Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

TLACHING COMPUTLR PROGRAMMING IN

INKTEZ _DIATL oCHOULS

A thesis presented in partiel
fulfilment of the requirements
for the degree of Doctor of Philosophy
in .ducation

et Messey University

Richerd John 3Spence

1975

il
isbstrect

This investigation concerned classroom leerning of
a computer progremming course by Form 2 pupils in New
sealend Intermediate schools. Samples were employed
representing the full renge of &bility levels found in
such schools,

The programming tesk was divided into 2 pre-coding
phase and & coding phese, and the capecity to .erform
the tasks relating to each of the two phases were
postulated as separate abilities. This division was
shown to be Justified, Nevertheless, measures of the
two sbilities were found to be moderately correlated,
end each slso correlated moderetely with & measure of
methematicel attainment. Anelysis of the results showed
that these correlations were not due to general
intelligence zlone, The fine structure underlying the
reletionships was &elso exemined,

In the study, it was further shown that three
measures of ac:demic achievement predicted attainmeant in
the progremming cmrse more effectively than fourteen
personality measures., oome similarities and some
differences were discovered between the results of this
prediction study end similar studies with adults,

Finally, two different teaching sequences were
compaered against each other end with a control group,
It was established that mestery of the pre=coding phase
of pogremming was improved by teeching, but that the
plece in the course where this teaching was given made no
significent difference to end-of-course schievement, On
the other hend, altering the timing of tne instruction
in the elements of the progremming langusge was found to
produce & significent difference in mastery of coding
skills.

iii

CORT ENTS
List of Tables . . . B - B . . iv
List of Fisurﬁl vi
Acknowledgements o vii
rrefece - . . . viii
CHutToRr §8 INTRCDUCTION 3
Heview of the Literature , . . « 0 S

CHAPTZR IXs OJLFINITICONG, AGCUMPTIONS ALD

HYPOTHLGES ™ 15
Definitions of Progremming Terms . . . 15
The Clessroom I'rogramming cnvironment, . 17
Hypotheses Investigeted in This Study . 20
ChalTeR IXIXs METHODS ANRD MATERIALS . . 23
" Choice of & Programming Course . . . 3
ihe Leamples Used in the Study . . . 25
Tests Chosen for the Study 29
The Structure of the oStudy N o . . 31
Low the oStudy Leveloped 32
CHAPTER IVs TLE DEVELCIMENT OF To8T5 COF CODING
KNOWLLDGE AND ALGORITHMIC SKILL 35
Construction of the Coding knowledge Test, 35
Validity of the Coding Knowledge Test, . 40
Reliebility of the Coding Knowledge Test . 41
coustruction of the Algorithmic Skill Test 42
Validity of the Algorithmic Jki’™ Test . 45
ieliebility of the Algorithmic 5kill Test. 45
CEAPTLR Vi RESULTS « & . 46
Composite Fethematics Attainment acore Jerined 46
Algorithmic Skill ve Coding Knowledges. o 47
ilgorithmic okill end Coding ancwledga
vs Mathematical Attainment . 48
Prediction of Irogramning Attainmenta. . 49
Comperison of Tesching Strategies . . 60
CHAPTLR VIs CONCLUSIONS , 63
Summery of the Results .« o« o« o & 63
Interpretation of the Results. g . 63
Suggestions {or Further leseerch . o+ o 68
Suunayy o B . . - 70
M:‘B...NUIbm . . 72

ippendix A: Outlinol of tho Gouraos Used

for the uonpariaon of Instructionael

Strategies 72
Appendix B: Test or hnthematioal Achievan;nt

Used in the Correlstionsl Ltudy: Test

Booklet &nd Testing Procedure . 7%
ippendix C: Coding Knowledge Test, erk 2:
Test Dooklet and Testing Procedure . . 82

goondix Ds Algorithmic Skill Test: Test
oklet and Testing Procedure . S a 111

B MIOGW L - L] L L . L . L 152

Table 1

Table 2

Teble 3

Teble 4

Table S

Table 6:

Teble 7

Teble 8

Teble 9

Table 10:

o

iv

LIST OF TABLES

Summery Deteils of Twelve Prediction
Studies of Progremming Performeance,
describing Sample end Criterion Measure
Used, end Correlation Coefficients

obtalned between Predictor end

Criterion leasure e 11

Content of Five Programmer Aptitude
Testa, by Test Title snd Type of Item . 13

1973 Descriptive Statistics for Semple

of 96 Subjects Used in Correlationsl

Study end for 4ill New seslend Form 2
Pupils: Age, Otis IQ (Means end Stendard
Devistions) and Sex Ratios . . . 26

Descriptive Stetistics for Sample of 36
Subjects Used in Test-Retest Study of
Coding Knowledge Test: .ge, CUtis I{
(Meens and Stenderd Daviationn) and

Sex Retio ° . ° ° ° ° ° o 27

Jescriptive Statistics for Sample

Groups of Subjects Used in Study of
Different Teaching Strategles: ige

Otis 1y (Meesns end Standard Jeviatlon')

and Sex Retios 27

1974 Descriptive Statistics for _aumple

of 67 Subjects Used in Prediction Study

end for all lew Lesland Form 2 Pupils:

Age, Otis I, (Meens and Stendard
Deviations) snd Sex Retios . . . 28

Descriptive Statistics for Sample of 93
Subjects Used in Determineation of
Heliebility of Algorithmic Skill Test:

ige, Otis 1Q (Meens end Standerd
Doviationa) end Sex Ratio . . . « 28

Correlation Coefficients between Item
Scores and Test Totels for Coding

Knowledge Test Merks 1 end 2, and

Chenges Introduced between lisrks, by

ltem . ° ° ° ° ° ° ° 40

Correlation Coefficients between Item
Scores and Test Totel for Algorithamic

Skill Test in end after 1972, and Chenges
Introduced in Revision of Procedure, by -
Item ° ° ° ° . ° ° °

Fetrix of Simple Correletion Coefficients
OUbtained in 1973 Correlational Studyj
Methematics Atteinment Subscores by
Programming Atteinment Subscores end

Oti' IQ ° ° . ° ° ° ° ° 47

Teble

Table

Teble

Table

Teble

Teble

Teble

Teble

Teble

Teble

Table

11

12

1% :

14

15

16

17

18

19

20

2l

Matrix of Partiel Correlation

Coefficients Factored by Otis 1Q,

Obteined in 1973 Correlation utudy
Fethemetics Atteinment Cubscores by
Frogremaing Atteinment Gubscore . . 48

Matrix of Simple Correlation Coefficients
Ubteined in 18?5 Correlation Study:
Methenetics Atteinment Subscores &nd
Progremming Attsianment Subscores ... 49

Stepwise Multiple Regreossion Analysis

Using Algorithmic Skill Test Score as
Dependent Varisble, Iriroducing Academic
Atteinment Veriables before Personelity
Verigbles: with Academic Predictors

Unly, end with All Veriebles in —quation;
Bete Coefficients end Multiple R*., . 51

Stepwise lultiple Regression Anelysis

Using Algorithmic Gkill Test Score as
Dependent Varieble, Introducing

Personality Variebles Before /cedemic
Atteinment Veriebles: with Personelity
Predictors Unly, and with All Verisbles

in dquation. Bete Coefficients and
uultiple ? ™ ° ° ° ° ° ° ° 53

otepwise lMultiple Regression inelysis Using
Coding Knowledge Test Score as Dependent
Varisble, Introducing Academic Atteinment
Verisbles before Personslity Verisbles:
with iAcedemic Fredictors Only, snd with

A1l Veriebles in Lguation; Deta
Coefficients and lMultiple R', . . 55

Stepwise lMultiple Regression inalysis

Using Coding Knowledge Test Lcore as
Dependent Veriasble, Introducing

Personality Verisbles before icademic
Atteinment Veriebles: with Personality
Predictors Only, and with All Variebles

in ;quation; Beta Coefficients and
Plultipla R ° ° . ° ° ° ° 56

Regression Analyses: Hegression
Coefficients end their Standerd Errors,
by Predictor Verisble 97

brief Description of the H5P{ Factors,
b’ Factor . ° ° ° ° ° ° 59

Algorithmic 8kill Test Scores, 1974
Sample, Summery of Analysis of Variesnce 61

Algorithmic Skill Test Scores, 1974
Sample, Differences between Taught
Groups end Control 61

Coding Knowledge Test Scores, 1974
Semple, Differences between Taught
Group‘ L] ° L] L] [] [] L] [] 62

vi

LIST COF FIGURES

Figure 1 : Disgrem Showing Genersl FPlan of
Reseerch Progremme « 4

Fdgure 2 3 odel of Student Behaviour in
Underteking Clessroom Programming . 19

Figure 3 : Flow Diagram showing Chronological
Levelopment of Study 34

vii

Acknowledgements

The writer thanks his supervisors, Frofessor
CeGeN, Hill, Ur D.M, FcAlpine end Dr R.E, Sess of
Messey University's Depertment of _ducation for their
belp. Their velusble suggestions end patient reading
of earlier drafts of this th sis ere especially
spprecieted.

Thaenks &re also due to Mr J. Dowling, formerly
District Genior Inspector of Schools for eancoursging
the project, and to the Principels of the three
perticipating schools: lMessrs R, Werd, J. Morris
end P, licoarthy.

To those others in industrisl, scademic snd
educationsl c¢circles who have mede varied contributions,
the writer acknowledges profound indebtedness.

viii
PREFACE

The burgeoning growth of computer studies in
primery end secondary schools mekes reseerch into its
educetionel significance & matter of urgency. The
growth hes been accelerated by the falling cost of
computer herdwere end the incressing number of tesachers,
perticularly of mathematics, who have some computing in
their background end & desire to teech it. GSince the
United Otetes is the world's mejor manufacturer of
computing equipment, it is there that developnents
have been most spectacular: the Survey of Computing
Activities in Secondery Schools (Darby et al., 197C)
gives & detailed eccount of the extent and character
of the growth in that country, Dut the growth hes
elso been described by the Oz(lD CUentre for :ducsational
iesearch and Iaunovation as occurring '

".ee On & hophezerd and rendom bssis. In the main,
the impetus hes come from individuals, meny of
whom were interested in only cne fecet, for
example, the use of computers in the teaching of
mathematics. OUne result of this is that in too
meny schools, couputer education is restricted to
methemetics lessons or even to methematicelly-
gifted pupils. When this happens, meny of the
most velusble rewards of computer educetion &are
lost.” (OuCb, 1971)

Well-founded reseerch will ensble educstors to decide
whether or not computer education in schools reelly
would produce worthwhile outcomes. Certainly,
prograuming enjoys widespreed support as & subject for
study in schools: The quotations that follow are
typicsl of almost deily utterances favouring the
introduction of progremming into the school curriculum:

"In the preperation of & program, logicel thought,
cere, and precision ere required ... The
discipline of systematic thinking and clear
coanunicetion that are &ssociated with the logiceal
sspect of computer work ere themselves of
educetionel value." (Scottish Zd. Dept., undated)

ix

"The disciplines of problem definition, systems
enalysis end design, flowcherting &nd progromming
heve been shown to significently develop the
child's &bility to epproach situetions in such a
confident, ordered, a&nd creative way."

(ICL/CLs, 1972)

"eeo 1 propose cresting &n environment in which
the child will become highly involved in
experiences of a2 «xind to provide rich soil for
the growth of institutions end concepts for
decling with thinking, playing and so on (tarough
computer programming) ... the empirical evidence
is very strong that we cen do it ..."

(Papert , 1971)

otatements like the above shere a common
characteristic: belief in en undefined "thinking"
skill end &n unspecified mechenism by which computer
programming ectivities stimulete it. Leceuse the
edvocates of programming &s & school subject have so
fer concerned themselves with demonstrating thet
progremming cen be taught &t quite Jjunior grede levels,
little hes been done to investigate the proper place of
programming in the school curriculum. At the sene time,
little is known empiricelly ebout how best to teach
programming, end to whom. Cox (1972) has written:

"In & recent search of the literature it wes
surprising and disconcerting to find 1little on the
effectiveness of teaching progremming. iost studies
congentrated on the tools used rather than on the
problem, though Seckmen et &l. (1968) document what
eny mansger knows: the gulf between the good &nd the
mediocre programmer it is high time we found
answers to some of the questions by controlled
experiments with & wide variety of groups.”

4 mein sim of the present study was to provide some of
those &nswers.

sxplanation of Technical Terms

Studies of computer education cross the boundaries
of zducetion and Computer science, &nd therefore draw
on the terminologies of both. Lecesuse computer terms
will be used throughout this &sccount, &nd becsuse they
ere essentisl to the discourse, the following
explenation is provided at this point ratber thsm in an
eppendix:

/i wLECTRONIC DIGITAL CUMPUTER is an essembly of
interconnected devices, msinly electronic but also
electromechenical, cepsble of perforning a wide variety
of functions on inform&eétion that is presented in the
form of CHARACTERS (letters, digits, punctuation
merks)., ‘Qhe business of getting informetion into the
computer is called INPUT, and the seme word is used
witbout ambiguity to denote the ingoing informetion
itself. (The term DATA is strictly equivalent to
"informetion", but is most usuelly encountered in
relation to input.) OUnce information has been input,
the computer cen i ROCLLo it &nd ulticetely CUTIUT the
modified informstion. The processing phase includes
&ll the dsta-menipulstion (e.g. arithmetic), logicsel
tests, »nd management of the computer's memory, or
STURZ, where informetion is held while it is being
worked on. By weans of INSTRUCIIUNS to the computer,
& human cen control the input, processing and output
that occurs.

., set of instructions to perform & specific
function is called & IROGRAM, However, es it can
modify the dete in its mewmory, the computer can also
modify its progrem; it is becuzuse of this distinctive
feeture that modern digitsl computers ere sometizes
called STULLD=IRUGRANM computers. Because the progrsam
is stored, its sequence cén be sltered by specisl LRAICH
instructions incorporated in the program itself. in
important use of branch instructions is to create LUUPS
in programs whereby certsin sequences of instructions
sre opersted repeatedly. Frograms will also be self-
modifying if they contain CONDITIONAL INSIRUCTIONGS

xi

which the computer only obeys under certain specified
conditions. All non-triviel progrems use conditional,
brench, and conditional brench instructions,

PHOGRANhINGl involves converting & problem into & set of
directions to & computer to solve it. The function is some-
times broken down into several parts, particularly if the
problem is very complex., & specific procedure for solving a
problem is an uLGbalIEkl. The process of writing the deteiled
step=-by-step instructions for the computer to follow is
SquhGl. sfter & progrem is written, it is tested by letting
it perform its function on test detes to which the proper
solution is known., ‘This process is ! .(Gknl CLulii.. or
J.o-Ussiliiy; when it is done using pencil and paper rather than
the computer itself, it is cealled @ Dioon=Jholrn,

Cereful end complete algorithm design and desk-checking
must be carried out in advence if a progrem is to be run on a
YolUHeP U000 ING system = one in which completed programs and
date must be baetched together and input to the computer at one
time. batch-processing, especielly when one batch contains
numerous programs, is cheap and efficient in computer terms
but necesssrily involves some delsy between preparstion of a
progrem and receipt of the resulting output. The delay may
sometimes be ss little a8 an hour (e.g. for & high=-priority
user in & university computer unit), but is commonly a day or
more., In contrast to batcheprocessing, JuliViiou.'lIUNAL
PeoGaaMMING gives the progremmer direct sccess to the "live"
computer system via an intersctive terminal, ensbling him to
get instant results even from incomplete programs,

The programmer will be expected to produce some
descriptions of his progrem end how it operstes so thet others
may understend how it works, This DUCUMaNIATION may include a
FLouChARle a grephic description or diasgram of the various
paths and brunches followed by the progranm.

1 Puis importent term is defined in deteil in Chepter II

xii.

The repertory of instructions sveilable to the
progremmer for & specific computer is that computer's
MACHIN. LiNGUAGL, (Becsuse this use of the word
"lunguage" is somewhst misleading, humsn lungusges
such &8 Znglish ere distinguished es NATURAL LANGUAGLS,)
HIGHO R=[LVal LANGUAGLS have been developed to help the
programmer by simplifying the tedious aspects of
writing machine lengusge; these include FORTRAN end
ALGCL for scientific work, CUBOL for ousiness dsta
processing, end dozens of others each with its own
speciel uses &nd charscteristics. Generslly speaking,
the higher-level languages cen be used on 8 wide renge
of models &nd mskes of computers, provided sppropriate
CONPILLRS ere availsble., A compiler is a mester-
program thet converts & higher-level letaguage into
mechine lengusge; progrums that perform similar
functions et a much simpler level ere ASSLNBLARS,.

OUITWARL is the term used to denote the totsality
of progreams, docuwentation end procedures required in
order to use 8 computer; sometimes it is used more
specifically to mean those programs of generel
usefulness (such ss compilers) that zre aveilable to
ell users. ooftware is contrasted to HalDWilli - the
physicsl machinery itself, which is controlled not by
the programmer but by a CCHFULol Ur.LaATUR, whose Jjob
includes such matters as inputting the computer's
work and collecting the output to be returned to the
user. Though in resl-life computing it is unusual for
en operator to engeage in progreamming, he does meke use
of a mester item of softwere called the UPLRATING
SYSTLM that helps him in sequencing Jjobs, &ccounting,
and calling up other software,

