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Abstract 

A useful measure of quality of a global optimisation algorithm such as simulated annealing is the 

length of time it must be run to reach a global optimum within a certain accuracy. Such a performance 

measure assists in choosing and tuning algorithms. This thesis proposes an approach to obtaining such 

a measure through successive approximation of a generic stochastic global optimisation algorithm with 

a sequence of stochastic processes culminating in backtracking adaptive search. 

The overall approach is to approximate the progress of an optimisation algorithm with that of a 

model process, backtracking adaptive search. The known convergence rate of the model then provides 

an estimator of the unknown convergence rate of the original algorithm. Parameters specifying this 

model are chosen based on observation of the optimisation algorithm. 

The optimisation algorithm may first be approximated with a time-inhomogeneous Markovian 

process defined on the problem range. The distribution of the number of iterations to convergence for 

this averaged range process is shown to be identical with that of the original process. This process 

is itself approximated by a time-homogeneous Markov process in the range, the asymptotic averaged 

range process. This approximation is defined for all Markovian optimisation algorithms and a weak 

condition under which its convergence time closely matches that of the original algorithm is developed. 

The asymptotic averaged range process is of the same form as backtracking adaptive search, the final 

stage of approximation. 

Backtracking adaptive search is an optimisation algorithm which generalises pure adaptive search 

and hesitant adaptive search. In this thesis the distribution of the number of iterations for which 

the algorithm runs in order to reach a sufficiently extreme objective function level is derived. Several 

examples of backtracking adaptive search on finite problems are also presented, including special cases 

that have received attention in the literature. 

Computational results of the entire approximation framework are reported for several examples . 

The method can be applied to any optimisation algorithm to obtain an estimate of the time required 

to obtain solutions of a certain quality. Directions for further work in order to improve the accuracy 

of such estimates are also indicated. 
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Chapter 1 

Introduction 

1 . 1  Preface 

Stochastic global optimisation algorithms are widely used to solve optimisation problems that are 

currently beyond the reach of other solution methods. The theory, however, has long lagged behind 

the practice in this field; methods are often used without any rigorous justification beyond the growing 

empirical evidence that they work better than their alternatives in many situations. The aim in this 

thesis is to take some first steps down one possible path towards providing a theoretical basis for the 

use of these algorithms. 

The issue at stake is one of processing time. Deterministic algorithms exist that are capable 

of solving any feasible finite optimisation problem (optimising an objective function over a domain 

of possible decision variable values)-by enumeration of all possible solutions, if necessary, or in 

many cases by more sophisticated approaches. All finite optimisation problems can thus be solved 

by a deterministic algorithm in finite time. Where such a deterministic method can be used in a 

reasonable time frame, it is always to be preferred, since there is a guarantee of finding the optimum. 

Stochastic global optimisation algorithms remain in use because there are many cases where no such 

fast deterministic algorithms are applicable. In these cases the deterministic methods are inadequate 

to the task; the time taken for these methods to converge to the global optimum is greater than the 

time practically available. (An algorithm "converges" when a sufficiently good solution to the problem 
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is found. )  

A note on the application of optimisation algorithms to infinite domains is  necessary. In general 

optimisation on an infinite domain can be arbitrarily difficult; consider maximising the objective 

function 

{ 1 x = x* 
x = 0: otherwise 

where x* is unknown. No algorithm, deterministic or stochastic ,  could have a finite mean convergence 

time applied to this problem. When a condition such as the Lipschitz condition holds, however, it is 

possible for various methods to find a solution to a continuous problem that is optimal to within any 

specified accuracy. (In practice, the representation of any optimisation problem within a computer is 

discrete, due to finite machine precision, so that bounded domains are effectively finite in any case. 

It is possible to make a discrete approximation of any accuracy (within machine precision) to any 

continuous problem, simply by rounding values; again, a condition such as the Lipschitz condition is 

required for the error introduced by such an approximation to be bounded. )  

The following section provides a broad discussion of stochastic global optimisation, describing 

some of the general ideas behind several algorithms and outlining some of the work in this field. 

Subsections 1 .2 . 1  and 1 .2 .2  respectively describe practical and theoretical algorithms. Section 1 .3  

broadly summarises the approach taken in  this thesis towards analysis of  the convergence times of 

stochastic global optimisation algorithms. Section 1 .4  then outlines the content of each of the chapters 

in the thesis. 

1.2 Stochastic global optimisation 

This section introduces the concepts involved in various stochastic global optimisation algorithms 

that have been studied. The present focus is on convergence times of these algorithms. The practical 

algorithms presented below are currently without any theoretical guarantee of the quality of solution 

that can be obtained in general within a reasonable time frame; on the other hand, the family of 

theoretical algorithms subsequently described has currently no practicable implementation. 

In global optimisation, the function to be optimised may have in general many local optima but 



1 . 2. Stochastic global optimisation 3 

fewer global optima. A local optimum is a solution superior to any other solution in its immediate 

neighbourhood; global optima are solutions that are not bettered by any other solution in the entire 

problem domain. (Note that the term "solution" is applied to any domain point, not only to optimal 

solutions.) Successful optimisation methods are required to find not only local optima but also global 

optima. It is this characteristic of global optirnisation that makes it difficult enough to demand its 

own toolbox of stochastic optimisation algorithms. 

Any algorithm where the probability of transition between any feasible solutions in a finite number 

of iterations is bounded away from zero will visit a global optimum of a finite problem in finite time 

with probability one. (The required bound could be achieved by drawing solutions at random at 

regular (or irregular) intervals. ) A useful algorithm is one that is likely to visit the optimum in a short 

amount of time. Expected convergence times of the practical algorithms mentioned here are difficult 

to obtain, however. Bounds on their value generally exceed practical time limits, so that they provide 

no useful guide for implementation of the algorithm. 

1 . 2 . 1  Practical stochastic global optimisation algorithms 

This subsection describes several practical approaches to stochastic global optimisation, with particular 

reference to the results concerning convergence rates of these algorithms. 

Pure random search [8, 14, 15] is the simplest stochastic global optimisation algorithm. At 

each iteration a new solution is chosen according to some distribution on the domain. The expected 

number of iterations before entering a target area containing the global optima is simply the reciprocal 

of the weight placed by the search distribution on the target area. 

This method can be seen as a base algorithm against which other algorithms should be compared. 

The aim of each other algorithm is to use information gained about the problem to select successive 

iterates in a more "intelligent" way than does pure random search, where the first iteration is as likely 

to attain any objective function level as any other. 

Note that the algorithm will move away from global optima after they are sampled. The achieve­

ment of the algorithm after any period of time is therefore not necessarily the current solution, but 

the best solution found during the progress of the algorithm, which is stored independently of the 
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current state of the algorithm. This characteristic applies to many of the algorithms considered in 

this section. 

The multistart algorithm [7, 41] uses a deterministic local search method capable of finding local 

optima. This local search method is applied from multiple starting points, selected in some way from 

the domain such that there is a positive probability of sampling any domain point. If enough starting 

points are selected, one of them will eventually be "near" the global optimum. The local optimum 

found at this stage will then be the global optimum. 

This method, in its simplest form,  has the same convergence properties as pure random search, 

where an iteration consists of choosing a starting point and applying the local search method to it. 

The "target area" is now the set of all points in the domain from which the local search method will 

converge to a global optimum. The size of this target area is in general unknown. The time required 

by the algorithm is therefore difficult to predict . 

The multistart method described above combines two basic ideas. Firstly, the use of the local 

search method can be viewed as effectively replacing the objective function value at each point in 

the domain by the objective function level obtained by a local search initiated from that point. The 

best solution found is then the local optimum yielding the best objective function value observed 

during the progress of the algorithm. Secondly, repeating the process from various initial solutions 

ensures that (as for pure random search) the global optimum will eventually be found. Either of these 

strategies may obviously be used in conjunction with any global optimisation algorithm. Results 

obtained by combining them with the Metropolis algorithm, described following, are reported in [32] . 

Computational results are reported to be good for smaller problems but increasingly poor for larger 

problems. The required convergence time remains difficult to predict. 

The Metropolis algorithm [35] is based on an analogy with the energy level of a system of 

particles in a fluid. A result from statistical mechanics gives that the possible configurations of 

particles in such a system at temperature () have a Boltzmann distribution with probability density 

function proportional to e-E/(ltB(}), where E is a variable denoting the energy level resulting from each 

possible configuration of particles in the system and /'i,B is the Boltzmann constant . 

The Metropolis algorithm commences by choosing an initial solution to the problem. A new 
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candidate solution is then generated, based possibly on the current solution. This candidate solution 

is accepted as the new current solution for the algorithm whenever the change in objective function 

value from the current solution to the new candidate solution b.E is non-positive (in a minimisation 

context) or with probability e-l:;.E/(K,B()) otherwise, for some (). It can be shown that the distribution 

of objective function values generated by this algorithm tends to the Boltzmann distribution. 

If the "temperature" () = 0, no worsening of objective function values is allowed. In this case 

the algorithm is likely to reach only a local optimum, from which it is unable to escape. As the 

temperature tends to infinity, the probability of accepting worsening moves increases and the limiting 

probability of occupying a level close to the minimum decreases. The temperature level must therefore 

be a compromise between the two aims of allowing worsening moves so that the algorithm can quickly 

tend towards its limiting distribution and keeping () low so that the limiting distribution places a high 

weighting on near-optimal states. Results bounding the time taken for the distribution to reach its 

limiting distribution in various situations are summarised in [13J . 

The following method attempts to progressively alter the temperature in such a way that the 

algorithm can always escape from local minima but the temperature also decreases towards zero, so 

that the probability of the objective function being within any fixed distance of the minimum tends 

to one over time. 

Simulated annealing [29J is one of the most commonly used stochastic global optimisation 

algorithms. A motivation for this approach is the physical process of heating and cooling metals or 

glass in order to maximise their strength. When a liquid is rapidly cooled, the particles are forced to 

bond quickly but sUb-optimally. Repeated reheating and gradual cooling allows particles to readjust 

and obtain a stronger crystalline structure at the freezing point . Thus the aim of obtaining a strong 

solid is best achieved by temporarily allowing the metal or glass to become more fluid on occasions, 

before eventually cooling again. 

Analogously, in simulated annealing successive iterates are allowed to temporarily worsen in ob­

jective function value before again being required to improve. The algorithm can thus escape from 

local minima. While this idea could be implemented in many different ways, the simulated annealing 

algorithm bases its approach on the Metropolis algorithm with varying temperature. 
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The temperature governs the probability with which worsening iterates are accepted. By slowly 

letting the temperature tend to zero, the algorithm slowly causes the distribution of objective function 

levels at each iteration to tend to a Boltzmann distribution placing high weightings on global optima. 

Provided that the way in which successive iterates are altered obeys certain conditions and the 

temperature is reduced in a certain way, [21] shows that simulated annealing converges to global 

optima with probability one. A similar result under different conditions is given in [5] . Analysis of 

optimal choices of temperature appears in [48] . However, algorithms satisfying these conditions are 

generally too slow for practical use. Moreover, a result in [26] indicates that simulated annealing 

algorithms obeying these conditions asymptotically perform worse than multistart, as measured by 

the probability of visiting a global optimum. 

Different methods of reducing the temperature are used in practice. In this way good results can 

often be obtained within an acceptable time frame; however, the proof that final results are likely to 

be near the optimum no longer applies. The best scheme for reducing temperature is often hard to 

determine. An upper bound for the expected number of iterations before reaching a solution with 

objective function value within a certain accuracy of the globally optimal value is established, under 

various conditions, in [34] .  Convergence rates of an idealisation of simulated annealing are studied 

in [42] . 

Threshold acceptance [17] is a similar algorithm, where worsening iterates are accepted with 

probability one provided the change in objective function value does not exceed some threshold value. 

In the same way that temperature is reduced in simulated annealing, the threshold in this method is 

gradually reduced to zero, until finally no worsening moves are accepted. Some convergence results are 

presented in [2]. These results, however, provide no practical guide of how to ensure the convergence 

of the algorithm to a certain level in a certain amount of time. 

Another variant is the Great Deluge [16] , in which worsening iterates are accepted with proba­

bility one provided the iterate is no worse than a certain level. This method is named for an analogy 

with a nonswimmer in a flood. The nonswimmer can move anywhere provided his path does not take 

him lower than the water line. Similarly, in a maximisation context the Great Deluge accepts any 

move provided the new objective function value is no lower than a certain level. This "water level" 
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is gradually increased as the algorithm progresses, gradually encouraging iterates to take higher ob­

jective function values. However,  the analogy makes clear the potential for this algorithm to become 

trapped in a local optimum. 

Tabu search [20] uses another method of escaping local minima. The algorithm operates on 

discrete domains by the rule that successive iterates are always accepted unless they are on the current 

"tabu list" . When the algorithm visits a solution, it places that solution on the tabu list, ensuring 

that the tabu rule forbids revisiting that solution. In this way the algorithm is forced to explore new 

regions of the solution space. 

Several iterations after a solution has been placed on a tabu list it can be removed, allowing the 

algorithm to revisit it if the process eventually returns to that region. The tabu rule may also be 

broken if a tabu solution satisfies certain "aspiration criteria" . This allows solutions to be visited 

more often than the normal tabu rule would allow, if it is thought to help the algorithm visit new and 

better solutions. A result in [22] shows that tabu search converges to global optima on finite domains . 

However, there is no guarantee of finding a solution of a given quality in less than the time required 

to directly enumerate objective function values for every feasible solution. 

A different strategy is used by evolutionary algorithms [40] . This approach is based on the 

theory of natural selection. 'In its most simple form,  the algorithm chooses the initial current solution in 

some way and generates new candidate solutions by making slight alterations to the current solution. 

This mimics genetic mutation. Whenever an alteration improves the objective function value, the 

candidate solution is accepted as the new current solution. This represents "natural selection" as 

proposed in the theory of evolution. 

Formulated in this way, the algorithm has no way of escaping local optima. However, if the 

mutation step has a positive probability of producing any feasible solution, local optima can be escaped. 

A practical difficulty is that convergence is very slow. 

An algorithm similar in structure is Improving Hit and Run [53]. This algorithm uses the Hit­

and-Run algorithm of [46]. The Hit-and-Run algorithm generates a new point from a current point by 

first selecting a direction uniformly randomly and then choosing a point uniformly randomly from the 

intersection of the feasible region and a line in this direction passing through the current point .  The 
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improving hit and run global optimisation algorithm commences by choosing an initial solution in some 

way. At each subsequent iteration, a candidate solution is generated by the Hit-and-Run algorithm 

and accepted to replace the current point only if it has improved objective function value. Since this 

generator can sample any solution from any other with positive probability, the algorithm converges 

on bounded domains with probability one. A result in [55] proves that the algorithm converges in 

time polynomial in the problem dimension for a certain class of problems. 

Genetic algorithms, introduced in [24] , extend the idea behind evolutionary algorithms as de­

scribed above to mimic the process of genetic recombination. Meiosis is the process whereby a parent 

cell produces sex cells containing only some of each chromosome in the cell. (When an egg is fertilised 

in sexual reproduction, the male and female half-cells recombine to form a complete cell containing 

genetic material from both the father and mother.) 

Genetic algorithms commence by choosing a population of initial solutions in some way. Solutions 

are represented as strings of information, analogous to chromosomes. The strings can be binary or 

they can be divided into data units that are believed to represent distinct components of the solution. 

Pairs of solutions are then combined in a manner similar to meiosis and fertilisation. Two solutions are 

chosen and their string structure broken at some position. The first half of one is then combined with 

the second half of the other and vice versa. The resulting solutions form a new "generation" in the 

population, containing solutions that mix characteristics of two members of the previous generation. 

Departures from the reproduction analogy arise in that both possible combinations of parent 

"gametes" can be used. Also, any number of different combinations of parent solutions can be used 

at each step. 

The new generation may either replace the previous one or be combined with it in some way. 

In either case, the population after the meiosis step generally requires reduction. This is normally 

carried out by removing the solutions with worst objective function values. This step parallels a 

breeding strategy. The idea of mutation from evolutionary algorithms may also be applied. 

There are many degrees of freedom in choosing an implementation of these algorithms. Conver­

gence analysis is provided in [43] , including a proof that some variants converge to global optima with 

probability one. Bounds on the time required for a genetic algorithm to sample all possible solutions 
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to a problem are reported in [30] . These bounds are impractically great for any but the simplest 

problems, however . 

Another population approach is Controlled Random Search, proposed in [38] . A random pop­

ulation is chosen initially. At each iteration, a new candidate point is selected in a certain way. When 

a candidate point has objective function value better than the worst among the current population 

members, the new candidate replaces this member in the population. 

The method by which new candidate points are chosen is as follows. A subset of a certain size 

from the population is chosen at random and its geometric centroid calculated. A new point from the 

population m is then chosen at random and reflected in the centroid to calculate the new candidate 

point. Candidates generated in this way are called primary points. Each candidate point is compared 

with the current population members; if the candidate point is feasible and superior in objective 

function value to the current population member with worst objective function value then this current 

population member is removed from the population and the candidate point added. Candidate points 

are chosen in this way until the proportion of candidate points accepted into the population during the 

progress of the algorithm falls below a certain level. Then whenever a primary point is infeasible or 

has objective function value worse than the worst of the current population members, a new candidate 

point, known as a secondary point , is found as the midpoint of m and the centroid. After a secondary 

point is considered, the algorithm returns to take a new subset from the population and generate a 

new primary point as before. Figure 1 . 1  shows how primary and secondary points are generated. 

Some convergence analysis for this algorithm applied on hyper-rectangular domains is provided 

in [23] . The rate of convergence, in cases where the algorithm converges , remains difficult to predict . 

A final method, first applied to optimisation in [25] , mimics the way in which the brain functions. 

Computer models of neural networks as they occur in the brain are constructed of interconnected 

"neurons" . Neurons receive inputs from other neurons or external sources and send output signals to 

other neurons or external receivers based on a function of their inputs. Networks can be constructed in 

such a way that the network outputs of the system converge to a solution to an optimisation problem. 

As introduced in [25] , the neural network approach to optirnisation can become trapped in a 

local optimum. Hybridisations of the method with other approaches such as simulated annealing and 
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Figure 1 . 1: From a population of points denoted with crosses, a subset of two asterisked points 
is chosen. The centroid of these points is shown. A new point m is then chosen, leading to the 
generation of primary and secondary points as shown. 

genetic algorithms have been developed to overcome this problem. 

A review of results from this method is contained in [45]. A method of applying neural networks to 

any optimisation problem with objective function given by a quadratic function has been developed. 

On these problems neural networks are reported to perform as well as or sometimes better than 

simulated annealing. 

1 . 2 . 2  Theoretical stochastic global optimisation algorithms 

Distinct from these practical algorithms is a group of theoretical algorithms with known convergence 

properties but for which no known implementation takes an amount of time polynomial in the problem 

dimension. These methods are therefore no easier to implement than the deterministic algorithms they 

are designed to supersede. Their interest stems from the possib ility of analytically obtaining expected 

convergence times, which is not possible for the practical algorithms mentioned above. 

The first of these is pure adaptive search (PAS) ,  introduced in [37]. In this algorithm, successive 
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iterates are chosen according to a distribution on points i n  the domain with objective function values 

at least as good as that of the current iterate. Although this step currently cannot be implemented in 

polynomial time, a simple formula is derived in [54J to provide the expected convergence time of the 

algorithm if it could be carried out. 

In [54J it is shown that the expected number of iterations before convergence for pure adaptive 

search increases only linearly with problem dimension for any problem satisfying the Lipschitz con­

dition. If a polynomial time implementation of each iteration of pure adaptive search can be found, 

therefore, any optimisation problem satisfying the Lipschitz condition can be solved in polynomial 

time. Such an implementation for linear programming problems is developed in [ 18J .  A polynomial 

time implementation of pure adaptive search on convex domains is given in  [39J. A method of realising 

pure adaptive search for functions satisfying certain conditions, using quantum computation, is given 

in [ 10J. 

In fact a method of generating a new iterate from points in the domain with objective function 

values at least as good as a specified level (or reporting that no such points exist) could be used 

to solve the travelling salesperson recognition problem, so that this step of pure adaptive search is 

NP-hard [36J. A general implementation of pure adaptive search is therefore unlikely to be realisable 

""Within polynomial time on standard computers, unless P = NP. 

A generalisation of pure adaptive search, introduced in [1l] , is hesitant adaptive search, where 

successive iterates are chosen in the same way as for pure adaptive search only with a certain proba­

bility. Otherwise the algorithm "hesitates" at the current range level . 

The logical extension of these algorithms is backtracking adaptive search (BAS) ,  introduced 

in [49J . This algorithm either betters, hesitates or backtracks at each iteration, according to proba­

bilities that depend only on the current level. Bettering iterations are performed as in pure adaptive 

search. Worsening iterations are analogous: the new value is chosen according to a distribution on 

points in the domain with objective function values worse than that of the current iterate. 

Many of the practical algorithms described above make use of backtracking in order to find im­

proved solutions. In some cases backtracking is necessary to avoid becoming "stuck" at a local opti­

mum. Consider the simple task of maximising Ixl over the domain {-I ,  0 , 1 ,  2} . An algorithm starting 
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at Xo that chooses each successive iterate from the intersection of the set {Xi - 1 ,  Xi, Xi + I }  and the 

domain is capable of solving this problem. However, if Xo = - 1 ,  it is clear that a temporary reduction 

in objective function value will be required in order to reach the global optimum at 2. It is this 

characteristic of successful optimisation algorithms that backtracking adaptive search seeks to model . 

These algorithms, particularly the last named, are discussed in more detail later in this thesis. A 

summary of past results, particularly relating to pure and hesitant adaptive search, is provided in [52] . 

The distribution of convergence times for backtracking adaptive search is established in Chapter 5 .  

The following section outlines the method proposed in  this thesis for linking these theoretical results 

with the practical stochastic global optimisation algorithms previously mentioned. 

1 . 3  The approach 

The general statistical approach to prediction is to observe a process, fit some kind of model to it, check 

goodness of fit of the model and, if satisfactory, calculate an estimate based on the assumption that 

the model holds. This general approach is applied in this thesis to predicting expected convergence 

rates for stochastic global optimisation algorithms. 

The variable of interest in this case is the number of iterations before convergence for a stochastic 

global optimisation algorithm. As in any statistical context, there is uncertainty in the value of this 

variable; different runs of the same algorithm on the same problem may result in widely differing 

convergence times. The aim can only be to estimate an expected value of the convergence time, along 

with some idea of the variability that surrounds that estimate. This challenge is no different to that 

which faces any prediction in the face of uncertainty. 

In order to make a prediction for the quantity of interest , some structure must be assumed of 

the underlying process. This structure takes the form of a model (whether parametric or not) : it is 

assumed that the data is distributed as if it was generated by a process of a certain form, overlaid 

with a random component. If an appropriate model can be found, such that the observed data could 

reasonably be supposed to have been generated from the model , then this model will provide a suitable 

estimate for the unknown quantity. The assumption is made that this unknown quantity will also be 
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distributed as though generated from this model. 

Clearly, a required feature of the model is that it can be used to calculate the required quantity. In 

the present case, the required quantity is the expected number of iterations before convergence. The 

requirement that this quantity can be calculated is satisfied by the theoretical algorithms discussed in 

the previous section, most generally backtracking adaptive search. With the development of theory 

concerning the convergence times of these theoretical search algorithms, therefore, comes the possibility 

that they may form a suitable family of models for general stochastic optimisation processes. 

As in any modelling, then, the parameters required for backtracking adaptive search are estimated 

based on observed data. The observed data is the progress of a stochastic global optimisation algorithm 

over several iterations. Methods for estimating backtracking adaptive search parameters from this data 

are detailed in subsequent chapters. 

This discussion identifies two needs that must be satisfied in order to model convergence times 

of stochastic global optimisation algorithms. Firstly, the theory surrounding backtracking adaptive 

search must be developed for it to be used as a model. Secondly, a method by which backtracking 

adaptive search can approximate a general stochastic global optimisation algorithm is also required. 

There are therefore two distinct arms to this thesis, relating respectively to analysis of convergence 

rates of the model family and to the development of a method for estimating its parameters based 

on observations of an optimisation algorithm. The structure of the thesis is outlined in the following 

section. 

1.4 Thesis outline 

A summary of the contents of each of the following chapters is now provided. In brief, there are two 

chapters outlining the method by which a general stochastic global optimisation algorithm is approxi­

mated by a backtracking adaptive search model, two chapters developing the analysis of backtracking 

adaptive search, a chapter illustrating computational results for some examples and a concluding chap­

ter consolidating what has been achieved in this thesis and highlighting areas for continued research. 

Chapter 2 introduces a framework of processes by which backtracking adaptive search approximates 



14 Chapter 1 .  Introduction 

a stochastic global optimisation algorithm. The method is designed to operate in the completely 

general case where no assumption is made of the structure either of the algorithm or of the problem 

to which it is applied. All that is required is the sequence of observed iterations obtained by running 

the algorithm. This observed data is most easily modelled using a discrete partition of the range. A 

discrete backtracking adaptive search model can then be fitted to this discrete data. 

However, the algorithm actually operates not in the range, but the problem domain. A model 

based on progress in the range therefore requires j ustification-is the movement of the algorithm in the 

range sufficient for use in predicting the convergence rate of an algorithm acting on the domain? This 

question is answered by means of a sequence of processes that approximate the optimisation algorithm 

in the domain: the range, averaged range and asymptotic averaged range processes. This framework 

of processes is defined and exemplified in Section 2.2. Each process in this sequence approximates the 

previous one, with the range process based directly on the algorithm in the domain. Thus the expected 

convergence time of a backtracking adaptive search approximation to the asymptotic averaged range 

process is indirectly an approximation of the convergence time of the original algorithm of interest. 

Since the analysis is to be based on a discrete summary of the observed data, the theory developed 

also uses discrete techniques . In particular, much use is made of Markov chain theory. A finite Markov 

process uses a transition matrix that stores the probabilities of changing from one possible state of the 

process to another in one step of that process. The following is a simple Markov transition matrix. 

1 

Current state 2 

3 

Next state 

1 2 3  

1 

o 
1 
2 

o 

o 
1 2 

o 

1 

o 

This matrix implies that whenever the process is in state 1, it will remain in state 1 with certainty 

after one iteration. Similarly, if it is in state 2 it will transition to state 3 with certainty. However, if 

it is in state 3 then after one iteration the process is equally likely to be in either state 1 or state 2.  

This example is taken up in Section 2.2. 
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Chapter 3 fleshes out the theory behind the intermediary processes introduced in Chapter 2.  

Section 3 .2 contains a proof that the number of iterations before convergence for the averaged range 

process defined in Chapter 2 has the same distribution as the number of iterations before convergence 

for the original algorithm. This stage of the approximation framework can thus be reached with 

no loss of information concerning convergence rates. Section 3.3 demonstrates the existence of the 

final intermediary process defined in Chapter 2, the asymptotic averaged range process. A subsection 

developing preliminary Markov chain theory precedes the existence proof, which is presented initially 

in the case where the domain transition matrix on suboptimal states is both irreducible and acyclic 

and then in the more general case where only irreducibility is assumed. The convergence behaviour 

of the asymptotic averaged range process is then examined in Section 3 .4 .  The expected convergence 

time is different to the true value for this approximation; however, in many cases the error is very 

small. 

Chapter 4 turns to the endpoint of the approximation process, backtracking adaptive search. This 

chapter provides a definition of backtracking adaptive search, a means of calculating its expected 

convergence time and a method of estimating the necessary parameters from an asymptotic averaged 

range process. In Section 4.2 a definition is provided for backtracking adaptive search on a finite range. 

This is the case necessary for use in the approximation framework; backtracking adaptive search on a 

continuous or mixed range is analysed in Chapter 5 .  

The expected convergence rate of  backtracking adaptive search on a finite range is  derived in 

Section 4 .3 .  The following section then derives a more general result where a new parameter is  specified 

for the distribution of the initial iteration. Several special cases of this backtracking adaptive search 

algorithm have been discussed in the literature. Convergence results for these and other examples 

are presented in Section 4.5. The method by which backtracking adaptive search approximates an 

asymptotic averaged range process is then treated in Section 4.6. This formally completes the method 

for obtaining a backtracking adaptive search model for any stochastic global optimisation algorithm. 

In Chapter 5 the full distribution of the number of iterations to convergence for backtracking 

adaptive search is derived. This generalises the previous analysis of backtracking adaptive search in 

Chapter 4. Backtracking adaptive search is defined for a general range distribution in Section 5 .2. In 
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Section 5.3 factorial moment generating functions are then derived for backtracking adaptive search 

in each possible case, where the range distribution is discrete, continuous or mixed. Factorial moment 

generating functions are used to derive the mean and variance of backtracking adaptive search in the 

case where the range distribution is finite (as it is in the application of the approximation framework 

of Chapter 2) and an expression for the mean in the case where the range distribution is continuous. 

Computational results for the approximation framework are presented in Chapter 6. In this chapter 

the strategy proposed in Chapter 2 for estimating convergence rates of stochastic global optimisation 

algorithms is demonstrated. A few examples illustrate various aspects of the strategy and indicate 

how it can be implemented in practice. The intention here is not to showcase a completed piece of 

software,  but to display the results of the theoretical investigation that has occupied the rest of this 

thesis. 

In Section 6 .2 ,  two example global optimisation algorithms are used to illustrate each stage in 

the approximation framework.  The first of these is small enough for each quantity used to be dis­

played explicitly; the second is a slightly larger and more challenging situation, demonstrating the 

approximation framework in a more realistic scenario. 

Section 6 .3 contains a further two examples . This section highlights some implementation consid­

erations and suggests a way of applying the approximation framework in practice. The first example 

is again simpler, allowing the expected convergence time estimated by the approximation process to 

be compared to the true value obtained analytically. The second example shows the approximation 

process applied to a more challenging problem. The expected convergence time estimated in this case 

is compared with empirical results of applying the example algorithm several times and recording the 

convergence time for each run. A gauge as to the quality of convergence rate estimation afforded by 

the approximation framework is then available. 

The final chapter summarises the work accomplished and highlights further areas for research 

arising out of this work. 
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Chapter 2 

A framework of processes by which 

backtracking adaptive search 

approximates a stochastic global 

optimisation algorithm 

2 . 1  Introduction 

The distribution of the number of iterations before convergence is a very useful measure of perfor­

mance for a stochastic global optimisation algorithm. Unfortunately, this distribution is not available 

for practicable algorithms; indeed, the distribution can only be found empirically. This analysis is 

available for backtracking adaptive search (and presented later in this thesis) ; however,  backtracking 

adaptive search is not a practicable algorithm. Thus, on the one hand are algorithms having practical 

implementation but without any analysis of expected runtime; on the other, algorithms possessing 

this analysis but without any practical implementation. The challenge to be faced is in finding a way 

to meld these two desiderata together-to find a way of applying the kind of analysis available for 

backtracking adaptive search to practicable stochastic global optimisation algorithms. 

The approach of this thesis is therefore to attempt to find a backtracking adaptive search approxi-
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mation to a general stochastic global optimisation algorithm. The extent to which this approximation 

is accurate is then the extent to which convergence information concerning the backtracking adaptive 

search algorithm is applicable to the stochastic global optimisation algorithm it approximates. 

There are a number of obstacles in the way of such an approximation: in general stochastic global 

optimisation algorithms can be non-Markovian time-inhomogeneous processes defined on the problem 

domain, while backtracking adaptive search (in the form to be presented later) is a Markovian time­

homogeneous process, with a particular structure, defined on the problem range. 

One possible approach to overcoming these obstacles would be to generalise the definition of 

backtracking adaptive search to a more encompassing family of processes, more easily able to describe 

the movement of a general stochastic global optimisation algorithm. Backtracking adaptive search is 

itself a generalisation of hesitant random search [ 11 ]  and pure random search [54] ; the generalisation 

is in the distribution of each successive iterate. In pure adaptive search, the next iterate is chosen 

from the improving set according to a distribution p on the range; in hesitant adaptive search, the 

next iterate can either be chosen from the improving set according to p or else remain at the current 

objective function level. Backtracking adaptive search again uses the distribution p but allows the next 

iterate to be taken from anywhere in the range, and is thus expected to provide a closer approximation 

to a general stochastic global optimisation algorithm, since in general algorithms may worsen at any 

given iteration as well as improve. 

Still further generalisation is certainly possible; the structure imposed on backtracking adaptive 

search could be weakened by allowing variation in the range distribution p, or perhaps varying the 

way in which p is used. It may even be possible to define something like backtracking adaptive search 

directly on the domain. However, the point of specialising the form of the algorithm is that the dis­

tribution of the number of iterations before convergence can be evaluated easily; further complicating 

the process makes this distribution harder to obtain. At some point, accuracy of the approximating 

algorithm must be exchanged for susceptibility to analysis. 

The nature of statistics is to summarise a complicated process with a simple model that can 

be analysed. This is the approach of this thesis, and the simple model chosen in what follows is 

the representation of backtracking adaptive search described later . This thesis marks a first step 



2. 1 .  Introduction 19 

towards development of an adaptive search approximation to a general stochastic global optimisation 

algorithm; improvements in the model or the estimation of its parameters may well stem from future 

research. 

Using backtracking adaptive search as the end-point of the approximation process, then, the chal­

lenge is to estimate its parameters from the domain based stochastic process (DP) of a general global 

optimisation algorithm. In particular, major difficulties lie in the structure of backtracking adaptive 

search; how can a process that is Markovian, time-homogeneous and defined in the range approximate 

an algorithm which in general obeys none of these conditions? 

The approximation process is divided into several stages, employing three intermediate stochastic 

processes dealing with each of the three difficulties listed above. Firstly, the range process (RP) is 

defined as the image of the original domain process in the range. Secondly, a Markov process in the 

range, the averaged range process (ARP) ,  is defined based closely on the range process. Thirdly, 

the asymptotic averaged range process (AARP) , a time-homogeneous variant of the averaged range 

process, is constructed. Having now obtained a Markovian time-homogeneous process in the range, 

it is possible to choose parameters for backtracking adaptive search in order to reflect as c losely as 

possible the characteristics of this process. 

Note that it is assumed that any optimisation problem has a one dimensional objective function 

measuring the quality of each feasible solution. Even problems with multiple objective functions 

can be incorporated in this study, by combining each objective function in a weighted sum. Any 

automated multiobjective optimisation algorithm must have a means of determirung whether one 

solution is better or worse than another; this implicitly defines a one dimensional ordering of all possible 

solutions. Various methods of defining this ordering have been proposed (see, for instance, [47] ) .  The 

requirement of a one dimensional objective function is thus not restrictive. Furthermore, the fact that 

every problem possesses this simplifying measure recommends any analysis that is able to make use 

of this trait. 

A final observation on the practical issue of implementing this approximation process: for a general 

stochastic global optimisation algorithm, even the structure of the original algorithm in the problem 

domain is unknown and must be estimated empirically. However, there is no reason that one of the 
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processes later in the approximation framework could not also be described empirically. A practi­

cal implementation of the approximation process could begin by estimating the parameters of the 

asymptotic averaged range process and simply approximating immediately with backtracking adap­

tive search, skipping over the first two steps in the framework. The theoretical descriptions of the 

intermediate processes remain valid and useful in justifying the techniques used, even though these 

processes may never be defined in the implementation of the approximation process. Implementation 

details are discussed in Chapter 6 .  

In the next section a generic stochastic global optimisation algorithm is defined; all subsequent 

analysis centres on this algorithm. The sequence of approximations is then described, moving from 

this domain process through to a backtracking adaptive search process in several stages. Analytical 

results regarding each of the intermediate processes are reserved until Chapter 3; this chapter aims 

only to establish the framework of approximations that forms the major idea of the thesis. A final 

section summarises the import of this framework. 

2 . 2  Approximating a stochastic global optimisation algorithm 

The problem under consideration is the very general global optimisation problem 

minimise f(x) ,  subject to x E S 

where S is a measurable space and f : S -+ lR. is a measurable function. A general form for stochastic 

global optimisation algorithms is now introduced. The algorithm selects the first point according to a 

distribution 00 on the domain. Thereafter a local search measure for each x E S,  in general dependent 

on the iteration number n, is used to generate the next candidate point in the domain in a Markov 

process. 

Generic stochastic global optimisation algorithm 

Step 1 Generate Xo in S according to 00 . Set Yo = f(Xo) and n = O .  

Step 2 Choose Xn+1 according to a local search measure at Xn. Set Yn+1 = f(Xn+l ) '  
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Step 3 If a stopping criterion is met, stop. Otherwise, increment n and return to Step 2. 

At Step 2 of the above algorithm, it is common (but of course not necessary) to first select a 

candidate point Z; if j(Z) ::; Yn then set Xn+l = Z, if j (Z) > Yn then set Xn+1 = Z with a certain 

probability (which may depend on Xn and Z) or otherwise set Xn+l = Xn.  

To investigate the behaviour o f  this algorithm, a sequence o f  stochastic processes is constructed, · 

each approximating the progress in the range of the generic stochastic global optimisation algorithm. 

As each successive stochastic process approximates the last, the accuracy of the approximation to the 

original stochastic algorithm will slowly deteriorate; however, the advantage of the procedure is that 

the distribution of the convergence rate of the final backtracking adaptive search approximation is 

known. The following stochastic processes are discussed: 

Domain process: This is the sequence of domain points generated by the generic stochastic global 

optimisation algorithm. 

Range process: This is the sequence of function values generated by the generic stochastic global 

optimisation algorithm; it is essentially the same as the domain process, but viewed in the range. 

A veraged range process: This is a time-inhomogeneous Markov process in the range based on the 

range process. It is presented in Subsection 2 .2 . 1 .  

Asymptotic averaged range process: This i s  obtained by homogenising the averaged range pro­

cess. It is presented in Subsection 2.2 .3 .  

Backtracking adaptive search: This is obtained by requiring the transition distributions in the 

range, conditioned on improvement or worsening, to be restrictions of a single range probability 

measure. It is presented and analysed for finite domains in Chapter 4 and for general domains in 

Chapter 5 .  

The first of these processes takes on values in the objective function's domain, whereas the others 

assume values in the range. This important distinction is illustrated in Figure 2 .1 .  

The domain process (Xn) as defined above is  Markovian. This is  general enough to encompass sim­

ulated annealing [29] . Even with a further restriction that the algorithm should be time-homogenous, 
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y' "  n 
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Domain Process Range Averaged Asymptotic Backtracking 
Process Range Averaged Adaptive 

(non-Markov) Process Range Search 

Domain S X (inhomogeneous Process (restricted 
n Markov) (homogeneous homogeneous 

Markov) Markov) 

Figure 2 . 1 : Steps in the approximation of the domain process with a backtracking adaptive search 
process. 

the Metropolis algorithm [35] , genetic algorithms [24] (with S then a product space, the number of fac-

tors being determined by the population size) and certain evolutionary algorithms [24] are all included 

within this definition. 

The framework of approximations presented could be extended from the generic stochastic global 

optimisation algorithm defined above to any time-homogeneous Markov process in the domain. In 

fact, some time-inhomogeneous Markov processes could be approximated also; however,  the analysis 

provided here is limited to time-homogeneous algorithms. The question of what processes may be 

approximated with backtracking adaptive search is treated in detail in Subsection 3 .3 .  

Note that the range process (Yn) i s  not in general Markovian, despite being the image under f of 

the Markov chain (Xn) . Knowledge of the current domain state Xn provides complete information 

at any iteration concerning the distribution of the next iterate in the domain; however, knowledge 

of the current range level Yn alone does not in general provide complete information concerning the 
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distribution of the next iterate in the range. 

For instance, suppose the objective function f(x) = I x l  is to be minimised over the set {-I ,  0, 1 ,  2 } ,  

and successive iterates Xn+l are chosen randomly from those values o f  the set {xn - 1 ,  Xn, Xn + I }  that 

fall in the domain. Knowledge that the current range level is 1 implies only that the domain location 

could be either -1  or 1 and is thus insufficient to determine the probability of visiting range level ° 

at the next iteration; but if the previous iteration is known to be 2 then the current domain location 

must be 1 and the probability of visiting range level ° at the next iteration may now be correctly 

determined. It is thus demonstrated that (Yn) is not in general Markovian. Note also that if the 

history of the process is (2 , 1 , 1 , 1 , . . .  , 1 ) then the entire history must be known in order to correctly 

determine the current transition probabilities. There is thus no Markov process of any order that 

accurately represents the range process. 

In what follows, only first-order Markov approximations to the range process are considered; re­

definition of the state space to include more than one iteration in each state would easily allow 

generalisation to higher order Markov approximations, perhaps providing worthwhile improvement in 

the accuracy of the approximation. This procedure is common in some global optimisation algorithms, 

such as Tabu Search [20J . 

Notation required in the following discussion is now described. A discrete domain S is assumed. 

Convergence is held (as in [54]) to occur when Yn � y for some real number y, chosen before algorithm 

commencement; domain locations with objective function value not greater than y are lumped into 

one absorbing state Xl with arbitrary objective function level YI � y .  (The analysis may be applied 

to study algorithm performance on test problems whose global minima are known; in this case y 

can be set within a certain tolerance of the global minimum. Even when the optimal solution itself is 

unknown, it may be possible in certain cases to find the value of the global minimum from the problem 

definition. Otherwise y must be chosen in some other way, perhaps with reference to the current best 

known objective function value. ) It is assumed that all other domain locations are transient . The 

domain search algorithm may thus be considered as a Markov process with the following transition 
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matrix, in block form: 

The first row of this matrix, showing transitions from the absorbing state, has a one in the first 

position and zeros elsewhere, since the algorithm is held to terminate after first sampling Xl . (Only 

the iterations before attaining a state with objective function level not greater than y are of interest . )  

The column vector r gives the probability of  moving directly to the absorbing state for each transient 

state. The remaining submatrix Q is substochastic (that is, the elements of Q are positive and the 

row sums are no greater than 1 ) ,  and gives the transition probabilities between all of the transient 

states. (In practice P will not be known. Implementation issues are discussed in Chapter 6 . )  

Denote the transient domain states by X2 , X3 , . . .  , Xl and the transient objective function levels by 

Y2 , Y3 , ·  . .  , Ym · Now let Dn denote a row vector of length l comprising the probabilities of occupying 

each of the l domain states at the nth iteration. Then Dn+l = DnP for all n � o .  

I t  is useful to define a truncation transformation Ti , equal to the identity matrix o f  size i (Ii ) with 

the first column removed. This matrix has the effect of removing the first component of a probability 

position vector, corresponding to the probability of being in the absorbing state. A vector of i ones is 

also denoted by li . 

A simple example is now introduced which will serve to illustrate the concepts introduced through-

out this chapter. 

Example Let S = {I ,  2, 3 } ,  f (l )  = 1 ,  f(2) = 2 and f(3) = 2 .  A search algorithm to find the minimum 

in this simple example is described by a Markov domain process with transition matrix 

P = 

1 0 0 

0 0 1  

I I 0 2 2 

, 8o that Q �  [ :  : 1 
Suppose the process is equally likely to begin in each of the domain states (so Do = [i i iD .  Then 

standard Markov chain theory [27] provides that the expected number of iterations before convergence 
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The range process based on tills domain algorithm has an absorbing state at the low level, 1. At 

the high level, 2, there are two possibilities at each iteration. If the domain process is at domain 

state 2 then (as is apparent from the transition matrix) it will move to domain state 3 with certainty 

and thus the range process will remain at the illgh level; if the domain process is at domain state 3 

then RP is equally likely to remain at the high level or move to the low level . 

The other two intermediate approximations of the range process are now presented in more detail. 

The final backtracking adaptive search approximation is treated in Chapter 4. 

2 .2 . 1 The averaged range process 

In this stage RP is approximated with an inhomogeneous Markov process, ARP (YrJ . Here is an 

informal description of this process. At the nth iteration ARP is at level Y�; thus the corresponding 

state in the domain is some point in j-l (y�) .  The conditional probability of being at each of these 

domain states is determined by the normalised restriction of the domain distribution at the nth 

iteration to j-l (Y�) .  Mappings of the transition distributions at each candidate domain state into the 

range (termed local range distributions) are then mixed according to their domain weightings. This 

produces an averaged range distribution at the nth iteration. Figure 2 .2  illustrates the way in which 

ARP uses this convex combination of local range distributions of the search algorithm. 

A formal definition of the averaged range process is now given. The initial distribution of ARP is 

identical to that of RP, being the image in the range of the initial distribution of the original domain 

process . At the nth iteration, suppose that ARP is in state Yi . Then the probability that ARP moves 

to state Yj at the next iteration is found by summing all the probabilities of distinct transitions in 

the domain from j-l (Yi) to j-l (Yj ) . That is, the ARP transition matrix at the nth iteration, Rn, is 

given by 

XpE!-l (Yi ) XkE!- l (Yi) 
P(Yn+1 = Yj lYn = Yi ) 

(2 . 1 ) 

(2.2) 
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Figure 2.2: The Markovian approximation to the range process uses a mixture of local range distribu­
tions, with weights determined by the domain process. In this figure, the current range value may be 
due to either of two domain points, each of which gives rise to a probability distribution for the range 
value after one further iteration. These probability distributions are mixed as shown. 

for n � 0 and i, j E { 1 ,  2, . . .  , m} when P(Yn = Yi) #- 0, and (Rn)ij is arbitrarily set to zero otherwise. 

(Alternative arbitrary assignments in the case when P(Yn = Yi) = 0 are possible, such as setting (Rn)ij 

to 1 if i = j and 0 otherwise, or assigning equal values to P(Xn = Xk lYn = Yi) for all k such that 

!(Xk) = Yi and proceeding according to Equation (2. 1 ) .  The simpler definition is retained, however, 

as in [49] . This has the added benefit of making the need for a refined construction of the asymptotic 

averaged range process transition matrix as in Theorem 3.3 .3 more apparent , as illustrated in the final 

example of Section 3.3 . )  

The construction of this transition matrix may be represented more compactly using the following 

definitions. Define domain weightings used by ARP, rn, based only on the current range level and 
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iteration number, as 

( .) ( I ( ) ) P(Xn = Xi) In '/, = P Xn = Xi Yn = f Xi = P(Yn = f(Xi))  = 

8n (i) 

{j :! (Xj)= !(Xi)} 

for i E { I ,  2 ,  . . .  , l} where the denominator is positive. Otherwise, arbitrarily assign In (i) = O. 
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(2.3) 

An l x m matrix M mapping from domain states to objective function states is now defined as 

Mij = { 1 
o 

if f(xd = Yj , 

otherwise . 

Then 

MT diag( In )P M (2.4) 

where diag( In ) is a diagonal matrix with entries of In on the diagonal . 

By way of justification for this expression, note that M?j = 1 whenever f(xj ) = Yi . Then, provided 

(MT diag( In) )  ij 
( MT diag( In)P) ij 

(MT diag( In)P M) ij 

by Equation (2.2) .  If P (Yn = Yi ) = 0 then (MTdiag(rn)) ij = 0 for all j, so (MTdiag(rn) PM) ij = O. 

In either case the definition of Rn in Equation (2.4) is identical with the definition provided earlier. 

The sequence of processes studied in this thesis span a conceptual crevasse between, on one side, 

the generic stochastic global optimisation algorithm of interest, and on the other, BAS, for which full 

convergence analysis is available (and presented in Chapter 4) . The value of this study is determined 

by the quality of the approximations; however, detailed derivations of the properties of each process 
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are left to later chapters. To anticipate Theorem 3 .2 . 1 ,  though, it  is in fact the case that the averaged 

range process and the range process (and therefore the domain process) share the same expected 

number of iterations before termination. 

This fact is now illustrated in the simple example. 

Example (continued) The objective function of the example problem implies 

1 0 

M = 0 1 

o 1 

For this cyclic example, explicit expressions for pn are available as 

2I 0 0 2 
n�l 

pn = 2- I  2I - 1  
n+l .!!:±l 

1 0 for n even; pn = 2--2- 2 2 - 2 

2I - 1 0 1 
n+l 

2-2-- 1 

0 0 

0 2 

1 0 

for n odd. 

n n 2 1 1  Expressions for On can be calculated as oopn . Thus when n is even On = 2- "2 [2"2 - 3 3 3 ]  and 

n+l 
[ 

n + l  1 2 ] ( ) when n is odd On = 2--2- 2-2- - 1 3 3" • Then by Equation 2.3 , 

[ 2 � _ 1  1 

i!i 1 In = � i!i 2� - 3 [ 1 1 1 ] 2 2 

for n even, and similarly 

for n odd. All the ARP transition matrices can now be found explicitly by application of Equa-
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tion (2.4) . Thus 

Rn = 
[ : : : ] 

= 
[ �  ; ]  

for n even, and similarly 

1 0 0 1 0 0 

o � 0 o 0 1 

o 0 � 
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1 0 

o 1 

o 1 

for n odd. Since there is only one absorbing domain state and corresponding range level, the first row 

and column of M are vectors of zeros with an initial one, and the first element of In is a one. Also 

the first rows of transition matrices P and Rn are always vectors of zeros with an initial one. In this 

small example the transient portions of the range transition matrices Rn are single numbers, giving 

the probability of staying at the transient range level after one transition. 

The expected value of the number of iterations before convergence for the averaged range process, 

Na, can now be found as follows: 

00 

E(Na) 
= 

L P(Na 2 n) 
n=l 
2 2 3 2 3 2  2 3 2 3  - + - . _ + - . - . _ + - . _ . _ . - + . . .  
3 3 4 3 4 3  3 4 3  4 
1 

2 -
3 

This is the same result as that stated earlier, from direct analysis of the process in the domain. Thus, in 

this example, ARP preserves the expected number of iterations to convergence of the domain process 

it approximates. Later this is shown to be true in general. 
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2 .2 .2  The asymptotic averaged range process 

While ARP is a time-inhomogeneous Markov process, BAS is defined later as a time-homogeneous 

Markov process. To link the two, it is necessary to remove the iteration dependence of ARP. This 

is done by observing that the transition matrices Rn for ARP settle down in the limit to a constant 

matrix R, or, possibly, to oscillation between multiple constant matrices (in which case R is defined 

as the average of these limiting matrices) . This is proven for all sequences of transition matrices Rn 

in Chapter 3 .  

The asymptotic averaged range process (AARP) is defined to be the time-homogeneous Markov 

process with initial distribution equal to that in both the range process and the averaged range process, 

and with transition matrix R given (in most cases) by 

1 N-l 
R =  lim 

N 
L Rn, 

N-.oo n=O 

as in [49] . This definition may be informally justified by averaging the first N transition matrices 

Rn and then obtaining R as the limit to which this average tends as N tends to infinity. Beyond a 

certain number of iterations the Rn will be cycling through the set of constant limiting matrices (with 

negligible discrepancies) , so the average over all N matrices Ra , RI , . . .  , RN will tend to the average 

of those limiting matrices. The exact definition requires more care to handle possible circumstances 

under which this definition leads to substochastic R (the details are provided in Chapter 3) , but 

the definition above is correct whenever 00 gives positive weight to all Xi (so that the probability of 

commencing in any domain state is positive) . This is a mild restriction that could be easily satisfied, 

for instance by commencing with pure random search with some positive probability. Except in special 

cases where the transition matrices Rn settle down in the limit to oscillation between multiple limit 

matrices, the expression simplifies to R = lim Rn. n-.oo 

Example (continued) The example illustrates the cyclic case. The limiting average transition matrix 
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may be found as follows (since in this example 00 gives positive weight to all xd : 

1 2N-1 
R =  lim 2N L Rn N-+oo n=O 

1 N-1 ( [  
��oo 2N � 
lim 2

1
NN 

[ 2 
N-+oo 7 12 

[ :  : j 24 24 
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Applying standard Markov Chain theory to  AARP using this limiting transition matrix gives an 

expected number of iterations to convergence of � (1 - �n -1 = 2� .  This is close to the value for the 

domain process, 2k .  Some means of quantifying the error now introduced by the approximation to 

AARP is required; discussion of this problem is offered in Chapter 3 .  

The asymptotic averaged range process is of some interest in  itself: it provides a greatly simpli-

fied representation of a global stochastic optimisation algorithm. It has the simple form of a time-

homogeneous Markov process, and it operates in the range, which is one dimensional, instead of the 

domain, which is generally multidimensional. The number of possible range levels is potentially far less 

than the number of possible domain locations. If the expected number of iterations before convergence 

for the asymptotic averaged range process can be shown to be close to that of the original domain 

process, then obtaining this information from the asymptotic averaged range process will therefore be 

in general much simpler computationally. 

2 .2 .3  B acktracking adaptive search 

Since even the asymptotic averaged range process is still in general of a size that prohibits direct 

calculation of its convergence rate, another stage of approximation is required. The important result 

of the stages of approximation shown thus far is that a time-homogeneous Markov process in the range 

has been found to approximate a general stochastic global optimisation algorithm. Since this is the 

form of backtracking adaptive search, it is possible now to approximate the asymptotic averaged range 
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process using backtracking adaptive search. 

The simple example of this chapter is so small that the asymptotic averaged range process is 

already in the form of backtracking adaptive search; the number of iterations before convergence for 

the backtracking adaptive search approximation is thus identical with the number of iterations before 

convergence for the asymptotic averaged range process. A full discussion of the details of backtracking 

adaptive search, including a general method for approximating the asymptotic averaged range process 

with backtracking adaptive search, is left to Chapter 4. 

In Chapter 4 a closed form expression for the expected number of iterations before convergence for 

the backtracking adaptive search algorithm is presented. This is the end-point of the approximation 

sequence described in this thesis. Convergence results for an approximation of a general stochastic 

global optimisation algorithm are thus available. 

2 . 3  Summary 

The framework described in this chapter provides a means for approximating the convergence rate of 

an arbitrary Markovian optimisation algorithm, by linking it to a tractable stochastic process via a 

chain of intermediate stochastic processes. Each process in the chain is derived from the previous one, 

and can be used to approximate its convergence behaviour .  

The complete strategy for analysis enables predictions to be made of how long a particular stochas­

tic global optimisation algorithm should be run to reach a set level. The effectiveness of the stochastic 

global optimisation algorithm on a particular problem is thus measured. 

The following chapter fills in  some of the theoretical detail concerning the averaged range process 

and the asymptotic averaged range process, and Chapter 4 then describes backtracking adaptive search 

and the method by which it approximates the asymptotic averaged range process. Computational 

results for the entire approximation framework are reported in Chapter 6 .  
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Chapter 3 

The range , averaged range and 

asymptotic averaged range processes 

3 . 1  Introduction 

This chapter extends and amplifies Chapter 2 ,  analysing the averaged range process and the asymptotic 

averaged range process in more detail. It is shown formally that these processes are well defined, and 

the quality of their approximation of the domain process is examined. In particular, attention is 

focused on the number of iterations before convergence. The major aim of approximation is to find a 

practicable method of estimating the mean of this quantity. Such a method would be of considerable 

practical use. 

The following section shows that the distribution of the number of iterations before convergence 

for the averaged range process is the same as for the domain process. Section 3 .3  demonstrates the 

existence of a well defined asymptotic averaged range process approximation to any domain process. 

Section 3.4 then provides some discussion of the number of iterations to convergence for this process . 

Finally, a brief summary consolidates the results shown thus far in the framework. The last step in 

approximating the asymptotic averaged range process with a backtracking adaptive search process 

will be considered in Chapter 4. 
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3 . 2  The nUlnber o f  iterations before convergence for the averaged 

range process 

The quality of each successive approximation is determined by the error introduced in estimating the 

number of iterations until convergence for the original domain process, based on the approximation. 

This section shows that the first stage of approximation in fact introduces no error in estimating the 

distribution of this quantity. 

It should be borne in mind, however, that the expected convergence time of the averaged range 

process is still in general difficult to evaluate in practice; the reason for continuing the approxima­

tion process to backtracking adaptive search is that the expected convergence time for backtracking 

adaptive search can be calculated efficiently by computer. The result shown here is a theoretical 

justification of the first part of this approximation process. 

Recall the definition of the averaged range process given in Subsection 2 .2 . 1 .  The averaged range 

process (YrJ takes values on the range indexed as YI , Y2 , . .  , , Ym , where YI is the optimal level. The 

domain process (Xn) takes values on the domain Xl , X2, . . .  Xl · 

Where (Y�) goes at each iteration will in general depend on more than the last step. As the 

definition of ARP is based only on the current level and iteration number, therefore, it is distanced 

somewhat from RP. Despite this, the definition provided in Subsection 2.2 .1  implies that, while the 

averaged range process and the range process can in general differ in joint distribution, they must be 

equal in marginal distribution at each iteration. 

Theorem 3.2 .1  At any given iteration, the range process and the averaged range process have the 

same distribution. 

Proof The notation required for the averaged range process is first described. 

As in Subsection 2.2. 1 ,  define 'Yn (i) = P(Xn = Xi lYn = !(Xi) )  for i E { I ,  2,  . . .  , I} whenever 
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P(Yn == f(Xi ) )  > 0 ;  otherwise, arbitrarily assign in (i) = O. Also let 

M 
. .  _ { I  if f(Xi) = Yj , 
tJ -

o otherwise, 

so that the averaged range transition matrix at the nth iteration can be written as 

( 3 . 1 )  

where diag( in ) i s  a diagonal matrix with entries of in on the diagonal . 

The probabilities of the domain process occupying any state in the domain at the nth iteration are 

given by the vector On where n 2 0; define the averaged range process equivalent, 7rn , to be a vector 

containing the probabilities of the averaged range process occupying any level in the range at the nth 

iteration for all n 2 O. The definition of the range process implies that the probability distribution of 

range states in RP is the image of On under f. The theorem may thus be stated as 

The theorem may now be proved by induction. The initial averaged range distribution i s  given as 

the image in the range of the initial domain distribution, so that 7ro = ooM. 

Now assume the result for some integer k 2 O. Note that 

[Ok M MT diag(Tk) ] (i) = P(Yk = f(Xi) )P(Xk = Xi!Yk = f(Xi) )  

= P(Xk = Xi) 

(3 .2) 
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holds. Thus 
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7Tk+l - 7TkRk by definition 

6kMMTdiag(rk )PM by hypothesis and using Equation (3 . 1 )  

6kP M from Equation (3 .2) 

6k+lM. 

Hence by induction 7Tn = 6nM for all n � o. • 

It is now possible to go further and prove the surprising result that the distribution of the number 

of iterations before convergence is in fact the same in both the domain process and the averaged range 

process-despite the fact that the two processes differ in joint distribution. 

The following example illustrates the difference in joint distribution between a domain process 

and its averaged range process approximation. Suppose the function XX is to be minimised over the 

domain {-I ,  0, 1 , 2} ,  and the algorithm applied in the domain at each iteration when x >  -1  is simply 

to move to x - I  with probability 0.5 ,  or otherwise to remain at x. Clearly, at least three steps are 

required to find the optimum starting from x = 2 .  

The range values in this example are -1 ,  1 and 4 (using the convention that 00 
= 1 ) ;  the averaged 

range process then assigns positive probabilities to the transitions from level 4 to level 1 and from 

level 1 either to level -1  or level 1 . The values of these latter two transition probabilities depend on 

the relative likelihood of being at x = 0 or x = 1 at the current iteration. If the initial distribution 

places positive weight on all four domain states, though, it is clear that it is possible for the averaged 

range process approximation to find the optimum in only two steps starting from level 4 ,  where x = 2. 

The averaged range process can thus produce sample paths corresponding to impossible transitions 

in the domain .  Nonetheless, the following corollary shows that the lengths of sample paths from 

algorithm commencement to convergence in each process are identically distributed. 

Corollary 3 .2 .1  The distribution of the number of iterations to convergence for the generic stochastic 

global optimisation algorithm in a finite domain is identical to the distributions for the corresponding 

range and averaged range processes. 
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Proof The range process is  defined as the image of the domain process under f. Consequently, 

the number of iterations to convergence for this process is stochastically equivalent to the number of 

iterations to convergence in the original domain algorithm. Reference to RP is by way of a stepping 

stone to the new Markov process in the range, ARP .  

Let Fd be  the cumulative distribution function of the number o f  iterations to convergence for 

the domain process, and Fa be the cumulative distribution function of the number of iterations to 

convergence for the averaged range process. Then if Nd is the number of iterations to convergence for 

the domain process, 

P(Nd � n) 

- P(Xn = Xl ) 

- 6n( 1 ) ,  

the first component of the vector 6n . Similarly Fa (n) = 7rn (l) .  Now since there i s  only one state 

at the optimal level, the probability of the domain process being in the optimal state is the same as 

the probability of the range process being in the optimal level . Theorem 3 .2 . 1  then shows that this 

probability is the same as the probability of the averaged range process occupying the optimal level. 

Thus 

so Fd = Fa and the proof is complete. 

Fd(n) = 6n ( 1 )  

= 7rn(l )  

= Fa(n) 

• 

Thus the first stage in the approximation is exactly equivalent to the original optimisation al­

gorithm, in terms of the distribution of the number of iterations before convergence. This result 

corrects [49] , where the number of iterations before convergence in the averaged range process is said 

to differ from the number of iterations before convergence in the domain process in moments higher 



38 Chapter 3. The range, averaged range and asymptotic averaged range processes 

than the first. The equality of means has been illustrated in the example of Subsection 2 .2 . 1 .  

The ensuing section moves on to the next stage of approximation, showing that the asymptotic 

averaged range process provides a well defined approximation to any Markovian global optimisation 

algorithm. 

3 . 3  Existence of the asymptotic averaged range process 

This section demonstrates the existence of the asymptotic averaged range process approximation to 

any averaged range process. Then, since the averaged range process has been defined for all domain 

processes, the whole approximation framework is defined up to this stage. The proof is straightforward 

for most algorithms and problems, but care is required in making sure that the asymptotic averaged 

range process is well defined in each possible case. 

To prove AARP exists is to prove that , as n tends to infinity, Rn tends to a constant matrix, or 

possibly to oscillation between a finite number of constant matrices . As defined in Equation (2. 1 )  of 

Subsection 2.2 . 1 ,  each entry in Rn is constructed as a sum of terms of the form 

P(Xn = Xk)P(Xn+1 = xp lXn = Xk) 

P(Xn E j-l (J(Xk ) ) )  
(3 .3) 

over various values of xp and Xk when P(Xn E j-l (J(Xk) ) )  > O. The conditional part of this is simply 

a one-step transition, determined from the transition matrix P, which is assumed constant . 

It is possible to relax this assumption somewhat; the conditional part has a well defined limit as n 

tends to infinity when strong ergodicity obtains in the normalised transient state transition matrix [44, 

Definition 4.5] , and the existence of a quasi-stationary vector implied by this condition means that in 

fact the whole expression has a limit (this is discussed in greater detail below) . Since the main point 

is that in the limit a quasi-stationary vector should exist, the conditions under which the asymptotic 

averaged range process is well defined may be weakened even further; however, as stated earlier, only 

algorithms with constant transition matrix P are considered here. 

Taking this conditional part as constant, then, it must still be shown that the remaining part of 

the expression in ( 3.3) has a limit. In Subsection 3.3 .2 this is proved for primitive transient state 
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transition matrices, and then in Subsection 3.3.3 a general theorem establishes that in fact for any 

domain process the expression in (3.3) tends to oscillation within a finite set of limiting values. The 

existence of an asymptotic averaged range process approximation to any time-homogeneous Markovian 

domain process can then be demonstrated. 

Before these results can be proved, though, some knowledge of Markov chain theory is required. 

An introduction to the important points is presented in the following subsection. 

3 . 3 . 1  Mar kov chains 

The subsection following this one proves the existence of an asymptotic averaged range process ap­

proximation to any domain process where the transient state transition matrix is primitive. A matrix 

is primitive if and only if it is irreducible and acyclic. Define pij = P(Xn = Xj !Xo = Xi) ;  then a 

matrix is irreducible if for each pair of states Xi and Xj there exists an n such that pij > O. If the set 

{n : pfi > O} has a greatest common denominator d > 1 for some i then the state is cyclic with period 

d; otherwise the state is acyclic. 

All states in a set of states for which the transition matrix is irreducible have the same period 

d >  0 [44, Lemma 1 .2] (if the "period" is 1 then the states are acyclic) . States in this set are partitioned 

amongst exactly d non-empty cyclic subclasses (this follows from [44, Theorem 1 .3] ) .  The Markov 

chain moves around these subclasses in order, sampling one state from the current subclass at each 

iteration. 

Note that a transition matrix for more than one state can never be irreducible if one of the states 

is absorbing, since the probability of a transition from an absorbing state to any other state in n steps 

is zero for all n. The transition matrix formed by exclusion of all absorbing states, however, may be 

irreducible. If this transient state transition matrix is also acyclic then it is primitive. 

A Markov chain with primitive transition matrix P has a stationary distribution v such that 

vP = v. This stationary distribution is called the left Perron-Frobenius eigenvector of P [44J . Theo­

rem 4.6 of [44] , which is repeated in the lemma below, generalises this idea to consider the so-called 

quasi-stationary distribution of transient states when the transition matrix of transient states only is 

primitive. Note that I denotes the set of transient states (called inessential in the lemma below) . 
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Lemma 3.3. 1 Let Q, the submatrix of P corresponding to transitions between the inessential states 

of the Markov chain corresponding to P, be primitive, and let there be a positive probability of {Xd 

beginning in some i E I .  Then for j E I, as k � 00, 

where v(2) = {vyl } is a positive vector independent of the initial distribution, and is, indeed, the left 

Perron-Frobenius eigenvector of Q .  

Lemma 3 .3 . 1 shows that Q has a quasi-stationary vector according t o  which the process will tend 

to distribute itself amongst the transient states before absorption. An extension of the argument 

applying also to cyclic irreducible transient state transition matrices will be given in Lemma 3 .3 . 3 .  

The discussion provided so far has hinted at the use of eigenvalues and eigenvectors in analysing 

Markov chains. The maximum eigenvalue of any stochastic P is 1 .  If there is only one absorbing 

state then the corresponding left eigenvector is a row vector with all components equal to zero except 

for an initial one [44, Theorem 4.7] .  (Eigenvalues and eigenvectors of P must satisfy vP = AV; when 

A = 1 this reduces to vP = V and v must be the stationary distribution of P. Clearly, the stationary 

distribution of an absorbing Markov chain will place all the weight in the absorbing state. )  If, in 

addition, the transient state transition matrix Q is primitive, then the second largest eigenvalue has 

corresponding to it a unique left eigenvector, the transient components of which form the Perron-

Frobenius eigenvector of Q, called the quasi-stationary vector. The relative probabilities of being in 

each transient state, given that the process has not converged, tend over time to limiting values given 

by the quasi-stationary vector. 

If Q is irreducible and cyclic with period d then the largest eigenvalue of Qd is shown to have d 

associated eigenvectors in [44, Theorem 1 .7] . 

The remainder of this subsection is spent developing Theorem 3 .3 .1 , which characterises the powers 

of a matrix (stochastic or otherwise ) .  A result from [12] is required before the statement and proof of 

this theorem. 

Define the Jordan decomposition of any square matrix A as A = X J X-I .  Denote the distinct 
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eigenvalues of  A by AI , A2 , A3 , . . .  , Ag .  Now let Xi denote the matrix formed by the columns of X 

associated with Ai and x1! the matrix formed by the rows of X-I associated with Ai ; then Pi = 

xix1! is the spectral projection associated with Ai . The following lemma now describes the spectral 

decomposition of A .  

Lemma 3 .3 .2  Each matrix A possesses a spectral decomposition of the form 

9 
A = L(AiPi + Di) , 

i=l 

for some finite li ' where Di = xiNiX1! and Ni is a matrix of the dimensions of x1! Xi with all 

elements equal to zero except for the superdiagonal elements, which are all equal to one except for a 

number one fewer than the number of linearly independent eigenvectors corresponding to Ai, which are 

equal to zero and arranged so that no more than li ones on the superdiagonal are consecutive. The 

following relations are also satisfied: 

where Oij is the K ronecker delta. 

This lemma abbreviates the definition provided in [12J . Sufficient detail is provided, however, to 

introduce the following theorem, which generalises Lemma 3.3.2 .  

Theorem 3.3.1 Using the notation of Lemma 3. 3. 2, 

for each matrix A, using the convention that a summation over an empty set is equal to zero. 

Proof Lemma .3 .3 .2 provides an expansion for A; this theorem follows from the fact that all products 

in the expansion of An are zero excepting only those terms for which the subscript i of each multiplicand 

is identical . 
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The relation 

Pi Dj XiXt XjNjXJ 

OijXiNjXJ 

(3 .4) 

is required in addition to those given in Lemma 3.3.2 .  This relation fol lows since the vectors making 

up Xi are columns of X and the vectors making up xt are rows of X-l . Now since X-l X is the 

identity matrix, it follows that Xi# Xj = oijI where I is an identity matrix of the same size as Nj . 

Now consider the non-zero terms of the expansion of An. Each of these is a product of n multipli-

cands, either of the form AiPi or Di . Suppose the first multiplicand in a term is of the form AiPi; then 

the next multiplicand must be either of the form AjPj or Dj . In either case, referring to Lemma 3 .3 .2  

and Equation (3.4) , the product is  zero unless i = j. Alternatively, the first multiplicand in a term 

may be of the form Di ; but in this case also, its product with the next multiplicand is zero unless 

i = j. Thus all non-zero terms in the expansion of An are composed of n multiplicands sharing an 

identical subscript i .  

I f  a term is composed solely o f  multiplicands of the form AiPi then, by Lemma 3.3.2, its value 

is Af Pi · Otherwise suppose there are k multiplicands of the form Di and n - k of the form AiPi .  

Lemma 3.3.2 and Equation (3.4) combine t o  show that the value of this term i s  A�-kDf . Since the 

order of multiplicands in each term is immaterial, this gives 

The proof is completed by noting that Dli = 0, so that the summation of terms in Df need not be 

taken further than k = li - 1 , even when n 2: li . • 

These results are developed further in the following sections as they are needed. 



3.3. Existence of the asymptotic averaged range process 

3 . 3 . 2  Primitive transient state transition matrices 

43 

In this subsection the proof of the existence of an asymptotic averaged range process approximation 

to a domain process is presented in the case where the domain transient state transition matrix is 

primitive. 

A veraged range process transition matrices are constructed by calculating the relative probability 

of being in any particular state, given that the domain process is known to be in a set of states with 

the same objective function level. Since there is only one absorbing state, the probability of being in 

that state given that the process is at the optimal level is exactly one. Moreover, the probability of 

being in any other state tends to zero over time, since all other states are transient. However, the 

conditional probability of being in any transient state given that the process is not absorbed tends to 

a limiting value. This is the result of Lemma 3.3 . 1 .  The theorem below now follows. 

Theorem 3.3 .2 When the transient state transition matrix Q (introduced in Section 2. 2) of a time-

homogeneous Markovian domain process is primitive and P(Xo = Xl)  < 1 ,  the averaged range process 

transition matrices Rn tend to a constant limit R as n tends to infinity. 

Proof In view of the discussion at the start of this section, the proof rests in showing that the 

expression P(Xn = Xk)/ P(Yn = f(Xk ) )  has a limit as n tends to infinity. 

Note first that there is only one absorbing state, Xl ; hence when k = 1 ,  the value of the expression 

P(Xn = Xk)/ P(Yn = f(Xk)) is exactly one (and the limit thus certainly exists) . Otherwise, if there 

is a positive probability that Xo i= X l ,  

= P(Xn = Xk) 
L P(Xn = Xj ) 

Xj E!-1 (J(Xk» 
P(Xn = Xk \Xn E 1) 

L P(Xn = Xj \Xn E I) 
Xj E!-1 (J(Xk» 

(3 .5) 

where I is the set of transient states, {X2 , X3 , " " xt } .  The summation is always over a finite non-

empty set, since the number of states at each level is finite (bounded above by 1) and Xk is certainly 

an element of f-I (J(Xk ) ) .  Since P is irreducible, P(Xn = Xk) is positive for all sufficiently large n .  
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The probabilities in the top and bottom of the right hand side of Equation (3 .5) are identical in 

form with that proven to have a positive limit as n tends to infinity in Lemma 3 .3 . 1 ,  applicable to any 

Markov chain where Q is primitive. The proof is thus complete for primitive Q .  • 

As Rn tends to R, the difference between the averaged range process and the asymptotic averaged 

range process becomes very small. This suggests an explanation for the observed proximity of expected 

convergence times for the two processes, as illustrated in the example of Subsection 2.2 .3 .  A more 

detailed consideration of this is left to Section 3 .4. 

An example of the asymptotic averaged range approximation to a domain process with primitive 

Q is now provided. 

Example 1 

Take an algorithm with domain transition matrix P as follows 

Next state 

1 2 3 4 

1 1 0 0 0 

2 0 . 1  0 .5 0 . 1  0.3 
Current state 

3 0 .2 0 .8 0 0 

4 0 .3 0 .3 0 . 1  0.3 

and initial vector 80 = [0 .0816 0.1599 0.2615 0.497] , randomly generated. The transient portion of P, 

denoted Q, is primitive. To see this, note that any transient state (states 2, 3 and 4) can reach any 

transient state in either 2 or 3 iterations. 

Since P is stochastic with a single absorbing state, the largest eigenvalue is 1 and the corre­

sponding left eigenvector is [1 0 0 0] . Eigenvalues and eigenvectors can be found from the following 
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decomposition: 

-1 
1 0 0 0 1 0 0 0 1 0 0 0 

-9.2426 5 .2426 1 3 0 0.8243 0 0 -9.2426 5 .2426 1 3 
p =  

-0.7574 -3.2426 1 3 0 0 0 .0243 0 -0.7574 -3.2426 1 3 

- 1  -4 1 4 0 0 0 0 -1  -4 1 4 

The relative weightings amongst the components of the second largest eigenvector of P corresponding 

to transient states are thus 5.242i+1+3 [5.2426 1 3J = [0.5672 0 . 1082 0.3246] ' the Perron-Frobenius 

eigenvector of Q. This vector is the quasi-stationary vector of Q .  

Let /3n list the probabilities of being in  each transient state given that the process has not converged 

at iteration n. Thus in this case /3n = on(2)+,,J3)+on (4) [on (2) on (3) on (4)J , where On = oopn . Then 

/30 = [0. 1 741 0 .2847 0 .5412J ,  and /3n is expected to tend to the quasi-stationary vector over time [44, 

Theorem 4.6J . The process is now iterated four times, recording successive values of On and /3n . 

01 = [0.2990 0 .4383 0.0657 0 . 1971] , /31 = [0.6252 0 .0937 0 .28 1 1J 

82 = [0.4151 0 .3308 0.0635 0 . 1906] , /32 = [0 .5655 0 . 1086 0.3258J 

83 = [0.5 180 0 .2734 0 .0521 0 . 1564] , /33 = [0 .5673 0 . 1082 0.3245J 

04 = [0.6027 0 .2253 0 .0430 0 . 1289] , !34 = [0 .5672 0 . 1082 0.3246J 

As expected, the weightings amongst all four states are tending towards the limiting distribution of P, 

[ 1  0 0 0] , and the weightings amongst the transient states are tending towards the Perron-Frobenius 

eigenvector of Q. After four iterations these weightings are already identical with those of the quasi­

stationary vector, to four decimal places. (A further 48 iterations are required for the weightings 

amongst all four states to reach their limiting distri bu tion.)  

Hence the weightings among transient states , from which In is calculated, quickly adopt their 

limiting values. Transition matrices for ARP, given by Equation (3 . 1) as Rn = MTdiag(Tn)PM, 

are therefore equally quick to adopt limiting values. As discussed above, the difference between 

ARP and AARP thus tends to be very small . In particular, the expected convergence time for the 
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algorithm in this example (equal to the expected convergence time for ARP) is 5.9 iterations; its 

AARP approximation (supposing for example that the second and third states share an objective 

function level) has an expected convergence time of 6.0 iterations. 

3 .3 .3  Cyclic irreducible transien� state transition matrices 

This subsection completes the proof of the existence of an asymptotic averaged range process approx-

imation to any Markovian domain process. The analysis is extended to the general case where the 

domain transient state transition matrix Q may be cyclic. Two examples are given for this cyclic case; 

in the second of these it is demonstrated that the definitions presented here provide a correction to 

those given in [49] , which fail in certain cases. 

Before the existence of the asymptotic averaged range process can be demonstrated, the following 

lemma is required. This lemma generalises the quasi-stationary vector result of Lemma 3 .3 . 1  used in 

the primitive case. 

Lemma 3.3 .3 Let the transient state transition matrix Q of a time-homogeneous Markovian domain 

process with a single absorbing state be irreducible, with each of l - 1 transient states having period d .  

Then there are d + 1 linearly independent eigenvectors (denoted VI , V2 , . . .  , Vd+l) corresponding to the 

largest two eigenvalues of P. There exists a unique decomposition of the initial probability vector 60, 

such that (when 60 ( 1 )  < 1) the conditional probabilities of being in each transient state after a multiple 

of d iterations, given that the process has not converged, tend to limiting values given by the vector 

v (a2V2 + a3v3 + . . .  + ad+lVd+l )TI 

! ! (a2v2 + a3v3 + . . .  + ad+lVd+l )l1 ! ! I ' (3 .6) 

where ! ! v !h is the Ll norm of v and 11 is a truncation transformation equal to the identity matrix of 

size l with the first column removed. 

Proof Arrange Q in canonical form [44] so that states in the same cyclic subclass are grouped 
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together. The new matrix Qd then represents the d-step transition matrix for the transient states. 

Whatever state the Markov chain is in at any stage, d steps later the Markov chain will again be in a 

state from the same cyclic subclass (unless it has reached the absorbing state) , since Q is periodic with 

period d. Therefore Qd is a zero matrix except for d submatrices on the diagonal, each corresponding 

to transitions between states within the same cyclic subclass of Q. These submatrices are primitive [44, 

Lemma 1 .3] . 

As in the primitive case discussed earlier, each submatrix therefore has a quasi-stationary vector-

that is, the relative weightings amongst the states within each cyclic subclass tend to a limit. For each 

of these quasi-stationary vectors, define a full state vector of l components by placing zeros in the 

components relating to states in the other cyclic subclasses. Then the relative weightings, according 

to which all transient states will tend to be distributed after successive application of Qd, will be a 

weighted sum of these full state vectors. The weighted sum must take into account the probability 

of being in each of the cyclic subclasses after a multiple of d iterations, which depends on the initial 

probability distribution; within each cyclic subclass the transient states will tend to be distributed 

according to the quasi-stationary vector relating to that subclass. 

The exact weightings are derived as follows. Since P is stochastic, the largest eigenvalue of pd is 

Al = 1 ;  and (as in the primitive case) only the eigenvector VI placing all the weight in the absorbing 

state corresponds to this eigenvalue [44, Theorem 4.7] .  There will be d eigenvectors of pd corresponding 

to the second largest eigenvalue. These reflect the quasi-stationary vectors for each of the d cyclic 

subclasses; hence they are all real-valued. (Each eigenvector of pd is the same as an eigenvector of 

Qd with an extra entry relating to the absorbing state; the following analysis relates really to the 

eigenvectors of Qd but is presented in terms of the full matrix pd.) 

It is necessary to refer to the Jordan form of pd, defined as XJX-l for some X and J [ 12] .  Now 

let Xi denote the matrix formed by the columns of X associated with Ai and x1! the matrix formed 

by the rows of X-I associated with Ai . Then (pd)n can be expressed using Theorem 3.3 . 1  as 

9 ( 

min (li-1 ,n) 

( ( 

n ) ) ) 
'" AT}-P. + '" )..n-k Dk � t t � t t i=1 k=1 k 
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where the number of distinct eigenvalues of pd is g, Pi = XiXi# , Di = XiNiX1! for some Ni and 

Dii = O. 

The structure of J is detailed in [12] . The eigenvalues of pd form the main diagonal of J. These 

can, by reordering indices in X and J, be taken to occur in the order .AI , .A2 , . . .  .Ag . For every linearly 

independent eigenvector associated with .Ai there is a column in J made up entirely of zeros except 

for the diagonal element, which has the value .Ai ; all other columns in J are made up of zeros except 

for the diagonal element, containing one of the eigenvalues, and the superdiagonal element , which has 

the value 1 .  A further condition ensures that the superdiagonal in the first column of J containing a 

particular eigenvalue .Ai is always O. 

This structure implies that the ith column of X is a right eigenvector associated with the eigenvalue 

in the ith column of J if and only if the superdiagonal in the ith column of J is zero, since pd X = X J 

(and X is invertible, so each column contains nonzero elements) . Moreover, this relation also implies 

that if the superdiagonal in the ith column of J (containing the eigenvalue .Aj ) is 1 then the ith 

column of X, denoted by xi , is a "generalised eigenvector" of pd, satisfying pdxi = .AjXi + xi-I , where 

Xi- 1 is itself either an eigenvector or a generalised eigenvector of pd corresponding to .Aj . (Thus the 

Jordan basis [19] is composed solely of eigenvectors and these "generalised eigenvectors" . )  The further 

condition given above limits the number of columns with superdiagonals equal to 1 and ensures that 

there is at least one eigenvector associated with each eigenvalue. A similar argument can be used to 

show that rows of X-I are left eigenvectors or generalised eigenvectors of pd. 

It is now shown that the number of linearly independent eigenvectors corresponding to .AI  and 

.A2 , already known to be d + 1 ,  is equal to the number of times they appear in J. The first row 

of x-I , denoted by x1# ,  satisfies x1# P = x1# (since .AI = 1 )  and must therefore be the unique 

stationary distribution. Then if .AI is repeated in J there must be a generalised eigenvector x2# 

satisfying x2# pd = x2# + x1# ;  but this is impossible since x2# can be scaled so that it is stochastic, 

whence the left hand side of this equation is stochastic but the right hand side is not (since x1# is 

also stochastic) .  Thus .AI occurs only once in J.  Also the eigenvectors associated with .A2 are formed 

from Perron-Frobenius eigenvectors of each of the d cyclic subclasses of pd, as discussed above; there 

are therefore no other eigenvectors or generalised eigenvectors associated with .A2 in any of these 
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subclasses [44J . Thus the columns of X associated with Al and A2 are all eigenvectors, not merely 

generalised eigenvectors. 

Now since X-I is invertible and its rows are eigenvectors or generalised eigenvectors of pd, there 

must exist a unique representation of 80 as a sum of eigenvectors and generalised eigenvectors: 

Multiplying by pnd, remembering that the Vi are eigenvectors of pd , and that d of them have the 

same eigenvalue, gives 

(3 .7) 

The final term will tend to die out faster than the other terms as n tends to infinity; the proof of this 

again uses the Jordan form of pd. 

Since left eigenvectors and generalised eigenvectors are rows of X-I  and X-I X = h i t  follows that 

Xi# Xj = 0 whenever Xi# is associated with an eigenvalue other than Aj . Referring to Equation (3 .7) , 

c is a sum of eigenvectors and generalised eigenvectors associated with eigenvalues other than Al and 

>-2 , so it is also true that cXj = 0 for j E { I ,  2 } .  From this it follows that CPl = 0 ,  CP2 = 0 ,  cDI = 0 

and cD2 = 0; therefore 

9 ( ( min(li-1 ,n) ( ( n )  ) ) ) 
c(pdt = et;  Af Pi + E k X:kDf 

Thus 

The first term will tend to overshadow the others, but this term affects only the weighting of probability 

in the absorbing state (due to the special form of VI ) '  The transient states will assume the weightings 

relative to each other described by the following d terms, once the remaining term dies out (which, 
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as shown above, will happen geometrically quickly) .  These relative weightings, denoted v ,  are the 

L1-normalisation of the transient component of 

(that is, scale v so that it is a probability vector. Normalisation is possible since the algorithms that 

AARP approximates are finite) . This completes the proof. • 

Note that the long term behaviour of the cyclic algorithm depends on the constants ai , which are 

derived from the initial distribution; contrast the primitive case dealt with earlier, where there is no 

such dependency. 

Thus after a multiple of d iterations, the transient states will tend to distribute themselves accord­

ing to v .  This is the cyclic generalisation of the quasi-stationary vector referred to in the primitive 

case. Since every power of Q can be expressed as Qkd+a for some integer k, where a E {O ,  1 ,  . . .  , d  - I } ,  

the vector o f  probabilities of being i n  each transient state given that the process has not converged 

will tend to cycle through the vectors v, vQ/ l lvQ l I l , vQ2/ 1 IvQ2 1 1 1 " "  vQd-l I l lvQd-1 1 1 1 . 

This provides a general method of constructing R, the transition matrix amongst objective function 

levels in the range of the asymptotic averaged range process approximation to any time-homogeneous 

Markovian domain process. 

Theorem 3.3 .3 A general equation to give the transition matrix of an asymptotic averaged range 

process approximation to any time-homogeneous M arkovian domain process with irreducible Q and 

P(Xo i- Xl ) > 0 is 

R MT diag(-y)PM (3 .8) 
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where , is found directly from the limiting average weightings amongst transient states as 

for i E { I ,  2, 3 ,  . . .  , l } .  

,( i )  = lim -d __ a_=-'O'---____ _ 
k-+oo -1 

L L ,kd+a (j) 
a=O {j:f(xj)=f(xd} 

5 1  

Proof Since P is constant, the limit Rn as defined in Equation (3 . 1 ) will tend to R as defined in 

Equation (3 .8) provided ,n tends to , as n tends to infinity. 

Now since Lemma 3.3.3 shows that the process tends eventually to repeat a cycle of d steps, the 

limiting average of ,kd+a is given simply by the average of the limits over one cycle. The average must 

be taken not simply over the d iterations in each cycle, but over the number of iterations in each cycle 

where P(Yn = f (xi ) ) > O. This is given by the double summation in the denominator (note that 

• 

Note that Lemma 3.3 .3 also provides a refined method of calculating lim ,kd+a ;  that is, ,kd+a(l )  = k-+oo 
1 since there is only one absorbing state, and 

lim ,kd+a (i) = k-+oo 

[vQa](i) where this is defined L [vQaJ (j) 
{j:f(xj)=f(Xi )}  

o otherwise, 

where i E {2, 3, . . .  , l } .  (Note that vQa need not be normalised in the preceding equation, since only 

the relative weightings amongst states are required. ) 

By this procedure R may be derived directly, with no call on infinite sums. (Long run characteristics 

of 6n could still be used to find v, if this is more computationally efficient. ) 

Note that in general , (and thus AARP) is dependent on the initial distribution. This is not the 

case for primitive Q. (Nor is it the case for cyclic processes where states at the same level are in the 

same cyclic subclasses. This is because P(Xn = Xi !Yn = f (xi) ) depends in this case only on relative 

weightings within each cyclic subclass, there being no distribution of weight across subclasses since 
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the conditioning event Yn = f (Xi) always fixes the cyclic subclass exactly when all states at the same 

level share a cyclic subclass. ) 

An example illustrates the ideas involved in constructing the asymptotic averaged range process 

approximation of a cyclic domain process. 

Example 2 

Take an algorithm with domain transition matrix 

1 0 0 0 

0 .1  0 0 . 1  0.8 
p =  

0.2 0.8 0 0 

0.3 0 .7 0 0 

and the randomly generated initial probability distribution 80 = [0.0816 0 . 1599 0.2615 0.497) from 

Example 1 .  Evidently, this matrix is cyclic; transient states can return to themselves only after an 

even number of iterations. The cyclic subclasses are { state 2 } and { states 3 and 4 } .  

Let 

M =  

1 0 0 

0 1 0  

o 1 0 

0 0 1  

with the rows of M corresponding to states in the domain and the columns corresponding to objective 

function levels in the range. Where Mij = 1 this implies that the ith state is at the jth objective 

function level. Thus state 4 is the only state at the third level. 
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As in the preceding discussion, focus is directed on the process with transition matrix 

p2 = 

1 0 

0.36 0.64 

o 

o 

o 

o 

0.28 0 0 .08 0.64 

0.37 0 0.07 0.56 

which shows the separate subclasses amongst the transient states. 
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The limiting distribution of this process again places all the weight in the absorbing state. There are 

two left eigenvectors corresponding to the second largest eigenvalue, namely [- 1 1 0 0] and [-9 0 1 8] . 

The first of these is connected to the cyclic subclass corresponding to the second state in P. The 

second of these eigenvectors shows that the process will tend, on average, to spend eight times as long 

in the fourth state as in the third . These states constitute the second cyclic subclass. Projecting 80 

onto the eigenvectors gives 

80 - 0.083 [1 0 0  0] + 0 . 160[-1 1 0 0] + 0 .087[-9 0 1 8] + 0.025[1 0 7  - 8] 

so the vector of limiting relative weightings of transient states under p2 is the L1-normalisation of 

0. 160[1 0 0] + 0.087 [0 1 8] (since these are the transient components of the eigenvectors corresponding 

to the second largest eigenvalue of p2) ,  or v = [0 . 1695 0.0923 0 .7382] . Every second iteration the 

process will tend to distribute itself among transient states according to this vector ; on alternate 

iterations the limiting weightings are vQ/ l l vQlh = [0 .7947 0.0228 0 . 1825] . 

The process is now iterated, recording successive values of On and /3n . 

80 = [0.0816 0 .1599 0.2615 0.4970] , /30 = [0 . 1 741  0.2847 0.5412] 

81 = [0.2990 0.5571 0 .0160 0. 1279] , /31 = [0. 7947 0 .0228 0. 1825] 

82 = [0.3963 0. 1023 0 .0557 0.4457] ' /32 = [0 . 1695 0 .0923 0.7382] 

83 = [0.5514 0.3565 0.0102 0.0819] ' /33 = [0.7947 0 .0228 0. 1825] 
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As expected, the weightings amongst all four states are tending towards the limiting distribution of 

P, [1 0 0 0] . At every second iteration f3n = v, and at odd iterations f3n = vQ/ l lvQl l l , as expected. 

(In this case the next largest eigenvalue of p2 is 0 (as is obvious from the transient state transition 

matrix) , so f3n adopts the limiting values after a single iteration. This does not happen in general .) 

Using the limiting weightings v and vQ/ l lvQ lh ,  found above, 

and similarly 

lim 'Ykd k---+oo 

Theorem 3 .3 .3 then gives 

[ 1 0. 1695 
0. 1695+0.0923 

= [1 0.6475 0.3525 1] 

0.0923 0.7382 ] 
0. 1695+0.0923 0.7382 

lim 'Ykd+l = [1 0 .9721 0.0279 1] . k---+oo 

[ 1+1 0.6475+0.9721 
HI 0.6475+0.3525+0.9721+0.0279 

0.3525+0.0279 HI ] 
0.6475+0.3525+0.9721+0.0279 1+1 

[1 0.8098 0 . 1902 1] , 

whence 

1 0 0 0 1 0 0 0 1 0 
1 0 0 0 

0 0.8098 0 0 0 . 1  0 0 . 1  0 . 8  0 1 
R 0 1 1 0 

0 0 0. 1902 0 0.2 0.8 0 0 0 1 
0 0 0 1 

0 0 0 1 0.3 0 .7 0 0 0 0 

1 0 0 

0 . 1 190 0.2331 0.6478 

0.3 0 .7 0 

0 

0 

0 

1 

This transition matrix, together with the initial probability distribution in the range given by ooM, 

defines the asymptotic averaged range process approximation to the cyclic domain process. 

In the limiting average derivation of R provided in [49] , however, the asymptotic averaged range 
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process may not be correctly defined. There the equation 

R = 
1 N-l 

lim 
N l: Rn  N->oo n=O 

1 N-l 
Hm 

N 
l: MTdiaghn)PM 

N->oo n=O 

1 N-l 
- MT diag( Hm 

N 
l: In)P M 

N-+oo n=O 
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is given. This formulation is appropriate for algorithms with primitive Q, since then Theorem 3.3 .2 

shows that Hm Rn = R, but when Q is cyclic the transition matrix generated in this way may be n-->oo 

substochastic. 

The definition of In shown in Subsection 2 .2 . 1  provides for the case where P(Yn = !(Xk)) = 0 by 

arbitrarily setting In(k) to O.  While these zero entries made no difference to the running of ARP (the 

marginal range distributions of ARP are identical with those of the range process, so that ARP never 

requires information concerning what to do from level ! (Xk) at iteration n unless P(Y� = !(Xk ))  > 0) , 

it will make a difference to AARP. If in the limit P(Yn = !(Xk) )  = 0 once or more in each cycle of d 

iterations, then at least lid of the Rn will have a row of zeros. The formula for R will then include 

these rows, producing averaged rows that do not sum to 1 ;  but R should be stochastic. The correct 

definition of R given in Theorem 3.3 .3 forms In by averaging only over the number of iterations in 

each cycle where P(Yn = !(Xi ) )  > O.  

This situation is demonstrated in the following example. 
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Example 3 

Consider the domain transition matrix 

1 0 0 0 

0. 1 0 0 . 1  0.8 
p =  

0.2 0 .8 0 0 

0 .3 0 .7 0 0 

from Example 2 and initial probability distribution 80 = [0 .3 0 .7 0 0] . Thus, with probability 0 . 3  the 

algorithm samples the optimum immediately; otherwise it begins in the second state, whence it will 

transition either to the optimum or to either the third or fourth state. From the initial distribution, it 

is clear that the process will never be in state 2 on odd iterations , or in states 3 or 4 on even iterations. 

As before, 

M =  

1 0 0 

0 1 0 

0 1 0 

o 0 1 

so state 4 is the only state at the third level , and the process will never be at the t.hird level at 

even iterations. Equation (2.3) therefore arbitrarily sets In ( 4) at even iterations to zero. This is the 

situation when rows of zeros appear in Rn. Thus 

1 o o 

Ro = 0 . 1  0 . 1  0 .8 

o o o 

1 o 0 

RI = 0 .2  0 .8 0 

0 .3  0 .7  0 

and each alternating Rn also has a zero row. (In fact, for this example Rn = Ro at even iterations 

and Rn = RI at odd iterations. )  Consequently, the limiting average R found using the formula for 
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primitive Q given in [49] has a row that does not sum to 1 :  

1 o o 

R = 0.15 0.45 0.4 

0 . 15  0.35 0 
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It  would be sensible to ignore rows of zeros in Rn when taking the limiting average, since they are 

arbitrary. This is effectively the result of applying the revised definition of R given in Theorem 3 .3 .3 ,  

in the manner illustrated in Example 2 . 

Application of Theorem 3.3.3 provides the proper AARP transition matrix, 

1 0 0 

R = 0 . 15  0 .45 0 .4 

0 .3 0 .7  0 

Note that this is the matrix that would be obtained by averaging the Rn matrices ignoring zero 

rows. Each row of R is the limiting average of transition probabilities from that level on the iterations 

at which the process has positive probability of transitioning from that level. This is clearly the logical 

extension of AARP to cyclic processes. 

Finally, it may be observed that the same algorithm used in Example 2 with a different initial 

vector produces a different asymptotic averaged range process approximation. This dependency on 

the initial probability distribution reflects the fact that the algorithm is periodic . 

The construction of AARP described in [49] fails on this example because AARP requires a single 

matrix to direct what to do at each range level at each iteration, even though the domain process 

provides no data for some levels at some iterations . The construction of R in Theorem 3 .3 .3  defines 

the AARP approximation to this example by effectively interpolating local range distributions for 

states at each iteration even though the domain process has zero probability of reaching those states 

on each alternating iteration. A reasonable approach to overcoming the special challenges presented 

by cyclic examples is thus presented. This analysis extends the definition of AARP from that given 

in [49] , to apply over all domain processes with irreducible transient state transition matrices. 
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An alternative solution to the problem illustrated above is to start the process with a positive 

probability of being in each domain state. There is therefore also a positive probability of being in the 

absorbing state at any subsequent iteration, and it can be shown by induction that the distribution at 

each iteration also assigns positive probability to each transient state. Suppose that the process has 

a positive probability of being in each transient state at iteration n. (This is true when n = 0 since 

the process starts with a positive probability of being in each domain state. )  At iteration n + 1 the 

process has probability L P(Xn = Xi)Pij of being in each other transient state j .  This probability is 
i 

positive provided Q is irreducible, using the above supposition. Thus by induction there is positive 

probability of being in each state at all iterations n E {O, 1 , 2, . . .  } ,  and thus P(Yn = !(Xk)) > 0 for all 

n. In this case Rn will never have a zero row. Hence the limiting average definition of AARP given 

in [49] applies to domain processes where Q is irreducible and the initial probability distribution is 

positive. 

The latter condition could be imposed by commencing with pure random search with some pos-

itive probability. (This condition is not required for primitive Q, or for the definition of R given 

in Theorem 3 .3 .3 . )  The irreducibility condition required for either definition of R means that the 

algorithm never completely writes off any part of the domain, which is a sensible assumption for good 

algorithms. 

Using the general definition of the asymptotic averaged range process given in Theorem 3 .3 .3 ,  

a Markov homogeneous process in the range can thus be defined as an approximation of any time-

homogeneous Markovian optimisation algorithm. The accuracy of this approximation in estimating 

the expected number of iterations before convergence will determine its usefulness; this accuracy is 

now considered in the following section. 

3.4 Convergence time of AARP 

As shown in Section 3.2, the averaged range process approximation to a general stochastic global 

optimisation algorithm preserves the distribution of the number of iterations to convergence. The 

asymptotic averaged range process does not; yet the expected number of iterations until convergence 
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for this process seems empirically to be close to the expected number of iterations wltil convergence 

for the domain, range and averaged range processes. The example in Subsection 2 .2 .3 illustrates this 

tendency. 

In this section it is shown that the error in expected convergence time introduced by the asymptotic 

averaged range process approximation is in general unbounded. However, it can be shown that the 

difference in convergence times of the asymptotic averaged range and domain processes is given by a 

summation where the terms tend to decay geometrically, in the case where the transient domain state 

transition matrix is primitive. In many cases, therefore, the difference in expected convergence times 

between the domain and asymptotic averaged range processes will be small. 

Denote the convergence time of the asymptotic averaged range process by Nb , and the marginal 

distribution in the range at the nth iteration by Tn . Now, employing a result similar to one in [4J (and 

recalling that Tm is equal to the identity matrix of size m with the first column removed) , 

E(Na) = (71"0 + 71"1 + 71"2 + . . · )Tmlm-1 

1 - 71"0 ( 1 )  + 1 - 71"1 ( 1 )  + 1 - 11"2 (1 )  + . . .  

since 71"n is stochastic. Similarly, 

and the error introduced by approximating the averaged range process with the asymptotic averaged 

range process is given by 

(3.9) 

(since the initial distributions for the averaged range and asymptotic averaged range processes are 

identical) . 

Equation (3.7) shows that all contributions to 8nd except that of VI die out geometrically with rate 

>"2/ >"1 = >"2 ·  The following theorem establishes that when d = 1 ,  it is also true that all contributions 
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to Tn die out geometrically with the same rate (since the eigenvector corresponding to the largest 

eigenvalue of the asymptotic averaged range process transition matrix R places all the weight in the 

absorbing state and the second largest eigenvalue of R can in fact be shown to be ).2) .  Thus the 

differences in Equation (3.9) tend to decay towards zero geometrically. If ).2 is not close to one then 

the decay will be rapid and the total error in expected convergence time may be small. 

Theorem 3.4.1 When the transition matrix amongst transient domain states is primitive, the second 

largest eigenvalue of the domain process transition matrix P is the same as the second largest eigenvalue 

of the asymptotic averaged range process transition matrix R. 

Proof The proof begins with Equation (3 .7) . For any eigenvector Vi of P,  it must be true that 

since P is stochastic. Therefore ViII = 0 wherever ).i i= 1 .  This implies that ,  since v is defined in 

Lemma 3 .3 .3 as the last l - 1 components of V2 (where d = 1 ) ,  and ).2 < 1 ,  the fuH I-vector V2 must 

be the vector [-1 v] (since v is stochastic) . It will now be shown that [-1  v] M is a stationary vector 

of R. 

When d = 1, the definition of 'Y in Theorem 3.3.3 and the definition of lim 'Ykd+i beneath it 
k->oo 

combine to show that 'Y(1)  = 1 and 

'Y( i) = _---:-:-
v(;....;.i) __ 

L v(j) 

for i E {2, 3, . . .  , I} . (Since P is irreducible, v must be positive so the denominator is always positive.) 

Comparing this with Equation (2.3) ,  it can be seen that if Ok = [0 v] then 'Y(i) = 'Yk (i) for i E 

{2, 3 ,  . . .  , 1} .  

Equation (3.2) then gives [okMMTdiag("() ] (i) = ok (i) for i E {2, 3 ,  . . . , I } .  Moreover, 'Y ( 1 )  = 1 and 
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all components of the first row and column of M are zero except Mu = 1 ;  therefore i t  i s  also true 

that [- 1 vJMMTdiagb) = [-1  v] . Thus, expanding R using Theorem 3 .3 .3 ,  

[- 1 vJMR = [-1 vJMMTdiagb)PM 

[-1 vJPM 

= ).2 [-1 vJM. 

It thus follows that [- 1 vJM is an eigenvector of R corresponding to ).2 . 

This vector is nonnegative, except for the first component. As the transient part of P is primitive, 

there is a transient state that can transition to itself in either n or n + 1 iterations, for some n .  Thus 

the transient part of R is also primitive. Since the stationary distribution of the submatrix of R 

pertaining to transient states is unique, therefore, it is given by the part of [-1 vJM corresponding 

to transient range levels; hence ).2 is the largest eigenvalue of that submatrix. The second largest 

eigenvalue of R is thus ).2; as in Equation (3.7) , therefore, Tnd tends to the limiting vector (which, 

since R is absorbing, places all the weight in the initial level) geometrically with rate ).2. • 

Both 6n(1) and Tn(l )  thus tend to one geometrically with rate ).2 . Initially the difference between 

them is biased towards zero by the contributions of other eigenvectors (since the initial error is exactly 

zero) ; as other eigenvectors die out the error will adopt a geometric decay with rate ).2 . 

The proof applies only for domain processes where the transient state transition matrix is primitive. 

Otherwise P has d eigenvalues equal to the d complex roots of ).2 , so [- 1 vJP i= ).2 [- 1 v] . It is possible 

to ensure that the transient state transition matrix is acyclic by altering the algorithm to conduct 

pure random search from some level with positive probability; with this slight alteration, the result of 

Theorem 3 .4. 1 is applicable. 

In random matrices the difference between the largest and second largest eigenvalues may often be 

large enough that this rate of decay will be fast, and ARP will have only a few iterations before settling 

down to the limiting behaviour of AARP. In this case the convergence times of the two processes will 

be similar. 
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It is possible, however, to construct transition matrices with the difference between magnitudes 

of these eigenvalues set arbitrarily small. In this case ARP will differ significantly from AARP for a 

large number of iterations; the convergence times may then be very different . In principle, therefore, 

the error introduced in approximating the averaged range process with the asymptotic averaged range 

process is unbounded. In practice, the approximation tends to be quite close for many algorithms and 

problems. Experimental results are reported in Chapter 6. 

As an example, take an algorithm with domain transition matrix 

1 

0.001 

o 

0.99 

o 0 

0 .002 0 .007 

0.003 0.004 0 .99 0 .003 

0.5 0 . 1  0 .2 0 .2 

and the random initial probability distribution 60 = [0 .0816 0 . 1599 0.2615 0.497] from Example 1 .  

The eigenvalues o f  this (acyclic) transition matrix are 1 ,  0 .995, 0.987 and 0 . 198 . The asymptotic 

averaged range process approximation can be constructed using the same mapping matrix M as in 

Example 2 . The error terms 7l'n (1) - Tn(l) are recorded at each iteration and plotted in Figure 3 . 1 .  

The sum of the error at each iteration in  Figure 3 .1 gives the total error in  expected convergence 

time introduced by the asymptotic averaged range process approximation to the domain process. In 

this case the total error is only 0.7 iterations; the expected number of iterations before convergence 

for the domain process is 12 1 .4 and that of the asymptotic averaged range process is 120.7. Thus 

even though the behaviour of the averaged range process takes some time to settle down to that of 

the asymptotic averaged range process, the overall error is still small. If the domain process had its 

largest eigenvalues even closer to one, however,  then the convergence would be slower and total error 

would increase. 

Note that Figure 3 . 1  illustrates a reason why the error is small: the errors are initially biased 

towards zero. Indeed, as mentioned above, there is initially no error at all ,  since the asymptotic 

averaged range process and the averaged range process start with identical probability distributions. 

Despite the worst case analysis revealing unbounded error in the approximation of expected conver-
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Figure 3 . 1 :  Time series plot of the error 7rn(l )  - Tn(l )  at each iteration in the example, illustrating 
geometric decay. 

gence times using the asymptotic averaged range process, it can be anticipated that many algorithms 

applied to various problems will give rise to domain processes with eigenvalues far enough from one 

for the approximation to be very close . If it were possible to check this property of the algorithm, 

a small value of the second largest eigenvalue could provide an assurance that the averaged range 

process transition matrices converge quickly to their limit and thus that the error introduced by the 

asymptotic averaged range process is small . The process in the domain is thus very closely linked 

with the time-homogeneous Markov process in the range, AARP. If the backtracking adaptive search 

approximation to the asymptotic averaged range process is accurate, then it will be possible to find 

a good estimate of the expected number of iterations before convergence for the original algorithm in 

the domain. 
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3 . 5  Summary 

This chapter fills out the theoretical background to the approximation framework outlined in Chap­

ter 2. Firstly, the averaged range and asymptotic averaged range processes have been shown to be 

well-defined approximations to any time-homogeneous Markov domain process. The possibility of 

weakening this restriction on the domain process has been remarked. 

Secondly, the number of iterations to convergence for the averaged range process has been shown to 

be identical in distribution to that of the domain process, and reasons have been advanced to suggest 

that the asymptotic averaged range process may have an expected number of iterations to convergence 

that very closely approximates the value for the domain and averaged range processes. 

It remains therefore to complete the approximation process by finding a backtracking adaptive 

search approximation to the asymptotic averaged range process; this is the theme of the next chapter . 



65 

Chapter 4 

Backtracking adaptive search 

4. 1 Introduction 

Attention is now turned to the end-point of the approximation framework: backtracking adaptive 

search. This chapter provides a definition of backtracking adaptive search and, in particular, analysis is 

provided for this process as defined on a finite range. Then a method of approximating the asymptotic 

averaged range process with backtracking adaptive search is described. 

In particular, the following section contains a description and definition of backtracking adaptive 

search. Section 4.3 then provides analysis of the number of iterations before convergence for back­

tracking adaptive search on a finite range, and Section 4.4 extends this analysis to allow an arbitrary 

initial distribution; this is of particular interest in the context of the framework of approximations. 

In both cases, a method is shown whereby the expected number of iterations before convergence for 

backtracking adaptive search can be found quickly via computer. Section 4.5 provides examples of 

backtracking adaptive search algorithms and shows how this analysis generalises several algorithms 

for which analysis has already been published. Finally, Section 4.6 details the method by which the 

asymptotic averaged range process is approximated by backtracking adaptive search. This completes 

the approximation framework; it is then possible to approximate the progress on the range of any 

algorithm with a backtracking adaptive search process and estimate the number of iterations required 

to reach a solution with a specified objective function level. 
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The entire moment generating function of the number of iterations before convergence for back­

tracking adaptive search on mixed domains is left to Chapter 5; this chapter seeks only to introduce 

enough theory to provide an end-point to the approximation framework. 

4. 2 Defining backtracking adaptive search 

In this section backtracking adaptive search is described and the relevant notation is introduced. The 

basic concepts of backtracking adaptive search are discussed in the context of other similar theoretical 

optimisation algorithms. 

The pure adaptive search algorithm has been defined and analysed in [54, 56] . Pure adaptive search 

is a theoretical algorithm for stochastic global optimisation in which successive iterates are generated 

from the improving region in the domain. This algorithm is an ideal, which is currently prohibitively 

difficult to implement in general. A recent encouraging advance towards implementing pure adaptive 

search is given in [39] . 

In general , algorithms will sometimes "hesitate" at the current point in the domain for a number of 

iterations before finding an improvement , or even "backtrack" by accepting new iterates with worsening 

objective function values . These generalisations are incorporated in hesitant adaptive search (HAS) 

and backtracking adaptive search (BAS) ,  respectively. The full distribution of the number of iterations 

until convergence is given for HAS in [51] . 

In this chapter HAS is extended to BAS, and a closed form expression for the expected number 

of iterations before convergence for BAS on a finite domain is presented. This process is used in the 

expectation that BAS will provide a sufficiently flexible family of homogeneous Markov range pro­

cesses for approximating the asymptotic averaged range distributions of stochastic global optimisation 

algorithms. In [31] a more general variant of BAS on finite domains is discussed, and bounds for 

expected search duration are presented. A closed form expression for the expected search duration of 

a special case studied in [31] is presented in Section 4.5 .  

The central idea of backtracking adaptive search is  as follows. At each iteration, the objective 

function value either improves, remains at the current level, or worsens. It is assumed that the 
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distribution of the next objective function value is then a normalised restriction of a single distribution 

on the range, constant with respect to time. This is acknowledged to be restrictive. 

The definition of backtracking adaptive search now given applies only to problems with finitely 

many range levels. Only finite backtracking adaptive search is analysed in this chapter; analysis for 

the remaining cases is provided in Chapter 5. 

The finite number of range levels in f(8) are (without loss of generality) labelled 1 , 2 ,  . . .  , m. 

Initially BAS samples Ye from this set according to the range probability measure P(Ye = y) = 1fy , 

with masses assumed to be strictly positive for all y E {I ,  2 ,  . . .  , m} . (For simplicity, the notation 

(Yn) for backtracking adaptive search is used in this chapter and the following, instead of the notation 

(Y�" ) used in Figure 2 . 1  to distinguish backtracking adaptive search from the other processes in that 
y 

figure. )  Define py = I>i' (Note that the symbol 1fn is used in Chapter 3 to represent a vector of 
i=l 

probabilities relating to the averaged range process; the use of 1fy in this chapter is unrelated to the 

meaning applied there. )  At each iteration thereafter , one of three things happens. With a known 

probability byn , the algorithm will make an improvement, sampling the next evaluation point Yn+1 

according to the normalised restriction of 7i to the current improving set. With a second known 

probability Wyn , the algorithm will backtrack, sampling the next evaluation point Yn+1 according to 

the normalised restriction of 7i to the current worsening set. Otherwise, the algorithm will hesitate, 

remaining at the current evaluation point. The functions b and W depend only on the current level. 

Define b1 = Wm = 0, and impose the condition by + Wy > 0 for all y E {2 , 3, . . .  , m} to ensure that 

the algorithm can attain any objective function level in finite time. The algorithm is now presented 

formally. 

Backtracking adaptive search 

Step 1 Generate Ye in f(8) according to 1f. Set n = O. 

Step 2 With probability bYn choose the next iterate Yn+1 according to the normalised restriction 

of 7i to { I ,  2, 3 ,  . . .  , Yn - I} .  With probability WYn choose Yn+1 according to the normalised 

restriction of 7i to {Yn + 1 ,  Yn + 2, Yn + 3, . . . , m} . Otherwise set Yn+1 = Yn. 

Step 3 If a stopping criterion is met, stop. Otherwise, increment n and return to Step 2 .  
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Note that HAS is the special instance of BAS occurring when Wy = 0 for all y E f (8). In turn, 

pure adaptive search (PAS ) is the special instance of HAS occurring when by = 1 for all y E f (8) . 

Thus PAS must improve at every iterate. 

The increasingly general families of homogeneous first order Markov chains provided by PAS ,  HAS 

and BAS can serve to approximate the asymptotic averaged range process of a stochastic optimisation 

algorithm. 

4 . 3  Expected search duration 

In this section a difference equation for the expected number of iterations of finite backtracking 

adaptive search before convergence is derived and then solved, as in [lJ . 

Define N(y) = min{n : Yn :::; y} for all y E { I ,  2, . . .  , m} . Since the initial objective function value 

is denoted Yo, N(y) is the number of iterations before reaching level y. 

There is a well-known procedure for computing the expected search duration of a Markov process 

such as BAS, generally requiring matrix inversion (see for instance [27] ) .  The theorem and corollary 

presented in this section take advantage of the structure of BAS, however, to allow this quantity to 

be evaluated without any call for inverting a matrix. Expected search durations can thus be found 

quickly by computer for problems of a size that would ordinarily prohibit such calculation. 

Theorem 4 .3 .1  The expected number of iterations of finite backtracking adaptive search before reach-

ing a certain level y, E [N(y) J ,  satisfies 

i) For all m, E[N(m)J = O .  

ii) For m >  1 ,  E[N(m - l) J  = 7Tm/bm . 

iii) For m > 2 ,  

E[N(y - 1 )] - E[N(y)] 

for all y E  {2, 3, . . .  , m  - I} . 

7Ty(wyE[N(y - 1 ) ]  + 1 - py) 

py (7TyWy + ( 1  - py) (by + wy) )  
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Proof First the formulce are established for E[N(m)] and E[N(m - l ) J .  Evidently, Yo � m so 

E[N(m)] = O. If m > 1 then Yo � m - I  with probability 1 - ?Tm; in this case N(m - 1 )  = O. 

Otherwise, Yo must be m and the first value distinct from Yo must b� less than m; in this case 

N(m - 1 ) is the length of the initial hesitation at Yo. As Wm = 0, the probability of hesitating at each 

iteration is 1 - bm , whence E[N(m - 1 )] = ?Tm/bm.  

The proof of  the difference equation makes use of the following equality, valid for m > 2 and 

y E  {2, 3 ,  . . . , m - I } :  

E[N(y - 1)] P(Yo < y)E[N(y - l ) !Yo < y] 

+ P(Yo = y)E [N(y - l ) !Yo = y] 

+ P(Yo > y)E[N(y - l) !Yo > y] . 

The expectation of N (y - 1 )  in the first term above is zero, since Yo � y - 1 .  Thus 

E[N(y - l)J ?TyE[N(y - l ) lYo = yJ 

+ ( 1  - py)E[N(y - l ) I Yo > yJ . ( 4. 1 )  

Define h as the first iteration number where Yh differs from Yo . In the case where Yo = y, conditioning 

N(y - 1 ) on whether Yh is smaller or larger than y gives 

E[N(y - 1) ]  ?TyP(Yh < y)E[N(y - l) !Yh < Yo = y] 

+ ?TyP(Yh > y)E[N(y - l) IYh > Yo = y] 

+ ( 1  - py)E[N(y - l ) IYo > yJ 

?TyE[hlYo = yJ 

+ ?TyP(Yh < y)E[N(y - 1) - h!Yh < Yo = y] 

+ ?TyP(Yh > y)E[N(y - 1 )  - h lYh > Yo = y] 

+ ( 1  - py)E[N(y - l ) !Yo > yJ . 
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The e xpectation o f  N(y - 1)  - h in the second term abo ve is zero, since in this case the sample path 

first falls below y at iteration h, whence N(y - 1) = h. Thus 

E[N(y - 1)] � + _�y�w�y�E�[_N�(_y_-_1�)�IYr_o_>_y�] 
by + Wy by + Wy 

+ (1  - py)E[N(y - l ) IYo > y] , 

since the total probability o f  leaving y at any iteration is by + wy . The e xpectation in the second 

term abo ve has been simplified using the fact that the local range distribution o f  Yh, gi ven that 

Yh > Yo = y, is a normalised restriction o f  the entire range distribution, and that the search algorithm 

is memoryless. Transition probabilities from le vel Yh > y are thus independent o f  any prior history. 

Rearranging the equation gi ves 

E[N(y - l) IYo > y] 

Combining this with (4. 1 )  yields 

E[N(y - l) IYo = y] = 

(by + wy)E[N(y - 1) ] - �y 
�yWy + ( 1  - py) (by + wy) . 

wyE[N(y - 1)] + 1 - Py 
�yWy + (1  - py) (by + wy) " 

(4.2) 

The difference equation can now be established in the following way, for y E {2 ,  3, . . . , m - I } :  

E[N(y - 1 )] - E[N(y)] E[N(y - 1 )  - N(y)] 

P(YN(y) = y)E[N(y - 1) - N(y) IYN(y) = y] 

+ P(YN(y) < y)E[N(y - 1) - N(y) IYN(Y) < y] . 

The expectation o f  N(y - 1 )  - N(y) in the second term abo ve is zero, since YN(y) :S y - 1 ,  whence 

N(y - 1) = N(y). Thus 

E[N(y - 1) ] - E[N(y)] 

= 

�yE[N(y - 1 ) - N(y) IYN(Y) = y] 
Py 

�yE[N(y - 1) IYo = y] 
Py 
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again using the fact that the search algorithm is memoryless. 

Substituting the expression for E [N(y - 1) IYo = y] from (4.2) provides the desired result. • 

The following corollary can now be derived, using theory of difference equations. 

Corollary 4.3.1 The expected number of iterations of finite backtracking adaptive search before reach-

ing level y, E[N(y) ) ,  satisfies 

i) For all m, E [N(m)] = O. 

ii) For m >  1 ,  E[N(m - 1) ]  = 7rm/bm . 

iii) For m >  2, 

E [N(y)] = 7rm + L 7rj IT Vi IT 2. 
( m-I ( m-I ) )  m-I 

bm j=y+1 pj bj + Pj-I Wj i==j i=y+1 Vi 

Proof The expectations of N(m) and N(m - 1) are proved in the theorem. It is convenient to write 

the difference equation of Theorem 4 .3 . 1  as follows, 

E[N(y - 1) ] - A(y)E[N(y)] = B(y) (4.3) 

where A(y) = py (7rywy + ( 1 -py) (by + wy) ) /(( 1 -py)(Pyby + Py-IWy ) )  and B(y) = 7ry/(pyby + Py-IWy) , 

for all y E {2, 3 ,  . . .  , m - 1 } .  

When m = 3 ,  (4.3) can be used with y = 2 to show that E[N(1 )] = (7r3/b3 )A(2) + B (2) ,  which 

agrees with the result stated in the corollary. 
m-I 

Assuming now that m > 3 ,  divide both sides of (4.3) by IT A(i) (valid since A(i) > 0 for all 

i E {2, 3, . . .  , m - 1 } ) ,  to give 

E[N(y - 1) ]  
m-I IT A(i) 
i=y 

i=y 

E[N(y)] B (y) _'-:--'-'-''- = m-I m-I IT A(i) IT A(i) 
i=y+I i=y 
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m-I 
for y E {2, 3, . . .  , m - 2}. The left hand side is now a first difference of E[N(y)J /  IT A(i ) .  The 

i=y+1 
general solution for an equation of this form is a constant plus a summation in which the right hand 

side provides the term [33 , p. 153J . Thus 

E[N(y)] 
m-I IT A(i) 
i=y+1 

c + 
m-I  B (j) L -m---:-I '-'---

j=y+1 IT A(i) 
i=j 

Observe that this solution satisfies Equation (4.3) for all y E { I ,  2, . . .  , m  - 2} .  

( 4.4) 

It remains to find the constant C. Since E [N(m - 1)] = 1fm/bm , (4.3) implies that E[N(m - 2)] = 

(1fm/bm)A(m - 1) + B(m - 1 ) .  Setting y = m - 2  in (4.4) gives E[N(m - 2)] = CA(m - 1) + B(m - 1 ) ,  

and since A(m - 1) > 0 it follows that C = 1fm/bm. Substituting the expressions for A(y) , B (y) and 

C back into (4.4) now yields the result of the corollary. • 

Thus the expected number of iterations before convergence for a backtracking adaptive search ap-

proximation to any domain process can be found without need for matrix inversion. This is illustrated 

in Section 4.5 via several examples, including special cases for which analysis has been published 

elsewhere. Section 4.6 then shows how the backtracking adaptive search approximation is formed. 

First, though, a digression is made to generalise the result of this section. 

4 . 4  Expected search duration for a n  algorithm with arbitrary initial 

distribution 

This section produces a result completely analogous to the result of the preceding section, for a general 

backtracking adaptive search algorithm in which an initial distribution distinct from 1f is specified. The 

general stochastic global optimisation algorithm of Chapter 2 specifies a particular initial distribution; 

it is therefore sensible that the backtracking adaptive search approximation for this algorithm should 

be modified by incorporating this initial distribution. This section provides the necessary extension 

to the theory of backtracking adaptive search. 

As before, the expression for the expected convergence time of this generalisation of backtracking 
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adaptive search can be evaluated quickly by computer with no need for complicated procedures such 

as matrix inversion. This form of backtracking adaptive search is the one implemented in Chapter 6 .  

Backtracking adaptive search is defined exactly as before, except that the initial range level Yo is 

generated not according to the range distribution 7r but according to a new distribution defined as 
y 

P(Yo = y) = a-y . Define Sy = La-i . It is required that 7rl > 0 and that either a-y or 7ry must be 
i=l 

positive for all y E {2, 3, . . .  , m} . Define y* = max{y : 7ry > a} . Also Wy = a for all y 2 y* ; b1 = 0 

and by + Wy > 0 for all y E {2, 3, . . .  , m} . Finally, the notation for expectations is now extended to 

specify to which form of backtracking adaptive search the expectation applies . Expectations denoted 

En [·] refer to ordinary finite backtracking adaptive search, while those denoted Ea [·] apply to the 

generalisation with arbitrary initial distribution considered here. 

Theorem 4.4. 1 The expected number of iterations of finite backtracking adaptive search with an 

arbitrary initial distribution before first reaching a certain level y, Ea [N(y)] ,  satisfies 

i) For all m, Ea [N(m)] = O.  

m 
ii) For m > 1 ,  Ea [N(y)] = I: a-i/bi for all y E {y* , y* + 1 ,  . . .  , m  - I }  where y* < m and 

i=y+l 
m 

Ea [N(y* - 1 )] = ( 1 - Sy' )7ry• /by• + L a-i/bi where y* > 1 . 
i=y' 

iii) For m > 2, 

Ea [N(y - 1 )] - Ea [N(y)] (a-ypy + 7ry ( l  - Sy)) (wyE1r [N (y - 1)] + 1 - Py) 
Py ( 7r Y Wy + ( 1 - Py) (by + wy) ) 

where 

En [N(y - 1)] = 7rm + L 7rj IT Vi IT -
( m-I ( m-I ) )  m-I 1 

bm j=y pjbj + Pj-I Wj i=j i=y � 

Proof As in the proof of Theorem 4.3 . 1 ,  the formulre for special cases are first established. Evidently, 

Yo :S m so E[N(m)] = O. 
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If m > 1 then Yo � y with probability Sy ; in this case N(y) = O .  Otherwise, if y 2: y* then the 

first value distinct from Yo , labelled Yd, must be no greater than y ;  in this case N(y) is the length of 

the initial hesitation at Yo . Since Wy = 0 for y 2: y* , the probability of hesitating at each iteration is 
m 

1 - by , whence Ea [N(y)] = L cri/bi where y* � y < m. 
i=y+l 

Clearly, Ea [N (y* - 1 )] is positive only if Yo 2: y* . Then since y* is the only level greater than 

y* - 1 for which 1fy > 0, Ea [N(y* - 1)] is the sum of any initial hesitation plus the hesitation at y* if 

this level is visited. The probability of hesitating at each iteration is 1 - by for all y 2: y* ; thus when 

y* > 1 and Sy*-l < 1 

m 

Ea [N(y* - 1)] = P(Yo = y* )Ea [N(y* - l) IYo = y*] + L P(Yo = i)Ea [N(y* - l) lYo = i] 

= P(Yo = y* )Ea [dIYo = y*] 
m 

i=y·+ l 

+ L P(Yo = i) (Ea[dlYo = i] + Ea [N(y* - 1) - dlYo = iD 

m 
= L P(Yo = i)Ea [dIYo = i] 

i=y* 
m 

+ L P(Yo = i) ( P(Yd = y* ) (Ea [N(y* - 1 ) - dlYd = y* < Yo = i] 
i=y*+ l 

+ P(Yd < y* ) (Ea [N(y* - 1) - dlYd < y* < Yo = i] ) 
;-. cri (1 - Sy. )1f y* 
L..,. - + -'---"--'---"'-

. • bi by. t=y 

since N(y* - 1 )  = d when Yd < y* < Yo . The formula also correctly gives E[N(y* - 1) ] = 0 when 

SY*-l = 1 . 

The proof of the difference equation now proceeds using the following equality, valid for m > 2 

and y E {2, 3, . . .  , y* - I}  where y* > 2:  

Ea[N(y - 1)] - Ea [N(y)] Ea [N(y - 1) - N(y) ]  

= P(YN(y) = y)Ea [N(y - 1 ) - N(y) IYN(y) = y] 

+ P(YN(y) < y)Ea [N(y - 1 ) - N(y) IYN(y) < y] 

= P(YN(y) = y)Ea [N(y - 1 ) - N(y) IYN(Y) = y] . (4.5) 
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Observe that YN(y) = y either if Yo = y or if Yo > y and level y is reached in the process of the 

algorithm. This gives P(YN(Y) = y) = (Jy + ( 1  - Sy)7ry/Py. 

Now since the algorithm is memoryless, and the different forms of backtracking adaptive search 

are identical conditional on any current level, Ea [N(y - 1 )  - N(y) IYN(y) = y] = E7r [N(y - l) lYo = y] . 

Substituting into Equation (4.5) the probability derived above, the expression for E7r [N(y - 1) \Yo = y] 

from Equation (4 .2) and then an expression for E7r[N(y - 1) ] from Corollary 4 .3 . 1  provides the desired 

result. • 

The usual form of backtracking adaptive search is a special case of the general form treated here; 

Theorem 4.3 .1 can be obtained from Theorem 4.4 . 1  by letting 7r = (J .  

In the same way as Corollary 4 .3 . 1  was derived, the following corollary is now obtained. 

Corollary 4.4.1 The expected number of iterations of finite backtracking adaptive search with an 

arbitrary initial distribution before reaching level y, Ea [N(y) ] ,  satisfies 

i) For all m, Ea [N(m)] = O.  

m 

ii) For m > 1 ,  Ea [N(y)] = L (Ji/bi for all y E {y* , y* + 1 ,  . . .  , m  - I }  where y* < m and 
i=y+1 

m 
Ea[N(y* - 1) ]  = ( 1  - Sy. )7ry• /by• + L (Ji/bi where y* > 1 .  

iii) For m >  2, 

where 

i=y· 

E7r [N(y - 1)] = 7rm + L 7rj IT Vi IT -
( m-I ( m-I ) )  m-I 1 

bm j=y Pjbj + Pj-I Wj i=j i=y Vi 

Proof The expectations of the special cases are proved in the theorem. To solve the difference 
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equation of the theorem, note that 

y* -l 

Ea[N(y)J = Ea[N(y* - l)J + L (Ea[N(k - l ) J  - Ea [N(k) ] )  , 
k=y+l 

into which the difference equation may be substituted to provide the solution. • 

Analytic expressions for the expected number of iterations before convergence for a backtracking 

adaptive search approximation to any domain process have thus been found. The following section 

provides several examples. Finally, in Section 4.6 a method of forming a backtracking adaptive search 

approximation to an asymptotic averaged range process is presented. 

4 . 5  Examples 

The results of the preceding sections allow expected convergence times to be calculated for any algo-

rithm that can be represented within the framework of finite BAS, with any initial distribution. This 

section illustrates the results using several instances of finite BAS. 

4 . 5 . 1  A s mall example 

Progress of the algorithm may be demonstrated on an artificial problem with a small range. (The 

exact nature of the domain in the artificial problem is irrelevant, since the definition of backtracking 

adaptive search makes use only of parameters defined in the range.) A uniform probability distribution 

with m = 4 levels is used, so 1fi = i for i E {1 ,  2, 3, 4} .  The vectors (b1 , b2 , b3 , b4 ) = (0, 0 .1 , 0.8, 0 .9) 

and (Wl , W2 , W3 , W4 ) = (0, 0.4, 0.2, 0) are chosen to reflect a decreasing likelihood of improvement as 

the algorithm nears the optimum. Applying Corollary 4.3.1 with y = 1 now shows that the expected 

number of iterations before reaching range level 1 is 3% .  

Figure 4 . 1  shows the distribution of  the number of iterations this algorithm takes to reach the 

absorbing state, using simulation. Corollary 4.3 .1  provides the expected value of the number of 

iterations; the moment generating function of this distribution is derived in the following chapter. 

Taking range level 1 as an absorbing level (representing convergence of the algorithm) gives rise 



4.5. Examples 77 

to the following Markov range transition matrix. (Transition probabilities from the other levels are 

derived from the backtracking adaptive search parameters according to the definition of backtracking 

adaptive search in Section 4 .2 .  For instance, the probability of improving from level 3 is b(3) = 0.8 

and the normalised restriction of 7r to the first two levels is 1/4�1/4 [� �] = [� �J ; thus the first two 

entries in the third row of the transition matrix are 0.8 [� �J = [0 .4 O.4J . )  

1 2 3 4 

1 1 0 0 0 

2 0 . 1 0 .5 0.2 0.2 
Level 

3 0.4 0 .4 0 0.2 

4 0.3 0 .3 0.3 0. 1 

Standard matrix theory [27J confirms that the expected time is 3i iterations. To obtain this result, 

the transient portion of the transition matrix is subtracted from the 3 x 3 identity matrix, and the 

difference inverted. Multiplying the transient portion of the initial distribution by the vector of row-

sums of this inverse then gives the solution. However,  forming the transition matrix and applying this 

method is prohibitively time-consuming for problems with a large number of range levels, due to the 

need for matrix inversion. This highlights the contribution made by Corollary 4 .3 . 1 .  

4 . 5 . 2  A small example with randomly generated initial distribution 

The same problem is now solved using a backtracking adaptive search algorithm with randomly gen-

erated initial distribution (J = [0 .2166 0 . 1 130 0 .2900 0.3804J . 

Corollary 4.4 . 1 now shows that the expected number of iterations before reachitlg range level 1 is 

3 .32. Figure 4.2 shows the distribution of the number of iterations this algorithm takes to reach the 

absorbing state, using simulation. 

In exactly the same way as before, standard matrix theory [27J can confirm that the expected 

time is 3.32 iterations . Matrix inversion is again necessary using this method; however, the result can 

be obtained using Corollary 4.4. 1 without this requirement. The corollary thus provides a means of 

calculating expected convergence times in problems too large for solution via matrix inversion. 



78 Chapter 4. Backtracking adaptive search 

2500rT------.------.------.------.------.------.------.-------

2000 

1 500 

o 5 1 0  1 5  20 25 30 35 40 
Number of iterations 

Figure 4 .1 :  Number of iterations before convergence to the optimal state for 10000 runs of the algorithm 
given in Example 4 .5 . 1 .  

2500,-----,-----.-----,------r-----.-----,------,-----.-----, 

2000 

1 500 

1 000 

500 

0 ...... --­

o 5 10 1 5  20 25 30 35 40 45 
Number of iterations 

Figure 4.2: Number of iterations before convergence to the optimal state for 10000 runs of the algorithm 
given in Example 4.5.2. 
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4 . 5 . 3  Combination o f  pure adaptive search and pure random search 
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A particular realisation of BAS is analysed in [31] . This algorithm samples uniformly from points 

in the domain of equal or better objective function value with probability p, and otherwise performs 

pure random search. Worsening points are accepted with probability tj otherwise the algorithm 

hesitates. Bounds for the expected convergence time with constant p and t are presented in that 

paperj an expression for the exact value is now available. In this case, the appropriate formulre are 

by = Ppy-I/py + (1 - p)Py-l  and Wy = (1 - p) (l - Py)t . Thus, from Corollary 4 .3 . 1 ,  E[N(m)] = 0, 

E[N(m - 1)] = Trm/Pm-l and 

The result holds also 

if P and t are functions of y. 

Figure 4.3 shows how expected convergence times vary with P and t in this algorithm. The proba-

bility mass function Try is chosen to be uniform on { I ,  2, . . .  , 20} . Unsurprisingly, since this algorithm 

will never benefit by backtracking, convergence time increases with decreasing P and increasing t .  

When P = 0 the algorithm has the convergence properties of pure random search; when P = 1 the 

algorithm is PAS .  In neither of these cases does the probability of accepting a worsening point have 

any effect on convergence time: in PAS worsening points are never generated, while in pure random 

search the number of iterations remaining until reaching the optimum is the same whether worsening 

points are accepted or not. The results shown here verify the result of Corollary 4.3 .1 using a previous 

investigation, reported in Figure 1 1  of [31] . 

4 . 5 . 4  Finite hesitant adaptive search 

Corollary 4.4 . 1  provides as a special case the expected number of iterations before convergence for 

finite hesitant adaptive search with arbitrary initial distribution. The result for finite hesitant adaptive 

search is obtained by making the substitution Wy = 0 for all y. 
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20 
p = 0 (pure random search) 

1 8  

1 6  
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z 
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4 

2 o 0.1 0.2 0.3 

p = 0.5 

p = 1 (pure adaptive search) 

004 0.5 0.6 0.7 0.8 0.9 
Acceptance probability t 

Figure 4.3: Number of iterations until convergence to the optimal state for the example given in 
Subsection 4 .5 .3 as t ,  the acceptance probability, ranges from 0 to 1 and for P E {O, 0. 1 ,  0 .5 , I } .  

Theorem 4 .5 . 1  The expected number of iterations of finite hesitant adaptive search with an arbitrary 

initial distribution before first reaching level y, Eu [N (y) ] ,  satisfies 

i) For all m, Eu[N(m)] = O .  

m (JiPi + 7ri ( l  - Si ) ii) For m >  1 ,  Eu [N(y)] = L . b . for all Y E { 1 , 2 ,  . . .  , m - 1 } .  
i=y+l Pt t 

Proof The first case is inherited from Corollary 4.4. 1 .  The second case in that corollary implies 
m 

that for m > 1 ,  Eu [N(y)] = L (Ji/bi for all y E  {y*, y* + 1 ,  . . .  , m - I }  where y* < m; Theorem 4 .5 . 1  
i=y+l 

simplifies to this expression since 7ry = 0 for y > y* . Also, 

Eu[N(y* - 1 ) ] 
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(4.6) 

where y* > 1; this also agrees with Theorem 4.5 . 1 .  

It remains therefore to prove that the third case of Corollary 4.4 .1  is given by the expression of 

Theorem 4.5 .1  when Wy = 0 for all y. This substitution leads, after simplification, to 

for all y E { I ,  2 ,  . . .  , y* - 2} where y* > 2. Now substitution of the expression for Ea [N(y* - 1 )] from 

Equation (4.6) produces the desired result . • 

When the initial distribution is 7r, this further simplifies to 

m 

E[N(y)] = L 7r�. 
j=y+l PJ J 

for all y E { I ,  2, . . .  , m - I} and m > 1 , with E[N(m)] = O. Note that the summation is over only 

transient range levels; this constitutes a minor correction to the result shown in [51] . 

4 . 5 . 5  Finite pure adaptive search 

The equivalent results for PAS are now easily derived from the above. 

Theorem 4 .5 .2  The expected number of iterations of finite pure adaptive search with an arbitrary 

initial distribution before first reaching level y, Ea [N (y) ] ,  satisfies 

i) For all m, Ea [N(m)] = O. 

� (JjPj + '71"](1 - Sj ) ii) For m >  1 ,  Ea [N(y)] = � for all y E  { I , 2, . . .  , m - I } .  
j=y+l Pj 

Proof Substituting by = 1 for all y in Theorem 4 .5 . 1  provides the result. • 
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When the initial distribution is 7r ,  this gives 

m 
E[N(y)] = L 7rj 

j=y+1 Pj 

for all y E  { I ,  2 ,  . . .  , m - I }  and m > 1 ,  with E[N(m)] = O. A special case of this formula is derived 

in [56] . There the search duration is defined to include the final iteration, and thus the solution is 
m 

reported as E[N(l)] = 1 + L7rdpi where m > 1 .  
i=2 

4 . 5 . 6  Pure random search 

Corollaries 4 .3 . 1  and 4.4 .1  also provide expected convergence times for pure random search with 

arbitrary initial distribution. 

The expected number of iterations before convergence for pure random search is available from 

Corollary 4.3. 1 by letting by = Py-l and Wy = 1 - Py . Thus 

E[N(y)] (� + 1:1 (-..!!..L If Pi-I ) )  If � 
Pm-1 j=y+1 pj-1 i=j Pi i=y+1 Pi-1 ( 7rm + 1:1 �) Pm-1 
Pm-1 j=y+1 Pm-1 Py 

1 - Py 
Py (4.7) 

for all y E { I ,  2, . . .  , m  - 2} and m > 2.  Note that this formula also correctly gives the values of 

E [N (m - 1) ]  = 7rm/Pm-1 and E [N(m)] = 0 for all m. This agrees with the result of direct calculation. 

Substituting this result into Corollary 4.4. 1 now provides the expected number of iterations before 

convergence of pure random search with arbitrary initial distribution (1. Note that y* = m for pure 

random search, so Ea [N(y* - 1) ]  = O'm/Pm-1 where m > 1 .  Thus 

Ea [N(y)] (1m �l (1kPk + 7rk (l - Sk) 
- -- + 6 Pm-1 k=y+l Pk-lPk f: ( 1  - Sk-l _ 1 - Sk ) 

k=y+1 Pk-1 Pk 
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for all y E { I ,  2,  . . .  , m  - 2} and m > 2.  Note that this formula also correctly gives the values of 

E[N(m - l) ]  and E[N(m)] = 0 for all m. Equation (4.7) can immediately be recovered by substituting 
m 

a = 7r. The same result can, of course, be calculated directly from Equation (4.7) as l: ak/py . 
k=y+l 

4 . 6  Approximating the asymptotic averaged range process with back-

tracking adaptive search 

This section details the method used to find a finite backtracking adaptive search approximation to 

an asymptotic averaged range process. The approach used is very simple and intended only as an 

illustration; a more complicated method is later shown to yield better results. 

Finite backtracking adaptive search uses three parameters : b, w and 7r. (When the initial dis-

tribution is not 7r, a fourth parameter is used, the value of which is known. ) Since the asymptotic 

averaged range process transition matrix has none of the restrictions imposed for finite backtracking 

adaptive search, any method of estimating these parameters inevitably introduces some error: the 

expected convergence times of the two processes will differ. The approach used in this thesis is one 

sensible approach among several that could be used. It is possible that another method may be proved 

better than the one described here; the present aim is only to initiate an approximation method in 

order to indicate the kind of results attainable. This approximation method stands to be improved 

by subsequent research. 

Bettering probabilities at each level can be found directly from the asymptotic averaged range 

process transition matrix R as 

i-I 
bi = l: �j (4.8) j=1 
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for i > 1 and bl = 0. Similarly, 

for i < m and Wm = 0 .  

m 
Wi = L Rij 

j=i+1 
(4.9) 

As illustrated in Subsection 4.5 . 1 ,  there is a Markov range transition matrix corresponding to any 

particular values of b, w and 7r. This matrix has a special form, not in general shared by the transition 

matrix of the asymptotic averaged range process . It then remains to find an estimator for 7r given 

these values for b and w, so that the discrepancy between the asymptotic averaged range process 

transition matrix R and the transition matrix implied by backtracking adaptive search is made as 

small as possible. 

An intuitive justification for the method chosen is first provided . A sensible estimate of the range 

distribution can be obtained from a weighted average of the bettering and worsening range distributions 

at each level in the asymptotic averaged range process. Distributions for levels more commonly visited 

are given a greater weighting and levels less frequently visited are given a smaller weighting. Note 

that this estimation method excludes hesitations in the range from consideration, since 7r is only used 

when the backtracking adaptive search algorithm either betters or worsens. 

Using the results of Subsection 3.3.3, the limiting average probabilities of being in each transient 

domain state given that the process has not converged may be denoted by the vector 

(4 .10)  

No transitions from the absorbing level are to be considered (since the algorithms involved make 

no use of these) ;  thus the full l-vector of weightings for each state is �T? and the limiting average 

probabilities of being in each transient range level given that the process has not converged is �T? M. 

Let 

�; � { 

Rij , i = j 

0, otherwise; 
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then the estimate of 7f is 

�1!T M(R - Rd) 
\ \,67? M(R - Rd) \ \ l ' 
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( 4 . 1 1 )  

The heuristic for estimating 7f described above is easy to evaluate for any asymptotic averaged range 

process. This section provides a simple method of estimating parameters b, w and 7f for backtracking 

adaptive search. Refinement of this approach is possible; however, the approach described in this 

section is sufficient to allow the full approximation process to be demonstrated. 

4 . 7  Summary 

This chapter provides the theory of backtracking adaptive search required for the approximation 

process described in Chapter 2. Any Markovian algorithm for which the domain process is known 

can now be approximated by a backtracking adaptive search algorithm in the range. The expected 

convergence time of the backtracking adaptive search algorithm is then an estimate of the expected 

convergence time of the original algorithm. Chapter 6 demonstrates this approximation process. 

For the sake of completeness, however, the following chapter generalises the analysis in Section 4 .3 ,  

where there is  no parameter for the arbitrary initial distribution, to obtain the complete distribution 

of the number of iterations before convergence for backtracking adaptive search on mixed domains. 
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Chapter 5 

The distribution of the number of 

iterations to convergence for 

backtracking adaptive search 

5 . 1  Introduction 

This chapter provides a full summary of results obtained concerning the distribution of the number 

of iterations before convergence for backtracking adaptive search. The factorial moment generating 

function of this distribution is derived for backtracking adaptive search in the general case where the 

range distribution has a mixture of continuous and discrete components. 

The results of Section 4.3 could be taken as a special case of the material presented in this chapter; 

however, the later sections of that chapter are not dependent on the distributions derived in this 

chapter. Whereas Chapter 4 was concerned with defining and analysing backtracking adaptive search 

as an end-point to the approximation framework, this chapter provides a more complete analysis of 

the algorithm in a general context. 

In Section 5.2 backtracking adaptive search is defined using a range distribution that may be 

continuous, discrete or a mixture of both. Section 5.3 presents the distribution results for each pos­

sible type of range distribution. In Subsection 5 .3 . 1  a moment generating function is provided for 
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the delays between improvements in the best level reached so far by the algorithm; this is used in 

Subsections 5.3 .2 ,  5.3.3 and 5.3.4 to treat the discrete, finite and continuous cases respectively. Sub­

section 5.3 .5 then provides a factorial moment generating function for backtracking adaptive search 

with a general range distribution. The final section presents a summary of the analysis of backtracking 

adaptive search. 

5 . 2  A general definition o f  backtracking adaptive search 

Since the results of this chapter apply to backtracking adaptive search where the range distribution 

may be continuous, the notation of finite backtracking adaptive search must be generalised. 

The range is now allowed to be the real numbers. Define a range probability measure p, so that 

P (Yo E A) = p(A) for any measurable set of real numbers A. Finite backtracking adaptive search 

notation p( {t}) = 7ft is used when the set A is a singleton. The cumulative range distribution function 

is defined as Py = p( {t : t :::; y} ) .  The algorithm terminates on reaching any point with sufficiently 

low objective function level . The termination region is denoted by T. Note that for all levels y such 

that Py = 1 ,  the number of iterations before convergence is exactly zero. In what follows, analysis is 

restricted to the number of iterations before reaching levels y for which Py < 1 .  

Again, the algorithm initially samples Yo from the range according to the probability measure p. 

At each iteration thereafter, one of three things happens. At the nth iteration, with probability byn , 

the algorithm improves, sampling the next evaluation point according to the normalised restriction of 

p to the current improving set. With probability Wyn , the algorithm backtracks, sampling the next 

evaluation point according to the normalised restriction of p to the current worsening set. Otherwise 

the algorithm hesitates, remaining at the current evaluation point. Functions b and W depend only on 

the current level. 

Restrictions are required on b , w and p to ensure that the algorithm will sample from T in finite 

time. Firstly, if there exists a level t such that 7ft > 0 and Pt = 1 then assume Wt = o. 

Secondly, it is assumed that there exist a positive real number E < 1 and a real number K so that 

the following conditions are satisfied: 
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1 .  p( {y : y � K}) 2: E and by � E for all y � K 

2. p(T) 2: E 

3 .  by + Wy 2: E for all y � T 

Then whenever a new level is chosen, that new level is either better or worse than the current level. 

If it is better, there is a probability at least E > E3 of sampling from Tj if it is worse, the probability 

of sampling a level no less than K is at least E, the probability of improving at the next iteration is 

also at least E, and finally the probability that this improvement is to an element of T is again at least 

E. Thus the probability of the algorithm terminating at either the next level chosen or the one after 

that is at least E3 . The number of pairs of levels required is therefore stochastically dominated by a 

geometric random variable with probability of success E3 > O .  Hence the number of levels is almost 

surely finite. 

The third condition ensures that the number of iterations at any level is finite. This and the pre­

vious conditions combine to ensure that the algorithm will almost surely sample from the termination 

region in finite time. 

The algorithm is now formally presented in the more general context. 

Backtracking adaptive search 

Step 1 Generate Yo according to p. Set n = O. 

Step 2 With probability bYn choose Yn+1 according to the normalised restriction of p to (-00, Yn) .  

With probability wYn choose Yn+1 according to the normalised restriction o f  p to (Yn , 00 ) .  Oth­

erwise set Yn+ 1 = Yn. 

Step 3 If a stopping criterion is met, stop. Otherwise, increment n and return to Step 2.  

This definition of the algorithm is suitable for continuous, discrete or mixed range distributions p.  

Analysis for each of these cases is now presented. 
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5 . 3  Factorial moment generating functi ons for distributions o f  hit-

ting times 

In this section distributions of the number of iterations before convergence are derived for backtracking 

adaptive search, using factorial moment generating functions. A brief definition of these functions is 

now given. 

The factorial moment generating function of a random variable X is M(z) = E[zx] ,  if this ex-

pectation exists in some interval 1 - E < z < 1 + E where E is a positive real number [3J . Then 

M(r) (l) = E[X(X - l ) (X - 2) . . . (X - r + l)J . This property can be used to derive moments of the 

distribution of X .  

The key result required is the distribution of the number o f  iterations between improvements in 

the best level seen. Define a record as a level Yk better than any preceding level, so Yk < Yn for all 

n < k .  A record Yk is said to be current from iteration k until a new record is sampled. The number 

of records encountered by backtracking adaptive search before reaching a level no greater than some 

fixed level y is almost surely finite, owing to the conditions described in the previous 8ection. Denote 

these records , ordered from largest to smallest , by Y(1) , y(2) , y(3) , · . . , yCR) ;  then if N(i) denotes the 

delay at record yCi) , the total number of iteratlons before first reaching a level no greater than y is 

given by 

R 
N(y) = L N(i) . (5 .1 )  

i=l 

Note that the delay N(i) is the number of iterations for which Y(i) is current. 

The distribution of these delays is established in Subsection 5 . 3 . 1 .  The following subsections then 

use this result to derive the distribution of the number of iterations before convergence of backtracking 

adaptive search in each of the cases where the range distribution p is countable, finite, continuous or 

finally mixed. 
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5 . 3 . 1  Delay distributions 

The distribution of the delay at level l(i) is that of N(Y(i) ) given that Yo = Y(i) , where N(y-) = 

min{n : Yn < y} .  This follows from the fact that backtracking adaptive search is Markovian. The 

distribution is provided in the following theorem. 

Theorem 5 .3 . 1  Let D(y, z) = E[zN(Y- ) IYo = y] be the factorial moment generating function of the 

delay distribution at level y. Then 

D(y z) = z (bypy (l - Py) + wy(py - 7ry) (M(y, z) - py) )  , py (l - py) (l - z (l - by - wy)) - z'Trywy(M(y, z) - Py) 

where Py < 1 and M(y, z) = E[zN(Y)] is the factorial moment generating function of N(y) . 

Proof An expression is first required for E[zN(Y- ) IYo > y] . Note that 

M(y, z) E [ZN(Y) ]  

P(Yo � y)E[zN(Y) IYo � y] + P(Yo > y)E [zN(Y) IYo > y] 

py + ( 1  - Py)E[zN(Y) IYo > y] 

since N(y) = 0 when Yo � O .  Also 

E[ZN(y- )-N(y) IYo > y] = P(YN(y) < y)E[zN(y- )-N(y) IYo > y > YN(y)] 

+ P(YN(y) = y)E [zN(y- )-N(y) IYo > y = YN(y) ] 
Py - 'Try 7ryD(y, z) 

= + --.!<............:.::..c........:... Py Py 

(5 .2) 

(5.3) 

using the fact that the search algorithm is memoryless. Therefore, since the number of iterations 

before achieving a record is independent of the number of subsequent iterations before bettering it , 

E[ZN(Y- ) IYo > y] = E[zN(Y) IYo > y]E[zN(y- )-N(Y) IYo > y] 
M(y, z) - Py (py - 7ry(l - D (y, Z) ) ) 

, 1 - Py Py (5 .4) 
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substituting expressions for E[zN(Y) lYo > y] and E[zN(y- )-N(y) lYo > y] from Equations (5.2) and (5 .3) 

respectively. 

Now define h as the first iteration number where Yh differs from Yo . Then 

00 

E[zh lYo = yJ = L P(h = i)zi 
i=l 

00 
= L(by + wy) (1 - by - wy)i- 1i 

i=l 
= 

z(by + wy) 
1 - z ( 1  - by - wy) (5 .5) 

where -1 - E < z < 1 + E. The proof now follows, since the length of the initial hesitation and the 

number of iterations before convergence thereafter are independent: 

D(y, z) E[ZN(Y- )  lYo = y] 

E[zh lYo = y]E [zN(y- )-h IYo = y] 

= E[zh lYo = y] (P(Yh < y)E[zN(y- )-h IYh < Yo = y] 

+ P(Yh > y)E[zN(y- )-h IYh > Yo = y]) 
E[zh lYo = y] by + wyE[z y lYo > y] ( N( - ) ) by + Wy by + Wy 

using the fact that the algorithm is memoryless. The final result may be obtained by substituting the 

expressions for E[zh lYo = y] and E[zN(Y- ) IYo > y] given in Equations (5 .5 )  and (5 .4) respectively . •  

The distribution of the delays at each record may now be used to find the overall factorial moment 

generating function for the number of iterations before convergence for backtracking adaptive search. 

In the following subsections these results are derived separately for discrete, continuous and general 

range distributions. 

5 . 3 . 2  Discrete range distribution 

In this subsection a factorial moment generating function is given for the number of iterations before 

convergence for backtracking adaptive search where the range distribution is discrete. The mean 
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and variance of this distribution are derived in the following subsection, in the case where the range 

distribution is not only countable but finite. 

Since the range distribution is discrete, there is a countable number of points of discontinuity. Let 

Iy be the set of points of discontinuity having a level greater than y . 

Theorem 5.3.2 For discrete backtracking adaptive search, the factorial moment generating function 

of N(y) is 

M(y,  z) = IT Pt - 1ft ( l - D(t, z))  

tEIy Pt 

where py < 1 and D (t, z) = E [zN(t- ) IYo = t] is the factorial moment generating function of the delay 

distribution at level t .  

Proof Define Nt to be the number of iterations for which t is a record; if level t is never a record 

then Nt = O. Then 

M(y, z) E[zN(Y)] 

L Nt 
E[ztEly ] 

IT E[zNt] (5 .6) 
tEly 

since the numbers of iterations for which each level is a record are independent of each other. Now 

P(YN(t) < t)E[zNt IYN(t) < t] + P(YN(t) = t)E[zNt IYN(t) = t] 

Pt - 1ft + 1ftD(t , z )  ( 5.7) 
Pt Pt 

since the search algorithm is memoryless. Substituting this into Equation (5 .6) yields the result . • 

5 .3 .3 Finite range distribution 

When there is a finite number of range levels y for which 1fy > 0, the factorial moment generating 

function for N(y) can be used to find the mean of the distribution, as derived in Section 4.3.  
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Without loss of generality, label the finite sequence of range levels (in increasing order) as 1 , 2 ,  . . .  , m. 

Theorem 5 .3.2 can then be stated as 

M(y, z) = IT Pi - 7ri (l � D(i, z)) 
i=y+l Pt 

The factorial moment generating function is now expressed as a difference equation, using Theo-

rem 5.3. 1 :  

( zB + zM(y, z)C ) M(y - 1 , z) = M(y, z) A +  D + zE - zM(y, z)F ' 

where A = Py-I!py, B = 7rypy (by ( 1 - Py) - WyPy-l ) ,  C = 7ryPy-lWy , D = p� ( 1 - Py) , E = p; (7ryWy ­

(1 - py) (1 - by - wy)) and F = 7ryPyWy, for y E  {2 ,  3 ,  . . .  , m - 1 } . (Note that M(y, 1) = 1 for any level 

y, and hence the expression in parentheses above has the value 1 when z = 1 . )  

Differentiation of both sides with respect to z yields 

M'(y - l , z) M' (y, z) (A + zB + zM(y, z)C ) D + zE - zM(y, z)F 
+ M(y, z) (B + M(y, z)C + zl\l['(y, z)C) 

D + zE - zM(y, z)F 
_ (zB + zM(y, z)C)(E - M(y, z)F - zM'(y, Z)F) ) (D + zE - zM(y, z)F)2 

for y E {2 , 3, . . . , m - 1 } .  Setting z = 1 gives 

( C(D + E) + BF) (B + C)D E[N(y - 1)] = 1 + (D + E - F)2 E[N(y)] + (D + E - F)2 · 

Substituting the expressions for A,B ,C ,D ,E and F and rearranging now yields the recursion for 

E[N(y)] of Section 4.3 . (The special cases are dealt with in that chapter also. ) 
The factorial moment generating function also allows calculation of higher moments. 

Theorem 5.3.3 For finite backtracking adaptive search, E[(N(y))2 - N(y)J satisfies 

i) For all m, E[(N(m))2 - N(m)) = O. 

ii) For m >  1, E[(N(m - 1) ) 2 - N(m - 1) J  = 27rm( 1 - bm)/b?n . 
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iii) For m >  2, E[(N(y - 1) )2  - N(y - l)J is given by 

py (7ryWy + (1 - py) (by + wy)) E[(N(y))2 _ N(y)] 
(1 - py) (pyby + Py-lWy) 

+ 27rypyWy(7rY
2
WY + ( 1 - py) (by + �y)) (E[N(y)] )2 ( 1  - Py) (pyby + Py - 7ryWy) 

+ 27rypy (by (1 - Py) + wy(2 - p�-d) E[N (y)J (1 - py) (pyby + Py-lWy) 
27ry (py (by - 1 )  + PY-l wy) 

(pyby + PY_IWy)2 

for all y E {2 , 3 ,  . . .  , m - 1 } .  

Proof Since Yo � m, E[N(m)J = E[(N(m))2J = 0, and thus E[(N(m))2  - N(m)J = O. For m > 1 ,  

N(m - 1) > 0 only i f  Yo = m; N(m - 1)  i s  then the number of iterations until the algorithm leaves 

level m. Since the probability of leaving level m at any iteration is bm , E[N(m - l) J  = 7rm/bm and 

Differentiating both sides of the factorial moment generating function again with respect to z 

shows that MI/(y - 1 ,  z) is 

M"( , z) (A + zB + z1l1(y, z)C ) y D + zE - zM(y, z)F 

M'( ) ( B + M(y, Z)C + ZM'(Y, z)C) + 2  y, z D + zE - zM(y, z)F 
_ (zB + zM(y, z)C) (E - M(y, z)F - zM'(y, Z)F) ) 

(D + zE - zM(y, z)F)2 
+ M(y, z) (2M'(y, z) C + zM"(y, z)C 

D + zE - zM(y, z)F 
(zB + zM(y, z)C) (2M' (y, z)F + zM" (y, z)F) 

+ 
-'--------'-'-( D

---'-
+-z

-'-
E
-'--

--z
-'-
M-(-:-'y-, z-:-)-F-:-C) 2;0-----

---'-

, ( B + M(y ,  z)C + zM'(y, z)C - 2(E - M(y, z)F - zM (y, z)F) (D + zE _ zM(y, z)F)2 
_ 

(zB + zM(y, z)C) (E - M(y, z)F - zM'(y, Z)F) ) )  
(D + zE - zM(y, z)F)3 

for y E {2 , 3, . . .  , m - 1} ,  recalling the expressions for A,B ,C,D,E and F given above. Setting z = 1 
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now shows that E[(N(y - 1))2 - N(y - l)J is 

(1 + c(�::� +F�2F ) E[(N(y))2 - N(y)] 

2(C(D + E) + BF) (D + E) (E[N( )J)2 + (D + E - F)3 Y 

2D(BF + (B + 2C) (D + E)) E [N( )J _ 2(E - F)(B + C)D + (D + E - F)3 Y (D + E - F)3 
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Substituting the expressions for A,B ,C ,D ,E and F and rearranging provides the desired result. • 

In Section 4.3 a closed form expression for E[N(y)] is derived , using theory of difference equa-

tions [33, p. 153] . The same theory now allows the above difference equation to be solved, treating 

E[N(y)J as known. Thus the following corollary is derived . 

Corollary 5.3. 1 The variance in the number of iterations of finite backtracking adaptive search before 

reaching level y, Var[N(y)] ' satisfies 

i) For all m, Var[N(m)J = O.  

ii) For m >  1, Var[N(m - l) J = 7Tm(2 - bm - 7Tm)/b:n . 

iii) For m >  2, Var [N(y)] is given by 

(27Tm(l
2
- bm) + 11 (B(j) If _1 .  ) )  If A(i) bm . 1 . . A(7,) . 1 J=Y+ t=J t=y+ 

+ E[N(y)] (l - E[N(y)] ) 

Proof The difference equation of Theorem 5.3.3 can be written as follows, 

E[(N(y - 1 ))2 - N(y - 1)] - A(y)E[(N(y) ) 2 - N(y)] = B(y) , 

with A(y) and B(y) as defined above. 

(5 .8) 
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The variances of N (m) and N (m - 1 ) are found as in the theorem, making use of the relationship 

Var [N(y)] = E[(N(y))2] - (E[N(y)])2. The remainder of the proof also lies in applying this rela-

tionship, using a closed form expression for E[(N(y) )2 - N(y)] found by solving Equation (5.8) . The 

method of solution is exactly that employed in Section 4 .3 .  • 

This corollary and Corollary 4 .3 . 1  now provide closed expressions for the mean and variance of the 

number of iterations before convergence for BAS with finite range distributions. The variances of the 

numbers of iterations before convergence for hesitant adaptive search and pure adaptive search with 

finite range distributions are available as special cases. 

Setting Wy = 0 in Corollary 5 .3 . 1  for all y and simplifying yields the variance of the number of 

iterations before convergence for hesitant adaptive search with a finite range distribution: 

for all y E {I , 2, . . .  , m - I} where m > 1, with Var [N(m)] = 0 for all m. This result is given in [51] 

(noting that the summation is to be taken over transient range levels only) . 

Further substituting by = 1 for all y gives the variance of the number of iterations before conver-

gence for pure adaptive search with a finite range distribution: 

m 
Var [N(y)] = 2:: 

j=y+l 

for all y E {I , 2, . . . , m - I }  where m > 1 ,  with Var [N(m)] = 0 for all m. 

5 . 3 .4 Continuous range distribution 

In this subsection a factorial moment generating function is found for the number of iterations before 

convergence for backtracking adaptive search where the range distribution is continuous. The mean 

of this distribution is then derived. 

The derivation of the factorial moment generating function rests on the following result concerning 

the distribution of record values for backtracking adaptive search. 
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Lemma 5.3 .1  Record values of backtracking adaptive search with a continuous range distribution 

form a Poisson process with mean value function m(y) = - lnpy .  

Proof Record values of pure adaptive search with a continuous range distribution are shown to form 

a Poisson process with mean value function m(y) = - lnpy in [54, Theorem 4.2 , Corollary 5 . 1] .  (The 

function stated there includes the absorbing iteration and is thus 1 - In py. ) The proof then follows by 

observing that record values for pure adaptive search and backtracking adaptive search with identical 

continuous range distribution are identically distributed. • 

The following theorem may now be derived. 

Theorem 5.3 .4 The factorial moment generating function of N(y) for backtracking adaptive search 

with a continuous range distribution is 

. 1.00 D(t , z )-l d M(y, z) = e t=y -P-t- Pt 

where Py < 1 and D(t, z) = E[zN(t- ) jYo = t] is the factorial moment generating function of the delay 

distribution at level t .  

Proof Note first that M(y, z) can be written as 

using Equation (5 . 1 ) .  Conditioning on the number R and values 1'(1) , 1'(2) , 1'(3) , ' "  , 1'(R) of records 

visited by backtracking adaptive search before convergence then gives 

R 
L N(i) 

M(y, z) = ER[EY(1) ,Y(2) 'Y(3) ' ' ' ' 'Y(R) [E [zi=l III 
R 

ER[E1(1 ) ,1(2) ,Y(3) ' ' ' ' ,Y(R) [IT E[zN(i) J J ] 
i=l 

since, given the values of all records, the delays at each record are independent. Substituting D(y, z) = 
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E[ZN(Y) ] gives 

M(y, z) 
R 

ER[EY(I ) 'Y(2) 'Y(3) " " ,Y(R) [IT D(Y(i) , z)] ] . 
i=l 

Lemma 5 .3 .1  shows that records occur as a Poisson process with mean m(y) j their values given the 

total number R are therefore independent identically distributed random variables in (y, (0) with 

common cumulative distribution function F(t) = 1 - m(t)/m(y) [28, p22] . Let T denote this common 

random variable for record values. Then 

R 
M(y, z) ER[IT ET [D(Y(i) , z)] ] 

i=l 

since R has a Poisson distribution with mean m(y) and the expected delay at any level is finite. 

Now since F (t) = 1 - m(t)/m(y) and Lemma 5 .3 . 1  gives m(t) = - lnpt , differentiation of F(t )  

with respect to  Pt leads to 

and the proof follows: 

by Equation (5 .9) , as required. 

dF(t) 
dpt 

M(y, z) 

Ptm(y) , 

eET [m(y) (D(t,z)-l)] 

eh:y m(y) (D(t,z)-l)dF(t) 

J,oo D(t,z)-1  d t 
= e t=y Pt P 

(5 .9) 

• 

This expression can be solved for M(y, z) when Py is an absolutely continuous function, as shown 
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in the following corollary. 

Corollary 5 .3 .2 The factorial moment generating function of N(y) for backtracking adaptive search 

with an absolutely continuous range distribution is 

_ fY P(t,z)dt e Jto 
M(y ,  z) = f'" 

J.'" - P(t,z)dt foo Q( ) - P(t ,z)dtd e to + u ,  z e to U y 

h 1 P( ) p�(l-Pt) (z-l)-zWt Q( ) w ere Py < ,  t ,  z = pt(l-pt)(l-z(l-bt-Wt)) '  u ,  z 

integration point and p� denotes � .  

Proof From the statement of Theorem 5.3.4, it follows that 

ln M(y, z) 100 D(t, z) - 1 
-----'---dpt , t=y Pt 

whence, differentiating with respect to y, 

1 aM(y, z) 
M(y, z) ay 

1 - D(y, z) 
Py 

Since py is absolutely continuous , 'Try = 0 for all y. Theorem 5.3.1 then gives 

D(y z) = z (by( l - Py) + wy(M(y, z) - Py)) . , 
( 1 - py) ( 1 - z ( 1 - by - wy )) , 

substituting this expression into Equation (5. 1 1) and rearranging produces 

oM(y, z) 2 
ay + P(y, z)M(y ,  z) = Q(y, z) (M(y, z)) 

(5 . 10) 

(5 . 1 1 )  

with P(y, z )  and Q(y ,  z) as defined above. This is an example of Bernoulli's equation, for which the 

solution is 

1 - J.Y P(t,z)dt --- e to 
M(y, z) = 

- lY Q(u, z)e - Jt� P(t ,z)dtdu + c(z) 
to 

(5 . 12) 
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where to is an arbitrary integration point and c(z) is a constant of integration [6, p367] . 

To find the value of c(z) , note that lim N(y) = 0, so that taking the limit as y tends to infinity of y--+oo 
Equation (5. 12) gives 

- 1.00 P(t,z) dt 100 
Q

( ) - ru P(t,z)dtd ( ) e to = - u, z e ho u + c z . 
to 

Solving this equation and Equation (5. 12) simultaneously provides the result. • 

Substituting Wy = 0 for all y in this equation now yields the factorial moment generating function 

for the number of iterations before convergence for hesitant adaptive search: 

M(y, z) 
_ roo p�(z-ll dt e JIJ Pt (l  z (l  bt ll 

roo z- l d e - Jt= IJ pd 1-z(1-bt l l  Pt 

_ roo Ptm(IJ)(z- l l dF(t) e Jt=y pt ( l z(l  bt l l  

by Equation (5 .9) . Analogously to that equation, 

thus 

as presented in [51] . 

dF(t) 1 
d7rt Ptm(y) ' 

rco % - 1  d M(y, z) = e - Jt=y pt (l-z(l btll 7rt , 

( 5 . 13 )  

To conclude this subsection, the factorial moment generating function of  Theorem 5.3 .4 is used 

to find the expected number of iterations before convergence for backtracking adaptive search with a 

continuous range distribution, as derived by different means in [9] . 

Differentiating Equation (5 .10) with respect now to z gives 

1 8M(y, z) 
M(y, z) OZ 

= 
tOO � D(t ,  z) - 1 

dpt. Jt=y oz Pt 



5.3. Factorial moment generating functions for distributions of hitting times 101 

The expression for D(t , z ) can be substituted in from Theorem 5 .3 . 1  and the differentiation carried 

out. Substituting z = 1 then yields 

E[N(y)] 

by Equation (5.9) . Equation (5 .13) then gives 

as given in [9] . That paper continues to solve this equation for the case when Py is absolutely contin-

uous. (The same result could be obtained using the factorial moment generating function for back-

tracking adaptive search with an absolutely continuous range distribution, given in Corollary 5 .3 .2 . )  

5 . 3 . 5  Mixed range distribution 

In the general case, the range distribution is a mixture of discrete and continuous components. Again 

let Iy be the set of points of discontinuity having a level greater than y. The complement of Iy in 

(y, oo) is a countable number of open intervals; let Ui denote these intervals and Cy the set of all Ui . 

The distribution of the number of iterations before convergence for backtracking adaptive search is 

now derived. 

Theorem 5.3.5 The factorial moment generating function of the number of iterations before conver-

gence for backtracking adaptive search is 

M( ) IT Pi - 7ri ( l  - D(i, z ) )  IT 1, u . D(t ,Z)- l dpt 
y, Z = e tE , Pt 

. I Pi U C tE y i E y 

where Py < 1 and D(y, z) = E[zN(Y- ) IYo = y] is the factorial moment generating function of the delay 

distribution at level y.  
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Proof If the number of iterations with the current record an element of Ui is denoted N(Ui) then 

the total number of iterations before convergence is 

N(y) = L Ni + L N(Ui) 
iEly UiECy 

where all N(Ui) and Ni are independent of each other, since the number of iterations between reaching 

a level or set of levels and reaching a better level is unrelated to the progress of the algorithm before 

or after. Then 

M(y , z) E [ZN(Y)] 

L Ni + L N(Ui) 
E [ziEIII UiECy ] 

IT E [zNi] IT E[zN(Ui) ] . 
iEIII UiECII 

(5 . 14) 

Now since the derivation of E[ZNi] in Equation (5 .7) is valid also for a general range distribution, it 

remains only to determine an expression for E[zN(Ui) ] .  This will be  done analogously to the proof of 

Theorem 5 .3 .4 .  

Define ai and bi so that Ui = (ai , bi ) for each bounded interval Ui . Let � be the number of records 

that fall in Ui . The number of records reached· before convergence to level y has a Poisson distribution 

with mean - lnpy ;  therefore the number of records falling in Ui has a Poisson distribution with mean 

ln Pb-:- - lnpai ' where Pb-:- refers to Pbi - 7rbi . The values of records falling in Ui given their number 
, , 

� are thus independent identically distributed random variables in (ai , bi ) with commOll cumulative 

distribution function F(t) = 1 - (lnPb-:- - lnpt )/ (lnPb-:- - lnpai ) .  As in the proof of Theorem 5 .3 .4, 
, , 

then, 

M(y , z) 
(In pb- -ln Pai ) (ET [D (t,z)]-l) e i 

since the expected delay at any level is finite. 



5.4. Summary 

Differentiating F(t) with respect to Pt gives dF(t)/dpt = l/(pt (lnPb:- - lnpaJ) ;  thus 
, 

M(y, z) 
ET[(ln Pb- -In Pa;l (D(t,z)-l)] 

= e i 

1, u . (In pb- -ln Pai ) (D(t ,z) -l)dF(t) 
e tE , i 

r D(t,z)- l dpt 
eJtEUi Pt • 
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This expression and that in Equation (5 . 7) can now be substituted into Equation (5 . 14) to complete 

the proof. • 

This theorem provides the factorial moment generating function for the number of iterations be-

fore convergence for backtracking adaptive search with a general range distribution; the results in 

Subsections 5 .3 .2 and 5 .3 .4 are thus special cases of this result. 

5 . 4  Summary 

This chapter is a theoretical digression in the thesis, included for the state of completeness; a general 

theory for backtracking adaptive search is presented. Factorial moment generating functions for the 

number of iterations before convergence for backtracking adaptive search with discrete, continuous 

or mixed range distributions are derived, and solved for the finite and absolutely continuous cases. 

All results previously published on the number of iterations before convergence for hesitant adaptive 

search and pure adaptive search are special cases of the results of this chapter. 

The following chapter now returns to the problem of approximating the expected number of itera-

tions before convergence for a general stochastic global optimisation algorithm, taking up the theory 

of Chapter 4 and applying it to some examples. 
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Chapter 6 

Computational Results 

6 . 1  Introduction 

In this chapter the prediction mechanism is implemented on some small examples. Each step in the 

framework can then be seen in practice. The usefulness of this method of modelling the movement of 

a search algorithm in the range is then illustrated, at least on certain examples. 

Future work may be directed at improving the method by which some of the steps in the framework 

are implemented. Another important area for future work is to assess how well the initial behaviour 

of the range process reflects later behaviour. The implicit assumption made in estimating the con­

vergence time of a process based only on a finite observation period is that the observ�d behaviour 

is characteristic of unobserved behaviour in the future and in regions of the domain that have not 

previously been observed. It may be possible to link the degree to which this assumption is justi­

fied with certain characteristics of the problem class and algorithm type applied. A third avenue for 

investigation is the extent to which the approach is affected by the "curse of dimensionality" . The 

approach outlined is not directly dependent on the dimensionality of the domain, but it may be the 

case that the quality of the estimate of convergence time is affected by the number of variables in the 

problem. The aim in this chapter is simply to demonstrate the ideas on some examples. No statistical 

inference on the general effectiveness of the method is to be drawn from the few examples considered; 

rather , an illustration of the approach is provided. 
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All programs have been written using Matlab software. These are included as an appendix to the 

thesis. Electronic versions are available from the author on request .  

The layout o f  Section 6 . 2  is similar to that o f  Section 2 .2 . Two disparate examples are introduced 

and the method for predicting expected convergence times is carried out on each. Details relating to 

the implementation are discussed at each stage. Section 6.3 then considers issues relating to actual 

implementation of the approximation method in practice. Two examples demonstrate aspects of the 

prediction method. The final section summarises the effectiveness of the approximation framework as 

implemented in this chapter. The potential for further development is also discussed. 

6 . 2  Approximating two stochastic global optimisation algorithms 

Two simple examples of stochastic global optimisation algorithms are analysed in this section, in order 

to illustrate the approximation algorithms described in Chapter 2 .  The first is a small example for 

which transition matrices in the domain and range can conveniently be written out in full ;  the second 

is a more practical algorithm on a more testing domain, demonstrating how the kind of analysis 

introduced in this thesis can be used to estimate the convergence time of a real algorithm applied to 

an unknown but complicated domain. 

Note that the examples are presented purely to provide a numerical implementation of the theory 

that has been developed and exemplified earlier in the thesis. Their purpose is to demonstrate the 

degree of accuracy of the method as it has been presented. The successive stages in the approximation 

process as it is applied to each example are described in the following subsections, beginning with 

the domain process and continuing through range, averaged range and asymptotic averaged range 

processes to the final backtracking adaptive search approximation. 

6 . 2 . 1  The domain process 

The two examples are now introduced, defining a problem and an optimisation algorithm in the 

domain. 

Example 1 A Markovian search algorithm is applied to a very simple problem with six points in the 



106 Chapter 6. Computational Results 

domain S, labelled { I ,  2, 3, 4, 5 , 6} . Suppose that the first two points have objective function value 1 ,  

the next two have objective function value 2 and points numbered 5 and 6 have objective function 

values 3 and 4 respectively. The aim is to minimise objective function value. S ince there are two 

points with minimal objective function value, they may be combined; the search algorithm stops as 

soon as it samples either of them. The search algorithm on this set is then described by a Markov 

domain process with transition matrix P. For this example, we arbitrarily take P to equal 

1 or 2 
3 

Current state 4 
5 

6 

1 or 2 
1 
0.2 
0.1 
0 
0.2 

Next state 

3 4 5 6 
0 0 0 0 
0.3 0 .2 0 . 1 0.2 
0.2 0 .3 0.2 0 .2 
0.2 0 .2 0.4 0.2 
0.4 0 . 1 0.1 0.2 

If the first iterate is chosen randomly from a uniform distribution on the six possibilities (so 

60 = [� i i i iD, then standard Markov Chain theory [27] gives the expected number of iterations 

before convergence for the process as 5 .049. 

Example 2 A Markovian search algorithm is used to minimise an unknown function on the domain S 

consisting of 0 ::; x, y ::; n. The search algorithm to be used in this example wil l  only accept successive 

iterates if they are not worsening or with a constant probability if they are worsening. Successive 

candidate solutions are generated using the Hit-and-Run algorithm of [46] (discussed on p .  7) . 

In order to apply the full approximation framework, it is necessary to define the objective function 

and the domain transition matrix of the algorithm; in practice, of course, transition probabilities to 

the optimal state are unknown until the optimal state has been sampled, so an empirical approach may 

be necessary. As suggested in Chapter 2, the asymptotic averaged range process can more practically 

be estimated directly by observing progress of the search algorithm on the range, but in this section 

the aim is to illustrate each stage of the framework, comparing the expected convergence times of each 

approximation in the sequence. Section 6.3 discusses a more practical approach to the estimation of 

expected convergence times for black box algorithms and objective functions. (The term "black box 
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algorithm" is applied here to any global optimisation algorithm that is applied to a problem in order 

to produce solutions, where in general there is no knowledge of how the algorithm produces these 

solutions. A unique feature of the prediction method described in this thesis is its applicability to a 

general Markovian algorithm with no requirement on the structure of the algorithm.)  

The objective function used is  -2 .5  sin (x)  sin(y) - sin(5x) sin(5y) , as used in [53J ; this can be 

shown analytically to have a global minimum at (x ,  y) = (1f/2, 1f/2) .  This objective function is  chosen 

because it has several local minima, as shown in Figure 6 . 1 .  The algorithm is of course applied to the 

problem as though the objective function is unknown, so that algorithm results can be compared with 

the known global minimum. 

0.5 

0 

-0.5 

-1 

-1 .5 

-2 

-2.5 

-3 
-3.5 

3 

y 
x 

Figure 6 . 1 :  Objective function -2.5 sin(x) sin(y) - sin(5x) sin(5y) used in Example 2 .  

The search is  conducted over a grid with mesh size 1f /50 .  The domain transition matrix P i s  thus 

a 512 x 512 matrix. The algorithm can now be implemented as a Markov chain. Each successive Hit­

and-Run iterate is rounded to the nearest grid point. At each iteration, improving points are accepted 

with probability one and non-improving points are accepted with probability 0. 1 .  The algorithm 

continues in this way until the global optimum is sampled. The number of iterations before sampling 
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the optimum can thus be estimated. It is clear that the algorithm thus described makes no use of the 

analytic form of the objective function. 

Suppose the initial distribution 60 is uniform on the domain. The domain transition matrix P can 

be constructed using the structure of the Hit-and-Run algorithm. (The matrix P used in this example 

is calculated only approximately, to simplify computation. Since the aim here is simply to construct a 

transition matrix, this discrepancy is immaterial. )  Standard matrix theory then provides the expected 

number of iterations before convergence for this algorithm as 1 1 99.53.  

6 . 2 . 2  The range process 

The range processes for each example are now identified. 

Example 1 (continued) The range process is defined as the image of the domain process projected 

onto the range using the objective function. The number of iterations before convergence for the 

range process is identical with the number of iterations before convergence for the domain process. 

This range process is not Markovian, since its progress is viewed in the range but determined by the 

algorithm in the domain. 

The range process is observed in the range, which in this example consists of four pussible levels, 

though the algorithm is actually operating on a domain consisting of five independent states (treating 

the two optimal points as effectively one state of the process ) .  Some data is thus lost by the simpli­

fication of considering only range levels. For instance, an observation of range level 2 could reflect a 

domain state of either 3 or 4. Observation of the range process alone is therefore insufficient to predict 

its future behaviour. 

Example 2 (continued) The range process is again defined as the image of the domain process in 

the range. The distribution of the number of iterations before convergence for the range process is 

thus identical to that of the domain process. 

Note again that the process cannot be predicted solely by observation in the range; it effectively 

"runs" in the problem domain. The range process is merely an observation of the domain process 

projected into a single dimension. Several domain points share objective function values; the number 
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of range levels is only 326. As before, though, the range process is not Markovian on these range 

levels. (For instance, the probability of moving to the optimum from range level 0 is 0.00021 if the 

preceding range level was -0.8637, but 0.00022 if the preceding range level was -2.2613.)  

6 . 2 . 3  The averaged range process 

The range process for each of the two examples is now approximated by the averaged range process, 

a time-inhomogeneous Markov process in the range. The method used is that of Subsection 2.2 . 1 .  

Example 1 (continued) The objective function mapping matrix for this example is 

1 0 0  0 

o 1 0 0 

M =  0 1 0 0 

o 0 1 0 

0 0 0  1 

Equation (2 .3) of Subsection 2 .2 . 1  states that "'n (i ) = 8n (i) where 0 = oopn . Using I � On (j) ' n 

{j :f(xj )=f(Xi) } 
the value of 00 provided above, 01 = [ 152 �� 125 125 125 J  and 02 = [0.49 0 . 1 6  0 .12 0 . 1 1  0 . 12J .  Since 

the second and third states in P share a level, "10 = [1 0.5 0 .5 1 1] , "11 = [1 0.579 0.421 1 1J and 

"12 = [1 0.581 0.419 1 1 ] .  
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Equation (3 . 1 ) then gives Rn. = MTdiag (-Yn)PM, so 

1 0 0 0 1 0 0 0 

0. 1 5  0 .5 0 .15 0 .2 0. 1579 0 .5 0. 1421 0 .2 
Ra =  , R1 =  

0 0.4 0 .4 0.2 0 0.4 0.4 0 .2 

0 .2 0 .5  0 .1  0 .2 0.2 0 .5 0 . 1  0 . 2  

1 0 0 0 

0 .1581  0 .5  0 . 1419  0 .2  
and R2 = 

0 0.4 0.4 0.2 

0.2 0 .5  0 . 1  0 .2 

Corollary 3.2 . 1  shows that Na ,  the number of iterations before convergence for the process defined in 

this way, has the same distribution as that of the original process. The mean of this distribution is 

thus 5.049 iterations, the same as the expectation determined on p. 106. 

Example 2 (continued) 

The objective function mapping matrix M can be constructed from the objective function f using 

the definition of Subsection 2 .2 . 1 .  Averaged range process transition matrices are then available using 

Equations (2.3) and (3 .1 ) . Since there are 326 range levels, the averaged range proCf']SS transition 

matrices are too large to write out here in full. The top left corner of Ra (calculated using Matlab) is 

1 o o o 

0.0062 0.3433 0.0022 0 .0017  

Ra = 0.0488 0.0210 0.4599 0.0253 

0.0031 0.0171 0 . 1014 0 .3899 

This part of the matrix Rn remains identical to four decimal places for all n. 

Again, Corollary 3.2.1 shows that the averaged range process now defined has the same expected 

number of iterations before convergence as the domain process, so E[Nal = 1 199.53. 
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6 . 2 . 4  The asymptotic averaged range process 

1 1 1  

A time-homogeneous Markov approximation to the averaged range process is now found for the two 

examples. 

Example 1 (continued) 

The limit of Rn as n tends to infinity can be found using Theorem 3 .3 .3 to be 

1 o o o 

0 .1582 0 .5 0 . 1418 0 .2  
R =  

o 0.4 0.4 0 .2  

0 .2 0 .5  0 .1  0 .2 

This limit can also be found directly from the averaged range process transition matrices; Rn is 

identical with R to four decimal places when n > 2 .  

Since this example i s  small ,  the expected number o f  iterations before convergence for the asymptotic 

averaged range process approximation, E[Nb] , can be found directly using standard matrix theory [27J 

to be 5.024. This underestimates the true value by 0 .025 iterations, or 0.5%. The relative error in this 

stage of the approximation process is usually small, as discussed in Section 3.4. 

Example 2 (continued) 

Theorem 3.3 .3 again allows the limit of Rn as n tends to infinity, R, to be calculated for this 

example. It is also possible to obtain this result by calculating several values of Rn; for n > 5 these 

matrices are identical with R to four decimal places. The top left corner of R is the same to four 

decimal places as the top left corner of Ra displayed in the previous subsection. 

Clearly, R will be very large when the grid used is very fine. In the present case, though, it is 

possible to find the expected convergence time of the asymptotic averaged range process E[NbJ directly 

by matrix inversion. The value, 1 199.54, overestimates the true value by 0 .005 iterations, or 0 .0004%. 

The relative error is thus very small in this case; the Markov process in the range with 5 12 = 2601 

states has a convergence time almost exactly the same as that in the range with only 326 levels. 

This reduction in size and complexity of the problem could be used in some cases to provide analysis 
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of the expected convergence time for a process with a domain transition matrix too large for direct 

analysis. If an accurate estimate of R Ci,in be obtained, then (in this example at least) an accurate 

estimate of the number of iterations before convergence for the domain process can be found. For 

many problems, though, even the asymptotic averaged range process transition matrix R will be too 

large for direct analysis; a method of approximating the convergence time for a Markov process in the 

range is thus required. The following subsection uses a backtracking adaptive search approximation 

for this purpose; this is just one of several methods that could be used. 

6 . 2 . 5  Backtracking adaptive search 

In the last stage of approximation, a backtracking adaptive search algorithm approximates the asymp­

totic averaged range process. The expected number of iterations before convergence for this approx­

imation can then be found; this is an estimate of the expected number of iterations required by the 

original algorithm. 

Example 1 (continued) 

Vectors b = [0 0 . 1 582 0.4 0 .8] and w = [0 0 .3418 0.2 0) can easily be found from R, using 

Equations (4 .8) and (4.9) . The limiting relative weightings of transient domain states are � = 

[0.32 0 .23 0.22 0 .23] . This vector can be found either empirically or by Equation (4. 10) .  Finally, 

Equation (4. 1 1 )  gives ?T = [0 .23 0 .34 0 . 17 0.26) . 

The expected number of iterations before convergence for the backtracking adaptive search ap­

proximation can be found using Corollary 4.4.1 to be 3.709. This underestimates the true value by 

1 .34 iterations, or 26.5%. The last stage in the approximation process is currently the least refined; 

the relative error in the final approximation is quite large. Improving the accuracy of the backtracking 

adaptive search approximation may lead to significant reduction in this error. However, the estimate 

is at least in the same order of magnitude as the true convergence time; some gauge of the likely 

convergence time is thus provided. 

Example 2 (continued) 

The same method can also be used to find parameters b = [0 0 .0062 0.0698 0. 1217 . . . ) , w 
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[0 0.6505 0.4703 0 .4885 . . .  ] and 1f = [0.0012 0.0037 0.0038 0.0034 . . .  ] for the second example. (These 

are not written in full , for reasons of space. ) The expected number of iterations before convergence for 

the backtracking adaptive search approximation can then be found, using Corollary 4.4.1 .  The value, 

443 . 5  iterations, underestimates the true value by 756 .0 iterations, or 63.0%. 

The error in this final approximation is again large. There are two possible reasons for this . 

Firstly, the way in which a backtracking adaptive search approximation to the asymptotic averaged 

range process is found may need to be improved. Secondly, the backtracking adaptive search model 

itself may not be sufficiently flexible to represent adequately the structure of the asymptotic averaged 

range process. If this is true for some situations then there is no method of approYimation that will 

reliably produce a backtracking adaptive search process with expected convergence time closer to the 

true value. 

It is possible for the present examples to investigate alternative backtracking adaptive search ap-

proximations in order to test which of the two postulated reasons is the major cause of error. Improved 

backtracking adaptive search approximations are now presented for both examples, indicating that for 

these examples at least the error in the predicted mean convergence time is attributable largely to the 

method by which the backtracking adaptive search model is fitted to the asymptot�c averaged range 

process and not to an intrinsic inadequacy in the backtracking adaptive search model. 

Example 1 (continued) 

Define b and w as before, based on the asymptotic averaged range process transition matrix 

R determined in Subsection 6 .2.4. It is possible to find a vector 1f that maximises the likelihood of 

observing a backtracking adaptive search process over a finite number of iterations to give the empirical 

transition probabilities of R. This results in the vector 1f = [0 . 14 0.61 0 . 1 1  0 . 1 5] .  The expected number 

of iterations before convergence for this new backtracking adaptive search approximation can be found 

using Corollary 4.4 . 1  to be 5 .052. This overestimates the true value by only 0 .003 iterations, or 0 .06%. 

Example 2 (continued) 

Applying the same approach, let b and w take the values assigned previously, but adopt a new 

1f = [0.0001 0.0003 0.0004 0.0004 . .  J The expected number of iterations before convergence for the 
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new backtracking adaptive search approximation can now be found, using Corollary 4.4 . 1 .  The value, 

1272.6 iterations, overestimates the true value by only 73.0 iterations, or 6 . 1%.  

In both cases the estimates of expected convergence time are greatly improved. The maximum 

likelihood estimate of Jr used in both cases takes even longer to evaluate than does finding the expected 

convergence time of the asymptotic averaged range process directly via matrix inversion. But the 

whole aim of approximating with backtracking adaptive search is to remove any need for the amount of 

computational effort required to invert large matrices, so that this is not a practical method. However, 

it serves to illustrate that in these examples there is a backtracking adaptive search algorithm with 

expected convergence time that matches fairly closely the true value. This indicates that for these 

examples at least, the errors in predictions of expected convergence times are due not to insufficient 

flexibility of the backtracking adaptive search process but to the method used to estimate its parameter 

Jr. A refined method of approximating the asymptotic averaged range process with backtracking 

adaptive search could yield much more accurate results. 

The choice of Jr in the backtracking adaptive search approximation is in itself an optimisation 

problem. The maximum likelihood approach used above was somewhat successful for these examples; 

however, this method is not practical when R is large. The simple method described in Chapter 4 is 

quick to implement but much less accurate in its results. The challenge is then to find an improved 

method, still capable of execution in reasonable computer time but yielding an improved estimate for 

Jr. Improvement of this step would allow the accuracy of the estimate of expected convergence time 

obtained using the simpler method of Chapter 4 to be significantly improved. 

However, even this estimate gives some indication of convergence time. If estimating convergence 

times for general stochastic global optimisation algorithms is genuinely "hard" , perhaps this estimate 

is as accurate as can be expected by any method. Certainly, errors of this magnitude are commonplace 

in estimating the runtimes of processes in other fields, for instance software engineering projects and 

internet downloads. Improving this last stage of approximation remains an avenue for future research. 

This completes the analysis of the approximation framework as applied to these two examples. 

The asymptotic averaged range process approximations in both cases provide very accurate estimates 

of the number of iterations required before algorithm termination, while the backtracking adaptive 
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search approximations are much less precise. 

A further complication encountered in practice is that even the problem specification itself must 

be estimated. This issue is discussed in the following section. 

6 . 3  Implementation considerations 

In this section a method of implementing the approximation framework methodology on a true black 

box optimisation algorithm and objective function is suggested. The method proposed is designed 

to illustrate one possible application of the theoretical ideas of this thesis to some realistic problem 

scenarios. 

The examples of the previous section used an explicit statement of the structure of the domain 

optimisation algorithm given by the transition matrix P. Averaged range process transition matrices 

Rn, the asymptotic averaged range process transition matrix R and backtracking adaptive search 

parameters b, w and 7r were calculated from one another in succession, using P, the objective function 

mapping matrix M and the initial distribution in the domain 00 . In practice, only 00 can be taken as 

known; the others require estimation. 

Several possibilities present themselves as candidates for this estimation procedure. These are now 

listed with a description of how each might be implemented. 

l .  Domain process start. One approach is to estimate P and M from a run of the algorithm, 

allowing the rest of the approximation framework to follow through as in Section 6 .2 .  While M 

can easily be constructed from its definition in Subsection 2 .2 . 1 ,  the estimat�on of P requires 

the observation of a very large number of iterations. A sufficient number of transitions must be 

observed to estimate the distribution on the domain of transitions from each state or grouping of 

states in the domain, needed for rows of P. This approach is unlikely to prove computationally 

efficient unless the domain is very small. 

2 .  Averaged range process start. An alternative is to estimate the averaged range process tran­

sition matrices Rn directly. This avoids any need to estimate P or M explicitly; Corollary 3 .2 . 1  

is  invoked so that an unbiased estimator of the mean number of iterations before convergence 
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for the averaged range process is also an unbiased estimator of the number of iterations of the 

original process in the domain. To estimate transition matrices Rn for each integer n from 

zero up to some finite number no requires repeated runs of no + 1 iterations of the process, so 

that an empirical distribution of transitions from each range level at each iteration number no 

greater than no can be built up. An estimate of the asymptotic averaged range process transition 

matrix R must then be made by extrapolation of the observed behaviour of the matrices Rn. 

For instance, R may be obtained by a weighted average of Rn that places more weight on later 

estimates. A further backtracking adaptive search approximation can then be found, as in the 

preceding section, allowing an estimate of the expected convergence time to be calculated. 

3. Asymptotic averaged range process start. A third approach is to estimate the asymptotic 

averaged range process transition matrix R directly. (A method by which this can be accom­

plished is outlined below. )  The backtracking adaptive search approximation to this process can 

then be used to estimate its expected convergence time. Section 3 .4 discusses reasons to believe 

that the expected convergence time of the asymptotic averaged range process will often be close 

to that of the original domain process. 

4. Backtracking adaptive search start. Finally, it is possible to estimate the parameters 

of backtracking adaptive search immediately, perhaps based on setting the ith component of 

1f to the proportion of times that the ith level is visited during an observation period and 

setting the ith component of b and w to be the proportion of times the algorithm bettered or 

worsened respectively after visiting the ith level during the observation period. (However, this 

method of estimating 1f ignores the interaction with b and w and is thus biased; alternative 

methods may be found to give more accurate results. )  This avoids all the approximation stages 

detailed in this thesis but also loses the theoretical properties of the processes and approximation 

techniques that have been developed. In the other methods described above, backtracking 

adaptive search approximates an asymptotic averaged range process , which is already a Markov 

process in the range. If the parameters for backtracking adaptive search are estimated in a way 

that avoids approximating the domain process with a Markov process in the range (namely the 
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asymptotic averaged range process) then the beginning and endpoint of  the approximating step 

to backtracking adaptive search are much more disparate than in any of the other methods. The 

approximation might well therefore be that much less likely to be close. 

A good approximation method would be one that takes advantage of the theoretical results concerning 

convergence times of the range, averaged range and asymptotic averaged range processes while avoiding 

prohibitively great computational requirements. 

The approach illustrated here is the third of these possibilities: to observe range values of a 

stochastic global optimisation algorithm and to estimate the transition matrix of an asymptotic av­

eraged range process from them. The discussion in Section 3.4 shows that the asymptotic averaged 

range process approximation often has an expected convergence time very close to that of the original 

algorithm. A single further stage of approximation to backtracking adaptive search is then required . 

The expected number of iterations before convergence can then be calculated for this approximation. 

The first three methods all make use of the asymptotic averaged range process and therefore share 

this advantage over the fourth method, which requires the less flexible backtracking adaptive search to 

approximate the observed behaviour of the optimisation algorithm directly. Of the first three methods, 

the third is the simplest and therefore likely to be preferable. Other methods may be considered if 

the accurate estimation of asymptotic averaged range process parameters directly from observation of 

the process proves difficult. 

In this case the accuracy of the estimate of convergence time rests on the accuracy of the empirical 

estimation of asymptotic averaged range process parameters , on the accuracy of the expected conver­

gence time of this asymptotic averaged range process and on the quality of its backtracking adaptive 

search approximation. The first of these is unknown. Probabilities of transitions between levels visited 

commonly may well be estimated accurately, but there will in general be levels from which only a few, 

if any, transitions are observed. The second of these has received comment in Section 3.4; for a wide 

range of problem instances the expected convergence time for an asymptotic averaged range process 

approximation is close to the expected convergence time for the original process. The third of these, 

approximating the asymptotic averaged range process with backtracking adaptive search, is the area 

where the approximation process becomes inaccurate. As exemplified in Section 6.2, an estimate for 
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convergence time no more than ten times greater or less than the true value seems as much as can be 

expected from this step. (However, even an estimate no more accurate than this still provides at least 

some gauge of how long the process may be expected to run. Refining the methods of Section 4.6 may 

allow the accuracy of this approximation to be improved. ) 

The approach illustrated therefore involves running an algorithm on a problem for a large number of 

iterations. Transitions in the problem range are noted, so that the asymptotic averaged range process 

transition matrix R can be approximated empirically. In particular , order the observed range levels 

from least to greatest and label them as 1 , 2, 3 , . . .  , m. If Wij is the number of observed transitions 

from the level labelled i to the level labelled j then the estimate of R is obtained by letting �j = 
m 

Wij / L Wik · (If the optimal level is visited then the corresponding row in R is altered to a row of zeros 
k==l 

with an initial one, so that R is absorbing. Otherwise such a row must be added and the probability of 

transitioning to the optimal level at each iteration must be estimated in some way for each other level . 

Also if no transitions from the last level visited have been recorded then this level must be excluded 

from the estimate of R in order to ensure that the transient portion of R is irreducible. ) It would be 

possible to ignore the initial iterations of the algorithm, allowing it to settle in before commencing 

observation; however, this technique is not employed in the analysis discussed in this section. The 

initial level is chosen uniformly on the domain (and new initial levels are chosen in the same way if 

the algorithm does happen to visit the optimal level during the observation period) . 

Note that in general the number of range levels visited by the algorithm will be less than the total 

number of range levels. (This will certainly be true if the range is continuous.) The labelling of levels 

in R will therefore be different in general to the labelling i f  R was generated from a true domain 

process transition matrix P. Provided the algorithm visits a level within the termir.ation region, 

there is sufficient information for the expected number of iterations before sampling a value in that 

termination region to be estimated from R. However, if no levels within the termination region are 

sampled then the transition probabilities from each level to the termination region must be estimated 

in some other way. It must be stressed that this latter possibility is the normal situation for difficult 

optimisation problems; if a short observation period is sufficient for the algorithm to find the optimal 

solution then the need to estimate expected convergence times is not so great. 
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Predicting convergence times in  this manner for a black box process before a single observation of 

convergence necessarily involves extrapolation. Clearly, no guarantee can be made for the accuracy 

of such an extrapolation without additional information about the process. Only if the algorithm has 

already been observed to converge can an estimate from data of the probability of absorption from 

any level be made and the expected convergence time calculated as in the previous section. 

To illustrate the approach, the two subsections following exemplify the approximation process on 

two examples. In the second of these, a simple method of extrapolation is used to estimate probabilities 

of convergence to the absorbing level before it is sampled. 

6 . 3 . 1  Example 2 revisited 

The algorithm used in Example 2 of Section 6 .2 is run for 1000000 iterations. There is no need in this 

case to discretise the algorithm, since the division of the range into discrete range levels can be made 

independently of the exact levels visited by the algorithm. For instance, the range may be divided 

into a finite number of intervals (perhaps, but not necessarily, of equal width) .  All transitions to 

or from each interval can then be combined in order to generate the discrete approximation to R. 

However, the following analysis again uses the discretised version of the algorithm, to provide a point 

of comparison with Section 6 .2 .  The expected convergence time of the process is thus known to be 

1 199 .5  iterations. 

After 1000000 iterations, the algorithm had visited all 326 range levels, so the empirical R is a 

326 x 326 matrix. The expected convergence time of the asymptotic averaged range process with this 

estimate of R is directly calculated to be 1 1 77.9 iterations, providing a reasonable estimate of the true 

convergence time. The true value is underestimated by 2 1 .6 iterations, or 1 .8%. 

In this case the number of levels is small enough for the expected convergence time of the asymptotic 
, 

averaged range process approximation to be calculated directly. If the number of levels was greater ,  

though, a further stage of approximation would be required. This further level of approximation is 

provided by backtracking adaptive search. (Or else a more coarse division of the range into levels 

could be used to reduce the dimension of R to a point where its expected convergence time could 

conveniently be discovered directly.) The backtracking adaptive search approximation in this case has 
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an expected convergence time of 439.0 iterations, underestimating the true value by 63.4%. This error 

is comparable with that in the previous section; the comments on accuracy made there are again valid. 

6 . 3 . 2  A further example 

In this subsection the approximation process is applied to a three dimensional generalisation of the 

previous example. The number of iterations before convergence for this generalisation will be much 

greater; the probability of sampling the optimum within a few hundred observations is very small. After 

a number of observed iterations, therefore, the prediction method applies some simple extrapolation 

to estimate the probability of convergence required for 7r.  

In this example the same algorithm is  applied to the problem of minimising the three dimensional 

function -2.5 sin(x) sin(y) sin(z ) - sin(5x) sin(5y) sin(5z) over the domain 0 :S x ,  y ,  z :S 7r. The global 

minimum of this function can be shown analytically to be at (x, y, z) = (7r /2, 7r /2, 7r /2) . The value at 

this point is -3 .5 .  Since this problem is much harder than its two dimensional analogue, it is no longer 

possible to evaluate the expected number of iterations before convergence directly, as was the case in 

Section 6.2. However, it is still small enough that the expected convergence time can be estimated 

empirically by running the algorithm several times and taking the average of all convergence times. 

This average can then be compared with estimates obtained by the prediction method, providing a 

point of reference by which the effectiveness of the method can be measured. 

It would be possible to increase the dimension of the problem further to make it harder and thus 

more like the problems for which this method is designed. However, in that case there would be no 

way of checking the accuracy of expected convergence times. . 

The algorithm of Example 2 in Section 6 .2  is applied 1000 times to this problem, recording the 

number of iterations required to sample a value with objective function value less than -3.49. The 

average number required is 47000. 

The prediction method is now applied to this example. The algorithm is run for 1000 iterations, 

from which data the expected convergence time is to be estimated. Note that the estimate itself is a 

random variable, dependent on the observed behaviour of the stochastic global optimisation algorithm 

in its first 1000 iterations. Different realisations of these iterations will therefore result in different 
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estimates of the expected convergence time. Ideally the variance of these estimates would be small, 

but there is no reason why it should be so. 

There is a slight possibility of sampling the optimum within these 1000 observations, in which case 

the method of Subsection 6 .3 . 1  can be used. (The estimated convergence time in this case is likely 

to be an underestimate, since the algorithm was observed to converge within 1000 iterations. )  Much 

more likely, however, is that the 1000 observations will not include any within the te::-mlnation region. 

In this case the behaviour of the algorithm over the rest of the range must be used to predict its 

behaviour over the unsampled lower end. 

An obvious estimation technique is simply to estimate 7r over the region of the range that has been 

sampled, using Equation (4. 1 1 )  as before, and then to fit a curve to it. The value that this curve takes 

at the target range level , in this case - 3 .49 , will determine an estimate for the value of 7r at this level . 

With the estimate of the first component of 7r obtained in this way, the method illustrated in previous 

sections may now be used to complete the approximation process. 

The length of the fitted 7r vector is another parameter of the approximation process. The values 

observed by the algorithm must be divided into a number of distinct range levels. For the purposes 

of this example, the observed values will be divided into 100 range levels. 

Figure 6.2 illustrates the procedure. After 1000 iterations of the algorithm, 7r is fitted to the 

observed range values by calculating an empirical estimate of the asymptotic averaged range process 

transition matrix R and applying the method of Section 4.6 .  A smooth curve is then fitted, in order 

to estimate the values of 7r outside the observed range values. A cubic has been chosen for this task; 

the smoothed curve is also plotted in the figure. (In order to ensure that predictions for 7r are never 

negative, the curve is fitted to the log of the data. )  A prediction for 7r at level -3.49 is then available. 

Other extrapolation methods could, of course, be used; a polynomial may be a bad choice if 7r 

must be extrapolated too far from the data. The cubic estimate appears reasonable in the example of 

Figure 6.2 .  

This procedure is now applied 10000 times to give an idea of the distribution of predictions available 

from this procedure. The average of the predictions is 132000000, which is 2800 times the average 

convergence time already found of 47000. However, the distribution of the 10000 estimates is highly 
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Figure 6.2: Fitting a curve to the estimate of Jr in the example of Subsection 6 .3 .2 .  

right skewed, as shown in Figure 6 .3 .  Note that the plot is  logarithmic, to counter the effect of the 

right skew so that the shape of the distribution can be seen. 

Two outliers, with values over 1011 , are heavily influencing the average; almost all the data is 

much less than this average. Without these values , the mean comes down to 772000, only 16  times 

the average convergence time found previously. The median, by contrast , is only 5000 , around a ninth 

of the empirical average convergence time. 

This point estimate is perhaps not as much use as the histogram itself, which reveals the variation 

in estimates obtained from the prediction method. Estimates vary from as little as 100 up to a limit 

of around 400000, with 5% of values even higher. About half of these values fall within a factor of ten 

of the empirical average; however, the variation is such that little confidence could be placed in any 

particular estimate. 

Estimates are highly sensitive to the first component of Jr, which is found based on extrapolation 

of the other values in Jr based on the observed behaviour of the algorithm in its first 1000 iterations. 

This behaviour is naturally highly variable. Less variation in estimates might be obtained by use of a 
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Figure 6.3:  Distribution of estimates of expected convergence time for the example of Subsection 6.3 .2 .  

longer observation period, or by a more robust method of calculating and extrapolating 1i .  

While there remains scope for fine tuning the method, this example illustrates the approach to 

estimating convergence times of a stochastic global optimisation algorithm. The usual cautions neces-

sary when applying extrapolation are applicable here: firstly, the implicit assumptiun has been made 

that the trend observed in 1i continues at lower range levels, but this is always unproven. It is even 

possible that there are no feasible solutions at the range level to which 1i is extrapolated. Secondly, 

the extrapolation leads to highly variable results. 

This section illustrates an application of the approximation framework to a genuine black box 

process. The expected convergence time of the process is estimated from the asymptotic averaged 

range process and backtracking adaptive search approximations. 

6 . 4  Summary 

This chapter illustrates the approximation framework on several examples. Estimates of convergence 

times using the asymptotic averaged range process approximation for the examples are shown to be 



124 Chapter 6. Computational Results 

very accurate, though this accuracy is (naturally) not so great if the transition matrix R is only 

estimated empirically from an actual run of the algorithm. 

The backtracking adaptive search approximation gives a much less accurate estimate of convergence 

time. The example of Subsection 6.3.2 shows that although the distribution of estim3.tes places a 

large weighting on values close to the true expected convergence time, the variance in this version of 

the estimation procedure is too large for any great guarantee of accuracy to be made. Estimation 

of the convergence rate of a general optimisation algorithm by this technique as implemented here 

would thus be somewhat unreliable. Nonetheless, a method is now available for gaining an indication 

of the approximate runtime required by a stochastic global optimisation algorithm. In some cases 

where comparison is to be made between two algorithms sufficiently different from each other in their 

convergence behaviour, it may be possible to distinguish between them using this method. 

If the range is discretised into a small enough number of intervals , the expected convergence 

time of R may be found directly via matrix inversion, avoiding the difficulty of approximating with 

backtracking adaptive search. A problem domain of high dimension will in general have a very large 

number of feasible solutions to consider; but since the range has only a single dimension, the number 

of possible range levels for the asymptotic averaged range process may be much less than the number 

of states for the original process in the domain. 

Some avenues for future work are now highlighted. It may be possible to improve the accuracy 

of the backtracking adaptive search approximation to the asymptotic averaged range process; this is 

a significant contributor to the error in the estimates of expected convergence time for the examples 

examined in this section. Alternatively, a better means of approximating the expected convergence 

time of the asymptotic averaged range process may be found. Finding a suitable method for approx­

imating the asymptotic averaged range process in situations where no transitions to the termination 

region have been sampled also remains an area for research. 

The sequence of approximating processes developed and analysed in this thesis make a first step to­

wards the estimation of the number of iterations before convergence for a general Markovian stochastic 

global optimisation algorithm. Subsequent research can develop these ideas further in order to improve 

the accuracy with which convergence times can be estimated; the examples in this chapter provide a 
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taste of the kinds of results that may be obtained in this way. 
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Chapter 7 

Conclusion 

7 . 1 Sumlnary of thesis 

Two challenges are addressed in this thesis. The first of these is the analysis of backtracking adaptive 

search, the logical extension of pure adaptive search and hesitant adaptive search algorithms that have 

already received attention in optimisation literature. The second, more far-reaching goal is to provide 

a framework whereby the theoretical analysis now available for backtracking adaptive Eearch can be 

used to estimate the convergence time of a general stochastic global optimisation algoriL1m. 

The first of these aims is achieved in Chapters 4 and 5 .  A moment generating function for back­

tracking adaptive search on discrete, continuous or mixed domains has been presented. The mean 

and variance of convergence times for finite backtracking adaptive search are derived explicitly in 

Corollaries 4 .3 . 1  and 5 .3 . 1 .  The former of these has been published in [ 1 ] ;  the analogous result for a 

continuous range function 1f is given in [9] . 

In Section 4.4 a closed expression for the expected convergence time for finite backtracking adap­

tive search with arbitrary initial distribution is presented. Several special cases are illustrated in 

Section 4.5,  including the derivation of results discussed in [31 ,  5 1 ,  56] . 

Chapter 5 contains a definition of backtracking adaptive search for a general range distribution. 

Moment generating functions for the number of iterations before convergence are then derived. The 

moment generating function approach also appears in [50] . 
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The second of these aims seeks to apply backtracking adaptive search as a model for a general 

stochastic global optimisation algorithm. The analysis of the convergence rate of this algorithm, 

summarised above, is now complete. The challenge is then to model a general optimisation algorithm 

with backtracking adaptive search and use this model for the prediction of convergence times. Much 

further research is possible in this direction. 

A framework of processes for approximating the convergence rate of an arbltrary Markovian 

stochastic global optimisation algorithm is presented in Chapter 2 ,  with several theoretical results 

proved in  Chapter 3. A paper outlining this framework and containing some of the analysis has also 

been published [49J. A chain of intermediate processes serve to break the approximation into several 

further stages. Each process in this chain is derived from the previous one, and can be used to approx­

imate its convergence behaviour .  The chain culminates in a tractable stochastic process, backtracking 

adaptive search. Using the results outlined above, convergence rates can be quickly obtained for the 

backtracking adaptive search model. 

The range process is the image of the solutions sampled by an optimisation process in the domain, 

projected into the range using the objective function. Since the range process is not Markovian, 

the averaged range process is introduced as a time-inhomogeneous Markovian approximation to the 

range process. Theorem 3.2 . 1  shows that this process is identical in marginal di8tribution to the 

range process. Corollary 3.2 . 1  then shows that the number of iterations before convergence for both 

processes is also identical in distribution. An accurate estimate of the convergence time of the averaged 

range process would therefore also provide an accurate estimate of the convergence time of the original 

process. 

Although the averaged range process is time-inhomogeneous, in many situations the transition 

matrices tend to a limit very quickly. The Markovian process using this limit tre.nsition matrix is 

called the asymptotic averaged range process. Theorem 3.3 .3 provides a general definition of the 

asymptotic averaged range process transition matrix pertaining to any optimisation process . The 

expected convergence time of this process differs from that of the original process; however,  under 

a weak assumption, Theorem 3 .4 . 1  shows that the difference in expected convergence time between 

the asymptotic averaged range process and the original process it approximates is the sum of a series 
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whose terms tend to decay geometrically. The required assumption can be ensured by imposing the 

weak condition that pure random search be conducted from some level with positive probabil ity. For 

a range of examples discussed in Chapters 2, 3 and 6, the convergence rate of the asymptotic averaged 

range process is very similar to that of the optimisation process it approximates . 

The asymptotic averaged range process and backtracking adaptive search are both time-homogeneous 

Markov processes defined on the range. The advantage of approximating the asymptotic averaged 

range process with backtracking adaptive search is that predictions can easily be made of the conver­

gence rate of a backtracking adaptive search model. Similar predictions on general Markov processes 

require matrix inversion, which is in general very time-consuming. The special structure of backtrack­

ing adaptive search allows expected convergence times to be calculated using the analytical results of 

Chapters 4 and 5. 

A method is proposed in Section 4.6 for approximating any asymptotic averaged range process 

with backtracking adaptive search. The complete framework thus provides a sequential procedure 

by which a backtracking adaptive search algorithm can be chosen as a model for any optimisation 

process . Prediction of convergence times for optimisation processes can then be made based on this 

model. Some examples of the complete procedure are given in Chapter 6. 

Section 6.2 illustrates the entire framework under the assumption that the structure of the Marko­

vian optimisation algorithm is known exactly. Although asymptotic averaged range process approxi­

mations give very good estimates of the expected convergence time, the simple method of obtaining 

backtracking adaptive search models suggested in Section 4.6 yields much less accurate estimates. 

An alternative method using maximum likelihood estimation provides much better results, but this 

method has impractical computational requirements. 

Section 6 .3 addresses the issue of estimating parameters for use in the model from a finite number 

of observations of the optimisation algorithm. Several possible approaches are listed. The preferred 

method is to estimate parameters for the asymptotic averaged range process directly from observation 

of the optimisation algorithm and then to proceed to the backtracking adaptive search model. The 

asymptotic averaged range process is much simpler than the original process in the domain, or the 

range or averaged range processes; yet Theorem 3.4. 1 implies that its expected convergence time is 
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in many cases very close to that of the original algorithm. The technique illustrated in this section 

is a practical method for estimating convergence time for any optimisation algorithm, based on the 

analysis developed in this thesis of the approximation framework and backtracking adaptive search 

model. 

7 . 2  Further work 

The method of Section 4.6 is very simple; improvement in this step remains an important area for 

development. Aside from the error inherent in the prediction of parameters from a finite number 

of observations of a process, this step is the major source of error in the approximation framework. 

A maximum likelihood technique was much more successful in the examples of Sect.ion 6 .2 ,  but this 

method is too complex to be practicable. Other methods may be able to give improved performance 

within an efficient time frame. 

A second difficulty is encountered in Section 6 .3 ,  that the probabilities of transitions to optimal 

states must in general be estimated before such transitions have been observed. Evidently much 

uncertainty must inevitably surround such prediction. Future research may focus on restricted problem 

types for which such probabilities can be estimated with some accuracy. 

One remaining challenge is thus to improve the method used to approximate the asymptotic 

averaged range process with backtracking adaptive search. Another major area to be addressed is 

the prediction of parameters for model processes based only on the observation of a finite number of 

iterations of an algorithm, before it converges. Both of these areas to be addressed represent significant 

difficulties in applying the methodology to estimate convergence rates of optimisation algorithms. 

If these challenges can be answered, the prediction method put forward in this thesis stands to 

fill an important need. The complete strategy for analysis allows prediction of how long a particular 

stochastic global optimisation algorithm should be run to reach a set level. Quantitative measures 

of the effectiveness of stochastic global optimisation algorithms can then be made. A method for 

estimating the time required by an optimisation algorithm would be a valuable addition to the resources 

of optimisation practitioners. Information of this kind is also useful for tuning algorithms, for example 
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through tailoring search region to landscape. 
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Appendix A 
• 

Programs 

function [p, M, delta_O, t j  = Cbapter6(divisions) 

%>Tailor made for the current situation; it would be better if it was more flexible. Set divisions = 51 for x values pi/50 apart. 

%Checking 

%ITS GOT A SIMULATED ANNEALING PART 

[x y] = Grid2(O. pi. pi/(divisions - 1 » ;  %x is a column vector I .  2 • . . . •  divisions"2; y = f(x) 

%probability( J . 1 )  = 0; %probability of moving nowhere; his is updated for each state later 
%for xincrement = 1 :divisions 
% for yincreme:nt = O:xincrement - I 
% probability(xincrement + 1. yincrement + 1) = ?; %probability of going along xincrement and up yincrement < xincrement 
% end 
% probability(xincrement + 1 .  xincrement + I )  = ?; %probability of going along xincrement and up xincrement 
o/oend 

ouh = I ;  

number I = 1 ;  %row ofP. corresponding at this stage to x = 0 
for i 1 = I :divisions 

currentstate = [(il - 1 ) · pi/(divisions - I) 0]; %the first one is (x,y) = (0.0) 
for jl = 1 :divisions 

number2 = 1; %destination column ofP 
tic 
for i2 = I :divisions 

nextstate = [(i2 - I )  • pi/(divisions - I) 0]; 
for j2 = I :divisions 

if numberl -...= number2 
ify(number2) - y(numberl)  <= 0.00005 

weight = 1 ;  
else 

weight = 0.1 ; 
end 

transforrnedcurrentstate = currentstate; 

xincrement = nextstate(1) - currentstate( I ); 
ifxincrement < 0 %make all xincrements positive (this works based on symmetry) 

transforrnedcurrentstate(I ) ';  pi - currentstate(1 ); 
xincrement = -1 • xincrement; 

end 

yincrement = nextstate(2) - currentstate(2); 
ifyincrement < 0 %make all yincrements positive (this works based on symmetry) 
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transformedcurrentstate(2) = pi - currentstate(2); 
yincrement = -I • yincrement; 

end 

ifyincrernent > xincrement %make sure yincrement < xincrement (this works based on symmetry) 
temp = transformedcurrentstate(I); 
transformedcurrentstate( I )  = transformedcurrentstate(2); 
transformedcurrentstate(2) = temp; 
temp = yincrement; 
yincrement = xincrement; 
xincrement = temp; 

end 

% P(numberl , number2) = probability(xincrement + I, yincrement + I ); 

if yincrement = 0 
d = pi • (I + J/( divisions - I »; 

else 
xintercept = -I · pil(2 -(divisions - I»; 
yintercept = transforrnedcurrentstate(2) + (transformedcurrentstate(1 )  - pil(2 · (divisions - I ))) · 

yincrementlxincrement; 
ifyintercept < -I • pi/(2 • (divisions - I »  

yintercept = -I • pil(2 · (divisions - I »; 
xintercept = (-I • pi/(2 • (divisions - I » - yintercept) · xincrementlyincrement; 

end 

xend = pi · (1 + 1/(2 • (divisions - I ))); 
yend = yintercept + pi • (1 + 1 /(2 • (divisions - I ))) ·yincrementlxincrement; 
if yend > pi • (1 + 1/(2 • (divisions - I })) 

yend = pi • (I + 11(2 · (divisions - I ))); 
xend = (pi • (1 + 1 /(2 • (divisions - I ))) - yintercept) • xincrementlyincrement; 

end 

d = sqrt( xend - xintercept)"2 + (yend - yintercept),,2); 
end 
r = sqrt(xincrement"2 + yincrement"2); 
P(numberl , number2) = weight • (Pil(divisions - I »"2 /(Pi • r ·  d); %weight produces the simulated annealing part 

end 

nextstate(2) = nextstate(2) + pil( divisions - I ); 
number2 = number2 + I ;  

end 
end 
P(numberl , number I ) = I - sum(p(numberl ,  : » ; %P(here, here) = I - P(here, anywhere else) 
ifP(numberl , numberl ) < 0 

P(numberl ,  number I ) = 0; 
P(numberl , :) = P(numberl, :)Isum(P(numberl ,  :»; 

end 
currentstate(2) = currentstate(2) + pi/(divisions - I ); 
number I = numberl + I ;  

ifmod(numberl , I OO) = ° 
number I 

end 

t( ouh) = toe; 
ouh = ouh + I ;  

end 
end 

%P 

delta_O = ones(l ,  divisions"2)1divisions"2; %uniformly random 

[M, P, delta_O} = FindM(x,y, P, delta_O); %P and delta_O are now ordered and M has been created 

P(I , I )  = I ;  o/ornake it absorbing 
for i = 2:divisions"2 

P(I ,i) = 0; 
end 
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function Ix,y) = Grid2(minimum, maximum, fineness); 

%>Produces a colunm vector x corresponding to the states of a grid over a Cartesian Plane starting at minimum and going up to 
maximUin 
%in steps 
%of 
%fineness, and a corresponding vector y with values of f on the grid. 

%It would be better to have this function independent of 
%problem dimension, but I can't immediately see how to program that. 

%Set minimum and maximum to be vectors containing values for each dimension? 

%checked 

%Calls f.m 

number = I ;  
numberOfStates = ceil«maximum - minimum)lfineness) + I ;  
for i = 1 :numberOtstates 

state = [minimum + (i - I) • fineness minimum]; 
for j = 1 :numberOtstates 

x(number) = number; 
y(number) = {{state); 
state(2) = state(2) + fineness; 
number = number + I ;  

end 
end 

x = x'; 
y = y'; 

function [M, newP, newdeltB_OJ - FindM(x,y, P, delta_O); 
%>Takes a column vector of distinct x values and a corresponding vector ofy values, and outputs an ordered mapping matrix M 
%Transition matrix P and initial distribution delta_O are also sorted to move states into the proper order. 
%Objective function values are taken to be equal if they're within 0.00005 of each other. 

%checked 

%Should warn if x -> Y is not a function 
%Should check that states in x are distinct 

order = sortrows([x y], 2); 

total States = length(x); 
j = I ;  
oldlevel = order(1 ,2) - 1 ;  %initialised to some value less  than order(l ,2) 
for entry = I :tolalStates 

if order(entry, 2) - oldlevel > 0.00005 
oldlevel = orrer(entry, 2); 
for i = 1 :totalStates 

if 0 <= order(i,2) - order(entry, 2) 
if order(i,2) - order(entry, 2) <= 0.00005 

M(ij) = 1 ;  
else 

M(ij) = O; 
end 

end 
end 
j = j +  1 ;  

end 
end 

thismanylevels = j - I ;  

for i = I : total States 
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lempP(i,:) = P(order(i, 1 ), :); 
newdelta_O(i) = delta_O(order(i, l ) ; 

end 

for i = I :totalStates 
newP(:,i) = tempP(:,order(�l» ; 

end 

function result = f(x) 
%>This function is the one Eva uses (reference?). It takes a vector of cooroinates and returns a (row) vector offunction values. 

%Checked 

%resull = abs(x( 1 )  - x(2» ; 'Yoa check function 

for i = I :Iengfu(x(:, I »  
product = I ;  
product2 = I ;  
for j = I :Jengfu(x(J,:» 

product = product • sin(x(i, j» ; 
product2 = product2 • sin(S • xli, j» ; 

end 

resull(i) = -2.5 • product - product2; 
end 

%>Returns the ARP transition matrix after n iterations for a domain Markov transition matrix P with initial domain distribution 
o/odelta ° 
%and mapping matrix M. Matrix P should have a single absorbing state and all other states should be transient. States 
corresponding 
%to the same level should be congruent in P .  

%Waming! Eventually the prooability of  being in  a transient state i s  so small, i t  gets confused with 0 .  Then the weightings go 
wrong 
%and the answer is incorrect when n is too large. 

%checked 
%There should be a function which orders P and M so the user doesn't have to. 
%It should be able to tell when probabilities of being in a state are so small that error is introduced, and stop if that happens. 

P; 
M; 
delta_O; 
n; 

a = length(P); 
m = length(M(I , :» ; 

if P _ nminusone = ° 
P_n = P"n; 

else 
P _n = P • P _nminusone; 

end 
delta_n = delta_O • P _n; 

b = ones(I ,  a) • M; 'Yob contains the number of domain levels with each range level 
c =  I ;  
for i =  I :m 

total = sum(delta_n(c:c + b(i) • I»; 
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for j = I :b{i); 
if total > ° 

gamma_nee) = delta_n(e) I total; 
else 

gamma_nee) = 0; 
end 
e = e +  I ;  

end 
end 

R_n = M' · diag(gamma_n) · p . M; 

function [expectedConvergenceTime, R, v, b, w, rbo, AARPexpectedConvergenceTimeDelta, 
BASexpectedConvergenceTimeinit) = Approximateinit(P, M, delta_O) 

Appendix. Programs 

%>Finds BAS with arbitrary initial distribution approximation to a Markov Chain with tranition matrix P, initial distribution 
delta_O 
%and mapping matrix M. Matrix P 
%should have a single 
%absorbing 
%state and all other states should be transient. States corresponding 
%to the same level should be congruent in P. 

%There should be a function which orders P and M so the user doesn't have to. 

%checked 

%Calls Expected.m, ARPinfm, AARPtoBAS.m and BAS.m and BASinit2.m 

expectedConvergenceTime = Expected(p,delta_ 0) 

%R = ARPinf(p,M,delta_O); %this is awful and the line below should be used. 
[R v period) = AARPmatrix(P,M,delta_O); 
[b w rho) = AARPtoBAS(R, P, M, v, period); 
%rho 
AARPexpeetedConvergenceTimeDelta = Expected(R, delta_O · M) 
AARPexpectedConvergenceTimeRho = Expected(R,rho) %hopefully bigger than BASexpectedConvergenceTime, since then the 
BAS approximation 
%gives an upper bound to the AARP convergence time. To work this out takes as long as working 
BASexpectedConvergeneeTime out without 
%using the results of the FBAS paper 
BASexpectedConvergenceTime = BAS(b, w, rho, 0) 
BASexpectedConvergeneeTimeinit = BASinit2(b, w, rho, delta_ ° • M, 0) 
AndTheErrorls = expectedConvergenceTime - BASexpectedConvergenceTimeinit 
RelativeError = AndTheErrorlslexpectedConvergenceTime 

function mean = Expected(p, delta_O) 

%>Retums the expected number of iterations before absorption to the first state for a Markov chain with transition matrix P and 
%initial distribution 
%delta 0, 
%including the absorbing step 

%checked 
%Should check all states except the first are transient 
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a = length(P); 
mean ; delta_0(2:a) • inv(eye(a - I )  - P(2:a, 2 :a» • ones(a - I ,  I )  + I ;  

function (R. v .  period) = AARPmatrix(p. M. delta _0); 
o/o>Finds l imiting weigbtings amongst transient states (after k period iterations) v and AARPmatrix R for an algorithm with 
transition 
%matrix P whose transient component has period period, objective function mapping matrix M and initial 
%probability distribution delta_O, according to the method in AARP2.tex. P should have one absorbing state fiISt and the rest 
should 
%be transient. 

%checked 

P; 
ell = length(p); 
k = length(M(I,:» ; 

period = Periodfinder(p); 

[W D] = eig(p"period.'); %D is eigenvaJues ofP"period. This failed for P = [I 0 0  0; I 0 0  0; ° 0.1  0 0.9; ° ° I 0] 
W = W.'; %W is left eigenvectors of P"period 
top = D(2,2); 
rows = 0; 
for i = 2:ell 

if I > abs(D(i,i» & abs(D(i,i» > top 
top = abs(D(i,i» ; 
rows = 0; 

end 
ifD(i,i) = top 

rows = [IOWS i]; 
end 

end %period eigenvectors sharing second largest eigenvalue top occupy rows ofW lilted in rows 

a = delta_O • inv(W); %decomposition of delta_O onto eigenvectors 
v = zeros(I,ell - I); 
for i = I :length(rows) 

v = v + a(rows(i» • W(rows(i),2:ell� 
end 
v = real(v/sum(v» ; 

%the next bit was coded twice 
beta = zeros(period, ell); 
for i. = O:period - I 

beta(i+I ,  :) ; [I v • (p(2:ell, 2:ell»)"i]; 
end %beta(i,:) is beta_{kd+a-I } ,  with a I in front 

m = sum(M); %mO) states have the ith level 
n =  I ;  
betay = beta • M; 
for i = I :k %for each level 

for j = I :m(i) %for each state at that level 
gamma(n} = 0; 
total = 0; 
for p = I :period 

if betay(p,i) > ° 
gamma(n) = gamma(n) + beta(p,n)'betay(p,i); 
total = total + I ;  

end 
end %garnma{kd+a-I }(n) is defined for total/period iteration numbers 
gamma(n) = garnma(n)/total; 
n = n +  I ;  

end 
end 

%1 coded this twice, by mistake; if the above doesn't work, try the below: 
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%beta_kdplusa = l imit; 
%gamma = zeros(J ,ell); 
%gamma{ l )  = I ;  
%total = zeros( l ,ell); %total number of subclasses for which P(Y _n = f(xj» > 0 
%for a = O:period - I 
% k = 2; 
% for i = 2:length(m) %for each level 
% weightAtLevel = [0 beta_kdplusa) * M(:,i); 
% if weightAtLevel > 0 
% for j = I :m(i) %for each state at that level 
% gamma(k) = gamma(k) + beta _kdplusa(k - J )/ weightAtLevel; 
% total(k) = total(k) + I ;  

% k = k + J ; 
% end 
% end 
% end 
% beta_kdplusa = beta_kdplusa • P(2:ell,2:ell); 
o/oend 

' 

%for i = 2:ell 
% gamma(i) = gamma(i)ltotal(i); 
%end 
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R = real(M" diag(gamma) · p .  M); %numerical error sometimes introduces a tiny fraction of imaginary number to entries ofR 

function period = Periodfinder(p); 

%>Finds period of transient component of transition matrix P. P should have one absorbing state first and the rest should 
%be transient 

%I'm changing its name to Periodfmder 

%checked 

P; 
ell = length(p); 

available = ones(l ,ell); %not put into tree yet 
groups = zeros(ell,ell); %groups(I,:) is a list of all levels of the tree into which state i fits 
for i = 2:ell 

if i = 2  
current = 2; 
groups(2, 1 )  = ); %assign state 2 to group ) 
available(2) = 0; %state 2 is being used in tree 

else 
for j = 3:ell 

if groupsG, I) • availableQ) > 0 %if state j is in tree but has no branches from it 
current = j; 
availableG) = 0; %state j is being used in tree 
break 

end 
end 

end 

for j = 2:ell 
i f  P( currentj) > 0 %if transition is possible then add branch from state current to state j in tree 

for k  = I :ell 
. 

if groupsG, k) = 0 
grouPSG, k) = groups( current, I) + I ;  %adding the branch 
break 

elseif groupsG, k) = groups(current, I )  + I 
break %branch is already there 

end 
end 

end 
end 

end 
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period = groups(2,2) - J ;  %this is one possible number of steps in which state 2 can transitiQn to itself 
for i = 2:eU 

forj = 2:ell 
if groups(ij) > 0 

period = gcd(period, abs(groups(ij) - groups(i,l » ); %greatest common factor of current period value and a possible 
number 

else %of steps in which state i transitions to itself 
break 

end 
end 

end 

function Ib, w, rbo) = AARPtoBAS(R, P, M, v, period); 

%>Takes AARP transition matrix R (as output from ARPinf.m) and outputs BAS parameters using FindIho.m. 

'V.checked 

%Calls FindRho.m, BASmatrix.m 

R; 
m = length(R); 
for i =  I :m 

wCi) = 1 - sum(R(i, J :i» ; 
b(i) = 1 - R(i, i) - wCi); 

end 

%tic 
rho = Simplerho(R, P, M, v, period);O/OMLErho2(R);O/OMLETho(R);O/OFindRho(R);% 
%toc 
%B = BASmatrix(rho, b, w); 

function rbo - SimpJerbo(R, P, M, v, period) 

ell = lengthcP); 
Q = P(2:ell, 2:ell); 

betabar = :zeros(l ,  ell - I ); 
for a = O:period - 1 

addon = v • Q"a; 
betabar = betabar + addon/(period • sum(addon» ; 

end 

R = R - diag(diag(R»; 
rho = [0 betabar) • M • R; 
%sum(rho) 
rho = rho/sum(rho); 

function hestrbo = MLErho2(W) %my attempt at programming MLErho, NOW with MultiStan! 

m = sizeCW, J ); 

ifm = 3  
rho = W(3,:); 
rho(3) = (Tho(l )  + rho(2»)/2; 
bestrho = rholsum(rho); 
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return 
end 

rho = surn(W(2:m,:» ; 
for i = 2:m 

rhozeros(i) = rho(i) - W(i,i); 
end 

rhozeros( l )  = rho(1 ); 
rho = rhozeros/sum(rhozeros); 
bestrho = rho; 

%retum 
%rho = [0.307 1 0.2468 0.0759 0.3702J 

loglikelihood = L(W,rho) %not the actual loglikelihood, hit a scaled version of it 
maxLLL = loglikelihood; 
iteration = 0; 

MS = I ; 
for ii = I :MS 

num_steps = 0; 
while (num_steps = 0) I (sum(abs(delta» > 0.000001 )  

num steps 
% Firstly determine 'd' & 'E', vector & array of first & second derivatives 
% of the log-likelihood with respect to the elements of rho: 

p = cumsum(rho); 
d = zeros(1 ,  m); %unnecessary? 
E = zeros(m); 

for a =  I :m 
ifa < m  

for i = a + I :m 
c(i) = W(i,a)/rho(a) - sum(W(i, l :i - I »)/p(i - I ); 

end 
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if a = I %this kind of conditional statement is because otherwise infinity - infinity type errors occur 
d(1 ) = surn(c(3:m» ; 

else 
d(a) = sum(c(a + I :m» ; 

end 
end 
ifa > 2  

for i = 2:a - I 
f(i) = W(i,a)/rho(a) - sum(W(i,i + I :m» /(I - p(i»; 

end 
ifa = m 

d(m) = surn(f(2:m - 2» ; 
else 

d(a) = d(a) + surn(f{2:a - I » ; 
end 

end 

ifa < m  
for i = a + I :m 

rei) = sum(W(i, I :i - I »)/(P(i - 1»"2 - W(i,a)/(rho(a»"2; 
end 
ifa = 1  

E(I , I )  = sum(r(3:m» ; 
else 

E(a,a) = sum(r(a + I :m» ; 
end 

end 
ifa > 2  

for i  = 2:a - 1 
q(i) = sum(W(i,i + I :m» /(I - p(i»"2 - W(i,a)/(rho(a»"2; 

end 
ifa = m  
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E(m,m) = sum(q(2:m - 2» ; 
else 

. E(a,a) = E(a,a) + sum(q(2 :a - I » ; 
end 

end 

ifa < m  
for b = a +  \ :m 

ifb < m  
for i = b +  I :m 

g(i) = sum(W(i,l :i - 1 »)/(P(i - 1 »)"2; 
end 
E(a,b) = sum(g(b + \ :m» ; 

end 
ifa > 2  

for i = 2:a - \ 
h(i) = sum(W(i,i + I :m»)/(1 - P(i))"2; 

end 
E(a,b) = E(a,b) + sum(h(2:a - 1 » ;  

end 
E(b,a) = E(a,b); 

end 
end 

end 
d; 
E; 
sumE = sum(sum(E» ; 
if sumE > 0 

% fprint/{l , 'oops! sum(sum(E» > 0'); 
end 

% Einv = inv(E); 

% delta = «d'Einv*ones(m» /(sum(sum(Einv» ) - d)*Einv; 
Einvones = E\ones(m,J ); 

delta = (sum({d'Einvones)/(sum(Einvones» ) - d)/E; 

% Now increment rho & loop: 
rho = rho + delta; 

rho = reaJ(rho); %the real part of rho - unnecessary, I think 
rho = rho + (abs(rho) - rho)/2; %make rho non-negative 
minrho = max(rho); 
for i = \ :m 

if 0 < rho(i) & rho(i) < minrho 
minrho = rho(i); %this was only a quick fix - when pi_m > 0 the other pU (except pU ) are allowed to be O. 

end 
end 

for i = I :m 
ifrho(i) = 0 

rho(i) = minrho; %this was only a quick fIX - when pi_m > 0 the other pU (except pU) are allowed to be O. 
end 

end 

spectrum = eig(E); 

rho = rho/sum(rho); 
oldLll(num_steps + I) = loglikelihood; 
loglikelihood =L(W,rho); %not the actual loglikelihood, rut a scaled version of it 

num_steps = num_steps + I ;  
if num_steps = 340 

delta = 0; 
end 
if num_steps > 1 0999999999999 & oldLLL(J )  > loglikelihood 

delta = 0; 
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end 
end 
fprintf( l ,  'The search used %d steps.\n', num_steps); 

rho; 
oldLLL; 

loglikelihood 
if loglikelihood < -1 . 1 925 
% fjlfintf( l ,  'oops! ditTerent rho'); 
end 

if loglikelihood >maxLLL 
fprintf(l ,  'Hurrah\n'); 
bestrho = rho; 
maxLLL = loglikelihood; 
iteration = ii; 

end 

rho = rand(l ,  m); 
for i  = I :m 

if rhozeros(i) = 0 
rho(i) = 0; 

end 
end 
rho = rholsum(rho); 
loglikelihood =L(W, rho); 
oldLLL = 0; 

end 

fprintf{l ,  'Maximum likelihood of%ffound at iteration %d for rho as below', maxLLL, iteration); 

function expected = BAS(b, w, rho, vector); 

Appendix. Programs 

o/o>Ca1culates expected number of iterations until convergence for BAS with parameters b, w and rho, including the absorbing 
step, using 
%the FBAS corollary. It seemed useful at the time to allow calculation of the entire expected vector; set vector = I if you want it 
to 
%do that. Anything calling this probably won't specifY the vector parameter, since I only just did that part. 

%A big problem is that it should take into account the initial vector, which is known. That would improve accuracy lots. 

%checked 

m = length(rho); 

p_i(I) = rho(I ); 
for i  = 2:m 

p_i(i) = p_i(i - I) + rho(i); 
end 

for i = 2:m - 1  
a(i) = p_i(i) ' (rho(i) • w(i) + (I - p_i(i)) ' (b(i) + w(i» ); 
c(i) = p_i(i) • b(i) + p)(i - I ) '  w(i); 
if (I - p)(i» ·  c(i) = 0 

(I - p_i(i» • c(i); 
end 
dei) = a(i)/«( I  - pj(i) ' c(i»; 
e(i) = IId(i); 

end 

for i = 2:m - 1  
f{i) = rho(i)/c(i) • prod(e(i:m - 1 » ; 

end 

ifm > 2  
if vector = I 

top = m - 2; 
else 
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top = I ;  
end 

else 
top = 0; 

end 

for i = ]  :top 
mu(i) = prod(d(i + I :m - I » ' (rho(m)lb(m) + sum(/{i + I :m - I» ) + I ;  %J got a divide by zero problem here once 

end 

if m >  I 
muCm - J )  = rho(m)Jb(m) + I ;  

end 
muCm) = J ;  

i f  vector = I 
expected = mu; 

else 
expected = mu(l); 

end 

function expected = BASinit2(b, w, rho, pi_O, vector); 

%>Calculates expected number of iterations until convergence for BAS with parameters b, w and rho and initial distribution 
pLO, 
%including the absorbing step, using 
%the FBAS with arbitrary initial distribution coroll3l)'. It seemed useful at the time to allow calculation of the entire expected 
%vector; set vector = I if you want it to 
%do that. 
%checked 

%caJls BAS.m 

pi_O; 
rho; 
b; 
W; 

m = length(rho); 

p _i(J ) = rho(l ); 
PhU(J )  = pi_O{l ); 
for i  = 2:m 

p_i(i) = p_i(i - I) + rho(i); 
PhUCi) = PhU(i - I )  + pLO(i); 

end 

mu(m) = I ;  
for i = 2:m 

top = m + 2 - i; %top is greatest y such that E[NCy-l )  - N(y)IY _N(y) = y] is defined = y' - ] 
if rho (top) > ° %then E[N(y-] )  - N(y)IY _NCy) = y] is defined, unless w(top) = ° (which it inevitably will) 

ifw(top) = 0  %in which case E[N(y-J )  - N(Y)IY_NCy)=y) will be defined for y = top-J and mu(top-I )  can be calculated 
directly 

mu(top - I )  = mu(top) + pi_O(top)lb(top) + (J - PhU(top» '  rho(top)lb(top); 
top = top - I ;  

end 
break 

else %try another top and calculate mu(top) directly 
if top < m  

mu(top) = mu(top + I )  + pi_O(top + I Yb(top + I ); 
end 

end 
end 

nolnitExpected = BAS(b, w, rho, ] ); %E[NCy- I )] + I where phi = pi 
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for i = 2:top 
j = top + 2 - i; 
mu(j - I) = mu(j) + (pi_ O(j) • p_i(j) + rho(j) • (I  - PhU(j))) * (w(j) • (noInitExpected(j - I) - I) + I - p_i(j» /(p_i(j) • (rho(j) * 

w(j) + (I - p_i(j)) · (beD + w(j» » ;  
end 
mu; 
if vector = I 

expected = mu; 
else 

expected = mu(1 ); 
end 

function (R, v, b, w, rho, AARPexpectedConvergenceTimeDelta, BASexpectedConvergenceTimeinit] = 
EstimateViaAARPHaR4(dimension, n, size, target) 

%Different extrapolation method 

for i = I :dimension 
point(i) = rand(I ); 

end 
point = pi • point; 

value = f(point); 
values = value; 

for i = I :n 
[point, value] = steplliaR(point, value); 
vaJues(i + I )  = value; 

end 

plot(values) 

sortValues = sort(values); 
distinct = sortValues(I); 
for i = 2:n + I 

if sortValues(i) > sortValues(i - I) 
distinct = [distinct sortValues(i)]; 

end 
end 
plot(distinct) 

numberOfBetters = length(distinct); 
for i = 1 :Iength(distinct) 

if target < distinct(i) 
numberOfBetters = i - I ; 
break 

end 
end 

cutoml) = target; 
ifnumberOfBetters > 0 

distinct = distinct(numberOfBetters + 1 :Iength(distinct» ; 
end 

for i = I :size - 2 
cutomi + I) = distinct(Ooor(i • length(distincty(size - I» + I); 

% cutoff(i + I) = sortValues(l )  + i ·  (sortValues(n + I )  - sortVaJues(I)y(size · I ); 
end 
%BUT WHAT IF IT DOES SAMPLE THE OPTIMUM? THEN THERE'S NO EXTRAPOLATION REQlnRED 
%I've more or less allowed for this 

R = zeros(size); 
visited = 0; 
for j = I :size • I 
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if values( I) < cutoff(j) 
visited = 1 ;  
break 

end 
end 
if visited = I 

to = j; 
else 

to = size; 
end 

for i = 2:n + I 
from = to; 
visited = 0; 
for j = l :size - I 

if values(i) < cutoff(j) 
visited = I ;  
break 

end 
end 
if visited = I 

to = j; 
else 

to = size; 
end 
R(from, to) = R(from, to) + I ;  

end 

go = O; 
for j = 2: 1ength(R) 

if sum(R(j,1 :j- I »  + sum(R(jj+1 :size» = 0; 
go == I ;  %wait until there's enough data to estimate all of b am w 
break 

end 
end 

while go = I 
[point, value] == stepll-laR(point, value); 

values(length(values) + I )  = value; 
sortValues = sort(values); 
if value < target 

numberOfBetters = numberOfBetters + I ;  
end 

from = to; 
visited = 0; 
for j = I :size - I 

ifvalue < cutoffU) 
visited == I ;  
break 

end 
end 
if visited = I 

to = j; 
else 

to = size; 
end 
R(from, to) = R(from, to) + I ;  

n = n +  1 ;  

go = O; 

end 

for j = 2:length(R) 
if sum(R(j, 1 :j- l »  + sum(R(jj+ I :size» = 0; 

go = 1 ;  %wait until there's enough data to estimate all of b and w 
break 

end 
end 

R(I ,:) = [1 zeros(J ,  size - I )]; 
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v = sum(R(:,2:size» ; 
v = v/sum(v); 

for i = 2:length(R) 
R(i,:) = R(i,:) / sum(R(i,:» ; 

end 

[b w rho) = AARPtoBAS(R, R, eye(size), v, Periodfmder(R)); %rho estimate no good here 

v2 = sum(R); 

fit = zeros(1 ,size); 
if numberOfBetters = 0 

x = (sortValues(1 )  + cutotT(2» /2; 
rho(2) = v2(2)/(cutotT(2) - sortValues(l » ; 
for i = 2:size - 2 

xCi) = (cutotT(i) + cutotT(i + 1 )Y2; 
rho(i + I) = v2(i + I )I( cutofl{i + I )  - cutotT(i)); 

end 
x(size - I )  = (cutotT(size - 1) +  sortValues(n + 1 » /2; 
rho(size) = v2(size)/(sortValues(n + I )  - cutofl{size - I » ; 

rho = rho/sum(rho); 
plot(x, rho(2:size» 
rho = [0 log(rho(2:size» ); 
plot(x, rho(2:size» 

order = 3; 
p = polyfit(x, rho(2:size), order); 
for i = I :size - I 

for j = O:order 
fit(i + I )  = fit(i + I )  + (x(i»"j • p( order + I - j); 

end 
end 
for j = O:order 

fit(l )  = fit( I )  + target"j · p(order + 1 -j); 
end 
rho(l )  = fit(I ); 

%rho(1 )  = rho(I)/1  0; 
% total = sum(rho); 
% fit = fit/total; 
% rho = rho/sum(rho); 

x = [target x); 
plot(x,[rho; fit]') 

rho = exp(rho); 
fit = exp( fit); 

total = sum(rho); 
fit = fitltotal; 
rho = rho/sum(rho); 

plot(x,[rho; fit]') 

AARPexpectedConvergenceTimeDelta = 0; 
else 

AARPexpectedConvergenceTimeDelta = Expected(R, rho) 
end 

BASexpectedConvergenceTimeinit = BASinit2(b, w, rho, rho, 0); 
%AndTheErrorIs = expectedConvergenceTime - BASexpectedConvergenceTimeinit 
%RelativeError = AndTheErrorIslexpectedConvergenceTime 

Appendix. Programs 
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function [newpoint, newvalue) = StepmaR(point, value) 

%Simulates a transition from point according to Hit and Run and accepts it ifit improves or with probability 0.1 if it doesn't It's 
%set up specifically for points in at least two dimensions with each coordinate between 0 and pi. 

%x = rand( l )  • pi; 
%y = rand(I ) · pi; 

%checked 

dimension = length(point); 

angle = pi • rand(l); 
direction(J )  = sin(angle); 
direction(dimension) = cos(angle); 
for i = 2:dimension - I 

previousAngle = angle; 
angle = pi • rand( I); 
direction(i) = direction(i - I) • sin(angleYtan(previousAngle); 
direction(dimension) = direction(dimension) • cos(angle); 

end 

%check = direction • direction'; 

while( J )  
distance = sqrt(dimension) · pi · (2 · rand(J )  - I ); 
newpoint '" point + distance • direction; 
if min(newpoint) >= 0 

if max(newpoint) <= pi 
break 

end 
end 

end 
newvalue = f(newpoint); 
if newvalue > value 

randomnumber = rand(1 ); 
if randornnumber >= 0. 1  

newpoint = point; 
newvalue '" value; 

end 
end 
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