for unknowns.

We call this the safe range. The safe range for two specific examples is presented

in table 5.1. However, the range of initial guess values of these unknowns can
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Table 5.1 Range of guess values for convergence 

 

 

Exact values of a and 

d1 in metres. 

 

The range of guess values that converge 

to the exact values (safe range). 

1d  a 
1,Gd  G

a  

0.16 0.01 0.13 - 0.19 0.007 - 0.04 

0.04 0.001 0.009 - 0.09 0.0002 - 0.002 

 

be further extended at the expense of some acceptable errors in calculated results.

Further to these results, the number of iterations needed for convergence varies with

the selected guess values. The effects of these upon the computational performance

will be discussed in the next section.

5.3 Stability analysis

This section demonstrates the results of an analysis carried out to test the perfor-

mance of the inverse algorithm. First, the performance of the convergence process

for calculating unknowns was tested using a large number of guess values. Secondly,

the accuracy of the calculated results in the presence of noise in the measurement

result is investigated.

We carried out a number of simulations to test our inverse algorithm for con-

vergence. First, using the forward method for the conducting cylinder (equation

(3.21)), the values of E1 and E2 were calculated for the values of a and d1 equal
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Figure 5.8: Number of iterations required for convergence of the simulations with

different initial guess values of a and d1.

to 0.002 m and 0.04 m, respectively. Then, the inverse algorithm (section 3.2.2)

was tested for convergence using a range of initial (guess) values of a and d1. The

selected range starts from a = 0.001 m and d1= 0.03 m with steps of 0.0002 and

0.002 m, respectively, to a = 0.0035 m and d1= 0.048 m. Every pair of initial values

was tested separately to determine the number of iterations, N, required for con-

vergence. In Figure 5.8, the number of iterations is shown for each pair of initial

(guess) values of a and d1. (See key at right-hand corner of the chart.)

When the guess values are closer to the exact values the system requires only a

few iterations (blue colour regions in the chart). On the other hand, when the initial

values are far away from the true values we require a large number of iterations and

furthermore there exists a range beyond which we cannot expect any accuracy in

the convergence. In our test, with less than 9 iterations, a and d1 can vary up to

±50% and ±25% from their actual values, respectively. For our example we found
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Figure 5.9: Inverse solutions for a and d1 from the field components with added

measurement errors.

a = 0.001 to 0.003 m and d1 = 0.03 to 0.48 m are the safe ranges for convergence

to exact values of a = 0.002 m and d1 = 0.04 m. We suggest that in general 20

iterations are used in order to determine whether the process is within a safe range

before restarting the iteration process with alternative starting values for a and d1.

It is important to display the result with double precision in order to obtain the

exact solutions so that more realistic answers for the unknowns can be identified.

5.4 Error analysis

In a practical situation, there will be errors in the measurement process due to a

number of factors such as inaccuracy in the calibration, antenna alignment, focusing,

etc. Finding approximate solutions to the inverse problem, even with some errors

in the measurement data (in an acceptable range), is then required.
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Figure 5.10: Calculated ∆E 1 and ∆E 2 from the field components with added mea-

surement errors. (Initial guess and first iterations are out of the scale used.)

In section 4.6.2, we added errors into the field components to investigate the

subsequent errors in the calculated unknowns. Further to this, here in this section,

we carry out a series of tests to find the stability of the inverse method against the

errors in the field components.

By adding errors to the results of the calculated values of the forward equation,

that is E1 and E2 in equation (3.23), we simulated to find the corresponding errors in

a and d1. With one set of guess values within the acceptable safe range, the values of

a and d1 were computed using the inverse algorithm. We added 10%, 20% and 30%

errors into the calculated field components in the general equation (3.23) to simulate

the inverse algorithm for convergence. The results of the calculated unknowns a and

d1, and |∆E1| and |∆E2| are shown in Figures 5.9 and 5.10, respectively. |∆E1| and

|∆E2| have converged towards zero. When the error added into E1 and E2 is small

the corresponding errors in the calculated values of a and d1 are relatively small.
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Apart from this, we have carried out separate simulations to investigate the

behaviour of the inverse algorithm at the presence of errors in the field components.

The errors in the measurement values and the corresponding errors found in the

real values of a and d1 are presented in Table 5.2 (this investigation is different to

the test results discussed above).

Table 5.2 Result of the error analysis. 

Measurement  error Error in a Error in d1 

1% 2.1% 0.005% 

2% 5.1% 0.125% 

3% 10.5% 0.16% 

5% 18.5% 0.31% 

7.5% 29.5% 0.41% 

10% 41.5% 0.54% 

 

The percentage error in a is quite large with large measurement errors (percent-

age error is defined as the percentage of the absolute difference of the calculated

values and the exact values of the unknowns). We should note that our original

value of a is small compared to d1 (d1 is twenty times larger than a). However, in

general, d1 is less sensitive to measurement errors than a. In the application the

value of d1 which is the distance to the location of the object is more important. In

practice some form of calibration could be performed to reduce the influence of the

measurement error.
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5.5 Scanning method

To obtain acceptable solutions using microwave measurement data in practical ap-

plications, the inverse method has to deal with two major situations. One is the

noise which can be included in the measurement data (section 5.4). The other is

the lack of information about the unknowns. When finding solutions to the in-

verse problem in simulations, we have information about the exact values of the

unknowns, but in practical applications the information is more limited. For exam-

ple, in breast tumour detection, it is known that a tumour must be within a possible

range of 0 to 6 cm within the breast. Therefore, we develop an approach capable of

finding suitable solutions within an appropriate range, depending upon the type of

application.

5.5.1 Safe range

The final result of the inverse method depends upon the following factors:

1. Selection of the guess values.

2. Number of terms required for the forward equations to converge.

3. Stopping criteria of the simulation process.

4. Number of iterations required for the calculation process.

5. The values of the residuals at convergence (to converge to zero).

6. The values of the calculated unknowns.

In practical applications, in order to find the unknowns using the measured data,

we need to know the possible safe regions that can be used in the inverse algorithm.

The safe region is the limit of the guess values of unknowns (a and d1) where the

general equation safely converges to a feasible value (real, positive and of the right
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Figure 5.11: Distribution of the chosen grid points: Convergence test for the safe

region.

magnitude). This can be found by using several guess values (section 5.3). That is,

using a number of guess values, ag, d1,g the safe regions for a and d1, respectively,

are found such that within these regions the system converges safely to the exact

known values of a and d1. Then, by using these estimates with step- size of x1 and

x2, a complete test for finding the unknowns can be performed. Here, the ranges

within which the unknown values of a and d can be expected are divided equally are

called the safe ranges. This is described in the following paragraph and illustrated

in Figure 5.11.

5.5.2 Test for convergence

In order to find the exact solution for the unknown radius of the object and its

position, the scanning method requires a series of tests. The distribution of the grid

points chosen for the convergence test is shown in Figure 5.11. The procedure is
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as follows: Take ar, r = 1, . . . , R where ar denotes the rth candidate object radius

from a set of radii ranging from a1 in steps of x1 to aR where x1 is the smallest safe

range for the radius a. Similarly for the antenna one, d1,g, g = 1, . . . , G, where d1,g

denotes the gth candidate object distance from a set of distances ranging from d1,1,

in steps of x2 to d1,G where x2 is the smallest safe range for the distance d1. Then,

we use a set of G × R tests where the initial hypothesis is that either no object is

present at distance d1,g or the object radius ar is incorrect. An alternative candidate

is selected sequentially for the next test from the set of candidate identities;



 a1

d1,1

 ,
 a1 + x1

d1,1

 ,
 a1 + 2x1

d1,1

 , ...

... ,

 aR

d1,1

 ,
 a1

d1,1 + x2

 ,
 a1 + x1

d1,1 + x2

 , .... ,
 aR

d1,1 + x2

 , ... ,
 aR

d1,G




.

(5.1)

The validity of the initial hypothesis is decided using criteria which depend upon

certain conditions (for example, that the distances are feasible and positive real).

Results of each simulation (that is real and imaginary values of ∆E, object radius

a and distance d1) are compared at the end of each test according to:

• the initial hypothesis is selected if the results do not exactly match the criteria,

• otherwise, the alternative hypothesis is selected to stop the testing process

and to provide estimates for the unknowns.

The criteria for accepting the solutions as correct are decided by considering the

final value of |∆E| and the calculated values of a and d1. Further investigation

on this has been carried out with an experimental situation so as to confirm the

accuracy and the results are discussed in Chapter 7.

In the simulation test, we calculated unknowns when |∆E| ≤ 1×10−8 and a and

d1 are purely positive and real. We set the total scanning range a from 0.0005 to
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0.004 m and d1 from 0.005 to 0.06 m to test for some known pairs of a and d1 values

using the inverse method. Using a 3.2 GHz, P4 processor our program took less than

a minute to find a and d1 even if their exact values are in the extreme positions of

this scanning range (exact values of a and d1 are 0.004 and 0.06 m, respectively).

This procedure can be used to compute the radius of the object and its distance

from other antenna positions using respective phase and magnitude values of the

field components. Then it is a matter of geometry to find the location of the object

within the host.

5.6 Chest-wall effect

In this section the effect of the chest wall on the signal scattered from the tumour is

discussed. According to the biological structure, it is hard to distinguish the effect

of the signal reflected from the chest wall completely but, it may be possible to

minimise the prediction error of the values of the calculated unknowns by consider-

ing the backscattering effect in the proximity of chest muscle. We are analysing the

signal in the frequency domain. Therefore, the influence of various sources of clutter

that can obscure the tumour detection do not severely affect the results when com-

pared to the noise and dispersion effects in time-domain microwave breast imaging

methods [81, 104].

In practical applications, the field at the antenna point is found using microwave

measurements. Then the values for the unknown tumour radius and its distance

from the breast surface may be calculated using the inverse method. However, as

well as the reflection from the tumour, the reflection from the chest wall can have

a significant effect on the measurements. Therefore, using the same model we shall

now discuss the effect of the chest wall which we assume to be just behind the

(presumed to be) conducting cylinder.

When the signal is sent from the antenna front-end, we would expect that a large
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amount of its energy would be dissipated through the chest wall while only a small

amount of the signal is reflected back to the antenna. From equations (3.14) and

(3.36), the new equation for the resultant field at the antenna due to the reflection

of both the tumour and the chest wall may be found as

Es,t
1,z(d1, f1) = E0

∞∑
n=−∞

j−n
[
− Jn(k1a)

H
(2)
n (k1a)

Rc,nH
(2)
n (k1d1)

]
ejnφ + Es,w

1,z (d1, f1), (5.2)

where Es,w
1,z (d1, f1) is the reflected signal from the chest wall. If the magnitude of

the reflection coefficient of the chest wall is Rw then

Es,w
1,z (d1, f1) = E0Rwe

j(k1d1+2k1(y−d1)+θw), (5.3)

where y is the distance to the chest wall from the antenna point and θw is the phase

shift of the reflected signal at the wall boundary. Here, the total field is considered

as approximately equal to the superposition of the scattered field from the tumour

and the scattered field from the chest wall. We show this using a similar situation

in the experimental study which is explained in Chapter 6.

Now, equation (3.37) can be modified (this is the forward equation of the two-

dimensional scattering problem of the dielectric cylinder after φ is rotated by an

angle π− φ) to include the chest-wall effect. The resultant field at the antenna due

to the reflection of both the cylinder and the chest wall is

Et
1,z(d1, f1) = E0

∞∑
n=−∞

jn
[
Jn(k1d1)− Jn(k1a)

H
(2)
n (k1a)

Rc,nH
(2)
n (k1d1)

]
+ Es,w

1,z (d1, f1).

(5.4)

where Es,w
1,z (d1, f1), the reflected signal from the chest-wall at the receiving point

in the absence of an object which would of course present practical difficulties for

in-vivo breast tumour detection, is replaced with equation (5.3) (here, we assume

that there no effect due to multiple scattering). Once the total field is measured at

the antenna point, the same procedure of the inverse method is used to find more

accurate values for the unknown tumour radius and location.
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5.7 Frequency selection

When a microwave signal is propagating in a lossy medium the wave is attenuated

in the direction of travel. Equation (3.10) which was used for a loss-less medium

can now be modified for a lossy medium and the wave number at frequency f1 can

be written as

kl1 =
ω1

c

√
(ε′ − jε′′)− j σ

ω1ε0

, (5.5)

where σ is the conductivity, ε′ is the relative permittivity, ε′′ is the relative dielectric

loss factor and ε0 is the permittivity of free space given by 8.854× 10−12 F/m. Here

we assume the relative permeability does not make a significant contribution to the

loss of the signal and therefore equate it to 1.

The measured data for the above properties of both the breast tissue and the

tumour are available in the literature [104, 54]. By selecting reasonable values for

the properties of the tumour and the breast tissue, we can find the wave number for

the breast tissue using equation (5.5). Then, equation (3.10) can be replaced with

equation (5.5) when used in practical applications. According to the results of the

practical measurements [54, 57], the permittivity and conductivity of a tumour are

significantly different to normal breast tissue. The effect of conductivity on the wave

propagation can be considered as having a smaller contribution at high frequencies

(this can be seen from equation (5.5)) compared to that of the permittivity.

The breast tissue in which the microwave signal travels is frequency dispersive.

This can be clarified when looking at the experimentally determined results in [104,

105]. The relative dielectric constant of a tumour is significantly higher at low

frequencies of the order of few MHz, but it is highly frequency dispersive at low

frequencies. Therefore, it is very important to select a range of frequencies in which

there exists a minimal variation in the electrical properties of both the breast tissue

and the tumour.
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Apart from this, the scan-depth can vary with the wavelength of the signal. Ac-

cordingly, a frequency range of 1-3 GHz can be used for this application.



Chapter 6

Laboratory experiment for

microwave detection

The solutions obtained for the two-dimensional and three-dimensional scattering

problems are tested experimentally in this chapter. First, the experimental set-

up and the measurement procedure are described. Then the measurement results

are analysed for the purpose of detecting a foreign object using microwave mea-

surements. The experimental results have a good agreement with the analytically

calculated results.

6.1 Measurement system

The experimental set-up for microwave detection is shown in Figure 6.1. This ar-

rangement is similar to the microwave application system shown in Figure 1.3. In

this experiment, the backscattered field measured at a single antenna is studied in

detail. The arrangement is as follows: The Network Analyser (NA) sends the mi-

crowave signal to the antenna through the waveguide. The scattering object, which

is kept in front of the antenna, is illuminated by the microwave signal radiated from

its aperture. In this experiment, the air represents the host in the model which was
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Figure 6.1: Experimental set up for microwave measurements.

used in the analytical study (see Figure 3.3). Similarly the concrete wall behind the

object represents the wall in the model. The backscattered signal is received by the

same antenna and is sent back to the analyser for measurements. A long copper

cylinder was taken as the object for this experiment.

A Vector Network Analyser (VNA) was used for this experiment to obtain ac-

curate measurements of the reflection coefficient. (Network analysers are used to

measure microwave signals and analyse both the amplitude and phase properties

[2, 35].) The specification of the instrument is as follows: The product is Agilent

Technologies 8714ES Radio Frequency Network Analyser (S-parameter), 300kHz to

3GHz. More details are available in the user’s guide [106]. The NA generates the

microwave signal. The RF coaxial type wave guide carries forward and backward

signals between the analyser and the antenna. The RF loss in the wave guide and

the connectors are assumed to be very minimal and therefore can be neglected in
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this analysis. One end of the wave guide is connected to the NA while the other end

is connected to the antenna flange. The design parameters of the flange are given

in the next section. More details on wave guides and microwave transmission are

available in the references [10, 97].

6.1.1 Antenna and design parameters

An electromagnetic horn antenna is used to match the waves from the guiding

system to a large radiating aperture. Figure 6.2 shows an isometric view of the

antenna through which the signals are transmitted and received in this experiment.

The design parameters of the antenna flange follow the basic concepts of wave guide

theory [7, 14, 107]. Its physical size, U and V in Figure 6.2, determines the mode

of propagation. It is considered that this system fulfils the following requirements:

1. The waves (transmitted and received) can be propagated between the NA and

the antenna aperture with minimal loss of signal.

2. The rectangular wave guide (flange) is able to propagate the dominant mode,

TE01, in a loss-free dielectric medium.

3. It is possible to operate well above the cut-off frequency.

The actual antenna dimensions are A = 0.235 m, B = 0.308 m (these are vertical

and horizontal lengths, respectively), V = 0.10 m, U = 0.05 m with an antenna

horn angle of 17.5 degrees.

In this antenna system, microwave propagation takes place only when the width

of the wave guide (V in the diagram) is greater than one half of the wavelength [14,

8]. Accordingly, λc, the cut-off wavelength, is 20 cm for TE01 mode (V /U =2 to

have a 2:1 frequency range of single-mode operation [14]) and therefore the cut-off

frequency is found according to the fundamental relationship

fc =
c

λc
, (6.1)
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Figure 6.2: Antenna with the wave guide flange.

where c is the velocity of light. In this experiment the size of the waveguide feed

has been chosen so that the desired operating frequency of 2-3 GHz lies within

the frequency range for which only the transverse electric (TE01) mode propagates.

When frequencies of 2-3 GHz are used, this system operates well above the cut-off.

6.1.2 Measuring environment

When the microwave field measurements were obtained, the antenna was directed

at a blank concrete wall. A copper circular cylinder which represents the object

in this experiment was placed in front of the antenna parallel to its front face as

shown in Figure 6.1. The NA, waveguide and the antenna were placed on a wooden

bench so that this whole system can be moved forward and backward. Similarly,

the cylinder was fixed in a separate stand to make it possible to change the distance

to the cylinder from the aperture of the antenna. The experimental set-up was not
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isolated from external microwave sources and so, in principle, it was possible for

noise to affect the measuring environment.

6.1.3 Instrumental calibration for measurements

The microwave network consists of the wave guide and its connectors, the antenna

system and the host which is electrically coupled with the antenna aperture (we

take air as the medium of the host in this experiment).

The NA is adjusted before connecting to the circuit for measurements. The

frequency, power, magnitude, phase and other parameters were set using the keypad

of the analyser. The details of the settings and the instrument calibration procedure

are available in the guidelines of the user’s manual of the NA [106].

6.1.3.1 Normalising at the antenna aperture

When the wave propagates to the antenna from the instrument, its amplitude and

phase can change due to the characteristic impedance of the microwave circuit.

In order to deal with this situation, the signal at the front-face (aperture) of the

antenna was normalised before obtaining the measurements.

There is a simple procedure to normalise the signal to the antenna aperture.

First, the signal frequency and its power have to be adjusted at the NA to the desired

values. Then, the front-face of the horn antenna has to be closed properly using a

conducting plate to make a perfect short circuit at the antenna aperture. Then, the

instrument is set to the normalising mode. Now, the instrument itself adjusts the

transmitted signal so that the signal which has been set in the instrument keypad

would be available at the aperture when the short circuit is removed. According

to our settings, the antenna aperture radiates a signal of unit amplitude with zero

degrees for the phase angle.



142

6.1.3.2 Measurement procedure

Microwave measurements are taken from the analyser in several situations as re-

quired for our investigation. The copper cylinder was illuminated with a microwave

signal radiated from the antenna to measure the reflection coefficient. The NA was

connected to a computer to record the measurement data using a data transport net-

work. Some of the important steps followed for obtaining microwave measurements

with the cylinder are:

1. Ensure all the connections of the experimental set-up are in order.

2. Set the NA for reflection coefficient measurements and adjust to the required

frequency (for more details on NA settings, see [106]).

3. Normalise the signal at the antenna front-end.

4. Obtain measurements with the antenna directed towards the wall. Also mea-

sure the distance from the antenna to the wall (the length d1 + l in Figure

6.1).

5. Obtain measurements with the scattering object placed in front of the antenna

along its bore sight axis (the cylinder must be kept parallel to the aperture

plane of the antenna).

6. Repeat step 5 with the object placed at different positions along the bore

sight axis in front of the antenna. At every measurement, when moving the

object, the distance to the centre of the cylinder from the antenna aperture is

measured (the length d1 in Figure 6.1).

7. Change the frequency and repeat 3-6.

Apart from the measurements with the cylinder, we conducted a similar experi-

ment with a sphere. The procedure for obtaining measurements with the sphere is

much the same as the above steps. More details are given later in this chapter.
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6.2 Experimental data record

The measuring instrument was adjusted to display the amplitude and phase values

of the reflection coefficients. It is not possible to measure the reflection coefficient

of the cylinder directly. Instead it is computed from two sets of measured data

with and without the cylinder. In the first part of the experiment, the antenna is

kept fixed and the cylinder is moved away from the antenna towards the wall in

5 mm steps to obtain measurements. (Note that the antenna was kept closer to

the front wall in order to minimise the effect from neighbouring walls.) For each

position of the cylinder, the measurements are repeated twenty times at the selected

frequencies. The results at each frequency are averaged. All distances are measured

in metres.

In the second part of the experiment, measurements were obtained without the

cylinder and with only the wall. The antenna was moved towards the wall and, after

each step, the length between the aperture and the wall (l + d1 in Figure 6.1) and

the reflection coefficients were measured. The output power of the signal is 1 mW.

Details of the recorded items:

1. U(s/c) and θ(s/c) - Magnitude and phase of the reflection coefficient with

short circuit (s/c) antenna. These measurements are related to the antenna

normalization discussed in section 6.1.3.1. It is important to make a good

short circuit at the aperture so that the values of U(s/c) and θ(s/c) are equal

to one and zero radians, respectively.

2. U(o/c) and θ(o/c) - Magnitude and phase of the reflection coefficient with

open circuit (o/c) antenna, that is, the short circuit of the antenna aperture is

removed and the reflection from the wall is measured (without the cylinder).

3. Uc+w and θc+w - Magnitude and phase of the reflection coefficient with the
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cylinder and the wall. For this case, the cylinder is placed between the antenna

and the wall and then the reflection coefficient is measured.

4. a and d1 - Radius of the cylinder and the distance of its centre from the

antenna. For each measurement, the distance to the centre of the cylinder

from the aperture plane was recorded (distance d1 in Figure 6.1).

5. The room in which the measurements were made is approximately 8 m × 6 m

× 3 m in size. The distance between the aperture plane and the wall (l + d1

in Figure 6.1) is equal to 83.5 cm. The walls are made of concrete materials

but we are not aware of their electrical properties. Further investigation on

the surrounding materials and their effect on microwave frequencies is beyond

the scope of the project at this stage.

6.3 Measurement results

The data collected from the measurements with a cylinder of diameter 1.3 cm have

been plotted in Figure 6.3. The magnitude of the reflection coefficient oscillates in

a pattern with respect to the distance d1. The repetition of the maxima and the

minima is found to be approximately equal to one half of the wavelength of the

signal that is used to obtain these measurements (λ/2 = 6.25 cm at 2.4 GHz). The

phase of the reflection coefficient oscillates in a similar way to the magnitude (see

Figure 6.4). These variations are discussed further in section 6.4.

6.3.1 Calculation of the cylinder reflections from measured

results

Once the signal is excited from the antenna aperture, it propagates towards the

cylinder and the wall (we assume the medium inside the room is loss-free). Two
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Figure 6.3: Reflection coefficient measured with the wall and the cylinder at 2.4

GHz frequency: magnitude versus distance.
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Figure 6.4: Reflection coefficient measured with the wall and the cylinder at 2.4

GHz frequency: phase (modulo 2π) versus distance.
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Figure 6.5: Wave reflection and transmission at the boundaries of the propagation

medium.

major backward waves can be expected. When the wave is incident upon the bound-

ary of the wall, a part of this wave may be reflected back from the boundary while

the rest is being transmitted through the surface into the wall. This is illustrated in

Figure 6.5. The waves which hit the conducting cylinder are completely scattered

away from its boundary. Accordingly, two backscattered waves can be expected:

one which is from the cylinder and another from the wall. These scattered waves

are captured when they reach the aperture of the antenna. Figure 6.5 shows the

wave transmission and reflection from the boundaries of the wall and the conduct-

ing cylinder. It also illustrates the cylindrical coordinate system associated with

the conducting cylinder. The length B, as marked along the front-face of the an-

tenna, and other details of the microwave network are given in section 6.1.1 (see

under antenna dimensions). The bore sight axis of the antenna is perpendicular to

the wall. The wave excited from the antenna is z -polarized and travelling in the
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x -direction towards the wall in the xy-plane. The complex reflection coefficient of

the wall looking at O ,́ that is from a distance d1 + l from the boundary of the wall,

can be written as

Uwe
jθw = Γwe

−j(2k1(d1+l)+ξ), (6.2)

where Γw and ξ are the magnitude and phase of the reflection coefficient of the wall

at its boundary, respectively, and k1 is the wave number of the medium at frequency

f1. The complex reflection coefficient of the conducting cylinder at O ,́ which is at

a distance d1 from the centre of the cylinder is given by,

Uce
jθc = Γc(0)e−2jk1d1 , (6.3)

where Γc(0) is the magnitude of the complex valued reflection coefficient of the

cylinder at its boundary. In equations (6.2) and (6.3) it is considered that the

magnitudes of the reflection coefficients remain unchanged (Uw = Γw and Uc =

Γc(0)) while their phase angles are changed with respect to the distance to the

antenna from the scattering object.

Consider an error box (a two port network) and let ΓL be the reflection coefficient

of the wall and the cylinder. We need to find the reflection of the cylinder. The

error box represents the error due to the reflection from the wall. This situation can

be interpreted using a two port network and

Γ =
a+ bΓL
c+ dΓL

, (6.4)

where a, b, c and d are parameters of the error box and these can be found by

connecting successively three known terminations to the measuring port (see more

details in [108]). Thus, considering the separate measurements that can be obtained

with only the wall present, from the above bilinear transformation [108]

Uce
j θc =

g Uc+we
j θc+w + h

q Uc+wej θc+w + 1
, (6.5)
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where Uc+w is the magnitude of the complex reflection coefficient measured at O´

with both the wall and the cylinder present and θc+w is the corresponding phase

angle. In the experiment, we measured Uc+w, θc+w, Uw and θw with several frequen-

cies. We used these data in equation (6.5) to find Uc and θc. Good approximate

results are observed by setting g = 1, q = 0, h = −Uwej θw (q = 0 is the best match

without multiple reflection) and so the complex reflection coefficient of the cylinder

can be found as

Uce
j θc ≈ Uc+we

j θc+w − Uwej θw . (6.6)

6.3.2 Reflection from the wall and the cylinder

The reason for the variations of the reflection coefficient with respect to the distance

d1 can be identified by considering the received waves at the antenna aperture.

Assume the medium inside the room is loss-free and the antenna receives only the

waves scattered directly from the wall and the cylinder. The reflection coefficient

is defined as the ratio of the amplitude of the reflected wave to the amplitude of

the incident wave at the load (this is considered as the discontinuity in transmission

line [7]). This can be generalised to any point along the line that the wave travels.

Thus, the reflection coefficient of the conducting cylinder referred to the antenna

aperture (point O´in Figure 6.5) can be found according to equation (2.8) as

Γc(−d1) =
E−e−jk1d1

E+ejk1d1
= Γc(0)e−2jk1d1 , (6.7)

where Γc(0) = E−

E+ is the magnitude of the reflection coefficient of the conducting

cylinder at its boundary and E+ and E− are the magnitudes of the electric field

intensities of the forward and backward waves, respectively. From the antenna

normalization, it is known that the antenna transmits a wave with unit magnitude

and a zero phase angle from its aperture. Therefore, the reflected wave from the
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cylinder received at the antenna aperture plane is

Er
c = Γc(0)E0e

−2jk1d1 , (6.8)

where E0 is the magnitude of the field of the transmitted wave, E0 = |E+|. Similarly,

the reflected wave from the wall received at the antenna aperture plane is

Er
w = ΓwE0e

−j(2k1(d1+l)+ξ), (6.9)

where Γw and ξ are the magnitude and phase of the reflection coefficient of the wall

at its boundary. The resultant field received at the antenna aperture plane can be

considered as a superposition of the two reflected waves. Therefore using equations

(6.8) and (6.9), the total field received at the antenna is

Er
c+w = Γc(0)E0e

−2jk1d1 + ΓwE0e
−j(2k1(d1+l)+ξ) = |Er

c+w| ejθc+w . (6.10)

The field in equation (6.10) can be expressed in terms of amplitude and phase.

The root mean square amplitude of this resultant field is

∣∣∣Er
c+w

∣∣∣ = E0

√
(Γc(0))2 + (Γw)2 + 2Γc(0)Γw cos(2k1l + ξ) , (6.11)

and the phase of the resultant field is

θc+w = − tan−1

(
Γc(0) sin(2k1d1) + Γw sin(2k1(d1 + l) + ξ)

Γc(0) cos(2k1d1) + Γw cos(2k1(d1 + l) + ξ)

)
. (6.12)

The root mean square amplitude of the reflected field in equation (6.11) varies

with respect to the argument of the cosine term. The NA displays the reflection

coefficient which was calculated as the ratio of the received to transmitted signals at

its aperture. Therefore, we can expect a variation of the magnitude of the measured

reflection coefficient with respect to the distance between the cylinder and the wall

according to the argument of the cosine function in (6.11). Note that the incident

and reflected fields considered here are only for understanding the variations of the

measured results with respect to the distance from the antenna. A complete solution
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Figure 6.6: Reflection coefficient of the cylinder at 2.4 GHz frequency, calculated

from the measured data (Magnitude versus distance d1).

for the incident and scattered fields in the experimental situation is given in section

7.1.

Even if the wave number k1 is constant, the length l, the gap between the centre

of the cylinder and the wall, varies with d1 (l decreases as the cylinder is moved

away from the antenna towards the wall). Therefore, in this experiment, a significant

change in the magnitude of the total reflected field relative to the position of the

cylinder can be expected. Similarly, according to equation (6.12), the phase of the

total field also changes between −π and +π depending upon the position of the

cylinder. These variations can be seen in Figure 6.4. Further discussion on this

appears later in this chapter.
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Figure 6.7: Reflection coefficient of the cylinder at 2.4 GHz frequency, calculated

from the measured data (Phase (modulo 2π) versus distance d1).

6.3.3 Cylinder reflection

Equation (6.6) is used to calculate the reflection coefficient of the cylinder from the

experiments. The calculated magnitude and phase of the reflection coefficients were

plotted against d1, the distance of the cylinder from the measuring point, and the

results are shown in Figures 6.6 and 6.7, respectively.

The new results show significant changes when compared to the results plotted

in Figures 6.3 and 6.4. Once the effect of the wall reflection has been removed from

the reflection coefficients measured with the wall and the cylinder, the oscillations

in magnitude with respect to d1 are significantly reduced. The new results give us

the reflection coefficient of the cylinder as measured at the aperture of the antenna.

Even though the oscillations have been removed, there is still a reduction in the

magnitude of the reflection coefficient with respect to d1 in general. This may be

because the reflection has taken place from a cylindrically-shaped boundary (see the

forward equation of the cylinder: equation (3.21) has evidence for this behaviour
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and there is further explanation in section 3.2.1).

There may be other factors involved due to the antenna near field effect and

noise due to other reflections, multiple scattering, interferences from other sources,

etc. Apart from these, there may be experimental errors when moving the cylinder

and measuring the distance between the aperture of the antenna and the centre of

the cylinder. All of these effects should be minimised to achieve better results.

6.4 Analysis of the measurement results

6.4.1 Polar display of the measured data

It is convenient to analyse the measured data using a polar display and comparing

it with the Smith chart. The Smith chart is plotted on the complex reflection

coefficient plane in two dimensions and is scaled with normalised impedance. In

many transmission line problems, the Smith chart is used to find how impedances

are transformed along the line or to find how the impedance relates to the reflection

coefficient. This chart consists of loci of constant resistance and reactance plotted

on a polar diagram.

The Smith chart has circumferential scaling in wavelengths and degrees. The

wavelengths scale represents the distance measured along the transmission line (con-

sidered as the line connected between the generator or source and the load) to the

point under consideration. The degrees scale represents the phase angle of the re-

flection coefficient at that point. Use of the Smith chart and the interpretation

of the results obtained using it require a good understanding of AC circuit the-

ory and transmission line theory. The method of finding impedance and reflection

coefficients using the Smith chart is available at [99, 106, 109].

The behaviour of the complex reflection coefficient was monitored using the

Smith chart display of the NA and it was observed that its locus always moves
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Figure 6.8: Polar plot of the reflection coefficient at 2.4 GHz frequency measured

with both the wall and the cylinder. (a) Before adjustment. (b) After adjustment.

towards the generator (the source) when the cylinder moves towards the wall. The

cylinder is moved in steps of 0.5 cm over a distance of 15 cm (which gives us 30 steps

in total). At a frequency of 2.0 GHz, the cylinder’s movement in one step (0.5 cm)

is equivalent to 1/30th of the wavelength λ (λ = 15 cm at this frequency) and this

corresponds to a movement of 1/15th of the full circle of the Smith chart. Increasing

the distance from the load corresponds to moving towards the generator and this

corresponds to a clockwise motion about the complex plane of the Smith chart.

Also, we observe that, throughout the whole movement, the absolute magnitude of

the reflection coefficient slowly decreases with an increase in d1.

Figure 6.8 (line (a)) shows a polar plot of the measured reflection coefficients

with both the wall and the cylinder. In this graph, the locus of the magnitude

of the reflection coefficient rotates in a clockwise circular path but its centre does

not coincide with the zero point of the real and imaginary axis, the centre of the
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Smith chart, see [99]. In order to find the correct path of the locus in our polar plot,

through trial and error we aligned its centre by eye to coincide with the zero point of

the real and imaginary axes and estimated the amount of off-set in magnitude and

phase of the measured results. The corrected results are plotted in Figure 6.8 (line

(b)). As expected, the amount of off-set in magnitude and phase is almost identical

to the measured wall reflection at the same distance. This shift of the centre point

of the locus of the measured reflection coefficient reveals how the wall reflection has

interacted with the cylinder’s reflection causing an off-set in the measured results.

6.4.2 Study of the wall effect

The combined reflection with both the wall and the cylinder was studied by using

measurements of the reflection coefficient without the cylinder, again for various

distances between the antenna and the wall. In order to perform this operation, the

whole measurement system was moved together with the antenna in 0.5 cm steps

and the amplitude and phase of the reflection coefficient were measured. These

results are plotted in Figure 6.9. This plot has a pattern similar to that of the plot

of the measurement results with the cylinder and wall in Figure 6.3. The maxima

and minima also repeat with a period equal to one half of the wavelength of the

signal used. A frequency of 2.4 GHz was used and therefore the wave length is 12.5

cm. The period of oscillation of the reflection coefficient plotted in Figure 6.3 is

also approximately equal to 6.25 cm. When the two plots in Figures 6.3 and 6.9

are compared, it can be seen that the magnitude values of the reflection coefficient

measured with the wall are in general smaller than those with the wall and the

cylinder as would be expected.

Apart from the above conclusions, the measurement results of the wall reveal

information about the proportion of the signal energy that is received back at the

antenna from the signal transmitted. From the measured reflection coefficients
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Figure 6.9: The magnitude of the measured reflection coefficient due to the wall,

without the cylinder present, for various positions of the antenna.

(magnitude), we can see that only a very small amount of signal is received back

at the antenna compared to that transmitted. We must realise that not all of the

reflected field components from the wall would travel back to the antenna. Also, not

all the incident field components at the wall would be reflected from its boundary as

some of the waves penetrate through the wall (Figure 6.5). From the results it can

be seen that the total loss of the signal is approximately 94% of the total field excited

from the antenna. In other words, in this experiment, the energy received back at

the antenna is about 6% of the total microwave energy that has been transmitted

from the antenna .
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6.5 Experimental test with the sphere

Microwave scattering from a sphere was examined using the same experimental ap-

plication system. In this case a conducting sphere was illuminated by a microwave

signal which was radiated from the antenna aperture. The procedure for obtaining

measurements is very similar to that we used with the conducting cylinder. These

experiments have been conducted for just one frequency of 2.6 GHz (wavelength is

approximately 11.5 cm) and illustrate the results of the measured reflection coeffi-

cient but the inverse method was not used on these data.

6.5.1 Scattering object

A number of spheres with different diameters were used to observe the reflection us-

ing the NA. In order to receive a reasonable signal at the NA, it is important to have

a fairly large sphere (even though it is a conducting sphere) compared to the aper-

ture area of the antenna. The spheres which were used to obtain the measurements

are shown in Figure 6.10. The diameters of the spheres (from the right) in Figure

6.10 are 1.5 cm, 2.0 cm, 2.5 cm and 8.5 cm, respectively. The reflection coefficients

with all of these spheres were measured but, as the sizes of the first three spheres are

very small compared to the area of the antenna aperture, the microwave responses

from these ones were very small at the instrument. Therefore, the sphere having 8.5

cm diameter was selected for obtaining microwave measurements. The ratio of the

effective area of this sphere to the effective area of the aperture is approximately

equal to 0.1.

6.5.2 Experimental procedure

Figure 6.11 shows the experimental apparatus arranged for microwave measure-

ments. The sphere is aligned along the bore sight axis of the antenna (hanging in
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Figure 6.10: Spheres used in experimental observations for microwave detection.

front in the picture) using wrapping materials which have no considerable effect on

the microwave signal. The antenna is directed towards a wall which is perpendicular

to the bore sight axis (this is not visible in Figure 6.11) such that its aperture can

capture the backward waves scattered from the boundaries of both the sphere and

the wall. Each time when taking measurements, the distance to the centre of the

sphere is measured from the centre of the aperture of the antenna. The experi-

mental procedure is similar to that we followed when obtaining measurements with

the conducting cylinder. The reflection coefficients were measured with the sphere

moving with 0.5 cm steps towards the wall with the antenna and wall fixed at 90 cm

apart. Also, the reflection coefficients without the sphere were measured. Similar

to the case with the cylinder, when both the sphere and the wall are present, the

reflected wave from the wall can be added on that from the sphere. Therefore, using

equation (6.5), the reflection coefficient of the sphere was calculated using these two
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Figure 6.11: The experimental apparatus for the microwave measurements with the

sphere.

measured data sets.

6.5.3 Measured results and discussion

The measured data obtained by moving the sphere are plotted with respect to d1

and shown in Figure 6.12. The magnitude of the reflection coefficient oscillates with

a period equal to one half of the wavelength of the microwave signal which was used

for these measurements (approximately 11.5 cm).

Similar to the case with the cylinder, it is not possible to obtain direct measure-

ments from the sphere. Therefore, using the two sets of the separate measurements,

with the wall by itself and with the wall and the sphere together, the magnitude

of the reflection coefficient of the sphere was calculated using equation (6.5) and

the results are plotted in Figure 6.13. These plots have significant differences in

the behaviour of the magnitude of the reflection coefficient when compared to those
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Figure 6.12: Measured reflection coeff. (mag. and phase (modulo 2π)) of the wall

and the sphere together plotted with respect to the distances d1 in cm at 2.6 GHz.
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obtained with the wall and the sphere together in Figure 6.12. As with the cylinder

experiment, the oscillations have been largely removed. Note that, there may be

other effects from interfering noise from the surroundings (section 6.3.3) and further

corrections might provide more accurate results.

From the phase plot in Figure 6.12, we can see that the phase of the reflection

coefficient varies with respect to distance d1 (here, we have plotted modulo 2π

). The calculated results using equation (6.5) are plotted in Figure 6.13 and this

shows a little improvement compared to the previous plot (now the change in phase

is approximately linear with respect to the distance of the object from the antenna

as expected). The calculated phase angles of the reflection coefficient of the sphere

from the measured data have a significant change with respect to the distance of

the sphere from the measuring point.

Figure 6.14 shows the polar plots of the reflection coefficients we obtained in

this experiment. Each point in a plot corresponds to a particular distance d1. In

this case, we have plotted the real and imaginary values of the reflection coefficient

with respect to d1 (which varies from 0.5 to 12.5 cm with 0.5 cm steps, increasing

in the clockwise direction). In the plot obtained with the measured data with the

sphere and the wall (line marked as “measured”), the locus of the magnitude of the

reflection coefficient is a circular path with respect to d1 but its centre does not

coincide with the origin of the real and imaginary axis. The data obtained after

removing the wall effect is also plotted in Figure 6.14 (the line marked as “calculated

from measured data”) and now we can see that the centre of the locus has been

moved much closer to the zero point of the real and imaginary axes. We have

verified with the measured result and found that the amount of off-set of the centre

of the reflection coefficient in both magnitude and phase is very similar to those

values obtained by measuring the reflection coefficient only with the wall (as was

also true for the cylinder as explained in section 6.4.1). In these two experiments the
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Figure 6.13: Reflection coefficients (magnitude and phase (modulo 2π)) of the sphere

calculated from the measured data are plotted with respect to distances d1 in cm.
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Figure 6.14: Polar plot of the reflection coefficient of the sphere at 2.6 GHz. These

plots were obtained using data from the experiment with the sphere.

Smith chart off set with the cylinder is different to the off set with the sphere. This

can be expected as the effective scattering area of the sphere is smaller compared

to that of the cylinder.

As discussed in the experiment with the cylindrical object, the polar plots and

subsequent corrections are equally applicable for the sphere. It would be necessary

to obtain further measurements with different frequencies to use the inverse method

for calculating unknowns.



Chapter 7

Object detection using

measurement results

The experiments (for cylindrical and spherical objects) conducted in the previous

chapter have shown that these objects can make a significant difference to the mea-

sured reflection coefficient data. We obtained the numerical results in Chapters 3

and 4, by modelling the host with the internal object and simulating to test the

associated forward problem. In the experiments, the source is an antenna which

radiates a beam of waves towards the scattering object. In this chapter, we modify

the forward equations for the experimental geometry to calculate the fields and then

solve the subsequent inverse problems. Finally, the calculated unknowns using the

measured data and those calculated from the numerical data are compared.

In the experiment, the object was moved to a reasonable distance from the

antenna aperture. The object moves from near-zone fields to far-zone fields. It

is unclear if the waves involved in the scattering can be entirely treated as planar

or whether cylindrical waves would be more appropriate. We consider both of

these cases separately and then discuss the differences in scattering due to the

experimental situation.
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7.1 Consideration of the experimental geometry

In this section, we use our forward solutions of the theoretical model in the ex-

perimental application. We have the measured data, the magnitude and the phase

values of the reflection coefficients. In order to compute the unknowns using these

data, we first obtain the forward equation for the experimental arrangement.

7.1.1 Forward equation in the experimental application

Now the forward equations are obtained in terms of the reflection coefficient which

is appropriate for the experimental set-up. Figure 7.1 (a) shows the two-dimensional

model which is similar to the analytical model shown in Figure 3.3. This model also

includes the wall (behind the object). Three antennas are shown in the xy-plane,

each of which transmits and receives microwave signals at the surface of the host.

Figure 7.1(b) shows the two-dimensional coordinate system and the geometry of

the experimental apparatus which represent the host model with a single antenna

(antenna A1).

The wave excited from the antenna is z -polarized and travelling in the x direc-

tion towards the wall. It is assumed that the scattering from both the wall and

the cylinder takes place due to plane waves incident upon their boundaries. Two

situations are considered here: one is the scattering from both the wall and the

cylinder and the other is the scattering from the wall by itself. Assume the wave to

be finite at the point C (at the centre of the cylinder) and periodic with a period

2π in the polar angle. The reflected wave at the point O due to the reflection from

the cylinder is found from equations (3.14) and (3.17) as

Es
z,c(p, φ; fi) = E0

∞∑
n=−∞

j−n
[
− Jn(kia)

H
(2)
n (kia)

H(2)
n (kip)

]
ejnφ, (7.1)

where fi is the frequency of the transmitted signal, a is the radius of the cylinder

and p is the distance to O from the centre of the cylinder. Here, j =
√
−1 and ki is
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Figure 7.1: Experimental implementation for microwave measurement. (a) The

two-dimensional host model. (b) Geometry of the experimental set-up.

the wave number of the medium given as ki = 2πfi
√
µε, and a time dependence ejωt

is assumed, where ω = 2πfi. Also, µ and ε are the permeability and permittivity of

the medium, respectively. The subscript i relates to the frequency fi of the signal

used. This experiment was carried out in air and therefore σ the conductivity of the

medium is assumed to be equal to zero. The reflected wave received at the antenna

is captured by its aperture and sent back to the measuring instrument (explained in

the previous chapter). In this xy-plane, the scattering about the circular boundary

of the cylinder is not uniform but rather it depends upon the incident angle.

As in section 3.2.1, suppose we rotate the point O through an angle π − φ so

that it lies along the x axis. The distance p is chosen to be d1 which is the distance

to the centre of the cylinder from the centre point of the antenna (corresponding
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to antenna A1 in Figure 7.1(a)). Now, using equation (7.1), the scattered field at

point O´can be found as

Es
z,c(d1, π; fi) = E0

∞∑
n=−∞

jn
[
− Jn(kia)

H
(2)
n (kia)

H(2)
n (kid1)

]
. (7.2)

7.1.2 Scattered field captured by the antenna aperture

The total field at the antenna plane is the sum of all the field components being

captured by the antenna aperture (see Figure 7.1 (b)) and can be found by adding

together the entire field values across the antenna and normalising (averaging) over

the aperture of angular width 2θ, as

Es
z,c(fi) = 2E0

∞∑
n=−∞

j−n
[
− Jn(kia)

2θH
(2)
n (kia)

] π∫
π−θ

H(2)
n

(
−kid1

cos(φ)

)
ejnφdφ, (7.3)

where θ=tan−1(B/2d1) is the angle that CO makes with the x axis when O is moved

to lie at either end of the antenna aperture (Figure 7.1 (b)). The numerical value

of the argument of the Hankel function in equation (7.3) varies with the position of

the object: the distance to the centre of the cylinder to the xy-plane of the antenna

aperture is the only variable in the argument. This distance varies from d1 to d1sec θ

within the aperture plane. Therefore, in order to find a reasonable solution for the

length p = d1 secφ we replace the argument of the Hankel function in equation (7.3)

with kid1/ cos(θ/2) by taking the average value of φ over the interval (π−θ, π). The

reflected wave is expressed in cylindrical coordinates but the parameter d1 needs to

be modified to become d∗1 = d1 + ∆, where ∆ is a parameter with units of length

which accounts for the curvature of the wave-fronts in the aperture of the horn

antenna (see Appendix E for more details). This is incorporated in the detailed

computations carried out later. Then, we have

Es
z,c(fi) = 2E0

∞∑
n=−∞

j−n
[
− Jn(kia)

2θ H
(2)
n (kia)

H(2)
n

(
kid
∗
1

cos(θ/2)

)] π∫
π−θ

ejnφdφ . (7.4)

When the wave is radiating from large apertures and the distance to the object

is comparatively large, one can consider θ to be very small so that cos(θ/2) may
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be equated to unity (the paraxial approximation in far-field zones [99]). For this

experimental application, we have values of d1 somewhere between the near-field

and the far-field zones of the antenna radiation.

The negative, positive and zero terms of equation (7.4) are separated to obtain

Es
z,c(fi) = 2E0

−1∑
n=−∞

j−n
[
− Jn(kia)

2θ H
(2)
n (kia)

H(2)
n

(
kid
∗
1

cos(θ/2)

)] π∫
π−θ

ejnφdφ

+2E0

∞∑
n=1

j−n
[
− Jn(kia)

2θ H
(2)
n (kia)

H(2)
n

(
kid
∗
1

cos(θ/2)

)] π∫
π−θ

ejnφdφ

+2E0

[
− J0(kia)

2θ H
(2)
0 (kia)

H
(2)
0

(
kid
∗
1

cos(θ/2)

)] π∫
π−θ

ej0dφ .

(7.5)

Equation (7.5) is simplified to yield

Es
z,c(fi) = 2E0

−1∑
n=−∞

jn
[
− Jn(kia)

2θ H
(2)
n (kia)

H(2)
n

(
kid
∗
1

cos(θ/2)

)]
(1−e−jnθ

jn
)

+2E0

∞∑
n=1

jn
[
− Jn(kia)

2θ H
(2)
n (kia)

H(2)
n

(
kid
∗
1

cos(θ/2)

)]
(1−e−jnθ

jn
)

+E0

[
− J0(kia)

H
(2)
0 (kia)

H
(2)
0

(
kid
∗
1

cos(θ/2)

)]
.

(7.6)

From the Bessel function relationships we have

J−n(z) = (−1)nJn(z) , Y−n(z) = (−1)nYn(z), H(2)
n (z) = Jn(z)− jYn(z), (7.7)

and we simplify the first term of equation (7.6) to obtain

2E0

−1∑
n=−∞

jn
[
− Jn(kia)

2θ H
(2)
n (kia)

H(2)
n

(
kid
∗
1

cos(θ/2)

)]
(1−e−jnθ

jn
) =

2E0

∞∑
n=1

jn
[

Jn(kia)

2θ H
(2)
n (kia)

H(2)
n

(
kid
∗
1

cos(θ/2)

)]
( (1−ejnθ)

jn
) .

(7.8)

Then the solution to the reflected wave in equation (7.6) is

Es
z,c(fi) = E0

[
− J0(kia)

H
(2)
0 (kia)

H
(2)
0

(
kid
∗
1

cos(θ/2)

)]
+2E0

∞∑
n=1

[
− Jn(kia)

H
(2)
n (kia)

H(2)
n

(
kid
∗
1

cos(θ/2)

)]
jn sin(nθ)

nθ
.

(7.9)

The expression in (7.9) is, however, not quite the final result. There is an

additional scale factor that needs to be applied to account for the fact that the

electric field distribution in the antenna aperture is not uniform due to the TE01

mode propagating in the waveguide. The aperture field has the following form:

Ez(y, z) = E0z cos(
πy

B
), (7.10)
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where E0z is the maximum field strength in the aperture. It should be noted that for

the case we have here, when the cylinder diameter is much smaller than the aperture

dimension B, and with the cylinder axis located at y =0, the incident field on the

cylinder has an amplitude approximately equal to the maximum field strength in

the aperture (= E0z). It is therefore virtually unaffected by the non-uniformity of

the aperture field. In receive mode, however, the non-uniform aperture field must

be accounted for in some way.

The procedure now is to introduce an equivalent uniform field distribution span-

ning the entire antenna aperture. The field amplitude of this equivalent distribution

is the average aperture field Ēz, which is evaluated as follows:

Ēz =

E0z

+B/2∫
−B/2

cos(πy
B

)dy

+B/2∫
−B/2

dy

=
2E0z

π
. (7.11)

Now, the average field amplitude in equation (7.11) can be seen to be a factor

2/π times the maximum field amplitude. The average sensitivity of the antenna to

incoming radiation from the cylinder is therefore reduced by the factor 2/π compared

to the case of a uniform field distribution in the aperture. This gives the final result

for the average scattered field as

Ēscat(r̄) =
2E0

π

[
− J0(kia)

H
(2)
0 (kia)

H
(2)
0 (kir̄)− 2

∞∑
n=1

jn
Jn(kia)

H
(2)
n (kia)

H(2)
n (kr̄)

sin(nθ)

nθ

]
.

(7.12)

where the variable r̄ in equation (7.12) is the approximate average arc length to the

aperture plane from the centre of the cylinder, that is,

r̄ =
d ∗1

cos(θ/2)
. (7.13)

Consider now the transmitted wave from the antenna. In this experiment, the

microwave network was normalized to zero decibels (1 mW ) power and zero phase

at the antenna front face (see section 6.1.3.1). Since the cylinder is small compared
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Figure 7.2: The yz-plane. This shows the cylinder and the aperture of the antenna.

to the aperture width of the antenna (Figure 7.2), the transmitted field can be

written as

Et
z,c(fi) = E0e

jkid1 . (7.14)

The reflection coefficient is defined as the ratio of the reflected signal to the incident

signal [99, 8]. Therefore the reflection coefficient of the cylinder measured at the

antenna front face relative to the centre of the cylinder is

Γi = − Ēscat(r̄)

E0ejkid1
=

2
π
e−jkid1

[
J0(kia)

H
(2)
0 (kia)

H
(2)
0 (kir̄) + 2

∞∑
n=1

jn Jn(kia)

H
(2)
n (kia)

H(2)
n (kir̄)

sin(nθ)
nθ

]
.

(7.15)

In equation (7.15), the minus sign in the definition of Γ stems from the normalisation

to a short circuit at the aperture plane.
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7.2 Comparison of experimental results with

theoretical results

In this section, measured results are compared with computed results using the for-

ward equations. We first calculate the reflection coefficient using equation (7.15)

obtained by considering the scattering due to a plane wave incident upon the con-

ducting cylinder. Then, this result is compared with the experimental results we

have in section 6.3.

7.2.1 Measurement results together with the theoretical re-

sults

The reflection coefficients were calculated for different values of d1 using equation

(7.15). The values of a, A and B are known for the experiment (see section 6.1.1)

and, as the experiment is performed in the air, ε the relative permittivity and µ the

relative permeability are both taken as one and σ the conductivity as zero in these

calculations.

The computation needs several terms to converge to a constant value. These

computations were carried out in MATLAB and the results are plotted in Figures

7.3 and 7.4. The experimental data obtained from microwave measurements (using

equation (6.5)) have been plotted on Figure 7.3 for easy comparison. These results

are presented in Senaratne et al. [113, 114]. In general, the calculated and measured

data are very similar.

7.2.2 Agreements and disagreements

In Figure 7.3, the behaviour of the two sets of graphs, for the measured and calcu-

lated values, is very similar as expected. General comments on the results can be

made as follows:
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Figure 7.3: The measured and calculated reflection coefficients at 2.0 GHz frequency

as a function of the distance d1 between the object and the antenna (i) Amplitude,

(ii) Phase.
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Figure 7.4: The measured and calculated reflection coefficients at 2.0 GHz frequency

as a function of the distance d1 between the object and the antenna (i) Real part,

(ii) Imaginary part.



173

1. The magnitude of the reflection coefficient plotted using the experimental

results decreases as d1 increases (see in Figure 7.3(i)) and this is very similar

to the calculated results.

2. The phase plots are very similar to each other and in general the phase of the

reflection coefficient shows a significant change with respect to the distance of

the scattering object (Figure 7.3(ii)).

3. Real and Imaginary values of both sets of data have good agreement (Figure

7.4).

4. When the cylinder is close to the antenna, the theoretical result indicates that

the magnitude of the reflection coefficient should continue to increase but, the

magnitude of the reflection coefficient of the measured result does not exactly

follow this. The field pattern very close to the antenna is rather complicated in

practice [97, 107, 110]. Equation (7.9) associated with the normalised aperture

plane would not be the best solution when the cylinder’s reflection is being

influenced by the antenna near field effect.

5. It is very important to keep the cylinder parallel with the aperture plane. Also,

when changing the distance, the cylinder must be placed along the centre line

of the antenna beam. Otherwise, these may cause errors. Apart from this,

there would be effects from noise due to scattering from nearby objects and

also from the signals received from internal and external sources around the

measuring environment although we have attempted to avoid these.

7.3 Scattering from cylindrical waves

There are differences between the reflection of plane waves and cylindrical waves (we

discussed this in section 3.4). In this section we consider scattering with cylindrical
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Figure 7.5: Scattering from cylindrical waves at the circular boundary of the con-

ducting cylinder. (i) The coordinate system. (ii) When the field point and the

source lie along the x axis. Note φ is different to the case of plane wave scattering

(Figure 7.1).

waves from the circular boundary of the conducting cylinder used in the experimen-

tal application.

7.3.1 Transmitted and received waves

The cylindrical coordinate system for the scattering problem with cylindrical waves

is shown in Figure 7.5 (i). Consider a cylindrical wave incident upon the boundary of

the cylinder. This wave is due to the wave excited from the antenna and we assume

this wave is finite at point C, the centre of the cylinder. Consider two different

points: a field point O and a source point O ′ as shown in the figure. Similar to the
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solution we obtained for the forward problem in section 3.4.2, when p < d′, the field

intensity of the scattered wave at the field point O due to the source point O ′ with

respect to the centre of the cylinder can be written using equation (3.60) as

Es
z (p, φ; fi) = E

∞∑
n=−∞

j−n
[
− Jn(kia)

H
(2)
n (kia )

H(2)
n (kid

′)H(2)
n (kip)

]
ejnφ, (7.16)

where φ is the angle that CO makes with the x axis and p and d′ are the distances

between the points C and O and the points C and O ′, respectively and E is a

constant for the medium and is defined in equation (3.54). The subscript i relates

to the frequency fi of the signal used. Similarly to the procedure we followed to

obtain equation (3.55), the transmitted wave at O due to the source point O ′ with

respect to C is

Et
z (p, φ; fi) = EH

(2)
0

(
ki
√
d′ 2 + p 2 − 2d′p cos(φ)

)
. (7.17)

7.3.2 Cylindrical waves normalised to the antenna aperture

In the previous section, equations (7.16) and (7.17) were obtained considering O ′

as the source point which generates the cylindrical waves. In order to consider

the situation that the whole aperture radiates the cylindrical waves towards the

cylinder, we now normalise the scattered and incident fields over the area of the

antenna aperture. This is similar to the case of plane wave scattering discussed in

section 7.1.2.

In order to consider the situation where a single antenna is used for both trans-

mission and receiving, it is necessary to find the received signal over the whole

aperture area of the antenna. Therefore, the field point O must be considered to

be lying along B in the aperture plane such that the angle φ varies by between +θ

and −θ with respect to the position of O in the xy-plane (Figure 7.5). The total

field at the antenna plane is the sum of all the field components along the line B,
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the width of the antenna, which can be found as

Es
z (fi) = E

∞∑
n=−∞

j−n
[
− Jn(kia)

2θH
(2)
n (kia )

H(2)
n (kid

′)

] +θ∫
−θ

H(2)
n (kip)e

jnφdφ. (7.18)

In order to obtain a reasonable solution to Es
z (fi) in equation (7.18) with the length

p which varies with the angle φ, we replaced the argument kip in the Hankel function

H(2)
n (kip) with kid1

cos(θ/2)
by averaging the angle over the aperture (d1 is the distance

to the measuring point from the centre of the cylinder). Here, in order to meet

the criteria of the addition theorem, we must have d1 < d′ (Figure 7.5 (ii)). Then,

following the same procedure in section 7.1.2, the average scattered field captured

by the antenna aperture is

Es
z (fi) =

2E

π

∞∑
n=−∞

j−n[− Jn(kia)

2θH
(2)
n (kia )

H(2)
n (kid

′)H(2)
n (

kid1

cos(θ/2)
)

]
2 sin(nθ)

n
. (7.19)

Similarly, using equation (7.17), by averaging the angle φ over the aperture, an

approximate solution for the transmitted wave at O due to the source point with

respect to C can be obtained as

Et
z(fi) = EH

(2)
0

(
ki

√
d′ 2 + d1

2 − 2d′d1

)
. (7.20)

Then, using equation (7.19) and (7.20), an approximate solution for the reflection

coefficient (normalized to the area of the antenna aperture for cylindrical waves) for

frequency fi may be found as

Γ(fi) =
Es
z(fi)

Et
z(fi)

. (7.21)

Equation (7.21) was used to calculate the reflection coefficient of the cylinder

for different values of d1, which is the distance to the measuring point from the

centre of the antenna aperture. In this equation, we can also change d′, the dis-

tance to the source from the centre of the cylinder (Figure 7.5 (ii)), and calculate

the corresponding values of the reflection coefficient. When cylindrical waves are

considered, the value of the reflection coefficient changes not only with the distance
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to the measuring point from the centre of the cylinder, but also with the distance

to the source point from the centre of the cylinder. This is illustrated in the next

section.

7.4 Results comparison with cylindrical waves

In the experimental situation, when the scattering object is very close to the source,

the wave incident upon the object is complicated and cannot be a pure plane wave.

When the object is far from the source the scattering results are better approximated

by being from plane waves rather than from cylindrical waves. Therefore, in this

section, we investigate the scattering responses using the equation (7.21) obtained for

cylindrical waves with respect to the distance between the source and the scattering

object.

Equation (7.21) was used to calculate the reflection coefficients of the cylinder

at different distances from the antenna aperture. The radius of the cylinder is 0.065

cm and the distance d1 was changed from 1 cm to 6 cm in 0.5 cm steps for each

set of simulations. We computed at least 40 terms until the series in equation

(7.19) converges to a constant value. In this study, the reflection coefficients were

calculated not only with d1 but also with different values of r, where r = d′ − d1

is the distance between the source point and the field point (see Figure 7.5(ii)).

The value of r is fixed for each set of calculations with different values of d1. The

computed results are plotted against the distance d1 in Figure 7.6 and the details

of each plot are summarised as follows:

1. Plot (1) is for the cylindrical waves when the value of r is 2 m.

2. Plot (2) is for the cylindrical waves with r = 0.1 m. This plot has a small

difference from plot (1) in amplitude even though the r values are very different

(0.1 m and 2 m).
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Figure 7.6: Calculated reflection coefficients (Magnitude) with cylindrical waves.

The different labelled curves are described in the text.

3. Plot (3) is for the measured data of the reflection coefficient plotted against

the distance d1.

4. Plot (4) is for the calculated reflection coefficient using equation (7.15) which

was obtained for the plane wave scattering.

5. Plot (5) is for the cylindrical waves with r = 0.001 m (when the source point

O ′ is very close to the field point O).

In addition to the above results, we have computed further the reflection coeffi-

cients with different values of r and d1. The following observations can be made:

(a) When the distance to the source point from the scattering object is less than

the distance to the field point from the object, that is when d′ ≤ d1, equation (7.21)

does not give any solution (this equation is not valid). However, with a very small

value of r while d′ ≥ d1 , we could use equation (7.21) to calculate the reflection
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coefficient and the results are shown in plot (5).

(b) From the results we obtained by simulating with different values of r (these

results are not shown in Figure 7.6), we observed that, as r becomes larger, the

whole curve is shifted upward rapidly. However, a situation is reached where there

is no further increase of the reflection coefficients (no further shifting of the curve

upward) even if the value of r is further increased. This can be seen in plot (2) and

plot (1) and their corresponding r values.

(c) The measured results in plot (3) closely agree with plot (4) which is for the

plane waves normalised to the antenna aperture. Even with the use of the equation

for cylindrical waves, a value of r can be found so that the calculated reflection

coefficients closely agree with the measured reflection coefficients (we found that

the value of r = 0.015 m gives a good agreement of the calculated data with the

measured results).

Overall, it can be understood that the variable r in equation (7.21) determines

the position of the curve of the reflection coefficient (magnitude) with respect to the

distance of the scattering object. If r is very small relative to d1, the position of the

curves are different. If r is large relative to d1 then the position of the curve moves

upward.

7.5 Computation of unknowns using measurement

results

In this experiment we have measured the reflection coefficients of the internal object

using the forward and backward signals at the antenna point. Now we compute the

object size and its distance from the measurement plane using the inverse method.

In the inverse problem the field at the receiver is known by measurement and a

and d1 are the unknowns. Finding solutions to two unknowns is not possible unless
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two equations are obtained by using two different frequencies. Use of this method

for an over-determined system is also possible but it is important to use suitable

frequencies [111]. At the antenna point the magnitude and phase measurements were

recorded for a range of frequencies. Two equations for two different frequencies were

used to find a and d1.

Now the general equation is formed using the measurement values and the for-

ward equation as found from equation (7.15). The general equation has two con-

stituent equations of the form

∆Γ1 =


∆Γ1,1

∆Γ1,2

 =


ΓM1,1 − Γ1

ΓM1,2 − Γ2

 =


0

0

 , (7.22)

where we now use the subscripts 1,1 and 1,2 in Γ to indicate two different frequencies.

The terms ΓM1,1 and ΓM1,2 are the field measurements from the antenna A1 for two

different frequencies. The terms Γ1 and Γ2 are the theoretical solutions for the

reflection coefficients applicable to the measurement system (as found in equation

(7.15)) for frequency f1 and frequency f2, respectively.

The inverse algorithm was used to calculate the values of a and d1 using the

measured data from the experiment. Figure 7.7 shows some examples of the com-

puted results for the solution of equation (7.22) using two sets of guess values. The

measurement results obtained with a 0.013 m diameter cylinder were used for this

calculation. These plots illustrate two iteration processes and in each case show

estimates of the two unknowns a and d1 converging towards some values closer to

their exact values (the radius of the cylinder, a = 0.0065 m and the distance to the

centre of the cylinder from the antenna, d1 = 0.0365 m). Each set of guess values

needs a different number of iterations. In general, more iteration is required when

the guess values are further away from the exact values.

The method of computing unknowns using the inverse algorithm has been ex-
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Figure 7.7: Plot of calculated values of a and d1 using the inverse method. Plot (1)

with d1 = 0.0368 m, a = 0.0068 m, (2) with d1 = 0.036 m, a = 0.0058 m

plained in sections 2.4, 3.3.2 and 4.3 and also the calculated numerical results have

been given in sections 2.5, 3.6 and 4.6 for 1, 2 and 3-dimensional studies, respectively.

It is emphasised that although we used known values of a and d1 (two reasonable

values) to calibrate the forward waves in the inverse method they are determined

from the measurements by being unknown in both the forward and backward wave

expansions. Thus we have a basis on which to assess the success of the method.

7.6 Inverse solutions in conjunction with the scan-

ning method

In order to find the solutions for the radius of the unknown object and its position

using the measured results, our method requires a series of tests. Here we use a
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Figure 7.8: Test for unknowns within the required scanning range.

scanning method to test for possible solutions of the unknowns.

7.6.1 Test series

Equation (7.22) was used for a series of tests to calculate the unknowns using the

measured data and the procedure is as follows. First, use a pair of known values of

a and d1 to find the safe region. The safe region is the limit of the guess values of a

and d1 where the general equation safely converges to a feasible value (real, positive

and of the right magnitude). Using a number of guess values, a1,g, d1,g the safe range

for a and d1 are found such that within these ranges the system converges safely

to the exact known values of a and d1. As described previously in section 5.5 and

Senaratne et. al. [112, 113], using the values of x1 and x2, a complete test for finding

the unknowns can be performed. This is described in the following paragraph and

illustrated in Figure 7.8.
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First, we take two suitable ranges, a1 to aR and d1,1 to d1,G, within which the

exact values of a and d1 can be expected. These are the full scanning ranges and, in

this computation process, we used multiple ranges for a1 and d1 : a1 from 0.5 cm to

2 cm and d1 from 0.5 cm to 6 cm. The two increments from one pair of guess values

to the subsequent pair of a and d1 are marked as x1 and x2, respectively, in Figure

7.8. The test starts with the initial pair of guess values, d1,1 and a1, and computes

a, d1 and |∆Γ1,1|, |∆Γ1,2| using the inverse algorithm. We have a stopping criterion,

that is the calculated values of a, d1 are real and positive and |∆Γ1,1|, |∆Γ1,2| must

tend to zero. If the result does not meet this criterin, then the system takes the

next pair of guess values d1,1, a2 and calculates a and d1 using the same process.

Similarly, this will continue until aG, the last guess value of a in that row is used.

Next, the calculation starts with the guess values d1,2, a1 and continues the same

process until the pair d1,2, aR is used. The tests continue until the last pair of guess

values, d1,G, aR are used. Figure 7.9 shows the magnitudes values of the residuals of

the reflection coefficient (in figure these are shown as |F1| and |F2| for frequencies f1

and f2, respectively) calculated in the iteration process explained previously. The

corresponding calculated values of a and d1 were shown in Figure 7.7.

7.6.2 Microwave scanning results

So far, we have explained the calculation process of a and d1 for only one set of

measured data which was obtained with the cylinder of 0.0065 m diameter, kept at

0.0415 m away from the antenna aperture. In the experiment, we have measured

data with the cylinder placed at different positions between the antenna and the

wall. Using these results the above process was carried out to calculate the cylinder

radius and its distance from the antenna aperture for all of these positions. Figure

7.10 shows the results of seven calculations. For comparison, both the estimated

and actual a and d1 values are plotted in the figure. These results show that there
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Figure 7.9: Plot of calculated values of |F1| and |F2| using the inverse method. Plot

(1) with d1 = 0.0368 m, a = 0.0068 m, (2) with d1 = 0.036 m, a = 0.0058 m
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Figure 7.10: Calculated and measured results for the internal object using microwave

measurements.
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is a good agreement between the calculated and the actual values of a and d1.

The above results are for antenna position one in the experimental model. How-

ever, using the same procedure, it is possible to find the corresponding unknowns

for other antennas. Once these calculated results are available the location of the

object can be easily found using simple geometry.

In a practical application for the detection of a breast tumour, it would be impor-

tant to measure the reflected wave using at least three antennas [114]. The complex

reflection coefficient of the chest wall and the skin reflection can be estimated using

a set of pre-recorded data or, at the time of obtaining measurements, by comparison

with the measurements that can be obtained from normal tissue when the object

or tumour is absent. We acknowledge that this may be difficult in practice but a

clinical trial would provide a set of average values that would help for a reasonable

estimation.



Chapter 8

Conclusions and future work

In previous chapters we obtained solutions to forward and inverse problems of mi-

crowave scattering associated with three different coordinate systems. These out-

comes have a potential for detecting a foreign object inside a host material. This

chapter presents the conclusions of this work and future directions for developing

practical applications.

8.1 Discussion and conclusions

There are two major achievements in this research. One is obtaining solutions to

the identified forward problems by expanding the classical theories found in electro-

magnetism. This work has been supported by mathematics. The other achievement

is the development of the subsequent inverse algorithms to find the unknowns. Both

of these cases were tested using simulations and experimental measurements.

8.1.1 Outcomes of the theoretical developments

The technical developments have begun with a plane wave reflection model. The

microwave response at reflecting layers has been demonstrated using the electrical

properties at both the sides of the boundaries of each layer. We have found that
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the impedance in the front of each layer can be calculated from the measurements

obtained from the surface of the host. These calculations have been made using

the recursive equation (equation (2.30)) which was obtained using the plane wave

reflection model. According to the simulation results, the front impedance which can

be measured from the surface of the host contains information about the properties

of the internal layers of the host. The test results have shown that there is a

significant difference in the front-impedance when any two layers inside the host

have differences in their dielectric properties. This result indicates that the detection

of an internal object is possible using microwave surface measurements.

Next, using the solutions available in the literature, a microwave scattering prob-

lem of a cylindrically-shaped object has been obtained for a simple model using a

cylindrical coordinate system. The plane wave incident upon the object boundary

has been expressed in terms of cylindrical waves to obtain solutions for the field

components of incident and scattered waves. The constructed solution at the field

point was modified later so that the scattered field received at the source point

can be found. This mathematical solution is useful for practical applications when

taking microwave measurements using a single antenna for both transmitted and

received signals.

In order to use this result for a more realistic application, we modified the for-

ward model with a dielectric cylinder. Then, the new forward equation for the

scattering problem of a dielectric cylinder was tested using simulations. According

to this study we conclude that the dielectric property inside the scattering object

makes a significant contribution to the backward wave which can be measured at

the surface of the host. For a cylindrically-shaped object, we also obtained for-

ward solutions for the case of microwave scattering from incident cylindrical waves

and the result was tested using simulations. Again, we modified this solution for

a non-conducting cylinder. This solution may be appropriate in practical applica-
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tions when dealing with scattering problems associated with cylindrical waves. The

inverse scattering problem associated with this cylindrical object has been solved

using Newton’s iterative method. Initially, this inverse algorithm was tested using

the data generated analytically from the forward equation. Later we found that the

algorithm is capable of finding unknowns using the data obtained from microwave

measurements.

We have advanced our method for considering a scattering problem of a spherically-

shaped object inside the host model. Using the available solutions in literature, a

forward equation was obtained with the help of a spherical coordinate system. The

incident and scattered wave fields have been expressed in terms of transverse electric

and transverse magnetic modes. Then, by taking the wave functions as rectangu-

lar components of electric or magnetic vector potentials, the field components have

been constructed. This approach has resulted in finding the solutions to the for-

ward problem at an arbitrary field point in a radial direction from the centre of the

sphere. Again, as in the cylindrical case, the solutions to the field components were

obtained by rotating the field point into the source point. This solution facilitates

the use of a single antenna for both transmission and receiving when this method

is used in practical applications. The corresponding forward and inverse algorithms

in the three-dimensional study were tested analytically using simulations. It has

been found that these algorithms are capable of computing unknowns by applying

microwave signals and analysing the backscattered waves received at the surface of

the host material.

The convergence of the inverse algorithm has been studied by conducting a

robustness analysis using a range of different guess values. The result of this analysis

has revealed that the performance of the converging process depends upon the initial

guess for the unknowns. The larger the difference between the guess value and the

exact value the poorer the performance is. As a result of this study, a safe range
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was found within which the algorithm can safely converge to the exact values. The

results of this analysis have been used in the experimental study when finding the

size of the scattering object and its distance from the antenna.

The accuracy of the calculated results using this inverse method depends upon

the accuracy of the measurements. Therefore, we tested this algorithm in the pres-

ence of simulated measurement errors. According to the result of this test, this

algorithm can calculate unknowns even with some errors in the measured data.

However, when the errors in the measured data are large the corresponding errors

in the calculated values of unknowns are also relatively large.

8.1.2 Experimental developments

In the experimental study we obtained measurements by illuminating cylindrically

and spherically-shaped objects using microwave signals. The measured values of

the reflection coefficient of the conducting cylinder in this experiment agree with

the values predicted using the forward equations of the theoretical model. However,

there are some disagreements between the predicted and measured results when the

object is very close to the antenna (this could be a problem with the antenna near

field effect and this problem may need to be treated separately).

From the measured data, we found that the scattered waves from the object have

been seriously affected by the reflection from the wall behind the object. However,

we could distinguish the response of the object by taking two sets of separate mea-

surements: one set is with the wall and the object and the other is with the object

itself. The difference between these data was analysed using the polar plots and by

referring to the Smith chart. These plots have shown that there was an offset in

the whole set of data (the phase and the magnitude of the reflection coefficient) in

the polar plane. We found that this offset is approximately equal to the phase and

magnitude values of the measured reflection coefficient of the wall.



190

The reflection coefficients measured from the experimental study have been used

to compute the radius of the object and its distance from the antenna. The com-

puted results are very close to their actual values. The inverse algorithm was used

together with the scanning method to compute the values of the unknowns using

the measured data. The simulation process has run within two specified ranges to

search for the two unknowns. The selection of the guess values makes a significant

contribution to the calculated results and this depends upon the safe range. When

the distance between two consecutive guess values exceeds the safe range we do not

obtain satisfactory results. Alternatively, when this distance is very small we need

a large number of scanning steps to cover the selected range. Therefore, when using

the scanning method, it is important to set suitable increments for the guess values

within the selected ranges to search for the unknowns. The inverse algorithm and

the associated scanning method have performed well even in a situation where there

are some errors in the measured data.

8.2 Future work

The results of the mathematical and experimental study reveal that the detection of

a foreign object is possible using measured reflection coefficients. This method has a

potential for further development to use in medical applications such as detecting a

breast tumour as a cost effective screening method. In order to develop this method

for practical application, more work is needed in both experimental and practical

applications. Some of the areas for future study are discussed in the following

sections.
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8.2.1 Short term goals

The main target of the inverse algorithm is to find the size and the location of the

scattering object. The location can be found once the distances to the object are

found from at least three surface points, which can be achieved using the measure-

ments obtained by three different antennas. In order to calculate the two unknowns

from each antenna, we need to use at least two frequencies. This method may be

further improved by solving for an over-determined system using several frequencies.

In the theoretical study, the solutions to the microwave scattering problems

were obtained for both conducting and non-conducting objects. The experimental

study presented in this thesis was conducted only with a conducting cylinder and a

conducting sphere. Therefore it is important to conduct similar experiments with

dielectric objects. The algorithms developed so far will support this work. Such

experiments should aim to mimic the properties of the object lodged in the host

material as closely as possible. Once this test model is constructed the rest of the

measuring and estimating procedure is similar to the method illustrated in this

thesis.

The antenna near field effect is another problem to be solved before proceeding

to develop practical applications. In practical applications, the microwave measure-

ments are taken by the antenna placed on the surface of the host material. Because

of the complicated field pattern closer to the antenna, this near field effect could

prevent the discovery of an object close to the surface of the host. In such a sit-

uation, the algorithm can compute incorrect results and it is possible to miss the

object in the scanning process. Lifting the antenna from the surface could be a

solution but further work is necessary to solve this problem.
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8.2.2 Long term goals

We recommend the rest of the experimental study be performed in a suitable mi-

crowave laboratory. If the measuring chamber is properly insulated to microwaves,

it would reduce the effect of the noise and interference coming from outside of the

chamber.

Once the rest of the work in the laboratory experiment is completed, this method

will need to be tested in a practical situation. This may be possible using a prototype

breast model in the initial stage. However, in order to use this method for breast

cancer detection, a number of clinical tests would be required.

In order to build a prototype test model, it is necessary to have more accurate

estimates of the properties of breast tumours as well as of the properties of the

other biological tissues including the skin-fat of the breast. In such a situation,

the data and the information available in the literature search in this thesis may be

inadequate and therefore further investigations would be required. The construction

of the prototype experimental breast model needs a careful selection of appropriate

materials which have electrical properties similar to those of the breast and a breast

tumour. Apart from this, the prototype breast model must consist of layers for the

skin fat and the chest wall.

Although we have used a larger antenna for the experimental study, the antenna

system for this practical experiment must be designed and built so that it is feasible

to use it with this prototype breast model. Again, there may be a number of

antennas but, the detection and the calculation of the size and the distance of the

scatterer from each antenna can be performed using the algorithm and the associated

scanning method developed in this thesis.

The problem associated with reflection from the chest wall, breast skin and other

interference must be treated using the prototype breast model before proceeding to

any clinical experimentation. The reflected waves which can be measured from the
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surface of the breast will contain all these unwanted backscattered waves. Having a

sufficient amount of data available from the measurements, a substantial amount of

noise could be filtered out to obtain the microwave response of the breast tumour.

It is acknowledged that there is more work necessary to minimise these effects. The

theoretical developments, analytical simulations and the experimental studies of this

thesis have given the directions to achieve this goal.



Appendix A

Field equations

The fundamental electromagnetic wave theory is well established [7, 8, 14, 15, 99].
In this appendix we illustrate a number of wave solutions which are commonly used
in electromagnetic wave problems.

Field equations
For a perfect dielectric medium, the field equations for E, the complex electric in-
tensity and H, the complex magnetic intensity are:

∇× E = −jωµH,

∇×H = jωεE + J,
(A.1)

where J is a vector which represents the source or the electric impressed current.
Equation (A.1) can be used for a lossy medium by replacing µ and ε with their
complex quantities µ̂ and ε̂, respectively and µ̂ and ε̂ are the complex permeability
and permittivity, respectively [8]. (See section 1.3 in Chapter 1 for more details.)

For a homogeneous medium the divergence of H in the first equation of (A.1) is
∇ ·H = 0. Any divergence-free vector is the curl of some other vector. Therefore,

H = ∇×A, (A.2)

where A is called the magnetic vector potential. Using (A.1) and (A.2) we obtain,

∇× (E + jωµA) = 0. (A.3)

Any curl free vector is a gradient of some scalar and therefore

E + jωµA = −∇Φa, (A.4)

where Φa represents the magnetic scalar potential. In order to obtain the equation
for A, substitute (A.2) and (A.4) into second equation of (A.1):
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∇× (∇×A) = jωε(−∇Φa − jωµA) + J

= −jωε∇Φa + k2A + J,

where k = ω
√
µε is the wave number of the medium. The above equation can be

arranged as
∇× (∇×A)− k2A = −jωε∇Φa + J. (A.5)

Using the vector identity ∇2A = ∇(∇ ·A)−∇× (∇×A), equation (A.5) can be
written as

∇(∇ ·A)−∇2A− k2A = −jωε∇Φa + J. (A.6)

If ∇ ·A = −jωεΦa , then equation (A.6) becomes

∇2A + k2A = −J. (A.7)

Equation (A.7) is the Helmholtz equation but with a non-zero right-hand-side. The
solutions to this equation are given in terms of vector potentials. From equation
(A.7), equation (A.6) can be written as ∇(∇ ·A) = −jωε∇Φa and, by substituting
this in equation (A.4),

E = −jωµA +
1

jωε
∇(∇ ·A). (A.8)

Now consider the field equations for a perfect dielectric with M being the mag-
netic displacement current,

∇×H = jωεE,

∇× E = −jωµH−M.
(A.9)

In homogeneous media, ∇ ·E = 0 (E is a divergence-free vector) and therefore this
can be the curl of some other vector as,

E = ∇× F, (A.10)

where F is called the electric vector potential. Therefore, the first equation of (A.9)
can be written as,

∇× (H− jωεF) = 0. (A.11)

Any curl-free vector is a gradient of some scalar. Hence,

H− jωεF = ∇Φf (A.12)

where Φf is the electric scalar potential. By substituting (A.10) and (A.12) into the
second equation of (A.9),

∇× (∇× F)− k2F = −M− jωµ∇Φf . (A.13)
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Again, using the vector identity for ∇× (∇×F), equation (A.13) can be written as

−∇2F +∇ (∇ · F)− k2F = −M− jωµ∇Φf . (A.14)

If ∇ · F = −jωµΦf then equation (A.14) becomes

∇2F + k2F = M. (A.15)

Again, equation (A.15) is the Helmholtz equation but with a non-zero right-hand-
side.

In a homogeneous and source-free region, the fields satisfy the following equa-
tions.

−∇× E = ẑH, ∇ ·H = 0,

∇×H = ŷE, ∇ · E = 0
(A.16)

Since the fields E and H are a divergence-free, we can express them in terms of
A the magnetic vector potential or, in terms of F the electric vector potential, see
(A.2) and (A.10). We can employ solutions with a combination of A and F, but A
and F (as the dual relationship) must be a solution to Helmholtz equation in (A.7)
with J = 0 = (0, 0, 0), and F must be a solution to dual equation in (A.15) with
M = 0 = (0, 0, 0). Thus, from equations (A.5) and (A.13), the general equations
for the vector potentials A and F are

∇× (∇×A)− k2A = −ŷ∇Φa,

∇× (∇× F)− k2F = −ẑ∇Φf ,
(A.17)

where Φa and Φf are scalars and ŷ = jωε̂ and ẑ = jωµ̂ (see section 1.2).
The complete solution for E and H is the combination of two partial solutions to

electric and magnetic sources. From the Maxwell’s relationship, we have ∇×H =
ŷE + J, and this can be arranged as

E = (∇×H− J)
1

ŷ
. (A.18)

Therefore, (with the combination of two partial solutions) the solution to field E
can be found in terms of A and F using equations (A.2), (A.10) and (A.18) as

E =
1

ŷ
(∇× (∇×A)− J)−∇× F. (A.19)

Similarly the solution to H fields can be found from the dual relationship and it is

H =
1

ẑ
(∇× (∇× F)−M) +∇×A. (A.20)

Thus, the electromagnetic fields for E and H in terms of A and F, with J = 0 and
M = 0, are

E = −∇× F + 1
ŷ
(∇× (∇×A)),

H = ∇×A + 1
ẑ
(∇× (∇× F)).

(A.21)
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These are the general equations for fields and potentials for a homogeneous and
source free region.

From equations (A.7) and (A.15), with J = 0 and M = 0, we have ∇2F = −k2F
and ∇2A = −k2A , respectively. Using these relationships with k2 = −ŷẑ and, by
using the vector identity∇2A = ∇(∇ ·A)−∇× (∇×A) , equation (A.21) can be
written as

E = −∇× F− ẑA + 1
ŷ
∇(∇ ·A),

H = ∇×A− ŷF + 1
ẑ
∇(∇ · F),

(A.22)

Each equation in (A.22) has both F and A vector potentials. Therefore both
of these equations can be expanded conveniently by choosing one vector potential
at a time. When F = 0 and A = uzψ(uz is a unit vector in z-direction), we can
represent the fields in terms of A using equation (A.22) as

E = −ẑA +
1

ŷ
∇(∇ ·A), H = ∇×A. (A.23)

When the equation (A.23) is expanded in rectangular coordinates, we obtain

Ex = 1
ŷ
∂2ψ
∂x∂z

, Hx = ∂ψ
∂y
,

Ey = 1
ŷ
∂2ψ
∂y∂z

, Hy = −∂ψ
∂x
,

Ez = 1
ŷ

(
∂2

∂z2
+ k2

)
ψ, Hz = 0.

(A.24)

In equation (A.24), we can see that the Hz component is zero and therefore
this type of field is called transverse magnetic (TM) to the z-direction. Similarly
by choosing A = 0 and F = uz ψ we can represent the fields in terms of F using
equation (A.22) as

E = −∇× F H = −ŷF +
1

ẑ
∇(∇ · F). (A.25)

When the equation (A.25) is expanded in rectangular coordinates, we obtain

Ex = −∂ψ
∂y
, Hx = 1

ẑ
∂2ψ
∂x∂z

,

Ey = ∂ψ
∂x
, Hy = 1

ẑ
∂2ψ
∂y∂z

,

Ez = 0, Hz = 1
ẑ

(
∂2

∂z2
+ k2

)
ψ.

(A.26)

In equation (A.26) we can see that the Ez component is zero and therefore this
type of field is transverse electric (TE) to the z-direction.



Appendix B

Bessel functions

Bessel’s differential equation of order v is

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − v2)y = 0, (B.1)

where v is an arbitrary real or complex number. Since this is a second-order dif-
ferential equation, there must be two linearly independent solutions [8, 97, 103].
However, when v = n an integer, then there are no longer two independent solu-
tions (n is referred to as the order of the Bessel function).

The Bessel functions of the first kind, denoted as Jn(x) , are solutions to Bessel’s
differential equation and these solutions are finite at the origin (x = 0) as n is an
integer. The following relationship is valid for v = n an integer:

J−n(x) = (−1)nJn(x). (B.2)

The Bessel functions of the second kind, denoted by Yn(x) , are also solutions to the
Bessel differential equation. The following relationship is valid for v = n an integer:

Y−n(x) = (−1)nYn(x). (B.3)

For the non-integer v,

Yv(x) =
Jv(x) cos(vπ)− J−v(x)

sin(vπ)
(B.4)

and
Yn(x) = lim

v→n
Yv(x). (B.5)

The function Yv(x) are sometimes called Neumann functions and are denoted by
Nv(x). The Bessel functions of first kind and the Bessel functions of the second kind
are shown in Figures B.1 and B.2, respectively. These are the lowest order functions
(n=0, n=1 and n= 2) and have been plotted with respect to their argument x.
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Figure B.1: The Bessel functions of first kind
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Figure B.2: The Bessel functions of second kind
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Another pair of linearly independent solutions to Bessel’s equation are the Hankel
functions:

H(1)
v (x) = Jv(x) + jYv(x),

H(2)
v (x) = Jv(x)− jYv(x),

(B.6)

where H(1)
v (x) are the Hankel functions of first kind and H(2)

v (x) are the Hankel
functions of second kind. These functions are used to express inward and outward
propagating cylindrical waves, respectively.

The derivative formulae of the Bessel functions are

xJ ′n(x) + nJn(x) = xJn−1(x) (B.7)

and
xJ ′n(x)− nJn(x) = −xJn+1(x). (B.8)

From equations (B.7) and (B.8),

J ′n(x) =
Jn−1(x)− Jn+1(x)

2
. (B.9)

Similarly,
xY ′n(x) + nYn(x) = xYn−1(x) (B.10)

and
xY ′n(x)− nYn(x) = −xYn+1(x). (B.11)

From equations (B.10) and(B.11),

Y ′n(x) =
Yn−1(x)− Yn+1(x)

2
. (B.12)

From equations (B.9) and (B.12), the derivative of the Hankel function is given by

H(2)
n
′(x) =

H
(2)
n−1(x)−H(2)

n+1(x)

2
. (B.13)

The spherical Bessel functions are given by

jn(x) =

√
π

2x
Jn+1/2(x), (B.14)

yn(x) =

√
π

2x
Yn+1/2(x) = (−1)n+1

√
π

2x
J−n−1/2(x). (B.15)

Bessel functions of order n+1/2 are used in the solutions of the Helmholtz equation
in spherical coordinates. The spherical Bessel functions are defined as

bn(x) =

√
π

2x
Bn+1/2(x), (B.16)

where Bn(x) denotes a solution to Bessel’s equation (Jn, Yn, H(1)
n and H(2)

n are the
possibilities). Here, jn(x) is used to represent the spherical Bessel functions of the
first kind and h(2)

n (x) is used to represent the spherical Hankel functions of the
second kind.



Appendix C

C.1 Evaluation of the constant un

Here, we recall equation (3.11) to evaluate the constant un.

E0e
−jk1p cosφ = E0

∞∑
n=−∞

unJn(k1p)e
jnφ. (C.1)

Multiply both the sides of equation (C.1) by e−jmφ and integrate with respect to φ
over the interval 0 to 2π to obtain

2π∫
0

e−jk1p cosφe−jmφdφ =
∫ 2π

0

∞∑
n=−∞

unJn(k1p)e
jnφe−jmφdφ. (C.2)

The right hand side of equation (C.2) can be simplified to∫ 2π

0

∞∑
n=−∞

unJn(k1p)e
jnφe−jmφdφ = 2πumJm(k1p). (C.3)

The mth derivative of the left hand side of equation (C.2) with respect to p is

dm

dpm

2π∫
0

e−jk1p cosφe−jmφdφ =

2π∫
0

km1 j
−m cosm(φ) e−jk1p cosφe−jmφdφ. (C.4)

When the right hand side of equation (C.4) is evaluated at p = 0 we obtain

km1 j
−m

2π∫
0

cosm(φ)e−jmφdφ =
km1 2πj−m

2m
. (C.5)

Similarly the mth derivative of the right hand side of equation (C.3) with respect to
p evaluated at p = 0 can be found as

km1 2πum
2m

. (C.6)

Then, with the results in equation(C.5), the constant un is found as (putting m = n)

un = j−n. (C.7)
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C.2 Evaluation of the constant gn

In order to evaluate gn, multiply both sides of equation (4.14) by Pq(cos θ) sin θ and
integrate from 0 to π on θ. Then,

π∫
0

e−jkr cos θ Pq(cos θ) sin θ dθ =

π∫
0

∞∑
n=0

gnjn(kr)Pn(cos θ )Pq(cos θ) sin θ dθ. (C.8)

When n 6= q, because of the orthogonality condition,

π∫
0

Pn(cos θ)Pq(cos θ) sin θ dθ = 0. (C.9)

When n = q, using the expression for the Legendre polynomials given in Rodrigues’
formula [8], equation (C.9) is simplified to

π∫
0

(Pq(cos θ))2 sin θ dθ =
2

2q + 1
. (C.10)

Therefore, the right hand side of equation (C.8) becomes

π∫
0

∞∑
n=0

gnjn(kr)Pn(cos θ )Pq(cos θ) sin θ dθ =
2gq

2q + 1
jq(kr). (C.11)

The qth derivative of the left hand side of equation (C.8) with respect to r evaluated
at r = 0 is

j−qkq
π∫

0

cosq θ Pq(cos θ) sin θ dθ = j−qkq
2q+1(q!)2

(2q + 1)!
. (C.12)

Similarly, the qth derivative [8] of the right hand side of equation (C.11) evaluated
at r = 0 is

kq
2q+1(q!)2gq

(2q + 1)(2q + 1)!
. (C.13)

By comparing this result with left hand side equation in (C.12),

gq = j−q(2q + 1). (C.14)

By replacing q by n,
gn = j−q(2n+ 1). (C.15)



Appendix D

Legendre Functions

When solving the wave problems associated with spherical coordinates the Helmholtz
equations are used in many cases. The θ equation in (4.4) is called Legendre’s equa-
tion and its solutions are called the associated Legendre functions [8,97].

1

sin θ

d

dθ

(
sin θ

dL

dθ

)
+

[
v (v + 1)− m2

sin2 θ

]
L = 0. (D.1)

The solution to this, in general, is Lmn (cos θ) and, commonly used solutions are

Pm
n (cos θ), Qm

n (cos θ). (D.2)

The solutions Pm
n (cos θ) are the associated Legendre functions of first kind and

Qm
n (cos θ) are the associated Legendre functions of second kind.

Legendre’s equation in (D.1) can be put into a common form using, u=cos θ, so
that

(1− u2)
d2L

du2
− 2u

dL

du
+

[
v (v + 1)− m2

1− u2

]
L = 0. (D.3)

Equation (D.3) is the associated Legendre equation and, if m = 0, this equation
reduces to the ordinary Legendre equation:

(1− u2)
d2L

du2
− 2u

dL

du
+ v (v + 1)L = 0. (D.4)

In spherical coordinates, the angle θ changes from 0 to π and therefore the solutions
must be expected over the range −1 ≤u≤ 1. If v is not an integer, Pv(u) and
Pv(−u) are two independent solutions to the ordinary Legendre equation in (D.4).
If v = n is an integer, the Legendre function of the first kind becomes a finite series
called the Legendre polynomial of degree n . In this case, Pn(−u) = (−1)nPn(u)
[8]. The Legendre function of the second kind is defined as

Qv(u) =
π

2

Pv(u) cos vπ − Pv(−u)

sin vπ
. (D.5)
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Figure D.1: Legendre functions of the first kind.

When v = n is an integer,
Qn(u) = lim

v→n
Qv(u) (D.6)

and this is the second solution to Legendre’s equation.
The Legendre polynomials are given by Rodrigues’ formula,

Pn(u) =
1

2nn!

dn

dun
(u2 − 1)n. (D.7)

Some of the lower order polynomials are

P0(u) = 1 P1(u) = u P2(u) = 1
2
(3u2 − 1)

P3(u) = 1
2
(5u3 − 3u) P4(u) = 1

8
(35u4 − 30u2 + 3).

(D.8)

The curves of the Legendre polynomials plotted against θ for n = 0, n = 1, n = 2
and n = 3 are shown in Figure D.1.

Now consider the associated Legendre equation in (D.3). For simplicity, take m
to be an integer. If equation (D.4) is differentiated m times (we use v = n) the
result is for v = n[

(1− u2)
d

du2
− 2u (m+ 1)

d

du
+ (n−m)(n+m+ 1)

]
dmL

dum
= 0. (D.9)
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Now, letting w =
[
(1− u)m/2

]
dmL
dum

in the above, equation (D.3) can be obtained
with L replaced by w. Hence the solutions to the associated Legendre equation are

Pm
n (u) = (−1)m(1− u2)m/2

dmPn(u)

dum
, (D.10)

where Pn(u) is the associated Legendre polynomial of degree n. All Pm
n (u) = 0 for

m > n. Similarly for the second kind,

Qm
n (u) = (−1)m(1− u2)m/2

dmQn(u)

dum
. (D.11)

Here, Qn(u) is the associated Legendre polynomial of degree n of second kind. Some
of these polynomials are

P 1
1 (u) = −(1− u2)1/2, P 1

2 (u) = −3(1− u2)1/2u, P 2
2 (u) = 3(1− u2)

P 1
3 (u) = −3

2
(1− u2)1/2(1− 5u2), P 2

3 (u) = 15(1− u2)u,

P 3
3 (u) = −15(1− u2)3/2.

(D.12)

For Pm
n (u), when degree n = 1 there is only one solution, when n = 2 there are two

solutions for first order and second order and, when n = 3 there are three solutions
for first, second and third orders. When m is not an integer, the situation becomes
more complicated and the standard formulae can be found in [8].



Appendix E

The distance to the wave front

from the cylinder
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Figure E.1: Geometry of the antenna plane

Figure E.1 shows the geometry of the antenna in xy-plane. In the experiment the
horn angle has been measured (α=17.5 degrees). The arc drawn between two side
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walls of the antenna represents the wave front which is presumed to be cylindrical
in shape due to the mode of wave excitation from the antenna flange. From the
geometry of the situation the small distance ∆ between the arc and the aperture
plane of the antenna at the mid-angle point between O ′ and the edge of the antenna
front face can be found as

∆ = r(1− cos(α/2)). (E.1)

As the horn angle α is known by the measurements, the arc radius r is found to be

r =
B

2
cot(α). (E.2)

Therefore, using equations (E.1) and (E.2) the length ∆ can be found as

∆ =
B

2
cot(α)(1− cos(α/2)). (E.3)

Now, equation(E.3) can be used to find the distance to the wave front from the
point C, the centre of the cylinder. Thus the approximate average distance to the
wave-front from C is d∗1 where d∗1 = d1+∆. Using a similar mid-angle approximation
for the scattered wave, again taking the half-angle point φ = π − θ/2, this average

distance is
d∗1

cos( θ
2

)
. In the application in Chapter 7, ∆ = 0.006 m.
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