Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

On Two Problems of Arithmetic Degree Theory

> A thesis
> presented in partial fulfilment of the requirements for the degree
> of

Master of Science in Mathematics at Massey University

by

Alistair Allan Compton

To the memory
of
Wolfgang Vogel
whose guidance was invaluable.

TABLE OF CONTENTS

ABSTRACT 1
CHAPTER 1: Preliminary Results 2
CHAPTER 2: On a problem of B. Renschuch 7
CHAPTER 3: On a problem of Sturmfels-Trung-Vogel 16
REFERENCES 37
ACKNOWLEDGEMENTS 38

Abstract

The reader of this thesis should already have a basic understanding of ideal theory. For this reason it is recommended that a good introduction to this subject would be gained from reading D. G. Northcott's book "Ideal Theory", paying special attention to chapters one and three. This thesis consists of three chapters, with chapter one providing the definitions and theorems which will be used throughout. Then I will be considering two problems on the arithmetic degree of an ideal, one posed by Sturmfels, Trung and Vogel and the other by Renschuch. These problems will be described in the introductions to chapters two and three.

CHAPTER 1

PRELIMINARY RESULTS

Let I be a homogeneous ideal of the polynomial ring $S=F\left[x_{0}, \ldots, x_{n}\right]$ where F is any field.

Let P be a prime ideal belonging to I.
If P is isolated, we know from the corollary of theorem 3 of Northcott's book [6, p.19], that the primary component corresponding to P is the same for all normal decompositions of I.

However, if P is embedded, then this is not true, as the following example [6, p.30] shows.

Consider the ideal $\left(x^{2}, x y\right)$ in the ring $F[x, y], F$ any field.
It is shown in Northcott's book [6, p. 30] that

$$
\begin{array}{ll}
(x) \cap\left(y+a x, x^{2}\right) & \text { (where } a \text { is any element of } F), \\
(x) \cap\left(y+b x, x^{2}\right) & (\text { where } b \in F, b \neq a),
\end{array}
$$

and $\quad(x) \cap\left(x^{2}, x y, y^{2}\right)$
are all normal decompositions of $\left(x^{2}, x y\right)$ with $\left(y+a x, x^{2}\right),\left(y+b x, x^{2}\right),\left(x^{2}, x y, y^{2}\right)$ all (x, y) - primary.

So the primary component corresponding to an embedded prime ideal need not be unique.

Therefore, if we have two normal primary decompositions of I, one having a primary component Q_{1} corresponding to an embedded prime P, and the other having a primary component Q_{2} corresponding to $P, Q_{1} \neq Q_{2}$, then in general, the classical length multiplicity of Q_{1} does not equal the classical length multiplicity of Q_{2}.

However, in arithmetic degree theory, we do have a way of defining the length multiplicity of an embedded component of an ideal which is well-defined.

The definitions that are needed to do this are given later in this chapter.
We will also need some basic facts about the Hilbert function from the classical degree theory.

Let $V(n+1, t)$ denote the F-vector space consisting of all forms of degree t in x_{0}, \ldots, x_{n}.

Then $\operatorname{dim}_{F} V(n+1, t)=\binom{t+n}{n}, \quad t \geq 0, n \geq 0$.
Let $V(I, t)$ be the F-vector space consisting of all forms in $V(n+1, t)$ which are in I.

Definition 1. The function $H(I,-): Z^{+} \rightarrow Z^{+}[10$, p.43] defined by $H(I, t)=\operatorname{dim}_{F} V(n+1, t)-\operatorname{dim}_{F} V(I, t)$ is called the Hilbert function of I.

For large enough t, the Hilbert function is a polynomial $P(I, t)$ in t with coefficients in Z. The degree $d(0 \leq d \leq n)$ of this polynomial is called the dimension of I and is denoted by $\operatorname{dim}(I)$.

The polynomial $P(I, t)$ can be written in the following form: $P(I, t)=h_{0}(I)\binom{t}{d}+h_{1}\binom{t}{d-1}+\ldots+h_{d}[10, \mathrm{p} .45]$ where $h_{0}(I)$ is a positive integer.

The leading coefficient of $P(I, t)$, namely $h_{0}(I)$, is called the degree of I.
There is of course a great deal of theory on the Hilbert polynomial, but for our purposes the following definition and theorem will suffice.

Let $I=\left(f_{1}, \ldots, f_{t}\right)$.

Definition 2. I is said to be a complete intersection if $\left(f_{1}, \ldots, f_{i-1}\right): f_{i}=$ $\left(f_{1}, \ldots, f_{i-1}\right)$ for all $i=1, \ldots, t$.

Theorem 1 [10, p.46]. Let the generators $f_{1}, \ldots f_{t}$ of I be forms of degrees s_{1}, \ldots, s_{t} respectively. If I is a complete intersection then $h_{0}(I)=s_{1} \ldots s_{t}$.

We will now state the other definitions, theorems and propositions that will be used in chapters two and three.

Definition 3 [5, p.1]. Given any homogeneous ideal I and prime ideal P in S, we define J to be the intersection of the primary components of I with associated primes strictly contained in P. We let $J=S$ if there are no primes p belonging to I with $p \neq P$.

Let Q be a P-primary ideal belonging to I.
Definition 4 [3]. We define the length-multiplicity of Q, denoted by mult $_{\mathrm{I}}(\mathrm{P})$, as the length of a maximal strictly increasing chain of ideals, $I \subseteq J_{\ell} \subset J_{\ell-1} \subset \ldots \subset$ $J_{2} \subset J_{1} \subset J$ where each J_{k} equals $q \cap J$ for some P-primary ideal q.

As we will be making repeated use of an algorithmic approach to calculate mult $_{\mathrm{I}}(\mathrm{P})$ it is convenient to state it here, followed by a theorem.

Step 1. Take a maximal strictly increasing chain of primary ideals from Q to P.

$$
\begin{equation*}
Q \subset \ldots \subset Q_{i-1} \subset Q_{i} \subset \ldots P \tag{1}
\end{equation*}
$$

Step 2. Intersect each primary ideal in (1) with J.

$$
\begin{equation*}
Q \cap J \subseteq \ldots \subseteq Q_{i-1} \cap J \subseteq Q_{i} \cap J \subseteq \ldots \subseteq P \cap J=J \tag{2}
\end{equation*}
$$

Step 3. Eliminate duplicates in (2) in order to get a strictly increasing chain of ideals in the sense of definition 4.

$$
\begin{equation*}
Q \cap J=: J_{\ell} \subset J_{\ell-1} \subset \ldots \subset J_{1} \subset J . \tag{3}
\end{equation*}
$$

Note: If P is an isolated prime ideal of I, then mult ${ }_{I}(\mathrm{P})$ gives the classical length multiplicity of Q.

Theorem $2[5, \mathrm{p} .2]$. Using the above notation we have $\ell=\operatorname{mult}_{\mathrm{I}}(\mathrm{P})$.
Definition 5 [2, p.1]. A polynomial of the form $a_{(i)} x_{1}^{i 1} x_{2}^{i 2} \ldots x_{n}^{i n}$, where $i_{1}, i_{2}, \ldots i_{n}$ are any non-negative integers and $a_{(i)}$ is any element of F, is a monomial.

Definition 6 [2, p.1]. If A is an ideal of S then A is a monomial ideal of S if and only if A is generated by monomials. That is, $A=\left(m_{1}, \ldots, m_{s}\right)$, where m_{ℓ} are monomials for $\ell=1, \ldots, s$.

Proposition 1 [2, p.2]. Let P_{1} be a monomial ideal of $S=F\left[x_{0}, \ldots, x_{n}\right] ; P_{1}$ is a prime ideal if and only if $P_{1}=\left(x_{i_{0}}, \ldots, x_{i_{r}}\right), i_{j} \in\{0, \ldots, n\}$ for $j=0, \ldots, r$.

Proposition 2 [2, p.2]. Let P_{1}, Q_{1} be monomial ideals of $S=F\left[x_{o}, \ldots, x_{n}\right]$ where P_{1} is prime and, say $P_{1}=\left(x_{i_{0}}, \ldots, x_{i_{r}}\right), i_{j} \in\{0, \ldots, n\}$ for $j=0, \ldots, r$. Q_{1} is P-primary if and only if $Q_{1}=\left(x_{i_{0}}^{t_{0}}, \ldots, x_{i_{r}}^{t_{r}}, m_{0}, \ldots, m_{s}\right)$ where $t_{j} \geq 1$ for $j=0, \ldots, r$, and m_{ℓ} are monomials in $x_{i_{0}}, \ldots, x_{i_{r}}$ for $\ell=0, \ldots, s$.

Definition 7. Consider a primary decomposition of $I=Q_{1} \cap \ldots \cap Q_{k}$ where Q_{i} is P_{i}-primary. The arithmetic degree of I, denoted by arith-deg (I), is given by $\operatorname{arith-deg}(I):=\sum_{i=1}^{k} \operatorname{mult}_{I}\left(P_{i}\right)$ degree $\left(P_{i}\right)$.

Let $I=\left(f_{1}, \ldots, f_{t}\right)$.
Definition 8. $M(I):=\max _{i=1}$ to $t\left\{\right.$ degree $\left.\left(f_{i}\right)\right\}$.

Theorem 3 (criterion of mult $_{\mathrm{I}}(\mathrm{P})=1$) [1, p.2].
Let R be a Noetherian ring.
Let A and B be ideals in R such that $B_{\neq}^{\subset} A$.
Let P be a prime ideal such that all primes belonging to A and B are contained in P.

Necessary and sufficient conditions, that there exists no ideal, say C, with $B \neq C \not \subset A$, and all primes that belong to C are also contained in P, are the following: (i) there exists an element x in A such that $A=B+R \cdot x$. (ii) $P A \xlongequal{C} B$.

Definition 9 [2, p.3]. Two monomials λ and τ are said to be relatively prime if, when

$$
\begin{aligned}
& \lambda=x_{i_{0}}^{n_{i_{0}}} \ldots x_{i_{j}}^{n_{i_{j}}} \text { and } \tau=x_{k_{0}}^{m_{k_{0}}} \ldots x_{k_{r}}^{m_{k_{r}}}, \\
& \text { then }\left\{x_{i_{0}}, \ldots, x_{i_{j}}\right\} \cap\left\{x_{k_{0}}, \ldots, x_{k_{r}}\right\}=\phi .
\end{aligned}
$$

Theorem 4 [2, p.3]. Let $S=F\left[x_{0}, \ldots, x_{n}\right]$ be a ring of polynomials in $n+1$ indeterminates. Let $\lambda, \tau, m_{0}, \ldots, m_{r}$ be monomials in F. If λ and τ are relatively prime, then:

$$
\left(\lambda \cdot \tau, m_{0}, \ldots, m_{r}\right)=\left(\lambda, m_{0}, \ldots, m_{r}\right) \cap\left(\tau, m_{0}, \ldots, m_{r}\right)
$$

CHAPTER 2

ON A PROBLEM OF B. RENSCHUCH

Consider the polynomial ring $S=F\left[x_{0}, x_{1}, x_{2}\right]$ where F is any field.

Let $m \geq 1$ be an integer.
We set

$$
\begin{aligned}
& Q=\left(x_{0}^{3}, x_{1}^{2}, x_{0} x_{1}\right) \\
& A=\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{0} x_{1} x_{2}^{2}, x_{1}^{4}, x_{1}^{2} x_{2}^{2}\right) \\
& B=\left(x_{0}, x_{1}, x_{2}\right) \\
& Q_{m}=\left(A, B^{m}\right)
\end{aligned}
$$

Also we will define $I_{m}:=Q \cap Q_{m}$.
This example was discussed by Dr. B. Renschuch of Germany [7, p.92]. It is an example stated in the classical paper of G. Hermann [4]. However we want to study the ideal I_{m} again, in order to prove the following theorem.

Theorem 5. Arithmetic-degree of I_{m} does not depend on the integer m for $m \geq 6$. More precisely, arith-deg $\left(I_{m}\right)=14$ for $m \geq 6$.

Remark: In a letter written to Professor W. Vogel on 12 July 1995, Dr. B. Renschuch said that because of a time constraint he was unable to show why the length multiplicity of Q_{m} does not depend on m if $m \geq 6$. The aim of this chapter is to give two proofs for Theorem 5. The following two theorems will provide the first proof. The second proof will solve the problem stated by Dr. Renschuch by proving that the length multiplicity of $Q_{m}=10$ for all $m \geq 6$.

Theorem 6. $I_{m}=A$ if and only if $m \geq 6$.

Proof.

(i) Suppose $m=1$. Then $B^{1}=\left(x_{0}, x_{1}, x_{2}\right)$.

So $Q_{1}=\left(x_{0}, x_{1}, x_{2}\right)=B$
Clearly $A_{\neq}^{\subsetneq} Q$.
Therefore $A_{\neq}^{\subset} Q \cap Q_{1}$.
(ii) $m=2$

Then $B^{2}=\left(x_{0}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)$.
So $Q_{2}=\left(x_{0}^{2}, x_{0} x_{1}, x_{1}^{2}, x_{0} x_{2}, x_{1} x_{2}, x_{2}^{2}\right)=B^{2}$.
$Q \cap Q_{2}=Q$ since Q is contained in Q_{2}.
Therefore $A \neq Q \cap Q_{2}$.
(iii) $m=3$

Then $B^{3}=\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{0}^{2} x_{2}, x_{0} x_{1}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{2}^{2}, x_{1}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{2}^{3}\right)$.
So $Q_{3}=\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{0} x_{1} x_{2}, x_{1}^{3}, x_{0}^{2} x_{2}, x_{0} x_{1}^{2}, x_{0} x_{2}^{2}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{2}^{3}\right)=B^{3}$.
$A_{\neq}^{\subsetneq} Q \cap Q_{3}$ i.e. $Q \cap Q_{3}$ contains the element $x_{0} x_{1}^{2}$ which is not in A.
(iv) $m=4$

Then $B^{4}=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{3} x_{2}, x_{0}^{2} x_{1}^{2}, x_{0}^{2} x_{1} x_{2}, x_{0}^{2} x_{2}^{2}, x_{0} x_{1}^{3}, x_{0} x_{1}^{2} x_{2}, x_{0} x_{1} x_{2}^{2}\right.$,
$\left.x_{0} x_{2}^{3}, x_{1}^{4}, x_{1}^{3} x_{2}, x_{1}^{2} x_{2}^{2}, x_{1} x_{2}^{3}, x_{2}^{4}\right)$.
So $Q_{4}=\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{0} x_{1} x_{2}^{2}, x_{1}^{4}, x_{1}^{2} x_{2}^{2}, x_{0}^{2} x_{2}^{2}, x_{0} x_{1}^{3}, x_{0} x_{1}^{2} x_{2}, x_{0} x_{2}^{3}, x_{1}^{3} x_{2}, x_{1} x_{2}^{3}, x_{2}^{4}\right)$.
$A_{\neq}^{\subset} Q \cap Q_{4}$ i.e. $x_{0} x_{1}^{3}$ is contained in $Q \cap Q_{4}$ but is not contained in A.
(v) $m=5$

Then $B^{5}=\left(x_{0}^{5}, x_{0}^{4} x_{1}, x_{0}^{4} x_{2}, x_{0}^{3} x_{1}^{2}, x_{0}^{3} x_{1} x_{2}, x_{0}^{3} x_{2}^{2}, x_{0}^{2} x_{1}^{3}, x_{0}^{2} x_{1}^{2} x_{2}, x_{0}^{2} x_{1} x_{2}^{2}, x_{0}^{2}\right.$
$\left.x_{2}^{3}, x_{0} x_{1}^{4}, x_{0} x_{1}^{3} x_{2}, x_{0} x_{1}^{2} x_{2}^{2}, x_{0} x_{1} x_{2}^{3}, x_{0} x_{2}^{4}, x_{1}^{5}, x_{1}^{4} x_{2}, x_{1}^{3} x_{2}^{2}, x_{1}^{2} x_{2}^{3}, x_{1} x_{2}^{4}, x_{2}^{5}\right)$.
So $Q_{5}=\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{0} x_{1} x_{2}^{2}, x_{1}^{4}, x_{1}^{2} x_{2}^{2}, x_{0}^{2} x_{2}^{3}, x_{0} x_{1}^{3} x_{2}, x_{0} x_{2}^{4}, x_{1}^{5}, x_{1} x_{2}^{4}, x_{2}^{5}\right)$.
i.e. $x_{0} x_{1}^{3} x_{2} \in Q \cap Q_{5}, x_{0} x_{1}^{3} x_{2} \notin A$.
$A_{\neq}^{\subsetneq} Q \cap Q_{5}$.
(vi) $m=6$

Then $B^{6}=\left(x_{0}^{6}, x_{0}^{5} x_{1}, x_{0}^{5} x_{2}, x_{0}^{4} x_{1}^{2}, x_{0}^{4} x_{1} x_{2}, x_{0}^{4} x_{2}^{2}, x_{0}^{3} x_{1}^{3}, x_{0}^{3} x_{1}^{2} x_{2}, x_{0}^{3} x_{1} x_{2}^{2}, x_{0}^{3} x_{2}^{3}, x_{0}^{2} x_{1}^{4}\right.$,
$x_{0}^{2} x_{1}^{3} x_{2}, x_{0}^{2} x_{1}^{2} x_{2}^{2}, x_{0}^{2} x_{1} x_{2}^{3}, x_{0}^{2} x_{2}^{4}, x_{0} x_{1}^{5}, x_{0} x_{1}^{4} x_{2}, x_{0} x_{1}^{3} x_{2}^{2}, x_{0} x_{1}^{2} x_{2}^{3}, x_{0} x_{1} x_{2}^{4}, x_{0} x_{2}^{5}, x_{1}^{6}$, $\left.x_{1}^{5} x_{2}, x_{1}^{4} x_{2}^{2}, x_{1}^{3} x_{2}^{3}, x_{1}^{2} x_{2}^{4}, x_{1} x_{2}^{5}, x_{2}^{6}\right)$.

So $Q_{6}=\left(x_{0}^{3}, x_{0}^{2} x_{2}^{4}, x_{0} x_{2}^{5}, x_{1} x_{2}^{5}, x_{2}^{6}, x_{0}^{2} x_{1}, x_{0} x_{1} x_{2}^{2}, x_{1}^{4}, x_{1}^{2} x_{2}^{2}\right)$.
We now apply theorem 4 of chapter 1 to Q_{6} which gives
$Q_{6}=\left(x_{0}^{2}, x_{0} x_{2}^{5}, x_{1} x_{2}^{5}, x_{2}^{6}, x_{0} x_{1} x_{2}^{2}, x_{1}^{4}, x_{1}^{2} x_{2}^{2}\right) \cap\left(x_{0}^{3}, x_{0}^{2} x_{2}^{2}, x_{0} x_{2}^{5}, x_{2}^{6}, x_{1}\right)$
$=\left(x_{0}, x_{1} x_{2}^{5}, x_{2}^{6}, x_{1}^{4}, x_{1}^{2} x_{2}^{2}\right) \cap\left(x_{0}^{2}, x_{1} x_{2}^{2}, x_{0} x_{2}^{5}, x_{2}^{6}, x_{1}^{4}\right) \cap\left(x_{0}^{2}, x_{1}, x_{0} x_{2}^{5}, x_{2}^{6}\right)$
$\cap\left(x_{0}^{3}, x_{1}, x_{2}^{2}\right)$
$=\left(x_{0}, x_{1}, x_{2}^{6}\right) \cap\left(x_{0}, x_{1}^{4}, x_{2}^{5}, x_{1}^{2} x_{2}^{2}\right) \cap\left(x_{0}^{2}, x_{1}, x_{2}^{6}, x_{0} x_{2}^{5}\right) \cap\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right)$
$\cap\left(x_{0}, x_{1}, x_{2}^{6}\right) \cap\left(x_{0}^{2}, x_{1}, x_{2}^{5}\right) \cap\left(x_{0}^{3}, x_{1}, x_{2}^{2}\right)$
$=\left(x_{0}, x_{1}, x_{2}^{6}\right) \cap\left(x_{0}, x_{1}^{2}, x_{2}^{5}\right) \cap\left(x_{0}, x_{1}^{4}, x_{2}^{2}\right) \cap\left(x_{0}, x_{1}, x_{2}^{6}\right)$
$\cap\left(x_{0}^{2}, x_{1}, x_{2}^{5}\right) \cap\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right) \cap\left(x_{0}, x_{1}, x_{2}^{6}\right) \cap\left(x_{0}^{2}, x_{1}, x_{2}^{5}\right)$
$\cap\left(x_{0}^{3}, x_{1}, x_{2}^{2}\right)$.
Now $\left(x_{0}, x_{1}^{4}, x_{2}^{2}\right) \cap\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right)=\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right)$.
Using this and eliminating duplicates we have
$Q_{6}=\left(x_{0}, x_{1}, x_{2}^{6}\right) \cap\left(x_{0}, x_{1}^{2}, x_{2}^{5}\right) \cap\left(x_{0}^{2}, x_{1}, x_{2}^{5}\right) \cap\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right) \cap\left(x_{0}^{3}, x_{1}, x_{2}^{2}\right)$.
Applying theorem 4 to Q gives
$Q=\left(x_{0}, x_{1}^{2}\right) \cap\left(x_{0}^{3}, x_{1}\right)$.
$\left(x_{0}, x_{1}, x_{2}^{6}\right) \cap\left(x_{0}, x_{1}^{2}, x_{2}^{5}\right) \cap\left(x_{0}, x_{1}^{2}\right)=\left(x_{0}, x_{1}^{2}\right)$.
$\left(x_{0}^{2}, x_{1}, x_{2}^{5}\right) \cap\left(x_{0}^{3}, x_{1}, x_{2}^{2}\right) \cap\left(x_{0}^{3}, x_{1}\right)=\left(x_{0}^{3}, x_{1}\right)$.
So $Q \cap Q_{6}=\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right) \cap\left(x_{0}, x_{1}^{2}\right) \cap\left(x_{0}^{3}, x_{1}\right)$.
Applying theorem 4 to A gives
$A=\left(x_{0}^{2}, x_{0} x_{1} x_{2}^{2}, x_{1}^{4}, x_{1}^{2} x_{2}^{2}\right) \cap\left(x_{0}^{3}, x_{1}\right)=\left(x_{0}^{2}, x_{0} x_{1}, x_{1}^{4}, x_{1}^{2} x_{2}^{2}\right) \cap\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right) \cap$
$\left(x_{0}^{3}, x_{1}\right)=\left(x_{0}, x_{1}^{4}, x_{1}^{2} x_{2}^{2}\right) \cap\left(x_{0}^{2}, x_{1}\right) \cap\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right) \cap\left(x_{0}^{3}, x_{1}\right)=\left(x_{0} x_{1}^{2}\right) \cap$
$\left(x_{0}, x_{1}^{4}, x_{2}^{2}\right) \cap\left(x_{0}^{2}, x_{1}\right) \cap\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right) \cap\left(x_{0}^{3}, x_{1}\right)=\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right) \cap\left(x_{0}^{3}, x_{1}\right) \cap$ $\left(x_{0}, x_{1}^{2}\right)=Q \cap Q_{6}$.
(vii) $m \geq 7$

From the definition of $Q_{m}, Q_{1} \underset{\neq}{\supset} Q_{2} \underset{\neq}{\supset} Q_{3} \underset{\neq}{\supset} Q_{4} \cdots \stackrel{\supset}{\neq} Q_{m}$ for any positive integer m.

Therefore $Q \cap Q_{6} \supseteq Q \cap Q_{m}$ for $m \geq 6$.
Also from the definition of $Q_{m}, A \subset Q_{m}$ for all $m \geq 1$ and certainly $A \subset Q$ so $Q \cap Q_{m} \supseteq A$ for $m \geq 1$.

Since $Q \cap Q_{6}=A$ from (vi)
we get $A=Q \cap Q_{6} \supseteq Q \cap Q_{m} \supseteq A$ for all $m \geq 6$.
Hence $Q \cap Q_{m}=A$ for $m \geq 6$.

Theorem 7. Arithmetic-degree of $I_{6}=14$.
Proof: From Theorem 6 we know that $A=Q \cap Q_{6}$. Propositions 1 and 2 of chapter 1 show that $Q \cap Q_{6}$ is a primary decomposition of A. i.e. Q is $\left(x_{0} x_{1}\right)$-primary, Q_{6} is $\left(x_{0}, x_{1}, x_{2}\right)$-primary.

Thus arith-degree $(A)=\operatorname{mult}_{A}\left(x_{0}, x_{1}\right) \cdot$ degree $\left(x_{0}, x_{1}\right)+$ mult $_{A}\left(x_{0}, x_{1}, x_{2}\right) \cdot$ degree $\left(x_{0}, x_{1}, x_{2}\right)$. We have degree $\left(x_{0}, x_{1}\right)=1$ and degree $\left(x_{0}, x_{1}, x_{2}\right)=1$ by theorem 1 . Thus we have arith-degree $(A)=\operatorname{mult}_{A}\left(x_{0}, x_{1}\right)+\operatorname{mult}_{A}\left(x_{0}, x_{1}, x_{2}\right)$. We apply the algorithm that was given in the first chapter to calculate mult $_{A}\left(x_{0}, x_{1}\right)$.

A maximal strictly increasing chain from Q to $\left(x_{0}, x_{1}\right)$ is $\left(x_{0}^{3}, x_{1}^{2}, x_{0} x_{1}\right)_{\neq}^{\subset}\left(x_{0}^{3}, x_{1}\right) \nsubseteq\left(x_{0}^{2}, x_{1}\right) \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}\right)$. (It is easy to see that this chain is maximal by applying theorem 3 chapter 1). Next we find J which in this case equals the whole ring $S=F\left[x_{0}, x_{1}, x_{2}\right]$.

Intersecting each ideal in the above chain with J will leave the chain unchanged, so from theorem 2 we have mult $_{A}\left(x_{0}, x_{1}\right)=4$.

We now calculate mult $_{A}\left(x_{0}, x_{1}, x_{2}\right)$.
A maximal strictly increasing chain from Q_{6} to $P=\left(x_{0}, x_{1}, x_{2}\right)$ is:
$Q_{6}=\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{0} x_{1} x_{2}^{2}, x_{1}^{4}, x_{1}^{2} x_{2}^{2}, x_{0}^{2} x_{2}^{4}, x_{0} x_{2}^{5}, x_{2}^{6}, x_{1} x_{2}^{5}\right)$
$\underset{\neq}{\subset}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{0} x_{1} x_{2}^{2}, x_{1}^{4}, x_{1}^{2} x_{2}^{2}, x_{0}^{2} x_{2}^{4}, x_{0} x_{2}^{5}, x_{2}^{6}, x_{1} x_{2}^{4}\right)$
$\underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{0} x_{1} x_{2}^{2}, x_{1}^{4}, x_{1}^{2} x_{2}^{2}, x_{0}^{2} x_{2}^{4}, x_{0} x_{2}^{5}, x_{2}^{6}, x_{1} x_{2}^{3}\right)$

$$
\begin{aligned}
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{0}^{2} x_{2}^{4}, x_{0} x_{2}^{5}, x_{2}^{6}, x_{1} x_{2}^{2}\right) \\
& \underset{\neq}{\complement}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{2}^{6}, x_{1} x_{2}^{2}, x_{0} x_{2}^{4}\right) \underset{\neq}{\subset}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{2}^{6}, x_{1} x_{2}^{2}, x_{0} x_{2}^{4}, x_{0}^{2} x_{2}^{3}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{2}^{6}, x_{1} x_{2}^{2}, x_{0} x_{2}^{4}, x_{0}^{2} x_{2}^{2}\right) \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{0} x_{2}^{4}, x_{0}^{2} x_{2}^{2}, x_{2}^{5}\right) \\
& \underset{\neq}{\complement}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{0} x_{2}^{4}, x_{0}^{2} x_{2}^{2}, x_{2}^{4}\right) \underset{\neq}{\complement}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{0}^{2} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{3}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}\right) \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}^{3} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}^{2} x_{2}\right) \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}\right) \\
& \underset{\neq}{\subset}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{1}^{3}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{1}^{2}\right)_{\neq}^{\subset}\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}\right) \\
& \underset{\neq}{\complement}\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1}^{3} x_{2}\right)_{\neq}^{\complement}\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1}^{2} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{1}^{4}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1} x_{2}\right)_{\neq}^{\complement}\left(x_{0}^{3}, x_{1}^{4}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1} x_{2}, x_{0}^{2} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{1}^{4}, x_{2}^{4}, x_{0} x_{1}, x_{1} x_{2}, x_{0} x_{2}\right) \underset{\neq}{\subsetneq}\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{4}, x_{0} x_{1}, x_{1} x_{2}, x_{0} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}^{4}, x_{2}^{4}, x_{1} x_{2}\right) \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}^{3}, x_{2}^{4}, x_{1} x_{2}\right) \nsubseteq\left(x_{0}, x_{1}^{2}, x_{2}^{4}, x_{1} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}, x_{2}^{4}\right) \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}, x_{2}^{3}\right) \nsubseteq \neq\left(x_{0}, x_{1}, x_{2}^{2}\right) \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}, x_{2}\right)=P \text {. }
\end{aligned}
$$

Then we find that $J=\left(x_{0}^{3}, x_{1}^{2}, x_{0} x_{1}\right)=Q$.
Next we intersect each ideal in the chain with Q and eliminate duplicities.
We know from the proof of theorem 6 that we can express $Q_{6} \cap Q$ as $\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right) \cap$ $\left(x_{0}, x_{1}^{2}\right) \cap\left(x_{0}^{3}, x_{1}\right)$. If we apply theorem 4 to the ideals in $\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}\right) \cap$ $\left(x_{0}^{3}, x_{1}^{2}, x_{0} x_{1}\right)$ we get $\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}\right) \cap\left(x_{0}^{3}, x_{1}^{2}, x_{0} x_{1}\right)$ $=\left(x_{0}^{2}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}\right) \cap\left(x_{0}^{3}, x_{1}, x_{2}^{4}, x_{0} x_{2}^{2}\right) \cap\left(x_{0}, x_{1}^{2}\right) \cap\left(x_{0}^{3}, x_{1}\right)$ $=\left(x_{0}^{2}, x_{1}, x_{2}^{4}, x_{0} x_{2}^{2}\right) \cap\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right) \cap\left(x_{0}, x_{1}^{2}\right) \cap\left(x_{0}^{3}, x_{1}\right)$ $=\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right) \cap\left(x_{0}, x_{1}^{2}\right) \cap\left(x_{0}^{3}, x_{1}\right)=Q_{6} \cap Q$.

So all the ideals in the chain from $Q_{6} \cap Q$ to $\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}\right) \cap Q$ can be written as $\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right) \cap\left(x_{0}, x_{1}^{2}\right) \cap\left(x_{0}^{3}, x_{1}\right)$.

The element $x_{0} x_{1}^{3} x_{2} \in\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}^{3} x_{2}\right) \cap Q$ but is not contained in the ideal $\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}\right) \cap Q$.

The element $x_{0} x_{1}^{2} x_{3} \in\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}^{2} x_{2}\right) \cap Q$ but is not contained in the ideal $\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}^{3} x_{2}\right) \cap Q$.

The element $x_{0} x_{1} x_{2} \in\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}\right) \cap Q$ but is not contained in $\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}^{2} x_{2}\right) \cap Q$.

The element $x_{0} x_{1}^{3} \in\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{1}^{3}\right) \cap Q$ but is not contained in $\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}\right) \cap Q$.

The element $x_{0} x_{1}^{2} \in\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{1}^{2}\right) \cap Q$ but is not contained in $\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{1}^{3}\right) \cap Q$.

The element $x_{0} x_{1} \in\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}\right) \cap Q$ but is not contained in $\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{1}^{2}\right) \cap Q$.

The element $x_{1}^{3} x_{2} \in\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1}^{3} x_{2}\right) \cap Q$ but is not contained in $\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}\right) \cap Q$.

The element $x_{1}^{2} x_{2} \in\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1}^{2} x_{2}\right) \cap Q$ but is not contained in $\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1}^{3} x_{2}\right) \cap Q$.

If we apply theorem 4 to the ideal $\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1}^{2} x_{2}\right) \cap Q$ we get $\left(x_{0}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{1}^{2} x_{2}\right) \cap Q=\left(x_{0}, x_{1}^{4}, x_{2}^{2}, x_{1}^{2} x_{2}\right) \cap Q=\left(x_{0}, x_{1}^{4}, x_{2}\right) \cap Q=$ $\left(x_{0}, x_{1}^{4}, x_{2}^{4}, x_{1} x_{2}\right) \cap Q$.

Therefore all the ideals in the chain from $\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1}^{2} x_{2}\right) \cap Q$ to $\left(x_{0}, x_{1}^{4}, x_{2}^{4}, x_{1} x_{2}\right) \cap Q$ are equal.

The element $x_{1}^{3} \in\left(x_{0}, x_{1}^{3}, x_{2}^{4}, x_{1} x_{2}\right) \cap Q$ but is not contained in $\left(x_{0}, x_{1}^{4}, x_{2}^{4}, x_{1} x_{2}\right) \cap Q$.

Finally we have $\left(x_{0}, x_{1}^{2}, x_{2}^{4}, x_{1} x_{2}\right) \cap Q=Q$.
Thus we are left with the chain $Q_{6} \cap Q$

$$
\begin{aligned}
& \subsetneq \neq\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}^{3} x_{2}\right) \cap Q \\
& \not \subset \neq\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}^{2} x_{2}\right) \cap Q \\
& \subsetneq \not \neq\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}\right) \cap Q \\
& \not \subset \neq\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{1}^{3}\right) \cap Q
\end{aligned}
$$

$$
\begin{aligned}
& \subsetneq \neq\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{1}^{2}\right) \cap Q \\
& \subsetneq \neq\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}\right) \cap Q \\
& \subsetneq \not \neq\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1}^{3} x_{2}\right) \cap Q \\
& \subsetneq \neq\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1}^{2} x_{2}\right) \cap Q \\
& \not \subset \neq\left(x_{0}, x_{1}^{3}, x_{2}^{4}, x_{1} x_{2}\right) \cap Q \\
& \not \subset Q
\end{aligned}
$$

So from theorem 2 of chapter 1 we have mult $_{A}\left(x_{0}, x_{1}, x_{2}\right)=10$.
Now mult $A\left(x_{0}, x_{1}\right)+\operatorname{mult}_{A}\left(x_{0}, x_{1}, x_{2}\right)=4+10=14$. So arith-deg $(A)=14$.
Now Q_{m} is $\left(x_{0}, x_{1}, x_{2}\right)$ - primary for any $m \geq 6$ so $Q \cap Q_{m}$ is a primary decomposition of A for $m \geq 6$. Since arith-deg $(A)=14$ and length multiplicity of $Q=4$ it follows that length multiplicity of $Q_{m}=10$ for any $m \geq 6$.

We will now describe a second proof which solves the problem stated at the beginning of this chapter. Our second proof needs some parts of the first proof. Also, in this second proof, we will assume that m is always ≥ 6.

Claim.

$$
Q_{m}=\left(A, B^{m}\right)=\left(A, x_{2}^{m}, x_{0}^{2} x_{2}^{m-2}, x_{0} x_{2}^{m-1}, x_{1} x_{2}^{m-1}\right)
$$

Proof: We will use induction on m.

We know from the proof of theorem 6 that the claim is true for $m=6$.
Suppose that the claim is true for $m \geq 6$.
Then $Q_{m+1}=\left(A, B^{m+1}\right)=\left(A, x_{0} x_{2}^{m}, x_{1} x_{2}^{m}, x_{2}^{m+1}, x_{0}^{3} x_{2}^{m-2}, x_{0}^{2} x_{1} x_{2}^{m-2}\right.$, $\left.x_{0}^{2} x_{2}^{m-1}, x_{0}^{2} x_{2}^{m-1}, x_{0} x_{1} x_{2}^{m-1}, x_{0} x_{2}^{m}, x_{0} x_{1} x_{2}^{m-1}, x_{1}^{2} x_{2}^{m-1}, x_{1} x_{2}^{m}\right)$ $=\left(A, x_{2}^{m+1}, x_{0}^{2} x_{2}^{m-1}, x_{0} x_{2}^{m}, x_{1} x_{2}^{m}\right)$.

Therefore $Q_{m}=\left(A, x_{2}^{m}, x_{0}^{2} x_{2}^{m-2}, x_{0} x_{2}^{m-1}, x_{1} x_{2}^{m-1}\right)$ for $m \geq 6$.

We now construct a strictly increasing maximal chain from Q_{m} to

$$
\begin{aligned}
& P=\left(x_{0}, x_{1}, x_{2}\right) . \\
& Q_{m} \varsubsetneqq\left(A, x_{2}^{m}, x_{0}^{2} x_{2}^{m-2}, x_{0} x_{2}^{m-1}, x_{1} x_{2}^{m-2}\right) \underset{\neq}{\subsetneq} \cdots \nsubseteq \\
& \left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{2}^{m}, x_{0}^{2} x_{2}^{m-2}, x_{0} x_{2}^{m-1}, x_{1} x_{2}^{2}\right)_{\neq}^{\subset}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{2}^{m}, x_{1} x_{2}^{2}, x_{0} x_{2}^{m-2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{2}^{m}, x_{1} x_{2}^{2}, x_{0} x_{2}^{m-2}, x_{0}^{2} x_{2}^{m-3}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{2}^{m}, x_{1} x_{2}^{2}, x_{0} x_{2}^{m-3}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{2}^{m}, x_{1} x_{2}^{2}, x_{0} x_{2}^{m-3}, x_{0}^{2} x_{2}^{m-4}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{2}^{m}, x_{1} x_{2}^{2}, x_{0} x_{2}^{m-4}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{2}^{m}, x_{1} x_{2}^{2}, x_{0} x_{2}^{m-4}, x_{0}^{2} x_{2}^{m-5}\right) \\
& \stackrel{\subset}{\neq} \cdots \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{2}^{m}, x_{1} x_{2}^{2}, x_{0} x_{2}^{4}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{2}^{m}, x_{1} x_{2}^{2}, x_{0} x_{2}^{4}, x_{0}^{2} x_{2}^{3}\right) \\
& { }_{\neq}^{\complement}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{2}^{m}, x_{1} x_{2}^{2}, x_{0} x_{2}^{4}, x_{0}^{2} x_{2}^{2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{0} x_{2}^{4}, x_{0}^{2} x_{2}^{2}, x_{2}^{m-1}\right) \\
& \stackrel{\subset}{\neq} \cdots \\
& \underset{\neq}{\subset}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{0}^{2} x_{2}^{2}, x_{2}^{4}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{0}^{2} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{3}\right) \\
& \underset{\neq}{\complement}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}^{3} x_{2}\right) \\
& \underset{\neq}{\subset}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}^{2} x_{2}\right) \\
& \underset{\neq}{\subset}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{1}^{3}\right) \\
& \underset{\neq}{\subset}\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{1}^{2}\right) \\
& \underset{\neq}{\subset}\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}\right) \\
& \underset{\neq}{\complement}\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1}^{3} x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1}^{2} x_{2}\right) \\
& \underset{\neq}{\subset}\left(x_{0}^{3}, x_{1}^{4}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{3}, x_{1}^{4}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}, x_{1} x_{2}, x_{0}^{2} x_{2}\right) \\
& \underset{\neq}{\subset}\left(x_{0}^{3}, x_{1}^{4}, x_{2}^{4}, x_{0} x_{1}, x_{1} x_{2}, x_{0} x_{2}\right) \\
& \underset{\neq}{\subset}\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{4}, x_{0} x_{1}, x_{1} x_{2}, x_{0} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}^{4}, x_{2}^{4}, x_{1} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}^{3}, x_{2}^{4}, x_{1} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}^{2}, x_{2}^{4}, x_{1} x_{2}\right) \\
& \underset{\neq}{\subset}\left(x_{0}, x_{1}, x_{2}^{4}\right) \\
& \underset{\neq}{\subset}\left(x_{0}, x_{1}, x_{2}^{3}\right) \\
& \underset{\neq}{\subset}\left(x_{0}, x_{1}, x_{2}^{2}\right) \\
& \underset{\neq}{\subset}\left(x_{0}, x_{1}, x_{2}\right) \\
& =P \text {. }
\end{aligned}
$$

The fact that this chain is maximal follows from Theorem 3 chapter 1, as the reader can readily verify. We now intersect each ideal in our above chain with $J=\left(x_{0}^{3}, x_{1}^{2}, x_{0} x_{1}\right)=Q$ to form a new chain from $Q_{m} \cap Q$ to $P \cap Q$.

From (vi) and (vii) of the proof of Theorem 6 we know that $Q_{m} \cap Q=$ $\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right) \cap\left(x_{0}, x_{1}^{2}\right) \cap\left(x_{0}^{3}, x_{1}\right)$.

From the proof of Theorem 7 we have $\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}\right) \cap$ $Q=\left(x_{0}^{2}, x_{1}^{4}, x_{2}^{2}\right) \cap\left(x_{0}, x_{1}^{2}\right) \cap\left(x_{0}^{3}, x_{1}\right) . \quad$ So all ideals between $Q_{m} \cap Q$ and $\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}\right) \cap Q$ are equal.

From $\left(x_{0}^{3}, x_{0}^{2} x_{1}, x_{1}^{4}, x_{1} x_{2}^{2}, x_{2}^{4}, x_{0} x_{2}^{2}, x_{0} x_{1}^{3} x_{2}\right)$ onwards, the ideals in our chain are the same as the ideals in the chain given in the proof of Theorem 7.

Therefore mult ${ }_{A}\left(x_{0}, x_{1}, x_{2}\right)=10$. Also from Theorem 7, mult ${ }_{A}\left(x_{0}, x_{1}\right)=4$, so $\operatorname{arith}-\operatorname{deg}\left(I_{6}\right)=14$.

CHAPTER 3

ON A PROBLEM OF STURMFELS, TRUNG AND VOGEL

Let I be a monomial ideal in the polynomial ring $S=F\left[x_{0}, \ldots, x_{n}\right]$ with minimal set of monomial generators $\left(m_{1}, \ldots, m_{s}\right)$.

Sturmfels, Trung and Vogel [9, Theorem 3.1] proved that

$$
\begin{equation*}
\operatorname{arith-deg}(I) \geq \max \left\{\text { degree }\left(\mathrm{m}_{\mathrm{i}}\right): \mathrm{i}=1, \ldots, \mathrm{~s}\right\} \tag{1}
\end{equation*}
$$

It was an open problem in [9] to extend this result for ideals which are not monomial. T. Smith [8] has constructed examples showing that this problem is not true in general. However, the aim of this chapter is to describe families of non-monomial ideals for which (1) is true. (See our problem at the end of this chapter on page 36.)

Theorem 7.

Let n be any positive integer.
Let the ideal I_{n} be given by $I_{n}=\left(x_{0}^{n}, x_{1}, x_{2}, x_{3}^{2}\right) \cap\left(x_{0} x_{3}-x_{1} x_{2}\right)$ in the polynomial ring $F\left[x_{0}, x_{1}, x_{2}, x_{3}\right] . \quad(F$ is any field).

$$
\text { Then } I_{n}=\left(x_{0}^{n} x_{3}-x_{0}^{n-1} x_{1} x_{2}, x_{0} x_{1} x_{3}-x_{1}^{2} x_{2}, x_{0} x_{2} x_{3}-x_{1} x_{2}^{2}, x_{0} x_{3}^{2}-x_{1} x_{2} x_{3}\right) .
$$

Proof: Any element in I_{n} can be written in the form $w\left(x_{0} x_{3}-x_{1} x_{2}\right)$ where w is an element of the ring $F\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$.
(i) Suppose that w is a single term.

Then, since $w x_{0} x_{3}, w x_{1} x_{2}$ belong to $\left(x_{0}^{n}, x_{1}, x_{2}, x_{3}^{2}\right), w\left(x_{0} x_{3}-x_{1} x_{2}\right)$ must be generated by one of

$$
x_{0}^{n} x_{3}-x_{0}^{n-1} x_{1} x_{2}, x_{0} x_{1} x_{3}-x_{1}^{2} x_{2}, x_{0} x_{2} x_{3}-x_{1} x_{2}^{2}, x_{0} x_{3}^{2}-x_{1} x_{2} x_{3} .
$$

(ii) Suppose w contains t terms i.e. $w=w_{1}+w_{2}+\ldots+w_{t}$.

Also we assume that there are no $w_{k}(1 \leq k \leq t)$ such that $w_{k} x_{0} x_{3}, w_{k} x_{1} x_{2}$ both
belong to $\left(x_{0}^{n}, x_{1}, x_{2}, x_{3}^{2}\right)$. If w_{k} contains x_{1} or x_{2} or x_{3} then $w_{k}\left(x_{0} x_{3}-x_{1} x_{2}\right)$ would be generated by $x_{0} x_{1} x_{3}-x_{1}^{2} x_{2}$ or $x_{0} x_{2} x_{3}-x_{1} x_{2}^{2}$ or $x_{0} x_{3}^{2}-x_{1} x_{2} x_{3}$. If each w_{k} contains αx_{0}^{i} (where $\alpha \in F$) and if $i \geq n-1$, then w_{k} is generated by $x_{0}^{n} x_{3}-x_{0}^{n-1} x_{1} x_{2}$.

If each w_{k} contains αx_{0}^{i} (where $\alpha \in F$) and if $i \leq n-2$, then $w\left(x_{0} x_{3}-x_{1} x_{2}\right) \notin$ $\left(x_{0}^{n}, x_{1}, x_{2}, x_{3}^{2}\right)$ and thus $w \notin I_{n}$. Therefore the only generators of I_{n} are those given in Theorem 7.

Note: If $n=1$ then $I_{n}=\left(x_{0} x_{3}-x_{1} x_{2}\right)$.

Theorem 8. arith-deg $\left(I_{n}\right)=n+1$.

Proof:

$$
\begin{aligned}
& \operatorname{arith-\operatorname {deg}}\left(I_{n}\right)=\operatorname{mult}_{I_{n}}\left(x_{0} x_{3}-x_{1} x_{2}\right) \cdot \operatorname{deg}\left(x_{0} x_{3}-x_{1} x_{2}\right)+ \\
& \text { mult }_{I_{n}}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \cdot \operatorname{deg}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \\
& =\operatorname{deg}\left(x_{0} x_{3}-x_{1} x_{2}\right)+\operatorname{mult}_{I_{n}}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) .
\end{aligned}
$$

We know that $\operatorname{deg}\left(x_{0} x_{3}-x_{1} x_{2}\right)=2$ from Theorem 1 of chapter 1 . Therefore we must show that mult $I_{n}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=n-1$. A strictly increasing maximal chain from $\left(x_{0}^{n}, x_{1}, x_{2}, x_{3}^{2}\right)$ to $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ is given by;
$\left(x_{0}^{n}, x_{1}, x_{2}, x_{3}^{2}\right)_{\neq}^{\subset}\left(x_{0}^{n}, x_{1}, x_{2} x_{0}^{n-1} x_{3}, x_{3}^{2}\right)_{\neq}^{\subsetneq}\left(x_{0}^{n}, x_{1}, x_{2}, x_{0}^{n-2} x_{3}, x_{3}^{2}\right)$
$\underset{\neq}{\subsetneq}\left(x_{0}^{n}, x_{1}, x_{2}, x_{0}^{n-3} x_{3}, x_{3}^{2}\right) \underset{\neq}{\subsetneq} \ldots$
$\left(x_{0}^{n}, x_{1}, x_{2}, x_{0} x_{3}, x_{3}^{2}\right) \underset{\neq}{\subsetneq}\left(x_{0}^{n-1}, x_{1}, x_{2}, x_{0} x_{3}, x_{3}^{2}\right) \underset{\neq}{\subsetneq}\left(x_{0}^{n-2}, x_{1}, x_{2}, x_{0} x_{3}, x_{3}^{2}\right)$
$\stackrel{\subsetneq}{\neq}\left(x_{0}^{n-3}, x_{1}, x_{2}, x_{0} x_{3}, x_{3}^{2}\right) \underset{\neq \cdots}{\subsetneq}\left(x_{0}^{2}, x_{1}, x_{2}, x_{0} x_{3}, x_{3}^{2}\right) \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}, x_{2}, x_{3}^{2}\right)$ $\underset{\neq}{\subsetneq}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$.

For example, if we apply Theorem 3 of chapter 1 to the ideals $\left(x_{0}^{n}, x_{1}, x_{2}, x_{0} x_{3}, x_{3}^{2}\right),\left(x_{0}^{n-1}, x_{1}, x_{2}, x_{0} x_{3}, x_{3}^{2}\right)$, we have
(i) $\left(x_{0}^{n-1}, x_{1}, x_{2}, x_{0} x_{3}, x_{3}^{2}\right)=\left(x_{0}^{n}, x_{1}, x_{2}, x_{0} x_{3}, x_{3}^{2}\right)+F\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \cdot x_{0}^{n-1}$.
(ii) $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\left(x_{0}^{n-1}, x_{1}, x_{2}, x_{0} x_{3}, x_{3}^{2}\right) \stackrel{\complement}{=}\left(x_{0}^{n}, x_{1}, x_{2}, x_{0} x_{3}, x_{3}^{2}\right)$.

We also note that the length of this chain is $2 n$. i.e. from $\left(x_{0}^{n}, x_{1}, x_{2}, x_{3}^{2}\right)$ to $\left(x_{0}^{n}, x_{1}, x_{2}, x_{0} x_{3}, x_{3}^{2}\right)$ there are n ideals and from $\left(x_{0}^{n-1}, x_{1}, x_{2}, x_{0} x_{3}, x_{3}^{2}\right)$ to $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ there are n ideals.

Next we calculate J which is the ideal $\left(x_{0} x_{3}-x_{1} x_{2}\right)$. Now we intersect each ideal in our chain with J.

The ideal $\left(x_{0}^{n}, x_{1}, x_{2}, x_{0} x_{3}, x_{3}^{2}\right) \cap\left(x_{0} x_{3}-x_{1} x_{2}\right)=\left(x_{0} x_{3}-x_{1} x_{2}\right)$ so we can confine our attention to the first $n-1$ ideals in our chain.

The element $x_{0}^{n-1} x_{3}-x_{0}^{n-2} x_{1} x_{2}$ is contained in $\left(x_{0}^{n}, x_{1}, x_{2}, x_{0}^{n-1} x_{3}, x_{3}^{2}\right) \cap J$ but is not in $\left(x_{0}^{n}, x_{1}, x_{2}, x_{3}^{2}\right) \cap J$.

If we choose any two ideals $\left(x_{0}^{n}, x_{1}, x_{2}, x_{0}^{n-i} x_{3}, x_{3}^{2}\right) \quad \cap$ $J,\left(x_{0}^{n}, x_{1}, x_{2}, x_{0}^{n-(i+1)} x_{3}, x_{3}^{2}\right) \cap J,(1 \leq i \leq n-3)$ then $x_{0}^{n-(i+1)} x_{3}-x_{0}^{n-(i+2)} x_{1} x_{2}$ belongs to $\left(x_{0}^{n}, x_{1}, x_{2}, x_{0}^{n-(i+1)} x_{3}, x_{3}^{2}\right) \cap J$ and is not in $\left(x_{0}^{n}, x_{1}, x_{2}, x_{0}^{n-i} x_{3}, x_{3}^{2}\right) \cap J$.

Therefore no two of these ideals are equal, so from Theorem 2 of chapter 1 [5 , p.2] we have mult $I_{n}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=n-1$. Therefore arith-deg $\left(I_{n}\right)=n+1$. This completes the proof of Theorem 8.

Remark: The maximum $m\left(I_{n}\right)$ of degrees of the polynomials generating I_{n} is given by

$$
m\left(I_{n}\right)= \begin{cases}2 & : n=1 \\ n+1 & : n \geq 2\end{cases}
$$

Therefore arith-deg $\left(I_{n}\right)=m\left(I_{n}\right)$ for $n \geq 1$.

For the remainder of this chapter we will consider a similar but more complicated example.

Theorem 9

Let S be the polynomial ring $F\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ over the field F and let n and r be any positive integers. Let the following ideal $I_{n r}$ of S be given by

$$
\begin{equation*}
I_{n r}=\left(x_{0} x_{3}-x_{1} x_{2}\right) \cap\left(x_{0}^{n}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}\right) . \tag{2}
\end{equation*}
$$

(i) arith-deg $\left(I_{n r}\right)=2 r n$
(ii) the maximum $m\left(I_{n r}\right)$ of degrees of the polynomials generating I is given by

$$
m\left(I_{n r}\right)= \begin{cases}2 & : n=r=1 \\ 4 & : \text { if } n=1, r=2 \text { or } \mathrm{r}=1, \mathrm{n}=2 \\ r+1 & : n=1, r>2 \\ n+1 & : r=1, n>2 \\ n+r & : n, r \geq 2\end{cases}
$$

Remark: arith-deg of $I_{n r}>=m\left(I_{n r}\right)$ for all positive integers n and r.

Proof:

First we prove (i)
Let $Q_{n r}=\left(x_{0}^{n}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}\right)$. Then arith-deg $\left(I_{n r}\right)=\operatorname{deg}(J)+\operatorname{mult}_{\mathrm{I}_{\mathrm{nr}}}(\mathrm{P})$
(where P is the prime ideal of $Q_{n r}$ i.e. $P=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$, and where $\left.J=\left(x_{0} x_{3}-x_{1} x_{2}\right)\right)$.

Since $\operatorname{deg} J=2$ we need to prove the following key lemma.

Lemma 1.

$$
\begin{equation*}
\operatorname{mult}_{I n r}(P)=2 r n-2 \tag{3}
\end{equation*}
$$

Before we prove (3) we will give a maximal strictly increasing chain of primary ideals from $Q_{n r}$ to P.

$$
\begin{aligned}
& Q_{n r} \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2} x_{3}\right) \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2}, x_{o}^{n-1} x_{1}^{r-1} x_{3}\right) \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1}\right) \\
& \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1}, x_{0}^{n-1} x_{1}^{r-2} x_{2} x_{3}\right) \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1}, x_{0}^{n-1} x_{1}^{r-2} x_{2}\right) \\
& \underset{\neq}{\complement}\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1}, x_{0}^{n-1} x_{1}^{r-2} x_{2}, x_{0}^{n-1} x_{1}^{r-2} x_{3}\right) \underset{\neq}{\complement}\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-2}\right)_{\neq}^{\subsetneq} \cdots \\
& \ldots \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-1} x_{1}\right) \nsubseteq\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{r-1} x_{2} x_{3}\right) \\
& \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{r-1} x_{2}\right) \nsubseteq\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{r-1} x_{2}, x_{0}^{n-2} x_{1}^{r-1} x_{3}\right) \\
& \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{r-1}\right) \underset{\neq}{\subset}\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{r-1}, x_{0}^{n-2} x_{1}^{r-2} x_{2} x_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{r-1}, x_{0}^{n-2} x_{1}^{r-2} x_{2}\right) \not \underset{\neq}{\complement}\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{r-1}, x_{0}^{n-2} x_{1}^{r-2} x_{2}, x_{0}^{n-2} x_{1}^{r-2} x_{3}\right) \\
& \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{r-2}\right) \underset{\neq}{\subsetneq} \ldots \neq\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{2}\right) \\
& \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{2}, x_{0}^{n-2} x_{1} x_{2} x_{3}\right) \nsubseteq\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{2}, x_{0}^{n-2} x_{1} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{2}, x_{0}^{n-2} x_{1} x_{2}, x_{0}^{n-2} x_{1} x_{3}\right) \underset{\neq}{\complement}\left(Q_{n r}, x_{0}^{n-2} x_{1}\right) \nsubseteq \cdots \\
& \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-3} x_{1}\right) \underset{\neq \cdots}{\subsetneq}\left(Q_{n r}, x_{0}^{n-4} x_{1}\right) \nsubseteq \ldots \neq \neq\left(Q_{n r}, x_{0}^{2} x_{1}\right) \\
& \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{2} x_{1}, x_{0} x_{1}^{r-1} x_{2} x_{3}\right) \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{2} x_{1}, x_{0} x_{1}^{r-1} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{2} x_{1}, x_{0} x_{1}^{r-1} x_{2}, x_{0} x_{1}^{r-1} x_{3}\right) \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{2} x_{1}, x_{0} x_{1}^{r-1}\right) \\
& \underset{\neq \cdots}{\subsetneq}\left(Q_{n r}, x_{0}^{2} x_{1}, x_{0} x_{1}^{2}\right) \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{2} x_{1}, x_{0} x_{1}^{2}, x_{0} x_{1} x_{2} x_{3}\right) \\
& \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{2} x_{1}, x_{0} x_{1}^{2}, x_{0} x_{1} x_{2}\right) \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{2} x_{1}, x_{0} x_{1}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{1} x_{3}\right) \\
& \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0} x_{1}\right) \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2} x_{3}\right) \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2}, x_{0}^{n-1} x_{3}\right) \underset{\neq}{\subsetneq}\left(x_{0}^{n-1}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{n-1}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0}^{n-2} x_{2} x_{3}\right) \nsubseteq\left(x_{0}^{n-1}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0}^{n-2} x_{2}\right) \\
& \underset{\neq}{\subset}\left(x_{0}^{n-1}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0}^{n-2} x_{2}, x_{0}^{n-2} x_{3}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{n-2}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}\right) \underset{\neq}{\subsetneq} \ldots\left(x_{0}^{2}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{2}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0} x_{2} x_{3}\right) \underset{\neq}{\subsetneq}\left(x_{0}^{2}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0} x_{2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}^{2}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{0} x_{3}\right) \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-1} x_{2} x_{3}\right) \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-1} x_{2}\right) \\
& \underset{\neq}{\subset}\left(x_{0}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-1} x_{2}, x_{1}^{r-1} x_{3}\right) \nsubseteq\left(x_{0}, x_{1}^{r-1}, x_{2}^{2}, x_{3}^{2}\right) \\
& \underset{\neq}{\subset}\left(x_{0}, x_{1}^{r-1}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-2} x_{2} x_{3}\right) \not \subset\left(x_{0}, x_{1}^{r-1}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-2} x_{2}\right) \\
& \underset{\neq}{\complement}\left(x_{0}, x_{1}^{r-1}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-2} x_{2}, x_{1}^{r-2} x_{3}\right) \neq\left(x_{0}, x_{1}^{r-2}, x_{2}^{2}, x_{3}^{2}\right) \\
& \underset{\neq \cdots}{\subsetneq}\left(x_{0}, x_{1}, x_{2}^{2}, x_{3}^{2}\right) \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}, x_{2}^{2}, x_{3}^{2}, x_{2} x_{3}\right) \\
& \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}, x_{2}, x_{3}^{2}\right) \underset{\neq}{\subsetneq}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=P \text {. }
\end{aligned}
$$

For example, if we apply Theorem 3 from chapter 1 to the ideals

$$
\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{r-1}, x_{0}^{n-2} x_{1}^{r-2} x_{2}\right),\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{r-1}, x_{0}^{n-2} x_{1}^{r-2} x_{2}, x_{0}^{n-2} x_{1}^{r-2} x_{3}\right)
$$

we have
(i) $\quad\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{r-1}, x_{0}^{n-2} x_{1}^{r-2} x_{2}, x_{0}^{n-2} x_{1}^{r-2} x_{3}\right)=$ $\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{r-1}, x_{0}^{n-2} x_{1}^{r-2} x_{2}\right)+F\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \cdot x_{0}^{n-2} x_{1}^{r-2} x_{3}$.
(ii) $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{r-1}, x_{0}^{n-2} x_{1}^{r-2} x_{2}, x_{0}^{n-2} x_{1}^{r-2} x_{3}\right)^{\complement}$ $\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{r-1}, x_{0}^{n-2} x_{1}^{r-2} x_{2}\right)$.

Hence we cannot extend our chain between these two ideals.
Another example to consider is the ideals $\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2}, x_{0}^{n-1} x_{3}\right)$, $\left(x_{0}^{n-1}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}\right)$.
(i) $\left(x_{0}^{n-1}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}\right)=\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2}, x_{0}^{n-1} x_{3}\right)+F\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \cdot x_{0}^{n-1}$.
(ii) $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\left(x_{0}^{n-1}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}\right) \stackrel{\complement}{C}\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2}, x_{0}^{n-1} x_{3}\right)$.

Other examples can be checked by the same method. Hence it can be shown that this chain is maximal.

Claim A: The above chain is of length $4 r n$.

Proof:

From $\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2} x_{3}\right)$ to $\left(Q_{n r}, x_{0}^{n-1} x_{1}\right)$ we have $4(r-1)$ ideals. So from $Q_{n r}$ to ($\left.Q_{n r}, x_{0}^{n-1} x_{1}^{2}, x_{0}^{n-1} x_{1} x_{2}, x_{0}^{n-1} x_{1} x_{3}\right)$ we have $4(r-1)$ ideals.

From $\left(Q_{n r}, x_{0}^{n-1} x_{1}\right)$ to $\left(Q_{n r}, x_{0}^{n-1} x_{1}, x_{0}^{n-2} x_{1}^{2}, x_{0}^{n-2} x_{1} x_{2}, x_{0}^{n-2} x_{1} x_{3}\right)$ we have $4(r-1)$ ideals.

From $\left(Q_{n r}, x_{0}^{n-2} x_{1}\right)$ to $\left(Q_{n r}, x_{0}^{n-2} x_{1}, x_{0}^{n-3} x_{1}^{2}, x_{0}^{n-3} x_{1} x_{2}, x_{0}^{n-3} x_{1} x_{3}\right)$ we have $4(r-1)$ ideals \qquad etc.

From $\left(Q_{n r}, x_{0}^{2} x_{1}\right)$ to $\left(Q_{n r}, x_{0}^{2} x_{1}, x_{0} x_{1}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{1} x_{3}\right)$ we have $4(r-1)$ ideals.

So from $\left(Q_{n r}, x_{0}^{n-1} x_{1}\right)$ to $\left(Q_{n r}, x_{0}^{2} x_{1}, x_{0} x_{1}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{1} x_{3}\right)$ we have ($n-$ 2) $[4(r-1)]$ ideals.

From $\left(Q_{n r}, x_{0} x_{1}\right)$ to $\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2}, x_{0}^{n-1} x_{3}\right)$ we have 4 ideals.
From $\left.x_{0}^{n-1}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}\right)$ to $\left(x_{0}^{2}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{0} x_{3}\right)$ we have $4(n-2)$ ideals.

From $\left(x_{0}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}\right)$ to $\left(x_{0}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}\right)$ we have $4(r-1)$ ideals.
From $\left(x_{0}, x_{1}, x_{2}^{2}, x_{3}^{2}\right)$ to $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ we have 4 ideals.
Adding these terms we get

$$
\begin{aligned}
& 4(r-1)+(n-2)(4(r-1))+4+4(n-2)+4(r-1)+4= \\
& 4 r-4+4 r n-4 n-8 r+8+4+4 n-8+4 r-4+4=4 r n
\end{aligned}
$$

Alternative proof of claim A.
Claim B: $Q_{n r}$ is a complete intersection.
Proof:

We must first show the following to be true.
(i) $(0):\left(x_{0}^{n}\right)=(0)$.
(ii) $\left(x_{0}^{n}\right):\left(x_{1}^{r}\right)=\left(x_{0}^{n}\right)$.
(iii) $\left(x_{0}^{n}, x_{1}^{r}\right):\left(x_{2}^{2}\right)=\left(x_{0}^{n}, x_{1}^{r}\right)$.
(iv) $\left(x_{0}^{n}, x_{1}^{r}, x_{2}^{2}\right):\left(x_{3}^{2}\right)=\left(x_{0}^{n}, x_{1}^{r}, x_{2}^{2}\right)$.
(i) Let y be any element in S. Then $y x_{0}^{n} \in(0) \Leftrightarrow y=0$.
(ii) $y x_{1}^{r} \in\left(x_{0}^{n}\right) \Leftrightarrow y \in\left(x_{0}^{n}\right)$.
(iii) $y x_{2}^{2} \in\left(x_{0}^{n}, x_{1}^{r}\right) \Leftrightarrow y \in\left(x_{0}^{n}, x_{1}^{r}\right)$.
(iv) $y x_{3}^{2} \in\left(x_{0}^{n}, x_{1}^{r}, x_{2}^{2}\right) \Leftrightarrow y \in\left(x_{0}^{n}, x_{1}^{r}, x_{2}^{2}\right)$.

We can now prove length $Q_{n r}=4 r n$.

Proof:

degree $Q_{n r}=4 r n$ (from above claim and from Theorem 3)

$$
\begin{aligned}
& =\text { length } Q_{n r} \cdot \text { degree } P\left(\text { If } Q_{n r} \text { is } P\right. \text {-primary then degree } \\
& \left.\quad Q_{n r}=\text { length } Q_{n r} \cdot \text { degree } P\right) \\
& =\text { length } Q_{n r}
\end{aligned}
$$

Remark: If $Q_{n r}$ is a monomial P-primary ideal of F, then degree $Q_{n r}=$ length $Q_{n r}$. We intersect each ideal in the claim given on pages $20-21$. We can now prove Lemma 1 by applying the following 32 claims.

Claim 1.

$x_{0}^{n-1} x_{1}^{r-1} x_{2} x_{3}-x_{0}^{n-2} x_{1}^{r} x_{2}^{2} \in\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2} x_{3}\right) \cap J$ but is not contained in the ideal $Q_{n r} \cap J$. Therefore $Q_{n r} \cap\left(x_{0} x_{3}-x_{1} x_{2}\right)_{\neq}^{\subsetneq}\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2} x_{3}\right) \cap J$.

Claim 2.

$\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}\right) \cap J \neq\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2} x_{3}\right) \cap J$ for $1 \leq j \leq r-2$.

Proof:

The element $x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2} x_{3}-x_{0}^{n-2} x_{1}^{r-j} x_{2}^{2} \in\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2} x_{3}\right) \cap$ J but is not contained in $\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}\right) \cap J$.

Claim 3.

$\left(Q_{n r}, x_{0}^{n-i} x_{1}\right) \cap J_{\neq}^{\subsetneq}\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-1} x_{2} x_{3}\right) \cap J$ for $1 \leq i \leq n-2$

Proof:

The element $x_{0}^{n-(i+1)} x_{1}^{r-1} x_{2} x_{3}-x_{0}^{n-(i+2)} x_{1} x_{2}^{2}$ $\in\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-1} x_{2} x_{3}\right) \cap J$ but is not contained in $\left(Q_{n r}, x_{0}^{n-i} x_{1}\right) \cap J$.

Claim 4.

$$
\begin{aligned}
& \left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-j}\right) \cap J \underset{\neq}{\neq}\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-j},\right. \\
& \left.x_{0}^{n-(i+1)} x_{1}^{r-(j+1)} x_{2} x_{3}\right) \cap J \text { for } 1 \leq i \leq n-2,1 \leq j \leq r-2
\end{aligned}
$$

Proof:

The element $x_{0}^{n-(i+1)} x_{1}^{r-(j+1)} x_{2} x_{3}-x_{0}^{n-(i+2)} x_{1}^{r-j} x_{2}^{2}$ $\in\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-j}, x_{0}^{n-(i+1)} x_{1}^{r-(j+1)} x_{2} x_{3}\right) \cap J$ but is not contained in
$\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-j}\right) \cap J$.

Claim 5.

$$
\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2} x_{3}\right) \cap J \underset{\neq}{\subset}\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2}\right) \cap J .
$$

Proof:

The element $x_{0}^{n} x_{1}^{r-2} x_{3}-x_{0}^{n-1} x_{1}^{r-1} x_{2} \in\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2}\right) \cap J$ but is not contained in $\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2} x_{3}\right) \cap J$.

Claim 6.

$\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2} x_{3}\right) \cap J \underset{\neq}{\subset}\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2}\right)$
$\cap J$ for $1 \leq j \leq r-2$.

Proof:

The element $x_{0}^{n} x_{1}^{r-(j+2)} x_{3}-x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2} \in\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j} x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2}\right) \cap$ J but is not contained in $\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2} x_{3}\right) \cap J$.

Claim 7.

$\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-1} x_{2} x_{3}\right) \cap J \underset{\neq}{\subsetneq}\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-1} x_{2}\right)$
$\cap J$ for $1 \leq i \leq n-2$.

Proof:

The element $x_{0}^{n-i} x_{1}^{r-2} x_{3}-x_{0}^{n-(i+1)} x_{1}^{r-1} x_{2} \in\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-1} x_{2}\right) \cap$ J but is not contained in $\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-1} x_{2} x_{3}\right) \cap J$.

Claim 8.

$$
\begin{aligned}
& \left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-j}, x_{0}^{n-(i+1)} x_{1}^{r-(j+1)} x_{2} x_{3}\right) \cap J \\
& \subset\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-j}, x_{0}^{n-(i+1)} x_{1}^{r-(j+1)} x_{2}\right) \cap J \\
& \neq 1 \leq n-1 \leq j \leq r-3 \\
& \text { for } 1 \leq i \leq n-2,1 \leq j
\end{aligned}
$$

Proof:

The element $x_{0}^{n-i} x_{1}^{r-(j+2)} x_{3}-x_{0}^{n-(i+1)} x_{1}^{r-(j+1)} x_{2} \in$ $\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-j}, x_{0}^{n-(i+1)} x_{1}^{r-(j+1)} x_{2}\right) \cap J$ but is not contained in $\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-j}, x_{0}^{n-(i+1)} x_{1}^{r-(j+1)} x_{2} x_{3}\right) \cap J$.

Claim 9.

$$
\begin{aligned}
& \left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{2}, x_{0}^{n-(i+1)} x_{1} x_{2} x_{3}\right) \cap J \\
& =\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{2}, x_{0}^{n-(i+1)} x_{1} x_{2}\right) \cap J \text { for } 1 \leq i \leq n-2
\end{aligned}
$$

Proof:

Let $\quad A=\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{2}, x_{0}^{n-(i+1)} x_{1} x_{2} x_{3}\right) \cap J$

$$
B=\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{2}, x_{0}^{n-(i+1)} x_{1} x_{2}\right) \cap J
$$

Suppose that $A \neq B$.
Then there is an element $b \in B$ such that $b \notin A$. Since $b \in B, b$ must \in $\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{2}, x_{0}^{n-(i+1)} x_{1} x_{2}\right)$. So b can be written in the form

$$
v_{1} x_{0}^{n}+v_{2} x_{1}^{r}+v_{3} x_{2}^{2}+v_{4} x_{3}^{2}+v_{5} x_{0}^{n-i} x_{1}+v_{6} x_{0}^{n-(i+1)} x_{1}^{2}+v_{7} x_{0}^{n-(i+1)} x_{1} x_{2}
$$

where $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}$ are arbitrary but fixed elements of $F\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$.
Let $C:=\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{2}, x_{0}^{n-(i+1)} x_{1} x_{2} x_{3}\right)$

The terms $v_{1} x_{0}^{n}, v_{2} x_{1}^{r}, v_{3} x_{2}^{2}, v_{4} x_{3}^{2}, v_{5} x_{0}^{n-i} x_{1}, v_{6} x_{0}^{n-(i+1)} x_{1}^{2}$ of b are all elements of C. If $v_{7} x_{0}^{n-(i+1)} x_{1} x_{2} \in C$, then the element $b \in C$ by definition.

Then we have $b \in J$ (since $b \in\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{2}, x_{0}^{n-(i+1)} x_{1} x_{2}\right)$ $\cap J=B)$.

So $b \in C \cap J=A$ which would be a contradiction. If $v_{7}=0, v_{7} x_{0}^{n-(i+1)} x_{1} x_{2} \in$ C.

$$
\text { If } v_{7}=x_{0}\left(w_{0}\right) \quad\left(w_{0} \in F\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\right) \text { then } v_{7} x_{0}^{n-(i+1)} x_{1} x_{2}=w_{0} x_{0}^{n-i} x_{1} x_{2}
$$ which is generated by $x_{0}^{n-i} x_{1}$, a generator of C.

If $v_{7}=x_{1}\left(w_{1}\right)$ then $v_{7} x_{0}^{n-(i+1)} x_{1} x_{2}=w_{1} x_{0}^{n-(i+1)} x_{1}^{2} x_{2}$ which is generated by $x_{0}^{n-(i+1)} x_{1}^{2}$, a generator of C.

If $v_{7}=x_{2}\left(w_{2}\right)$ then $v_{7} x_{0}^{n-(i+1)} x_{1} x_{2}$ is generated by x_{2}^{2} and if $v_{7}=x_{3}\left(w_{3}\right)$ then $v_{7} x_{0}^{n-(i+1)} x_{1} x_{2}$ is generated by $x_{0}^{n-(i+1)} x_{1} x_{2} x_{3}$ and both $x_{2}^{2}, x_{0}^{n-(i+1)} x_{1} x_{2} x_{3}$ are generators of C.

Therefore $v_{7} \in F \backslash\{0\}$. Since $b \in J, b$ can also be written as $q\left(x_{0} x_{3}-x_{1} x_{2}\right)$. One of the terms of q must be $x_{0}^{n-(i+1)} v_{7}$ i.e. $q=\ldots+\ldots+\ldots x_{0}^{n-(i+1)} v_{7}$.

But this means that $x_{0}^{n-(i+1)} v_{7}\left(x_{0} x_{3}\right)$ is a term of $b x_{0}^{n-(i+1)} v_{7} x_{0} x_{3}=$ $v_{7} x_{0}^{n-i} x_{3}$.
$v_{7} x_{0}^{n-i} x_{3}$ is not an element of $\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{2}, x_{0}^{n-(i+1)} x_{1} x_{2}\right)$. Thus it is impossible to construct an element $b \in B$ such that $b \notin A$.

Claim 10.

$$
\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2}\right) \cap J \underset{\neq}{\subset}\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2}, x_{0}^{n-1} x_{1}^{r-1} x_{3}\right) \cap J .
$$

Proof:

The element $x_{0}^{n-1} x_{1}^{r-1} x_{3}-x_{0}^{n-2} x_{1}^{r} x_{2} \in$ $\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2}, x_{0}^{n-1} x_{1}^{r-1} x_{3}\right) \cap J$ but is not contained in $\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2}\right) \cap J$.

Claim 11.

$$
\begin{aligned}
& \left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2}\right) \cap J=\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2},\right. \\
& \left.x_{0}^{n-1} x_{1}^{r-(j+1)} x_{3}\right) \cap J \quad \text { for } \quad 1 \leq j \leq r-2 .
\end{aligned}
$$

Proof:

Let $\quad A=\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2}\right) \cap J$

$$
B=\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{3}\right) \cap J .
$$

Suppose $A_{\neq}^{C} B$.
Then there is an element $b \in B$ such that $b \notin A$. Since $b \in B, b$ must $\in\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{3}\right)$.

So b can be written in the form
$v_{1} x_{0}^{n}+v_{2} x_{1}^{r}+v_{3} x_{2}^{2}+v_{4} x_{3}^{2}+v_{5} x_{0}^{n-1} x_{1}^{r-j}+v_{6} x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2}+v_{7} x_{0}^{n-1} x_{1}^{r-(j+1)} x_{3}$ where v_{1} to v_{7} are arbitrary but fixed elements of $F\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$.

$$
\text { Let } i=\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2}\right) .
$$

The terms $v_{1} x_{0}^{n}, v_{2} x_{1}^{r}, v_{3} x_{2}^{2}, v_{4} x_{3}^{2}, v_{5} x_{0}^{n-1} x_{1}^{r-j}, v_{6} x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2}$ of b are all elements of C.

If $v_{7} x_{0}^{n-1} x_{1}^{r-(j+1)} x_{3} \in C$, then the element $b \in C$ by definition.
Then we have $b \in J$ (since $b \in B$). So $b \in C \cap J=A$ which would be a contradiction.

If $v_{7}=0, v_{7} x_{0}^{n-1} x_{1}^{r-(j+1)} x_{3} \in C$.
If every term of v_{7} contains an $x_{k}(k=0, \ldots, 3)$ then $v_{7} x_{0}^{n-1} x_{1}^{r-(j+1)} x_{3}$ is an element of C. Thus v_{7} must have a term α such that $\alpha \in F \backslash\{0\}$. Since $b \in J, b$ can also be written as $q\left(x_{0} x_{3}-x_{1} x_{2}\right)$. One of the terms of q must be $\alpha x_{0}^{n-2} x_{1}^{r-(j+1)}$ i.e. $q=\ldots+\ldots+\ldots+\alpha x_{0}^{n-2} x_{1}^{r-(j+1)}$.

But this means that $\alpha x_{0}^{n-2} x_{1}^{r-(j+1)}\left(-x, x_{2}\right)$ is a term of b.
$-\alpha x_{0}^{n-2} x_{1}^{r-(j+1)}\left(x_{1} x_{2}\right)=-\alpha x_{0}^{n-2} x_{1}^{r-j} x_{2}$.
$-\alpha x_{0}^{n-2} x_{1}^{r-j} x_{2}$ is not an element of $\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{3}\right)$.
Thus $\quad b \notin\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{3}\right)$.
$\Rightarrow b \notin B$ which is a contradiction.

Claim 12.

$\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-1)} x_{2}\right) \cap J \neq\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-1} x_{2}\right.$, $\left.x_{0}^{n-(i+1)} x_{1}^{r-1} x_{3}\right) \cap J$ for $1 \leq i \leq n-2$.

Proof:

The element $x_{0}^{n-(i+1)} x_{1}^{r-1} x_{3}-x_{0}^{n-(i+2)} x_{1}^{r} x_{2}$
$\in \quad\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-1} x_{2}, x_{0}^{n-(i+1)} x_{1}^{r-1} x_{3}\right) \cap J$ but is not contained in $\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-1} x_{2}\right) \cap J$.

Claim 13.

$$
\begin{aligned}
& \left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-j}, x_{0}^{n-(i+1)} x_{1}^{r-(j+1)} x_{2}\right) \cap J= \\
& \left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-j}, x_{0}^{n-(i+1)} x_{1}^{r-(j+1)} x_{2}, x_{0}^{n-(i+1)} x_{1}^{r-(j+1)} x_{3}\right) \\
& \cap J \quad 1 \leq i \leq n-2,1 \leq j \leq r-2
\end{aligned}
$$

Proof: Almost identical to proof of Claim 11.

Claim 14.

$$
\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2}, x_{0}^{n-1} x_{1}^{r-1} x_{3}\right) \cap J=\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1}\right) \cap J .
$$

Proof:

$$
\text { Let } \begin{aligned}
A & =\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1} x_{2}, x_{0}^{n-1} x_{1}^{r-1} x_{3}\right) \cap J . \\
B & =\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1}\right) \cap J .
\end{aligned}
$$

Suppose $A_{\neq}^{\subset} B$. Then we have an element $b \in B$ such that $b \notin A$. Since $b \in B, b \in\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-1}\right)$. So b can be written in the form

$$
v_{1} x_{0}^{n}+v_{2} x_{1}^{r}+v_{3} x_{2}^{2}+v_{4} x_{3}^{2}+v_{5} x_{0}^{n-1} x_{1}^{r-1} \text { where } v_{1}, \ldots, v_{5}
$$

are arbitrary but fixed elements of $F\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$.
In a similar manner to the proof of Claim 11, one of the terms of v_{5} belongs to $F \backslash\{0\}$. Call this element α.

But this means that b cannot be written in the form $q\left(x_{0} x_{3}-x_{1} x_{2}\right), q \in$ $F\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ (as $\alpha x_{0}^{n-1} x_{1}^{r-1}$ does not cancel with other terms of b nor does it contain $x_{0} x_{3}$ or $x_{1} x_{2}$.) So $b \notin J$ which is a contradiction.

Claim 15.

$$
\begin{aligned}
& \left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-j}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{2}, x_{0}^{n-1} x_{1}^{r-(j+1)} x_{3}\right) \cap J \\
& =\left(Q_{n r}, x_{0}^{n-1} x_{1}^{r-(j+1)}\right) \cap J \quad 1 \leq j \leq r-2 .
\end{aligned}
$$

Claim 16.

$$
\begin{aligned}
& \left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-1} x_{2}, x_{0}^{n-(i+1)} x_{1}^{r-1} x_{3}\right) \cap J \\
& =\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-1}\right) \cap J \quad 1 \leq i \leq n-2 .
\end{aligned}
$$

Claim 17.

$$
\begin{aligned}
& \left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-j}, x_{0}^{n-(i+1)} x_{1}^{r-(j+1)} x_{2}, x_{0}^{n-(i+1)} x_{1}^{r-(j+1)} x_{3}\right) \\
& \cap J=\left(Q_{n r}, x_{0}^{n-i} x_{1}, x_{0}^{n-(i+1)} x_{1}^{r-(j+1)}\right) \cap J 1 \leq i \leq n-2,1 \leq j \leq r-2 .
\end{aligned}
$$

The proofs of Claims 15, 16 and 17 are almost identical to the proof of Claim 14.

Claim 18.

$$
\left(Q_{n r}, x_{0} x_{1}\right) \cap J \neq\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2} x_{3}\right) \cap J .
$$

Proof:

$$
x_{0}^{n-1} x_{2} x_{3}-x_{0}^{n-2} x_{1} x_{2}^{2} \in\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2} x_{3}\right) \cap J
$$ but is not contained in $\quad\left(Q_{n r}, x_{0} x_{1}\right) \cap J$.

Claim 19.

$$
\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2} x_{3}\right) \cap J=\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2}\right) \cap J .
$$

Proof: Very similar to proof of Claim 14.

Claim 20.

$$
\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2}\right) \cap J_{\neq}^{\subset}\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2}, x_{0}^{n-1} x_{3}\right) \cap J \text { if } n \geq 3 .
$$

Proof: If $n \geq 3$ then $x_{0}^{n-1} x_{3}-x_{0}^{n-2} x_{1} x_{2} \in\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2}, x_{0}^{n-1} x_{3}\right) \cap J$ but is not contained in $\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2}\right) \cap J$.

Claim 21.

$$
\left(Q_{n r}, x_{0} x_{1}, x_{0}^{n-1} x_{2}, x_{0}^{n-1} x_{3}\right) \cap J=\left(x_{0}^{n-1}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}\right) \cap J
$$

Proof: Very similar to proof of Claim 14.

Claim 22.

$\left(x_{0}^{n-i}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}\right) \cap J_{\neq}^{\complement}\left(x_{0}^{n-i}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2} x_{0} x_{1}, x_{0}^{n-(i+1)} x_{2} x_{3}\right)$
$\cap J$ for $1 \leq i \leq n-2$.
Proof: The element $x_{0}^{n-(i+1)} x_{2} x_{3}-x_{0}^{n-(i+2)} x_{1} x_{2}^{2} \in$
$\left(x_{0}^{n-i}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0}^{n-(i+1)} x_{2} x_{3}\right) \quad J \quad$ but is not contained in $\left(x_{0}^{n-i}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}\right) \cap J$.

Claim 23.

$$
\begin{aligned}
& \left(x_{0}^{n-i}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0}^{n-(i+1)} x_{2} x_{3}\right) \cap J= \\
& \left(x_{0}^{n-i}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0}^{n-(i+1)} x_{2}\right) \cap J \text { for } i \leq i \leq n-2
\end{aligned}
$$

Proof: Very similar to proof of Claim 14.

Claim 24.

$$
\begin{aligned}
& \left(x_{0}^{n-i}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0}^{n-(i+1)} x_{2}\right) \cap J_{\neq}^{\subset} \\
& \left(x_{0}^{n-i}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0}^{n-(i+1)} x_{2}, x_{0}^{n-(i+1)} x_{3}\right) \cap J \\
& \text { for } 1 \leq i \leq n-3 .
\end{aligned}
$$

Proof:

$$
x_{0}^{n-(i+1)} x_{3}-x_{0}^{n-(i+2)} x_{1} x_{2} \in\left(x_{0}^{n-i}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0}^{n-(i+1)} x_{2}, x_{0}^{n-(i+1)} x_{3}\right)
$$

$$
\cap J \text { but is not contained in }\left(x_{0}^{n-i}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0}^{n-(i+1)} x_{2}\right) \cap J .
$$

Claim 25.

$$
\left(x_{0}^{2}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0} x_{2}\right) \cap J=\left(x_{0}^{2}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{0} x_{3}\right) \cap J
$$

Proof: Very similar to proof of Claim 11.

Claim 26.

$$
\begin{aligned}
& \left(x_{0}^{n-i}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0}^{n-(i+1)} x_{2}, x_{0}^{n-(i+1)} x_{3}\right) \cap J \\
& =\left(x_{0}^{n-(i+1)}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}\right) \cap J \text { for } 1 \leq i \leq n-3 .
\end{aligned}
$$

Proof: Very similar to proof of Claim 14.

Claim 27.

$$
\left(x_{0}^{2}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{0} x_{3}\right) \cap J=\left(x_{0}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}\right) \cap J .
$$

Proof: Very similar to proof of Claim 14.

Claim 28.

$\left(x_{0}, x_{1}^{r-j}, x_{2}^{2}, x_{3}^{2}\right) \cap J \neq\left(x_{0}, x_{1}^{r-j}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-(j+1)} x_{2} x_{3}\right) \cap J$
for $0 \leq j \leq r-2$.
Proof: The element $x_{0} x_{1}^{r-(j+2)} x_{3}^{2}-x_{1}^{r-(j+1)} x_{2} x_{3} \in$ $\left(x_{0}, x_{1}^{r-j}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-(j+1)} x_{2} x_{3}\right) \cap J$ but is not contained in $\left(x_{0}, x_{1}^{r-j}, x_{2}^{2}, x_{3}^{2}\right) \cap J$.

Claim 29.

$$
\left(x_{0}, x_{1}^{r-j}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-(j+1)} x_{2} x_{3}\right) \cap J \neq\left(x_{0}, x_{1}^{r-j}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-(j+1)} x_{2}\right)
$$

$\cap J$ for $0 \leq j \leq r-3$.
Proof:

$$
x_{0} x_{1}^{r-(j+2)} x_{3}-x_{1}^{r-(j+1)} x_{2} \in\left(x_{0}, x_{1}^{r-j}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-(j+1)} x_{2}\right)
$$

$$
\cap J \text { but is not contained in }\left(x_{0}, x_{1}^{r-j}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-(j+1)} x_{2} x_{3}\right) \cap J .
$$

Claim 30.

$\left(x_{0}, x_{1}^{r-j}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-(j+1)} x_{2}\right) \cap J=\left(x_{0}, x_{1}^{r-j}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-(j+1)} x_{2}\right.$, $\left.x_{1}^{r-(j+1)} x_{3}\right) \cap J$ for $0 \leq j \leq r-3$.

Proof: Similar to proof of Claim 14.

Claim 31.

$$
\begin{aligned}
& \left(x_{0}, x_{1}^{r-j}, x_{2}^{2}, x_{3}^{2}, x_{1}^{r-(j+1)} x_{2}, x_{1}^{r-(j+1)} x_{3}\right) \cap J= \\
& \left(x_{0}, x_{1}^{r-(j+1)}, x_{2}^{2}, x_{3}^{2}\right) \cap J \text { for } 0 \leq j \leq r-3
\end{aligned}
$$

Proof: Similar to proof of Claim 14.

Claim 32.

$\left(x_{0}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2} x_{3}\right) \cap J \neq\left(x_{0}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}\right) \cap J$.
Proof: $x_{0} x_{3}-x_{1} x_{2} \in\left(x_{0}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}\right) \cap J$ but is not contained in $\left(x_{0}, x_{1}^{2}, x_{3}^{2}, x_{1} x_{2} x_{3}\right) \cap J$.

Also, as $x_{0} x_{3}-x_{1} x_{2} \in\left(x_{0}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}\right),\left(x_{0}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}\right) \cap J=J . \quad$ So all ideals after $\left(x_{0}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}\right) \cap J$ in our chain equal J.

We are now in a position to prove lemma 1. To find mult $\boldsymbol{I}_{n r}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ we calculate the number of duplicate ideals in our chain, denote this number by e say, and then $4 r n-e$ will be $\operatorname{mult}_{I_{n r}}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ [5, p.2].

So the claims we will use are claims $9,11,13,14,15,16,17,19,21,23,25,26$, $27,30,31$. (Since the other claims only relate to ideals that are unequal). (Note Claim 21 and Claim 27 are the same for $n=2$).

Claim 9 gives $n-2$ ideals that are equal.
Claim 11 gives $r-2$ ideals that are equal.
Claim 13 gives $(n-2)(r-2)$ ideals that are equal.

Claim 14 gives a pair of ideals that are equal.
Claim 15 gives $r-2$ ideals that are equal.
Claim 16 gives $n-2$ ideals that are equal.
Claim 17 gives $(n-2)(r-2)$ ideals that are equal.
Claim 19 gives a pair of ideals that are equal.
Claim 21 gives a pair of ideals that are equal.
Claim 23 gives $n-2$ ideals that are equal.
Claim 25 gives a pair of ideals that are equal.
Claim 26 gives $n-3$ ideals that are equal.
Claim 27 gives a pair of ideals that are equal.
Claim 30 gives $r-2$ ideals that are equal.
Claim 31 gives $r-2$ ideals that are equal.
Also since the last 6 ideals in our chain equal J we have another 6 ideals which are equal. So length-multiplicity $\left(x_{0}^{n}, x_{1}^{r}, x_{2}^{2}, x_{3}^{2}\right)$ is

$$
\begin{aligned}
& 4 r n-[3(n-2)+4(r-2)+2(r-2)(n-2)+5+(n-3)+6] \\
& \Rightarrow 4 r n-(2 r n+2)=2 r n-2 .
\end{aligned}
$$

Hence we have proved lemma 1 and thus (i) of theorem 9. We will now prove theorem 9 (ii). We must first find the generators of $I_{n r}$.

Claim C.

$$
\begin{aligned}
& I_{n r}=\left(x_{0}^{n+1} x_{3}-x_{0}^{n} x_{1} x_{2}, x_{0} x_{1}^{r} x_{3}-x_{1}^{r+1} x_{2}, x_{0} x_{2}^{2} x_{3}-x_{1} x_{2}^{3},\right. \\
& x_{0} x_{3}^{3}-x_{1} x_{2} x_{3}^{2}, x_{0}^{n} x_{1}^{r-1} x_{3}-x_{0}^{n-1} x_{1}^{r} x_{2}, x_{0}^{n} x_{2} x_{3}-x_{0}^{n-1} x_{1} x_{2}^{2}, \\
& \left.x_{0} x_{1}^{r-1} x_{3}^{2}-x_{1}^{r} x_{2} x_{3}, x_{0} x_{2} x_{3}^{2}-x_{1} x_{2}^{2} x_{3}, x_{0}^{2} x_{3}^{2}-x_{1}^{2} x_{2}^{2}\right)
\end{aligned}
$$

Proof: Any element in $Q_{n r} \cap J$ can be written in the form $w\left(x_{0} x_{3}-x_{1} x_{2}\right)$ where w is an element of the ring $F\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$.
(i) Suppose that w is just a single term. Then, since $w x_{0} x_{3}, w x_{1} x_{2}$ must belong to $Q_{n r}, w\left(x_{0} x_{3}-x_{1} x_{2}\right)$ must be generated by one of

$$
\begin{aligned}
& x_{0}^{n+1} x_{3}-x_{0}^{n} x_{1} x_{2}, x_{0} x_{1}^{r} x_{3}-x_{1}^{r+1} x_{2}, x_{0} x_{2}^{2} x_{3}-x_{1} x_{2}^{3}, \\
& x_{0} x_{3}^{3}-x_{1} x_{2} x_{3}^{2}, x_{0}^{n} x_{1}^{r-1} x_{3}-x_{0}^{n-1} x_{1}^{r} x_{2}, x_{0}^{n} x_{2} x_{3}-x_{0}^{n-1} x_{1} x_{2}^{2}, \\
& x_{0} x_{1}^{r-1} x_{3}^{2}-x_{1}^{r} x_{2} x_{3}, x_{0} x_{2} x_{3}^{2}-x_{1} x_{2}^{2} x_{3} .
\end{aligned}
$$

(ii) Suppose that w contains two terms i.e. $w=w_{1}+w_{2}$.

If w_{1} and w_{2} differ only in their coefficients then w can be expressed as a single term which is case (i). So we assume that w cannot be written as a single term. Now if $w_{1} x_{0} x_{3}, w_{1} x_{1} x_{2}, w_{2} x_{0} x_{3}, w_{2} x_{1} x_{2}$ all belong to $Q_{n r}$ then w is generated by two of the generators already given.

If $w_{1} x_{0} x_{3}, w_{1} x_{1} x_{2} \in Q_{n r}, w_{2} x_{0} x_{3}, w_{2} x_{1} x_{2} \notin Q_{n r}$ or $w_{1} x_{0} x_{3}, w_{1} x_{1} x_{2}$
$\notin Q_{n r}, w_{2} x_{0} x_{3}, w_{2} x_{1} x_{2} \in Q_{n r}$ then $w\left(x_{0} x_{3}-x_{1} x_{2}\right) \notin Q_{n r} \cap J$. If both $w_{1} x_{0} x_{3}, w_{1} x_{1} x_{2} \in Q_{n r}$ and only one of $w_{2} x_{0} x_{3}, w_{2} x_{1} x_{2}$ belong to $Q_{n r}$, then $w\left(x_{0} x_{3}-x_{1} x_{2}\right) \notin Q_{n r} \cap J$.

Similarly if both $w_{2} x_{0} x_{3}, w_{2} x_{1} x_{2} \in Q_{n r}$ and only one of $w_{1} x_{0} x_{3}, w_{1} x_{1} x_{2} \in Q_{n r}$ then $w\left(x_{0} x_{3}-x_{1} x_{2}\right) \notin Q_{n r} \cap J$.

If $w_{1} x_{0} x_{3}, w_{2} x_{0} x_{3} \in Q$ but $w_{1} x_{1} x_{2}, w_{2} x_{1} x_{2} \notin Q_{n r}$, then $w\left(x_{0} x_{3}-x_{1} x_{2}\right)$ can only belong to $Q_{n r}$ if $-w_{1} x_{1} x_{2}=w_{2} x_{1} x_{2}$ i.e. $w_{2}=-w_{1}$ which is contrary to our assumption.

Also if $w_{1} x_{1} x_{2}, w_{2} x_{1} x_{2} \in Q_{n r}$ but $w_{1} x_{0} x_{3}, w_{2} x_{0} x_{3} \notin Q_{n r}$ we have the same
contradiction. Thus we must have $w_{1} x_{0} x_{3}, w_{2} x_{1} x_{2} \in Q_{n r}, w_{1} x_{1} x_{2}, w_{2} x_{0} x_{3} \notin Q_{n r}$ or $w_{1} x_{1} x_{2}, w_{2} x_{0} x_{3} \in Q_{n r}, w_{1} x_{0} x_{3}, w_{2} x_{1} x_{2} \notin Q_{n r}$.

Since it just depends on how we label w_{1}, w_{2}, we will only consider $w_{1} x_{0} x_{3}, w_{2} x_{1} x_{2} \in Q_{n r}, w_{1} x_{1} x_{2}, w_{2} x_{0} x_{3} \notin Q_{n r}$.

Now $w_{1} x_{0} x_{3}-w_{2} x_{1} x_{2}-w_{1} x_{1} x_{2}+w_{2} x_{0} x_{3} \in Q_{n r} \Leftrightarrow$ $w_{1} x_{1} x_{2}=w_{2} x_{0} x_{3} \Rightarrow w_{1}=y_{1} x_{0} x_{3}, w_{2}=y_{2} x_{1} x_{2}$ where $y_{1}, y_{2} \in F\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$.

So $y_{1} x_{0} x_{1} x_{2} x_{3}=y_{2} x_{0} x_{1} x_{2} x_{2} \Rightarrow y_{1}=y_{2}$.

$$
\text { Hence } \quad \begin{aligned}
w\left(x_{0} x_{3}-x_{1} x_{2}\right) & =\left(w_{1}+w_{2}\right)\left(x_{0} x_{3}-x_{1} x_{2}\right) \\
& =\left(y_{1} x_{0} x_{3}+y_{1} x_{1} x_{2}\right)\left(x_{0} x_{3}-x_{1} x_{2}\right) \\
& =y_{1}\left(x_{0} x_{3}+x_{1} x_{2}\right)\left(x_{0} x_{3}-x_{1} x_{2}\right) \\
& =y_{1}\left(x_{0}^{2} x_{3}^{2}-x_{1}^{2} x_{2}^{2}\right) .
\end{aligned}
$$

So $x_{0}^{2} x_{3}^{2}-x_{1}^{2} x_{2}^{2}$ is another generator of $Q_{n r} \cap J$.
(iii) Suppose that w has t terms $(t \geq 3)$. Since we are trying to find new generators, we assume that there are no $w_{k}(1 \leq k \leq t)$ such that $w_{k} x_{0} x_{3}, w_{k} x_{1} x_{2}$ both belong to $Q_{n r}$ (case (i)). We also assume that there are no two $w_{k}, w_{\ell}(1 \leq k \leq t, 1 \leq \ell \leq t, k \neq \ell)$ such that $\left(w_{k}+w_{\ell}\right)\left(x_{0} x_{3}-x_{1} x_{2}\right)=\beta\left(x_{0}^{2} x_{3}^{2}-x_{1}^{2} x_{2}^{2}\right)\left(\beta \in F\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\right)$ (case (ii)).

So for each term w_{k}, at the most only one of $w_{k} x_{0} x_{3}, w_{k} x_{1} x_{2}$ can belong to $Q_{n r}$. Thus when we multiply $w\left(x_{0} x_{3}-x_{1} x_{2}\right)$ out, we have at least t terms that do not belong to $Q_{n r}$.

Since $w\left(x_{0} x_{3}-x_{1} x_{2}\right) \in Q_{n r}$, these terms must all cancel. But no $w_{k} x_{0} x_{3}$ can cancel with $w_{\ell} x_{1} x_{2}$ (case (ii)), so there must be at least three terms involved in each cancellation.

This means that we must have a w_{k} and $w_{\ell}(k \neq \ell)$ that differ only in coefficients contrary to our assumption.

The generators of the ideal of Claim C are independent only if $n, r \geq 2$.
If $n=r=1$ then $I_{11}=\left(x_{0} x_{3}-x_{1} x_{2}\right)$.
If $n=1, r \geq 2$ then
$I_{n r}=\left(x_{0}^{2} x_{3}-x_{0} x_{1} x_{2}, x_{0} x_{3}^{3}-x_{1} x_{2} x_{3}^{2}, x_{0} x_{1}^{r-1} x_{3}-x_{1}^{r} x_{2}, x_{0} x_{2} x_{3}-x_{1} x_{2}^{2}, x_{0}^{2} x_{3}^{2}-x_{1}^{2} x_{2}^{2}\right)$, and if $n \geq 2, r=1$ then
$I_{n r}=\left(x_{0} x_{1} x_{3}-x_{1}^{2} x_{2}, x_{0} x_{2}^{2} x_{3}-x_{1} x_{2}^{3}, x_{0}^{n} x_{3}-x_{0}^{n-1} x_{1} x_{2}, x_{0} x_{3}^{2}-x_{1} x_{2} x_{3}, x_{0}^{2} x_{3}^{2}-x_{1}^{2} x_{2}^{2}\right)$.

Thus from the definition of $m\left(I_{n r}\right)$

$$
m\left(I_{n r}\right)= \begin{cases}2: & n=r=1 \\ 4: & n=1, r=2 \text { or } \mathrm{r}=1, \mathrm{n}=2 \\ r+1: & n=1, r>2 \\ n+1: & r=1, n>2 \\ n+r: & n, r \geq 2\end{cases}
$$

Analysing the examples of [8] and our theorems, we would like to finish with the following (open) problem.

Problem: Let I be a homogeneous ideal of $F\left[x_{0}, \ldots, x_{n}\right]$ which is not monomial. Under what assumptions do we have arith-deg $(I) \geq m(I)$, where $m(I)$ is the maximum of degrees of forms generating I.

REFERENCES

[1] Allsop, N.: Monomial Ideals: Length-multiplicity of embedded primary ideals. Notes, Massey University, Palmerston North, 1995.
[2] Allsop, N.: Primary decomposition of Monomial Ideals. Notes, Massey University, Palmerston North, 1995.
[3] Bayer, D. and Mumford, D.: "What can be computed in Algebra and Geometry". In: Eisenbud, D. and Robbiano, L. (eds.): Computational algebraic geometry and commutative algebra. Cambridge University Press, 1993, 1-48.
[4] Hermann, G.: Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Annalen 95, (1926), 736-788.
[5] Hudson, J. and Vogel, W.: On computing length-multiplicities. Preprint Series: 94/24. Massey University, Palmerston North, 1994.
[6] Northcott, D.G.: Ideal Theory. Cambridge University Press, 1953.
[7] Renschuch, B.: Elementare and praktische Idealtheorie. Deutscher Verlag der Wissenschaften, Berlin, 1976.
[8] Smith, T.: Bounds on arithmetic degrees. Master Thesis, Massey University, Palmerston North, 1997.
[9] Sturmfels, B. Trung, N.V. and Vogel, W.: Bounds on degrees of projective schemes. Math. Annalen, 302 (1995), 417-432.
[10] Vogel, W.: Lectures on Results on Bezout's Theorem. Tata Institute of Fundamental Research, Springer-Verlag, New York, 1984.

Acknowledgements

Since finishing this thesis, my supervisor Professor Wolfgang Vogel has died. I would like to pay tribute to him and acknowledge the unstinting support, advice and encouragement that he always gave to me. The many discussions we had were helpful and stimulating and I am privileged to have been one of his students. I will remember him for his wide knowledge in his field of pure mathematics, his perceptive ideas, his ability for clear explanations and his friendliness. Some of the references made in this thesis are from publications written or co-written by Professor Vogel. We can be grateful that his expertise will still be passed on to students and mathematicians in many universities.

I appreciated the help given by Dr Yuji Kamoi of Tokyo Metropolitan University in the use of the Macaulay Mathematical computer programme.

Finally I would like to thank Professor Dean Halford and all the staff of the Department of Mathematics at Massey University with whom I have had contact, for their friendliness and help.

