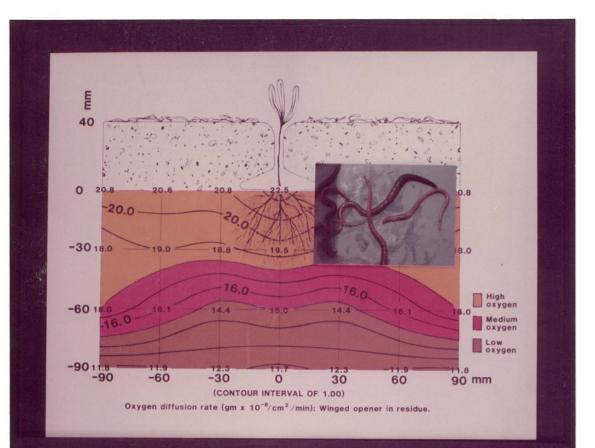
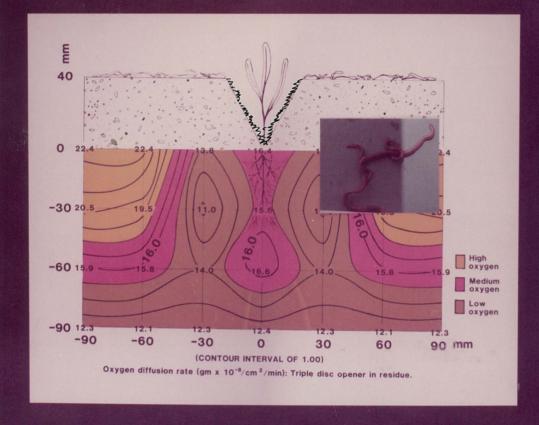
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

.


EFFECTS OF DIRECT DRILLING OPENERS, SURFACE RESIDUE AND EARTHWORMS ON SEED AND SEEDLING PERFORMANCE IN A WET SOIL


A Thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University Palmerston North New Zealand

by

Allah Ditta Chaudhry

January 1985.

TABLE OF CONTENTS

SECTION

•

.

. . .

PAGE

.

.

1.		INTR	ODUCTION.	1	
2.		REVI	EW OF LITERATURE.	3	
	2.1	PHYS	ICAL, BIOLOGICAL AND CHEMICAL INFLUENCE OF		
			CROP RESIDUE ON DIRECT DRILLING	3	
		2.1.1	Physical influence.	3	
		2.1.2	Biological influence.	7	
		2.1.3	Chemical influence.	10	
	2.2	INFL	UENCE OF EARTHWORMS ON SOIL FERTILITY AND		
		PLAN	T GROWTH.	13	
	2.3	SOIL	OXYGEN AND PLANT GROWTH.	17	
	2.4	DESI	GN PARAMETERS OF DIRECT DRILLING.	24	
		2.4.1	Opener functions.	24	
		2.4.2	Design and modifications of drills for		
			direct drilling.	24	
		2.4.3	Performance of openers and modifications		
			for no-tillage.	27	
		2.4.4	Physical, biological and chemical influence		
			of direct drilled grooves.	29	
		I	(a) Seed groove micro-environmentphysical.		29
		I	(b) Seed groove micro-environmentbiological.		33
		I	(c) Seed groove micro-environmentchemical.		35
2		האסיים		26	
3.		EAFEI	RIMENTS	36	
	3.1	FIELI	COMPARISONS OF DIRECT DRILLING OPENER		
		PERFO	ORMANCE (Experiment 1).	36	
	3	.1.1	Introduction.	36	
	3	1.1.2	Materials and methods.	36	
	З	.1.3	Measurements.	42	
	3	.1.4	Limitations.	51	
	3	.1.5	Results and discussion.	52	
	3	.1.6	Discussion of Experiment 1.	67	

3.3

- . .

.

3.2 EFFECTS OF DIRECT DRILLING OPENERS ON SEED/SEEDLI	NG	
PERFORMANCE IN THE PRESENCE AND ABSENCE OF CROP		
RESIDUE, UNDER CONTROLLED CLIMATIC CONDITIONS.	69	
3.2.1 Introduction.	69	
3.2.2 Materials and methods.	70	
3.2.3 <u>Measurements</u> .	76	
3.2.4 Experiment 2		
Seedling emergence under simulated rain		
conditions.	81	
(a) Introduction.		81
(b) Results and discussion.		81
3.2.5 Experiment 3		
Seedling emergence under temporary high wate	r	
table conditions.	101	
(a) Introduction.		101
(b) Results and discussion.		101
3.2.6 Discussion of Experiments 2 and 3.	122	
EFFECTS OF CARBARYL ON EARTHWORMS, SEEDS AND SEEDLING	<u>s</u>	
IN A WET SOIL.	125	
3.3.1 Introduction.	125	
3.3.2 Effects of carbaryl on the mortality of		
of earthworms.		
(Pilot experiment, Experiment 4).	125	
(a) Objectives.		125
(b) Materials and methods.		125
(c) Results and discussion.		126
3.3.3 Effects of carbaryl on roots and shoots of		
barley sown in soil.		
(Pilot experiment, Experiment 5).	128	
(a) Objectives.		128
(b) Materials and methods.		128
(c) Results and discussion.		129
3.3.4 Effects of direct seed/carbaryl contact on		
seed germination and seedling growth		

-

		(Pilot experiment, Experiment 6).	129	
		(a) Objectives.		129
		(b) Materials and methods.		129
		(c) Results and discussion.		129
	3.3.5	Discussion of pilot Experiments 4, 5 and 6.	132	
3.4	EFFECTS	S OF OPENER TYPES, RESIDUE AND EARTHWORM ACTIVI	<u>TY</u>	
	<u>on seei</u>	J/SEEDLING PERFORMANCE.	136	
	3.4.1	Objectives.	136	
	3.4.2	Materials and methods.	136	
	3.4.3	Results and discussion.	136	
		(a) Experiment 7: (In the absence of earthworm:	з)	139
		(b) Experiment 8: (In the presence of earthworn	as).	151
	3.4.4	Discussion of Experiments 7 and 8.	164	
3.5	PHY TOTO	XIC EFFECTS OF CROP RESIDUE IN THE PRESENCE OF		
	EARTHWO	RMS, (Experiment 9).	170	
	3.5.1	Objectives.	170	
	3.5.2	Materials and methods.	170	
	3.5.3	Results and discussion.	171	
	3.5.4	Discussion of Experiment 9.	179	
	3.5.5	Conclusion of Experiments 7, 8 and 9.	180	
3.6		RILLING SEED SOWING TECHNIQUES, EARTHWORMS, ANI)	
	SURFACE	RESIDUE IN A WET SOIL		
		(Experiments 10 and 11).	181	
	3.6.1	Introduction.	181	
	3.6.2	Materials and methods.	182	
	(;	a) Selection of opener types.		183
	(1	b) Tillage bin technique.		185
	()	c) Measurements.		185
	(0	d) Experimental design.		186
	(6	e) Constraints.		188
	3.6.3	Effects of direct drilling seed sowing techniq	ues	
		and surface residue in the absence of earthwo	rms	
		(Experiment 10).	190	
	(a	a) Objectives.		190
	()) Results and discussion.		190
	3.6.4	Effects of direct drilling seed sowing techniq	ues	

	and surface residue in the presence of earth	nworn	15
	(Experimernt 11).	201	ł
	(a) Objectives.		204
	(b) Results and discussion.		204
	3.6.5 Discussion of Experiments 10 and 11.	231	
3.7	EFFECTS OF SMEARING AND SOIL COMPACTION ON EARTHWORN	1	
	ACTIVITY AND OXYGEN DIFFUSION RATES.	241	
	3.7.1 Introduction.	241	
	3.7.2 Effects of soil smearing and compaction on		
	earthworm populations and activity		
	(Experiment 12).	242	
	(a) Materials and methods.		242
	(b) Results and discussion.		243
	3.7.3 Effects of soil smearing and compaction on		
	earthworm activity and populations under		
	decreasing soil moisture conditions		
	(Experiment 13).	254	
	(a) Materials and methods.		254
	(b) Results and discussion.		254
	3.7.4 Earthworm behaviour when confronted by a smea	r	
	(Experiment 14).	259	
	(a) Materials and methods.		259
	(b) Results and discussion.		260
	3.7.5 Discussion of Experiments 12, 13 and 14.	260	
3.8	EFFECTS OF EARTHWORMS ON WATER INFILTRATION RATE		
	AROUND THE PROFILES OF DIRECT DRILLED GROOVES.	266	
	3.8.1 Introduction.	266	
	3.8.2 Materials and methods.	267	
	(a) Design of a rectangular infiltrometer.		267
	(b) Experimental design.		268
	(c) Opener types: selection.		268
	(d) Procedure.		268
	3.8.3 Results and discussion.	270	
	(a) Infiltration rate in the presence of earthw	orms	
	and absence of crop residue (Experiment 15)	•	270
	(b) Infiltration rate in the absence of earthwor	rms	
	and crop residue (Experiment 16).		273

	(c) Infiltration rate in the presence of earth	worms	
	and crop residue (Experiment 17).		275
	3.8.4 Discussion of Experiments 15, 16 and 17.	284	
3.9	LIMITING FACTORS CAUSING SEEDLING EMERGENCE FAILURE		
	WITH THE TRIPLE DISC OPENER GROOVE (Experiment 18).	286	
	3.9.1 Introduction.	286	
	3.9.2 Materials and methods.	286	
	3.9.3 Results and discussion.	288	
	3.9.4 Discussion of Experiment 18.	299	
4.	SUMMARY AND DISCUSSION	303	
4.1	OPENERS.	304	
4,2	CROP RESIDUE.	315	
4.3	EARTHWORMS.	316	
4.4	CONCLUSIONS.	319	
4.5	RECOMMENDED FURTHER RESEARCH WORK.	320	
5. <u>BIE</u>	LIOGRAPHY.	322	
6. <u>ACK</u>	6. ACKNOWLEDGEMENTS. 336		
7. APPENDICES			

LIST OF TABLES

1.	Effects of contrasting soil moisture conditions,	
	direct drilling opener types and contrasting crop	
	residue conditions, on the fate of direct drilled	
	barley seeds.	53
2.	Effects of contrasting soil moisture conditions,	
	direct drilling opener types and contrasting crop	
	residue conditions, on the root/shoot weights of	
	direct drilled barley seeds.	60
3.	Effects of direct drilling opener types and	
	contrasting crop residue conditions, on oxygen	
	diffusion rate at the centre of the grooves,	
	under irrigated conditions.	62
4.	Effects of direct drilling opener types and	
	contrasting crop residue conditions, on soil	
	bulk density and soil moisture content, at the	
	centre of the grooves, under irrigated conditions.	65
5.	Effects of opener types and contrasting crop residue	
	conditions, on the fate of direct drilled barley seeds,	
	under simulated rain conditions.	82
6.	Effects of direct drilling opener types and	
	contrasting crop residue conditions, on oxygen	
	diffusion rate (ODR), under simulated rain conditions.	88
7.	Effects of direct drilling opener types and contrasting	
	crop residue conditions, on earthworm populations	
	around the groove profiles, under simulated rain	
	conditions.	95
8.	Effects of direct drilling opener types and contrasting	
	crop residue conditions, on in-groove soil temperature,	
	under simulated rain conditions.	95
9.	Effects of direct drilling opener types and contrasting	
	crop residue conditions, on soil bulk density around	
	the groove profiles, under simulated rain conditions.	97
10.	Effects of direct drilling opener types and contrasting	
	crop residue conditions, on soil moisture content around	
	the groove profiles, under simulated rain conditions.	99
11.	Effects of direct drilling opener types and contrasting	

· · · ·

crop residue conditions, on the fate of direct drilled barley seeds, under temporary high water table condition. 102

- 12. Effects of direct drilling opener types and contrasting crop residue conditions, on oxygen diffusion rate (ODR), under temporary high water table conditions.
 109
- 13. Effects of direct drilling opener types and contrasting crop residue conditions, on earthworm populations around the groove profiles, under temporary high water table conditions.
- 14. Effects of direct drilling opener types and contrasting crop residue conditions, on in-groove soil temperature, under temporary high water table conditions.
- 15. Effects of direct drilling opener types and contrasting crop residue conditions, on soil bulk density around the groove profiles, under temporary high water table conditions.
- 16. Effects of direct drilling opener types and contrasting crop residue conditions, on soil moisture content around the groove profiles, under temporary high water table conditions.
 120
- 17. Earthworm populations in Tokomaru silt-loam soil, 3 days after spraying carbaryl.127
- Effect of carbaryl on seed germination and seedling growth of barley seeds, sown in undisturbed soil blocks. 130
- Effects of concentration of carbaryl solution on seed germination and seedling growth of barley, on germination paper.
- 20. Effects of opener types and contrasting crop residue condition on the fate of direct drilled barley seeds, in the absence earthworms, under simulated rain conditions.
 140
- 21. Effects of direct drilling opener types and contrasting crop residue conditions, on oxygen diffusion rate (ODR), in the absence of earthworms, under simulated rain conditions.
- 22. Effects of direct drilling opener types and contrasting crop residue conditions, on earthworm populations around the groove profiles, under simulated rain conditions, in carbaryl treated pots.

116

- 23. Effects of direct drilling opener types and contrasting crop residue conditions, on populations of earthworm species in the pots treated with carbaryl, under simulated rain conditions.
- 24. Effects of direct drilling opener types and contrasting crop residue conditions, on matrix soil bulk density, in the absence of earthworms, under simulated rain conditions. 150
- 25. Effects of direct drilling opener types and contrasting crop residue conditions, on matrix soil moisture content, in the absence of earthworms, under simulated rain conditions.
 150
- 26. Effects of opener types and contrasting crop residue conditions, on the fate of direct drilled barley seeds, in the presence of earthworms, under simulated rain conditions.
- 27. Effects of direct drilling opener types and contrasting crop residue conditions, on oxygen diffusion rate (ODR), in the presence of earthworms, under simulated rain conditions.
- 28. Effects of direct drilling opener types and contrasting crop residue conditions, on earthworm populations around the groove profiles, under simulated rain conditions. 160
- 29. Effects of direct drilling opener types, and crop residue conditions, on polpulations of earthworm species, under simulated rain conditions.
 161
- 30. Effects of direct drilling opener types and contrasting crop residue conditions, on matrix soil bulk density, in the presence of earthworms, under simulated rain conditions.
- 31. Effects of direct drilling opener types and contrasting crop residue conditions, on matrix soil moisture content, in the presence of earthworms, under simulated rain conditions.
 163
- 32. Effects of direct drilling opener types and contrasting residue placements, on the fate of direct drilled barley seeds, under simulated rain conditions.
 172
- 33. Effects of direct drilling opener types and contrasting residue placements, on populations of earthworms, under simulated rain conditions.
 177

157

34. Effects of direct drilling opener types and contrasting residue placements, on populations of earthworm species, under simulated rain conditions. 35. Effects of direct drilling seed sowing techniques and contrasting crop residue conditions, on seed fate of barley, in the absence of earthworms, under simulated rain conditions. 36. Effects of direct drilling seed sowing techniques and contrasting crop residue conditions, on oxygen diffusion rate (ODR), in the absence of earthworms, under simulated rain conditions. 37. Effects of direct drilling seed sowing techniques and contrasting crop residue conditions, on earthworm populations around the groove profiles, in the absence of earthworms (in carbaryl treated pots), under simulated rain conditions. 38. Effects of direct drilling seed sowing techniques and contrasting crop residue conditions, on soil bulk density and soil moisture content around the groove profiles, in the absence of earthworms, under simulated rain conditions. 39. Effects of direct drilling seed sowing techniques and contrasting crop residue conditions, on seed fate of barley, in the presence of earthworms, under simulated

40. Effects of direct drilling seed sowing techniques and contrasting crop residue conditions, on oxygen diffusion rate (ODR) around the groove profiles, in the presence of earthworms, under simulated rain conditions.

rain conditions.

- 41. Effects of direct drilling seed sowing techniques and contrasting crop residue conditions, on earthworm populations around the groove profiles, in the presence of earthworms, under simulated rain conditions. 224
- 42. Effect of direct drilling seed sowing techniques and contrasting crop residue conditions, on populations of earthworm species around the groove profiles, in the presence of earthworms, under simulated rain conditions. 225
- 43. Effects of direct drilling seed sowing techniques and contrasting crop residue conditions, on area indices of

PAGE

178

191

198

201

202

244

249

earthworm activity around the groove surfaces, in the presence of earthworms, under simulated rain conditions. 227

- 44. Effects of direct drilling seed sowing techniques and contrasting crop residue conditions, on soil bulk density and soil moisture content around the groove profiles, in the presence of earthworms, under simulated rain conditions.
- 45. Effects of smearing intensity and soil bulk density, on cumulative numbers of earthworm holes, under simulated rain conditions.
- 46. Effects of smearing intensity and soil bulk density, on oxygen diffusion rate (ODR), under simulated rain conditions.
- 47. Effects of smearing intensity and soil bulk density, on
 earthworm populations, at different depths, under
 simulated rain conditions.
- 48. Effects of smearing intensity and soil bulk density, on
 cumulative numbers of earthworm holes, under decreasing
 soil moisture conditions.
- 49. Effects of smearing intensity and soil bulk density, on earthworm populations, under decreasing soil moisture conditions.
 258
- 50. Effects of direct drilling opener types on infiltration rates and cumulative infiltration around the groove profiles, in the presence of earthworms and absence of surface residue.
 271
- 51. Effects of direct drilling opener types on infiltration rates and cumulative infiltration around the groove profiles, in the absence of earthworms and surface residue . 274
- 52. Effects of direct drilling opener types on infiltration rates and cumulative infiltration around the groove profiles, in the presence of earthworms and surface residues. 278
- 53. Effects of "V" shaped groove types and crop residue conditions, on seed fate of barley, under simulated rain conditions.
 289
- 54. Effects of "V" shaped groove types and crop residue conditions, on dry matter weights of roots and shoots of barley, under simulated rain conditions.
 293
- 55. Effects of "V" shaped groove types and crop residue

conditions, on oxygen diffusion rate (ODR), under simulated rain conditions.
295
56. Effects of "V" shaped groove types and crop residue conditions, on earthworm populations around the groove profiles, under simulated rain conditions.
298
57a Summary of interactive responses of direct drilled barley seeds to opener types, crop residue and earthworms in a saturated soil.
(Percentage seedling emergence, in the presence of earthworms)

- 57b Summary of interactive responses of direct drilled barley seeds to opener types, crop residue and earthworms in a saturated soil. 307 (Percentage seedling emergence, in the absence of earthworms)
- 58. Summary of interactive responses of earthworms to direct drilling types and crop residue in a saturated soil.
 308 (Earthworm populations around the groove profiles)

LIST OF FIGURES

PAGE

.

. .

1.	Front view of Winged opener assembly.	39
2.	Side view of Triple disc opener assembly.	39
3.	Side view of Hoe opener assembly.	39a
4.	Experimental layout of field experiment	
	(Experiment 1).	41
5.	Equipment for measuring oxygen diffusion rate.	44
6.	Extraction of samples for root studies with	
	perspex pinboard.	44
7.	Effect of direct drilling opener types and	
	contrasting crop residue conditions on rates	
	of seedling emergence of barley in an irrigated	
	soil.	55
8.	Effects of direct drilling opener types and	
	contrasting crop residue conditions on rates	
	of seedling emergence of barley in a non-	
	irrigated soil.	56
9.	Effects of direct drilling opener types and	
	contrasting crop rersidue conditions, on	
	cumulative seed fate of direct drilled barley	
	in irrigated and non-irrigated conditions.	59
10.	Effects of direct drilling opener types and	
	contrasting crop residue conditions on changes	
	in oxygen diffusion rates (ODR) with time, in	
	an irrigated soil.	64
11.	Turf block extraction process.	
	(a) Initiation of turf cutter and bin travel into	
	soil.	72
	(b) Tillage bin at full depth.	
	(c) Tillage bin after drilling <u>in situ</u> .	
12.	Experimental layout of tillage bin experiments	
	(Experiments 2 and 3).	75
13.	A grid pattern for measuring oxygen diffusion	
	rates (ODR), soil bulk density and soil moisture	
	content, around direct drilled grooves.	

- .

	(Experiments 2 and 3).	77
14.	· Core sampler (120mm dia x 100mm length) used for	
	estimating earthworm populations around a direct	
	drilled groove.	79
15	. Effects of direct drilling opener types and	
	contrasting crop residue conditions, on seedling	
	emergence rates of barley, under simulated rain	
	conditions.	84
16.	. Effects of direct drilling opener types and	
	contrasting crop residue conditions, on	
	cumulative seed fate of barley, under simulated	
	rain conditions.	85
17.	Effects of direct drilling opener types and	
	contrasting crop residue conditions on changes	
	in oxygen diffusion rates (ODR) with time,	
	under simulated rain conditions.	89
18.	(a) Average cumulative oxygen diffusion rate	
	zones, created around a direct drilled	
	groove (Winged opener, days 5-20), under	
	simulated rain conditions.	91
	(b) Average cumulative oxygen diffusion rate	
	zones, created around a direct drilled	
	groove (Triple disc opener, days 5-20),	
	under simulated rain conditions.	92
	(c) Average cumulative oxygen diffusion rate	
	zones, created around a direct drilled	
	groove (Hoe opener, days 5-20), under	
	simulated rain conditions.	93
19.	Effects of direct drilling opener types	
	and contrasting crop residue conditions	
	on seedling emergence rates of barley,	
	under temporary high water table conditions.	104
20.	Efffects of direct drilling opener types and	
	contrasting crop residue conditions,	
	on cumulative seed fate of barley, under	
	temporary high water table conditions.	107
21.	Effects of direct drilling opener types and	
	contrasting crop residue conditions, on	
	changes in oxygen diffusion rates (ODR)	

PAGE

.

	with time, under temporary high water table	
	conditions.	110
22		
	zones, around a direct drilled groove (Winged	
	opener, days 5-20), under temporary high water	
	table conditions.	112
	(b) Average cumulative oxygen diffusion rate	
	zones, around a direct drilled groove (Triple	
	disc opener, days 5-20), under temporary high	
	water table conditions.	113
	(c) Average cumulative oxygen diffusion rate	ل ۲۰۰
	zones, around a direct drilled groove (Hoe	
	opener, days 5-20), under temporary high water	
	table conditions.	114
23	Effects of different concentrations of carbaryl	114
	on root/shoot development of barley.	131
24	The grid pattern for measuring oxygen diffusion	1.51
24.	rate (ODR) zones, in the absence and presence of	
		138
25	earthworms, under simulated rain conditions.	:20
20.	Effects of direct drilling opener types and	
	contrasting crop residue conditions, on	
	seedling emergence rates of barley, in the	
	absence of earthworms, under simulated rain conditions.	540
26		142
20.	Effects of direct drilling opener types and	
	contrasting crop residue conditions, on	
	cumulative seed fate of direct drilled barley,	
	in the absence of earthworms, under simulated	440
	rain conditions.	143
27.	Effects of direct drilling opener types and	
	contrasting crop residue conditions, on changes	
	in oxygen diffusion rates (ODR) with time, in	
	the absence of earthworms, under simulated	a 1) c
~^	rain conditions.	146
28.	Effects of direct drilling opener types and	
	contrasting crop residue conditions, on	
	seedling emergence rates of barley, in the	
	presence of earthworms, under simulated rain	
	conditions.	153

-

PAGE

29	• Effects of direct drilling opener types and	
	contrasting crop residue conditions, on	
	cumulative seed fate of direct drilled barley,	
	in the presence of earthworms, under simulated	
	rain conditions.	155
30.	Effects of direct drilling opener types and	
	contrasting crop residue conditions, on	
	changes in oxygen diffusion rates (ODR) with	
	time, in the presence of earthworms, under	
	simulated rain conditions.	158
31.	Response of barley seedlings to earthworms	
	in direct drilling.	165
32.	Effects of direct drilling opener types and	
	earthworms on barley seedlings, under simulated	
	rain conditions.	166
33.	The cast soil surface with earthworms (above)	
	and uncast soil surface without earthworms	
	(below).	167
34.	Effects of direct drilling opener types and	
	position of crop residue, on seedling emergence	
	rates of barley, in the presence of earhworms,	
	under simulated rain conditions.	173
35.	Effects of direct drilling opener types and	
	position of crop residue, on cumulative seed fate	
	of barley, in the presence of earthworms, under	
	simulated rain conditions.	175
36.	A garden rotary hoe assembly to create a power-till	
	groove.	184
37.	A core sampler (11mm x 40mm) used to make discrete	
	holes to represent a punch planter.	184
38.	A quardat used to measure area index of earthworm	
	activity.	187
39.	Effects of direct drilling seed sowing techniques	
	and contrasting crop residue conditions, on seedling	
	emergence of barley, in the absence of earthworms,	
	under simulated rain conditions.	192
40.	Effects of direct drilling seed sowing techniques	
	and contrasting crop residue conditions, on	

cumulative seed fate of barley, under simulated

· · · ·

	rain conditions.	195
41	. Effects of direct drilling seed sowing techniques	
	and contrasting crop residue conditions, on changes	
	in oxygen diffusion rates (ODR) with time, in the	
	absence of earthworms under simualted rain	
	conditions.	199
42	. Effects of direct drilling seed sowing techniques	
	and contrasting crop residue conditions, on seedling	
	emergence rates of barley, in the presence of	
	earthworms, under simulated rain conditions.	206
43.	. Effects of direct drilling seed sowing techniques	
	and contrasting crop residue conditions, on	
	cumulative seed fate of barley, in the presence of	
	earthworms, under simulated rain conditions.	210
44.	Effects of direct drilling seed sowing techniques	
	and contrasting crop residue conditions, on changes	
	in oxygen diffusion rates (ODR) with time, in the	
	presence of earthworms, under simulated rain	
	conditions.	214
45.	(a) Average cumulative oxygen diffusion rate zones,	
	created around a direct drilled groove (Winged opener,	
	days 7-21), under simulated rain conditions.	216
	(b) Average cumulative oxygen diffusion rate zones,	
	created around a direct drilled groove (Triple disc	
	opener, days 7-21), under simulated rain conditions.	217
	(c) Average cumulative oxygen diffusion rate zones,	
	created around a direct drilled groove (Hoe opener,	
	days 7-21), under simulated rain conditions.	218
	(d) Average cumulative oxygen diffusion rate zones,	
	created around a direct drilled groove (Power-till	
	opener, days 7-21), under simulated rain conditions.	219
	(e) Average cumulative oxygen diffusion rate zones,	
	created around a direct drilled groove (Punch planter	
	opener, days 7-21), under simulated rain conditions.	220
	(f) Average cumulative oxygen diffusion rate zones,	
	in an undisturbed soil (surface broadcasting, days	
	7-21), under simulated rain conditions.	221
46.	(a,b) Effects of direct drilling seed sowing techniques	
	on barley seedling emergence in the absence of	

.

PAGE

· ·

-

	earthworms, under simulated rain conditions.	233
	(c,d) Effects of direct drilling seed sowing technique	es
	on barley seedling emergence in the presence of	
	earthworms, under simulated rain conditions.	234
	(e,f) Typical seedlings from direct drilled grooves	
	and surface broadcasting technique, in the presence	
	of earthworms, under simulated rain conditions.	235
47	. Dissections of typical punch planter grooves.	
	(a) Without earhworms (b) With earthworms.	237
48.	. Typical groove created by triple disc opener in the	
	presence and absence of earthworms.	239
49.	. (a,b,c) Effects of smearing intensity and soil bulk	
	density levels on earthworm activitry (cumulative	
	numbers of earthworm holes).	246
50.	Effects of soil compaction levels and smearing	
	intensities on cumulative numbers of earthworm holes,	
	under simulated rain conditions.	247
51.	Effects of soil compaction levels and smearing	
	intensities on changes in oxygen diffusion rates	
	(ODR) with time, under simulated rain conditions.	250
52.	Effects of soil compaction levels and smearing	
	intensities on cumulative numbers of earthworm holes,	
	under decreasing soil moisture conditions.	256
53.	(a-d) Effects of smearing on movement and activity	
	of earthworms.	261
54.	Effects of soil bulk density levels on earthworm	
	channels.	264
55.	Effects of continuously wetting and drying soil	
	conditions on earthworm activity.	264
56.	A rectangular infiltrometer used for measuring	
	infiltration rates around the groove profiles	
	created by direct drilling openers.	269
57a	Effects of direct drilling opener types and	
	undisturbed soil on infiltration rate to 60 mm,	
	in the presence of earthworms and absence of	
	crop residue.	278
57b	Effects of direct drilling opener types and	
	undisturbed soil on infiltration rate to 100 mm,	
	in the presence of earthworms and absence of	

	crop residue.	279
58a	Effects of direct drilling opener types and	
	undisturbed soil on infiltration rate to 60 mm,	
	in the absence of earthworms and crop residue.	280
58ъ	Effects of direct drilling opener types and	
	undisturbed soil on infiltration rate to 100 mm,	
	in the absence of earthworms and crop residue.	281
59a	Effects of direct drilling opener types and	
	undisturbed soil on infiltration rate to 60 mm,	
	in the presence of earthworms and crop residue.	282
59b	Effects of direct drilling opener types and	
	undisturbed soil on infiltration rate to 100 mm,	
	in the presence of earthworms and crop residue.	283
60.	Effects of different methods of creating "V"	
	shaped grooves and position of crop residue, on	
	seedling emergence rates of barley, under	
	simulated rain conditions.	290
61.	Effects of different methods of creating "V"	
	shaped grooves and position of crop residue, on	
	changes in oxygen diffusion rates (ODR) with	
	time, under simulated rain conditions.	296
62.	(a,b,c) Effects of different methods of creating	
	"V" shaped groove types and position of crop	
	residue, on root/shoot development of barley.	300

PAGE

LIST OF APPENDICES

- 1a. The principal characteristics of direct drilling groovesin a silt loam soil at moisture contents, 15%, 20% and 27%.
- 1b. Limits of the effects of direct drilling opener types on soil resistance, from the centre of the grooves.
- 1c i. "Iso-soil-strength" lines on either side of a direct drilled groove (Winged opener).
 - ii. "Iso-soil-strength" lines on either side of a direct drilled groove (Triple disc opener).
 - iii."Iso-soil-strength" lines on either side of a direct drilled groove (Hoe opener).
- 2a. Manawatu soil and ambient temperatures during December, 1982 and January, 1983.
- 2b. Manawatu rainfall data (December, 1982 and January, 1983).
- 3a. A sample of a week day/night temperature and relative humidity changes inside the glasshouse with a nominally controlled temperature range of $20-25^{\circ}$ C.
- 3b. Thermocouple calibration curve.
- 3c. A sample of a week day/night temperature and relative humidity changes inside the glasshouse with a nominally controlled temperature range of $15-20^{\circ}$ C.

ABSTRACT

Stand establishment of crops by direct drilling is a function of seed germination and seedling emergence and their interactions with the soil physical micro-environment at or near the seed soil interface which itself is influenced by the design of direct drill openers. The main objectives of this project were to study the effects of opener types on seed germination and seedling emergence under continuously wet warm conditions. Experiments were conducted in the field under variable climatic conditions and in a laboratory under controlled conditions.

A field experiment showed that continuously wet soil conditions after drilling, resulted in significantly lower seedling emergence and root/shoot weights than non-irrigated conditions. Both field and laboratory experiments indicated that there were three strong influential variables; opener types, the presence or absence of surface residue, and the presence or absence of earthworms.

Five opener types and a surface broadcasting treatment were tested. Best results (in terms of barley seedling emergence) came from surface broadcasting on the untilled soil in all residue and earthworm conditions, and a winged (inverted "T" shaped groove) in the presence of both residue and earthworm conditions. A hole opener ("U" shaped groove) in these latter conditions was marginally inferior to the winged opener in this respect. In the absence of both residue and earthworms there were few opener effects although the increased mechanical disturbance of a power-till opener (100 mm wide "U" shaped groove) gave the highest seedling emergence of all other "true" opener types in these conditions. Worst results involved a punch planter (discontinuous "U" shaped holes) and a triple disc opener ("V" shaped groove) in almost all conditions.

Crop residue conditions resulted in significantly higher numbers of emerged seedlings and greater root/shoot weights than no-residue conditions, under both simulated rain and temporary high water table conditions. Long residue (200 mm) showed a significantly larger number of emerged seedlings than short residue (40 mm) or bare soil (no-residue). Two opener types (winged and hoe) benefitted from the presence of crop residue, whereas with a triple disc opener the presence of crop residue was a disadvantage. This was because the function of the winged opener kept the residue over the soil surface and the hoe opener swept it aside, whereas the triple disc opener pushed the residue down inside the groove and seed/residue contact appeared to have phytotoxic effects on seeds and seedlings. The performance of the triple disc opener groove was improved when residue was artificially removed from inside of the groove.

The narrow discontinuous "U" shaped holes created by a punch planter opener, the wide "U" shaped groove of a powered power-till opener and a surface broadcasting treatment did not appear to be influenced by the presence or absence of crop residue. Because precipitation was artificially regulated in these experiments, the latter technique was felt to be of limited practical importance, for untilled soils, because of the uncertainty of natural weather conditions following seeding in the field and the otherwise poor potential for seed/soil contact.

In the presence of residue there were higher oxygen diffusion rates (ODR) and lower soil bulk densities, together with increased earthworm populations and activity around the groove profiles of the winged, hoe, power-till and punch planter openers than under no-residue conditions. With the triple disc opener grooves, this trend was reversed, possibly because of compaction and smearing created by this opener.

The presence or absence of earthworms had a marked effect on seed/seedling performance. In the absence of earthworms the contrasting crop residue conditions and opener types had little or no effect on seedling emergence and seed/soil environment were in fact adversely affected by the absence of earthworms. The compacted and smeared groove of the triple disc opener showed lower numbers of earthworms around the groove profile than all other opener types under both residue and no-residue conditions. It was found that a high soil bulk density (1.4 g/cm³), and to a lesser extent a heavy smear were detrimental to earthworm activity.

The absence of earthworms resulted in 7-9 fold lower cumulative infiltration around the groove profiles than where earthworms were present. Opener effects on infiltration strongly favoured the winged design in the presence of earthworms, but only when infiltration was measured to a depth of 100 mm. It is therefore recommended that where surface residue and earthworms are present, use of a winged or perhaps hoe or power-till type opener is preferred in soil conditions likely to remain saturated during the germination and emergence phases. A power-till opener is preferred where residue or earthworms are absent. Use of triple disc or punch planter openers in any of these conditions is not recommended.

1. INTRODUCTION

Stand establishment of crops is markedly influenced by the efficacy The total environment of seed germination and seedling emergence. influencing germinating seeds is composed of physical, biological and Within the broad range of non-limiting biological chemical parameters. and chemical conditions, the stress imposed by physical factors in wet soil conditions may become the dominant force which might then limit seed germination and/or seedling emergence in the field. An understanding of soil physical factors and their inter-relationship with seed germination seedling emergence is therefore fundamental to and the precise functioning of seed drills, especially in relation to the design of furrow openers.

Seeds of field erops have been traditionally sown into Considerable data are conventionally tilled seed-beds. available concerning the characteristics of soil tillage profiles in such conventionally tilled seed-beds which have aimed at encouraging consistently optimum responses from seeds and seedlings during germination and emergence. In direct drilling (or no-tillage), because the technique is based on the avoidance of general seed-bed tillage (with or without herbicides), the seed is sown directly into the untilled soil. Most of the comprehensive work to date at Massey University, New Zealand has sought to characterise the micro-environments created by direct drilling openers in dry soils, and has centered on three opener types (winged, triple disc and hoe). Under wet soil conditions, little comparable data exist for untilled seed-beds. If the experience in dry soils is to be followed, extrapolation from tilled seed-beds might be (at best) unwise, and (at worst) distinctly misleading.

Phytotoxic effects of decomposing crop residues under the cool wet soil conditions in the United Kingdom have been described, but no interactions with opener types have been studied. Moreover, little information has been available regarding the comparative performance of opener types in the presence or absence of crop residues and/or earthworms under wet soil conditions. The objective ,therefore, of this study was to identify and investigate the salient physical and biological parameters which might be altered by the action of different direct drilling opener designs in wet soils, and in turn to study the effects that these might have on seed germination and seedling emergence of barley.