Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

METHODOLOGY OF CULTURE MAINTENANCE AND INOCULUM DEVELOPMENT FOR PRODUCTION OF SOLVENTS BY <u>CLOSTRIDIUM ACETOBUTYLICUM</u>

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF TECHNOLOGY IN BIOTECHNOLOGY AT MASSEY UNIVERSITY

NOEMI A. GUTIERREZ

1985

医脑管子样

ABSTRACT

Various methods of culture maintenance and inoculum development were evaluated for their effectiveness in conserving and improving the property of 2 strains of *Clostnidium acetokutylicum*, namely NCIB 2951 and NRRL B-594, to produce solvents by fermentation of whey permeate.

The majority of the methods were effective in maintaining the viability and solventogenic property of the organism. However, since in some cases the viability was maintained but the solventogenic property was not, it is clear that the latter should be used as the index in determining the storage life and time of reprocessing of the stock culture.

The methods of culture maintenance investigated included refrigeration at 4° C in distilled water, in phosphate buffer and in Cooked Meat Medium containing glucose (CMMG); by freezing at -20° C in distilled water and in phosphate buffer; by drying in soil and by lyophilization (freeze drying); and by periodic transfer in CMMG and in whey permeate containing yeast extract.

Maintenance of the stock cultures at -20° C in distilled water was found to be the most efficient for the storage stability of both strains of organism.

The viability and the potential to produce high solvent concentrations, primarily butanol were maintained without any significant loss after 9 months and 12 months, for strain NCIB 2951 and strain NRRL B-594, respectively. The criteria important for a commercial fermentation, i.e., sugar utilization, yield and butanol production rate, remained stable during storage by this method. It was observed that periodic transfer was a poor method as the culture lost their solventogenic property despite remaining viable.

The other preservation methods were not as satisfactory as freezing in distilled water at $-20^{\circ}C$ since the fermentation ability degenerated to some extent after 9 months of storage. Therefore, after such a period reprocessing of the stock cultures kept by these methods is necessary to revive the cultures and minimize degeneration.

The repeated use of the stock cultures was found to be deleterious and should be avoided.

The inoculum development procedure investigated to maximize fermentation efficiency included the conventional heat shocking of the stock culture; variation in the number of culture stages; use of gassing as an index of transfer time; and the use of different levels of inoculum size.

The strain differences which exist between NRRL B-594 and NCIB 2951 influenced how the inocula from these strains should be propagated prior to fermentation. Strain NRRL B-594 responded to heat shocking while strain NCIB 2951 did not. Neither ethanol nor butanol treatment of the stock cultures of the latter were advantageous.

Using a 3-stage inoculum development procedure, the fermentation efficiency of strain NRRL B-594 was improved by employing heat shocking at 80°C for 15 min in the revival stage of the stock culture. The germination factors for the spores of NCIB 2951 await identification. However, by using the presence of highly motile cells as an index in transferring from the revival stage, the inoculum development procedure resulted in a significantly higher butanol concentration value and production rate. Thus, the revival stage was the most critical.

iii

ACKNOWLEDGEMENTS

I am deeply grateful to Dr I.S. Maddox whose assistance and support throughout the course of this study were beyond measure. I also appreciate the privilege of being able to work with him.

Acknowledgement is also extended to the following:

- Prof. R. Earle, the New Zealand Ministry of Foreign Affairs, and the University of the Philippines at Los Banos for allowing me to pursue my Masterate.
- Mrs Bacon of the Department of Microbiology and Genetics for lyophilizing my stock cultures.
- Dr M. Taylor and Mr T. Gracie for their generosity with the GLC machine.
- Messrs M. Stevens, M. Lubbers, Mrs McCutcheon and the other technical staff for sharing their competence in the laboratory.
- Christine, Sen, Albert, Fred and the other Filipino students in Massey University for their company.
- Mrs Veronica Fieldsend for typing the thesis and Mr Lemuel Diamante for doing the illustrations.
- My family for their continued support.

TABLE OF CONTENTS

PAGE	

ABSTRACT			ii
ACKNOWLEDGEM	ENTS		iv
TABLE OF CON	TENTS		v
LIST OF TABL	ES		xi
LIST OF FIGU	RES		xiii
CHAPTER 1:	INTRO	ODUCTION	1
CHAPTER 2:	PRES	ERVATION OF MICROORGANISMS	3
	2.1	Introduction	3
	2.2	Criteria for Preservation	4
		2.2.1 Maintenance of Viability	4
		2.2.2 Maintenance of Biochemical Properties	5
		2.2.3 Maintenance of Genetics Constitution	5
	2.3	Methods of Preservation	6
		2.3.1 Subculture or Periodic Transfers on Culture Media	6
		2.3.2 Storage Under Oil	7
		2.3.3 Storage in Distilled Water	7
		2.3.4 Preservation for Drying	8
		2.3.5 Freezing	9
		2.3.6 Lyophilization	12
	2.4	Culture Collections and Gene Banks	15
	2.5	Industrial or Commercial Practices	16
	2.6	Conclusion	16
CHAPTER 3:	PREP.	ARATION AND PROPAGATION OF INOCULA	17
	3.1	Introduction	17

Cont'd..

CHAPTER	२•	CONTI	NUED			
	5.	3.2	Factors of Imp	ortance		17
		5.2	3.2.1 Type of			18
			3.2.2 Size of			18
			3.2.3 Stabilit		חנו (נ	18
			3.2.4 Contamir	-		20
		3.3	Conclusions			20
			0011011010110			
CHAPTER	4:	METHO	DD EMPLOYED FOR	R CULTURE N	AINTENANCE	
		AND]	INOCULUM DEVELO	OPMENT OF C	lostridium	
		aceto	butylicum			21
		4.1	The Use of Cl.	. acetobuty	<i>licum</i> in	
			Acetone-Butar	nol-Ethanol	l Fermentation	21
			4.1.2 The Orga	anism		22
			4.1.2.1	Morpholog: istics	ical Character-	23
			4.1.2.2	Cultural (Characteristics	26
			4.1.2.3		ical and Bio- Properties	27
				4.1.2.3.1	Biochemistry of Fermentation	27
				4.1.2.3.2	Course of Fermentation	29
				4.1.2.3.3	Oxygen Sensi- tivity and Eh Requirement	29
				4.1.2.3.4	Temperature and pH Requirement	32
				4.1.2.3.5	Substrate Range and Nutritional Requirement	32
				4.1.2.3.6	Metabolic Regulation	33
				4.1.2.3.7	Butanol Tolerance	36
		4.2	Culture Mainte	enance		37
			4.2.1 Introduc	ction		37
			4.2.2 Methods			37
		4.3	Inoculum Deve	lopment for	r Fermentation	40
			4.3.1 Introduc	ction		40
			4.3.2 Methods			40
		4.4	Conclusions		·	43
					Cont'd.	•

1

CHAPTER	5:	PRODU	UCTION OF ACETONE-BUTANOL-ETHANOL	
		ву Сл	l. acetokutylicum FROM WHEY AND	
		WHEY	PERMEATE	44
		5.1	State of the Art	44
		5.2	Potential and Limitations	45
		5.3	Conclusions	46
CHAPTER	6 :	MATE	RIALS AND METHODS	47
		6.1	Materials	47
			6.1.1 Media	47
			6.1.2 Sugars	47
			6.1.3 Chromatography Standards	47
			6.1.4 Gases and Other Chemicals	48
		6.2	Media Preparation	48
		6.3	Sterilization of Media, Glassware	
			and Equipment	48
		6.4	Organisms	49
		6.5	Anaerobic Incubation	49
		6.6	Revival of Freeze-dried Cultures	49
		6.7	Production of Spores	50
			6.7.1 Clostridium acetobutylicum	
			NRRL B-594	50
			6.7.2 Clostridium acetobutylicum	
			NCIB 2951	50
		6.8	Maintenance of Stock Cultures	50
Þ			6.8.1 Storage in Distilled Water at 4 ⁰ C	50
			6.8.2 Storage in Phosphate Buffer	50
			at 4 [°] C	51
			6.8.3 Freezing in Distilled Water at -20 ⁰ C	51
			6.8.4 Freezing in Phosphate Buffer	
			at -20 [°] C	51
			6.8.5 Drying in Soil	52
			6.8.6 Lyophilization	52

CHAPTER 6: CONTINUED

	6.8.7	Storage in Cooked Meat	
		Medium Containing Glucose	52
	6.8.8	Monthly Transfer in	
		Cooked Meat Medium Containing	
		Glucose	53
		6.8.8.1 Transfer Without Heat Shocking	53
		6.8.8.2 Transfer With Heat Shocking	53
	6.8.9	Weekly Transfer in Whey Permeate	
		Containing Yeast Extract	53
6.9	Viabil	ity Tests	54
6.10	Fermen	tation Tests	54
	6.10.1	Preparation of Inoculum	54
	6.10.2	Fermentation	55
6.11	Fermen	ter Culture	56
	6.11.1	Medium and Equipment	56
	6.11.2	Sterilization	56
	6.11.3	Preparation of Inoculum	56
	6.11.4	Inoculation	56
	6.11.5	Operation	57
6.12	Analyt	ical Methods	57
	6.12.1	pH Measurement	57
	6.12.2	Total Cell Count	57
	6.12.3	Analysis of Solvents	57
	6.12.4	Analysis of Sugars	58
6.13	Discus	sion of Methods	59
	6.13.1	Anaerobic Cultivation	59
	6.13.2	Viable Count	59
	6.13.3	Obtaining Spores for Preser-	
		vation	60
	6.13.4	Test on Fermentation	
		Ability	62

CHAPTER	7:	RESU	LTS		63
		7.1	Introd	uction	63
		7.2	Precis	ion of the Viability and	
			Fermen	tation Tests	63
			7.2.1	Introduction	63
			7.2.2	Viable Count	63
			7.2.3	Solvent Production	66
			7.2.4	Sugar Utilization, Butanol	
				Yield and Production Rate	68
		7.3	Mainte	nance of Viability by Different	
			Preser	vation Methods	70
			7.3.1	Introduction	70
			7.3.2	Results and Discussion	70
				7.3.2.1 Clostridium	
				acetobutylicum	
				NCIB 2951	72
				7.3.2.2 Clostridium	
				acetobutylicum	
			NRRL B-594	76	
			7.3.3	Conclusions	79
		7.4	Mainte	nance of Fermentation Ability	
			by Dif	ferent Preservation Methods	81
			7.4.1	Introduction	81
			7.4.2	Results and Discussion	81
				7.4.2.1 Clostridium acetobutyl	icum
				NCIB 2951	81
				7.4.2.2 Clostridium acetobutyl	icum
				NRRL B-594	97
			7.4.3	Conclusions	112
		7.5	Inocul	um Development to Improve	
			Fermen	tation	114
			7.5.1	Introduction	114
			7.5.2	Methods	114

TABLE OF CONTENTS: CONTINUED

CHAPTER 7: CONTINUED

			7.5.2.1	Development of a Standard Procedure for Fermentation Test	114
			7.5.2.2	Effect of the Number of Inoculum Develop- ment Stages on Subsequent Fermentation	118
			7.5.2.3	Effect of Different Heat Shocking Treatments on the Fermentation Capacity of Strain NCIB 2951	122
			7.5.2.4	Effect of Ethanol Treat- ment of the Stock Culture on Fermentation by Strain NCIB 2951	122
			7.5.2.5	Effect of Butanol Treatment of the Stock Culture of Strain NCIB 2951 on Fermentation	126
			7.5.2.6	Effect of Transferring Cultures at the Onset of Gassing	128
		7.5.4	Conclus	ions	130
	7.6	Produc	tion of a	Solvents from Whey	
		Permea	te in Fe	rmenter Culture	132
		7.6.1	Introdu	ction	132
		7.6.2	Results	and Discussion	132
		7.6.3	Conclus	ion	134
CHAPTER 8:	FINA	L DISCU	SSION AN	D CONCLUSIONS	135
APPENDIX :	LYOP	HILIZAT	ION TECH	NIQUE	139
LITERATURE C	ITED				144

х

LIST OF TABLES

Table		Page
6.1	Comparison of viable counts of <i>Cl.</i> acetokutylicum NRRL B-594 using pour and spread plate technique.	60
7.1	Precision of the viable counts with and without heat shocking.	65
7.2	Precision of the fermentation method for solvent production.	67
7.3	Precision of the fermentation method for sugar utilization, butanol yield, and maximum observed butanol production yield.	69
7.4	Effect of heat shocking on the viable count of Clostridium acetokutylicum	71
7.5	Effect of the different inoculum develop- ment procedure on butanol production and yield in 100 ml WPYE by <i>Cl. acetokutylicum</i> NRRL B-594.	117
7.6	Effect of the different inoculum development procedure on butanol production and yield in 100 ml WPYEG by strain NRRL B-594.	117
7.7	Effect of the number of culture stages on production and yield.	121
7.8	Effect of different heat shocking treatments on the fermentation by <i>Cl. acetolutylicum</i> NCIB 2951.	123

LIST OF TABLES CONTINUED

Table		Page
7.9	Effect of ethanol treatment of the stock culture of strain NCIB 2951 on fermentation.	125
7.10	Effect of butanol treatment of the stock culture of strain NCIB 2951 on fermentation.	127
7.11	Effect of transferring cultures at the onset of gassing.	129
7.12	Comparison of 100-ml bench and 1.6-1 fermenter scale fermentations.	1333

×

LIST OF FIGURES

Figure		Page
4.1	Biochemical pathways of glucose fermentation by butyric acid bacteria.	28
4.2	A typical profile of process parameter in the batch ABE fermentation as carried out by Cl. acetokutylicum.	30
4.3	Proposed regulation of growth and metabolism of <i>Cl. acetokutylicum</i> by its metabolites, showing both positive and negative effects.	35
7.1	Maintenance of viability of <i>Cl. acetokutylicu</i> NCIB 2951 by different preservation methods.	m 75
7.2	Maintenance of viability of <i>Cl. acetokutylicu</i> NRRL B-594 by different preservation methods.	m 78
7.3	Fermentation profile of <i>Cl. acetokutylicum</i> NCIB 2951 maintained by freezing at -20° C in distilled water for 3 months.	82
7.4a	Fermentation ability of strain NCIB 2951 kept under refrigeration at 4 ⁰ C in distilled water.	87
7.4b	Fermentation ability of strain NCIB 2951 kept under refrigeration at 4 ^O C in phosphate buffer.	88
7.4c	Fermentation ability of strain NCIB 2951 frozen in distilled water at -20 ⁰ C.	89

.

LIST OF FIGURES CONTINUED

Figure		Page
7.4d	Fermentation ability of strain NCIB 2951 frozen in phosphate buffer at -20 ⁰ C.	90
7.4e	Fermentation ability of strain NCIB 2951 dried in soil.	91
7.4f	Fermentation ability of strain NCIB 2951 stored by lyophilization.	92
7 . 4g	Fermentation ability of strain NCIB 2951 preserved in CMMG.	93
7.4h	Fermentation ability of strain NCIB 2951 maintained by monthly transfer with heat shocking at 70 [°] C, 1.5 min.	94
7 . 4i	Fermentation ability of strain NCIB 2951 maintained by monthly transfer without heat shock.	95
7.5	Photomicrograph of <i>Cl. acetokutylicum</i> NCIB 2951,	96
7.6	Fermentation course of strain NRRL B-594 kept frozen in distilled water at -20 ⁰ C for 12 months.	99

LIST OF FIGURES CONTINUED

FIGURE		Page
7.7a	Fermentation ability of strain NRRL B-594 maintained by refrigeration in distilled water at $4^{\circ}C$	103
7.7b	Fermentation ability of strain NRRL B-594 maintained by refrigeration in phosphate buffer at 4 ⁰ C	104
7 . 7c	Fermentation ability of strain NRRL B-594 maintained by freezing in distilled water at -20 ⁰ C	105
7.7d	Fermentation ability of strain NRRL B-594 maintained by freezing in phosphate buffer at -20 ⁰ C	106
7 . 7e	Fermentation ability of strain NRRL B-594 maintained by drying in soil	107
7.7f	Fermentation ability of strain NRRL B-594 maintained by lyophilization	108
7 . 7g	Fermentation ability of strain NRRL B-594 maintained in CMMG	109
7.7h	Fermentation ability of strain NRRL B-594 maintained by monthly transfer with heat shocking at 80 ⁰ C, 15 min	110
7 . 7i	Fermentation ability of strain NRRL B-594 maintained by monthly transfer without heat shocking	111

е

CHAPTER 1

INTRODUCTION

The great value of microorganisms to biotechnology is closely connected with the vast diversity of chemical transformations catalyzed by these organisms. The number of industries based on the metabolic activities of microbes is expanding year by year as new processes are developed and new microbial strains are isolated and tamed for the service of mankind. Without overstatement it may be said that the most valuable working capital of a microbiological or biotechnological institution is its collection of stock cultures of well defined microbial strains constant in their ability to produce useful compounds in high yields.

Once a superior culture has been developed it is most essential that the culture be preserved for many months or even years, in such a fashion that no physiological changes occur. Further, the culture must be grown in a way that its full biosynthetic powers are put to use. Neither variation nor population selection can be tolerated during culture preservation or during the multiple stages inoculum propagation leading to final employment of in a plant fermenter. Prevention of population changes can be a difficult problem particularly with those cultures which are genetically unstable or are heterogenous in character (Brown, 1963) and, therefore, should be a major concern of biotechnology.

The anaerobe *Clostnidium acetolutylicum* is an industrially important microorganism. It has been used to carry out the traditional fermentation process to produce acetone, butanol and ethanol.

1

The organism can produce these solvents from a variety of low-cost substrates, including pentose sugars derived from biomass residues or from wood acid - and pre-hydrolysate (Langlykke, et al, 1948; Beesch, 1952; Compere and Griffith, 1979; Mes-Hartree and Saddler, 1982; Maddox, 1980; Maddox, 1982; Maddox & Murray, 1983; Petitdemange et al, 1983; Marchal et al, 1984). Interest in the process, as the ABE fermentation, otherwise known has been reinitiated due to the escalating cost of petroleum-based chemical feedstocks. Several studies have been done to investigate the factors controlling the fermentative production of acetone-butanol in order to increase the efficiency of the process for higher solvent yields (Abou-Zeid, et al, 1978; Baghlaf, et al, 1980; George and Chen, 1983; Bu' Lock and Bu' Lock, 1983; Long et al, 1984).

However, studies on the microbiology of the process seem to lag behind the technology aspect of the process. It has been recognized that the history of the inoculum, which involves the manner of culture maintenance and propagation, affects solvent production (Kutzenok & Aschner, 1952; Prescott and Dunn, 1959; Gapes et al, 1983). Procedure should be assessed and devised such that minimal stress is imposed upon the culture during storage or during the propagation of the inoculum from the stored source.

This work, therefore, aims to evaluate various methods of culture maintenance and inoculum development for *Clostridium acetokutylicum* to obtain maximum yields and production rates of butanol.

2