Hindawi

Mathematical Problems in Engineering
Volume 2019, Article ID 3965845, 15 pages
https://doi.org/10.1155/2019/3965845

Research Article

Hindawi

Holistic User Context-Aware Recommender Algorithm

Tatenda D. Kavu ®,' Kudakwashe Dube

,2 and Peter G. Raeth®

'Computer Science Dept, University of Zimbabwe Harare, Harare, Zimbabwe
2School of Fundamental Sciences, Massey University Palmerston North, Palmerston North, New Zealand

*University of Gondar, Gondar, Ethiopia

Correspondence should be addressed to Kudakwashe Dube; K.Dube@massey.ac.nz

Received 29 January 2019; Revised 5 June 2019; Accepted 14 July 2019; Published 29 September 2019

Academic Editor: Rosa M. Benito

Copyright © 2019 Tatenda D. Kavu et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Existing recommender algorithms lack dynamism, human focus, and serendipitous recommendations. The literature indicates
that the context of a user influences user decisions, and when incorporated in recommender systems (RSs), novel and ser-
endipitous recommendations can be realized. This article shows that social, cultural, psychological, and economic contexts of a
user influence user traits or decisions. The article demonstrates a novel approach of incorporating holistic user context-aware
knowledge in an algorithm to solve the highlighted problems. Web content mining and collaborative filtering approaches were
used to develop a holistic user context-aware (HUC) algorithm. The algorithm was evaluated on a social network using online
experimental evaluations. The algorithm demonstrated dynamism, novelty, and serendipity with an average of 84% novelty and

85% serendipity.

1. Introduction

Research in recommender systems research has recently
diverted attention to context-aware recommender systems
(CARS) since incorporating contextual information in rec-
ommender systems is an effective approach to create more
accurate and relevant recommendations [1]. Recommender
algorithms are generally limited to coping up with the dy-
namics of user preferences [2, 3]. In current recommender
systems (RSs), adaptive learning is basically derived from
computing neighbourhood of a user from ratings using
distance functions such as Pearson correlation function and
Euclidean distance function. Therefore, adaptation will be
mainly the by-product of the neighbourhood computation. If
a user rates something new, his/her neighbourhood changes,
and as a result, the recommendations got by this user are
likely to change. This is the type of adaptive recommendation
which is experienced in current recommendation algorithms.
However, preferences inferred from user actions only are
inadequate to deduce sound user-centric predictions [4].
Recommender algorithms are found lagging behind the
dynamics of user preferences, resulting in lack of sound

dynamic, novel, and serendipitous recommendations [5].
Moreover, the incorporated contexts in CARS are not
enough for tailoring personalized services to users. One or
two contexts are only incorporated in recommender sys-
tems, and these are not enough to represent users’ interests
or preferences [6]. The literature indicates that recom-
mender algorithms lack significant novel and serendipitous
recommendations [7, 8].

To address the identified challenges, an investigation was
carried out and it was found that recommender algorithms
are biased significantly towards system-centric factors such as
accuracy, diversity, and scalability [9]. There is a lack of in-
corporation of knowledge from these user-centric factors
(user experience, user decision-making processes, and user
interaction) [10]. Therefore, this article presents a unique
method of incorporating users’ decision-making knowledge
into a recommender algorithm. The context-aware recom-
mender algorithm uses the holistic contextual user profile in
the form of social, cultural, psychological, and economic
profile, together with items associated with the user to offer
recommendations. When tested online, the algorithm proved
to offer dynamic, novel, and serendipitous recommendations

mailto:K.Dube@massey.ac.nz
https://orcid.org/0000-0002-9479-1143
https://orcid.org/0000-0002-2829-8481
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/3965845

to any user as compared to any algorithm that uses ratings and
rated items.

The main contribution of this work is the contextual
modelling of the holistic user contextual profile in order to
provide dynamic, novel, and serendipitous recommenda-
tions. The approach brings the benefit of satisfaction to the
users of the recommender system. The rest of the paper is
organized as follows: Section 2 shows related work, Section 3
shows the materials used and the theory behind the rec-
ommendation approach, Section 4 demonstrates the ex-
perimental setup, Section 5 shows the results, and Section 6
discusses the results. Finally, Section 7 summarizes and
provides future directions.

2. Related Work

Contextualization is viewed as a paradigm for building
intelligent systems that can better predict and anticipate the
needs of users and acts more efficiently in response to their
behavior. The incorporation of contextual information
about the user in the recommendation process has attracted
major interest [11]. Contextual information matters in RSs,
and it is important to take this information into account
when providing recommendations [12].

Contextual information/features of a user such as time
and location are quite important in making novel and
serendipitous recommendations [1, 7, 13, 14]. Modelling the
contextual information about a user enables the recom-
mendation engine to provide more reasonable recommen-
dations for users [13, 15], and context adaptation is one
major goal of session-aware recommendation engines [16].

It is a well-known fact from decision science that a
decision made speaks a lot especially about the decision-
maker’s values [17]. If a user chooses an item or prefers an
item, people with the same values with this particular user
are likely to be interested in the same items [18]. Since users’
preferences are likely to be similar to, or influenced by
friends [19]. Users first identify the need of an item and then
search for it and evaluate alternatives from the search before
making a purchase [20]. Understanding users of RSs is the
key issue for better recommendations, and users can be
advised at the right place and at the right time with the right
message [21]. The researchers of this article found from the
literature that users are influenced by significant factors such
as economic status, psychological status (e.g., mood), cul-
tural values, and social status when choosing an item or a
service [7, 21]. In summary, these are the factors that spell all
conceptual issues that explain theoretical derivations of user
preferences.

There are algorithms that incorporate time in the rec-
ommendation engines due to the fact that, in some cir-
cumstances, a recommendation that is relevant in the
morning context may not be relevant in the evening and vice
versa [7, 22]. In clothing industry, clothes needed during
summer and winter may be different. Time can be aggre-
gated such that it can be classified in daily periods for in-
stance {morning, afternoon, evening} or seasonal periods
such as {summer, winter, spring, autumn} or event periods
such as {Christmas, new year, school reopening, etc.} [7, 21].

Mathematical Problems in Engineering

Recently RSs have been designed which incorporate time
[2, 23]; however, an algorithm that focuses on the holistic
approach of incorporating important decision-making
factors in the context of {social, cultural, psychological,
economic} factors has not been investigated or imple-
mented. Generally, recommendation algorithms work with a
general assumption that recent ratings are more important
than older ratings [1, 22]. Users generally select content or
items based on current desires or preferences at the time of
selection. Such desires or preferences, however, often fluc-
tuate over time [1, 19, 24].

Most of the work on CARS has been conceptual. Col-
lection of big data for incorporation in CARS is still another
major challenge that needs to be tackled [11]. Overall, the
field of CARS is a relatively new and under explored area of
research, and much more work is needed to investigate it
comprehensively [12].

Vargas [8] did a phenomenal series of researches and
proved that there was no significant groundwork that had
been performed before on novelty. He came up with a
unified framework for novelty and diversity coming from an
integration of different mathematical models that describe
novelty and diversity. He built the framework on the ar-
gument that novelty and diversity are inextricably in-
terrelated. It is quite recognizable that computation of novel
recommendations is done during the time of ranking the
recommended list. The recommended list is shuffled to make
sure that the final list is novel and diverse.

Lee and Lee [9] also proposed an algorithm to provide novel
recommendations whereby a graph-based recommender al-
gorithm was developed that uses positively rated items in users’
profiles to construct a highly connected undirected graph. Items
were represented as nodes and positive correlations as edges.
Using the concept of entropy and the linked items in the graph,
the proposed algorithm was able to find recommendations that
were both novel and relevant.

The strategy of computing novel recommendations seems
to be satisfactory from the status quo, but the argument still
exists that serendipity is even more beneficial than novelty
because it creates new preferences to the user thereby driving
a user to make decisions in favor of the RS [7, 19, 25, 26]
argues that new methods of extracting implicit information
about users from their daily activities can be used to realize
novel and serendipitous recommendations. Alternative
methods can be explored to rank and recommend items to
users by considering several criteria [13, 27, 28, 29], and that is
the path taken by this article.

3. Materials and Methods
3.1. Relevant Theory

3.1.1. Key Concepts, Terms, and Principles. The user’s con-
textual profile supplies substantial information about that
particular user. Context in this case includes factors like time
that a user interacts with a RS, social, and cultural back-
ground. Context can also involve the user’s mood at a
particular time (mood can be affected by events such as
birthday, graduation day, or funeral time) and economic

Mathematical Problems in Engineering

status (which include type of profession, social class, and
possessions). Therefore, given that a recommender algo-
rithm has access to user’s contextual information, that al-
gorithm should at least be able to give reasonable, unique
novel recommendations to that user.

RS users are naturally found in different contexts
[22, 30]. Users’ tastes or behaviors can be affected by many
contextual circumstances of the user, for instance, social life,
mood, cultural background, economic status, location, and
factors such as time (weekdays, weekends, and holidays)
[22]. The geographical location of a user can have a sig-
nificant influence on his/her preferences in clothing or food
[31]. From an extensive review of the literature, the re-
searchers found that the user contextual phenomenon can be
classified into four classes. These classes are social, cultural,
psychological, and economic status. If a user is in a certain
social or cultural context, that user has particular needs. The
same applies when a user is in a certain mood (psychological
status), that user will like or dislike certain items [24]. If a
user is in a certain economic status or context, that user is
able or not able to afford certain items. It also entails that if
the user’s social status or economic status changes, he/she
will have different preferences or tastes. Therefore, a rec-
ommender algorithm must take all the four contextual
classes into consideration to offer dynamic, novel, and
serendipitous recommendations to users.

3.1.2. Principles behind Computations. The main principle
behind the computation of the holistic user context-aware
(HUC) algorithm is that users in the same context (social,
cultural, psychological, and economic status) are likely to
have the same taste or similar set of preferences. There are
similarity functions such as Jaccard similarity function,
Pearson correlation function, and Euclidean distance
function which can be used to find the contextual similarity
of users, using their profiles. Table 1 shows the comparison
of these similarity measure functions.

Jaccard was used in this article because of the nature of the
input data to the HUC algorithm. Jaccard is a simple statistic
used for comparing the similarity and diversity of sample sets.
It is a similarity distance measure similar to other methods of
measuring similarity such as Euclidean distance, Pearson’s
correlation coefficient, and cosine similarity function. Its main
advantage in this case is that it is best applicable in measuring
the similarity of finite sets. Profiles can be converted into sets
and are easily compared to find out similar profiles. The Jaccard
index is a measure of similarity between sets and produces a
value between 0 and 1.0 inclusive. It was introduced by Jaccard,
the late professor of botany [32]. Many developers of rec-
ommender systems have used the Jaccard similarity to find the
similarity between different types of sets especially in content-
based recommender systems where it is used to measure the
similarity of two documents [31]. Some of the published work
where Jaccard was used include [32, 33] and [32, 34-37].

3.1.3. Graphical Representation of the Computational Theory.
Similarity computation can be performed to find a link or
similarity between user profiles. Using the graph theory, a

graph is defined as an ordered triple V(G), E(G), and yG.
Where V(G) is a nonempty set of vertices (where vertices are
user profiles in this case), E(G) is a set of edges (edges are a
representation of similarities), and G which is associated
with each edge of G as an unordered pair of (not necessarily
distinct) vertices of G. yG is therefore the Jaccard similarity
coefficient value that depicts the similarity between two
vertices. If e is an edge and u and v are vertices such that
¥G(e) =uv=0.9, then e is said to be joining u and v; 0.9
shows the similarity value of the two vertices and depicts that
u and v are very similar.
Therefore:

G=(V(G), E(G), yG)

V(G) = userl, user2, user3, user4, userb, useré, user7,
user8
E(G) =el, €2, €3, e4, e5, e6, e7

Suppose at some unique time t, G is depicted as follows:

yG(el) =userl user2=0.8,
yG(e2) = userl user3=0.7,
yG(e3) = user4 user2=0.1,
yG(e4) = user5 user6 =0.5,
yG(e5) = user3 user4d =0.3,
yG(e6) = user4 user7 =0.5,
¥G(e7) = user4 user8 =0.6

If user profiles have a similarity with a range of 0.5-1, it
means that these users are similar. In other words, they are
in related contexts and are likely to be interested in the
same items. Therefore, from Figure 1, user 4 will be rec-
ommended items clicked/rated (that is actioned) by users 7
and 8. Looking at the graph, we can conclude that user 8
and user 7 are likely to be similar since they are both similar
to user 4. Given that they have recent actions performed on
the system according to the HUC algorithm, both are likely
to be recommended items actioned by user 4. If the RS is
deployed on a social network, then user 8 is likely to be
recommended user 7 as a potential friend or a potential
client.

3.1.4. Computational Efficiency. Novelty and serendipity
are to a greater extent realized when using active profiles to
compute neighbourhoods. Given that there are more than a
million active users, it becomes computationally expensive
to calculate the Jaccard similarity between the concerned
users with the rest of the active users. This means that the
efficiency and robustness of the algorithm are affected.
Therefore, there is a need for a robust method that can be
used to trim down the number of active users needed
during similarity computation. We deliberated on classi-
fication and clustering algorithms such as k-means clus-
tering, k-nn nearest neighbour, and decision trees.
Decision trees were found to be the best method of clas-
sifying profiles efficiently because of the nature of the data
used to compute neighbourhoods. Since the data come as
sets, they will be the best for dynamic classification of

Mathematical Problems in Engineering

TaBLE 1: Comparison of similarity measure metric functions.

Jaccard similarity function

Euclidean distance function

Pearson correlation function

Measuring similarity of finite sets
Can work with strings

Easy to work with social media profiles

Best for content-based recommendations

Measure distance between data points
Work with vectors of real numbers
Computationally expensive, when dealing with social
media data
Good for collaborative filtering algorithms

Measure linear correlation
Corelational real numbers

Weak on complex relationships

Good for collaborative filtering

FIGURE 1: Similarity of user profiles.

profiles using decision trees. When a new user comes in, he/
she will be placed in a specific class, and from that class,
another computation will be done to compute his/her
neighbourhood using the Jaccard similarity metric. This
method reduces the computational time significantly.
Moreover, classes will be changing systematically since the
user profile will be updated by the user’s activities. When a
user profile changes, the user is migrated to another class of
similar profiles. This approach gives rise to dynamic
recommendations.

(1) Classification using the ID; Decision Tree. Using the
ID; (Iterative Dichotomiser 3) version of a decision tree
designed by Ross Quinlan, we start by calculating en-
tropy, which is a statistical metric that measures the
impurity of the data set. Given a set S of user profiles,
which contains two classes: positive (meaning user did
the anticipated action) and negative (meaning did not do
the anticipated action), entropy with respect to this
Boolean classification is

entropy (S) = —p (positive)log 2 p (positive)

1
— p(negative)log 2 p (negative), =

where p positive is the probability of positive examples in S
and p negative is the probability of negative examples in S.

Information gain is the measure of the expected re-
duction in entropy. It decides which among the attributes of

the concerned user’s profile (the user that we want to
classify) goes into a decision node (which attribute can be
used to split the set). To minimize the decision tree depth,
the attribute with the most entropy reduction is the best
choice. The subset returned by a splitting decision must have
a size of greater or equal to 50 profiles, and when the size is
lower than 50, the splitting process stops and the user of
concern is then classified:

Gain (n) = Entropy (n)” ([weightedaverage] * entropy),

Gain (S, A) = Entropy (S)Oentropy

- Z (A)% * Entropy (S,),

xevalues
S = Each value v of all possible values of attribute A,
S, = Subset of S for which attribute A has value v,
|S,| = Number of elementsin S,

|S| = Number of elementsin S.
(2)

Given that on an e-commerce platform at a certain
moment, a user was about to be classified into a certain class
which shares the same attributes as him using the ID; de-
cision tree. A set of user profiles together with their
transactional history (whether they have bought or not on
the e-commerce platform) was retrieved from the platform
as shown in Table 2. These very short profiles will be used to
demonstrate how the ID; decision tree can compute the class
of user;. In column action, 1 represents that the user bought
something, 0 represents that the user did not buy anything.

The attributes maybe {age range, gender, location,
hometown, time period, profession}, and they can have the
following values:

age range = {20-25, 25-30, 30—35, 35-40}
gender=F, M
location = {harare, gweru, bindura, mutoko, bulawayo}

hometown = {chinhoyi, gweru, masvingo, mutoko,
bindura}

time period = {morning, afternoon, evening}
profession = {law, engineering, education, indigenous,

health, student}

We need to find which attribute will be the first decision
node in the decision tree:

Mathematical Problems in Engineering

TaBLE 2: A short blueprint of user profiles.

User Age range Gender Time period Action
1 20-25 F Morning 1
2 25-30 F Afternoon 1
3 20-25 M Evening 0
4 30-35 M Morning 1
5 35-40 F Afternoon 0
6 35-40 M Afternoon 1
7 35-40 F Morning 1
8 20-25 F Afternoon 1
user; 20-25 M Morning 1

Entropy (S) = —(g)log 2(;) —<%)log 2(;) =0.764,

5
Gain (S, gender) = Entropy (S) _<§) # Entropy (SF)

4
- <§> * Entropy (SM)

5 4
=0.764 —<§> *0.7219 —<§> *0.811

=0.723,
Entropy (SF) = —(é) * log 2<é> —(1) * log 2<1>
5 5 5 5
= 0.7219,
Entropy (SM) = —(2) * log 2<Z) —(i) * log 2<i)
=0.811.

(3)

Looking at the scenario above, information gain of
other attributes is less than 0.723; therefore, gender will be
used as the first decision node. User; end up in the class of
males who made their transactions in the morning.
Therefore, the minimum possible class size of user; will be
returned to other modules of the HUC algorithm for
further computation. As shown in Figure 2, user; will be in
the same class as user,. Therefore, a similarity function
will be called to compute the similarity between user; and
user,.

When a user’s context changes either in the form of social,
cultural, psychological, or economic context, that user’s
friends (neighbourhood) change as well. Therefore, the user’s
predicted preferences will be derived from the user’s recent
context or profile. Thus, the HUC algorithm will not be stuck
with the user’s historical preferences. The change of
neighbourhood will be an outcome of the new similarity
computation. Novel and serendipitous recommendations
will be a product of computing other recommendations
from recent acted items within the neighbourhood of the
concerned user.

3.2. The HUC Recommender Algorithm
Vectors:

P;=tuple (s, ¢, p, e) (a profile for user i)

s=tuple (a,, ..., a;), where a; is a social attribute
(relationship status, age range, gender, education,
likes, political affiliation, social status)

c=tuple (¢, ..., c5), where ¢; is a cultural attribute
(religion, current location, hometown, timezone/time
period, language)

p=tuple (p;, ..., ps), where p; is a psychological
attribute (birthday, friends birthday, movies, up-
coming events)

e=tuple (e, ..., e5), where ¢; is an economic attribute
(currency, work history, profession, residential category)

Sets:

[={x: x is an item/product}

I, ={x: x € I AND recommended to P}

U={x: x=P,, where P, is a profile for user u}
O={x: x € U,, where o is an old user profile}
R={x: x € U AND «x is an active user}

N={x: x € U,, where n is a new user profile}
M={x: x € R AND Similarity (xi, xj) >n, where n is
0.5, Vi, j}

Check if user u has previously expressed interest in
product i: x € Boolean, isActive (4, i)=x,u e U AND i€ [

(i) Derivative expressions:
RcU, U=OUN, and MCR

Algorithm 1 computes recommendations to users, and it
starts by passing existing users to Algorithm 2. Algorithm 2 starts
by computing active users from the existing/old users and then
comes up with similar users to the concerned user u from active
users, and it retains a list of users who are similar to the con-
cerned user. Algorithm 1 then computes frequent items actioned
by similar users by calling Algorithm 3. These frequent sets of
items are the ones recommended to the user u. Time complexity
for the ComputeRecommendations algorithm is mainly de-
termined by the time complexity of Algorithms 2 and 3.

Algorithm 2 computes the similarity of profiles. Given a
list of profiles, it computes the similarity of the given list in
relation to a particular user. The main algorithm to be called
is the Jaccard similarity algorithm, which does the un-
derlying work of computing similarity. The time complexity
of Algorithm 2 is shown below:

n=10|, m=|R|, T(computeProfileClassSet(u, O)), T(Jac-
cardSimilarity(m, u))

TR)=n*1, T(M) =m * n?
T(ComputeSimilarProfile) = n + m * n*
O(n+mn * 2) = O(mn?)

Algorithm 3 uses association rule mining (apriori) to
compute frequent sets. The main task of this algorithm is to
come up with a set of items which are frequently actioned by
similar users. The actions might be searching, clicking,
rating, etc. Its time complexity is illustrated as follows.

Mathematical Problems in Engineering

Gain(S, gender) == max
while(len(S) > 50)

continue
F
M
Gain(S, time_period) == max Gain(S, t%me_period) == max
while(len(S) > 50) while(len(S) > 50)
continue continue
Mornin, Afternoop Evening Morning Afternqon Evening
len(S) < 50 Y
useri, user4 user6 userl, user7 user2, user8

FIGURE 2: A snippet of the decision tree.

(1) ComputeRecommendations
(2) INPUT:
(3) I (set of items actioned by M)
(4) u (profile of user)
(5) OUTPUT: I, (items recommended to u)
(6) Begin
(7) M «— (ComputeSimilarProfile (1, O))
(8) Items_on_demand «— ComputeltemsActionedbySimilarProfile (M, I, u)
(9) I,«—TIultems_on_demand

(10) return I,

(11) End

ALGORITHM 1: ComputeRecommendations.

(1) ComputeSimilarProfile

(2) INPUT: u (profile of user)

(3) O (set of old profiles)

(4) OUTPUT: M (set of profiles similar to profile u)

(5) Begin

(6) C «— computeProfileClassSet (u, O)

(7) R«—{r: re C and isActive (r, I)}

(8) k «—0.5; (Jaccard coefficient threshold for highly similar profiles)

9) M «—— {m: me R AND JaccardSimilarity (m, u) >k, Vm}
(10) return M
(11) End

ALGORITHM 2: ComputeSimilarProfile.

(1) ComputeltemsActionedbySimilarProfile

(2) INPUT: M (set of profiles similar to profile u)

(3) u (profile of user)

(4) I (set of items actioned by M)

(5) OUTPUT: I, (set of items actioned by T)

(6) Begin

7) freqSet «— Apriori (M, I, u)

(8) T« {t: (te M AND (isActive (t, freqSet))}
9) I, ——{i: ie (I U freqSet) AND isActive(T, i)}
(10) return I,
(11) End

ArGoriTHM 3: ComputeltemsActionedbySimilarProfile.

Mathematical Problems in Engineering

Time complexity for the ComputeltemsActionedbySi-
milarProfile algorithm is as follows:

n=|fregset|, m=|T|,z= M|, p=|1|, g = |It|, k = constant

T(freqSet) =2p, T(T)=2z+1(2p), T(I,)=p+1+n+p
T(ComputeltemsActionedbySimilarProfile) =p+ 1+ n+
p+z+1(2p)+2p

O(p+1+n+p+z+1(2p)+2p) = O(n)

Algorithm 4 in particular is responsible for reducing the
list of old users with recent events/actions. This algorithm
implements the ID; decision tree. Given that on a platform
there are a million active users, Algorithm 4 will trim down the
number of active users to a very small list of maybe up to 50
users. Algorithm 2 will then compute similar users from this
new list. This method reduces the time for extracting similar
users significantly. Operations such as this can be run in the
background so that they do not disturb user interaction.

The time complexity of the classification algorithm
(computeProfileClassSet algorithm) is as follows:

n=|0|, m=|G,, d=|0,, k=constant, e=|A],
T(Entropy(o) =1,

T(

Z‘Xe\la (I041/10, | * Entropy (O,))

)

T(G,)=1+exk, T(max)=n, T(Oy) =n
T(computeProfileClassSet)=1+exk+n+n
O(l+exk+n+n)=e+n+n=0(n)

isActive() is the fifth algorithm which checks whether a
particular user is active on a platform or not. The time
complexity for Active algorithm is only O(1) since
there is one operation that checks if a condition is true or
false.

The Jaccard similarity function takes two sets of items
and returns a value from a range of 0-1, 1 meaning the sets
are similar and 0 meaning they are not similar. Its known
time complexity is as follows:

T(JaccardSimilarity) = O(n?)

O(n?) is the known time complexity for the Jaccard
algorithm, where n=number of sets.

The Apriori algorithm is the one that does the underlying
work of implementing the association rule mining tech-
nique. It computes the frequent set using a threshold value.
Its time complexity is O(n), where #=number of unique
items in set I,, or in the set of all transactions.

3.2.1. Definition of Terms

P;=<s, ¢, k, e> is a profile for a user i where the order of
the elements in the tuple is important. The order of
items in s, ¢, k, and e is important as well.

§=<S$p,. . ,$7> §; s a social attribute (relationship-status,
age-range, gender, education, likes, political-affiliation,
social status).

€=<Cp,. . ., 7> ¢; is a cultural attribute (religion, current
location, hometown, timezone/time period, language).
k=<p1,..., ps> k;is a psychological attribute (birthday,
friends birthday, movies, upcoming events).

e=<ey,. .., es> ¢; is an economic attribute (currency,
work history, profession, residential category).

I={x:x is an item/product}, Ir={x:x €I AND recom-
mended to P}, U={x:x=P,, where P, is a profile for user
u}, O={x:x € U,, where o is an old user profile}, R={x:x€ U
AND x is an active user}, N={x:x € U,, where n is a new
user profile}, M = {x:x € R AND Similarity (x;, x;) = n, where
nis 0.5, V i, j}

If user u has previously expressed interest in product i,
this can be represented in the form of isActive(u,i) = x, where
x € Boolean and u € UAND i € I. Moreover, RCU, U=OUN
and MCR. Nand MCR.

Algorithm 1 computes recommendations to users, and it
starts by passing existing users to Algorithm 2. Algorithm 2
starts by computing active users from the existing/old users
and then comes up with similar users to the concerned user u
from active users, and it retains a list of users who are similar
to the concerned user. Algorithm 1 then computes frequent
items actioned by similar users by calling Algorithm 3. These
frequent sets of items are the ones recommended to the user
u. Time complexity for the ComputeRecommendations
algorithm is mainly determined by the time complexity of
Algorithms 2 and 3.

Algorithm 2 computes the similarity of profiles. Given a
list of profiles, it computes the similarity of the given list in
relation to a particular user. The main algorithm to be called
is the Jaccard similarity algorithm, which does the un-
derlying work of computing similarity. The time complexity
of Algorithm 2 is shown below:

n=|0|, m=|R|, T(computeProfileClassSet(u,0)), T(Jac
cardSimilarity(m, u))

T(R)=n* 1, T(M) =m * n’
T(ComputeSimilarProfile) = n + m * n*
O(n+mn # 2)=(0mn?))

Algorithm 3 uses association rule mining (apriori) to
compute frequent sets. The main task of this algorithm is to
come up with a set of items which are frequently actioned by
similar users. The actions might be searching, clicking,
rating, etc. Its time complexity is illustrated as follows.

Time complexity for the ComputeltemsActionedbySi-
milarProfile algorithm is as follows:

n=|freqset|——, m=|T|, z=|M
k = constant
T(freqSet) =2p, T(T) =z+1(2p), T(I,)=p+1+n+p

T(ComputeltemsActionedbySimilarProfile) =
p+l+n+p+z+1(2p)+2p

O(p+1 +n+p+z+1(2p)+2p) = O(n)

> p=Il g=u,

Algorithm 4 in particular is responsible for reducing the
list of old users with recent events/actions. This algorithm

Mathematical Problems in Engineering

(1) computeProfileClassSet

(2) INPUT: u (profile of user)

(3) O (set of old profiles)

(4) OUTPUT: Oy (set of profiles in same class as u)

(5) Begin

(6) T—{x : x is a user attribute}

(7) tuple—<vy,...,v,>

(8) O<—{x :x =tuple,v; € Domax_,ai ceT,i=12,....nmn= |T|}
9) Vo<—{x :x € Domg ,a; €T,3, :x=v, €tuple for some tuple O]»
(10) o —1{Entropy(0) - ¥ Ve, (10,1/10,| * Entropy(0,))}
(11) Od<—{p :peOVp, €p3, : g, =max, (Go)}
12) return O,
(13) End

ALGORITHM 4: ComputeProfileClassSet.

(1) isActive

(2) INPUT: u (profile of user)

(3) i (item or set of items)

(4) OUTPUT: bool (True or False)

(5) Begin

(6) isActive «—— False

(7) ACTIONS «— {click, search, rate, bought}
(8) A «— {x: x is recent action on i by u AND x e ACTIONS}
) if (A#+Q)):
(10) isActive «— True
(11) return isActive
(12) End

ALGORITHM 5: isActive.

(1) JaccardSimilarity
(2) INPUT: u; (profile of user)

(3) u;j (profile of user)

(4) OUTPUT: k (similarity value)
(5) Begin

(6) ke— [(uinu) / (u;Uw)
(7) return k

(8) End

ALGORITHM 6: JaccardSimilarity.

(1) Apriori
(2) INPUT: M (set of profiles similar to profile u)

(3) I, (set of sets of items actioned by M)

(4) u (profile of user)

(5) OUTPUT: F (set of items frequently actioned by M)

(6) Begin

(7) k «— 0.25;(support threshold)

(8) I, —— {X: X eI AND isActive(M, X) V X}

9) FrequentSets «— {X: Support (X, |Im|)>=k, XIm}
(10) F«—{i: i e X, X € FrequentSets,VX}
@11) return F
(12) End

ALGORITHM 7: Apriori.

Mathematical Problems in Engineering 9

(1) Entropy
(2) INPUT: O (set of old profiles)
(3) OUTPUT: Entropy Value

(4) Begin

5) Entropy—" (|0, 1/|0))Log2 (10, /|0]) - (I0_/|O])Log2 (I0_I/|O)
(6) O, number of profiles in O with positive actions

(7) return Entropy

(8) End

ALGORITHM 8: Entropy.

(1) Support

(2) INPUT: X (set of items)

3) |I,,| (number of items transacted)
(4) OUTPUT: S,ai0 (support ratio of X)

(5) Begin

(6) count «— 0

(7) for all i in I,

(8) if (i==X)

9) count «— count + 1
(10) Sratio «— (count/|L,|) * 100
(11) return S,a4o
(12) End

ALGORITHM 9: Support.

Database server
storage of client data

) web server
Regyfest client data hosting the HUC algorithm

Client data
to the web service

Request

istory]

mmendations:
[Ttem 1, item 2, ..., item n]

Clients rgQuest access
to webrservice

Clients/customers

FIGURE 3: Experimental setup: clients interacting with the HUC algorithm.

implements the ID; decision tree. Given that on a platform this new list. This method reduces the time for extracting
there are a million active users, Algorithm 4 will trim down similar users significantly. Operations such as this can be run
the number of active users to a very small list of maybe upto ~ in the background so that they do not disturb user
50 users. Algorithm 2 will then compute similar users from interaction.

10

TaBLE 3: Transactional data.

Data captured Data type Description
ilDecommendatlon Int Identify recommendations
. . Users, receivin,
Subject user Object 18
recommendations
Recommended Time . . .
. Time recommendation received
time stamp
. . User who clicked
Clicked user Object .
recommendation
. . Time Time a recommendation
Clicked time .
stamp was clicked

The time complexity of the classification algorithm
(computeProfileClassSet algorithm) is as follows:

n=|0|, m=|G,, d=|04, k=constant, e=—A—,
T(Entropy(o) =1,

T(

Yudr (10,110, |l +Entropy (O,))

x€V,

b

T(Go)=1+e* k,T(max) =n,T(Od)=n
T(computeProfileClassSet)=1+exk+n+n
O(l+exk+n+n)=e+n+n=0(n)

isActive() is the fifth algorithm which checks whether a
particular user is active on a platform or not. The time
complexity for Active algorithm is only O(1) since there is
one operation that checks if a condition is true or false.

The Jaccard similarity function takes two sets of items
and returns a value from a range of 0-1, 1 meaning the sets
are similar and 0 meaning they are not similar. Its known
time complexity is as follows:

T(JaccardSimilarity) = O(n?)

O(n?) is the known time complexity for the Jaccard
algorithm, where n =number of sets.

The Apriori algorithm is the one that does the underlying
work of implementing the association rule mining tech-
nique. It computes the frequent set using a threshold value.
Its time complexity is O(n), where n=number of unique
items in set I,, or in the set of all transactions.

4. Experimental Setup

The HUC algorithm was evaluated using online experi-
mental evaluation methods since it was integrated with
Unipals, a growing social site/network for Zimbabwean
universities. This social site is used by university employees
and students. However, any web user can open an account
on the platform just like Facebook and make friends. By the
time it was tested in December 2018, the platform had 1486
users and the number of users is still increasing. 1486 users
were a good initial step for a meaningful online evaluation.

4.1. Aim and Objectives. The aim is to find out if the HUC
algorithm is coping up with the dynamics of user

Mathematical Problems in Engineering

preferences and does it offer novel and serendipitous
recommendations.

4.2. Background. The HUC algorithm can be integrated with
a web/mobile application that provides recommendation
services to its clientele. When a client is interacting with an
application, the client’s information and segmented history are
sent to the algorithm so that it will compute recommenda-
tions. After computation, the algorithm returns items to be
recommended to the client which would then be presented on
the client’s interface. This procedure is shown in Figure 3.

4.3. Procedure. In this experiment, we integrated the HUC
algorithm with a growing social network for universities in
Zimbabwe Unipals: Unipals. The source code of the algorithm
implementation is found on GitHub. The algorithm recom-
mends friends or pals on the platform. The users’ profiles
{social, cultural, psychological, economic} are implicitly built
as the user interacts with the platform. The user profile or
context which was used by the algorithm to compute rec-
ommendations consists of {location, countryOfOrigin, time,
friends, age, gender, picture-tags, language, likes, hobbies,
interests}. This holistic user context increases the knowledge
about the user so as to predict novel recommendations. The
algorithm computes and then recommends pals or friends to
the subject user. The summarized procedure of the whole
process is depicted in Figure 3. Since this was an online ex-
periment, the users were not aware that the algorithm is under
test. The algorithm captured how the subject user responded to
recommendations made.

4.4. Data Set Design and Preparation. The interaction of
users with the social network and the interaction of users
with the recommender algorithm were logged and saved in a
csv file which can be accessed on dataset or on GitHub. For
security reasons, the user profile data are not given for
analysis. The information captured during transactions is
shown in Table 3.

The recommendation ID in Table 3 represents the rec-
ommendations that have been offered to users. The subject
user is the user that is receiving recommendations, and the
clicked user is the user that is clicked by the subject user. When
a subject user logs in, he/she is recommended a friend/pal, and
if the user clicks the recommended user, the recommended
user becomes the clicked user. The recommendation time is
the time when the recommendation is made, and the clicked
time is the time when the clicked user is clicked.

4.5. Online Evaluation Experiment. RS research is often
based on comparisons of predictive accuracy: the better the
evaluation scores, the better the RS. However, it is difficult to
compare results from different RSs due to many options in
design and implementation of evaluation strategies [38].
Therefore, a holistic approach of evaluating an RS will be a
fair method of evaluation. While offline analysis is useful,
user satisfaction (which is the main focus of this research)
can only be measured in an online context [39].

Mathematical Problems in Engineering

11

Hi, kavu! Get started making new friends!

T . 4

Edit pr'oﬁle Add photos Invite friends Search Forums

kavu

Recommendations Age: 16 v -to-

[+ Save | X Clear]

Q@Global Updates Liv

110 ¥ sex ¥ Male ¥ Female AllCounties v

caro 50

B Tay Ninh

sixpence 24
2= Harare

kudachiwas 27
= Harare

tinashematamba04 2 zichyjomane 21

2= Harare 2= Bulawayo

FIGURE 4: A snippet of recommendations made when a user logs in.

450
400 A

NN W W
S U o W
S o o O
L L L

Subject user

—
w
(=}

100 -+
50 ~

Morning Afternoon

Recommended session

Night Evening

Ficure 5: The relationship between subject users and recom-
mendation time.

During online evaluation, the users are real users in a
fully deployed system. This approach is less susceptible to
bias from the recruitment process because the users are often
directly using the system in the natural course of affairs [22].
From this background, we applied the online evaluation
approach as a way to assess the performance of the algo-
rithm. The interaction of the users with the algorithm is
recorded. The live process can be viewed at dataset. This
dataset in csv has the latest and recorded old transactions. In
the analysis section, the algorithm was assessed using the
following metrics: conversion rate, coverage, robustness,
accuracy, novelty, and serendipity.

5. Results

Figure 4 shows one of the author’s home pages just after
logging in. A user received recommendations even before
having friends on the platform since recommendations
were derived from the user’s profile. This approach
eliminates the cold start problem which is also a serious
problem in many RSs. When the logged in user clicks one
of the recommended friends, the algorithm again com-
putes new novel recommendations. User interactions were
captured and exported as csv dataset for analysis, and

Clicked user

FIGURE 6: The relationship of subject user, clicked user, and time.

python libraries were used for analysis and for visuali-
zation. The Jupyter notebook file where result analysis was
performed is found on GitHub. From the data gathered for
analysis, (TheUser) is the one that received recommen-
dations and clicked (the user which was clicked by the
TheUser). From the dataset, more than a thousand rec-
ommendations where generated and the first 700 rec-
ommendations generated a lot of responses from the users.
One thousand (1000) recommendations were offered to
250 users, which entailed that there were 250 active users
on the platform and those 250 active users received rec-
ommendations at least once from the algorithm.

Figure 5 shows the record of the number of active users
and the time periods which they responded to recom-
mendations. Redundant records were found in the form of
one active user responding to more than one recommen-
dation. The graph demonstrates that there was much activity
in the morning as compared to other time sessions.

Considering the fact that, in Figure 6, the time sessions
were encoded as follows: 0.0-1.0 (midnight), 1.0-2.0 (af-
ternoon), 2.0-3.0 (evening), and 3.0-4.0 (morning), we can
see that a lot of activity happens in the morning, probably,
that is, when the users which were mostly students got free to
chat on the platform. Figure 6 also shows that the first 100
subject users responded a lot to their recommendations. This
demonstrates that the algorithm was not affected by the cold

12

Mathematical Problems in Engineering

TABLE 4: A snippet of recorded transactions.

Date recommended Date clicked Time recommended Session TheUser Clicked
2018-04-20 07:57:00 2018-04-20 07:57:00 7:57:0 Morning 0 0.0
2018-04-20 09:05:00 2018-04-20 09:05:00 9:5:0 Morning 0 0.0
2018-04-20 09:14:00 2018-04-20 09:15:00 9:14:0 Morning 0 1.0
2018-04-22 11:42:00 2018-04-22 11:42:00 11:42:0 Morning 1 5.0
2018-04-22 11:42:00 2018-04-22 11:42:00 11:42:0 Morning 1 6.0
2018-04-23 08:17:00 2018-04-23 08:17:00 8:17:0 Morning 2 7.0
2018-04-23 11:16:00 2018-04-23 11:17:00 11:16:0 Morning 3 8.0
2018-04-23 14:29:00 2018-04-23 14:30:00 14:29:0 Afternoon 5 9.0
2018-04-24 13:20:00 2018-04-24 13:20:00 13:20:0 Afternoon 6 11.0
2018-04-23 17:13:00 2018-04-23 17:13:00 17:13:0 Afternoon 1 11.0
2018-04-24 14:07:00 2018-04-24 14:08:00 14:7:0 Afternoon 1 3

start problem. Cold start is failure to draw any inferences for
new users due to insufficient information of those users. The
user profiles which participated in this experiment were not
availed for analysis due to privacy issues from the service
providers of the platform.

6. Discussion

Table 4 shows the first 20 records of user transactions.
TheUser column is a unique identification of active users
which received recommendations. The column Clicked
represents the users which were clicked by TheUser, and ID
numbers for TheUser is different from those for Clicked. If
we look at The Userl, we can see that the user is quite active,
The Userl clicked ClickedID (5, 6, 11, and 3) at different
times, that is, 11:42, 17:13, and 14: 08, respectively. These
users were clicked at different dates and time, showing that
the algorithm was a bit dynamic and changes its recom-
mendations with time and the user preferred those
recommendations.

True positive (tp): refers to the recommended users
which TheUser clicks.

False positive (fp): refers to the recommended users
which TheUser did not click.

6.1. Precision. Since users where logged in sessions, it is
important to figure out that unique recommendations per
session can give us valuable information. Suppose that each
session would take 10 minutes before a user is logged out, the
total number of recommendations generated by the algo-
rithms per the recorded transactions was 646. From these
646, those which the active users responded to were 77 per
each unique session.

Therefore, the accuracy rate or precision is given below:
(tp/tp + fp) * 100.

6.2. Diversity. Diversity refers to the uniqueness of the
recommended items, i.e., out of the recommended users
how many were unique? Getting back to the recorded
transactions, from the generated unique sessional recom-
mendations which were 646, 251 were unique recom-
mendations (users which were never been recommended

before). This meant that the diversity rate of the algorithm
was (251/646) = 100 =38.9% and shows that many of the
registered users where not active on the platform. There-
fore, the algorithm was left with no option but to rec-
ommend the remaining active users which were not that
unique.

6.3. Coverage. Coverage looks at the total number of items
on the platform, and out of the total, it identifies how many
of these were ever recommended during recommendations.
From the time when the transactions were recorded, the
social network had 1486 users, and out of these, 1115 were
picked for recommendations. Therefore, coverage rate be-
comes users involved/total users = (1115/1486) * 100 = 75.03%.

6.4. Novelty. Novelty determines how unknown recom-
mended items are to a user. The novelty of a retrieval set has
been defined with respect to the end user as the proportion
of known and unknown relevant items in the recommended
list [40].

That s, given L C I, where I is the recommended list, L is
the set of items in I, that the user(u) likes, L can be partitioned
as L = L, UL, into those items, L, is already known items to
the user, and L, is unknown items to the user. Then, the
novelty per user is Novelty(R) = |L,|/|L|, where R is the set of all
active users who received recommendations. The average
novelty of the algorithm is

Z L 85.561%
Pul ™~ 85.561%. (4)

IR|

ueR

This shows that the novelty of the algorithm was quite
high, from the transactions which were recorded.

6.5. Serendipity. An item is serendipitous if it is novel and
relevant [8]. Serendipity is the measure of how surprising the
relevant recommendations are.

(1) Average number of recommendations: R at time t,
and time ¢,
(2) Average number of obvious items on time ¢, and t,: ¢

(3) Number of nonobvious items on time ¢; and
t,=R—-q

Mathematical Problems in Engineering

Suser,-:
count=0.0
Viin [R —q]

if[R — g] are useful at ¢, and ¢,
count = count + 1

Suseri = count/ |t0talRecommendations|

S

user;

7
AverageSerendipity = Z () = 85.47%.

|total

recommendations |

(5)

The best way to measure novelty and serendipity is
asking users whether they were already familiar to a rec-
ommended item. However, this is impracticable in offline
experiments [40]. It is for this reason that we took an online
experimental approach to dealing with real users. The user’s
familiarity with an item was tracked from the user’s history.
If a user has been recommended an item before, that item is
labeled familiar and is done implicitly. However, we did not
consider other ways which the user might be familiar with
the item.

Taking into consideration the level of novelty, seren-
dipity, and dynamism of this algorithm, we can tell that the
algorithm was really novel and serendipitous given that the
rate was 84% at average. The level of novelty was better as
compared to other novel algorithms which are found in the
literature such as [40, 41] which experience a maximum of
77%. The algorithm’s recommendations were also changing
with time sessions especially the four time sessions
(morning, afternoon, evening, and midnight), which means
it was considering time context very well. We found out that
its accuracy rate was very low at 36%. It was discovered that
there was a trade-off between serendipity and accuracy rate
[42]. The hypothesis that, if an algorithm takes a holistic
stance of incorporating contextual user profile in the form of
social, cultural, psychological, and economic profile, to-
gether with user-actioned items, that algorithm can offer
dynamic, novel, and serendipitous recommendations was
proven.

6.6. Conclusion. From the algorithm evaluation and the
discussion made, we found out that the algorithm was
quite novel and serendipitous, given that the average
novelty and serendipity to each user was an average of
85%. The diversity of the algorithm was a bit low with an
average of 38% due to the number of active users on the
platform since the algorithm only considers active users to
generate neighbourhood. This diversity is comparable to
one of the best novel algorithms which were implemented
by Hurley and Zhang [41] which had a novelty range of
38-44% and Zanitti et al. [43] which ranges from 25-52%.
The platform did not perform well on poor mobile net-
works, and this resulted in users visiting the platform only
when using public networks or WiFi. This reduced the
number of active users and affected the performance of the
algorithm. However, the coverage rate of the algorithm

13

was at an average rate of 75%, and this entails that the
number of available active users were mostly considered
when constructing recommendations. Finally, the article
demonstrated that if a recommender algorithm is given
timely and detailed profiles of users, dynamic, novel, and
serendipitous recommendations can be realized, and this
will increase (1) traffic on a site, (2) click streams, (3)
desired decisions, and (4) retention rates.

7. Summary

This article proposed a novel mechanism of generating rec-
ommendations based on a holistic understanding of user
context to tackle three issues: (1) adequate adaptation to dy-
namic user preferences, (2) user-centric recommendations
(user satisfaction), (3) adequate novel and serendipitous rec-
ommendations. The mechanism was further demonstrated as a
process of deriving a user-centric recommender algorithm. The
algorithm takes a hybrid approach of collecting holistic user
contextual information which can be accessed from social
media and then uses a user-user collaborative approach to
generate and recognize novel, serendipitous, and dynamic
recommendations. The holistic users’ contextual knowledge
mainly involves the social, cultural, economic status, and
psychological profile of a user. The algorithm had an average
time complexity of O(n?).

The results were quite promising for a social platform and
we could not verify the performance of the algorithm over
many platforms due to the lack of availability of other platforms
to integrate with such as e-commerce and e-learning. This can
be performed as future work. Another open issue is finding out
which profile category among the four (social, cultural, psy-
chological, and economic status) is more significant on plat-
forms such as social networks, e-commerce, e-learning, movie
sites, and online news. The social network did not allow users to
tag most of their activities, and this also provided a limitation to
this algorithm since the algorithm was supposed to be fed with
updated user activities. Updated user activities would provide
the algorithm with current interests and mood of users. In
future, user activities could be tapped outside the service
provider so that the algorithm is given a wider experience of a
user to provide diverse and novel recommendations to the user.
Our future work also involves developing an API that im-
plements this algorithm so that different services can use the
API to generate recommendations on different platforms.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] Z. D. Champiri, S. R. Shahamiri, and S. S. B. Salim, “A
systematic review of scholar context-aware recommender

14

systems,” Expert Systems with Applications, vol. 42, no. 3,

pp. 1743-1758, 2015.

J. Beel, C. Breitinger, S. Langer, A. Lommatzsch, and B. Gipp,

“Towards reproducibility in recommender-systems research,”

User Modeling and User-Adapted Interaction, vol. 26, no. 1,

pp. 69-101, 2016.

[3] F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recom-

mendation systems: principles, methods and evaluation,”

Egyptian Informatics Journal, vol. 16, no. 3, pp. 261-273, 2015.

P. Brusilovsky, A. Felfernig, P. Lops et al., “RecSys’16 Joint

Workshop on Interfaces and Human Decision Making for

Recommender Systems,” in Proceedings of the 10th ACM

Conference on Recommender Systems, pp. 413-414, Boston,

MA, USA, September 2016, https://dl.acm.org/citation.cfm?

1d=2959199.

[5] M. H. Aghdam, “Context-aware recommender systems using
hierarchical hidden Markov model,” Physica A: Statistical
Mechanics and Its Applications, vol. 518, pp. 89-98, 2019.

[6] K. Haruna, M. A. Ismail, D. Damiasih, H. Chiroma, and
T. Herawan, “A comprehensive survey on comparisons across
contextual pre-filtering, contextual post-filtering and con-
textual modelling approaches,” Telkomnika (Telecommuni-
cation Computing Electronics and Control), vol. 15, no. 4,
pp. 1865-1874, 2017.

[7] D. Kotkov, S. Wang, and J. Veijalainen, “A survey of ser-
endipity in recommender systems,” Knowledge-Based Sys-
tems, vol. 111, pp. 180-192, 2016.

[8] S.Vargas, “Novelty and diversity evaluation and enhancement
in recommender systems,” Ph.D. Dissertation, Universidad
Auténoma de Madrid, Madrid, Spain, 2015.

[9] K. Lee and K. Lee, “Escaping your comfort zone: a graph-
based recommender system for finding novel recommenda-
tions among relevant items,” Expert Systems With Applica-
tions, vol. 42, no. 10, pp. 4851-4858, 2015.

[10] T.D. Kavu, K. Dube, P. G. Raeth, and G. T. Hapanyengwi, “A
characterisation and framework for user-centric factors in
evaluation methods for recommender systems,” International
Journal of ICT Research in Africa and the Middle East, vol. 6,
no. 1, pp. 1-16, 2017.

[11] K. Verbert, N. Manouselis, X. Ochoa et al., “Context-aware
recommender systems for learning: a survey and future
challenges,” IEEE Transactions on Learning Technologies,
vol. 5, no. 4, pp. 318-335, 2012.

[12] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recom-
mender Systems Handbook, Springer, Berlin, Germany, 2011.

[13] M. G. Campana and F. Delmastro, “Recommender systems
for online and mobile social networks: a survey,” Online Social
Networks and Media, vol. 3-4, pp. 75-97, 2017.

[14] F. Keikha, M. Fathian, and M. R. Gholamian, “TB-CA: a
hybrid method based on trust and context-aware for rec-
ommender system in social networks,” Management Science
Letters, vol. 5, no. 5, pp. 471-480, 2015.

[15] Li. Lei, “Next generation of recommender systems: algorithms
and applications,” Dissertation, Digital Commons, Berkeley,
CA, USA, 2014.

[16] M. Quadrana, P. Cremonesi, and D. Jannach, “Sequence-
aware recommender systems,” ACM Computing Surveys,
vol. 51, no. 4, pp. 1-36, 2018.

[17] L. Buchanan, Leigh Buchanan (2006), A Brief History of
Decision Making, Harvard Business Publishing, Brighton,
MA, USA, 2006.

[18] R. Chen, Q. Hua, Y.-S. Chang, B. Wang, L. Zhang, and
X. Kong, “A survey of collaborative filtering-based recom-
mender systems: from traditional methods to hybrid methods

[2

[4

Mathematical Problems in Engineering

based on social networks,” IEEE Access, vol. 6, pp. 64301-
64320, 2018.

[19] M. Eirinaki, J. Gao, I. Varlamis, and K. Tserpes, “Recom-
mender systems for large-scale social networks: a review of
challenges and solutions,” Future Generation Computer Sys-
tems, vol. 78, pp. 413-418, 2018.

[20] S. Karimi, A purchase decision-making process model of online
consumers and its influential factor a cross sector analysis,
Ph.D. thesis, pp. 1-326, 2013, https://www.escholar.
manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-
scw:189583{&}datastreamId=FULL-TEXT.PDF.

[21] E. Frolov and I. Oseledets, “Tensor methods and recom-
mender systems,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, vol. 7, no. 3, article 1201,
2017.

[22] C. C. Aggarwal, Recommender Systems, Springer, Berlin,
Germany, 2016.

[23] Y. Koren, “Collaborative filtering with temporal dynamics,” in
Proceedings of the 15th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Paris,
France, June 2009.

[24] K.Kapoor, V. Kumar, L. Terveen, J. A. Konstan, and S. Paul, “I
like to explore sometimes: adapting to dynamic user novelty
preferences,” in Proceedings of the 9th ACM Conference on
Recommender Systems - RecSys’15, pp. 19-26, Vienna, Austria,
September 2015.

[25] R. Mu, X. Zeng, and L. Han, “A survey of recommender
systems based on deep learning,” IEEE Access, vol. 6,
pp. 69009-69022, 2018.

[26] M. Taghavi, J. Bentahar, K. Bakhtiyari, and C. Hanachi, “New
insights towards developing recommender systems,” The
Computer Journal, vol. 61, no. 3, pp. 319-348, 2018.

[27] C. V. Sundermann, M. A. Domingues, M. D. Silva Conrado,
and S. Oliveira Rezende, “Privileged contextual information
for context-aware recommender systems,” Expert Systems
with Applications, vol. 57, pp. 139-158, 2016.

[28] X. Yang, Y. Guo, Y. Liu, and H. Steck, “A survey of collab-
orative filtering based social recommender systems,” Com-
puter Communications, vol. 41, pp. 1-10, 2014.

[29] Z. Yang, B. Wu, K. Zheng, X. Wang, and L. Lei, “A survey of
collaborative filtering-based recommender systems for mobile
internet applications,” IEEE Access, vol. 4, pp. 3273-3287,
2016.

[30] B. P. Knijnenburg, M. C. Willemsen, Z. Gantner, H. Soncu,
and C. Newell, “Explaining the user experience of recom-
mender systems,” User Modeling and User-Adapted In-
teraction, vol. 22, no. 4-5, pp. 441-504, 2012.

[31] J. J. Levandoski, M. Sarwat, E. Ahmed, and M. F. Mokbel,
“LARS: a location-aware recommender system,” IEEE 28th
International Conference on Data Engineering, vol. 1,
pp. 450-461, 2012.

[32] S. Mahapatra and A. Tareen, “A cold start recommendation
system using item correlation and user similarity,” ACM
Transactions on Information Systems, 2015, https://www.acsu.
buffalo.edu/{~}suchismi/iRec.pdf.

[33] M. Millan, M. Trujillo, and E. Ortiz, “A collaborative rec-
ommender system based on asymmetric user similarity,” in
Proceedings of the 8th International Conference on Intelligent
Data Engineering and Automated Learning (IDEAL’07),
pp- 663-672, Springer-Verlag, Birmingham, UK, December
2007.

[34] P. Kumar and S. Chalotra, “An efficient recommender system
using hierarchical clustering algorithm,” Internationa Journal
of Computer Science Trends and Technology (IJCST), vol. 2,

https://dl.acm.org/citation.cfm?id=2959199
https://dl.acm.org/citation.cfm?id=2959199
https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:189583{&}datastreamId=FULL-TEXT.PDF
https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:189583{&}datastreamId=FULL-TEXT.PDF
https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:189583{&}datastreamId=FULL-TEXT.PDF
https://www.acsu.buffalo.edu/{%7E}suchismi/iRec.pdf
https://www.acsu.buffalo.edu/{%7E}suchismi/iRec.pdf

Mathematical Problems in Engineering

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

(43]

no. 4, pp. 1-6, 2014, http://www.ijcstjournal.org/volume-2/
issue-4/IJCST-V2I4P1.pdf.

J. Leskovec, Mining of Massive Data Sets - Ullman, Cambridge
University Press, Cambridge, UK, 2014.

R. Singh, B. Kr. Patra, and B. Adhikari, “A complex network
approach for collaborative recommendation,” CoRR, 2015,
http://arxiv.org/abs/1510.00585.

S. D. Sondur, S. Nayak, and A. P. Chigadani, “Similarity
measures for recommender systems: a comparative study,”
International Journal for Scientific Research and Development,
vol. 2, no. 3, pp. 76-80, 2016, http://www.journal4research.
org/Article.php?manuscript=J4RV213036.

A. Said, A. Bellogin, A. De Vries, and B. Kille, “Information
retrieval and user-centric recommender system evaluation,”
in Proceedings of the 21st Conference on User Modeling, Ad-
aptation and Personalization (UMAP 2013), pp. 5-8, Rome,
Ttaly, June 2013.

C. Hayes, P. Massa, P. Avesani, and P. Cunningham, “An on-
line evaluation framework for recommender systems,” in
Proceedings of the Recommendation and Personalization in
eCommerce (2002), p. 50, Malaga, Spain, January 2002.

L. Zhang, “The definition of novelty in recommendation
system,” Journal of Engineering Science and Technology Re-
view, vol. 6, no. 3, pp. 141-145, 2013.

N. Hurley and M. Zhang, “Novelty and diversity in top-N
recommendation—analysis and evaluation,” ACM Trans-
actions on Internet Technology, vol. 10, no. 4, pp. 1-30, 2011.
M. Kaminskas and D. Bridge, “Measuring surprise in rec-
ommender systems,” Ir.Ii.Uam.Es, vol. 69, pp. 107-144, 2011.
M. Zanitti, S. Kosta, and J. Kirk Serensen, “A user-centric
diversity by design recommender system for the movie ap-
plication domain,” in Proceedings of the Companion of the
“The Web Conference 2018”, pp. 1381-1389, Lyon, France,
April 2018,

15

http://www.ijcstjournal.org/volume-2/issue-4/IJCST-V2I4P1.pdf
http://www.ijcstjournal.org/volume-2/issue-4/IJCST-V2I4P1.pdf
http://arxiv.org/abs/1510.00585
http://www.journal4research.org/Article.php?manuscript=J4RV2I3036
http://www.journal4research.org/Article.php?manuscript=J4RV2I3036

Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

