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ABSTRACT

The reader of this thesis should already have a basic understanding of ideal theory.
For this reason it is recommended that a good introduction to this subject would be gained
from reading D. G. Northcott’s book “Ideal Theory”, paying special attention to chapters
one and three. This thesis consists of three chapters, with chapter one providing the
definitions and theorems which will be used throughout. Then I will be considering two
problems on the arithmetic degree of an ideal, one posed by Sturmfels, Trung and Vogel
and the other by Renschuch. These problems will be described in the introductions to

chapters two and three.



CHAPTER 1

PRELIMINARY RESULTS

Let I be a homogeneous ideal of the polynomial ring S = F'[zo,...,z,] Where
F' is any field.

Let P be a prime ideal belonging to /.

If P is isolated, we know from the corollary of theorem 3 of Northcott’s book
[6, p.19], that the primary component corresponding to P is the same for all normal
decompositions of /.

However, if P is embedded, then this is not true, as the following example [6,
p.30] shows.

Consider the ideal (z2,zy) in the ring F'[z,y], F' any field.

It is shown in Northcott’s book [6, p. 30] that

(z) N (y + az, z?) (where a is any element of F),
(z) N (y +bz,2®)  (where b € F, b # a),
and (z) N (2%, zy,9?)
are all normal decompositions of (22, zy) with (y + az,z?), (y + bz,z2), (22, zy,?)
all (z,y) — primary.

So the primary component corresponding to an embedded prime ideal need not
be unique.

Therefore, if we have two normal primary decompositions of I, one having a
primary component ()1 corresponding to an embedded prime P, and the other having
a primary component Q2 corresponding to P, (1 # ()2, then in general, the classical
length multiplicity of ()1 does not equal the classical length multiplicity of Q».

However, in arithmetic degree theory, we do have a way of defining the length

multiplicity of an embedded component of an ideal which is well-defined.



The definitions that are needed to do this are given later in this chapter.

We will also need some basic facts about the Hilbert function from the classical
degree theory.

Let V (n + 1,t) denote the F'—vector space consisting of all forms of degree ¢
10 2805 5 w5 T

Then dimp V (n + 1,t) = (“,‘;"‘), t >0, n>0.

Let V (I,t) be the F—vector space consisting of all forms in V' (n + 1,t) which are in /.

Definition 1. The function H(I,—) : Zt — Z* [10, p.43] defined by

H(I,t) =dimpV (n+ 1,t) — dimp V (I,t) is called the Hilbert function of I.

For large enough ¢, the Hilbert function is a polynomial P (I,t) in ¢ with
coefficients in Z. The degree d (0 < d < n) of this polynomial is called the dimension

of I and is denoted by dim (7).

The polynomial P (/,t) can be written in the following form:

P(1,t) = ho(I) (§) + ha( ) + ... + ha [10, p.45] where ho (I) is a positive integer.
The leading coefficient of P’ (,t), namely kg (), is called the degree of /.

There is of course a great deal of theory on the Hilbert polynomial, but for our

purposes the following definition and theorem will suffice.

Let I = (f1,.--,f¢).

Definition 2. [ is said to be a complete intersection if (f1,...,fi-1) : fi =

(fis..., fi1) forall i =1,...,¢.

Theorem 1 [10, p.46]. Let the generators fi,...f; of I be forms of degrees

s1,...,8¢ respectively. If I is a complete intersection then hg (I) = s1 ... st.



We will now state the other definitions, theorems and propositions that will be

used in chapters two and three.

Definition 3 [5, p.1]. Given any homogeneous ideal I and prime ideal P in
S, we define J to be the intersection of the primary components of / with associated
primes strictly contained in . We let J = S if there are no primes p belonging to [

with p;P.

Let () be a P—primary ideal belonging to I.

Definition 4 [3]. We define the length-multiplicity of (), denoted by mult; (P),
as the length of a maximal strictly increasing chain of ideals, I C J; C Ji—1 C ... C
Jo C Jy C J where each J; equals ¢ N J for some P—primary ideal gq.

As we will be making repeated use of an algorithmic approach to calculate

multy (P) it is convenient to state it here, followed by a theorem.

Step 1. Take a maximal strictly increasing chain of primary ideals from @) to P.
(1) QC ... CQLIEQT ..l

Step 2. Intersect each primary ideal in (1) with J.
(2) G NTE o EQea M EGNTT E: o E BN =k

Step 3. Eliminate duplicates in (2) in order to get a strictly increasing chain of

ideals in the sense of definition 4.
(3) QN =LiCIyC...CH CJ

Note: If P is an isolated prime ideal of /, then multy (P) gives the classical length

multiplicity of Q.



Theorem 2 [5, p.2]. Using the above notation we have ¢ = multy (P).
il .02 in

Definition 5 [2, p.1]. A polynomial of the form ag;z} z5"...zy,", where

i1,12,...1p are any non-negative integers and a(;) is any element of F, is a mono-

mial.

Definition 6 [2, p.1]. If A is an ideal of S then A is a monomial ideal of S if
and only if A is generated by monomials. That is, A = (my,...,m,), where m; are
monomials for £ = 1,...,s.

Proposition 1 [2, p.2]. Let P; be a monomial ideal of S = F [zg,...,zy]; Pp is

a primie ideal if and only if P = (&5,; « oo 88.); 85 € {000 < v} for § = 0,5 57

Proposition 2 [2, p.2]. Let P;,Q; be monomial ideals of S = F[z,,...,Zn)

where P; is prime and, say P; = (zi,,...,%;,), t; € {0,...,n} forj =0,...,7.

Q1 is P-primary if and only if Q; = (2f°,...,z{",mq,...,ms) where t; > 1 for
j=20,...,r, and m, are monomials in z;,,...,z; for £ =0,...,s.

Definition 7. Consider a primary decomposition of I = Q1 N ... N Qy where Q;
is P;—primary. The arithmetic degree of I, denoted by arith-deg (/), is given by
k

arith-deg (/) : = Z multy () degree (F;).
i=1

L& I = (fl,...,ft).

Definition 8. M (]) := max {degree ( fi)}.
i=110 ¢t



Theorem 3 (criterion of mult; (P) = 1) [1, p.2].

Let R be a Noetherian ring.

Let A and B be ideals in 12 such that B;A.

Let P be a prime ideal such that all primes belonging to A and B are contained
in P.

Necessary and sufficient conditions, that there exists no ideal, say C, with

Bg C ;A, and all primes that belong to C' are also contained in P, are the following:

(i) there exists an element z in A such that A = B+ R - z.

(ii) PA SB.

Definition 9 [2, p.3]. Two monomials A and 7 are said to be relatively prime
if, when
n; - g,

— I to il L
)\_:rin T and'r—:ckn el s

then {mf-m ; ,.’17.5_,.} n {:Ekn, w ,:T,'kr} = ¢.

Theorem 4 (2, p.3]. Let S = F[zo,...,z,] be a ring of polynomials in n + 1
indeterminates. Let A, 7, my, ..., m, be monomials in F'. If A and 7 are relatively prime,
then:

(A-7,mg,...,m;) = (A, mg,...,my) N (T,Mmg,...,my).



CHAPTER 2

ON A PROBLEM OF B. RENSCHUCH

Consider the polynomial ring S = F [z, z1,z2] where F' is any field.
Let m > 1 be an integer.
We set
Q = (23,22, z971)
A= (:r‘%, 'rg T1, ToT1 :r:%, 3:‘11, fr% :r%)
B = (zo, 71, z2)
Qm = (A, B™)
Also we will define I,, := Q N Q.

This example was discussed by Dr. B. Renschuch of Germany [7, p.92]. It is an
example stated in the classical paper of G. Hermann [4]. However we want to study the
ideal I, again, in order to prove the following theorem.

Theorem 5. Arithmetic-degree of /,,, does not depend on the integer m for m > 6.

More precisely, arith-deg (/,,) = 14 for m > 6.

Remark: In a letter written to Professor W. Vogel on 12 July 1995, Dr. B.
Renschuch said that because of a time constraint he was unable to show why the length
multiplicity of @, does not depend on m if m > 6. The aim of this chapter is to give
two proofs for Theorem 5. The following two theorems will provide the first proof. The
second proof will solve the problem stated by Dr. Renschuch by proving that the length

multiplicity of Q),, = 10 for all m > 6.

Theorem 6. I, = A if and only if m > 6.



(@)

(ii)

(iii)

(iv)

(v)

(vi)

Proof.

Suppose m = 1. Then B! = (zg, z1, z2).

So Ql = (mg, ry, .’1:2) = B

Clearly A;Q.

Therefore AEQ N Q1.

m = 2

Then B? = (mg,xg .'1:1,3:9:1:2,3:%,:.':1 grg,mg).

So Q2 = (23, zo 71,73, T0 T2, T1 T2, 73) = B2,

Q NQ2 = @ since  is contained in (Qs.

Therefore AS Q N Q2.

o= 8

Then B? = (7‘0, 'rg T, r% 9,10 T% T0T1 T2, T0 'r%, :r"l", ’B% T9,T1 :C%, mg)

So Q3 = (mg,mg ml,mgmlmg,m?,m% mg,mgm%,mgm%,m%mg,ml z%,‘r%) = B3,
A;Q N Q3 i.e. Q N Q3 contains the element zg 3:% which is not in A.

m = 4

Then B* = (a3, 'Bg’ 1,8 T2, T3 23, :rg T1T2, fn{% 23, 2o 23, mo T2 T2, T T1 T3,

- A Dl ol A
T Th, T7,T] T2, T T5, T1 Th, Ts).

4 252 22,2 B el 3 .3 34)

SoQ4 = (3:%,3:% 21,2021 :1:%,:1:1,3:1 T3, T Th, To TY, To TY To, To Th, T} T2, T1 TY, Tg).

A;Q NQ4 ie. g T? is contained in () N Q4 but is not contained in A.

m o= 5

4 ol 2 2.2 2 2 sl
Then B> = (:1:3, Ty T1, T T2, 'Eg :r:%, :1:83:1 T9, mg T5, T :1::1”, T{T] T, TH T T, Tf

3 4 L ; 4 4 2 =2 4 .5
:1:2,:5'03:1,:303::13:1:2,3:03[:1:2,:1,0::-:1.rg,momg,m?,mlmg,m%mmml:1:%,:1:1:1:2,2:2).

So Q5 = (Tg,ﬂ"% T1,T0 T1 m%,m?;r:% 'r%pr% mg,ﬂfg :r:f T9, T :}:‘21,:::?,591 :rg,:rg)

i.e. :r,orr::f z9 € Q N Qs xo T% T & A.

.
A;eQnQﬁ—
m = 6
6 __ 2 4.2 3.3 2 2 o33 A2 d
Then B (10,3*0 T1, :10*1:2,10 ?'1.:1,0 T] T, Ty TS, T 'rl,:rg Ty a"g,rg:clw2,m03:2,m0m1,
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4
=g o3 w2, 28 2¥x2, x} z1 3, 28 23, wox3, o 21 T2, X0 235, T0 73 3, To T174, 20 73, 78,

3 3 |

5 4.2 2, 5 .6
z{ T2, T] T3, T] T, T Th, T1 T3, T3y).

5 2 D A 9.9
So Q¢ = (23,23 =3, z0 23, z1.23, 25, 23 1, T0 21 73, z1, 2% 23).

We now apply theorem 4 of chapter 1 to Q¢ which gives

Qﬁ = (mg: I mga I mga mg:'TO T m%,m?,ﬂ:% LL’%) N (igamg 3?%»370 -’17%; Igsml)

= (29, 21 73, mg, z, 'r% x2) N (I%, T :r%, 0 T3, mg,:ri‘) N (m%,ml,wg 23, 25)
ﬂ(m%, T, :r%)

= (%, %1, 'rg] N (zg, 21,23, 23 23) N (mg,ml, mg, zo73) N (mg, %, 23)

n(mg,ml,mg) N (mg,ml,mg) N (mg,ml,mg)
= (z0,71,28) N (w0, z3, 23) N (w0, 21, 22) N (20, T1,28Y)
(e, 21,4) 1 (a3 58, 03) 0 (a0, 0,29) 1 (a1, 28)
N(zg, z1, z3).
Now (zo,x},z3) N (23, 2%, 28) = (2, =1, z3).
Using this and eliminating duplicates we have
Q6 = (a0,21,29) 1 (50, ) 1 (53, 1, 58) 1 (a8, 24, 28) 1 (e 21,29,
Applying theorem 4 to () gives
Q = (zo,2%) N (=3, 21).
(:}:g,ml,mg) N (zo, T%,’I‘g) N (zo, T%) = (=0, mf)
(2§, 21,23) N (2§, 21,23) N (23, 21) = (3, 21)-
So QNQg = (:rg,ar‘ll,:ng) N ('ro,'rf) n (1:8, z1).
Applying theorem 4 to A gives
A= (23, o173, 23,22 22) N (23, 21) = (2, 20 21,2}, 22 22) N (23,21, z8) N
(23, 1) = (w0, 21, 2§ 23) N (25, 21) N (23, 21, 23) N (23, 21) = (zoz}) N
(20, z1, 23) N (2, 21) N (23,2}, 22) N (mg, z1) = (z2,2%,23) N (23, z1)N
(z0,7%) = Q N Qs.
(vi)m > 7

From the definition of @,,, Qi ;QZEEQ;;?EQL; e SEQ"‘ for any positive integer m.
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Therefore Q N Qs 2 Q N Qy, for m > 6.
Also from the definition of 0,,,, A C @, for all 2 > 1 and certainly A C @ so
QNQm 2 Aform > 1.
Since Q@ N Qg = A from (vi)
weget A=QNQs 2 QNEy 2 A for all m > 6.

Hence Q N Q,, = A for m > 6.

Theorem 7. Arithmetic-degree of Ig = 14.
Proof: From Theorem 6 we know that A = () N Q. Propositions 1 and 2 of chapter
I show that @ N Qg is a primary decomposition of A. ie. @ is (zoz1)-primary, Qg
is (zo, 1, 2)—primary.
Thus arith-degree (A) = multy (zg,z1) - degree (zo,z1) + multy (zg, z1,72)- degree
(zo,z1,72). We have degree (zg,z1) = 1 and degree (zo,z1,z2) = 1 by theorem 1.
Thus we have arith-degree (A) = multy (zg, z1) + multy (zg, z1,22). We apply the

algorithm that was given in the first chapter to calculate multy (zg, z1).

A maximal strictly increasing chain from @ to (zp,z1) s
(3:8,3:%,3:03:1)5(3:8,ml);(m%,ml);(mg,arl). (It is easy to see that this chain is
maximal by applying theorem 3 chapter 1). Next we find J which in this case equals

the whole ring S = F' [z, 21, 72).

Intersecting each ideal in the above chain with J will leave the chain unchanged,

so from theorem 2 we have multy (29, z;) = 4.
We now calculate multy (z9, 1, z2).

A maximal strictly increasing chain from Qg to P = (zg,z1,72) is:

= 3 2 2 ol LR LRl 3
Qs = (23,25 11, 0 B 5,27, 25 mQ,moﬂ,z,mgmg,mg,mlmg)

C(32 2 4 2.2 1 6

t 2t 5 4
Ty, TG T1, To T1 T3, L1, T{ T5, T§ T, To T3, T3, T1 T5)

£
Cifid, i T T ) . U, 3
;E(:r:o,:co 1y BOBY B BTy B 5,85 Tos B0 L3, mg,:n] T3)
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4
Ty, 3*0 15 :."‘11, T{ T,y TO :}'2, :rg, T ’I‘2)

4 2 INICLS B2 4 .6 2 4 ..2.3
o3, e xy, xd, 28 152, o ud) 7 (08, E5 51, 8], 09, 1 5, o205, T2E)

2 4 2 4225)

4 .6 2 4
Ty, T(T1, T, Tg, T1 '1"2,‘?0’1"2.3”07‘2)95('1‘0«’?0231,3”1 T1 Th, TQ Ty, TGTS, TH

T 2,2 4)C(.3

2 4 g 2.2 .4
I a,l,'r‘f,'x:la*Q,igmg,TDs'g,TQ 7 ﬂ,o,moml,ml,ml3:2,:.':032,:32,5303:%)

(3

(:

(w5, 73

(a5, @

('rg, ml,T‘ll.'nla:%.'BQ,a*gm2] 2 (TO, T%’T‘l,’r‘?,ﬂ"l mg r%,xgmg,mom:l"a:g)
(5,

(3

(

(

(

4 2 .4 2 2 C 2 4 2 qd 2
T ,:r T1, T, T1T5, Ty, T Ts, To L] 'rg)#(mg,moxl,ml,mlmg,mz,mgmz,mgmimg)

A4 2 s 2 3
T3, 3 1, 1, T1 23, T3, To T3, ToT1 T2, To T3)

2 4 2 .4 2 NCr3 4 2 .4 2
z3, 23 ©1, 21, 71 22, 73, 20 23, ToT1 T3, To Tl)#[mo,xl,mlmz,mz,mg T3, TT1)
3 .4 2l 2 2 )

2 4 2 .
'rg, T1,T1T5, Lo, TOTH,TOL], T] ’I‘Q) (’L‘D, Tq,T1T5,T9, T T5, TOT]1,T] T2

c 2
TO,xI,Tz,ﬁ'g$2.T}0T] T mg)?&(mg,m‘l‘,mg,mg m%,mgml,:rl T2, T{T2)
3.4 .4 C(r2 4 -4
(zg, 1, T3, To 1, T1 T2, B0 T2) 7 (%4, T1, T3, T T1, T1 T2, To T2)

(w0, z1, &3, #1 22) 3 (w0, 73, 23, ©1 22) G (w0, 73, 73, T1 2)

LN SalE Nallh YAl NANE Nal YalEh Nalh Sa e Ve ‘H\ﬁ ‘iLn N

(z0, 21, 23) G (w0, 21, 23) (0, 71, %3) Z (%0, 71, 22) = P.
Then we find that J = (TU..’I‘I,.’I‘{) i) = @
Next we intersect each ideal in the chain with () and eliminate duplicities.

We know from the proof of theorem 6 that we can express QNQ as (23, z, z3) N
(w0, z3)N(x3, 1) If we apply theorem 4 to the ideals in (z3, 72 71, 21, 71 73, 23, o 23) N
(mg,m%,mgml) we get (mg,mgml,m‘l‘,xl mg,a:g,moxg) N (:1:3,3:%,3:03:1)
— (3:3,.?:},:::1 3:%,3:‘21,9::0 rr%) n (m%,ml,mg,mg ‘T%) N (mg,mf) N (:1:3,3:1)
= (e 21,08, 05) 1 (43, 54, 8) 1 (50, 99) 1 (e 1)
= (z2,21,23) 0 (zo,29) N (23,21) = Qs N Q.

So all the ideals in the chain from Qg N Q to (:sg, m% :cl,:r‘f, ] :1:;";', m%,:no x%) ne
can be written as (3'{2],1"11'1':) N (Tgfr?) N (’I‘%,Tl)

The element zozizs € (23,28 1,21, 21 22, 23, xo 22, 2023 22) N Q but is not

4

contained in the ideal (:r:%,:;-:g M1y B, 21 :r%, mg,mg T%] N Q.

The element z9z? 3 € (mg,mgml,m‘f,:clm%,x%,mgx%,mgw%xg) N @ but is not

contained in the ideal (z3, 23 z1,z}, 21 22, v3, 20 22, 20 23 22) N Q.
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The element zgz1 2o € (23,28 z1, 2}, 71 23, 23, w0 23, To 71 72) N Q but is not

contained in (23,23 71,2}, 21 23, 23, zo 73, zo 2 T2) N Q.

The element zg =} € (3, 23 1,2}, 21 23, 2, 20 23, 20 21 72, Zo 2}) N Q but is not
contained in ('Eg, T% .'L‘l,.’I:?, iy .’II%, .'1:%, To .’17%, Lo L 2’:2) N G.

The element x :c% = (:cg, :n% ml,mf, 1 m%,m%, TQ mg, ToT1 T2, TQ m%) N ¢ but is not
contained in (z3, 73 1, 2}, 71 23, 23, 70 T3, T0 T1 T2, T0 z3) N Q.

The element zgz; € (m%, zi, 21 23, 73, 70 .’E%,.’Eg z1) N but is not contained in
(m%, .'1:(2] x1, 1,71 T% q:g, T /1:5, TOT1 T2, T0 T%) NnaQ.

The element =35 3 € (23, 2}, 71 23, 24, 20 23, zg 21, 23 22) NQ but is not contained
in (T%, x‘f,ml m%,m‘%,:ﬂg m%, zoz1) N Q.

The element 22 72 € (23, 21, 21 23, 23, 20 23, 20 71, 2% ©2) NQ but is not contained
in (z3, 21, T123, 28, xo 28, 2o 1, 23 23) N Q.

If we apply theorem 4 to the ideal (m%,m?,mlmg,mg,xox%,mg xl,m%mg) nae
we get (zo,z}, 2123, 25,23 22) N Q = (zo,2},22,2225) N Q = (zo,z},22) N Q =
(zo, ﬂ:‘i‘,mg,ml z2) N Q.

Therefore all the ideals in the chain from (23, 21, 21 23, 23, 7o 3, 20 21, 23 22) NQ

to (zo, 2z}, 74, 21 72) N Q are equal.

The element 3 € (wg, 23, 25, 1 2) N @Q but is not contained in
(z0, 23, 25, 21 22) N Q.
Finally we have (zo, 72,23, 2122) N Q = Q.

Thus we are left with the chain Qg N Q

3 a2 4 2 2 3
(zg, 6 z1, 27, T1 T5, T3, To 5, Lo T T2) N Q

2 4 2 ik 2
(:rg, &l B1; Tgy B1 L5 T3:%D m%, o] T2) NQ

3 4 2 ol 2
(25,2521, 27, 3125, 25, Lo 25 To 1 22) N Q

3 2 4 2 i 2 3
(zg, 2§ 1, 21, 21 T4, T5, To TS, Lo T1 T2, To2]) N Q

LA YalEh Mol Na
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2 4 2 i 2 2
(::r:g, T3 T1, L], T1 T, Ty, T T5, T9 T1 T2, T 27) N Q
4 2 .4 2
(23, 2%, 21 23, 25, To 23, To 21) N Q

4 2
(3783 T1,T1T5,To, T L9, T T, IL'% 3'72) N Q

4 2 4 2 2
(‘T:g! Ty, T1 Ty, To, T Ty, TOT], Ty 33'2) n Q

N kN kN kN KRN

(z0, 73,28, T122) N Q
Q.
So from theorem 2 of chapter 1 we have multy (2o, z1,z2) = 10.
Now multg (zg, z1) + multys (zg, z1,22) =4 + 10 = 14. So arith-deg (A) = 14.
Now @ is (zg,z1,72) — primary for any m > 6 so @ N @y, is a primary
decomposition of A for m > 6. Since arith-deg (A) = 14 and length multiplicity of

@ = 4 it follows that length multiplicity of @), = 10 for any m > 6.

We will now describe a second proof which solves the problem stated at the
beginning of this chapter. Our second proof needs some parts of the first proof. Also,

in this second proof, we will assume that m is always > 6.

Claim.
= Bm =i(A m 2 _m=—2 m—1 m—1
Qm = (A,B™) = ( s Lo s Ty LTy 5 T1Ty )

Proof: We will use induction on m.

We know from the proof of theorem 6 that the claim is true for m = 6.

Suppose that the claim is true for m > 6.

i +1 -2 -2
Then Qi = (4, B™*) = (A, mpxg", 2 3:5”,3:5"'*‘ ,T%&"En ,.’I:g:ﬂl 25

2,.m—1 _2_ m-—1 m—1 . ooo.om—1 _2 m-—1
TGy AEGTy  SEOTITy TOED,XOTLTE ,TiZy T %123)

= (A, 3:3""1,3:3 1:5“_1,3:0 T, T12y').

m—2

Therefore Q, = (A,a:g‘,:rrg Bo' yEeLy sl :::5“'1) for m > 6.



We now construct a strictly increasing maximal chain from @, to

P = {mpam )

-2 -1 -2\ C C
Qmi(A,mg",mgm’Q" SEOTE ELTE )¢...?é

2 =43 =1

. C 2 4 2 m—2
(zh;2d wi; 2l 2P 2 o= v 2l ,3:1m%)¢($8,z0m1,ml,$§”,m1xz,xg.'rQ )

b (. 4 i -2 2..m—3
(x5, £6 21, 27, 25", T1 T5, TO Ty < T5Ty )

4 2 -3
(z3; ’r% 21,07, 55,21 15, Tozs )

2 4 o el m-=3 _2_m—4
(23,28 21,21, 2 21 23, ezl >, ef 2y ™)

2 4 —_ —4
(mg, PG I B0 Wi 25, Tp s )

4 2 m—4 .2 _m—5
(mg,m%ml,ml,mg’,mlmz,mng S EEER )

2 4 v D 4
(23, 23 71, 2%, 2, 71 23, T 73)

o 4 i D s
(z5, 2§ T1, 2], TF', T1 T3, To Ty, T T5)
3 2 4 o )
(zg, z§ 21, 27, 25, 1 T5, To T5, TH T5)

3 2 4 2 4 2.2 _m—l]
(50, 28 1, & 1, 8185, Fpite, 0545, 85" )

3 -2 4 on® ol uB i
(g, g T1, 21, T10, T 3, )

2 4 2 2
(3:8, T T1, 1, T1T5, zr% 72, 25, Tg z3)

2 4 2 4
('Egamo Il}ml,ﬂfllz‘ﬂ'}2,:},‘0 ’L‘%)

2 4
(3, 5g m1, 2}, vi 03, o8, wo w8, wo w3 @)

2 4 ‘
(3:8, 5 T4, BT 123, 25, mgm%, ) :1:% z2)

(a:g, 3:(2) z1, T3, 2123, 3:3, $0.’L‘%, TQT) T2)

(3:8, 3:3 %1, L7, mlm%, T4, 0 T3, T0 T1 T2, T0 mi”)
(23, 28 71,2, 71 23, 23, 20 23, o 71 T2, 20 27)
(z3, 23, 21 23, 23, zo 22, 20 1)

3 4 2 4 2
(23, 1, 21 23, T3, o T2, To T1, T} T3)

LYANER Salh Vol NalED Na e Nl NalEh Yol Vol Yol Ve B Vol Yol Yol Vo NS Callh S L Vol 'Tallh Wally ¥a
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(3, 2d, 1 22,28, moad, mozy, 2t 29)

4 4 2
(mg: L1, Tg9,TQTo, TOT1,T] -7"2)

(23,21, 23, o 23, To T1, T1 T2, T T2)
(mg, .1:11, :.-:%, TOT1,T1 T2, TOT2)

(mg, 1,5, T0 T1,T1 T, T T2)

(zo, .'1:‘11, :1:‘21, T172)

(z0, 3, 25, T122)

(zo, 2}, 28, T122)

(w0, w1, 24)

(zo, z1,73)

(:’Bg, Ty, '7:1,2))

(zo, z1,72)

LA NalEh VAN SN SATEE NalES NANE Sa NS Sa TS SANES Y0NS N

=

The fact that this chain is maximal follows from Theorem 3 chapter 1, as
the reader can readily verify. We now intersect each ideal in our above chain with
J = (23,22, z921) = Q to form a new chain from @, NQ to PN Q.

From (vi) and (vii) of the proof of Theorem 6 we know that @, N Q =
(x5, 21, 23) N (zo,23) N (x5, 21).

From the proof of Theorem 7 we have (mg,mg ml,m‘f,:ﬂl m%,m%,mg T%) n
Q = (z},2,23) N (zo,2}) N (z3,21). So all ideals between Qn N Q and
(mg,m% xl,m‘l‘,m-l m%,m%,mg m%) N @ are equal.

From (23, 2% z1, 2}, 21 23, x4, w0 23, zo 2} 29) onwards, the ideals in our chain are

the same as the ideals in the chain given in the proof of Theorem 7.

Therefore mult4 (2,21, 22) = 10. Also from Theorem 7, multy (2o, z1) = 4, so

arith-deg (lg) = 14.
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CHAPTER 3

ON A PROBLEM OF STURMFELS, TRUNG AND VOGEL

Let I be a monomial ideal in the polynomial ring S = F [z, ..., z,] with minimal

set of monomial generators (mq,...,ms).

Sturmfels, Trung and Vogel [9, Theorem 3.1] proved that
arith-deg (I) > max {degree (m;) :i=1,...,s} (1)

It was an open problem in [9] to extend this result for ideals which are not monomial.
T. Smith [8] has constructed examples showing that this problem is not true in general.
However, the aim of this chapter is to describe families of non-monomial ideals for which

(1) is true. (See our problem at the end of this chapter on page 36.)

Theorem 7.
Let n be any positive integer.
Let the ideal I, be given by I, = (m{;,ml,mg,m%) N (zgz3 — x1 z2) in the polynomial

ring F [zg,z1,z2,23). (F is any field).
Th I _— mn — n-—l - 2 o— 2 2 -
en I, = (zgT3 — zy~ T1T2, ToT1T3 — T{T2, TOT2T3 — T1T5, TOT3 — T1T2T3).

Proof: Any element in [, can be written in the form w (29 z3 — z1 z2) where w

is an element of the ring F [zg, z1, z2, z3).

(i) Suppose that w is a single term.
Then, since wzg x3, wz zo belong to (zf, 21, z2, :cg) w (zg z3 — 1 ) must be
generated by one of
Ty T3 — mg’_lml T, ToT] T3 — :c% To,TQ T2 T3 — T1 :r:g, To mg — z1T9 3.

(ii) Suppose w contains ¢ terms i.e. w = w; + w2 + ... + wy.

Also we assume that there are no wy (1 < k < t) such that wy, z¢ 3, wy. z1 T2 both
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belong to (:1:3,3:1,3:2,.'5%). If wj. contains x1 or o or z3 then wy (zgx3 — =1 22)
would be generated by gz x3 — 'r:f T9 OF TQT2 T3 — T m% or zg xg — T] T2 T3.
If each w; contains o:.ar:{') (where @ € F') and if « > n — 1, then wy is generated
by =g z3 — :r:g"lml T9.
If each wy, contains azf (where o € F) and if 1 < n — 2, then w (z9 3 — 71 T3) &
(.’BH,.’IT;,IT:Q,:E%) and thus w ¢ I,,. Therefore the only generators of [,, are those

given in Theorem 7.

Note: If n = 1 then I,, = (zgz3 — 71 72).

Theorem 8. arith-deg (/,,) = n + 1.

Proof:

arith-deg (I,,) = multy, (2o z3 — =1 z2) - deg (zo z3 — =1 x2)+
mult;, (%o, ¥1, 72, x3) - deg (zo, T1, 72, T3)

= deg (z¢ 3 — =1 z2) + multy, (zo, 21, T2, 23).
We know that deg (zg 23 — 21 2) = 2 from Theorem 1 of chapter 1. Therefore
we must show that multy, (zg, z1,z2,23) = n — 1. A strictly increasing maximal chain

from (3:3,3:1,:::2,:1:%) to (zo,z1,22,3) is given by;

1

X 2\ C - 2\ C —2 2
(-q'ala$1r$21$3]¢($31m1)$2m3 3?3,3}3)?5(3}3,3?1,3‘}2,3’!3 I3>m3)

3 2)C C

C =
;é(mg,ml,xg,mg T3,3) .. 4
-1 -2
(23, 21, T2, Tow3, 25) g (25, @1, @2, 20 T3, 73) I (2577, 21, %2, 0 73, 73)

C {.n~3 nC C 2y C
7 (207" w1, w2, w0 w3, 23) 7 ... 5 (23, 71, 72, TOT3, T3) 7 (z0, 1, T2, 73)
&
:

(3:01 3:1,.’1’:2,.’1?3).

For example, if we apply Theorem 3 of chapter 1 to the ideals

-1
(2,71, T2, T0x3,73), (zf ', x1, 72, 70 23, 73), We have

n—1

’ = : .
(i) (x5, @1, 39,z w3,23) = (af, 1, T3, T0T3,23) + F [0, 71, T2, 73] - T

@ii) (zo,z1,79,73) (mg_l,ml,mg,mgmg,mg) € (zd, 1, 2, T0T3, T3).
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We also note that the length of this chain is 2n. ie. from (mg,ml,xg,mg)
to (xg',zl,xg,azgm;;,m%) there are n ideals and from (:53_1,:51,:1:2,3:0 3:3,3:%) to
(zo, 1,2, x3) there are n ideals.

Next we calculate J which is the ideal (z¢z3 — x1z2) . Now we intersect each
ideal in our chain with J.

The ideal (27,71, %2,2073,23) N (toT3 — 1T2) = (Toz3 — T1Z2) SO We can
confine our attention to the first n — 1 ideals in our chain.

-2

The element mg_lmg — x5~ “z1 3 is contained in (z7, z1, T2, $3—1$3,$§) N J but

is not in (2}, 71,72,23) N J.

If we choose any two ideals (mg,ml,mg,:rg_’:a:g,mg) N
<[i4d . (i =t
g, (zfm1,23,2, W ).’L'g,.'L‘%) NJ, (1 <i<n-—23) then z; oty — gy Cel P
(i . . ”
belongs to (z7, 1, 72, g G )mg,mg) N J and is not in (2}, 71, T2, 2y 'T3,23) N J.

Therefore no two of these ideals are equal, so from Theorem 2 of chapter 1 [5,
p.2] we have mult;, (zg,z1,72,23) = n — 1. Therefore arith-deg (/) = n + 1. This
completes the proof of Theorem 8.

Remark: The maximum m ([,,) of degrees of the polynomials generating Iy, is

given by

Therefore arith-deg (I,) = m(I,) for n > 1.

For the remainder of this chapter we will consider a similar but more complicated
example.

Theorem 9
Let S be the polynomial ring F' [zg, 21, T2, z3] over the field F' and let » and r be any

positive integers. Let the following ideal I, of S be given by

Iy = (zo 23 — 21 22) N (2], 75, 23, 23). (2)
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(i) al'ith-deg (Inr) — 2Tﬂ.
(ii) the maximum m (I,) of degrees of the polynomials generating I is given by

2 n=r=1

4 : i =1 F=Rdrr=1.n=2
mlyy)=<K r+l1 n=1r>2

n+l r=1n>2

n+r nr>2

Remark: arith-deg of I,,, ~m (I,,) for all positive integers n and 7.
Proof:
First we prove (1)
Let Qur = (2,2}, 22, 23). Then arith-deg (I,,;) = deg (J) + multy,, (P)
(where P is the prime ideal of @y, i.e. P = (zg,1,x2,z3), and where
J = (zoz3 — z122) ).

Since deg J = 2 we need to prove the following key lemma.

Lemma 1.
multy,, (P) = 2rn — 2 (3)

Before we prove (3) we will give a maximal strictly increasing chain of primary
ideals from Q,, to P.
Q (Q n lTr 13, n—1 r 1
nr 2 \&ar, T 1 23:3) (@nrs Ty T T2)
1,r-1 "
;&(QRT* i r 9, ,I.n 1',]!’1 3?3) Qm'a n 1 1' 1)
< (Q n-—l r 1 Tn—l n—1_r—1 _n—1_r-2
# \Wnry T y Lo 3"1 T2 r3) #(QRT!TO Ty Ty 31 T2)
1,.r-1 1 -
i(an Ty~ -‘r :rg ""31{ 2T2*TH 1"1 ) (Qnr- L 2)5 '
—1 —
:&(QRT‘)‘TB} ml)C(QnT:mg lmls‘T[] o ; 1$2$3)

-1 -2
(Qnraﬁ"g T, 'B(?)l ~1 ) (Qn?‘a 0 1’1'1137{) R I 1332:330 5 I ! z3)

N KN

(Qnrams_lmlamo ] ) (Qm‘s 0 lml-mg 27’; : TS 2371 23:23:3)



1
(@nryzg™ T1,20” "2, 20" @]

- -2
(Qors iy 22 NG v G (O 5] 1,0 0]

o 2
(Qm,mo T1,Tg" 21*1,'1:3 27:1m2:r:3) (Qnr,zy~ 121 , T 21’%@6‘ T1T2)

-2
(Qn?‘-} To lTlamn 23‘%;’1‘3 27‘11:217‘3 23‘1{'53) (Qﬂfsxg ml)c"'
0 g

(@nr, mﬁ"s-‘r ) (in"a 0 47'1)55 ces ; (Qnrsmgml)

=1

(anﬂ?gmlaﬂ?nmrl 3:23:3) ;(anﬁ%ﬂ?hmomi -7:2)

(Qur, T3 71,2027 9, O 2]~ 13?) (Qnr, 23 21,2025 )
S @nry g 21,2023) G (Qur, 2§ 21,2027, T0 71 T2 73)
anr:'r() I1,T0 TlaTUTI T?) ;Cg (Qnram% T1,T0 S"J%, ToT]T2,T0 $1$3)

- -1
Qur, ToT1) ¢(Qnr;fr07‘1> 3 Ifﬂ?%)i(Qnmﬂ?oﬂ?l,ﬂfg T32)

n—1 n—1

T2, T :r3) ;é( 3:’1',:1:%,3,"%,:1:03:1)

-2 =1 % 2 -2
T ml,mg,m:i,xg'z:l,mo 3‘2:1:3)#( 07, 2], 25, 25, 2o 21, Ty - T2)

-1 -2 2
:B :{:11:5%13:313:031::33 'I:?:T(I}l 3)

c GE P ol
a5 23, 5%, o 1:1)# - Z (x5, 2, 25, 73, To 1)

n—
Ty
; 2
'rg, ml,mz,xg,:ro T1,T0 T2 3'3) (3:%, ®Ys :1:%,:1:3, TOT1,ToT2)
k.
o

r C( ¥ .2)

y Ly TQ& &’“31 ToT1,TOT2,T0 '1:3);,5 L0, .'1’11,.7:2, 3’3

2 .r—1 2 22 ?‘1
3' T1,$2,$3,$1 I3 $3)9‘_- (‘T‘O':le?QrTaa :32)

Irl)

9 P l .2 9
30:$11$21$3)$1 T2, T )

(w0, 27", 73,23

2 2 L 1 .0 2 -2
To,T] 9:2,'1:3,:1"’1' To .'1:3)# (o, 2], 25,25, 2]~ 22)

2 r—2 2 & - e
L0, &Y T2,$3,’1"1 Lo, ] .’Lg);é (zo,x] *; %5, 25)

C (-730,5’31;-'17%;37%); (.‘L"{),.’El,ﬂ:g, 33%:-732 3:3)

LA Vallh Noalih Nalih Salh Yok Salh Vol Salih Salh Yol Vallh Nallh Yollh SalEh Salh SolEh NalEh Salih NalEh Vol Ve

(3"0:3:113:2;3:%); (3’:0,3}'1,3}2,.’1’,‘3) = P.

20

n2r1n2r2,r2) (Qnr;nl n2r1n--2r2 n2{2

For example, if we apply Theorem 3 from chapter 1 to the ideals

1 2 -1 -2 r=2 1 2 r—1 -2 r— -
(Qnra g 3'115'33 -1 Tal 371 T2), (Qnramz}l 3?1;'33 331 y Ty Ty T2, Ty

we have

. 1 -2 -2 r-2 -2 _r—2
@ (Qur.og @185 ~2] mg' T'{ B, Ty Ty E3) =

1 =2 -l 2 =2, r=2
(Q‘RT'!H[] $1,$3 x] 1:3 "] +F[TU:T]:T21$3] n TI 3.

3)



21

o =, == s e R R
(i) (zo,z1,%2,23) (Qnr, 2y~ Z1,%5 “2] ,Tg - X] T2,Tg Ty - 3) =

-1 -2 _r—=1 _n=2_r=2
(Qn?‘)mg -Tl:-"fg I; :3?3 3:?1 3,‘2).
Hence we cannot extend our chain between these two ideals.

1

Another example to consider is the ideals (Qnr, Zo z1, 2y T2, :1:3_13:3),

n=1 .r .2 .2
(zg~ ", x1, T3, T3, To T1).
n—1

@ (a0, 3,23, 2051) = (Qur, 001,25~ @2,0f~ w3) + F [0, 01, 02, 3] - 7

(i) (zo,z1,z2,23) (ma‘_l,m’[, 22,73, 20 21) S (Qnr, To 3:1?3:3_13:2,:1:3_1 z3).

Other examples can be checked by the same method. Hence it can be shown that this
chain is maximal.

Claim A: The above chain is of length 4rn.

Proof:

From (Qur,zg ' 277! 20 23) to (Qur, 2§~ " 1) we have 4 (r — 1) ideals. So from

Qnr 10 (Qpr; m’o‘“l 3:%, :::B‘“z T :1:2,:1:(’]’"1 z1 x3) we have 4 (r — 1) ideals.

From (Qpr, :f:g"'l zy) to (Pnw :1:3‘_1 :1:1,3:3“_2 :1:%, :1:3_2 T1 T, 373_2 z1 z3) we have
4(r — 1) ideals.

From (Qnr,ma“zm;) to (Qnr,mg_zml,mg_s m%,ma“s T :1:2,:1:3'3 T1z3) we have

From (Qm,m%ml) to (Qm,mgml,mom%,:1:03:13:2,.1:0:::13:3) we have 4(r — 1)
ideals.

So from (Qm.,m}';_1 r1) to (Qn,.,:r:% 1,70 T2, 20 T1 T2, o1 £3) We have (n —
2) [4(r — 1) ] ideals.

From (Qur, 70 1) t0 (Qur, To 1,7 ' T2, 70~ 'z3) we have 4 ideals.

From ma‘"l,m’{,mg,mg,mg z1) to (mg,m'{,m%,m%,mg T1, 0 T2, T x3) we have

4 (n — 2) ideals.



From (mg,m’{,m%,m%) to (mg,m%,m%,mg,ml z9,z1 x3) we have 4 (r — 1) ideals.
From (z, 21,23, 23) to (z0,71,72,23) we have 4 ideals.

Adding these terms we get
4(r—=1)+(n—-2)4(r—1))+4+4(n—-2)+4(r—-1)+4=

4r —4+4rn—4n —8r+8+4+4n—-8+4r —4+ 4 = 4rn

Alternative proof of claim A.
Claim B: ),, is a complete intersection.
Proof:

We must first show the following to be true.

@ (0) : (z5) = (0)

(i) (z5) : («1) = (=5)

@) (z3,27) : (z3) = (a8,2)).

@v) (2§, 27,23) : (23) = (2§, 2], 3).

(i) Let y be any element in S. Then yzf € (0) & y = 0.
(i) yz] € (25) & y € (z7).

(i) yz3 € («3,77) & y € (b, 7).

(iv)yzi € (23,27,23) & y € (af,a],23).

We can now prove length Q,, = 4rn.

Proof:
degree (), = 4rn (from above claim and from Theorem 3)

= length )y, - degree P (If @), is P-primary then degree
Qnr = length Qyy - degree P)

= length Q,,

22
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Remark: If Q,, is a monomial P—primary ideal of F, then degree (», = length
Qnr. We intersect each ideal in the claim given on pages 20 — 21. We can now prove

Lemma 1 by applying the following 32 claims.

Claim 1.

zp~ 2t wo wy — 222 33 € (Qur,xy 2! m223) N J but is not contained in

the ideal @, N J. Therefore @ N (zoz3 — $1$2)§ (@nr 2z~ } T1~ 17:2 z3)NJ.

Claim 2.
(Qurs 25~ 8y YN TS (Qrers 2 2,28 V2 )T for 1< <7 -2
Proof:

Theelementm}';'l.qrf{_(JJr )3'2’]"3 Ty T ~2z 5y J 23 € (Qnr, g zh~1; z] i mg"lm;wuﬂ)mgm)ﬂ

J but is not contained in (Qnr, 2 2] N J.
Claim 3.

(Qnryzy~ ’71) N J; (Qnr 2™ ' 21, ’I‘O =i :1:1_1:1:2 zz3)NJ forl <i<n-—2
Proof:
The element z; (] )m‘{_l To T3 — :1:3—(£+2) T 3

€ (Qur, T i T :r:]1 (i+1 Jm’{_lmg z3) N .J but is not contained in (Qm,xa‘"‘ml) AL,

Claim 4.
—i n—(i+1 - n—(i+1 —j
(2l i AR Y (P R e e

ghﬂ_fb“uwﬁnj for 1<i<n-21<j<r-2

Proof:

The element z; =) L G+ 4, T3 — '_(*+2) ,;_j 3

1) _r—j 1) r— : : :
€ (Qur b 21,25 W) RN L) U+”7:2:1:3] N J but is not contained in



i (1) _pii
(@nr, zg *3:1,:1:3 4 ):1:; N,

Claim 5.
(@i :1:8‘_] 3:’{_1 T2 x3) N (Qm., g 3‘2] N J.
Proof:
The element zf 2}~ gm:; - .f:f:[’r]"'_l 3:’1"_1 23 € (Qnr, g~ 1., 2) N J but is not

contained in (Qnr,zf ' 2] za33) N J.

Claim 6.

_ = 1 L :; 1
(thﬂTS 1$;' Jsmg 1“""‘1 ok )$23;3)DJ ; (Qm-,iﬂg ! { 4 :L‘S ! 11. L )
NnJ for 1 <j<r-2

Proof:

~(j 1 _r=(j+1 1 _r=(+1
The element =)} 7] +2) po w8 ) o g (Ques2p L] J:ra1 bl G+ ):Iig)ﬂ

1 i n—1_r—(j+1
J but is not contained in (Qnr, 2y ] 20 T} G ):::2 z3) N J.

Claim 7.
(Qury 20~ @y, 2 CHY gr- Yza23) N J G (Quryg ™ m1 ,op D) gr=1 4,9

NnJ forl <i<n-—2

Proof:

The element =~ 272 23— Tg (+1) 4 € (Qur,zp~" 21,25 (i+1) 2t z9)N
J but is not contained in (Qp,, zg ’:1:1.:123 (i+1) 7 Yzoz3) N J.

Claim 8.

n—(i+1 —j n—=(i+1) r—(j+1
(@nr, 2y ™" ' 21, T (#+1) Z 0 3g ( ):1:1 G ):1:2:.:3)HJ
& n—(i+1) —j n—=(i+1) r—(j+1
Z (Qur,2p™" ' 1,y ( # * 5 ( )3’1 U )mz)ﬂJ

forl1 <:<n-21<j5<r-3.



Proof:

2 —(+1) _r—(+1
The element zj =" 2]~ e T3 — ;) e )3:; U+D) 4, €

(Qnr, 20 21,25 (i+1) ’l'—j,:r:g_(iJrl):r;_(J“Ll}mz) N J but is not contained in

(QHT} B r1 51'3 (“H} ,ES-(i+1) ﬂ’:;—(j-i_l) W) 3:3) .

Claim 9.

n—(i+1 n—(i+1)
(Qurs 25 21, T, ( )371’3’0 ( z1zo73)NJ

= (Cap, 20 ' 21, 1:3 (@+1) ;2 33_(”1)371 zo)NJ for 1 <i<n-—2
Proof:

Let = (LQury 2y 21 1, (Hl)mf,:ng_(wl)a:la:g:rg)ﬂJ

B = Qs o iy O 1a3’g_(i+1)$1$2)ni

Suppose that AgB

Then there is an element b € B such that bA. Since b € B, b must €

(Qnr,m“'i. rg' (1) s mg_(""l) x122). So b can be written in the form

—(i+1)

- —(i+1
V1 Ty + v2 T] + U3 $%+'r)4 $§+fu5 T 1+ s :rg m%—l—v?mg (¥ )ml T9

where vy, v2,v3, v4, V5, Vg, v7 are arbitrary but fixed elements of F [zg, 21, Z2, z3].

Let O = (Qm-,.’f'o :C]_ ’.‘r‘o (+) 3 (?+1)z1 332:173)

4 1
The terms v; 2, v2 2, v3 mg, V4 m%, vs Ty T1, Ve :no #=(f+1) 3:1 of b are all elements

of C. If vy mg_{iﬂ) z1x9 € C, then the element b € C by definition.

Then we have b € J (since b € (Qnr, x5 71 333 (+1)m%,w3_(i+1) z1Z9)

= Bl
So b € CnNJ = A which would be a contradiction. If v7 =0, vy mg_(i“) T1Ty €
If vy = zg (wo) (wo € F'[z0,71,72,23]) then vy mg_(ﬂ_l)ml Ty = wgmg_’: T1 T2

which is generated by x[’]'_iarl, a generator of C.
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—(i —(i+1 _
If v7 = z1 (wy) then vy :r}; Vel T1T9 = wqmg o )x% z9 which is generated by

25" 22 a generator of C.

If v7 = z9 (ws) then vy mgﬁ{iﬂ)

—(i+1)

z1xo is generated by z3 and if v; = z3 (w3)

g (i+1)

=ikl z1 T2 3 and both :1:2, 0 T1T9 T3

then vy zg z1 z9 is generated by g
are generators of C.

Therefore v; € F\{0}. Since b € J, b can also be written as g (zp z3 — =1 Z2).

One of the terms of ¢ must be :z:g_(H'l) W 1 = condwnis :r:g_(iﬂ) V7.

But this means that mg_(iﬂ) v7(zoxs3) is a term of 53:101—(£+1) VI TOT3 =
V7 mg_i z3.

v Ty~ " 23 is not an element of (Qnr 2™ E oy, 'rg () ,l,mg_(iﬂ)m; z3). Thus

it is impossible to construct an element b € B such that b € A.

Claim 10.
(Qnramg_lmi;_lm?) (Qnr; Ty~ l-'l lT?ng ]3:1 lm3)0J°

Proof:

The element .’1:3_1 :1:’{_1 T3 — T =2 Ty z2 €

Qs xa‘_l L1 lmg,:ra‘ 13:’1' 1fiz:3) N J but is not contained in (Qp, mg_l :1:'{"1 z2) N J.
Claim 11.
@uroa™ a1 e~ el ) 0T = Qe ol g T
:r:g'_l .'I’:;_(j+l).’£3) nJ for 1<j<r-2.
Proof:
Let A= (Qm.,mg_l Zy =i 7*3—1. ; (+1) z9) N .J
= (Qur 20~ 1“1 j.mg'_lm’{_(jH) T, T xil' (7+1) z3) N J.
Suppose AiB.
Then there is an element b € B such that b ¢ A. Since b € B, b must

-1 _r— 1. r +1 =1 r—{j+1
€ (Qnr, 0 Iy 3 3“3 ~(+1) 2:3:3 1-731 U )$3)
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So b can be written in the form

i o —{541 & —(j41
vy T + v T] +‘U3I2 -{-?}43'3 +vs g 1 I J +1;6:r3 ]I; U+ )m2+1}7m‘3 11:; G+ )$3
where v; to vy are arbitrary but fixed elements of F [zg, z1,z2,z3).
1 -1 J+1)
Let i = (Qur g :1:1 —J Jo] T, —( z3).
. L

The terms vq g, v2 7, v3 m%,m mg,wafra‘ 1ml , V6 Ty 1:1:; G+ ):1:2 of b are all elements
of C.

If w7 2”1 27U 40 € ©) then the element b € C by definition.

TTy Ty ) y

Then we have b € J (since b € B). Sob € CNJ = A which would be a

contradiction.

If v7 =0, vrzy~ 1.,;_{j+l) z3 € C.

i =3 —(741 ’
If every term of v7 contains an z; (k = 0,...,3) then vy zg 1:1:; Gt ):1:3 is an

element of C'. Thus v7 must have a term « such that & € F'\{0}. Since b € J, b can

also be written as ¢ (2o z3 — 71 72). One of the terms of ¢ must be « zj 2 a:;_(ﬁ'l) ie

g=..F...+...+azg =2 4 (7+1)

But this means that azg™ 2.{ (7+1) (—xz,z9) is a term of b.

o o (j+1) -2,
—azy™ ] (z122) = —azy ™ ‘] = .

e PN 17§ =1, 7=(+1) -1, r=(+1
-y T 1 Jz9 is not an element of (Qm. TG @y TaBy To, Ty Ty )3:3).

-1 r=(j+1 -1 r—(j+1
Thus b & (Quryzg ' 7] = (Rl &) )3:2,.7;3' hoph G )m;;).

=b & B which is a contradiction.
Claim 12.

(i+1), r-1) =i+l
(Qnr,mo 'EI,TO (@ )37; )DJ; (Qnr,ﬂfﬂ T], TOL @ ) 1 :I:'Z:

:1:3_(“'1) m'{_l :E;;) NJforl <2< n-2.

Proof:

The element 'z:l G+ ;—} T3 — :cg_(HQ) T} T2
€ (Qm.,:c'o‘_ia:l,fgﬁ L Ty~ (i+1), "=laz3) N J but is not contained in
(Qury 22y, oD o750y A J.
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Claim 13.
(@nryZg ' 21, 3"3 (i+1) 1‘3,.:’0‘_(&”3",;_(3“)3:2)ﬁJ=

n—(i+1 i n—(i+1) r—(j+1 n—(i+1) r—(j+1
(thmo 3.1’3:0 (7 ) 1 ’:BO ( )'Tl (j )2:2,3:0 ( )3"'1 ( )3_.3)

NJ 1<i<n-21<j<r-2

Proof: Almost identical to proof of Claim 11.

Claim 14.
(@arsal r 2l 2R a7 as) N T = (Quws 2l 2] )N,

Proof: -
Let A = (Qns, :rrg'_l zy” 11’2,3‘3 ] z3) N J.

={Qurszh w5 )N
Suppose AiB. Then we have an element b € B such that b ¢ A. Since

be B, be (Qnr,ma"]m’{‘l). So b can be written in the form

1 7'0 + 2 3‘1 + v3 ‘I‘Q + 4 ‘1"3 + 'u;,:r[;' : .1:1_ where v1,...,V5

are arbitrary but fixed elements of F'[zg,z1, 22, z3).

In a similar manner to the proof of Claim 11, one of the terms of v5 belongs to
F\{0}. Call this element .

But this means that b cannot be written in the form ¢ (zgz3 — z122), ¢ €

n—1

F [zo, 21, 22, 3] (as axg 3:'1"'1 does not cancel with other terms of b nor does it contain

zoxy or £1x2.) So b & J which is a contradiction.

Claim 15.

-1 r=j _n-1_r—(+1 ~1,r=(i+1
(Qur, 7 m'{ J,mg 1ml (J )55'2 o la] (7+1) z3) N J

= (@un a7 Ny 1gji<r-2.



29

Claim 16.
(Qm”xg_iml-‘ﬂ"n (IH]“{ T2, L) :’"_lms)ﬂJ
(Q?‘ll"a 7’0 ‘1’2 Tg_{z-H} 'I,‘fl‘—]) n.J 1<i<n-2
Claim 17.
1—(1+41 = 1 1 1 1
(o lag PR g, zo T =0H 4y

NJ = (Qnr,zp™" 'T1, T{) L) 1“-(“T-*‘I))I"LJT l1€r<a—2, 1<) Sr—2

The proofs of Claims 15, 16 and 17 are almost identical to the proof of Claim

14.

Claim 18.
(Qnr:TOTI)ﬂJ (QnrrTDTI:T{] 7:23:3)0']-

Proof:

-1 -2 2 -1
Ty wax3 —zy “T1T5 € (Qnr,ToZ1,2y T2x3)NJ

but is not contained in (Qnrszoz1) N J.

Claim 19.

(Qnr, To 71, 70 .’Bg.’}:;;)ﬂj (anTOTh Lo lﬂ:Q)HJ.

Proof: Very similar to proof of Claim 14.

Claim 20.

(@nr, o 11?1,35‘3_1332) N J;Cg (Qursx0 11?1,-’1?3_1-’1721 373_1 z3)NJ if n > 3.
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n—2

i ¥
z3 — 25 T1 %2 € (Qnr,ToT1,2y  T2,T5  x3) NJ

but is not contained in (Qnr, Zo .’111,3?3'_1.’122) nJ.

Claim 21.

(Qnrs o :1:1,:1:3”1:1:2,3:3_13:3) NnJ=(zg

n—1

i 2 2
L1255 o) NI,

Proof: Very similar to proof of Claim 14.

Claim 22.
(a9~ 2], 25, 23, Bo m1) N J; (g
NJ forl <2 <n-—2.

Proof: The element z,

(i+1)

n—i 2 2 n—
(g™, =1, =3, 25, To T1, T

(#g 2T x%,mg, zozy) N J.

Claim 23.

n—(i+1)

n—i 2 i
(3*0 s${:$23$3=$0$133¢0 )

(ef™*

n—i

(i+1)

To T3)

2 (i+1)

P ) 2 4=
, I, T5, T3 T T1, T T913)

To T3 — :1:3_(3'1'2) T173 €

n J but is not contained in

z3)NJ =

<fiad A :
/I, T3, TZ, BT, g L )mg)ﬂJ fori <i<n-—2.

Proof: Very similar to proof of Claim 14.

Claim 24.

n—(i+1)

—i 20l <
(zg ™", 1, 5, TF, T T1, T

(@

for 1 <1 <n-—3.

Proof:

n—(i+2)

n—(i+1

N J but is not contained in (z

T2

n—(i+1
2t a3, a2 moxy, zp T 4y

i 2 9 7
T1T9 € (T, T1, Ty, T3, TO T1, T

&
Y15

,3:3_““)3:3) Fid

1—(i+1)$2 n—(i+l)x3)

,$0

—i
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Claim 25.
2 2,2 2 2,2
(z§, z1, x5, 25, o T1, o T2) N J = (z§, =1, 3, T3, To T1, To T2, To x3) N J.

Proof: Very similar to proof of Claim 11.

Claim 26.
—(i+1
(g~ L 71,3:%.:1:3,10?1,13 1) 9, %o e }mg)ﬂJ
- (‘I‘E (1) vzl 23,2k, zoz)NJ for 1 <i<n—3.

Proof: Very similar to proof of Claim 14.

Claim 27.
2 . 2
(zg, 21, =5, 5, To 1, o T2, o £3) N J = (o, ], 25, 23) N J.

Proof: Very similar to proof of Claim 14.

Claim 28.
(mo,a:’;_j,m%,mg) N J; (zo, 2] J VI3, T3,m G+ ):1:2 z3) N J
for0 < j<r-2.

+2 ~(+1
- )%_mﬂl' (J+]m2$36

Proof: The element z :r

r +1 A i A -7
(z0, 7] ~ 22 23 2} G )3"2:63) N J but is not contained in (zo,z] 7,23, 2%) N J.

Claim 29.
(mg,m’{_j,x%,m%,x;_(j"‘ To13) ﬂJ¢ (zo, 2y J 1;%13.3,,1.‘.? (J+1),L,2)
NJ for0 < j <r-3.
Proof:
mom’}'-(i+2)m3_$;~(j+1)m2 € (z0,27 7,23, 3,2 =+ g,)

N J but is not contained in (zg, z] j L3, T3, 2] G+ 4y z3) N J.
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Claim 30.
y— r=(j+1) = r=(i+1),,
(%0, 4 J m%,r%,a‘l ( ) N = (26,2 j T%,:r:3,9"1 T2,

.7:;_(”1)3:3) NnJ for0 <4 <r—3.

Proof: Similar to proof of Claim 14.

Claim 31.
(zo, 2}, 23,23, 27~ ~0t0 gy 2] UHzaynJ =

(z0, 27 TRl sz nJ for0<j<r—3.

Proof: Similar to proof of Claim 14.

Claim 32.
C 9 .9 .2
(mg,aﬁ,m%,mg,mlmgmg) N J?é (zo, z1, x5, 3, 122) N J.
Proof: zpz3 — x172 € (w0,77,23, 2%, z129) N J but is not contained in

(z0, 22, 9:%, z1zox3) N J.

Also, as 2gz3 — 122 € (z0,7%,23,23,2122), (z0,2%,2%, 2%, z122) NJ = J. So

all ideals after (zg, z?, 23,23, z1 22) N J in our chain equal J.

We are now in a position to prove lemma 1. To find multy, (zo,z1,z2,3) We
calculate the number of duplicate ideals in our chain, denote this number by e say, and

then 4rn — e will be multy,  (zo,z1,z2,23) [5, p.2].

So the claims we will use are claims 9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 26,
27, 30, 31. (Since the other claims only relate to ideals that are unequal). (Note Claim
21 and Claim 27 are the same for n = 2).

Claim 9 gives n — 2 ideals that are equal.

Claim 11 gives r — 2 ideals that are equal.

Claim 13 gives (n — 2) (r — 2) ideals that are equal.
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Claim 14 gives a pair of ideals that are equal.

Claim 15 gives r — 2 ideals that are equal.

Claim 16 gives n — 2 ideals that are equal.

Claim 17 gives (n — 2) (r — 2) ideals that are equal.

Claim 19 gives a pair of ideals that are equal.

Claim 21 gives a pair of ideals that are equal.

Claim 23 gives n — 2 ideals that are equal.

Claim 25 gives a pair of ideals that are equal.

Claim 26 gives n — 3 ideals that are equal.

Claim 27 gives a pair of ideals that are equal.

Claim 30 gives » — 2 ideals that are equal.

Claim 31 gives » — 2 ideals that are equal.

Also since the last 6 ideals in our chain equal J we have another 6 ideals which

are equal. So length-multiplicity (z§,z], 3, 23) is

4rn—B(n—2)+4(r—2)+2(r—-2)(n—2)+5+ (n—3) + 6]
= 4rn — (2rn+2) = 2rn — 2.

Hence we have proved lemma | and thus (i) of theorem 9. We will now prove

theorem 9 (ii). We must first find the generators of I,,.

Claim C.

Toni=s (m3+1m3 — af 1 x9, T T3 — T @y, 2o 2k 73 — 21 23,

Tg 'rg — 71 z9x3, TP 3:’1"_13:3 - :1:3_1:17'1"3:2, Ty TaT3 — x’a_lxlmg,

-1,.2 2 2 2.2 2.2
TOT, T3 — TITT3, TOT2T3 — T1THT3, THTF — TIT5).
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Proof: Any element in Q. N.J can be written in the form w (zoz3 — z1z2) where

w is an element of the ring F [zg, 21, 22, z3].

(i) Suppose that w is just a single term. Then, since wzgx3, wz1 x2 must belong to

Qnr,w (zor3 — T172) must be generated by one of

n+1 +1

2 3
Tg" T3 — T T1 T, TOT]T3 — T T, T T3 T3 — T T,

T T% -1 mgm%, Tq :r:;‘_l:ng - :r:g"lm’[xg, Ty T2T3 — :1:3'_1:1':1:1:%,

mgm’{"lmg — @i T3, TOTITS — T1TIT3.

(ii) Suppose that w contains two terms i.e. w = w; + ws.
If w; and wy differ only in their coefficients then w can be expressed as a single
term which is case (i). So we assume that w cannot be written as a single term.
Now if wyzozs, wiz122, wozers, wor1ze all belong to @y, then w is generated by
two of the generators already given.
If wyzgzs, w1z1T2 € Qnr, Warox3, W2x1T2 & Qny OF WTOT3I, W]T]T2
€ Qnr,waTor3, WoT1T2 € Qnr then w(zors — z122) € Qnr N J. If both

w1zory, w1122 € Qnr and only one of wozozs, wozize belong to @y, then

w(zozr3 — 122) € Qnr N J.

Similarly if both wezozs, wexr129 € @,y and only one of wizozs, w1z122 € Qny

then w(.’l:(]mg - .’1:15':2) e Qm- 0 J.
If wizoz3, wozprz € Q but wyzizo, wer1Ty & Qnr, then w(zozs — z172) can

only belong to Qy,, if —wyzj29 = woxiz9 i.e. wy = —w; which is contrary to

our assumption.

Also if wizy zo, wex1T9 € Qnr but wizors, wozers € (Qnr we have the same
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contradiction. Thus we must have wizgz3, woz122 € Qur, wW1T172, W2TeZ3 & Qnr

or W1T1Z2, Wazor3 € Qur, W1ToT3, Wox1T2 € Qnr.

Since it just depends on how we label wj,ws, we will only consider
w1TOT3, Wax1xy € Qm,wlmlmg,mzmgmg, E Qm-.
Now wizgT3 — wox1To — W1T1T2 + WeTors € Qnr &
WIT1T2 = W2TOT3 = W1 = Y1TOT3, W2 = Y2T122
where y1,y2 € F[mo,ﬂ?l,.’ﬂg,.’l’:gl.
So y1T0T1T2T3 = Y2TOL1T2T2 = Y1 = Y2.
Hence w (zor3 — z172) = (w1 + w2) (zoz3 — T122)
= (y1z023 + Y17122) (ToT3 — T1T2)
= y1 (zoz3 + z172) (ToT3 — T1T2)

= y1 (we3 — 2i73).

So a:g asg — 'r% ;rg is another generator of Qn, N J.

(iii) Suppose that w has ¢ terms (¢ > 3). Since we are trying to find new generators, we
assume that there are no wy, (1 < k < t) such that wyzoz3, wizz2 both belong to Qpy
(case (i)). We also assume that there are no twowy,wy (1 <k <t, 1 <{<t, k#Y{)
such that (wy, 4+ wy) (zoz3 — T122) = B (2323 — 23 23) (B € F [z0, 71,72, 73] )

(case (ii)).

So for each term wy, at the most only one of wyzgrs, wizize can belong to
Qnr. Thus when we multiply w (zoz3 — z122) out, we have at least ¢ terms that do

not belong to Qy;.

Since w (zgz3 — z122) € Qnr, these terms must all cancel. But no wizoz3 can
cancel with wyz1z2 (case (ii)), so there must be at least three terms involved in each

cancellation.
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This means that we must have a wy and wy (k # ¢) that differ only in coefficients

contrary to our assumption,

The generators of the ideal of Claim C are independent only if n,7 > 2.

If n =7 =1 then I11 = (voz3 — z172).

If n =1, > 2 then

-1
L= ('rg T3 — TOT1T2, .'z:grz:g — :1:1:1:2:5%, TOT] T3 — T] T2, TOTITI — :1:1:6%, 'rg'rg - 1:%'1:%),

and if n > 2,7 = 1 then

=]
Ly = (z0 7123 — 329, ToT3T3 — 7173, TP T3 — T Tl T, TOTE — T1T9T3, T3 T3 — 2373).

Thus from the definition of m (1)

2 n=r=1

4: n=1r=20orr=1,n=2
m{lw) =8 41 n=12>2

n+l: r=1,n>2

n+r: n,r> 2.

Analysing the examples of [8] and our theorems, we would like to finish with
the following (open) problem.
Problem: Let / be a homogeneous ideal of F'[zg,. .., z,] which is not monomial. Under
what assumptions do we have arith-deg (/) > m (), where m (/) is the maximum of

degrees of forms generating /.
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