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I 

 

ABSTRACT 

Long Term Evolution-Advanced (LTE-A) system is operated with cellular technology 

based on frequency reuse. Due to the co-channel interference between cells, one cell’s 

performance is decided by not only its own configurations but also other cell’s settings. 

Therefore, joint optimization of antenna parameters in LTE-A cellular networks is the 

key to maximizing coverage and capacity. This can be achieved by setting the antenna 

parameters such as azimuth orientations and tilts to the optimal values. Nevertheless, 

the large number of cell parameters and the interdependencies between these parameters 

make it difficult and time-consuming to optimize a cellular network. In practice, the 

joint setting of the parameters of all cells with irregular layout and coverage areas 

becomes an important and challenging task. 

There are several methods to search for the optimal settings of a cellular network. One 

commonly used search method is Simulated Annealing (SA). SA can produce good 

results in cellular network optimization, but it takes a long time and its performance can 

easily be degraded if the input parameters are misconfigured. Other methods include the 

trial-and-error approach that requires manual selection of parameter values and has no 

guarantee for good results, and the brute-force approach that searches through all 

possible combinations of parameter values and is thus computationally prohibitive. 

Among the various algorithms proposed for this time-consuming optimization task, the 

iterative approach based on the Taguchi method (TM) is a recent development that has 

been shown to be promising. This thesis presents some further improvements to the 

TM-based approach aiming at enhancing optimization performance and reducing 

computational complexity. The proposed improvements include the use of the mixed-

level Nearly-Orthogonal Array (NOA) to cater for the different optimization ranges of 

different types of parameters, an improved mapping function to select testing values that 

are more representative of the optimization range, and a hybrid approach using multiple 

NOAs with decreasing number of experiments to exchange small degradation in 

optimization performance for significant reduction in computational complexity. The 

effectiveness of the proposed improvements is demonstrated by numerical examples. 
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1 Introduction 

Succeeding 3G networks, Long Term Evolution (LTE) has been developed as a new 

mobile communication standard for the next generation. The LTE is often called “4G”, 

and 4G networks have more features and advantages than 3G networks. In 4G networks, 

there are better coverage and faster data rate than 3G networks. LTE is the true 4G 

evolution step and shares the same technology with LTE-Advanced (LTE-A). As a 

further enhancement to LTE, LTE-A is a continuing task within the Third Generation 

Partnership Project (3GPP). 

The target of LTE-A mobile technologies is for use in all computers and mobile Internet 

access devices. Its coverage will be used for customers to have wireless broadband 

access, which does not need any cabling. Users can enjoy a worldwide mobile service 

and a high speed downlink and uplink service under 4G networks [1]. 

The core network of LTE-A is based on Orthogonal Frequency-Division Multiple 

Access (OFDMA) by using Multiple-Input and Multiple-Output (MIMO) and Self- 

Organizing Network (SON) technologies. The MIMO technology increases transmit 

speed in LTE-A networks. The SON technology has many Artificial Intelligence (AI) 

functions including automatic software download, automatic inventory, automatic 

Physical Cell ID (PCI) assignment, mobility optimization, Inter-Cell Interference 

Coordination (ICIC), coverage optimization, and energy saving.  

In LTE-A, optimizing antenna azimuth orientations and tilts can increase cellular 

network Base Station (BS) coverage and capacity to improve User Equipment (UE) 

performance. This can be achieved by setting the antenna parameters such as azimuth 

orientations and tilts to the optimal values. Due to the interdependencies between these 

parameters, finding the optimal configuration is a time-consuming and complex task. 

Among the various algorithms proposed for this task, the joint optimization approach 

based on the Taguchi method (TM) is a recent development that has been shown to be 

promising. In this thesis, we will present an improved TM to find near-optimal values 

for radio network parameters in the LTE-A network. The proposed improvements 

include the use of the mixed-level Nearly-Orthogonal Array (NOA) to cater for the 

different optimization ranges of different types of parameters, an improved mapping 

function to select testing values that are more representative of the optimization range, 
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and a hybrid approach using multiple NOAs with decreasing number of experiments to 

exchange small degradation in optimization performance. The improved TM uses less 

computation to achieve better results than existing TM in the joint optimization search. 

1.1 Scope and Goals of the Thesis 

This thesis is focused on the optimization of antenna parameters to improve the 

downlink performance of LTE-A networks using system level simulation, with reduced 

computational complexity. The research work has three parts as follows: 

a. Comparison of mixed-level NOA employing existing or improved mapping 

function and the identical-level NOA in TM-based optimization 

b. Comparison of  the hybrid approach using multiple mixed-level NOAs 

employing existing mapping function and the identical-level NOA in TM-

based optimization 

c. Comparison of single mixed-level NOA employing improved mapping 

function, the hybrid approach using multiple mixed-level NOAs employing 

improved mapping function with different iteration schemes, and the 

identical-level NOA in TM-based optimization 

 

1.2 Structure of the Thesis 

The thesis starts with LTE-A introduction by describing the LTE-A network 

architecture, high data rates and some technical features in Chapter 2. Chapter 3 covers 

SON in LTE-A network, describing SON in Next Generation Mobile Networks 

(NGMN) and some SON features in the cellular network. Chapter 4 gives an overview 

of various optimization algorithms employed in cellular network optimization. Chapter 

5 details the optimization problem in LTE-A network, the procedure of TM-based joint 

optimization together with the proposed use of mixed-level NOA, improved mapping 

function, and multiple mixed-level NOAs. An analysis on the optimization range 

shrinkage considering the effect of multiple NOAs is also presented in Chapter 5, along 

with details of the LTE-A system model used in testing the TM-based optimization 

algorithm with the proposed improvements. Chapter 6 presents simulation algorithm 

parameters and simulation results. Chapter 7 summarizes the research work and 

provides suggestion on further research.  
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2 Long Term Evolution Advanced (LTE-A) 

In 2002, the International Telecommunication Union (ITU) designated International 

Mobile Telecommunications Advanced (IMT-Advanced) to 4G mobile networks. The 

goal is that the majority of users will be able to connect to a wireless network at any 

point in the world. In 2005, the third Generation Partnership Project (3GPP) started 

work on the LTE standard, the trademarked project name for a step toward the 4G. 

There are two major competing standards in 4G mobile technology. One standard is 

Worldwide interoperability for Microwave Access (WiMAX), and the other is LTE. 

Both WiMAX and LTE are based on OFDMA and MIMO technologies, and they are 

using Internet Protocol (IP) networks with Quality of Service (QoS). 

2.1 Standardization 

Setting a standard for mobile communication normally includes four parts: requirements, 

architecture, detailed specifications, and testing and verification. LTE is a 3GPP 

standard that is based on OFDMA and smart antennas. The 3GPP Release 9 was 

published in December 2009. It includes LTE home NodeB, location services, 

Multimedia Broadcast/Multicast Service (MBMS), and Multi-standard BS. The recent 

release was Release 11 in March 2012. It is named LTE-Advanced and includes carrier 

aggregation, enhanced downlink MIMO, uplink MIMO, enhanced ICIC and relays. The 

LTE main features include low delay and high data rate at the cell edge, spectrum 

flexibility, capacity and peak data rate requirements, and maximum commonality 

between Time Division Duplex (TDD) and Frequency Division Duplex (FDD) solutions.  

The LTE-A is not a new technology. It is an evolution of LTE from further 

developments of the 3GPP network. The features of LTE-A are part of Release 10 of 

3GPP LTE specifications. The IMT-advanced target needs LTE-A to reach wider 

bandwidth through aggregation of multiple carriers, and uses advanced antenna 

techniques in uplink and downlink. Table 2-1 shows the LTE-A evolution from the 3G 

services [2]. 

 

 



- 4 - 

 

Table 2-1: LTE-Advanced evolution 

 WCDMA 

(UMTS) 

HSPA 

HSDPA/HSUPA 

HSPA+ LTE LTE 

Advanced 

(IMT 

Advanced) 

Max downlink 

speed bps 

384k 14M 28M 100M 1G 

Max uplink 

speed bps 

128k 5.7M 11M 50M 500M 

Latency round 

trip time 

approx. 

150ms 100ms 50ms 

(max) 

~10ms Less than 5ms 

3GPP release Rel. 99/4 Rel.5/6 Rel.7 Rel.8 Rel.10 

Approx. years 

of initial roll 

out 

2003/4 2005/6 HSDPA 

2007/8  HSUPA 

2008/9 2009/10 2010 

Access 

methodology 

CDMA CDMA CDMA OFDMA/SC-

FDMA 

OFDMA/SC-

FDMA 

 

The early release of LTE already supported for deployment in spectrum allocations 

having different characteristics. In Release 10, the Carrier Aggregation (CA) can further 

extend transmission bandwidth. There are up to five component carriers that can be 

jointly used for transmission in different bandwidth, and can be aggregated allowing for 

transmission bandwidths up to 100MHz. The extended multi-antenna in Release 10 is 

expanded to support up to eight transmission layers in downlink spatial multiplexing. 

This enables downlink data rates up to 3 Gbits/s or 30 bit/s/Hz. The uplink spatial 

multiplexing is extended up to four layers and this technology can be used for uplink 

transmit-side beam-forming. The uplink carrier aggregation allows uplink data rates up 
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to 1.5 Gbit/s or 15 bit/s/Hz. The relay is the LTE-based wireless backhaul; it is 

providing an easy way to improve coverage. The relay node is a low power base station 

like an ordinary cell.  

The User Equipment (UE) category has many different parameters in different LTE 

release [3, Page 106]. Table 2-2 shows clearly details of different release category 

parameters. 

Table 2-2: Releases of LTE 

 Category 

Release 8/9/10 Release 10 only 

1 2 3 4 5 6 7 8 

Downlink peak 

rate (Mbit/s) 

10 50 100 150 300 300 300 3000 

Uplink peak rate 

(Mbit/s) 

5 25 50 50 75 50 150 1500 

Maximum 

downlink 

modulation 

64QAM 

Maximum uplink 

modulation 

16QAM 64QA

M 

16QAM 64QA

M 

 

Maximum 

number of layers 

for downlink 

spatial 

multiplexing 

1 2 4 Signaled separately 
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2.2 Network Architecture 

The LTE BS is different from UMTS BS. The LTE BS is called Enhanced NodeB 

(eNodeB). There is no central controlling element in the radio network: the eNodeB 

manages air interface traffic and QoS. The eNodeB can also communicate with each 

other the handovers for active mobiles via X2 interface [4, Page 47]. The interface that 

connects the eNodeB to the core network and the radio network is the S1 interface. The 

S1 interface is based on the IP protocol and transport technology. In contrast, the UMTS 

interface between the NodeB, the Radio Network Controller (RNC) and the Serving 

General Packet Radio Services (GPRS) Support Node (SGSN) are based on the 

Asynchronous Transfer Mode (ATM) protocol. The ATM only provides 2 Mbit/s 

connections. LTE BSs are equipped with 1 Gbit/s Ethernet fibre ports. 

As can be seen in Figure 2-1, there are two logical entities, the Serving Gateway 

(Serving-GW) and Mobility Management Entity (MME), splitting the radio access 

network from the core network. The MME is the ‘control plane’. Its functions include 

authentication, handover support for each eNodeB to different radio networks, 

establishment of radio bearers between subscriber mobility and session management 

signalling. The MME also can trace mobile devices in idle mode and selection of a 

gateway to Internet from the network. The Serving Gateway is focused on the customer 

part. It is utilized for forwarding IP packets between the Internet and mobile devices. 

The S1 interface connects user data to the Serving- GW and signalling data to the MME. 

Thus, the S1 interface is split into two protocols: the S1-C (Control) interface and the 

S1-U (User) interface. The S1-C is used to control messages between the MME and a 

mobile device, and the messages use non-IP channels over the air interface. The S1-U is 

like IP packets over the air interface to the Serving-GW. Between the MME and the 

Serving GW, the S11 interface is used to connect them [4, Page 47]. 
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Figure 2-1: LTE network architecture 

In LTE, the router can be likened to the Packet Data Network Gateway (PDN-GW) in 

the network. The number of users decides the number of PDN-GWs and the capabilities 

of the hardware. As Figure 2-1 shows, the S5 interface connects between the PDN-GW 

and the MME/Serving-GW in LTE. The S5 is managed by different Serving-GW for the 

establishment of a user data tunnel and subsequent tunnel modifications when the user 

moves from one cell to other cells. The Home Subscriber Server (HSS) and Service 

Control Point (SCP) connect with MME via the S6 interface. The HSS is the database 

that stores subscription information for UMTS, GPRS, GSM, LTE and IP Multimedia 

Subsystem (IMS).  

The big difference of LTE from UMTS and GSM is that LTE always uses an IP address 

in the network. As Figure 2-2 shows, when a user moves from the LTE coverage area to 

a UMTS network, the mobile device reports to the eNodeB that a UMTS (or GSM) cell 

has been found. The hand over procedure starts from the MME that receives the report 

and communicates with LTE eNodeB. The S3 interface is based on IP protocol used for 
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SGSN relocation procedures. There is no need to change the interface to 3G SGSN to 

communication between LTE and 3G network. When 3G network is ready for the 

handover, the MME sends a handover signal to eNodeB to execute handover. After the 

handover, the MME is released, and the subscriber management and 3G SGSN takes 

over this work. The user data is delivered via the S4 interface from Serving-GW to 3G 

SGSN [4, Page 50].  

 

Figure 2-2: LTE and 3G network architecture 

2.3 Multiple Antennas 

2.3.1 Benefits of Multi-Antenna 

Multi-antenna techniques improve system performance, system capacity, coverage of 

cell and service provisioning. The distance between the different antenna elements is an 

important characteristic of multi-antenna. Multiple antennas need a large inter-antenna 

distance or different antenna polarizations to work against fading over the radio channel. 

Beam-forming can be used in multiple antennas at the transmitter or receiver to against 

high or low fading correlation between the antennas. Multiple parallel communication 

channels can be created by the simultaneous use of multiple antennas at the transmitter 
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over the radio interface. It enables high data rates within a narrow bandwidth. It is 

known as MIMO when multiple antennas are employed at both the transmitter and the 

receiver. 

2.3.2 Multiple Receive Antennas 

Multiple receive antennas are often used for receive diversity to combat radio channel 

fading. Maximum Ratio Combination (MRC) is an antenna combining goal when the 

received signal is impaired by noise. The MRC principles are to phase rotate the signals 

received at the multiple antennas to ensure that the signals are phase aligned by 

compensating for the corresponding channel phases; and to apply higher weights in 

proportion to their corresponding channel gains. 

In many cases of mobile communication the interference from other transmitters within 

the system is stronger than noise. When some numbers of interfering signals have equal 

strength from the base station, the interferer is suppressed after the MRC. An interfering 

terminal may be in the same cell as the target terminal or in a neighbouring cell. A 

better way to select the antenna weight is referred to as Interference Rejection 

Combination (IRC) [3, Page 62]. 

2.3.3 Multiple Transmit Antennas 

Multiple antennas can provide diversity and beam-forming at the transmitter side. At the 

terminal, there is no need for additional receive antennas and corresponding receiver 

chains. In a radio link with multi-path propagation, the transmitted signal is sent to the 

receiver through multiple, independently fading paths with many different delays. The 

transmission scheme has tools to counteract signal corruption, because of the radio-

channel frequency selectivity. Multiple transmit antennas can create artificial time 

dispersion or artificial frequency selectivity for some channels that are not time 

dispersive. The delay diversity needs to ensure suitable frequency selectivity over the 

bandwidth of the signal. Cyclic Delay Diversity (CDD) is like the normal delay 

diversity, but the CDD operates block wise and applies cyclic shifts that like a linear 

delay [3, Page 67]. Space Time Transmit Diversity (STTD) is a scheme of Space Time 

Block Coding (STBC) using two antennas. It is also a part of the 3G WCDMA standard 

in the first release. Figure 2-3 shows STTD runs on a couple of modulation symbols. 



- 10 - 

 

The first antenna transmits the modulation symbols. The second antenna transmits 

reversed modulation symbols. So the STTD transmission can be expressed as: 

. The output symbol rate of the two antenna 

space time coding of Figure 2-3 is the same as the input symbol rate [3, Page 67].   

 

Figure 2-3: Space-Time Transmit Diversity (STTD) 

In LTE, multi-antenna transmission is a mapping from the output of the data modulation 

to different antennas ports. Each of the Transmission Time Interval (TTI) in every 

transport block is used to benefit more from the effect of interleaving and to increase the 

efficiency of error-correction. Different transmission modes have different multi-

antenna transmission schemes. Table 2-3 summarizes the currently defined transmission 

modes and their transmission schemes. 

Table 2-3: Transmission modes and schemes 

Transmission mode 1: Single-antenna transmission. 

Transmission mode 2: Transmit diversity. 

Transmission mode 3: 

Open-loop codebook-based pre-coding in the case of 

more than one layer, transmit diversity in the case of 

rank-one transmission. 
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Transmission mode 4: Closed-loop codebook-based pre-coding. 

Transmission mode 5: Multi-user-MIMO version of transmission mode 4. 

Transmission mode 6: 
Special case of closed-loop codebook-based pre-

coding limited to single layer transmission. 

Transmission mode 7: 
Release-8 non-codebook-based pre-coding supporting 

only single layer transmission. 

Transmission mode 8: 
Release-9 non-codebook-based pre-coding supporting 

up to two layers. 

Transmission mode 9: 
Release-10 non-codebook-based pre-coding 

supporting up to eight layers. 

 

2.3.4 Spatial Multiplexing 

For higher data rates and more efficient utilization of spectrum, multiple antennas can 

be employed at both the transmitter and the receiver for spatial multiplexing. For 

Additive White Gaussian Noise (AWGN) channel, the channel capacity is 

 or , where C is the channel capacity, BW is the 

bandwidth available for the communication, S is the received signal power, and N is the 

power of the white noise impairing the received signal. With spatial multiplexing, the 

channel capacity is 

, where  is the number of transmit antennas and  is the number of receive 

antennas, and  = [3, Page 73]. Figure 2-4 shows a 2X2 configuration 

with two transmit antennas and two receiver antennas. Assuming that there is no radio 

channel time dispersion, the received signals can be expressed as: 

 [3, Page 67]. 
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Figure 2-4: 2X2 antenna configuration 

On the receive side, the nonlinear approach of Successive Interference Cancellation 

(SIC) is used in the demodulation of spatially multiplexed signals.. In SIC, the first 

spatially multiplexed signal is demodulated and decoded in the receiver. If the decoded 

data is correct, the second signal is then demodulated and decoded, and the process 

continues until all spatially multiplexed signals have been demodulated and decoded.  

Spatial multiplexing is multiple parallel transmissions using the same time-frequency 

resource to the same terminal. It is also known as MIMO transmission. The Multi-User 

MIMO (MU-MIMO) communicates to different terminals in the same time-frequency 

resource, and it relies on multiple antennas at transmitter side. In MU-MIMO 

transmission, all terminals would need to have exactly the same resource assignment, 

and also the full set of receive antennas. There are two types of MU-MIMO in 3GPP 

network, one is part of transmission modes 8 and 9 based on non-codebook-based pre-

coding, and the transmission modes 3, 4, 5 and 6 are based on codebook-based pre-

coding.  

2.4 Radio Frequency 

2.4.1 Radio Frequency Characteristics 

Radio waves are a type of electromagnetic radiation. The International 

Telecommunication Union (ITU) defines that the range of radio frequency spectrum is 

from 3 kHz to 3000 GHz. The Radio frequency spectrum is a limited natural resource. 

People need to utilize the resource more efficiently and safely. In the world, different 
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countries use different allocations of radio frequencies. Most countries have radio 

spectrum management group managing the radio spectrum policy, planning, license 

registration, interference and compliance. ITU divides the world into three regions, with 

each region having its own frequency allocations. The first region is Europe and Africa, 

the second is America, and the third region is Asia and Australasia. Table 2-4 shows the 

radio bands defined by ITU [5]. 

Table 2-4: ITU radio bands 

Radio frequencies 

Abbreviation Band Range 

VLF Very Low Frequency 3 - 30 kHz 

LF Low Frequency 30 – 300 kHz 

MF Medium Frequency 300 kHz- 3 MHz 

HF High Frequency 3 – 30 MHz 

VHF Very High Frequency 30 – 300 MHz 

UHF Ultra High Frequency 300 MHz – 3 GHz 

SHF Super High Frequency 3 – 30 GHz 

EHF Extremely High Frequency 30 GHz – 300 GHz 

THF Tremendously high frequency 300- 3000 GHz 

 

2.4.2 Radio Frequency for LTE 

The RF BS transmits and receives RF signals on one or more antenna connectors in a 

physical node. The radio system requirement defined is fundamental for LTE. Due to 

LTE requires the multiple channel bandwidths and flexible bandwidth arrangement, the 

frequency bands of LTE include both paired and unpaired spectra. That means both 

FDD and TDD can be supported by LTE.  

New bands are added continuously for every new release independent. IMT-2000 and 

IMT-Advanced chooses additional frequency bands for LTE. The following table lists 

the new frequency bands for LTE [6]. 
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Table 2-5: IMT spectrum allocation 

Frequency Bands Regions 

450-470 MHz 20 MHz wide for mobile service globally. 

698-862 MHz In Region 2 and nine countries of Region 3.  

790-862 MHz In Regions 1 and 3. 

2300-2400 MHz IMT identified for all three regions in the worldwide. 

3400-3600 MHz For some mobile service in Europe, Asia and some countries in 

the Americas. 
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3 Self-Organizing Network (SON) in LTE/LTE-A 

The mobile wireless network is growing fast. If many network elements and associated 

parameters are manually configured, it will take a lot of time and increase operational 

costs. Even the manual process is potentially error-prone. SON helps improve network 

performance for higher user Quality of Experience (QoE), reduce operation error and 

operational expenses. Self-optimizing and self-organizing capabilities for LTE provide 

network intelligence, automation, optimization of wireless networks and network 

management features. Release 10 SON is proved that the SON has more benefits on 

network management than manual process. SON functions can be classified into two 

categories. The first category is for processes where automation can save time, reduce 

effort, and reduce deployment delay as compared to manual operation. The second is for 

processes that are too fast and too complex for manual intervention. SON will provide 

high quality and performance in LTE/LTE-A.  

3.1 SON in Next Generation Mobile Network (NGMN) 

SON concept has been included ever since the first release of LTE technology. It is a 

key component of the LTE network. The standardized SON features include: automatic 

inventory, automatic software download, automatic Physical Cell ID (PCI) assignment, 

mobility optimization, Inter-Cell Interference Coordination (ICIC), coverage and 

capacity optimization, energy savings, and more. The Next Generation Mobile 

Networks (NGMN) Alliance identifies the key use cases that are most important for 

carriers’ day to day operations, providing guidance to the new technical standards being 

developed for LTE. Table 3-1 lists the top 10 use cases indicated by NGMN for LTE 

standards [7, Page 9]. 

Table 3-1: Top 10 NGMN use cases 

1 Plug and Play Installation 

2 Automatic Neighbor Relation configuration 

3 OSS Integration 
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4 Handover Optimization 

5 Minimization of Drive Tests 

6 Cell Outage Compensation 

7 Load Balancing 

8 Energy Savings 

9 Interaction macro/home BTS 

10 QoS Optimization 

 

The Operations Support System (OSS) is also an element of SON in NGMN, which 

includes support for open Operations Administration and Maintenance (OAM) 

interfaces and operator databases and tools. OSS in the SON should be able to indicate 

the configuration for BSs, and support neighbour cell detection and Auto Neighbour 

Relation (ANR) optimization.   

3.2 Base Station (BS) Self-Configuration 

New network technology provides more services, but its deployment is a major 

investment for the service provider. Costs on network planning, commissioning and 

integration are often higher than the infrastructure equipment itself. Traditionally, the 

installation of a new BS involves a lot of on-site configuration tasks and requires more 

than one expert engineer. The purpose of self-configuration SON is to reduce human 

intervention in the installation process by providing “plug and play” functionality in the 

BS.  

Self-configuration involves many specific SON features including self-test, automatic 

software management, and automatic neighbour relation configuration. The self-

configuration of BSs will result in a faster network deployment, reduced cost for the 

operator, and fewer errors. Figure 3-1 shows the different entities that are involved in 

the BS self-configuration in LTE [7, Page 14]. 
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Figure 3-1: Self-configuration of eNB in LTE 

A new eNodeB in a network should have access to the configuration server for a set of 

pre-configured RF parameters, including antenna configuration (type, height and 

azimuth), location, transmit power, initial neighbour configuration, cell identities and 

maximum configured capacity, as well as pre-planned transport parameters including 

Virtual Local Area Network (VLAN) partition, bandwidth and IP addresses. Also, the 

OSS should provide software update packages. 

When a new eNB first boots, the self-configuration will begin with a self-test, followed 

by a set of self-detection functions. Then the eNB will connect to the DHCP/DNS 

servers requesting an IP address for itself and retrieving information about relevant 

servers such as the configuration server, SGW, and MME. This allows the eNB to 

acquire configuration parameters and update its eNB software. The self-optimization 

functions for finer parameter optimization are performed after the eNB is in operation 

state. In LTE standards, the self-configuration of eNB covers self-test, automatic 

software management, automatic inventory management, and automatic neighbour 

relation.  
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3.3 Inter-Cell Interference Coordination (ICIC) 

Inter-Cell Interference Coordination (ICIC) is to be coordinated on the basis of the 

Physical Resource Blocks (PRBs) as LTE system is based on OFDMA and SC-FDMA. 

ICIC includes the following: users can be scheduled in units of a PRB which is 180 

KHZ; neighbouring cells can coordinate which portions of the bandwidth are used in 

each cell and the transmission powers across various frequency resource blocks; and 

inter-cell interference can be reduced or avoided in uplink and downlink in the related 

cells by a coordinated usage of the available PRBs. ICIC leads to improved SINR, 

especially for cell edge UEs to achieve better edge rates and cell throughputs, and 

improved hand-off performance for cell edge UEs.  

The goal of SON based ICIC is to eliminate interference and optimize the network 

automatically, with minimum human intervention in network management and 

optimization tasks. A SON ICIC includes the core ICIC algorithms, frequency planning 

and inter-eNB communications. The core ICIC algorithms determine how to manage 

the time, frequency and power resources to realize interference coordination between 

the cells. The performance of ICIC depends upon cell size, user mobility, cell load, 

traffic model, propagation channel, traffic type, etc.  

3.4 Coverage and Capacity Optimization 

Coverage and Capacity Optimization (CCO) is a typical task in wireless networks. It is 

achieved by adjusting the RF parameters of deployed cells. CCO is considered a key 

function of the self-optimization for SON. Self-optimizing coverage and capacity aims 

to provide optimal coverage and reduce manual operational tasks, resulting in 

Operational Expenditure (OPEX) reduction and user QoE improvement. 

The self-optimizing CCO function is a continuous process that gathers measurements 

and takes corrective actions whenever necessary. CCO corrective actions include 

changes to antenna tilt and UL power control parameters. 3GPP specifications require 

that CCO should be performed with minimal human intervention; operator can control 

the objectives and targets for the CCO functions; operator can configure CCO in 

different areas of the network; and the collection of data used for CCO should be 

automated to the maximum extent possible with minimum dedicated resources.  
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4 Overview of Different Network Optimization Algorithms 
4.1 Trial and Error 

Trial-and-error is a heuristic method. It has other names such as “generate and test” and 

“guess and check”. Trial-and-error is a manual method in a network planning 

environment.  In a small or simple network planning environment, the network 

performance can be improved quickly using this method. There is no rule in this method, 

but this does not mean that the approach is easy and suitable for all networks. Engineers 

using this method to optimize networks should have some knowledge in the area, and 

the approach is not suitable for large or complicated networks [8]. 

4.2 Brute-force Search 

Brute-force search is an exhaustive search. It can find an optimal solution by searching 

through all candidate solutions, but the problem of brute-force search is that the number 

of candidate solutions is typically prohibitively large. For instance, if we test seven 

different antennas with 10 different values of azimuth orientation, the total number of 

candidate solutions to search is 107. If we increase the azimuth orientation range from 

10 different values to 100, the size of the candidate solutions will be an unwelcome 

number. Brute-force search is only possible for problems with limited size. It can also 

be used as “baseline” method for benchmarking algorithms [9]. 

4.3 Tabu Search 

Tabu search is a local search method for solving joint optimization problems. Tabu 

search uses intensification and diversification strategies in solving optimization 

problems. The intensification strategies use short-term memory function to search for a 

better solution based on the existing good solutions. It is focused on finding a best 

solution within a restricted region. The diversification strategies utilize long-term 

memory function to search a large region. Only the long-term is good for aggressively 

searching to get the best solution, but the disadvantage of diversification strategies is 

that if a search space includes large elements, it can fall into a small area of the search 

space. It is easy to miss the optimal value in a search space [10]. 
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4.4 Genetic Algorithm 

Genetic Algorithm (GA) was introduced by John Holland in the 1970s at University of 

Michigan. GA is a heuristic algorithm that mimics the natural selection process. It has 

been successfully applied to a wide variety of optimization problems in many fields. 

There are three major advantages with GA. Firstly, the GA works regardless the specific 

inner workings of the problem; secondly, GA is effective in a global search; thirdly, GA 

can incorporate problem-specific heuristics for efficient implementation. The 

disadvantages of GA are that there is no guarantee for finding the global optimal 

solution and the quality of the solution is highly dependent on the heuristic selection of 

initial values [11]. 

4.5 Simulated Annealing 

Simulated Annealing (SA) is another heuristic local search algorithm. This method is 

proposed by Scott Kirkpatrick, C. Daniel Gelatt and Mario P. Vecchi in 1983 and by 

Vlado Cerny in 1985. SA can work in a large search space and could be more efficient 

than exhaustive enumeration [12]. As a heuristic algorithm, SA has the same 

disadvantages as GA [13]. 

4.6 Taguchi Method 

Taguchi Method (TM) is designed for reducing the variation in a process through design 

of experiments. It was developed by Dr. Genichi Taguchi to produce high quality 

product at low cost to the manufacturer. The Taguchi’s rule for manufacturing process 

has three stages. They are system design, parameter design and tolerance design [14].  

The system design is a stage at the conceptual level. It is about process objective, or 

more specifically, a target value for the process performance. After the system design is 

completed, the design of experiments needs to create Orthogonal Arrays (OA) for the 

parameter design [15]. OA is an array that has a fixed finite set of integer members. 

Each member in OA appears the same number of times in every row and columns. OA 

generalize the idea of mutually orthogonal latin squares in a tabular form [16]. The last 

stage is Tolerance design.  It is to control variation and reducing experiments in the 

critical few dimensions. Taguchi method is disputable in some of its statistical aspects, 

but this method is being successfully used in many areas, such as hardware design [17], 
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power electronics [18-20], microwave circuits [21] and optimization of communication 

and information networks [13].  
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5 Optimization Procedure Based on Taguchi’s Method Using 

Multiple Mixed-Level NOAs 
5.1 Introduction 

Orthogonal Frequency-Division Multiple Access (OFDMA) provides high data rate 

services in Long Term Evolution/ Long Term Evolution Advanced (LTE/LTE-A) 

systems. Moreover, LTE-A system is operated with a frequency reuse factor of one. 

Thus optimizing cell coverage and capacity has become a very important task in LTE-A. 

In particular, radio network parameters such as antenna tilt and antenna azimuth 

orientation have strong impact on the network performance. Adjusting antenna tilts and 

antenna azimuth orientations affects the coverage and capacity drastically. Furthermore, 

due to the interactions among these parameters, tuning each of the parameters 

independently may not provide near-optimal solutions. An efficient way to increase 

network capacity and coverage is to optimize the radio network parameters jointly. 

While the trial-and-error approach can be effective for small and simple networks in the 

hands of well-experienced engineers, this approach quickly becomes impossible as the 

network grows in both size and complexity. In modern cellular radio networks, due to 

the full frequency reuse as well as the large number of cells, it is difficult and time-

consuming to optimize a cellular network to maximize a predefined performance metric. 

The joint optimization for the parameters of real cellular networks with irregular layouts 

and coverage areas has become a very complex task in practice. 

To simplify the optimization task, typically each of the parameters is only allowed to 

take values from a finite set within a certain range, which is also a good reflection of the 

practice. Nevertheless, even with this simplification, the number of possible 

combinations is still prohibitively large for a brute-force search for the best solution. 

Therefore heuristic local search methods such as SA, GA, and Tabu search have been 

used. The major problem of these local search methods is that there is no guarantee for 

finding the global optimal solution and their performance is highly dependent on the 

heuristic selection of the initial values [10-13]. As a major improvement to the brute-

force global search, recently an iterative optimization procedure using the Taguchi 

method has been proposed [13]. The advantage of TM is that it uses the OA to select a 

reduced set of representative parameters from the full search space to test, thus reducing 

the computational complexity greatly. The OA has a profound background in statistics 
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[22]. It provides an efficient and a systematic way to find the optimal result with only a 

few experimental runs in the full search space. In the TM-based optimization, the OA 

columns stand for different configuration parameters and the OA rows stand for 

different experiments that consider the interactions among these configuration 

parameters. 

In practice, engineers always want to reduce the cost of optimization computation. A 

Nearly-Orthogonal Array (NOA) has been proposed to replace OA in order to further 

reduce the number of experiments [23]. NOA allows joint optimization of the 

configuration parameters as it offers more flexibility in the number of parameters and 

experiments, and it is easier to construct as compared to OA [23]. This thesis develops 

further the existing NOA method proposed with the following improvements. Firstly, it 

is proposed to use the mixed-level NOA instead of the identical-level NOA [24]. The 

mixed-level NOA enables the use of different number of levels for different 

configuration parameters that have different optimization ranges, thus providing a better 

coverage of the full search space. Secondly, an improved mapping function is 

introduced to achieve an even distribution of levels across the optimization range. 

Finally, a hybrid approach employing multiple mixed-level NOAs with descending 

number of levels is adopted in the iterative optimization procedure to significantly 

reduce the total number of experiments while still achieving similar optimization 

performance to that of a single identical-level NOA. 

5.2 Cellular Network Optimization Problem in LTE-A 

An LTE-A network consists of a number of cells operating in the same frequency 

spectrum with each cell providing coverage to a different area. Considering the antenna 

tilt  and azimuth orientation  of each cell c (=1, …, C) as the configuration 

parameters to be optimized, the total number of configuration parameters is 2C. Let the 

variable xt where t = 1, …, 2C) be the configuration parameters and let γc be any 

performance metric for cell c. Due to frequency reuse of one, a change to a 

configuration parameter of cell c affects not only the performance metric γc, but also the 

performance metrics of all other cells. Hence, the optimization problem is formulated to 

maximize the network optimization function y(γ1, …, γC) as a joint function of the 

performance metrics of all cells by finding the optimal values of the configuration 

parameters [13]: 
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{    (5-1) 

To evaluate the cell edge user performance in cell c, a common criterion is the five 

percentile (5%-tile) of the Cumulative Distribution Function (CDF) of the User 

Equipment (UE) throughput denoted as γc,5% [25]. Following [13], letting γc = γc,5% puts 

emphasis on optimizing cell coverage.  

Normally, there are two averaging methods that have been used as optimization 

functions. The first is Arithmetic Mean (AM). The disadvantage of AM is that AM may 

alleviates the impact of a small γc,5% in a cell network and aggravates the impact of a 

large γc,5%. So, the AM algorithm would probably converge to a solution that increases 

the mean of γc,5%, which does not necessarily increase γc,5% in every cell c. The 

Harmonic Mean (HM) averaging methods always aggravates the impact of small γc,5% 

and lessens the impact of large γc,5% [13].  Obviously, HM is better than the AM in 

providing equitable user experience throughout the network. The optimization function 

as the HM of the cell performance metrics is given by [13] 

              (5-2) 

5.3 Procedure of Taguchi’s Method by Using Multiple Mixed-Level NOAs 

The iterative optimization procedure based on TM is introduced in [23]. In this section, 

the optimization procedure presented in [23] is modified to adopt multiple mixed-level 

NOAs instead of a single identical-level NOA, along with an improved mapping 

function rather than the existing mapping function.  

The first step of the optimization procedure is to construct a set of mixed-level NOAs. 

As it will become clear at the end of Section 5.3.6, the parameter optimization range, 

number of parameter levels, reduction factor and termination criterion decide the 

number of iterations in the optimization. The number of experiments in an iteration is 

determined by the NOA employed, and it generally increases with the number of levels. 

The proposed hybrid approach is employing several mixed-level NOAs through the 

whole optimization procedure. Because the reduction factor decreases the parameter 

range as the number of iterations increases, the number of levels can be reduced to cut 

the number of experiments. In the hybrid approach, the first mixed-level NOA has the 
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largest number of experiments, and each succeeding mixed-level NOA has smaller 

number of levels and hence less experiments. The iteration scheme is to split the total 

number of iterations among several mixed-level NOAs. If the first mixed-level NOA 

takes more iterations, it will generally lead to a better optimization result. If the last 

mixed-level NOA takes more iterations, the procedure will require a smaller total 

number of experiments. At the beginning of each iteration, a mapping function is 

employed to select testing values for each parameter according to the number of levels 

available in the NOA. Taguchi’s method is then applied to obtain performance figures 

of all the combinations as defined by the mixed-level NOA. The performance figures 

are then processed and checked against the termination criterion. If the termination 

criterion is met, the optimization ends. If not, the optimization range is reduced based 

on the current results obtained and the optimization moves onto the next iteration. The 

process continues until the termination criterion is satisfied.  The flowchart of the 

improved iterative optimization procedure is shown in Figure 5-1, with each major step 

detailed in the following. 
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Figure 5-1:  Flowchart of the improved TM-based iterative optimization procedure 

using multiple mixed-level NOAs 

 

5.3.1 Construct the Proper Mixed-Level NOAs 

OA is an array containing a reduced set of N parameter combinations to be tested from 

the full search space [22]. Each parameter has a set of levels. A set of levels is mapped 

to a set of values of each parameter. Every combination i (= 1, …, N) determines an 

experiment that has a measured response yi. OA has been used in industries for 
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productivity and quality improvement experiments. However, its use in cellular network 

optimization is only a recent development. As more experiments mean more cost and 

time, it is desirable to reduce the number of experiments as much as possible. However, 

the minimum number of experiments determined by OA is bounded by the number of 

parameters and the number of levels [22]. When the number of parameters is large, the 

number of experiments required by OA may become computationally impossible. A 

good solution is to use NOA instead of OA. NOA is easier to be constructed for any 

number of parameters and any number of experiments, and it allows mixed-level 

parameters, that is, different parameters may have different number of levels [24].  

The existing method employs identical-level NOA, which only allow the same number 

of levels for any configuration parameters being optimized. Table 5-1 shows an 

example of the identical-level NOA (6, 4, 3), which has N = 6 combinations, 4 

parameters with each parameter having 3 different levels.     

Table 5-1: Illustrative identical-level NOA (6, 4, 3) with the measured responses 

and their corresponding SN ratios 

Experiment x1 x2 x3 x4 Measured 
Response 

SN 
Ratio 

1 1 1 1 3 y1 SN1 
2 1 2 3 2 y2 SN2 
3 2 3 2 1 y3 SN3 
4 2 1 2 3 y4 SN4 
5 3 2 3 2 y5 SN5 
6 3 3 1 1 y6 SN6 

 

In this thesis, we consider the optimization of two types of configuration parameters: 

antenna tilt and azimuth orientation. Thus, the total number of configuration parameters 

for a network of C cells is 2C. The azimuth orientation parameters typically have a large 

dynamic range. Hence a sufficiently large number of levels are necessary to enable 

representative testing of the full range with good resolution. In contrast, the antenna tilt 

parameters have a small range and need only a small number of levels for sufficient 

resolution. The advantage of tailoring the number of levels according to the parameter 

range is that, by removing unnecessary levels, the number of experiments can be 

reduced without affecting the optimization performance. To allow different number of 

levels for different types of configuration parameters in the joint optimization, mixed-
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level NOA [24] can be used. This is in contrast to the identical-level NOA employed in 

[23], where different types of configuration parameters must have the same number of 

levels. Table 5-2 shows an example of the mixed-level NOA (6, 3^2, 2^2) having N = 6 

combinations and 4 configuration parameters. The notation 3^2 means that the first 2 

parameters have s = 3 levels, while 2^2 means that the rest 2 parameters have s = 2 

levels. Each level represents a different value within the range of the parameter, as 

determined by the mapping function. In the optimization, the mixed-level NOA 

approach achieves better optimization results than the identical-level NOA. More details 

are presented in Chapter 6 on simulation results. An effective algorithm for constructing 

mixed-level NOA is described in [24]. 

Table 5-2: Illustrative mixed-level NOA (6, 3^2, 2^2) with the measured responses 

and their corresponding SN ratios 

Experiment x1 x2 x3 x4 Measured 
Response 

SN 
Ratio 

1 1 1 1 1 y1 SN1 
2 1 2 1 2 y2 SN2 
3 2 3 2 1 y3 SN3 
4 2 1 2 2 y4 SN4 
5 3 2 1 1 y5 SN5 
6 3 3 1 2 y6 SN6 

 

5.3.2 Determine the Iteration Scheme 

To implement the proposed hybrid approach employing several mixed-level NOAs for 

further reduction in computational complexity, an iteration scheme is needed to 

determine how these NOAs are used through the whole optimization procedure. For 

example, assuming that there are 10 iterations in the whole optimization procedure, in 

the first 3 iterations the mixed-level NOA (32, 8^2, 6^2) is used; in the subsequent 4 

iterations NOA (24, 6^2, 4^2) is employed, reducing the number of levels from 8 and 6 

to 6 and 4, respectively; and in the last 3 iterations NOA (16, 4^2, 2^2) is used with 

further reduction in the number of levels. Thus, the total number of experiments in 10 

iterations with the proposed hybrid approach is 32 3+24 4+16 3=240. The iteration 

scheme in this example can be denoted as 3-4-3. If the mixed-level NOA (32, 8^2, 6^2) 

is used throughout all of the optimization iterations, it will take 32 10=320 experiments. 
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Hence, in this example the hybrid approach achieves a 25% reduction in computational 

complexity as compared to the single-NOA approach.  

5.3.3 Map Each Level to A Parameter Value 

In the first iteration m = 1, the centre value of the optimization range for parameter xt is 

defined as 

                                                 (5-3) 

where mint and maxt are the minimum and maximum feasible values for parameter xt, 

respectively. The s is number of levels for dynamic range. The level values are 

distributed around Vt
(m) by subtracting or adding the Level Difference (LD) [26] 

proportionally according to the mapping functions defined below. In the first iteration 

the LD for parameter xt is given as 

                                                (5-4) 

In iteration m, the parameter value for level l is calculated from the mapping function 

ft
(m)(l). When s is an odd number, the mapping function is defined as [23] 

          (5-5) 

However, when s is an even number, the mapping function is defined as follows 

               (5-6) 

The mapping functions defined in (5-5) and (5-6) distinguish between odd and even 

number of levels, with the aim to distribute parameter levels evenly over the 

optimization range. This is an improvement to the existing mapping function in [23], 

where (5-5) was used in existing method for any values of s. As an example, if the 

antenna azimuth orientation optimization range is from -15o to 15o, and the number of 

levels is s=5, then in the first iteration m=1, the centre value is , and 

the level difference is . Using the existing mapping function (5-5), 
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we have , , , , and . 

From Figure 5-2, we can see that the levels are evenly distributed over the optimization 

range. 

 

Figure 5-2: Example for odd s 

In contrast, for the mapping of s = 4 levels for the antenna tilt parameter with an 

optimization range from 0o to 10o in the first iteration, the existing mapping function 

defined in (5-5) gives the following mapping: level 1= 3, level 2= 5, level 3= 7 and level 

4= 9. Obviously, the level values are not evenly distributed over the entire range. 

However, the result of mapping function (5-6) is: level 1= 2, level 2= 4, level 3= 6 and 

level 4= 8, which distributes the levels evenly across the parameter range. Figure 5-3 

shows the two different results from these two mapping functions, respectively. 

Therefore, regardless the number of levels, the improved mapping function always 

selects representative values from the optimization range with uniform spacing, and 

thus is expected to achieve better optimization results. This is verified by simulation 

results presented in Chapter 6. 

                     

 

Figure 5-3: Results of two mapping functions when s is even  
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5.3.4 Apply Taguchi’s Method 

After conducting all the N experiments, the Taguchi method converts the experiment 
result of each parameter combination using signal-to-noise (SN) ratios. SN ratio for 
each combination i is given by [13] 

                                                               (5-7) 

After computing SNi for each combination i, the highest average SN ratio determines 
the best level  for each parameter xt. The average SN ratio of xt at level  is 
calculated as  

                                                                     (5-8) 

where  is the testing level of parameter xt in experiment , and  is the number 

of experiments with xt at level . Using Table 5-2 as an example, the average SN ratio of 

parameter x2 at level 1 is (SN1+SN4)/2. After calculating the average SN ratio for every 

level, the best level is the level that has the highest average SN ratio. That is, the best 

level  for each parameter xt is computed as 

                                 tl
l

m
tl ,

,best SNmaxarg                      (5-9) 

The parameter value associated with the best level is the best value found for xt in the 

current iteration m and is denoted as  . 

5.3.5 Shrink the Optimization Range 

The best values found from iteration m are used as the centre values in iteration m+1: 

                                           (5-10) 

Also, the LD is reduced by a reduction factor  as follows 

                                          (5-11) 

The LD reduction effectively shrinks the optimization range. A higher value of  makes 

the convergence of the algorithm slower, but the optimization more accurate. A lower 

value of  shrinks the optimization range faster, at the expense of a possible degradation 

in performance. The level values  are updated according to (5-5) and (5-6). 
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There is a need for a procedure to ensure that the updated level values are within the 

optimization range. For example, if  is large than maxt, the mapped values of 

levels from  or  to  are distributed such that they are equally spaced 

between  and maxt. 

Furthermore, with the proposed hybrid approach using multiple mixed-level NOAs, 

every switching of NOA represents a reduction in the number of levels, which in 

general accelerates the shrink of the optimization range by a factor β = ratio of the 

current number of levels to the initial number of levels. Considering the example NOAs 

in Section 5.3.2, when switching from NOA (32, 8^2, 6^2) to NOA (24, 6^2, 4^2), the 

factor for shrink acceleration is approximately 6/8 = 3/4 and 4/6 = 2/3 for the first two 

parameters and the last two parameters, respectively. An accurate analysis on the 

shrinkage of optimization range is presented in Section 5.5. 

5.3.6 Check the Termination Criterion 

As the optimization range shrinks with the LD reduction and NOA switching, 

eventually all level values become close to each other. The optimization procedure is 

terminated when differences between the level values are too small to make notable 

differences in SN ratios. Therefore a convenient measure that can be used in the 

termination criterion is  and we define the termination criterion as follows 

                                                                 (5-12) 

where  is typically small, e.g., 0.01 or 1%, depending on the initial value of the LD and 

the practical adjustment precision of the configuration parameter. 

5.4 LTE-A System Model 

In this section, the downlink system model of an LTE-A cellular network tested by the 

proposed optimization procedure is presented. System-level simulations are used to 

carry out the experiments to generate performance metrics needed in the optimization. 
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Figure 5-4: LTE-A network with cells of different coverage areas and default 

azimuth orientations 

5.4.1 General Definitions 

The LTE-A network has k = 7 enhanced NodeBs (eNodeBs) with C = 21 cells located in 

a 1000  800 m2 area as shown in Fig. 5-4. Each cell is served by an eNodeB sector. 

The system bandwidth is 10 MHz with 50 Physical Resource Blocks (PRBs). The 

maximum eNodeB transmission power is 40 W per PRB. The path loss is set according 

to the path loss model for the Urban Macro (Uma) None-Line-of-Sight (NLoS) scenario 

provided in [27]. Map resolution is 5 meters per pixel. The shadow fading standard 

deviation is set to 6 dB and the inter-site shadow fading correlation is 0.5. The receiver 

noise figure is 7 dB and the thermal noise density is -174 dBm per Hz. The eNodeB 

antenna height is 25 m and the UE height is 1.5 m. The 3-Dimensional (3D) eNodeB 

antenna pattern is adapted based on the popular Kathrein 742215 antenna model 

parameters [28-29]. Note that the maximum antenna backward attenuation B0, the 

azimuth beam width , and the elevation beam width  are set the same as those used 

in [23]. The antenna model and parameters are summarized in Table 5-3, where  and  

are azimuth and elevation angles, respectively, of the line-of-sight between UE and 

eNodeB. The LTE-A system model general definitions are summarized in Table 5-4. 
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Table 5-3: Antenna model and parameters 

Parameter Model 

Azimuth pattern  

 

Elevation pattern  

 

3D antenna pattern  

Antenna gain 17 dBi 

 

Table 5-4: LTE-A system model general definitions 

General Definitions 

Cells: 7 eNodeBs (random position), 21 sectors 

Frequency (fc): 2 GHz  Transmit power: 40 W 

Bandwidth: 10 MHz with 50 Physical Resource Blocks (PRBs) 

UE receiver noise figure: 7 dB Thermal noise: -174 dBm/Hz 

UE height (hUT) is 1.5 m Map resolution: 5 m 

Antenna model: 3-D Kathrein 742215 antenna model 

Antenna max gain: 17 dBi Antenna height (hBS): 25 m 

The shadow fading standard deviation: 6 dB 

Shadow fading correlation: 0.5 
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Pathloss model: PL = 161.04 – 7.1 log10 (W) + 7.5 log10 (h)– (24.37 – 3.7(h/hBS)2) 

log10 (hBS)+ (43.42 – 3.1 log10 (hBS)) (log10(d) − 3) +20 log10 (fc) – (3.2 (log10 (11.75 

hUT))2 − 4.97).  

h = average building height = 20 m, W = average street width = 20 m. 

 

5.4.2 Calculation of UE Throughput 

We consider that each UE is served by one PRB. A full load system where every UE is 

affected by all other neighboring antennas is assumed in the calculation of the Signal-to-

Interference-Noise Ratio (SINR). The downlink throughput R of a UE can be 

approximated using Shannon’s equation as 

                                                 (5-13) 

where Seff =1.25 is the SINR efficiency factor and Weff = 0.88 is the bandwidth 

efficiency factor [30]. The bandwidth of a PRB is B = 180 kHz. 

5.5 Optimization Range Shrink Analysis 

Due to the LD reduction factor  which is less than 1, the LD decreases according to (5-

11) after each iteration. Loosely speaking, the optimization range decreases at the same 

speed as the LD decreases. It is easy to see that the LD in the mth iteration can be 

written as  

                                 .                            (5-14) 

Therefore, the amount of LD reduction in iteration m as compared to iteration 1 in 

percentage is given by  

.     (5-15) 

That is, the LD reduction percentage is a function of the iteration number m. For 

instance, the curve of the LD reduction percentage versus the iteration number is plotted 

in Fig. 5-5 for . As can be observed from the figure, the LD reduction is fast in 

the first few iterations. However, as the iteration continues, it starts to level off towards 
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the vicinity of 1. Comparing (5-14) with (5-12), it can be seen that the total number of 

iterations M is determined by 

                          .                             (5-16) 

Alternatively, observing the optimization range shrink as a percentage of the original 

optimization range in iteration 1, the range shrinkage made in the second iteration is 

; and in the third iteration the optimization range is shrunk to 64%, thus 

the shrinkage made in the iteration is . Generalizing this observation, 

the shrinkage made in iteration m is found to be , and the total shrinkage at 

iteration m is given by 

                       .               (5-17) 

Clearly, (5-17) is equivalent to (5-15).  

 

Figure 5-5: LD reduction percentage in 22 iterations when the reduction factor is 

0.8 
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The analysis above is based on the assumption of using a single OA or NOA in all the 

iterations, where the number of levels does not change. When multiple NOAs are used, 

this analysis needs to be modified to consider the reduction of the number of levels due 

to NOA switching. To make it easy to understand, an example is used in the following 

discussion. Assuming that the reduction factor is  and the termination criterion is 

, then from (5-16) the total number of iterations is M = 22. If NOA (64, 21, 8) 

is used in all 22 iterations, then the total optimization range shrinkage at an iteration is 

identical to the LD reduction percentage, which is the same as that shown in Figure 5-5. 

However, if NOA (64, 21, 8) is only used in the first 5 iterations, and NOA (42, 21, 6) is 

used in the rest 17 iterations, then due to NOA switching at iteration 6, where the 

number of levels is reduced from 8 to 6, the optimization range is shrunk to (6+1)  

instead of (8+1) . That is, in iteration 6, besides the usual shrinkage of , 

there is an additional reduction of , or (2/9)  as a percentage 

of the original optimization range of (8+1)  in iteration 1. Similar shrinkage can 

also be observed in subsequent iterations. Therefore, generalizing the above discussion, 

the total optimization range shrinkage at iteration m, with two NOAs where the first 

NOA has L1 levels and is used in the first M1 iterations, while the second NOA has L2 (< 

L1) levels and is used in the rest M−M1 iterations, is given by 

 

         (5-18) 

From (5-18), it can be seen that the extra shrinkage in optimization range increases as 

L1−L2 increases, or as M1 decreases. Hence, in the case of multiple NOA, the 

optimization range shrink is faster than the LD reduction. For comparison, the total 

optimization range shrinkage versus the iteration number is plotted for both the single-

NOA case and the two-NOA case of the above example in Figure 5-6, respectively. 

Note that the faster the optimization range shrinks, the faster the optimization converges. 

It is also worth pointing out that the total number of experiments decreased from 

64·22=1408 for the single-NOA case to 64·5+42·17=1034 for the two-NOA case. 
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Figure 5-6: Comparison of total optimization range shrinkage between the single-

NOA case and the two-NOA case in 22 iterations when the reduction 

factor is 0.8 
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6 Simulation Results 

Results of the joint optimization using the proposed mixed-level NOA with improved 

mapping function and the proposed hybrid approach with multiple mixed-level NOAs 

are presented and compared with that of the existing approach [23] with a single 

identical-level NOA. 

6.1 Algorithm Parameters 

Every eNodeB has three sectors. The default parameter setting for the azimuth 

orientation is  and the tilt is . Hence the azimuth orientation  ranges 

from  to  with respect to its default setting.  The tilt  ranges from to . 

The reduction factor   is set to 0.8 and termination criterion  is set to 0.01.  

6.2 Improved Mixed-level NOA versus Identical-level NOA 

The azimuth orientation has an optimization range of  and the tilt has an 

optimization range of . With the same number of experiments, using mixed-level 

NOA for joint optimization would allow more tests for parameters having smaller 

number of levels. The existing identical-level NOA approach uses only mapping 

function (5-5) and the same number of levels for all parameters. The improved mixed-

level NOA uses mapping functions (5-5) & (5-6) to distribute parameter levels evenly 

over the optimization range so that the probability of missing the near-optimal solution 

is reduced. Figure 6-1 shows the optimization results of using the identical-level NOA 

(96, 42, 8) and the improved mixed-level NOA (96, 8^21, 6^21). The results are the 

 calculated using (5-2), which focus on the 5%-tile of the UE throughput 

distribution. The HM ( ) achieved by the mixed-level NOA is 129 kbps, while the 

identical-level NOA attains 125 kbps. Therefore, the proposed mixed-level NOA has 

better performance than the existing identical-level NOA. Note that both methods have 

the same number of iterations and the same number of experiments, hence the same 

computational complexity. 
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Figure 6-1: Comparison of optimization performance between improved mixed-

level NOA and identical-level NOA 

6.3 Hybrid Approach Using Multiple Mixed-Level NOAs 

The proposed hybrid approach uses multiple mixed-level NOAs in the optimization 

procedure instead of the single mixed-level NOA used in Section 6.2, while keeping the 

same number of iterations. By switching to NOA with smaller number of levels and 

hence smaller number of experiments during the optimization iterations, the total 

number of experiments can be reduced significantly with little degradation in 

optimization performance. In this simulation the hybrid approach uses NOA (96, 8^21, 

6^21), NOA (60, 5^21, 4^21), and NOA (36, 3^21, 2^21) in tandem in the optimization 

iteration. Defining the accuracy metric as the minimum number of experiments that 

each level is tested in one iteration for any parameter, it can be seen that all the above 

three NOAs have the same accuracy metric because . As 

the antenna azimuth orientation has a much larger optimization range than that of the 

antenna tilt, it is assigned more levels than the tilt. With the reduction factor  

and termination criterion , we can calculate that the total number of iterations 

is 22. The optimization iteration begins with NOA (96, 8^21, 6^21), where each of the 

21 parameters for azimuth orientation has 8 levels, and the tilt has 6 levels. After M1 

iterations, NOA (60, 5^21, 4^21) takes over and reduces the number of levels, which 
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leads to reduced number of experiments. After another M2 iterations, NOA (36, 3^21, 

2^21) kicks in to further reduce the number of experiments. The optimization iteration 

terminates after a further M3 iterations. Thus, with the total number of iterations = 

M1+M2+M3 = 22, the hybrid approach has a total number of experiments = 

96M1+60M2+36M3, while the single-NOA approach using NOA (96, 8^21, 6^21) in all 

of the 22 iterations has a total of 96·22 = 2112 experiments. For convenience, we denote 

a specific iteration scheme as M1−M2−M3. Switching from the first NOA (96, 8^21, 

6^21) to the second NOA (60, 5^21, 4^21), the optimization range shrinks to 

 instead of . When switching to the third NOA (36, 3^21, 

2^21), the optimization range shrinks to . In the above,  

 denote the largest number of levels in three NOAs, respectively. 

6.4 Results of the Proposed Approaches 

Figure 6-2 shows the results of 5%-tile SINR CDF F(x) optimization by using the 

identical-level NOA (96, 42, 8) and mixed-level NOA (96, 8^21, 6^21) with the 

existing mapping function, respectively, and the improved mixed-level NOA (96, 8^21, 

6^21) where the improved mapping function is employed. As a reference, the CDF of 

the default parameter setting with azimuth orientation at  and tilt at  is 

also shown. From Figure 6-2 it is obvious that optimization of radio network parameters 

can significantly enhance network performance. It is easy to observe that with the 

existing mapping function, mixed-level NOA gives better result than identical-level 

NOA. Furthermore, the best result is achieved by the improved mixed-level NOA. 

Hence, Figure 6-2 shows that both the mixed-level NOA and the improved mapping 

function help to enhance the optimization result. 
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Figure 6-2: Comparison of optimized 5%-tile SINR CDFs between improved 

mixed-level NOA, mixed-level NOA, and identical-level NOA 

Figure 6-3 shows optimized SINR CDFs F(x) of two mixed-level NOAs, NOA (96, 

8^21, 6^21) and NOA (72, 8^21, 6^21), of different computational complexity, using 

the existing mapping function. With the same number of iterations, both mixed-level 

NOAs give better result than the identical-level NOA (96, 42, 8). The mixed-level NOA 

(96, 8^21, 6^21) has 96 experiments per iteration and provides only a small gain at the 

5%-tile SINR than the mixed-level NOA (72, 8^21, 6^21) that has 72 experiments per 

iteration. Hence, fewer experiments in optimization iteration only incur a little penalty 

in optimization performance. In other words, we can save more experiments in the 

simulation, but obtain almost the same result that is better than the existing method 

based on the identical-level NOA (96, 42, 8).  
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Figure 6-3: Comparison of optimized 5%-tile SINR CDFs of mixed-level NOAs 

having 96 experiments and 72 experiments per iteration, respectively 

Table 6-1: Iteration schemes for the hybrid approach 

Iteration Scheme NOA employed 
Total number of 

experiments 

Percent of 

experiments 

saved 

22 iterations 

using the same 

NOA 

NOA (96, 8^21, 6^21) 2112 0 

(5 – 4 – 13) NOA (96, 8^21, 6^21), 

NOA (60, 5^21, 4^21), 

NOA (36, 3^21, 2^21) 

1188 44% 

(3 – 3 – 16) 1044 50% 

(1 – 6 – 15) 996 53% 

Using the identical-level NOA approach as the benchmark, three iteration schemes of 

the hybrid approach as listed in Table 6-1 are tested for optimization performance 
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comparison: 5-4-13, 3-3-16, and 1-6-15. It is easy to see that these three schemes can 

reduce the total number of experiments by approximately 44%, 50%, and 53%, 

respectively, as compared to the benchmark. The optimization results of the three 

schemes are compared with the benchmark using the 5%-tile SINR CDF F(x) of the 7-

eNodeB network in Figure 6-4, where the CDF of the existing approach [18] using the 

identical-level NOA (96, 42, 8) is included. It confirms that with the same 

computational complexity, the proposed mixed-level NOA together with the improved 

mapping function yields better results than the identical-level NOA does. By using 

multiple NOAs with different number of experiments, the proposed hybrid approach 

allows the flexibility in computational complexity and optimization performance trade-

off. As seen in Figure 6-4, significant reductions in computational complexity are 

achievable with only small degradations in optimization performance. 

 

Figure 6-4: Optimized 5%-tile SINR CDFs of the hybrid approach 
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7 Conclusions and Future Work 

The improved mixed-level NOA optimization procedure based on TM has been proven 

a valuable means for enhancing LTE-A network performance. The joint optimization of 

antenna parameters focuses on cell coverage and capacity maximization to enhance UE 

throughput.  In this thesis, we have proposed the use of mixed-level NOAs and an 

improved mapping function in TM-based joint optimization of LTE-A radio network 

parameters to achieve better optimization performance than the existing method. To cut 

more experiments in the optimization procedure, we have developed a hybrid approach 

using multiple NOAs instead of a single NOA in the optimization. The hybrid approach 

uses multiple NOAs with successively decreasing number of experiments to reduce 

significantly the computational complexity with little sacrifice in optimization 

performance, making TM-based method attractive to optimizing practical networks. It 

can easily control the number of experiments to achieve the SINR target in the LTE-A 

network. A real cellular network is usually very big and complex. We have presented 

optimization results of small-scale networks using the proposed hybrid approach. Future 

work will investigate extending the proposed optimization approach to large-scale 

networks and jointly optimizing more parameters such as transmission power in 

addition to antenna azimuth orientation and tilt. 
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Appendix 

A. Using the Hybrid Approach  in A Network of 11 eNodeBs 

The proposed hybrid approach has been tested with many different initial settings of the 

configuration parameters and eNodeB locations. All the results are nearly the same as 

that of the single-NOA optimization, but the hybrid approach saved about 50% time in 

the optimization process. As the number of eNodeBs increases, the optimization time 

becomes longer. Fig. A-1 shows the 11-eNodeB network with 33 cells randomly located 

in a 2000  1000 m2 area. All eNodeBs have the same parameters as that described in 

Section 5.4. There are 66 configuration parameters to be optimized. 

 

Figure A-1: LTE-A network with cells of different coverage areas and default 

azimuth orientations 

 

Fig. A-2 shows the comparison of optimized 5%-tile CDFs F(x) of improved mixed-

level NOA and identical-level NOA. It is clear that the improved mixed-level NOA 

gives better result than identical-level NOA. The iteration scheme is 6-3-13 which saves 

about 42% experiments in the optimization and achieves better result than the identical-

level NOA method. Fig. A-3 presents the SINR map of the network before (left) and 
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after (right) the optimization using the hybrid approach. It is obvious that the optimized 

network has good SINR in most of the area, proving better coverage and throughput.  

 

 

Figure A-2: Comparison of optimized 5%-tile CDFs of improved mixed-level NOA 

and identical-level NOA in a network of 11 eNodeBs 

  

Figure A-3: Comparion of SINR map before (left) and after (right) optimization 

 

 


