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ABSTRACT 

The reader of this thesis should already have a basic understanding of ideal theory. 

For this reason it is recommended that a good introduction to this subject would be gained 

from reading D. G. Northcott's book "Ideal Theory", paying special attention to chapters 

one and three. This thesis consists of three chapters, with chapter one providing the 

definitions and theorems which will be used throughout. Then I will be considering two 

problems on the arithmetic degree of an ideal, one posed by Sturmfels, Trung and Vogel 

and the other by Renschuch. These problems will be described in the introductions to 

chapters two and three. 
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CHAPTER 1 

PRELIMINARY RESULTS 

Let I be a homogeneous ideal of the polynomial ring S = F [xo, ... , xn] where 

F is any field. 

Let P be a prime ideal belonging to I. 

If P is isolated, we know from the corollary of theorem 3 of Northcott's book 

[6, p.19], that the primary component corresponding to P is the same for all normal 

decompositions of I . 

However, if P is embedded, then this is not true, as the following example [6, 

p.30] shows. 

Consider the ideal (x2 , xy) in the ring F [x, y], F any field. 

It is shown in Northcott's book [6, p. 30] that 

(x) n (y + ax , x2) (where a is any element of F), 

(x) n (y + bx, x 2
) (where b E F, b =f. a), 

and (x) n (x2
, xy, y 2

) 

are all normal decompositions of (x2 , :i;y) with (y + ax, x2 ), (y + bx, x2 ), (x2 , x y, y2) 

all (x, y) - primary. 

So the primary component corresponding to an embedded prime ideal need not 

be unique. 

Therefore, if we have two normal primary decompositions of I , one having a 

primary component Q1 corresponding to an embedded prime P, and the other having 

a primary component Q2 corresponding to P, Q1 =f. Q2, then in general, the classical 

length multiplicity of Q1 does not equal the classical length multiplicity of Q2. 

However, in arithmetic degree theory, we do have a way of defining the length 

multiplicity of an embedded component of an ideal which is well-defined. 
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The definitions that are needed to do this are given later in this chapter. 

We will also need some basic facts about the Hilbert function from the classical 

degree theory. 

Let V ( n + 1, t) denote the F - vector space consisting of all forms of degree t 

in X O, ... , X n , 

Then <limp V (n+ 1, t ) = C~n ), t 2: 0 , n 2: 0. 

Let V (I , t) be the F-vector space consisting of all forms in V ( n + 1, t) which are in I. 

Definition 1. The function H (I,-) : z+ - z+ [10, p.43] defined by 

H (I , t) = <limp V ( n + 1, t) - <limp V (I , t) is called the Hilbert function of I. 

For large enough t, the Hilbert function is a polynomial P (I , t) in t with 

coefficients in Z . The degreed (0 ::; d ::; n) of this polynomial is called the dimension 

of I and is denoted by dim (I ). 

The polynomial P (I , t) can be written in the following form: 

P (I , t) = ho(I) (~) + h1 (d~l) + .. . + hd [10, p.45] where ho (I) is a positive integer. 

The leading coefficient of P (I , t ), namely ho (I), is called the degree of I. 

There is of course a great deal of theory on the Hilbert polynomial, but for our 

purposes the following definition and theorem will suffice. 

Let I = (!1 , ... , ft). 

Definition 2. I is said to be a complete intersection if (!1, . . . , fi-1) Ii = 

(Ji , ... , h - 1) for all i = 1, ... , t. 

Theorem 1 [10, p.46]. Let the generators Ji, ... f t of I be forms of degrees 

s1, ... , St respectively. If I is a complete intersection then ho (I ) = s1 ... St, 
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We will now state the other definitions, theorems and propositions that will be 

used in chapters two and three. 

Definition 3 [5, p.l]. Given any homogeneous ideal I and prime ideal P in 

S, we define J to be the intersection of the primary components of I with associated 

primes strictly contained in P. We let J = S if there are no primes p belonging to I 

with p~P. 

Let Q be a ?-primary ideal belonging to I. 

Definition 4 [3]. We define the length-multiplicity of Q, denoted by multi (P), 

as the length of a maximal strictly increasing chain of ideals, I ~ I,,_ C h-1 C ... C 

h c Ji c J where each Jk equals q n J for some ?-primary ideal q. 

As we will be making repeated use of an algorithmic approach to calculate 

multi (P) it is convenient to state it here, followed by a theorem. 

Step 1. Take a maximal strictly increasing chain of primary ideals from Q to P. 

(1) QC ... C Q i -1 C Qi C ... P. 

Step 2. Intersect each primary ideal in (1) with J. 

(2) Q n J ~ ... ~ Q i-1 n J ~Qin J ~ ... ~ P n J = J. 

Step 3. Eliminate duplicates in (2) in order to get a strictly increasing chain of 

ideals in the sense of definition 4. 

(3) Q n J =: I,,_ C h-1 C ... C 11 C J. 

Note: If P is an isolated prime ideal of I, then multi (P) gives the classical length 

multiplicity of Q. 
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Theorem 2 [5, p.2]. Using the above notation we have f = multi (P) . 

D fl . . 5 [2 1] A 1 . J f th i: il i2 in h e mhon , p. . po ynom1a o e 1orm a(i)x1 x2 ... xn , w ere 

i1, i2, ... in are any non-negative integers and a(i) is any element of F, is a mono­

mial. 

Definition 6 [2, p.1]. If A is an ideal of S then A is a monomial ideal of S if 

and only if A is generated by monomials. That is, A = (m1, ... , ms), where mt are 

monomials for f = 1, ... , s. 

Proposition 1 [2, p.2]. Let P1 be a monomial ideal of S = F [xo, ... , xn]; Pi is 

a prime ideal if and only if Pi = (xi
0

, •• • , ,xi,) , ij E {O, ... , n} for j = 0, ... , r . 

Proposition 2 [2, p.2]. Let Pi, Q1 be monomial ideals of S = F [x0 , .•• , xn] 

where Pi is prime and, say Pi = (xio, ... , Xir), ij E {O, ... , n} for j = 0, ... , r. 

Q1 is P-primary if and only if Q1 = (x~~, ... , xt, mo, . .. , ms) where tj > 1 for 

j = 0, ... , r, and ml are monomials in Xia, ... , Xir for f = 0, ... , s. 

Definition 7. Consider a primary decomposition of I= Q1 n ... n Qk where Qi 

is Pi-primary. The arithmetic degree of I, denoted by arith-deg (I), is given by 
k 

arith-deg (I) : = L multr (Pi) degree (Pi) . 
i= l 

Let I = (!1, ... , ft). 

Definition 8. M (I) := max {degree (Ii)}. 
i=l to t 
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Theorem 3 (criterion of multr (P) = 1) (1, p.2]. 

Let R be a Noetherian ring. 

Let A and B be ideals in R such that B ~ A. 

Let P be a prime ideal such that all primes belonging to A and B are contained 

m P. 

Necessary and sufficient conditions, that there exists no ideal, say C, with 

B ~ C ~ A, and all primes that belong to C are also contained in P, are the following: 

(i) there exists an element x in A such that A = B + R · x. 

(ii) PA :B. 

Definition 9 (2, p.3]. Two monomials A and T are said to be relatively prime 

if, when 

Theorem 4 (2, p.3]. Let S = F [xo, ... , xn] be a ring of polynomials in n + l 

indeterminates. Let A, T , mo, ... , mr be monomials in F. If A and Tare relatively prime, 

then: 

( A . T ' mo , ... ' mr ) = (A , mo' ... ' mr) n ( T ' mo' . . . ' mr). 



CHAPTER 2 

ON A PROBLEM OF B. RENSCHUCH 

Consider the polynomial ring S = F [xo, x1 , x2) where F is any field. 

Let m 2: 1 be an integer. 

We set 

Also we will define Im : = Q n Qm . 
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This example was discussed by Dr. B. Renschuch of Germany [7, p.92]. It is an 

example stated in the classical paper of G. Hermann [4]. However we want to study the 

ideal Im again, in order to prove the following theorem. 

Theorem 5. Arithmetic-degree of Im does not depend on the integer m form 2: 6. 

More precisely, arith-deg (Im) = 14 for m 2: 6. 

Remark: In a letter written to Professor W. Vogel on 12 July 1995, Dr. B. 

Renschuch said that because of a time constraint he was unable to show why the length 

multiplicity of Qm does not depend on m if m 2: 6. The aim of this chapter is to give 

two proofs for Theorem 5. The following two theorems will provide the first proof. The 

second proof will solve the problem stated by Dr. Renschuch by proving that the length 

multiplicity of Qm = 10 for all m 2: 6. 

Theorem 6. Im = A if and only if m 2: 6. 



Proof. 

(i) Suppose m = 1. Then B 1 = (xo, x1, x2) . 

So Q1 = (xo, x1, x2) = B 

Clearly A~Q. 

Therefore A~ Q n Q1. 

(ii) m = 2 

S Q _ ( 2 2 2) _ B2 o 2 - x0,xox1,x1,xox2,x1x2,x2 - . 

Q n Q2 = Q since Q is contained in Q2. 

Therefore A~ Q n Q2. 

(iii) m = 3 

Th B 3 ( 3 2 , 2 2 2 3 2 2 3) en = Xo, Xo x1, ,:Co x2, xo X1, xo Xl x2, xo X2, X1, X1 x2, XI X2, X2 . 

A~ Q n Q3 i.e. Q n Q:3 contains the element xo xr which is not in A. 

(iv) m = 4 

Th B 4 _ ( 4 3 , 3 2 2 2 2 2 3 2 2 en - x0, x0 x1, ,1:0 x2, x0 x 1 , x0 x1x2, x0 x 2, xo x 1, xo x 1 x2, xo x1 x 2 , 

A~ Q n Q4 i.e. xo xf is contained in Q n Q4 but is not contained in A. 

(v) m = 5 

i.e. xoxr x2 E Q n Q~., xo xr X2 rf_ A. 

A~Q n Q5. 

(vi) m = 6 
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We now apply theorem 4 of chapter 1 to Q5 which gives 

n(xo,x1,x~) n (x5,x1,xg) n (x8,x1, .1:~ ) 

= (xo,x1,x~) n (xo,xI,xg) n (xo ,x1,x~ ) n (xo,x1,x~) 

n(x5,x1,xg) n (x5,x1,x~) n (xo,x1,x~) n (x5,x1,xg) 

n(x8, x1, x~). 

Now (xo,x1,x~) n (x5,x1,x~) = (x5,x1,x~) . 

Using this and eliminating duplicates we have 

Q5 = (xo, xi , x~) n (xo, xr, xg ) n (x5, x1, xg) n (x5, Xf , x~) n (x8, x1, x~) . 

Applying theorem 4 to Q gives 

(xo, x 1, x~) n (xo, xr, xg ) n (xo, xr) = (xo, xi) . 

(x5, x1, xg ) n (x8, x1, x~ ) n (x8, x1) = (x8 , x1). 

So Q n Q5 = (x5, x1 , :r~) n (xo, xi) n (x8, x1). 

Applying theorem 4 to A gives 

(x8, Xl) = (xo, Xi, Xi X~ ) n (x5, X1 ) n (x5, Xf , X~ ) n (x8, Xl) = (xo xi) n 

(xo, Xf, x~ ) n (x5, x1) r1 (x5, Xf , x~ ) n (x8, x1) = (x5, Xf, x~) n (x8, x1)n 

(vii) m ~ 7 

9 

From the definition of Qm, Q 1 ~ Q2 ~ Q3 ~ Q 4 .. . ~ Qm for any positive integer m. 
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Therefore Q n Q5 2 Q n Qm for m ~ 6. 

Also from the definition of Qm, A C Qm for all m ~ 1 and certainly A C Q so 

Q n Qm 2 A for m ~::: 1 . 

Since Q n Q5 = A from (vi) 

we get A = Q n Q5 ~1 Q n Qm 2 A for all m ~ 6. 

Hence Q n Qm = A form ~ 6. 

Theorem 7. Arithmetic-degree of ]5 = 14. 

Proof: From Theorem 6 we know that A = Q n Q5. Propositions 1 and 2 of chapter 

1 show that Q n Q5 is a primary decomposition of A. i.e. Q is (xox1)-primary, Q5 

is (xo, x1, x2)-primary. 

Thus arith-degree (A) = multA (xo, x1) · degree (xo, x1) + multA (xo, x1, x2) · degree 

(xo, x1, x2). We have degree (xo, x1) = 1 and degree (xo, x1, x2) = 1 by theorem 1. 

Thus we have arith-degree (A) = multA (xo, x1) + multA (xo, XI, x2) . We apply the 

algorithm that was given in the first chapter to calculate multA ( xo, x1). 

A maximal strictly increasing chain from Q to (xo, x1 ) is 

(It is easy to see that this chain 1s 

maximal by applying theorem 3 chapter 1 ). Next we find J which in this case equals 

the whole ring S = F [xo, XI, x2]. 

Intersecting each ideal in the above chain with J will leave the chain unchanged, 

so from theorem 2 we have: multA (xo, XI) = 4. 

We now calculate multA (xo, x1, xz). 

A maximal strictly increasing chain from Q5 to P = (xo, XI, x2) is: 

Q _ ( 3 2 2 4 2 2 2 4 5 6 5) 6 - Xo,XoX1 ,xox1x2 ,·T1,X1X2,XoX2,XOX2,x2,x1x2 

C ( 3 2 2 4 2 2 2 4 5 6 4) 
=/:- Xo, Xo XI, xo X1 Xz, X1 , XI :rz, Xo Xz , xo Xz, Xz, XI Xz 



11 

~ (xo, x1, xi)~ (xo, x1, x~ ) ~ (xo, x1, x~) ~ (xo, xi , x2) = P. 

Then we find that J = (x5, xr) XQ x1) = Q. 

Next we intersect each ideal in the chain with Q and eliminate duplicities. 

We know from the proof of theorem 6 that we can express Q5 n Q as ( x5, xf, x~) n 

(xo, xr) n (x5, x1 ). If we apply theorem 4 to the ideals in (x8, x5 x1, xt) x1 xt Xi, XQ x~) n 

(x5, xt) x~ ) n (xo, xr) n (x8, x1) = Q5 n Q. 

So all the ideals in the chain from Q5 n Q to (x5, x5 x1, xf, x1 x~, Xi, xo x~ ) n Q 

can be written as (x5 , xt) x1D n (xo, xr ) n (x8 , x1) . 
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· d · ( 3 2 4 2 4 2 2 ) nQ contame In Xo, Xo xi, Xi , Xi X2, X2, x o X2, Xo Xi X2 . 

Th 1 3 ( 3 2 4 2 4 2 . . 3) n Q b · eeementxoxi E x0,x0xi ,xi,xix2,x2,xox2,xox i x2,xoxi ut1snot 

· ct· (3 2 4 2 4 2 ) Q contame m x0 , x0 xi, xi, xi x2, x2, xo x2, xo xi x2 n . 

Th 1 2 ( 3 2 4 2 4 2 2) n Q b · e e ement XQ Xi E Xo, Xo xi, Xi, x i X2, X2, x o X2, x o x i x2, x o Xi ut lS not 

· d · ( 3 2 4 2 4 2 3) Q contame m x0,x0 x i ,xi ,:rix2,x2,xox2,xox1x2,xoxi n . 

The element xo x i E (x5, Xi, xi xt xt xo xt xo xi) n Q but is not contained in 

(x5, x5 x i , xi, xix~, xt xo x!L xo xi x2, xo xi) n Q. 

Th I 3 ( 3 4 2 4 2 3 ) Q b · · d e e ement x i x2 E x0 , xi, xi x2, x2, xo x2, xo x i , x i x2 n ut 1s not contame 

Th I 2 ( 3 4 2 4 2 2 ) Q b · · d eeement x 1 x2 E x0,xi ,x1x2,x2,xox2,xoxi,xix2 n ut1snotcontame 

If we apply theorem 4 to the ideal (x5,xi,xix~,xtxox~,xoxi,xix2) n Q 

t ( 4 242 )nQ ( 422 )nQ-( 4 )nQ we ge xo,xi,xix2 ,x2 ,xix2 = xo,xi ,x2 ,xi x2 - xo,xi,x2 = 

Therefore all the ideals in the chain from (x5, Xi, xix~, x~, xo xt xo x i , Xi x2) nQ 

to (xo, Xi, xt xi x2) n Q are equal. 

The element xt E ( xo, xy, x~, xi x2) n Q but is not contained in 

(xo, xi, Xi, x i x2) n Q. 

Finally we have (xo, Xi, Xi, xi x2) n Q = Q. 

Thus we are left with the chain Q5 n Q 

C ( 3 2 4 2 4 2 3) Q # Xo, Xo X I , Xi , Xl X2, X2, XQ X2, XQ Xl X2, XQ Xl n 
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~Q. 

So from theorem 2 of chapter 1 we have multA (xo, x 1 , x2) = 10. 

Now multA (xo, x1) + multA (xo , x 1, x2) = 4 + 10 = 14. So arith-deg (A) = 14. 

Now Qm is (xo, x1, x2) - primary for any m 2: 6 so Q n Qm is a primary 

decomposition of A for m 2: 6. Since arith-deg (A) = 14 and length multiplicity of 

Q = 4 it follows that length multiplicity of Qm = 10 for any m 2: 6. 

We will now describe a second proof which solves the problem stated at the 

beginning of this chapter. Our second proof needs some parts of the first proof. Also, 

in this second proof, we will assume that m is always 2: 6. 

Claim. 

Q (A l Jm) (A m 2 m-2 m-1 m-1) m = , J = , X2 , Xo X2 , XQ X2 , Xl X2 . 

Proof: We will use induction on m. 

We know from the proof of theorem 6 that the claim is true form= 6. 

Suppose that the claim is true for m 2: 6. 

Th f Q (A m 2 m-2 m-1 m-1) c > 6 ere ore m = , x 2 , x 0 x2 , xo x 2 , x1 x2 1or m _ . 



We now construct a strictly increasing maximal chain from Qm to 

Q C(A m 2 m-:i m-1 m-2)C C 
m f. , Xz , Xo Xz , XQ Xz , Xl Xz f. ... f. 

C 
i- ... 

C ( 3 2 4 m • 2 4) f. Xo,XoX1,x1,X2 ,::i,1x2,X0X2 

C 
i- ... 

C ( 3 2 4 2 2 2 4) f. Xo,XoX1, x1,X1X2 , XoX2,X2 

14 



~ (xo, x i , xi ) 

~ (xo, x1, x~ ) 

~ (xo, x1, x~) 

~ (xo, x1, x2) 

= P. 
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The fact that this chain is maximal follows from Theorem 3 chapter 1, as 

the reader can readily verify. We now intersect each ideal in our above chain with 

J = (x~, xt , xo x1) = Q to form a new chain from Qm n Q to P n Q. 

From (vi) and (vii) of the proof of Theorem 6 we know that Qm n Q 

(x5, Xf , x~ ) n (xo, xr) n (x5, x1). 

From the proof of Theorem 7 we have (x~, x5 x1, Xi, x1 x~, Xi, xo x~) n 

Q = (x5, Xf, x~ ) n (xo, :z:r) n (x5, x1 ). 

(x5, x5 x1, Xf , x1 x~, Xi, xo xD n Q are equal. 

So all ideals between Qm n Q and 

F ( 3 2 4 2 4 2 3 ) d h ·ct 1 · h · rom x0 , x0 x 1, x 1, ::z:1 x2, x2, xo x2, xo x 1 x2 on war s, t e 1 ea s m our c am are 

the same as the ideals in the chain given in the proof of Theorem 7. 

Therefore multA (xo, x1, x2 ) = 10. Also from Theorem 7, multA (xo, x1) = 4, so 

arith-deg (h) = 14. 
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CHAPTER 3 

ON A PROBLEM OF STURMFELS, TRUNG AND VOGEL 

Let I be a monomial ideal in the polynomial ring S = F [xo, ... , xn] with minimal 

set of monomial generators (m1, ... , m 5 ) . 

Sturmfels, Trung and Vogel [9, Theorem 3.1] proved that 

arith-deg (I) ~ max { degree (mi) : i = 1, ... , s} (1) 

It was an open problem in [9] to extend this result for ideals which are not monomial. 

T. Smith [8] has constructed examples showing that this problem is not true in general. 

However, the aim of this chapter is to describe families of non-monomial ideals for which 

(I) is true. (See our problem at the end of this chapter on page 36.) 

Theorem 7. 

Let n be any positive integer. 

Let the ideal In be given by In = (x0,x1,x2,x5) n (xox3 - x1 x2) in the polynomial 

ring F [xo, x1, x2, x3] . (F is any field). 

Proof: Any element in In can be written in the form w (xo x3 - x1 x2) where w 

is an element of the ring F' [xo, x1, x2, x3]. 

(i) Suppose that w is a single term. 

Then, since wxo X3, WX1 x2 belong to (xo, x1, x2, x5) , w (xo X3 - x1 x2) must be 

generated by one of 

(ii) Suppose w contains t terms i.e. w = w1 + w2 + .. . +Wt, 

Also we assume that there are no wk (1 ::; k ::; t ) such that wk xo x3, wk x1 x2 both 
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belong to (xo, XI, x2, x~) - If Wk contains XI or x2 or X3 then Wk (xo X3 - XI x2) 

would be generated by XQ XI X3 - xr x2 or XQ x2 X3 - XI x~ or XQ x~ - XI x2 X3. 

If each wk contains axb (where a E F) and if i 2: n - 1, then wk is generated 

b n ,n-I y Xo X3 - Xo XI x2 . 

If each wk contains axb (where a E F) and if i :S n - 2, then w (xo x3 - XI x2) (/. 

(x0,xI,x2,x~) and thus w (/. In. Therefore the only generators of In are those 

given in Theorem 7. 

Note: If n = 1 then In (xo x3 - XI x2) . 

Theorem 8. arith-deg (In) = n + 1. 

Proof: 

= deg (xo x3 - XI x2) + multr" (xo, XI, x2, x3). 

We know that deg (xo x3 - x1 x2) = 2 from Theorem 1 of chapter 1. Therefore 

we must show that multr" (xo, XI, x2, x3) = n - 1. A strictly increasing maximal chain 

from (xo, XI, x2, x~) to (xo, X1, x2, x3) is given by; 

C ( n-3 2) C C ( 2 2) C ( 2) i= x0 ,xI,x2 ,xox3,x3 i= ... i= x0,xI,x2,xox3,x3 i= xo,xI,x2,x3 

~ (xo, XI, x2, x3). 

For example, if we apply Theorem 3 of chapter 1 to the ideals 

( n 2) ( n-I 2) h .1:0 , XI, x2, xox3, x3 , x0 , XI, x2, xo x3, x3 , we ave 

(i) (xct1,xI,X2,xox3,x~) = (xo,XI,x2,xox3,x~) + F[xo,xI,,'1:2,X3] · Xo-l· 

(ii) (xo,XI,X2,X3) (xo-I,XI,X2,,'1:Q,'1:3,X5): (xo,XI,X2,XQX3,x5). 
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We also note that the length of this chain is 2n. 

(xo,x1,x2,x3) there are n ideals. 

Next we calculate J which is the ideal (xo x3 - x1 x2) . Now we intersect each 

ideal in our chain with J. 

(xo x3 - x1 x2) so we can 

confine our attention to the first n - 1 ideals in our chain. 

Th I n-1 n -2 · · d · ( n n-1 2) J b e e ement x 0 x3 - x 0 x 1 x2 1s contame m x 0 , x 1, x2, x 0 x3, x 3 n ut 

is not in (x0, x1, x2, x~) n J. 

If we choose any two ideals n 

( 
n n-(i+ l ) 2) J ( . ) n-(i+l) n-(i+2) J, x 0 ,x1,x2,x0 x3,x3 n , 1 ~ i ~ n - 3 then x 0 x3 - x0 x 1x2 

b 1 ( n n-(i+l ) 2) J d · · ( n n-i 2) J e ongs to x 0 ,x1,x2,x0 x3,x3 n an 1s not m x 0 ,x1,x2,x0 x 3,x3 n . 

Therefore no two of these ideals are equal, so from Theorem 2 of chapter 1 [5, 

p.2] we have multr" (xo, x1, x2, x3) = n - 1. Therefore arith-deg Un) = n + 1. This 

completes the proof of Theorem 8. 

Remark: The maximum m (In) of degrees of the polynomials generating In is 

given by 

Therefore arith-deg (In) = m (In) for n 2: 1. 

: n=l 
n 2: 2. 

For the remainder of this chapter we will consider a similar but more complicated 

example. 

Theorem 9 

Let S be the polynomial ring F [x0 , x 1 , x2, x3] over the field F and let n and r be any 

positive integers. Let the following ideal Inr of S be given by 

(2) 



(i) arith-deg (Inr) = 2rn 

(ii) the maximum m (Inr) of degrees of the polynomials generating I is given by 

2 n=r=l 
4 if n = 1, r = 2 or r = 1, n = 2 

m (Inr) = r + 1 
n+l 
n+r 

n = 1, r > 2 
r = 1,n > 2 
n,r 2: 2 

Remark: arith-deg of Inr ! m (Inr ) for all positive integers n and r. 

Proof: 

First we prove (i) 

Let Qnr = (x1L xi, xt X§). Then arith-deg (Inr) = deg (J) + mult1nr(P) 

(where P is the prime ideal of Qnr i.e. P = ( x o , x1, x2 , x 3), and where 

Since deg J = 2 we need to prove the following key lemma. 

Lemma 1. 

mult1nr ( P) = 2rn - 2 
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(3) 

Before we prove (3) we will give a maximal strictly increasing chain of primary 

ideals from Qnr to P. 

Q C (Q n-1 r-1 ) C (Q n-1 r-1 ) 
nr # nr, XO XI X2 X3 # nr, XO .T l X2 

C (Q n-1 r-1 n-1 r-1 ) C (Q n-l r-1) # nr, XO Xl X2, X0 Xl X3 # nr, XO Xl 

C (Q n-1 r-1 n-1 r-2 ) C (Q n-1 r -1 n -1 r-2 ) # nr,Xo XI ,Xo X I X2X3 # nr,Xo Xi ,Xo Xl X2 

C (Q n-i r-1 n-1 r-2 n -1 r - 2 ) C (Q n-1 r-2) C # nr, X o Xi , XO XI X2, XO XI X3 # nr, XO Xi # . .. 

C(Q n-1 )C(Q n-1 n-2 r-1 ) . . . # nr,Xo X I # nr,Xo X 1 ,Xo X I X2X3 

C (Q n-l n-2 r-1) C (Q n-l n-2 r-1 n-2 r-2 ) # nr,Xo X I ,Xo Xi # nr,Xo XI,XQ XI ,Xo Xi X2X 3 



20 

C (Q n-i n - 2 r-i n-2 r-2 ) C (Q n-i n-2 r-i n-2 r-2 n-2 r-2 ) 
-::p nr,Xo xi,Xo Xi ,Xo Xi X2 -::p nr,Xo xi,Xo Xi ,Xo Xi X2,XO Xi X3 

C (Q n-i n-2 r-2) C C (Q n-i n-2 2) 
-::p nr,Xo xi,Xo Xi -::p ... -::p nr,Xo xi,Xo Xl 

C (Q n-1 n-2 2 n-2 n-2 )C (Q n-2 )C 
-::p nr, XO Xi, XO Xi, XO Xl X2, XO Xi X3 -::p nr, XO Xi -::p . , , 

C (Q n-3 ) C C (Q n-4 ) C C (Q 2 ) -::p nr,Xo Xl -::p,,, -::p nr,Xo XI -::p ·,, -::p nr,XoXl 

C (Q 2 r-1 ) C (Q 2 r-i ) -::p nr,XoX1,XQX1 X2X3 -::p nr,X0Xl,XOX1 X2 

C C (Q 2 2) C (Q 2 2 ) -::p •.. -::p nr,XoXi,XOXi -::p nr,Xo,TI,XOX1,XOXIX2X3 

~ (Qnr,X6X1,XOXi,XOXix2) ~ (Qnr, ,'.l:6Xi,XOXi,XOXiX2,XOXiX3) 

C ( n -i r 2 2 n-2 ) C ( n -i r 2 2 n-2 ) # x 0 ,x1,x2,x3,xox1,x0 x2x3 # x 0 ,xi,x2,x3 ,xoxi,x0 x2 

C ( n-i r 2 2 n-2 n-2 ) # x 0 ,xi,x2,x3,xoxi,x0 x2 , x 0 x3 

C C ( 2 2) C ( 2 2 ) # .. . # xo,xi,x2,x3 # xo,xi,x2,x3,x2x3 

~ (xo, xi, x2, x~) ~ (xo, xi, x2, x3) = P . 

For example, if we apply Theorem 3 from chapter 1 to the ideals 

(Q 
n-i n-2 r-1 n - 2 r-2 ) (Q n-i n-2 r-i n-2 r-2 n-2 r-2 ) 

nr,Xo Xi,Xo Xi ,Xo Xi X2, nr,Xo Xi,Xo Xl ,Xo Xi X2,Xo Xi X3 

we have 
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(1,1,) ( ) (Q n-1 n-2 r-1 n-2 r-2 n-2 r-2 ) C 
XQ,Xl ,X2,X3 nr,Xo X I ,Xo Xl ,Xo Xl X2,X o Xl X3 = 

(Q 
n-1 n-2 r-1 n-2 r-2 ) 

nr,Xo XI,Xo Xl ,Xo x 1 X2 . 

Hence we cannot extend our chain between these two ideals. 

Another example to consider is the ideals (Qnr, xo x1, Xo- l x2, Xo-
1

x 3) , 

Other examples can be checked by the same method. Hence it can be shown that this 

chain is maximal. 

Claim A: The above chain is of length 4rn. 

Proof: 

From (Qnr , Xo-l x;: - 1 x2 x3) to (Qnr, Xo-l x 1) we have 4 (r -1) ideals. So from 

Qnr to (Qnr , Xo-l x~, Xo-l x1 x2, Xo-l :.q x3 ) we have 4 (r - 1) ideals. 

F (Q n-1 ) (Q n-1 n-2 2 n-2 n-2 ) h rom nr,x0 x1 to ni·,xo :r1,x0 x 1,x0 x 1x2, x 0 x 1 x 3 we ave 

4 (r - 1) ideals. 

F (Q n-2 ) (Q n-2 n-3 2 n-3 n-3 ) h rom nr, XO X I to nr, XO X I , XO X1, XO Xl X2, XO Xl X3 We ave 

4 (r - 1) ideals ............ ...... etc. 

ideals. 

2) [4 (r - 1) ] ideals. 

4 ( n - 2) ideals. 



From (xo, xi, x~, x~) to (xo, xi, x2, x3) we have 4 ideals. 

Adding these terms we get 

4 (r - 1) + (n - 2) (4 (r - 1)) + 4 + 4 (n - 2) + 4 (r - 1) + 4 = 

4r - 4 + 4rn - 4n - 8r + 8 + 4 + 4n - 8 + 4r - 4 + 4 = 4rn 

Alternative proof of claim A. 

Claim B: Qnr is a complete intersection. 

Proof: 

We must first show the following to be true. 

(i) (0) : (xci) = (0). 

(ii) (x;i) : (xi) = (x0). 

(iii)(x0,xi) : (x~) = (x0,xj} 

(i) Let y be any element in S. Then yx0 E (0) {::} y = 0. 

(ii) yx1 E (x0) {::} y E (x0). 

(iii) yx~ E (xo, xi) {::} y E (xo , xi) . 

(. ) 2 ( n 1· 2) ,;....,... E ( n r 2) 1v yx3 E x0, xi, x2 '.-7 y x0, xi, x2 . 

We can now prove length Qnr = 4rn. 

Proof: 
degree Qnr = 4rn (from above claim and from Theorem 3) 

length Qm- · degree P (If Qnr is ?-primary then degree 

Qnr = length Qnr · degree P) 

length Qnr 

22 
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Remark: If Qnr is a monomial ?-primary ideal of F, then degree Qnr = length 

Qnr• We intersect each ideal in the claim given on pages 20 - 21. We can now prove 

Lemma 1 by applying the following 32 claims. 

Claim 1. 

n-i r -i n-2 r 2 (Q n-i r -i ) J b · · d · Xo Xi X2 X3 - Xo Xi X2 E nr, Xo Xi X2 X3 n Ut IS not contame m 

Claim 2. 

(Q n-i r-j) JC (Q n-i r-j n - i r-(j+i) ) J ~ 1 · 
nr, XO Xi n # nr, Xo Xi , XO XI X2 X3 n 10f ::; J ::; T - 2. 

Proof: 

Th 1 n-I r-(j+I) n-2 r-j 2 (Q n-I r-j n-I r -(j+I) ) 
e e ement XO X I X2 X3-XO X I X2 E nr, XO X I , XO XI X2 X3 n 

J but is not contained in (Qnr, Xo-IX~-j) n J. 

Claim 3. 

(Q n - i ) n JC (Q n - i n - (i+I) r-I ) J f 1 < · < 2 nr,Xo X I # nr,Xo XI,Xo XI X2X3 n Or _1,_n-

Proof: 

n-(i+i) r i n- (i+2) 2 The element x 0 xI - x2 x3 - x 0 XI x 2 

E (Q n - i n - (i+I) r-I ) J b • • d • (Q n-i ) J nr, XO XI, Xo Xi X2 X3 n Ut IS not COntame lil nr, XO X I n . 

Claim 4. 

(Q 
n-i n-(i+i) r-j) J C (Q n-i n- (i+i) r-j 

nr, XO XI , XO XI n # nr, XO xi, XO X I , 

n-(i+I) r-(j+I) ) n J for 
xo xI x2x3 1 ::; i ::; n - 2, 1 ::; j ::; r - 2. 

Proof: 

Th I t n-(i+I) r - (j+I) n-(i+2) r-j 2 
e e emen x 0 xi x2 .T3 - x 0 xI x 2 

E (Q Xn- i x xn- (i+I) r-j n-(i+I) r - (j+I) ) n J b t not conta1·ned nr, O i , O Xi , XO Xi X2 X3 U IS m 



(Q n-i n-(i+l) r-j) J 
nr,XQ X!,XQ Xl n . 

Claim 5. 

(Q n-1 r-1 ) n J C (Q n-1 r-1 ) n J nr,Xo Xl X2X3 #- nr,Xo Xl X2 . 

Proof: 
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Th I n r-2 n-1 r-1 e e ement x 0 x 1 x3 - x 0 x 1 x2 E (Q n-1 r-1 ) J b · nr, XO Xl X2 n Ut IS not 

Claim 6. 

(Q n-1 r-j n-1 r-(j+l) ) J C (Q n-1 r-j n-1 r-(j+l) ) 
nr,XQ Xl ,XQ Xl X2X3 n #- nr,XQ Xl ,XQ Xl X2 

nJ for 1 :S j < r - 2. 

Proof: 

Th I n r-(j+2) n-1 r-(j+l) (Q n-1 r-j n-1 r-(j+l) ) 
e e ement Xo Xl X3-XO Xl X2 E nr, Xo Xl XO Xl X2 n 

J b • • d • (Q n -1 r-j n-1 r-(j+l ) ) J Ut IS not contame In nr, Xo X1 , Xo X1 X2 X3 n . 

Claim 7. 

(Q n-i n-(i+l) r-1 ) J C (Q n-i n-(i+l) r-1 ) 
nr,XQ Xl,XQ Xl X2X3 n #- nr,XQ Xl,XQ Xl X2 

nJ for 1 :S i < n - 2. 

Proof: 

Th I n-i r-2 n-(i+l) r-1 (Q n-i n-(i+l) r-1 ) 
eeementxo Xl X3-XO x 1 X2 E nr,XQ XI,Xo x 1 X2 n 

J b · · d · (Q n-i n-(i+l) r-1 ) J Ut IS not COntame In nr , XO Xl, Xo X1 X2 X3 n . 

Claim 8. 

(Q n-i n-(i+l) r-j n-(i+l) r-(j+l) ) n J 
nr, XO Xl, XO Xl , XO X l X2 X3 

C (Q n-i n-(i+l) r-j n-(i+l) r-(j+l) ) n J 
#- nr, XO XI, XO Xl , XO x 1 X2 

for 1 :S i :S n - 2, 1 :S j :S r - 3. 
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Proof: 

n i r-(j+2) n-(i+l) r-(j+l) The element x - x x x x x2 E 0 1 3- 0 1 

(Q n-i n-(i+l) r-j n-(i+l) r-(j+l) ) n J 
nr,XQ XI,XQ X1 ,XQ XI X2 but is not contained in 

(Q n-i n-(i+l) r-j n-(i+l) r-(j+l) ) n J 
nr,Xo XI,XQ X I ,Xo XI X2X3 . 

Claim 9. 

(Q n-i n-(i+l) 2 n-(i+l) ) J 
nr, XO XI, XO X1, XO Xi X2 X3 n 

(Q n-i n-(i+l) 2 n-(i+l) ) n j "or 1 ::; 2· ::; n _ 2. = nr,XQ XI,XQ Xi,XQ XiX2 l' 

Proof: 

Let A (Q n-i n- (i+i) 2 n-(i+i) ) J = nr, Xo Xi, XO Xi, XO xi X2 X3 n 

B _ (Q n-i n-(i+i) 2 n- (i+i) ) J 
- nr,XQ XI,XQ Xi,Xo X I X2 n . 

Suppose that A;B. 

Then there is an element b E B such that b¢A. Since b E B , b must E 

(Q n-i n-(i+l) 2 n-(i+l) ) S b b . . h " nr, x 0 x 1, x 0 x 1, x 0 x1 x2 . o can e wntten mt e iorm 

where v1,v2,v3,v4,v5,v6,v1 are arbitrary but fixed elements of F[xo,x1,x2,x3] . 

Th n r 2 2 n - i n-(i+l) 2 f b 11 I e terms v1 x 0 , v2 x 1, v3 x 2, v4 x 3 , v5 x 0 x1, v6 x 0 xi o are a e ements 

of C. If v7 x;-(i+I) x1 x2 E C, then the element b E C by definition. 

Then we have b E J (since b E (Qnr, Xo-iX l , x;- (i+l) xr, x;-(i+l) x1x2) 

nJ = B). 

S b C J A h. h If O n-(i+l) o E n = w 1c would be a contradiction. v7 = , v7 x 0 x1 x2 E 

C. 

If V7 = xo ( w o) ( wo E F [xo, X1, x2, x3]) then V7 x;- (i+l) X1 x2 = woxo-i X1 x2 

which is generated by Xo-i xi, a generator of C. 
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( ) 
n-(i+l) n-(i+l) 2 h" h · d b If v7 = x 1 w1 then v7 x 0 x1 x2 = w 1x 0 x 1 x2 w 1c 1s generate y 

n-(i+l) 2 C x0 x 1, a generator of . 

If v7 = x2 (w2) then v7 x~-(i+l) x1 x2 is generated by x~ and if v7 = x3 (w3) 

n-(i+l) . n-(i+l) 2 n-(i+l) 
then v7 x 0 x 1 x2 1s generated by x 0 x 1 x2 x3 and both x 2 , x 0 x1 x2 x3 

are generators of C. 

Therefore v7 E F\ {O}. Since b E J, b can also be written as q (xo x 3 - x1 x2) . 

n-(i+l) . n - (i+l) 
One of the terms of q must be x0 v7 1.e. q = ... + ... + ... x0 v7 . 

. n-(i+l) ( ) . b n-(i+l) But this means that x 0 v7 xo x3 1s a term of x 0 v7 x o x3 

n-i · l f (Q n-i n-(i+l) 2 n-(i+l) ) v7 x 0 x3 1s not an e ement o nr, x 0 x1, x 0 x 1, x 0 x1 x2 . Thus 

it is impossible to construct an element b E B such that b (/. A. 

Claim 10. 

(Q n-1 r-1 ) n J C (Q n-1 r -1 n -1 r-1 ) n J 
nr, XO Xl X2 1= nr, XO Xl X2, XO Xl X3 . 

Proof: 

The element Xo-l x ;:-1 X3 - Xo- 2 xi: x2 E 

(Q n-1 r-1 n-1 r-1 ) J b · · d · (Q n-1 r-1 ) J nr, XO Xl X2, XO Xl X3 n Ut IS not COntame In nr, Xo Xl X2 n . 

Claim 11. 

(Q n-1 r- j n-1 r-(j+l) ) J (Q n -1 r -j n-1 r-(j+l) 
nr,Xo Xl ,Xo Xl X2 n = nr,Xo Xl ,Xo Xl X2, 

n-1 r-(j+l) ) n J 
XO Xl X3 for 1 ::; j :=; r - 2. 

Proof: 

Let A _ (Q n-1 r-j n-1 r-(j+l) ) n J 
- nr, XO X 1 , XO X 1 X2 

B (Q n-1 r-j n-1 r-(j+l) n-l r -(j+l) ) J = nr,Xo Xl ,Xo Xl X2,Xo x 1 X3 n . 

Then there is an element b E B such that b (/. A. Since b E B , b must 

E (Q n-l r -j n-1 r - (j+l) n -1 r - (j+l) ) 
nr,Xo X l ,Xo X l X2,Xo x 1 X3. 
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So b can be written in the form 

where v1 to v7 are arbitrary but fixed elements of F [x o, xi, x2, x3]. 

of C. 

If V7 Xo-l x ~- (j+l) X3 E C, then the element b E C by definition. 

Then we have b E J (since b E B). So b E C n J = A which would be a 

contradiction. 

If V7 
= O n-l r-(j+ l) E C , V7 XO Xl X3 . 

If every term of V7 contains an X k (k = 0, ... , 3) then V7 Xo-l x~- (j+l ) X3 is an 

element of C. Thus v7 must have a term a such that a E F\ { 0}. Since b E J, b can 

also be written as q (xo X3 - X I x2). One of the terms of q must be a Xo-2 x ~-(j+l) i.e. 

n - 2 r - (j+l) 
q = ... + ... + ... + O'.Xo Xl . 

But this means that O'.Xo-2 x~ - (j+l) (-x , x2) is a term of b. 

n-2 r-(j+l) ( ) _ n-2 r-j 
- a x 0 x 1 x1 x2 - - ax0 x 1 x2 . 

n-2 r-j · 1 f (Q n-l r-j n-l r-(j+l) n-1 r-(j+l) ) 
-ax 0 x 1 x2 IS not an e ement o nr, x 0 x 1 , x 0 x 1 x2, x 0 x 1 x 3 . 

Thus b d (Q n-l r-j n-l r - (j+l) n-1 r-(j+l) ) 
'il= nr , XO X l , XO Xl X2, XO Xl X3 . 

• b <t B which is a contradiction. 

Claim 12. 

(Q n - i n - (i+l) r-1) ) JC (Q n - i n - (i+l) r-l 
nr,Xo xi,Xo Xi X2 n =p nr,Xo Xl,XQ Xi X2, 

.T~- (i+ l ) x;: - 1 x3 ) n J for 1 < i :S n - 2. 

Proof: 

Th 1 n-(i+l) r - 1 n-(i+2) r e e ement x 0 x 1 x 3 - x 0 x 1 x2 

E (Q X n - i n-(i+l) r - l n-(i+l ) r-i ) n J but not contaI·ned nr, 0 Xl, XO Xl X2, XO X l X3 IS In 

(Q n-i n- (i+i) r-i ) J 
nr,Xo XI,Xo Xl X2 n . 



Claim 13. 

(Q 
n-i n - (i+l) r - j n - (i+l) r - (j + l) ) n J _ 

nr , Xo X l ,XO Xl , Xo Xl X2 -

(Q 
n - i n - (i+l) r - j n - (i+l) r -(j+l ) n - (i+l) r-(j+l) ) 

nr,Xo X 1,Xo x1 ,x0 x 1 X2 , Xo Xl X3 

n J 1 ::; i ::; n - 2, 1 ::; j ::; r - 2. 

Proof: Almost identical to proof of Claim 11 . 

Claim 14. 

(Q n-I r-I n - I r-1 ) n J (Q n-1 r-1) n J nr,Xo X I X2,XO XI X3 = nr,Xo Xl , 

Proof: 
L A (Q n - I r-1 n-1 r- 1 ) n J et = nr,Xo XI X2,XO XI X3 . 

B = (Qnr, Xo- I xi-I) n J. 
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Suppose A; B. Then we have an element b E B such that b (/_ A. Since 

b E B , b E (Qnr, x0-1 xi-I). Sob can be written in the form 

are arbitrary but fixed elements of F [xo, X I , x2, x3]. 

In a similar manner to the proof of Claim 11, one of the terms of v5 belongs to 

F\{O}. Call this element a . 

But this means that b cannot be written in the form q (x o x 3 - X I x2) , q E 

F [xo, x1, x2, X3] (as axo-I xi-I does not cancel with other terms of b nor does it contain 

x o x 3 or x1 x2 .) So b (/_ J which is a contradiction. 

Claim 15. 

(Q 
n-I r-j n-I r- (j+I ) n-1 r - (j+I ) ) n J 

n r , XO X I , Xo x1 X2 , XO X I X3 

= (Q Xn - lxr-(j+ I) ) n J nr , 0 . I 1 :S j :Sr - 2. 
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Claim 16. 

(Q n-i n - (i+l) r-1 n - (i+ l ) r - 1 ) J 
nr ,Xo X ! ,XQ Xl X2,XQ Xl X3 n 

_ (Q n-i n - (i+l) r-1) n J 
- nr , XO Xl, XO Xl 1 < i < n - 2. 

Claim 17. 

(Q n-i n - (i+l) r-j n - (i+l) r - (j+l) n - (i+l) r-(j+l) ) 
nr ,Xo X 1 ,Xo Xl ,Xo Xl X2,Xo Xl X 3 

J (Q n-i n- (i+l ) r- (j+l) ) J l · 2 1 · 2 n = nr , Xo Xl , XO x1 n ::; 'l ::; n - , ::; J ::; r - . 

The proofs of Claims 15, 16 and 17 are almost identical to the proof of Claim 

14. 

Claim 18. 

Proof: 

n-1 n-2 2 (Q n-1 ) J XO X 2 X 3 - XO Xl X2 E n r , XQ Xl , XO X 2 X 3 n 

but is not contained in 

Claim 19. 

Proof: Very similar to proof of Claim 14. 

Claim 20. 
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but is not contained in (Qnr,xox1,x~-
1
x2) n J. 

Claim 21. 

Proof: Very similar to proof of Claim 14. 

Claim 22. 

( n - i r 2 2 ) n JC ( n-i r 2 2 n - (i+l) ) 
Xo ,X1,X2,X3,XQXl # Xo ,x1,X2,X3XQX1,Xo x2x3 

n J for 1 ::; i ::; n - 2. 

n - (i+l) n - (i+ 2) 2 
Proof: The element x 0 x2 x3 - x 0 x1 x2 E 

n J but is not contained in 

Claim 23. 

Proof: Very similar to proof of Claim 14. 

Claim 24. 

for 1 ::; i ::; n - 3. 

Proof: 

n-(i+l) n-(i+2) ( n - i r 2 2 n - (i+l) n-(i+l) ) 
x 0 x3 - x 0 x1x2 E x 0 ,x1,x2,x3,xox1,x0 x2,x0 x3 

J b · · d · ( n-i r 2 2 n-(i+l) ) J n ut 1s not contame m x 0 ,x1,x2,x3,xox1 ,x0 x2 n . 
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Claim 25. 

Proof: Very similar to proof of Claim 11 . 

Claim 26. 
0 

( 
n-(i+i) r 2 2 ) J · = x 0 ,xi,x2,x3 ,xoxi n for 1 :S i :S n -3 . 

Proof: Very similar to proof of Claim 14. 

Claim 27. 

Proof: Very similar to proof of Claim 14. 

Claim 28. 

( 
r-j 2 2) JC ( r -j 2 2 r -(j+i) ) J xo,x i ,x2,x3 n -1- xo,x i ,x2,x3,xi x2x3 n 

for O :S j :S r - 2 . 

r-(j+2) 2 r-(j+i) 
Proof: The element xo xi x 3 - xi x2x3 E 

( 
r-j 2 2 r-(j+i) ) J • · d · ( r-j 2 2) J xo, x 1 , x 2, x 3 , x i x2x3 n but IS not contame m x o, xi , x 2 , x3 n . 

Claim 29. 

( 
r-j 2 2 r-(j+i) ) C ( r-j 2 2 r - (j+i) ) 

XQ, Xi , X2, X3, Xi X2 X3 n J -j. XQ, Xl , X2, X3, Xl X2 

nJ for O :S j < r - 3. 

Proof: 

J b • • d . ( r-j 2 2 r-(j+l) ) J n ut IS not contame m xo, xi , x 2, x 3 , x 1 x2 x3 n . 
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Claim 30. 

( 
r-j 2 2 1·-(j+l) . ) J _ ( r-j 2 2 r-(j+i) XO, Xi , X2 , X3, Xi X2 n - XQ, Xl , X2, X3, Xi X2, 

r-(j+l) ) J f . xi x3 n or O ::; J ::; r - 3. 

Proof: Similar to proof of Claim 14. 

Claim 31. 

( r-(j+l) 2 2) J f Q . 3 XO, Xi , X2, X3 n Or ::; J ::; r - . 

Proof: Similar to proof of Claim 14. 

Claim 32. 

(:z:o , xr, x~, x5, xix2x3) n J~ (xo, xr, .'1:t x5, x i x2 ) n J. 

Proof: xo x3 - xi x2 E (xo, Xi , x~, x5, x ix2) n J but is not contained m 

(xo,xi,x5,x i x2x3) n J. 

J. So 

all ideals after (xo, xr, x~, x5, xi x2) n J in our chain equal J. 

We are now in a position to prove lemma 1. To find mult1nr (xo, x i , x2, x3) we 

calculate the number of duplicate ideals in our chain, denote this number by e say, and 

then 4rn - e will be mult1n, (xo, xi, x2, x3) [5, p.2]. 

So the claims we will use are claims 9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 26, 

27, 30, 31. (Since the other claims only relate to ideals that are unequal). (Note Claim 

21 and Claim 27 are the same for n = 2). 

Claim 9 gives n - 2 ideals that are equal. 

Claim 11 gives r - 2 ideals that are equal. 

Claim 13 gives (n - 2) (r - 2) ideals that are equal. 



Claim 14 gives a pair of ideals that are equal. 

Claim 15 gives r - 2 ideals that are equal. 

Claim 16 gives n - 2 ideals that are equal. 

Claim 17 gives ( n - 2) ( r - 2) ideals that are equal. 

Claim 19 gives a pair of ideals that are equal. 

Claim 21 gives a pair of ideals that are equal. 

Claim 23 gives n - 2 ideals that are equal. 

Claim 25 gives a pair of ideals that are equal. 

Claim 26 gives n - 3 ideals that are equal. 

Claim 27 gives a pair of ideals that are equal. 

Claim 30 gives r - 2 ideals that are equal. 

Claim 31 gives r - 2 ideals that are equal. 
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Also since the last 6 ideals in our chain equal J we have another 6 ideals which 

are equal. So length-multiplicity (x0, xi:, xt x~) is 

4rn - [3 (n - 2) + 4 (r - 2) + 2 (r - 2) (n - 2) + 5 + (n - 3) + 6] 

• 4rn - (2rn + 2) = 2rn - 2. 

Hence we have proved lemma 1 and thus (i) of theorem 9. We will now prove 

theorem 9 (ii). We must first find the generators of Inr· 

Claim C. 
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Proof: Any element in Q nr n J can be written in the form w (x ox 3 - x1x2) where 

w is an element of the ring F [xo, xi, x2, x3]. 

(i) Suppose that w is just a single term. Then, since wxo x 3, wx1 x 2 must belong to 

Q nr , w (x ox3 - x1x2) must be generated by one of 
n+l n r r+ l 2 3 x0 x3 - x0 x 1 x2,xo x 1x3 - x 1 x2,xo x 2 x3 - x 1x2, 

(ii) Suppose that w contains two terms i.e. w = w1 + w2 . 

If w1 and w2 differ only in their coefficients then w can be expressed as a single 

term which is case (i). So we assume that w cannot be written as a single term. 

two of the generators already given. 

only belong to Q nr if - w1x1x2 = w2x1x2 i.e. w2 = - w1 which is contrary to 

our assumption. 
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contradiction. Thus we must have w1xox3, w2x1x2 E Qnr, w1x1x2, w2xox3 r/. Qnr 

Since it just depends on how we label w1, w2, we will only consider 

Hence 

So x5 x5 - xt x ~ is another generator of Qnr n J. 

(iii) Suppose that w has t terms (t ~ 3). Since we are trying to find new generators, we 

assume that there are no wk (l ~ k ~ t ) such that wkxox3, wkx 1x2 both belong to Qnr 

(case (i)). We also assume that there are no two wk, Wt (l ~ k ~ t, l ~ f. ~ t , k =/. f. ) 

such that (wk + Wt ) (xox3 - x1x2) = ,8 (x5x5 - Xix~ ) (,8 E F [xo, x1, x2, x 3] ) 

(case (ii)). 

So for each term wk, at the most only one of wkxox3, wkx 1x2 can belong to 

Qnr• Thus when we multiply w (xox3 - x1x2) out, we have at least t terms that do 

not belong to Qnr . 

Since w (xo x3 - x1x2) E Qnr , these terms must all cancel. But no WkX0 X3 can 

cancel with Wtx1x 2 (case (ii)), so there must be at least three terms involved in each 

cancellation. 
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This means that we must have a wk and w, ( k =J £) that differ only in coefficients 

contrary to our assumption. 

The generators of the ideal of Claim C are independent only if n, r 2: 2. 

If n = r = l then In = (xo x3 - x1 x2) . 

If n = l , r 2: 2 then 

and if n 2: 2, r = l then 

Thus from the definition of m (Inr) 

m(Inr) = 

2: n=r=l 
4: 

r + l: 
n+ 1: 

n = l, r = 2 or r = 1, n = 2 

n = l , r > 2 
r = l,n > 2 

n+r: n,r 2: 2. 

Analysing the examples of [8] and our theorems, we would like to finish with 

the following ( open) problem. 

Problem: Let I be a homogeneous ideal of F [xo, ... , xn] which is not monomial. Under 

what assumptions do we have arith-deg (I) 2: m (I), where m (I) is the maximum of 

degrees of forms generating I. 



37 

REFERENCES 

[1] Allsop, N.: Monomial Ideals: Length-multiplicity of embedded primary ideals. 
Notes, Massey University, Palmerston North, 1995. 

[2] Allsop, N.: Primary decomposition of Monomial Ideals. Notes, Massey University, 
Palmerston North, 1995. 

[3] Bayer, D. and Mumford, D.: "What can be computed in Algebra and Geometry". 
In: Eisenbud, D. and Robbiano, L. (eds.): Computational algebraic geometry and 
commutative algebra. Cambridge University Press, 1993, 1--48. 

[4] Hermann, G.: Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. 
Math. Annalen 95, (1926), 736--788. 

[5] Hudson, J. and Vogel, W.: On computing length-multiplicities. Preprint Series: 
94/24. Massey University, Palmerston North, 1994. 

[6] Northcott, D.G.: Ideal Theory. Cambridge University Press, 1953. 

[7] Renschuch, B.: Elementare and praktische ldealtheorie. Deutscher Verlag der 
Wissenschaften, Berlin, 1976. 

[8] Smith, T.: Bounds on arithmetic degrees. Master Thesis, Massey University, 
Palmerston North, 1997. 

[9] Sturmfels, B. Trung, N.V. and Vogel, W.: Bounds on degrees of projective schemes. 
Math. Annalen, 302 (1995), 417--432. 

[10) Vogel, W.: Lectures on Results on Bezout's Theorem. Tata Institute of Fundamental 
Research, Springer-Verlag, New York, 1984. 



38 

Acknowledgements 

Since finishing this thesis, my supervisor Professor Wolf gang Vogel has died. I 

would like to pay tribute to him and acknowledge the unstinting support, advice and 

encouragement that he always gave to me. The many discussions we had were helpful 

and stimulating and I am privileged to have been one of his students. I will remember him 

for his wide knowledge in his field of pure mathematics, his perceptive ideas, his ability 

for clear explanations and his friendliness. Some of the references made in this thesis 

are from publications written or co-written by Professor Vogel. We can be grateful that 

his expertise will still be passed on to students and mathematicians in many universities. 

I appreciated the help given by Dr Yuji Kamoi of Tokyo Metropolitan University 

in the use of the Macaulay Mathematical computer programme. 

Finally I would like to thank Professor Dean Halford and all the staff of the 

Department of Mathematics at Massey University with whom I have had contact, for 

their friendliness and help. 


