
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

CONVERGENCE RATES OF STOCHASTIC GLOBAL OPTIMISATION ALGORITHMS WITH
BACKTRACKING

A thesis presented in partial
fulfilment of the requirements

for the degree
of Doctor of Philosophy

in Statistics at
Massey University

D. L. J. Alexander
October 18, 2004

Abstract

A useful measure of quality of a global optimisation algorithm such as simulated annealing is the

length of time it must be run to reach a global optimum within a certain accuracy. Such a performance

measure assists in choosing and tuning algorithms. This thesis proposes an approach to obtaining such

a measure through successive approximation of a generic stochastic global optimisation algorithm with

a sequence of stochastic processes culminating in backtracking adaptive search.

The overall approach is to approximate the progress of an optimisation algorithm with that of a

model process, backtracking adaptive search. The known convergence rate of the model then provides

an estimator of the unknown convergence rate of the original algorithm. Parameters specifying this

model are chosen based on observation of the optimisation algorithm.

The optimisation algorithm may first be approximated with a time-inhomogeneous Markovian

process defined on the problem range. The distribution of the number of iterations to convergence for

this averaged range process is shown to be identical with that of the original process. This process

is itself approximated by a time-homogeneous Markov process in the range, the asymptotic averaged

range process. This approximation is defined for all Markovian optimisation algorithms and a weak

condition under which its convergence time closely matches that of the original algorithm is developed.

The asymptotic averaged range process is of the same form as backtracking adaptive search, the final

stage of approximation.

Backtracking adaptive search is an optimisation algorithm which generalises pure adaptive search

and hesitant adaptive search. In this thesis the distribution of the number of iterations for which

the algorithm runs in order to reach a sufficiently extreme objective function level is derived. Several

examples of backtracking adaptive search on finite problems are also presented, including special cases

that have received attention in the literature.

Computational results of the entire approximation framework are reported for several examples .

The method can be applied to any optimisation algorithm to obtain an estimate of the time required

to obtain solutions of a certain quality. Directions for further work in order to improve the accuracy

of such estimates are also indicated.

II

01 MasseyUniversity

This statement confirms that David Alexander has pursued the Doctoral
course in accordance with the University's Doctoral regulations.

Supervisor signed:

Date: 16 Dec. 03

Te Kunenga ki Purehuroa

Wellington Campus
Private Box 756
Wellington

New Zealand

Telephone: 64 4801 5799
Facsimile: 64 4801 2692

Inception to Infinity: Massey University's commitment to learning as a life-long journey

o Massey University
COLLEGE OF SCIENCES

Supervisory assistance has been received during the Doctoral
research from Dr David Bulger of Massey University and
Professor Graham Wood of Macquarie University, Australia. I
have also collaborated with Professor Zelda Zabinsky of the
University of Washington, United States of America and Dr Bill
Baritompa of the University of Canterbury. In particular,
Subsections 5.3.1, 5.3.2, 5.3.4 and 5.3.5 contain material on
which I have collaborated but of which I am not the principal
author. These results also appear in [9, 49]. Other results have
also been published in [1, 48]. I have received financial support
from a Bright Future Scholarship administered by the
Foundation of Research, Science and Technology and the
Marsden Fund administered by the Royal Society of New
Zealand.

The thesis material has not been used for any other degree or diploma.

Doctoral Candidate Signed:

Date:

Te Kunenga ki Purehuroa

Institute of Information
Sciences & Technology
Private Bag 11 222.
Palmerston North.

New Zealand

Telephone: 64 6 350 5799
Facsimile: 64 6 350 5723

Integrated Research and

Teac hing in the Fields of:

iii

Statistics & Applied Statistics

Computer Science &
Information Systems

Information & Electronic

Engineering

Inception to Infinity: Massey University's commitment to learning as a life-long journey

lV

(IJ MasseyUniversity

Facsimile: 64 4 801 2692

This statement verifies the following:

i. Reference to work other than that of the candidate has been
appropriately acknowledged,

ii. Research practice, ethical and genetic technology policies have
been complied with as appropriate, and

iii. The thesis does not exceed 100,000 words.

Doctoral Candidate signed:

Supervisor signed: »]jJ �

Date:

Te Kunenga ki Purehuroa
Inception to Infinity:. Massey University's commiunent to learning as a life-long journey

Contents

1 Introduction

1.1

1.2

1.3

1.4

Pre face

Stochastic g lobal optimisation .

The approach .

Thesis o utline .

2 A framework of processes by which backtracking adaptive search approximates a

stochastic global optimisation algorithm

2.1 Introd uction

2.2 Appro ximating a stochastic global optimisation algorithm

2.3 S ummary .

3 The range, averaged range and asymptotic averaged range processes

3.1 Introd uction . .

3.2 The n umber o f iterations be fore con vergence for the averaged range process

3.3 E xistence o f the asymptotic averaged range process .

3.4 Con vergence time o f AA RP

3.5 S ummary

4 Backtracking adaptive search

4.1

4.2

Introd uction

Defining bac ktrac king adapti ve search

v

1

1

2

12

13

17

17

20

32

33

33

34

38

58

64

65

65

66

VI

4.3 Expected search duration .

4.4 Expected search duration for an algorithm with arbitrary initial distribution .

4.5 Examples .

68

72

76

4.6 Approximating the asymptotic averaged range process with backtracking adaptive search 83

4 .7 Summary . 85

5 The distribution of the number of iterations to convergence for backtracking adap-

tive search

5 .1

5 .2

5 .3

5 .4

Introduction .

A general definition of backtracking adaptive search

Factorial moment generating functions for distributions of hitting times

Summary . .

6 Computational Results

6 .1

6 .2

Introduction

Approximating two stochastic global optimisation algorithms

6.3 Implementation considerations

6.4 Summary

7 Conclusion

7.1 Summary of thesis

7.2 Further work . . .

Bibliography

A Programs

86

86

87

89

103

104

104

105

ll5

123

126

126

129

131

136

1

Chapter 1

Introduction

1 . 1 Preface

Stochastic global optimisation algorithms are widely used to solve optimisation problems that are

currently beyond the reach of other solution methods. The theory, however, has long lagged behind

the practice in this field; methods are often used without any rigorous justification beyond the growing

empirical evidence that they work better than their alternatives in many situations. The aim in this

thesis is to take some first steps down one possible path towards providing a theoretical basis for the

use of these algorithms.

The issue at stake is one of processing time. Deterministic algorithms exist that are capable

of solving any feasible finite optimisation problem (optimising an objective function over a domain

of possible decision variable values)-by enumeration of all possible solutions, if necessary, or in

many cases by more sophisticated approaches. All finite optimisation problems can thus be solved

by a deterministic algorithm in finite time. Where such a deterministic method can be used in a

reasonable time frame, it is always to be preferred, since there is a guarantee of finding the optimum.

Stochastic global optimisation algorithms remain in use because there are many cases where no such

fast deterministic algorithms are applicable. In these cases the deterministic methods are inadequate

to the task; the time taken for these methods to converge to the global optimum is greater than the

time practically available. (An algorithm "converges" when a sufficiently good solution to the problem

2 Chapter 1 . Introduction

is found.)

A note on the application of optimisation algorithms to infinite domains is necessary. In general

optimisation on an infinite domain can be arbitrarily difficult; consider maximising the objective

function

{ 1 x = x*
x = 0: otherwise

where x* is unknown. No algorithm, deterministic or stochastic , could have a finite mean convergence

time applied to this problem. When a condition such as the Lipschitz condition holds, however, it is

possible for various methods to find a solution to a continuous problem that is optimal to within any

specified accuracy. (In practice, the representation of any optimisation problem within a computer is

discrete, due to finite machine precision, so that bounded domains are effectively finite in any case.

It is possible to make a discrete approximation of any accuracy (within machine precision) to any

continuous problem, simply by rounding values; again, a condition such as the Lipschitz condition is

required for the error introduced by such an approximation to be bounded.)

The following section provides a broad discussion of stochastic global optimisation, describing

some of the general ideas behind several algorithms and outlining some of the work in this field.

Subsections 1 .2 . 1 and 1 .2 .2 respectively describe practical and theoretical algorithms. Section 1 .3

broadly summarises the approach taken in this thesis towards analysis of the convergence times of

stochastic global optimisation algorithms. Section 1 .4 then outlines the content of each of the chapters

in the thesis.

1.2 Stochastic global optimisation

This section introduces the concepts involved in various stochastic global optimisation algorithms

that have been studied. The present focus is on convergence times of these algorithms. The practical

algorithms presented below are currently without any theoretical guarantee of the quality of solution

that can be obtained in general within a reasonable time frame; on the other hand, the family of

theoretical algorithms subsequently described has currently no practicable implementation.

In global optimisation, the function to be optimised may have in general many local optima but

1 . 2. Stochastic global optimisation 3

fewer global optima. A local optimum is a solution superior to any other solution in its immediate

neighbourhood; global optima are solutions that are not bettered by any other solution in the entire

problem domain. (Note that the term "solution" is applied to any domain point, not only to optimal

solutions.) Successful optimisation methods are required to find not only local optima but also global

optima. It is this characteristic of global optirnisation that makes it difficult enough to demand its

own toolbox of stochastic optimisation algorithms.

Any algorithm where the probability of transition between any feasible solutions in a finite number

of iterations is bounded away from zero will visit a global optimum of a finite problem in finite time

with probability one. (The required bound could be achieved by drawing solutions at random at

regular (or irregular) intervals.) A useful algorithm is one that is likely to visit the optimum in a short

amount of time. Expected convergence times of the practical algorithms mentioned here are difficult

to obtain, however. Bounds on their value generally exceed practical time limits, so that they provide

no useful guide for implementation of the algorithm.

1 . 2 . 1 Practical stochastic global optimisation algorithms

This subsection describes several practical approaches to stochastic global optimisation, with particular

reference to the results concerning convergence rates of these algorithms.

Pure random search [8, 14, 15] is the simplest stochastic global optimisation algorithm. At

each iteration a new solution is chosen according to some distribution on the domain. The expected

number of iterations before entering a target area containing the global optima is simply the reciprocal

of the weight placed by the search distribution on the target area.

This method can be seen as a base algorithm against which other algorithms should be compared.

The aim of each other algorithm is to use information gained about the problem to select successive

iterates in a more "intelligent" way than does pure random search, where the first iteration is as likely

to attain any objective function level as any other.

Note that the algorithm will move away from global optima after they are sampled. The achieve­

ment of the algorithm after any period of time is therefore not necessarily the current solution, but

the best solution found during the progress of the algorithm, which is stored independently of the

4 Chapter 1 . Introduction

current state of the algorithm. This characteristic applies to many of the algorithms considered in

this section.

The multistart algorithm [7, 41] uses a deterministic local search method capable of finding local

optima. This local search method is applied from multiple starting points, selected in some way from

the domain such that there is a positive probability of sampling any domain point. If enough starting

points are selected, one of them will eventually be "near" the global optimum. The local optimum

found at this stage will then be the global optimum.

This method, in its simplest form, has the same convergence properties as pure random search,

where an iteration consists of choosing a starting point and applying the local search method to it.

The "target area" is now the set of all points in the domain from which the local search method will

converge to a global optimum. The size of this target area is in general unknown. The time required

by the algorithm is therefore difficult to predict .

The multistart method described above combines two basic ideas. Firstly, the use of the local

search method can be viewed as effectively replacing the objective function value at each point in

the domain by the objective function level obtained by a local search initiated from that point. The

best solution found is then the local optimum yielding the best objective function value observed

during the progress of the algorithm. Secondly, repeating the process from various initial solutions

ensures that (as for pure random search) the global optimum will eventually be found. Either of these

strategies may obviously be used in conjunction with any global optimisation algorithm. Results

obtained by combining them with the Metropolis algorithm, described following, are reported in [32] .

Computational results are reported to be good for smaller problems but increasingly poor for larger

problems. The required convergence time remains difficult to predict.

The Metropolis algorithm [35] is based on an analogy with the energy level of a system of

particles in a fluid. A result from statistical mechanics gives that the possible configurations of

particles in such a system at temperature () have a Boltzmann distribution with probability density

function proportional to e-E/(ltB(}), where E is a variable denoting the energy level resulting from each

possible configuration of particles in the system and /'i,B is the Boltzmann constant .

The Metropolis algorithm commences by choosing an initial solution to the problem. A new

1 . 2. Stochastic global optimisation 5

candidate solution is then generated, based possibly on the current solution. This candidate solution

is accepted as the new current solution for the algorithm whenever the change in objective function

value from the current solution to the new candidate solution b.E is non-positive (in a minimisation

context) or with probability e-l:;.E/(K,B()) otherwise, for some (). It can be shown that the distribution

of objective function values generated by this algorithm tends to the Boltzmann distribution.

If the "temperature" () = 0, no worsening of objective function values is allowed. In this case

the algorithm is likely to reach only a local optimum, from which it is unable to escape. As the

temperature tends to infinity, the probability of accepting worsening moves increases and the limiting

probability of occupying a level close to the minimum decreases. The temperature level must therefore

be a compromise between the two aims of allowing worsening moves so that the algorithm can quickly

tend towards its limiting distribution and keeping () low so that the limiting distribution places a high

weighting on near-optimal states. Results bounding the time taken for the distribution to reach its

limiting distribution in various situations are summarised in [13J .

The following method attempts to progressively alter the temperature in such a way that the

algorithm can always escape from local minima but the temperature also decreases towards zero, so

that the probability of the objective function being within any fixed distance of the minimum tends

to one over time.

Simulated annealing [29J is one of the most commonly used stochastic global optimisation

algorithms. A motivation for this approach is the physical process of heating and cooling metals or

glass in order to maximise their strength. When a liquid is rapidly cooled, the particles are forced to

bond quickly but sUb-optimally. Repeated reheating and gradual cooling allows particles to readjust

and obtain a stronger crystalline structure at the freezing point . Thus the aim of obtaining a strong

solid is best achieved by temporarily allowing the metal or glass to become more fluid on occasions,

before eventually cooling again.

Analogously, in simulated annealing successive iterates are allowed to temporarily worsen in ob­

jective function value before again being required to improve. The algorithm can thus escape from

local minima. While this idea could be implemented in many different ways, the simulated annealing

algorithm bases its approach on the Metropolis algorithm with varying temperature.

6 Chapter 1 . Introduction

The temperature governs the probability with which worsening iterates are accepted. By slowly

letting the temperature tend to zero, the algorithm slowly causes the distribution of objective function

levels at each iteration to tend to a Boltzmann distribution placing high weightings on global optima.

Provided that the way in which successive iterates are altered obeys certain conditions and the

temperature is reduced in a certain way, [21] shows that simulated annealing converges to global

optima with probability one. A similar result under different conditions is given in [5] . Analysis of

optimal choices of temperature appears in [48] . However, algorithms satisfying these conditions are

generally too slow for practical use. Moreover, a result in [26] indicates that simulated annealing

algorithms obeying these conditions asymptotically perform worse than multistart, as measured by

the probability of visiting a global optimum.

Different methods of reducing the temperature are used in practice. In this way good results can

often be obtained within an acceptable time frame; however, the proof that final results are likely to

be near the optimum no longer applies. The best scheme for reducing temperature is often hard to

determine. An upper bound for the expected number of iterations before reaching a solution with

objective function value within a certain accuracy of the globally optimal value is established, under

various conditions, in [34] . Convergence rates of an idealisation of simulated annealing are studied

in [42] .

Threshold acceptance [17] is a similar algorithm, where worsening iterates are accepted with

probability one provided the change in objective function value does not exceed some threshold value.

In the same way that temperature is reduced in simulated annealing, the threshold in this method is

gradually reduced to zero, until finally no worsening moves are accepted. Some convergence results are

presented in [2]. These results, however, provide no practical guide of how to ensure the convergence

of the algorithm to a certain level in a certain amount of time.

Another variant is the Great Deluge [16] , in which worsening iterates are accepted with proba­

bility one provided the iterate is no worse than a certain level. This method is named for an analogy

with a nonswimmer in a flood. The nonswimmer can move anywhere provided his path does not take

him lower than the water line. Similarly, in a maximisation context the Great Deluge accepts any

move provided the new objective function value is no lower than a certain level. This "water level"

1 . 2. Stochastic global optimisation 7

is gradually increased as the algorithm progresses, gradually encouraging iterates to take higher ob­

jective function values. However, the analogy makes clear the potential for this algorithm to become

trapped in a local optimum.

Tabu search [20] uses another method of escaping local minima. The algorithm operates on

discrete domains by the rule that successive iterates are always accepted unless they are on the current

"tabu list" . When the algorithm visits a solution, it places that solution on the tabu list, ensuring

that the tabu rule forbids revisiting that solution. In this way the algorithm is forced to explore new

regions of the solution space.

Several iterations after a solution has been placed on a tabu list it can be removed, allowing the

algorithm to revisit it if the process eventually returns to that region. The tabu rule may also be

broken if a tabu solution satisfies certain "aspiration criteria" . This allows solutions to be visited

more often than the normal tabu rule would allow, if it is thought to help the algorithm visit new and

better solutions. A result in [22] shows that tabu search converges to global optima on finite domains .

However, there is no guarantee of finding a solution of a given quality in less than the time required

to directly enumerate objective function values for every feasible solution.

A different strategy is used by evolutionary algorithms [40] . This approach is based on the

theory of natural selection. 'In its most simple form, the algorithm chooses the initial current solution in

some way and generates new candidate solutions by making slight alterations to the current solution.

This mimics genetic mutation. Whenever an alteration improves the objective function value, the

candidate solution is accepted as the new current solution. This represents "natural selection" as

proposed in the theory of evolution.

Formulated in this way, the algorithm has no way of escaping local optima. However, if the

mutation step has a positive probability of producing any feasible solution, local optima can be escaped.

A practical difficulty is that convergence is very slow.

An algorithm similar in structure is Improving Hit and Run [53]. This algorithm uses the Hit­

and-Run algorithm of [46]. The Hit-and-Run algorithm generates a new point from a current point by

first selecting a direction uniformly randomly and then choosing a point uniformly randomly from the

intersection of the feasible region and a line in this direction passing through the current point . The

8 Chapter 1 . Introduction

improving hit and run global optimisation algorithm commences by choosing an initial solution in some

way. At each subsequent iteration, a candidate solution is generated by the Hit-and-Run algorithm

and accepted to replace the current point only if it has improved objective function value. Since this

generator can sample any solution from any other with positive probability, the algorithm converges

on bounded domains with probability one. A result in [55] proves that the algorithm converges in

time polynomial in the problem dimension for a certain class of problems.

Genetic algorithms, introduced in [24] , extend the idea behind evolutionary algorithms as de­

scribed above to mimic the process of genetic recombination. Meiosis is the process whereby a parent

cell produces sex cells containing only some of each chromosome in the cell. (When an egg is fertilised

in sexual reproduction, the male and female half-cells recombine to form a complete cell containing

genetic material from both the father and mother.)

Genetic algorithms commence by choosing a population of initial solutions in some way. Solutions

are represented as strings of information, analogous to chromosomes. The strings can be binary or

they can be divided into data units that are believed to represent distinct components of the solution.

Pairs of solutions are then combined in a manner similar to meiosis and fertilisation. Two solutions are

chosen and their string structure broken at some position. The first half of one is then combined with

the second half of the other and vice versa. The resulting solutions form a new "generation" in the

population, containing solutions that mix characteristics of two members of the previous generation.

Departures from the reproduction analogy arise in that both possible combinations of parent

"gametes" can be used. Also, any number of different combinations of parent solutions can be used

at each step.

The new generation may either replace the previous one or be combined with it in some way.

In either case, the population after the meiosis step generally requires reduction. This is normally

carried out by removing the solutions with worst objective function values. This step parallels a

breeding strategy. The idea of mutation from evolutionary algorithms may also be applied.

There are many degrees of freedom in choosing an implementation of these algorithms. Conver­

gence analysis is provided in [43] , including a proof that some variants converge to global optima with

probability one. Bounds on the time required for a genetic algorithm to sample all possible solutions

1 . 2. Stochastic global optimisation 9

to a problem are reported in [30] . These bounds are impractically great for any but the simplest

problems, however .

Another population approach is Controlled Random Search, proposed in [38] . A random pop­

ulation is chosen initially. At each iteration, a new candidate point is selected in a certain way. When

a candidate point has objective function value better than the worst among the current population

members, the new candidate replaces this member in the population.

The method by which new candidate points are chosen is as follows. A subset of a certain size

from the population is chosen at random and its geometric centroid calculated. A new point from the

population m is then chosen at random and reflected in the centroid to calculate the new candidate

point. Candidates generated in this way are called primary points. Each candidate point is compared

with the current population members; if the candidate point is feasible and superior in objective

function value to the current population member with worst objective function value then this current

population member is removed from the population and the candidate point added. Candidate points

are chosen in this way until the proportion of candidate points accepted into the population during the

progress of the algorithm falls below a certain level. Then whenever a primary point is infeasible or

has objective function value worse than the worst of the current population members, a new candidate

point, known as a secondary point , is found as the midpoint of m and the centroid. After a secondary

point is considered, the algorithm returns to take a new subset from the population and generate a

new primary point as before. Figure 1 . 1 shows how primary and secondary points are generated.

Some convergence analysis for this algorithm applied on hyper-rectangular domains is provided

in [23] . The rate of convergence, in cases where the algorithm converges , remains difficult to predict .

A final method, first applied to optimisation in [25] , mimics the way in which the brain functions.

Computer models of neural networks as they occur in the brain are constructed of interconnected

"neurons" . Neurons receive inputs from other neurons or external sources and send output signals to

other neurons or external receivers based on a function of their inputs. Networks can be constructed in

such a way that the network outputs of the system converge to a solution to an optimisation problem.

As introduced in [25] , the neural network approach to optirnisation can become trapped in a

local optimum. Hybridisations of the method with other approaches such as simulated annealing and

10 Chapter 1 . Introduction

,rimary point

x x

�;d

x
-
-.Secondary p,9int

x

x x

x x

x x x

x

Figure 1 . 1: From a population of points denoted with crosses, a subset of two asterisked points
is chosen. The centroid of these points is shown. A new point m is then chosen, leading to the
generation of primary and secondary points as shown.

genetic algorithms have been developed to overcome this problem.

A review of results from this method is contained in [45]. A method of applying neural networks to

any optimisation problem with objective function given by a quadratic function has been developed.

On these problems neural networks are reported to perform as well as or sometimes better than

simulated annealing.

1 . 2 . 2 Theoretical stochastic global optimisation algorithms

Distinct from these practical algorithms is a group of theoretical algorithms with known convergence

properties but for which no known implementation takes an amount of time polynomial in the problem

dimension. These methods are therefore no easier to implement than the deterministic algorithms they

are designed to supersede. Their interest stems from the possib ility of analytically obtaining expected

convergence times, which is not possible for the practical algorithms mentioned above.

The first of these is pure adaptive search (PAS) , introduced in [37]. In this algorithm, successive

1 . 2. Stochastic global optimisation 1 1

iterates are chosen according to a distribution on points i n the domain with objective function values

at least as good as that of the current iterate. Although this step currently cannot be implemented in

polynomial time, a simple formula is derived in [54J to provide the expected convergence time of the

algorithm if it could be carried out.

In [54J it is shown that the expected number of iterations before convergence for pure adaptive

search increases only linearly with problem dimension for any problem satisfying the Lipschitz con­

dition. If a polynomial time implementation of each iteration of pure adaptive search can be found,

therefore, any optimisation problem satisfying the Lipschitz condition can be solved in polynomial

time. Such an implementation for linear programming problems is developed in [18J . A polynomial

time implementation of pure adaptive search on convex domains is given in [39J. A method of realising

pure adaptive search for functions satisfying certain conditions, using quantum computation, is given

in [10J.

In fact a method of generating a new iterate from points in the domain with objective function

values at least as good as a specified level (or reporting that no such points exist) could be used

to solve the travelling salesperson recognition problem, so that this step of pure adaptive search is

NP-hard [36J. A general implementation of pure adaptive search is therefore unlikely to be realisable

""Within polynomial time on standard computers, unless P = NP.

A generalisation of pure adaptive search, introduced in [1l] , is hesitant adaptive search, where

successive iterates are chosen in the same way as for pure adaptive search only with a certain proba­

bility. Otherwise the algorithm "hesitates" at the current range level .

The logical extension of these algorithms is backtracking adaptive search (BAS) , introduced

in [49J . This algorithm either betters, hesitates or backtracks at each iteration, according to proba­

bilities that depend only on the current level. Bettering iterations are performed as in pure adaptive

search. Worsening iterations are analogous: the new value is chosen according to a distribution on

points in the domain with objective function values worse than that of the current iterate.

Many of the practical algorithms described above make use of backtracking in order to find im­

proved solutions. In some cases backtracking is necessary to avoid becoming "stuck" at a local opti­

mum. Consider the simple task of maximising Ixl over the domain {-I , 0 , 1 , 2} . An algorithm starting

12 Chapter 1 . Introduction

at Xo that chooses each successive iterate from the intersection of the set {Xi - 1 , Xi, Xi + I } and the

domain is capable of solving this problem. However, if Xo = - 1 , it is clear that a temporary reduction

in objective function value will be required in order to reach the global optimum at 2. It is this

characteristic of successful optimisation algorithms that backtracking adaptive search seeks to model .

These algorithms, particularly the last named, are discussed in more detail later in this thesis. A

summary of past results, particularly relating to pure and hesitant adaptive search, is provided in [52] .

The distribution of convergence times for backtracking adaptive search is established in Chapter 5 .

The following section outlines the method proposed in this thesis for linking these theoretical results

with the practical stochastic global optimisation algorithms previously mentioned.

1 . 3 The approach

The general statistical approach to prediction is to observe a process, fit some kind of model to it, check

goodness of fit of the model and, if satisfactory, calculate an estimate based on the assumption that

the model holds. This general approach is applied in this thesis to predicting expected convergence

rates for stochastic global optimisation algorithms.

The variable of interest in this case is the number of iterations before convergence for a stochastic

global optimisation algorithm. As in any statistical context, there is uncertainty in the value of this

variable; different runs of the same algorithm on the same problem may result in widely differing

convergence times. The aim can only be to estimate an expected value of the convergence time, along

with some idea of the variability that surrounds that estimate. This challenge is no different to that

which faces any prediction in the face of uncertainty.

In order to make a prediction for the quantity of interest , some structure must be assumed of

the underlying process. This structure takes the form of a model (whether parametric or not) : it is

assumed that the data is distributed as if it was generated by a process of a certain form, overlaid

with a random component. If an appropriate model can be found, such that the observed data could

reasonably be supposed to have been generated from the model , then this model will provide a suitable

estimate for the unknown quantity. The assumption is made that this unknown quantity will also be

1 . 4. Thesis outline 1 3

distributed as though generated from this model.

Clearly, a required feature of the model is that it can be used to calculate the required quantity. In

the present case, the required quantity is the expected number of iterations before convergence. The

requirement that this quantity can be calculated is satisfied by the theoretical algorithms discussed in

the previous section, most generally backtracking adaptive search. With the development of theory

concerning the convergence times of these theoretical search algorithms, therefore, comes the possibility

that they may form a suitable family of models for general stochastic optimisation processes.

As in any modelling, then, the parameters required for backtracking adaptive search are estimated

based on observed data. The observed data is the progress of a stochastic global optimisation algorithm

over several iterations. Methods for estimating backtracking adaptive search parameters from this data

are detailed in subsequent chapters.

This discussion identifies two needs that must be satisfied in order to model convergence times

of stochastic global optimisation algorithms. Firstly, the theory surrounding backtracking adaptive

search must be developed for it to be used as a model. Secondly, a method by which backtracking

adaptive search can approximate a general stochastic global optimisation algorithm is also required.

There are therefore two distinct arms to this thesis, relating respectively to analysis of convergence

rates of the model family and to the development of a method for estimating its parameters based

on observations of an optimisation algorithm. The structure of the thesis is outlined in the following

section.

1.4 Thesis outline

A summary of the contents of each of the following chapters is now provided. In brief, there are two

chapters outlining the method by which a general stochastic global optimisation algorithm is approxi­

mated by a backtracking adaptive search model, two chapters developing the analysis of backtracking

adaptive search, a chapter illustrating computational results for some examples and a concluding chap­

ter consolidating what has been achieved in this thesis and highlighting areas for continued research.

Chapter 2 introduces a framework of processes by which backtracking adaptive search approximates

14 Chapter 1 . Introduction

a stochastic global optimisation algorithm. The method is designed to operate in the completely

general case where no assumption is made of the structure either of the algorithm or of the problem

to which it is applied. All that is required is the sequence of observed iterations obtained by running

the algorithm. This observed data is most easily modelled using a discrete partition of the range. A

discrete backtracking adaptive search model can then be fitted to this discrete data.

However, the algorithm actually operates not in the range, but the problem domain. A model

based on progress in the range therefore requires j ustification-is the movement of the algorithm in the

range sufficient for use in predicting the convergence rate of an algorithm acting on the domain? This

question is answered by means of a sequence of processes that approximate the optimisation algorithm

in the domain: the range, averaged range and asymptotic averaged range processes. This framework

of processes is defined and exemplified in Section 2.2. Each process in this sequence approximates the

previous one, with the range process based directly on the algorithm in the domain. Thus the expected

convergence time of a backtracking adaptive search approximation to the asymptotic averaged range

process is indirectly an approximation of the convergence time of the original algorithm of interest.

Since the analysis is to be based on a discrete summary of the observed data, the theory developed

also uses discrete techniques . In particular, much use is made of Markov chain theory. A finite Markov

process uses a transition matrix that stores the probabilities of changing from one possible state of the

process to another in one step of that process. The following is a simple Markov transition matrix.

1

Current state 2

3

Next state

1 2 3

1

o
1
2

o

o
1 2

o

1

o

This matrix implies that whenever the process is in state 1, it will remain in state 1 with certainty

after one iteration. Similarly, if it is in state 2 it will transition to state 3 with certainty. However, if

it is in state 3 then after one iteration the process is equally likely to be in either state 1 or state 2.

This example is taken up in Section 2.2.

1 .4. Thesis outline 15

Chapter 3 fleshes out the theory behind the intermediary processes introduced in Chapter 2.

Section 3 .2 contains a proof that the number of iterations before convergence for the averaged range

process defined in Chapter 2 has the same distribution as the number of iterations before convergence

for the original algorithm. This stage of the approximation framework can thus be reached with

no loss of information concerning convergence rates. Section 3.3 demonstrates the existence of the

final intermediary process defined in Chapter 2, the asymptotic averaged range process. A subsection

developing preliminary Markov chain theory precedes the existence proof, which is presented initially

in the case where the domain transition matrix on suboptimal states is both irreducible and acyclic

and then in the more general case where only irreducibility is assumed. The convergence behaviour

of the asymptotic averaged range process is then examined in Section 3 .4 . The expected convergence

time is different to the true value for this approximation; however, in many cases the error is very

small.

Chapter 4 turns to the endpoint of the approximation process, backtracking adaptive search. This

chapter provides a definition of backtracking adaptive search, a means of calculating its expected

convergence time and a method of estimating the necessary parameters from an asymptotic averaged

range process. In Section 4.2 a definition is provided for backtracking adaptive search on a finite range.

This is the case necessary for use in the approximation framework; backtracking adaptive search on a

continuous or mixed range is analysed in Chapter 5 .

The expected convergence rate of backtracking adaptive search on a finite range is derived in

Section 4 .3 . The following section then derives a more general result where a new parameter is specified

for the distribution of the initial iteration. Several special cases of this backtracking adaptive search

algorithm have been discussed in the literature. Convergence results for these and other examples

are presented in Section 4.5. The method by which backtracking adaptive search approximates an

asymptotic averaged range process is then treated in Section 4.6. This formally completes the method

for obtaining a backtracking adaptive search model for any stochastic global optimisation algorithm.

In Chapter 5 the full distribution of the number of iterations to convergence for backtracking

adaptive search is derived. This generalises the previous analysis of backtracking adaptive search in

Chapter 4. Backtracking adaptive search is defined for a general range distribution in Section 5 .2. In

16 Chapter 1 . Introduction

Section 5.3 factorial moment generating functions are then derived for backtracking adaptive search

in each possible case, where the range distribution is discrete, continuous or mixed. Factorial moment

generating functions are used to derive the mean and variance of backtracking adaptive search in the

case where the range distribution is finite (as it is in the application of the approximation framework

of Chapter 2) and an expression for the mean in the case where the range distribution is continuous.

Computational results for the approximation framework are presented in Chapter 6. In this chapter

the strategy proposed in Chapter 2 for estimating convergence rates of stochastic global optimisation

algorithms is demonstrated. A few examples illustrate various aspects of the strategy and indicate

how it can be implemented in practice. The intention here is not to showcase a completed piece of

software, but to display the results of the theoretical investigation that has occupied the rest of this

thesis.

In Section 6 .2 , two example global optimisation algorithms are used to illustrate each stage in

the approximation framework. The first of these is small enough for each quantity used to be dis­

played explicitly; the second is a slightly larger and more challenging situation, demonstrating the

approximation framework in a more realistic scenario.

Section 6 .3 contains a further two examples . This section highlights some implementation consid­

erations and suggests a way of applying the approximation framework in practice. The first example

is again simpler, allowing the expected convergence time estimated by the approximation process to

be compared to the true value obtained analytically. The second example shows the approximation

process applied to a more challenging problem. The expected convergence time estimated in this case

is compared with empirical results of applying the example algorithm several times and recording the

convergence time for each run. A gauge as to the quality of convergence rate estimation afforded by

the approximation framework is then available.

The final chapter summarises the work accomplished and highlights further areas for research

arising out of this work.

17

Chapter 2

A framework of processes by which

backtracking adaptive search

approximates a stochastic global

optimisation algorithm

2 . 1 Introduction

The distribution of the number of iterations before convergence is a very useful measure of perfor­

mance for a stochastic global optimisation algorithm. Unfortunately, this distribution is not available

for practicable algorithms; indeed, the distribution can only be found empirically. This analysis is

available for backtracking adaptive search (and presented later in this thesis) ; however, backtracking

adaptive search is not a practicable algorithm. Thus, on the one hand are algorithms having practical

implementation but without any analysis of expected runtime; on the other, algorithms possessing

this analysis but without any practical implementation. The challenge to be faced is in finding a way

to meld these two desiderata together-to find a way of applying the kind of analysis available for

backtracking adaptive search to practicable stochastic global optimisation algorithms.

The approach of this thesis is therefore to attempt to find a backtracking adaptive search approxi-

18 Chapter 2. A framework of processes

mation to a general stochastic global optimisation algorithm. The extent to which this approximation

is accurate is then the extent to which convergence information concerning the backtracking adaptive

search algorithm is applicable to the stochastic global optimisation algorithm it approximates.

There are a number of obstacles in the way of such an approximation: in general stochastic global

optimisation algorithms can be non-Markovian time-inhomogeneous processes defined on the problem

domain, while backtracking adaptive search (in the form to be presented later) is a Markovian time­

homogeneous process, with a particular structure, defined on the problem range.

One possible approach to overcoming these obstacles would be to generalise the definition of

backtracking adaptive search to a more encompassing family of processes, more easily able to describe

the movement of a general stochastic global optimisation algorithm. Backtracking adaptive search is

itself a generalisation of hesitant random search [11] and pure random search [54] ; the generalisation

is in the distribution of each successive iterate. In pure adaptive search, the next iterate is chosen

from the improving set according to a distribution p on the range; in hesitant adaptive search, the

next iterate can either be chosen from the improving set according to p or else remain at the current

objective function level. Backtracking adaptive search again uses the distribution p but allows the next

iterate to be taken from anywhere in the range, and is thus expected to provide a closer approximation

to a general stochastic global optimisation algorithm, since in general algorithms may worsen at any

given iteration as well as improve.

Still further generalisation is certainly possible; the structure imposed on backtracking adaptive

search could be weakened by allowing variation in the range distribution p, or perhaps varying the

way in which p is used. It may even be possible to define something like backtracking adaptive search

directly on the domain. However, the point of specialising the form of the algorithm is that the dis­

tribution of the number of iterations before convergence can be evaluated easily; further complicating

the process makes this distribution harder to obtain. At some point, accuracy of the approximating

algorithm must be exchanged for susceptibility to analysis.

The nature of statistics is to summarise a complicated process with a simple model that can

be analysed. This is the approach of this thesis, and the simple model chosen in what follows is

the representation of backtracking adaptive search described later . This thesis marks a first step

2. 1 . Introduction 19

towards development of an adaptive search approximation to a general stochastic global optimisation

algorithm; improvements in the model or the estimation of its parameters may well stem from future

research.

Using backtracking adaptive search as the end-point of the approximation process, then, the chal­

lenge is to estimate its parameters from the domain based stochastic process (DP) of a general global

optimisation algorithm. In particular, major difficulties lie in the structure of backtracking adaptive

search; how can a process that is Markovian, time-homogeneous and defined in the range approximate

an algorithm which in general obeys none of these conditions?

The approximation process is divided into several stages, employing three intermediate stochastic

processes dealing with each of the three difficulties listed above. Firstly, the range process (RP) is

defined as the image of the original domain process in the range. Secondly, a Markov process in the

range, the averaged range process (ARP) , is defined based closely on the range process. Thirdly,

the asymptotic averaged range process (AARP) , a time-homogeneous variant of the averaged range

process, is constructed. Having now obtained a Markovian time-homogeneous process in the range,

it is possible to choose parameters for backtracking adaptive search in order to reflect as c losely as

possible the characteristics of this process.

Note that it is assumed that any optimisation problem has a one dimensional objective function

measuring the quality of each feasible solution. Even problems with multiple objective functions

can be incorporated in this study, by combining each objective function in a weighted sum. Any

automated multiobjective optimisation algorithm must have a means of determirung whether one

solution is better or worse than another; this implicitly defines a one dimensional ordering of all possible

solutions. Various methods of defining this ordering have been proposed (see, for instance, [47]) . The

requirement of a one dimensional objective function is thus not restrictive. Furthermore, the fact that

every problem possesses this simplifying measure recommends any analysis that is able to make use

of this trait.

A final observation on the practical issue of implementing this approximation process: for a general

stochastic global optimisation algorithm, even the structure of the original algorithm in the problem

domain is unknown and must be estimated empirically. However, there is no reason that one of the

20 Chapter 2. A framework of processes

processes later in the approximation framework could not also be described empirically. A practi­

cal implementation of the approximation process could begin by estimating the parameters of the

asymptotic averaged range process and simply approximating immediately with backtracking adap­

tive search, skipping over the first two steps in the framework. The theoretical descriptions of the

intermediate processes remain valid and useful in justifying the techniques used, even though these

processes may never be defined in the implementation of the approximation process. Implementation

details are discussed in Chapter 6 .

In the next section a generic stochastic global optimisation algorithm is defined; all subsequent

analysis centres on this algorithm. The sequence of approximations is then described, moving from

this domain process through to a backtracking adaptive search process in several stages. Analytical

results regarding each of the intermediate processes are reserved until Chapter 3; this chapter aims

only to establish the framework of approximations that forms the major idea of the thesis. A final

section summarises the import of this framework.

2 . 2 Approximating a stochastic global optimisation algorithm

The problem under consideration is the very general global optimisation problem

minimise f(x) , subject to x E S

where S is a measurable space and f : S -+ lR. is a measurable function. A general form for stochastic

global optimisation algorithms is now introduced. The algorithm selects the first point according to a

distribution 00 on the domain. Thereafter a local search measure for each x E S, in general dependent

on the iteration number n, is used to generate the next candidate point in the domain in a Markov

process.

Generic stochastic global optimisation algorithm

Step 1 Generate Xo in S according to 00 . Set Yo = f(Xo) and n = O .

Step 2 Choose Xn+1 according to a local search measure at Xn. Set Yn+1 = f(Xn+l) '

2.2. Appr�ximating a stochaStic global optimisation algorithm 21

Step 3 If a stopping criterion is met, stop. Otherwise, increment n and return to Step 2.

At Step 2 of the above algorithm, it is common (but of course not necessary) to first select a

candidate point Z; if j(Z) ::; Yn then set Xn+l = Z, if j (Z) > Yn then set Xn+1 = Z with a certain

probability (which may depend on Xn and Z) or otherwise set Xn+l = Xn.

To investigate the behaviour o f this algorithm, a sequence o f stochastic processes is constructed, ·

each approximating the progress in the range of the generic stochastic global optimisation algorithm.

As each successive stochastic process approximates the last, the accuracy of the approximation to the

original stochastic algorithm will slowly deteriorate; however, the advantage of the procedure is that

the distribution of the convergence rate of the final backtracking adaptive search approximation is

known. The following stochastic processes are discussed:

Domain process: This is the sequence of domain points generated by the generic stochastic global

optimisation algorithm.

Range process: This is the sequence of function values generated by the generic stochastic global

optimisation algorithm; it is essentially the same as the domain process, but viewed in the range.

A veraged range process: This is a time-inhomogeneous Markov process in the range based on the

range process. It is presented in Subsection 2 .2 . 1 .

Asymptotic averaged range process: This i s obtained by homogenising the averaged range pro­

cess. It is presented in Subsection 2.2 .3 .

Backtracking adaptive search: This is obtained by requiring the transition distributions in the

range, conditioned on improvement or worsening, to be restrictions of a single range probability

measure. It is presented and analysed for finite domains in Chapter 4 and for general domains in

Chapter 5 .

The first of these processes takes on values in the objective function's domain, whereas the others

assume values in the range. This important distinction is illustrated in Figure 2 .1 .

The domain process (Xn) as defined above is Markovian. This is general enough to encompass sim­

ulated annealing [29] . Even with a further restriction that the algorithm should be time-homogenous,

22 Chapter 2. A framework of processes

y' " n
y n y " n

Domain Process Range Averaged Asymptotic Backtracking
Process Range Averaged Adaptive

(non-Markov) Process Range Search

Domain S X (inhomogeneous Process (restricted
n Markov) (homogeneous homogeneous

Markov) Markov)

Figure 2 . 1 : Steps in the approximation of the domain process with a backtracking adaptive search
process.

the Metropolis algorithm [35] , genetic algorithms [24] (with S then a product space, the number of fac-

tors being determined by the population size) and certain evolutionary algorithms [24] are all included

within this definition.

The framework of approximations presented could be extended from the generic stochastic global

optimisation algorithm defined above to any time-homogeneous Markov process in the domain. In

fact, some time-inhomogeneous Markov processes could be approximated also; however, the analysis

provided here is limited to time-homogeneous algorithms. The question of what processes may be

approximated with backtracking adaptive search is treated in detail in Subsection 3 .3 .

Note that the range process (Yn) i s not in general Markovian, despite being the image under f of

the Markov chain (Xn) . Knowledge of the current domain state Xn provides complete information

at any iteration concerning the distribution of the next iterate in the domain; however, knowledge

of the current range level Yn alone does not in general provide complete information concerning the

2.2. Approximating a stochastic global optimisation algorithm 23

distribution of the next iterate in the range.

For instance, suppose the objective function f(x) = I x l is to be minimised over the set {-I , 0, 1 , 2 } ,

and successive iterates Xn+l are chosen randomly from those values o f the set {xn - 1 , Xn, Xn + I } that

fall in the domain. Knowledge that the current range level is 1 implies only that the domain location

could be either -1 or 1 and is thus insufficient to determine the probability of visiting range level °

at the next iteration; but if the previous iteration is known to be 2 then the current domain location

must be 1 and the probability of visiting range level ° at the next iteration may now be correctly

determined. It is thus demonstrated that (Yn) is not in general Markovian. Note also that if the

history of the process is (2 , 1 , 1 , 1 , . . . , 1) then the entire history must be known in order to correctly

determine the current transition probabilities. There is thus no Markov process of any order that

accurately represents the range process.

In what follows, only first-order Markov approximations to the range process are considered; re­

definition of the state space to include more than one iteration in each state would easily allow

generalisation to higher order Markov approximations, perhaps providing worthwhile improvement in

the accuracy of the approximation. This procedure is common in some global optimisation algorithms,

such as Tabu Search [20J .

Notation required in the following discussion is now described. A discrete domain S is assumed.

Convergence is held (as in [54]) to occur when Yn � y for some real number y, chosen before algorithm

commencement; domain locations with objective function value not greater than y are lumped into

one absorbing state Xl with arbitrary objective function level YI � y . (The analysis may be applied

to study algorithm performance on test problems whose global minima are known; in this case y

can be set within a certain tolerance of the global minimum. Even when the optimal solution itself is

unknown, it may be possible in certain cases to find the value of the global minimum from the problem

definition. Otherwise y must be chosen in some other way, perhaps with reference to the current best

known objective function value.) It is assumed that all other domain locations are transient . The

domain search algorithm may thus be considered as a Markov process with the following transition

24 Chapter 2. A framework of processes

matrix, in block form:

The first row of this matrix, showing transitions from the absorbing state, has a one in the first

position and zeros elsewhere, since the algorithm is held to terminate after first sampling Xl . (Only

the iterations before attaining a state with objective function level not greater than y are of interest .)

The column vector r gives the probability of moving directly to the absorbing state for each transient

state. The remaining submatrix Q is substochastic (that is, the elements of Q are positive and the

row sums are no greater than 1) , and gives the transition probabilities between all of the transient

states. (In practice P will not be known. Implementation issues are discussed in Chapter 6 .)

Denote the transient domain states by X2 , X3 , . . . , Xl and the transient objective function levels by

Y2 , Y3 , · . . , Ym · Now let Dn denote a row vector of length l comprising the probabilities of occupying

each of the l domain states at the nth iteration. Then Dn+l = DnP for all n � o .

I t is useful to define a truncation transformation Ti , equal to the identity matrix o f size i (Ii) with

the first column removed. This matrix has the effect of removing the first component of a probability

position vector, corresponding to the probability of being in the absorbing state. A vector of i ones is

also denoted by li .

A simple example is now introduced which will serve to illustrate the concepts introduced through-

out this chapter.

Example Let S = {I , 2, 3 } , f (l) = 1 , f(2) = 2 and f(3) = 2 . A search algorithm to find the minimum

in this simple example is described by a Markov domain process with transition matrix

P =

1 0 0

0 0 1

I I 0 2 2

, 8o that Q � [: : 1
Suppose the process is equally likely to begin in each of the domain states (so Do = [i i iD . Then

standard Markov chain theory [27] provides that the expected number of iterations before convergence

2.2. Approximating a stochastic global optimisation algorithm 25

The range process based on tills domain algorithm has an absorbing state at the low level, 1. At

the high level, 2, there are two possibilities at each iteration. If the domain process is at domain

state 2 then (as is apparent from the transition matrix) it will move to domain state 3 with certainty

and thus the range process will remain at the illgh level; if the domain process is at domain state 3

then RP is equally likely to remain at the high level or move to the low level .

The other two intermediate approximations of the range process are now presented in more detail.

The final backtracking adaptive search approximation is treated in Chapter 4.

2 .2 . 1 The averaged range process

In this stage RP is approximated with an inhomogeneous Markov process, ARP (YrJ . Here is an

informal description of this process. At the nth iteration ARP is at level Y�; thus the corresponding

state in the domain is some point in j-l (y�) . The conditional probability of being at each of these

domain states is determined by the normalised restriction of the domain distribution at the nth

iteration to j-l (Y�) . Mappings of the transition distributions at each candidate domain state into the

range (termed local range distributions) are then mixed according to their domain weightings. This

produces an averaged range distribution at the nth iteration. Figure 2 .2 illustrates the way in which

ARP uses this convex combination of local range distributions of the search algorithm.

A formal definition of the averaged range process is now given. The initial distribution of ARP is

identical to that of RP, being the image in the range of the initial distribution of the original domain

process . At the nth iteration, suppose that ARP is in state Yi . Then the probability that ARP moves

to state Yj at the next iteration is found by summing all the probabilities of distinct transitions in

the domain from j-l (Yi) to j-l (Yj) . That is, the ARP transition matrix at the nth iteration, Rn, is

given by

XpE!-l (Yi) XkE!- l (Yi)
P(Yn+1 = Yj lYn = Yi)

(2 . 1)

(2.2)

26

y

"*

f

* "*

. . *

Local
range

distributions

*

Weights under 0

*

n

Chapter 2. A framework of processes

"*

x

Averaged
range

distribution

Figure 2.2: The Markovian approximation to the range process uses a mixture of local range distribu­
tions, with weights determined by the domain process. In this figure, the current range value may be
due to either of two domain points, each of which gives rise to a probability distribution for the range
value after one further iteration. These probability distributions are mixed as shown.

for n � 0 and i, j E { 1 , 2, . . . , m} when P(Yn = Yi) #- 0, and (Rn)ij is arbitrarily set to zero otherwise.

(Alternative arbitrary assignments in the case when P(Yn = Yi) = 0 are possible, such as setting (Rn)ij

to 1 if i = j and 0 otherwise, or assigning equal values to P(Xn = Xk lYn = Yi) for all k such that

!(Xk) = Yi and proceeding according to Equation (2. 1) . The simpler definition is retained, however,

as in [49] . This has the added benefit of making the need for a refined construction of the asymptotic

averaged range process transition matrix as in Theorem 3.3 .3 more apparent , as illustrated in the final

example of Section 3.3 .)

The construction of this transition matrix may be represented more compactly using the following

definitions. Define domain weightings used by ARP, rn, based only on the current range level and

2.2. Approximating a stochastic global optimisation algorithm

iteration number, as

(.) (I ()) P(Xn = Xi) In '/, = P Xn = Xi Yn = f Xi = P(Yn = f(Xi)) =

8n (i)

{j :! (Xj)= !(Xi)}

for i E { I , 2 , . . . , l} where the denominator is positive. Otherwise, arbitrarily assign In (i) = O.

27

(2.3)

An l x m matrix M mapping from domain states to objective function states is now defined as

Mij = { 1
o

if f(xd = Yj ,

otherwise .

Then

MT diag(In)P M (2.4)

where diag(In) is a diagonal matrix with entries of In on the diagonal .

By way of justification for this expression, note that M?j = 1 whenever f(xj) = Yi . Then, provided

(MT diag(In)) ij
(MT diag(In)P) ij

(MT diag(In)P M) ij

by Equation (2.2) . If P (Yn = Yi) = 0 then (MTdiag(rn)) ij = 0 for all j, so (MTdiag(rn) PM) ij = O.

In either case the definition of Rn in Equation (2.4) is identical with the definition provided earlier.

The sequence of processes studied in this thesis span a conceptual crevasse between, on one side,

the generic stochastic global optimisation algorithm of interest, and on the other, BAS, for which full

convergence analysis is available (and presented in Chapter 4) . The value of this study is determined

by the quality of the approximations; however, detailed derivations of the properties of each process

28 Chapter 2. A framework of processes

are left to later chapters. To anticipate Theorem 3 .2 . 1 , though, it is in fact the case that the averaged

range process and the range process (and therefore the domain process) share the same expected

number of iterations before termination.

This fact is now illustrated in the simple example.

Example (continued) The objective function of the example problem implies

1 0

M = 0 1

o 1

For this cyclic example, explicit expressions for pn are available as

2I 0 0 2
n�l

pn = 2- I 2I - 1
n+l .!!:±l

1 0 for n even; pn = 2--2- 2 2 - 2

2I - 1 0 1
n+l

2-2-- 1

0 0

0 2

1 0

for n odd.

n n 2 1 1 Expressions for On can be calculated as oopn . Thus when n is even On = 2- "2 [2"2 - 3 3 3] and

n+l
[

n + l 1 2] () when n is odd On = 2--2- 2-2- - 1 3 3" • Then by Equation 2.3 ,

[2 � _ 1 1

i!i 1 In = � i!i 2� - 3 [1 1 1] 2 2

for n even, and similarly

for n odd. All the ARP transition matrices can now be found explicitly by application of Equa-

2.2. Approximating a stochastic global optimisation algorithm

tion (2.4) . Thus

Rn =
[: : :]

=
[� ;]

for n even, and similarly

1 0 0 1 0 0

o � 0 o 0 1

o 0 �

29

1 0

o 1

o 1

for n odd. Since there is only one absorbing domain state and corresponding range level, the first row

and column of M are vectors of zeros with an initial one, and the first element of In is a one. Also

the first rows of transition matrices P and Rn are always vectors of zeros with an initial one. In this

small example the transient portions of the range transition matrices Rn are single numbers, giving

the probability of staying at the transient range level after one transition.

The expected value of the number of iterations before convergence for the averaged range process,

Na, can now be found as follows:

00

E(Na)
=

L P(Na 2 n)
n=l
2 2 3 2 3 2 2 3 2 3 - + - . _ + - . - . _ + - . _ . _ . - + . . .
3 3 4 3 4 3 3 4 3 4
1

2 -
3

This is the same result as that stated earlier, from direct analysis of the process in the domain. Thus, in

this example, ARP preserves the expected number of iterations to convergence of the domain process

it approximates. Later this is shown to be true in general.

30 Chapter 2. A framework of processes

2 .2 .2 The asymptotic averaged range process

While ARP is a time-inhomogeneous Markov process, BAS is defined later as a time-homogeneous

Markov process. To link the two, it is necessary to remove the iteration dependence of ARP. This

is done by observing that the transition matrices Rn for ARP settle down in the limit to a constant

matrix R, or, possibly, to oscillation between multiple constant matrices (in which case R is defined

as the average of these limiting matrices) . This is proven for all sequences of transition matrices Rn

in Chapter 3 .

The asymptotic averaged range process (AARP) is defined to be the time-homogeneous Markov

process with initial distribution equal to that in both the range process and the averaged range process,

and with transition matrix R given (in most cases) by

1 N-l
R = lim

N
L Rn,

N-.oo n=O

as in [49] . This definition may be informally justified by averaging the first N transition matrices

Rn and then obtaining R as the limit to which this average tends as N tends to infinity. Beyond a

certain number of iterations the Rn will be cycling through the set of constant limiting matrices (with

negligible discrepancies) , so the average over all N matrices Ra , RI , . . . , RN will tend to the average

of those limiting matrices. The exact definition requires more care to handle possible circumstances

under which this definition leads to substochastic R (the details are provided in Chapter 3) , but

the definition above is correct whenever 00 gives positive weight to all Xi (so that the probability of

commencing in any domain state is positive) . This is a mild restriction that could be easily satisfied,

for instance by commencing with pure random search with some positive probability. Except in special

cases where the transition matrices Rn settle down in the limit to oscillation between multiple limit

matrices, the expression simplifies to R = lim Rn. n-.oo

Example (continued) The example illustrates the cyclic case. The limiting average transition matrix

2.2. Approximating a stochastic global optimisation algorithm

may be found as follows (since in this example 00 gives positive weight to all xd :

1 2N-1
R = lim 2N L Rn N-+oo n=O

1 N-1 ([
��oo 2N �
lim 2

1
NN

[2
N-+oo 7 12

[: : j 24 24

31

Applying standard Markov Chain theory to AARP using this limiting transition matrix gives an

expected number of iterations to convergence of � (1 - �n -1 = 2� . This is close to the value for the

domain process, 2k . Some means of quantifying the error now introduced by the approximation to

AARP is required; discussion of this problem is offered in Chapter 3 .

The asymptotic averaged range process is of some interest in itself: it provides a greatly simpli-

fied representation of a global stochastic optimisation algorithm. It has the simple form of a time-

homogeneous Markov process, and it operates in the range, which is one dimensional, instead of the

domain, which is generally multidimensional. The number of possible range levels is potentially far less

than the number of possible domain locations. If the expected number of iterations before convergence

for the asymptotic averaged range process can be shown to be close to that of the original domain

process, then obtaining this information from the asymptotic averaged range process will therefore be

in general much simpler computationally.

2 .2 .3 B acktracking adaptive search

Since even the asymptotic averaged range process is still in general of a size that prohibits direct

calculation of its convergence rate, another stage of approximation is required. The important result

of the stages of approximation shown thus far is that a time-homogeneous Markov process in the range

has been found to approximate a general stochastic global optimisation algorithm. Since this is the

form of backtracking adaptive search, it is possible now to approximate the asymptotic averaged range

32 Chapter 2. A framework of processes

process using backtracking adaptive search.

The simple example of this chapter is so small that the asymptotic averaged range process is

already in the form of backtracking adaptive search; the number of iterations before convergence for

the backtracking adaptive search approximation is thus identical with the number of iterations before

convergence for the asymptotic averaged range process. A full discussion of the details of backtracking

adaptive search, including a general method for approximating the asymptotic averaged range process

with backtracking adaptive search, is left to Chapter 4.

In Chapter 4 a closed form expression for the expected number of iterations before convergence for

the backtracking adaptive search algorithm is presented. This is the end-point of the approximation

sequence described in this thesis. Convergence results for an approximation of a general stochastic

global optimisation algorithm are thus available.

2 . 3 Summary

The framework described in this chapter provides a means for approximating the convergence rate of

an arbitrary Markovian optimisation algorithm, by linking it to a tractable stochastic process via a

chain of intermediate stochastic processes. Each process in the chain is derived from the previous one,

and can be used to approximate its convergence behaviour .

The complete strategy for analysis enables predictions to be made of how long a particular stochas­

tic global optimisation algorithm should be run to reach a set level. The effectiveness of the stochastic

global optimisation algorithm on a particular problem is thus measured.

The following chapter fills in some of the theoretical detail concerning the averaged range process

and the asymptotic averaged range process, and Chapter 4 then describes backtracking adaptive search

and the method by which it approximates the asymptotic averaged range process. Computational

results for the entire approximation framework are reported in Chapter 6 .

33

Chapter 3

The range , averaged range and

asymptotic averaged range processes

3 . 1 Introduction

This chapter extends and amplifies Chapter 2 , analysing the averaged range process and the asymptotic

averaged range process in more detail. It is shown formally that these processes are well defined, and

the quality of their approximation of the domain process is examined. In particular, attention is

focused on the number of iterations before convergence. The major aim of approximation is to find a

practicable method of estimating the mean of this quantity. Such a method would be of considerable

practical use.

The following section shows that the distribution of the number of iterations before convergence

for the averaged range process is the same as for the domain process. Section 3 .3 demonstrates the

existence of a well defined asymptotic averaged range process approximation to any domain process.

Section 3.4 then provides some discussion of the number of iterations to convergence for this process .

Finally, a brief summary consolidates the results shown thus far in the framework. The last step in

approximating the asymptotic averaged range process with a backtracking adaptive search process

will be considered in Chapter 4.

34 Chapter 3. The range, averaged range and asymptotic averaged range processes

3 . 2 The nUlnber o f iterations before convergence for the averaged

range process

The quality of each successive approximation is determined by the error introduced in estimating the

number of iterations until convergence for the original domain process, based on the approximation.

This section shows that the first stage of approximation in fact introduces no error in estimating the

distribution of this quantity.

It should be borne in mind, however, that the expected convergence time of the averaged range

process is still in general difficult to evaluate in practice; the reason for continuing the approxima­

tion process to backtracking adaptive search is that the expected convergence time for backtracking

adaptive search can be calculated efficiently by computer. The result shown here is a theoretical

justification of the first part of this approximation process.

Recall the definition of the averaged range process given in Subsection 2 .2 . 1 . The averaged range

process (YrJ takes values on the range indexed as YI , Y2 , . . , , Ym , where YI is the optimal level. The

domain process (Xn) takes values on the domain Xl , X2, . . . Xl ·

Where (Y�) goes at each iteration will in general depend on more than the last step. As the

definition of ARP is based only on the current level and iteration number, therefore, it is distanced

somewhat from RP. Despite this, the definition provided in Subsection 2.2 .1 implies that, while the

averaged range process and the range process can in general differ in joint distribution, they must be

equal in marginal distribution at each iteration.

Theorem 3.2 .1 At any given iteration, the range process and the averaged range process have the

same distribution.

Proof The notation required for the averaged range process is first described.

As in Subsection 2.2. 1 , define 'Yn (i) = P(Xn = Xi lYn = !(Xi)) for i E { I , 2, . . . , I} whenever

3.2. The number of iterations before convergence for the averaged range process 35

P(Yn == f(Xi)) > 0 ; otherwise, arbitrarily assign in (i) = O. Also let

M
. . _ { I if f(Xi) = Yj ,
tJ -

o otherwise,

so that the averaged range transition matrix at the nth iteration can be written as

(3 . 1)

where diag(in) i s a diagonal matrix with entries of in on the diagonal .

The probabilities of the domain process occupying any state in the domain at the nth iteration are

given by the vector On where n 2 0; define the averaged range process equivalent, 7rn , to be a vector

containing the probabilities of the averaged range process occupying any level in the range at the nth

iteration for all n 2 O. The definition of the range process implies that the probability distribution of

range states in RP is the image of On under f. The theorem may thus be stated as

The theorem may now be proved by induction. The initial averaged range distribution i s given as

the image in the range of the initial domain distribution, so that 7ro = ooM.

Now assume the result for some integer k 2 O. Note that

[Ok M MT diag(Tk)] (i) = P(Yk = f(Xi))P(Xk = Xi!Yk = f(Xi))

= P(Xk = Xi)

(3 .2)

36

holds. Thus

Chapter 3. The range, averaged range and asymptotic averaged range processes

7Tk+l - 7TkRk by definition

6kMMTdiag(rk)PM by hypothesis and using Equation (3 . 1)

6kP M from Equation (3 .2)

6k+lM.

Hence by induction 7Tn = 6nM for all n � o. •

It is now possible to go further and prove the surprising result that the distribution of the number

of iterations before convergence is in fact the same in both the domain process and the averaged range

process-despite the fact that the two processes differ in joint distribution.

The following example illustrates the difference in joint distribution between a domain process

and its averaged range process approximation. Suppose the function XX is to be minimised over the

domain {-I , 0, 1 , 2} , and the algorithm applied in the domain at each iteration when x > -1 is simply

to move to x - I with probability 0.5 , or otherwise to remain at x. Clearly, at least three steps are

required to find the optimum starting from x = 2 .

The range values in this example are -1 , 1 and 4 (using the convention that 00
= 1) ; the averaged

range process then assigns positive probabilities to the transitions from level 4 to level 1 and from

level 1 either to level -1 or level 1 . The values of these latter two transition probabilities depend on

the relative likelihood of being at x = 0 or x = 1 at the current iteration. If the initial distribution

places positive weight on all four domain states, though, it is clear that it is possible for the averaged

range process approximation to find the optimum in only two steps starting from level 4 , where x = 2.

The averaged range process can thus produce sample paths corresponding to impossible transitions

in the domain . Nonetheless, the following corollary shows that the lengths of sample paths from

algorithm commencement to convergence in each process are identically distributed.

Corollary 3 .2 .1 The distribution of the number of iterations to convergence for the generic stochastic

global optimisation algorithm in a finite domain is identical to the distributions for the corresponding

range and averaged range processes.

3.2. The number of iterations before convergence for the averaged range process 37

Proof The range process is defined as the image of the domain process under f. Consequently,

the number of iterations to convergence for this process is stochastically equivalent to the number of

iterations to convergence in the original domain algorithm. Reference to RP is by way of a stepping

stone to the new Markov process in the range, ARP .

Let Fd be the cumulative distribution function of the number o f iterations to convergence for

the domain process, and Fa be the cumulative distribution function of the number of iterations to

convergence for the averaged range process. Then if Nd is the number of iterations to convergence for

the domain process,

P(Nd � n)

- P(Xn = Xl)

- 6n(1) ,

the first component of the vector 6n . Similarly Fa (n) = 7rn (l) . Now since there i s only one state

at the optimal level, the probability of the domain process being in the optimal state is the same as

the probability of the range process being in the optimal level . Theorem 3 .2 . 1 then shows that this

probability is the same as the probability of the averaged range process occupying the optimal level.

Thus

so Fd = Fa and the proof is complete.

Fd(n) = 6n (1)

= 7rn(l)

= Fa(n)

•

Thus the first stage in the approximation is exactly equivalent to the original optimisation al­

gorithm, in terms of the distribution of the number of iterations before convergence. This result

corrects [49] , where the number of iterations before convergence in the averaged range process is said

to differ from the number of iterations before convergence in the domain process in moments higher

38 Chapter 3. The range, averaged range and asymptotic averaged range processes

than the first. The equality of means has been illustrated in the example of Subsection 2 .2 . 1 .

The ensuing section moves on to the next stage of approximation, showing that the asymptotic

averaged range process provides a well defined approximation to any Markovian global optimisation

algorithm.

3 . 3 Existence of the asymptotic averaged range process

This section demonstrates the existence of the asymptotic averaged range process approximation to

any averaged range process. Then, since the averaged range process has been defined for all domain

processes, the whole approximation framework is defined up to this stage. The proof is straightforward

for most algorithms and problems, but care is required in making sure that the asymptotic averaged

range process is well defined in each possible case.

To prove AARP exists is to prove that , as n tends to infinity, Rn tends to a constant matrix, or

possibly to oscillation between a finite number of constant matrices . As defined in Equation (2. 1) of

Subsection 2.2 . 1 , each entry in Rn is constructed as a sum of terms of the form

P(Xn = Xk)P(Xn+1 = xp lXn = Xk)

P(Xn E j-l (J(Xk)))
(3 .3)

over various values of xp and Xk when P(Xn E j-l (J(Xk))) > O. The conditional part of this is simply

a one-step transition, determined from the transition matrix P, which is assumed constant .

It is possible to relax this assumption somewhat; the conditional part has a well defined limit as n

tends to infinity when strong ergodicity obtains in the normalised transient state transition matrix [44,

Definition 4.5] , and the existence of a quasi-stationary vector implied by this condition means that in

fact the whole expression has a limit (this is discussed in greater detail below) . Since the main point

is that in the limit a quasi-stationary vector should exist, the conditions under which the asymptotic

averaged range process is well defined may be weakened even further; however, as stated earlier, only

algorithms with constant transition matrix P are considered here.

Taking this conditional part as constant, then, it must still be shown that the remaining part of

the expression in (3.3) has a limit. In Subsection 3.3 .2 this is proved for primitive transient state

3. 3. Existence of the asymptotic averaged range process 39

transition matrices, and then in Subsection 3.3.3 a general theorem establishes that in fact for any

domain process the expression in (3.3) tends to oscillation within a finite set of limiting values. The

existence of an asymptotic averaged range process approximation to any time-homogeneous Markovian

domain process can then be demonstrated.

Before these results can be proved, though, some knowledge of Markov chain theory is required.

An introduction to the important points is presented in the following subsection.

3 . 3 . 1 Mar kov chains

The subsection following this one proves the existence of an asymptotic averaged range process ap­

proximation to any domain process where the transient state transition matrix is primitive. A matrix

is primitive if and only if it is irreducible and acyclic. Define pij = P(Xn = Xj !Xo = Xi) ; then a

matrix is irreducible if for each pair of states Xi and Xj there exists an n such that pij > O. If the set

{n : pfi > O} has a greatest common denominator d > 1 for some i then the state is cyclic with period

d; otherwise the state is acyclic.

All states in a set of states for which the transition matrix is irreducible have the same period

d > 0 [44, Lemma 1 .2] (if the "period" is 1 then the states are acyclic) . States in this set are partitioned

amongst exactly d non-empty cyclic subclasses (this follows from [44, Theorem 1 .3]) . The Markov

chain moves around these subclasses in order, sampling one state from the current subclass at each

iteration.

Note that a transition matrix for more than one state can never be irreducible if one of the states

is absorbing, since the probability of a transition from an absorbing state to any other state in n steps

is zero for all n. The transition matrix formed by exclusion of all absorbing states, however, may be

irreducible. If this transient state transition matrix is also acyclic then it is primitive.

A Markov chain with primitive transition matrix P has a stationary distribution v such that

vP = v. This stationary distribution is called the left Perron-Frobenius eigenvector of P [44J . Theo­

rem 4.6 of [44] , which is repeated in the lemma below, generalises this idea to consider the so-called

quasi-stationary distribution of transient states when the transition matrix of transient states only is

primitive. Note that I denotes the set of transient states (called inessential in the lemma below) .

40 Chapter 3. The range, averaged range and asymptotic averaged range processes

Lemma 3.3. 1 Let Q, the submatrix of P corresponding to transitions between the inessential states

of the Markov chain corresponding to P, be primitive, and let there be a positive probability of {Xd

beginning in some i E I . Then for j E I, as k � 00,

where v(2) = {vyl } is a positive vector independent of the initial distribution, and is, indeed, the left

Perron-Frobenius eigenvector of Q .

Lemma 3 .3 . 1 shows that Q has a quasi-stationary vector according t o which the process will tend

to distribute itself amongst the transient states before absorption. An extension of the argument

applying also to cyclic irreducible transient state transition matrices will be given in Lemma 3 .3 . 3 .

The discussion provided so far has hinted at the use of eigenvalues and eigenvectors in analysing

Markov chains. The maximum eigenvalue of any stochastic P is 1 . If there is only one absorbing

state then the corresponding left eigenvector is a row vector with all components equal to zero except

for an initial one [44, Theorem 4.7] . (Eigenvalues and eigenvectors of P must satisfy vP = AV; when

A = 1 this reduces to vP = V and v must be the stationary distribution of P. Clearly, the stationary

distribution of an absorbing Markov chain will place all the weight in the absorbing state.) If, in

addition, the transient state transition matrix Q is primitive, then the second largest eigenvalue has

corresponding to it a unique left eigenvector, the transient components of which form the Perron-

Frobenius eigenvector of Q, called the quasi-stationary vector. The relative probabilities of being in

each transient state, given that the process has not converged, tend over time to limiting values given

by the quasi-stationary vector.

If Q is irreducible and cyclic with period d then the largest eigenvalue of Qd is shown to have d

associated eigenvectors in [44, Theorem 1 .7] .

The remainder of this subsection is spent developing Theorem 3 .3 .1 , which characterises the powers

of a matrix (stochastic or otherwise) . A result from [12] is required before the statement and proof of

this theorem.

Define the Jordan decomposition of any square matrix A as A = X J X-I . Denote the distinct

3.3. Existence of the flSymptotic averaged range process 41

eigenvalues of A by AI , A2 , A3 , . . . , Ag . Now let Xi denote the matrix formed by the columns of X

associated with Ai and x1! the matrix formed by the rows of X-I associated with Ai ; then Pi =

xix1! is the spectral projection associated with Ai . The following lemma now describes the spectral

decomposition of A .

Lemma 3 .3 .2 Each matrix A possesses a spectral decomposition of the form

9
A = L(AiPi + Di) ,

i=l

for some finite li ' where Di = xiNiX1! and Ni is a matrix of the dimensions of x1! Xi with all

elements equal to zero except for the superdiagonal elements, which are all equal to one except for a

number one fewer than the number of linearly independent eigenvectors corresponding to Ai, which are

equal to zero and arranged so that no more than li ones on the superdiagonal are consecutive. The

following relations are also satisfied:

where Oij is the K ronecker delta.

This lemma abbreviates the definition provided in [12J . Sufficient detail is provided, however, to

introduce the following theorem, which generalises Lemma 3.3.2 .

Theorem 3.3.1 Using the notation of Lemma 3. 3. 2,

for each matrix A, using the convention that a summation over an empty set is equal to zero.

Proof Lemma .3 .3 .2 provides an expansion for A; this theorem follows from the fact that all products

in the expansion of An are zero excepting only those terms for which the subscript i of each multiplicand

is identical .

42 Chapter 3. The range, averaged range and asymptotic averaged range processes

The relation

Pi Dj XiXt XjNjXJ

OijXiNjXJ

(3 .4)

is required in addition to those given in Lemma 3.3.2 . This relation fol lows since the vectors making

up Xi are columns of X and the vectors making up xt are rows of X-l . Now since X-l X is the

identity matrix, it follows that Xi# Xj = oijI where I is an identity matrix of the same size as Nj .

Now consider the non-zero terms of the expansion of An. Each of these is a product of n multipli-

cands, either of the form AiPi or Di . Suppose the first multiplicand in a term is of the form AiPi; then

the next multiplicand must be either of the form AjPj or Dj . In either case, referring to Lemma 3 .3 .2

and Equation (3.4) , the product is zero unless i = j. Alternatively, the first multiplicand in a term

may be of the form Di ; but in this case also, its product with the next multiplicand is zero unless

i = j. Thus all non-zero terms in the expansion of An are composed of n multiplicands sharing an

identical subscript i .

I f a term is composed solely o f multiplicands of the form AiPi then, by Lemma 3.3.2, its value

is Af Pi · Otherwise suppose there are k multiplicands of the form Di and n - k of the form AiPi .

Lemma 3.3.2 and Equation (3.4) combine t o show that the value of this term i s A�-kDf . Since the

order of multiplicands in each term is immaterial, this gives

The proof is completed by noting that Dli = 0, so that the summation of terms in Df need not be

taken further than k = li - 1 , even when n 2: li . •

These results are developed further in the following sections as they are needed.

3.3. Existence of the asymptotic averaged range process

3 . 3 . 2 Primitive transient state transition matrices

43

In this subsection the proof of the existence of an asymptotic averaged range process approximation

to a domain process is presented in the case where the domain transient state transition matrix is

primitive.

A veraged range process transition matrices are constructed by calculating the relative probability

of being in any particular state, given that the domain process is known to be in a set of states with

the same objective function level. Since there is only one absorbing state, the probability of being in

that state given that the process is at the optimal level is exactly one. Moreover, the probability of

being in any other state tends to zero over time, since all other states are transient. However, the

conditional probability of being in any transient state given that the process is not absorbed tends to

a limiting value. This is the result of Lemma 3.3 . 1 . The theorem below now follows.

Theorem 3.3 .2 When the transient state transition matrix Q (introduced in Section 2. 2) of a time-

homogeneous Markovian domain process is primitive and P(Xo = Xl) < 1 , the averaged range process

transition matrices Rn tend to a constant limit R as n tends to infinity.

Proof In view of the discussion at the start of this section, the proof rests in showing that the

expression P(Xn = Xk)/ P(Yn = f(Xk)) has a limit as n tends to infinity.

Note first that there is only one absorbing state, Xl ; hence when k = 1 , the value of the expression

P(Xn = Xk)/ P(Yn = f(Xk)) is exactly one (and the limit thus certainly exists) . Otherwise, if there

is a positive probability that Xo i= X l ,

= P(Xn = Xk)
L P(Xn = Xj)

Xj E!-1 (J(Xk»
P(Xn = Xk \Xn E 1)

L P(Xn = Xj \Xn E I)
Xj E!-1 (J(Xk»

(3 .5)

where I is the set of transient states, {X2 , X3 , " " xt } . The summation is always over a finite non-

empty set, since the number of states at each level is finite (bounded above by 1) and Xk is certainly

an element of f-I (J(Xk)) . Since P is irreducible, P(Xn = Xk) is positive for all sufficiently large n .

44 Cl1apter 3. The range, averaged range and asymptotic averaged range processes

The probabilities in the top and bottom of the right hand side of Equation (3 .5) are identical in

form with that proven to have a positive limit as n tends to infinity in Lemma 3 .3 . 1 , applicable to any

Markov chain where Q is primitive. The proof is thus complete for primitive Q . •

As Rn tends to R, the difference between the averaged range process and the asymptotic averaged

range process becomes very small. This suggests an explanation for the observed proximity of expected

convergence times for the two processes, as illustrated in the example of Subsection 2.2 .3 . A more

detailed consideration of this is left to Section 3 .4.

An example of the asymptotic averaged range approximation to a domain process with primitive

Q is now provided.

Example 1

Take an algorithm with domain transition matrix P as follows

Next state

1 2 3 4

1 1 0 0 0

2 0 . 1 0 .5 0 . 1 0.3
Current state

3 0 .2 0 .8 0 0

4 0 .3 0 .3 0 . 1 0.3

and initial vector 80 = [0 .0816 0.1599 0.2615 0.497] , randomly generated. The transient portion of P,

denoted Q, is primitive. To see this, note that any transient state (states 2, 3 and 4) can reach any

transient state in either 2 or 3 iterations.

Since P is stochastic with a single absorbing state, the largest eigenvalue is 1 and the corre­

sponding left eigenvector is [1 0 0 0] . Eigenvalues and eigenvectors can be found from the following

3.3. Existence of the a.symptotic averaged range process 45

decomposition:

-1
1 0 0 0 1 0 0 0 1 0 0 0

-9.2426 5 .2426 1 3 0 0.8243 0 0 -9.2426 5 .2426 1 3
p =

-0.7574 -3.2426 1 3 0 0 0 .0243 0 -0.7574 -3.2426 1 3

- 1 -4 1 4 0 0 0 0 -1 -4 1 4

The relative weightings amongst the components of the second largest eigenvector of P corresponding

to transient states are thus 5.242i+1+3 [5.2426 1 3J = [0.5672 0 . 1082 0.3246] ' the Perron-Frobenius

eigenvector of Q. This vector is the quasi-stationary vector of Q .

Let /3n list the probabilities of being in each transient state given that the process has not converged

at iteration n. Thus in this case /3n = on(2)+,,J3)+on (4) [on (2) on (3) on (4)J , where On = oopn . Then

/30 = [0. 1 741 0 .2847 0 .5412J , and /3n is expected to tend to the quasi-stationary vector over time [44,

Theorem 4.6J . The process is now iterated four times, recording successive values of On and /3n .

01 = [0.2990 0 .4383 0.0657 0 . 1971] , /31 = [0.6252 0 .0937 0 .28 1 1J

82 = [0.4151 0 .3308 0.0635 0 . 1906] , /32 = [0 .5655 0 . 1086 0.3258J

83 = [0.5 180 0 .2734 0 .0521 0 . 1564] , /33 = [0 .5673 0 . 1082 0.3245J

04 = [0.6027 0 .2253 0 .0430 0 . 1289] , !34 = [0 .5672 0 . 1082 0.3246J

As expected, the weightings amongst all four states are tending towards the limiting distribution of P,

[1 0 0 0] , and the weightings amongst the transient states are tending towards the Perron-Frobenius

eigenvector of Q. After four iterations these weightings are already identical with those of the quasi­

stationary vector, to four decimal places. (A further 48 iterations are required for the weightings

amongst all four states to reach their limiting distri bu tion.)

Hence the weightings among transient states , from which In is calculated, quickly adopt their

limiting values. Transition matrices for ARP, given by Equation (3 . 1) as Rn = MTdiag(Tn)PM,

are therefore equally quick to adopt limiting values. As discussed above, the difference between

ARP and AARP thus tends to be very small . In particular, the expected convergence time for the

46 Chapter 3. The range, averaged range and asymptotic averaged range processes

algorithm in this example (equal to the expected convergence time for ARP) is 5.9 iterations; its

AARP approximation (supposing for example that the second and third states share an objective

function level) has an expected convergence time of 6.0 iterations.

3 .3 .3 Cyclic irreducible transien� state transition matrices

This subsection completes the proof of the existence of an asymptotic averaged range process approx-

imation to any Markovian domain process. The analysis is extended to the general case where the

domain transient state transition matrix Q may be cyclic. Two examples are given for this cyclic case;

in the second of these it is demonstrated that the definitions presented here provide a correction to

those given in [49] , which fail in certain cases.

Before the existence of the asymptotic averaged range process can be demonstrated, the following

lemma is required. This lemma generalises the quasi-stationary vector result of Lemma 3 .3 . 1 used in

the primitive case.

Lemma 3.3 .3 Let the transient state transition matrix Q of a time-homogeneous Markovian domain

process with a single absorbing state be irreducible, with each of l - 1 transient states having period d .

Then there are d + 1 linearly independent eigenvectors (denoted VI , V2 , . . . , Vd+l) corresponding to the

largest two eigenvalues of P. There exists a unique decomposition of the initial probability vector 60,

such that (when 60 (1) < 1) the conditional probabilities of being in each transient state after a multiple

of d iterations, given that the process has not converged, tend to limiting values given by the vector

v (a2V2 + a3v3 + . . . + ad+lVd+l)TI

! ! (a2v2 + a3v3 + . . . + ad+lVd+l)l1 ! ! I ' (3 .6)

where ! ! v !h is the Ll norm of v and 11 is a truncation transformation equal to the identity matrix of

size l with the first column removed.

Proof Arrange Q in canonical form [44] so that states in the same cyclic subclass are grouped

3.3. Existence of the asymptotic averaged range process 47

together. The new matrix Qd then represents the d-step transition matrix for the transient states.

Whatever state the Markov chain is in at any stage, d steps later the Markov chain will again be in a

state from the same cyclic subclass (unless it has reached the absorbing state) , since Q is periodic with

period d. Therefore Qd is a zero matrix except for d submatrices on the diagonal, each corresponding

to transitions between states within the same cyclic subclass of Q. These submatrices are primitive [44,

Lemma 1 .3] .

As in the primitive case discussed earlier, each submatrix therefore has a quasi-stationary vector-

that is, the relative weightings amongst the states within each cyclic subclass tend to a limit. For each

of these quasi-stationary vectors, define a full state vector of l components by placing zeros in the

components relating to states in the other cyclic subclasses. Then the relative weightings, according

to which all transient states will tend to be distributed after successive application of Qd, will be a

weighted sum of these full state vectors. The weighted sum must take into account the probability

of being in each of the cyclic subclasses after a multiple of d iterations, which depends on the initial

probability distribution; within each cyclic subclass the transient states will tend to be distributed

according to the quasi-stationary vector relating to that subclass.

The exact weightings are derived as follows. Since P is stochastic, the largest eigenvalue of pd is

Al = 1 ; and (as in the primitive case) only the eigenvector VI placing all the weight in the absorbing

state corresponds to this eigenvalue [44, Theorem 4.7] . There will be d eigenvectors of pd corresponding

to the second largest eigenvalue. These reflect the quasi-stationary vectors for each of the d cyclic

subclasses; hence they are all real-valued. (Each eigenvector of pd is the same as an eigenvector of

Qd with an extra entry relating to the absorbing state; the following analysis relates really to the

eigenvectors of Qd but is presented in terms of the full matrix pd.)

It is necessary to refer to the Jordan form of pd, defined as XJX-l for some X and J [12] . Now

let Xi denote the matrix formed by the columns of X associated with Ai and x1! the matrix formed

by the rows of X-I associated with Ai . Then (pd)n can be expressed using Theorem 3.3 . 1 as

9 (

min (li-1 ,n)

((

n)))
'" AT}-P. + '")..n-k Dk � t t � t t i=1 k=1 k

48 Cl1apter 3. The range, averaged range and asymptotic averaged range processes

where the number of distinct eigenvalues of pd is g, Pi = XiXi# , Di = XiNiX1! for some Ni and

Dii = O.

The structure of J is detailed in [12] . The eigenvalues of pd form the main diagonal of J. These

can, by reordering indices in X and J, be taken to occur in the order .AI , .A2 ,Ag . For every linearly

independent eigenvector associated with .Ai there is a column in J made up entirely of zeros except

for the diagonal element, which has the value .Ai ; all other columns in J are made up of zeros except

for the diagonal element, containing one of the eigenvalues, and the superdiagonal element , which has

the value 1 . A further condition ensures that the superdiagonal in the first column of J containing a

particular eigenvalue .Ai is always O.

This structure implies that the ith column of X is a right eigenvector associated with the eigenvalue

in the ith column of J if and only if the superdiagonal in the ith column of J is zero, since pd X = X J

(and X is invertible, so each column contains nonzero elements) . Moreover, this relation also implies

that if the superdiagonal in the ith column of J (containing the eigenvalue .Aj) is 1 then the ith

column of X, denoted by xi , is a "generalised eigenvector" of pd, satisfying pdxi = .AjXi + xi-I , where

Xi- 1 is itself either an eigenvector or a generalised eigenvector of pd corresponding to .Aj . (Thus the

Jordan basis [19] is composed solely of eigenvectors and these "generalised eigenvectors" .) The further

condition given above limits the number of columns with superdiagonals equal to 1 and ensures that

there is at least one eigenvector associated with each eigenvalue. A similar argument can be used to

show that rows of X-I are left eigenvectors or generalised eigenvectors of pd.

It is now shown that the number of linearly independent eigenvectors corresponding to .AI and

.A2 , already known to be d + 1 , is equal to the number of times they appear in J. The first row

of x-I , denoted by x1# , satisfies x1# P = x1# (since .AI = 1) and must therefore be the unique

stationary distribution. Then if .AI is repeated in J there must be a generalised eigenvector x2#

satisfying x2# pd = x2# + x1# ; but this is impossible since x2# can be scaled so that it is stochastic,

whence the left hand side of this equation is stochastic but the right hand side is not (since x1# is

also stochastic) . Thus .AI occurs only once in J. Also the eigenvectors associated with .A2 are formed

from Perron-Frobenius eigenvectors of each of the d cyclic subclasses of pd, as discussed above; there

are therefore no other eigenvectors or generalised eigenvectors associated with .A2 in any of these

3.3. Existence of the asymptotic averaged range process 49

subclasses [44J . Thus the columns of X associated with Al and A2 are all eigenvectors, not merely

generalised eigenvectors.

Now since X-I is invertible and its rows are eigenvectors or generalised eigenvectors of pd, there

must exist a unique representation of 80 as a sum of eigenvectors and generalised eigenvectors:

Multiplying by pnd, remembering that the Vi are eigenvectors of pd , and that d of them have the

same eigenvalue, gives

(3 .7)

The final term will tend to die out faster than the other terms as n tends to infinity; the proof of this

again uses the Jordan form of pd.

Since left eigenvectors and generalised eigenvectors are rows of X-I and X-I X = h i t follows that

Xi# Xj = 0 whenever Xi# is associated with an eigenvalue other than Aj . Referring to Equation (3 .7) ,

c is a sum of eigenvectors and generalised eigenvectors associated with eigenvalues other than Al and

>-2 , so it is also true that cXj = 0 for j E { I , 2 } . From this it follows that CPl = 0 , CP2 = 0 , cDI = 0

and cD2 = 0; therefore

9 ((min(li-1 ,n) ((n))))
c(pdt = et; Af Pi + E k X:kDf

Thus

The first term will tend to overshadow the others, but this term affects only the weighting of probability

in the absorbing state (due to the special form of VI) ' The transient states will assume the weightings

relative to each other described by the following d terms, once the remaining term dies out (which,

50 Chapter 3. The range, averaged range and asymptotic averaged range processes

as shown above, will happen geometrically quickly) . These relative weightings, denoted v , are the

L1-normalisation of the transient component of

(that is, scale v so that it is a probability vector. Normalisation is possible since the algorithms that

AARP approximates are finite) . This completes the proof. •

Note that the long term behaviour of the cyclic algorithm depends on the constants ai , which are

derived from the initial distribution; contrast the primitive case dealt with earlier, where there is no

such dependency.

Thus after a multiple of d iterations, the transient states will tend to distribute themselves accord­

ing to v . This is the cyclic generalisation of the quasi-stationary vector referred to in the primitive

case. Since every power of Q can be expressed as Qkd+a for some integer k, where a E {O , 1 , . . . , d - I } ,

the vector o f probabilities of being i n each transient state given that the process has not converged

will tend to cycle through the vectors v, vQ/ l lvQ l I l , vQ2/ 1 IvQ2 1 1 1 " " vQd-l I l lvQd-1 1 1 1 .

This provides a general method of constructing R, the transition matrix amongst objective function

levels in the range of the asymptotic averaged range process approximation to any time-homogeneous

Markovian domain process.

Theorem 3.3 .3 A general equation to give the transition matrix of an asymptotic averaged range

process approximation to any time-homogeneous M arkovian domain process with irreducible Q and

P(Xo i- Xl) > 0 is

R MT diag(-y)PM (3 .8)

3.3. Existence of the asymptotic averaged range process

where , is found directly from the limiting average weightings amongst transient states as

for i E { I , 2, 3 , . . . , l } .

,(i) = lim -d __ a_=-'O'---____ _
k-+oo -1

L L ,kd+a (j)
a=O {j:f(xj)=f(xd}

5 1

Proof Since P is constant, the limit Rn as defined in Equation (3 . 1) will tend to R as defined in

Equation (3 .8) provided ,n tends to , as n tends to infinity.

Now since Lemma 3.3.3 shows that the process tends eventually to repeat a cycle of d steps, the

limiting average of ,kd+a is given simply by the average of the limits over one cycle. The average must

be taken not simply over the d iterations in each cycle, but over the number of iterations in each cycle

where P(Yn = f (xi)) > O. This is given by the double summation in the denominator (note that

•

Note that Lemma 3.3 .3 also provides a refined method of calculating lim ,kd+a ; that is, ,kd+a(l) = k-+oo
1 since there is only one absorbing state, and

lim ,kd+a (i) = k-+oo

[vQa](i) where this is defined L [vQaJ (j)
{j:f(xj)=f(Xi)}

o otherwise,

where i E {2, 3, . . . , l } . (Note that vQa need not be normalised in the preceding equation, since only

the relative weightings amongst states are required.)

By this procedure R may be derived directly, with no call on infinite sums. (Long run characteristics

of 6n could still be used to find v, if this is more computationally efficient.)

Note that in general , (and thus AARP) is dependent on the initial distribution. This is not the

case for primitive Q. (Nor is it the case for cyclic processes where states at the same level are in the

same cyclic subclasses. This is because P(Xn = Xi !Yn = f (xi)) depends in this case only on relative

weightings within each cyclic subclass, there being no distribution of weight across subclasses since

52 Chapter 3. The range, averaged range and asymptotic averaged range processes

the conditioning event Yn = f (Xi) always fixes the cyclic subclass exactly when all states at the same

level share a cyclic subclass.)

An example illustrates the ideas involved in constructing the asymptotic averaged range process

approximation of a cyclic domain process.

Example 2

Take an algorithm with domain transition matrix

1 0 0 0

0 .1 0 0 . 1 0.8
p =

0.2 0.8 0 0

0.3 0 .7 0 0

and the randomly generated initial probability distribution 80 = [0.0816 0 . 1599 0.2615 0.497) from

Example 1 . Evidently, this matrix is cyclic; transient states can return to themselves only after an

even number of iterations. The cyclic subclasses are { state 2 } and { states 3 and 4 } .

Let

M =

1 0 0

0 1 0

o 1 0

0 0 1

with the rows of M corresponding to states in the domain and the columns corresponding to objective

function levels in the range. Where Mij = 1 this implies that the ith state is at the jth objective

function level. Thus state 4 is the only state at the third level.

3. 3. Existence of the asymptotic averaged range process

As in the preceding discussion, focus is directed on the process with transition matrix

p2 =

1 0

0.36 0.64

o

o

o

o

0.28 0 0 .08 0.64

0.37 0 0.07 0.56

which shows the separate subclasses amongst the transient states.

53

The limiting distribution of this process again places all the weight in the absorbing state. There are

two left eigenvectors corresponding to the second largest eigenvalue, namely [- 1 1 0 0] and [-9 0 1 8] .

The first of these is connected to the cyclic subclass corresponding to the second state in P. The

second of these eigenvectors shows that the process will tend, on average, to spend eight times as long

in the fourth state as in the third . These states constitute the second cyclic subclass. Projecting 80

onto the eigenvectors gives

80 - 0.083 [1 0 0 0] + 0 . 160[-1 1 0 0] + 0 .087[-9 0 1 8] + 0.025[1 0 7 - 8]

so the vector of limiting relative weightings of transient states under p2 is the L1-normalisation of

0. 160[1 0 0] + 0.087 [0 1 8] (since these are the transient components of the eigenvectors corresponding

to the second largest eigenvalue of p2) , or v = [0 . 1695 0.0923 0 .7382] . Every second iteration the

process will tend to distribute itself among transient states according to this vector ; on alternate

iterations the limiting weightings are vQ/ l l vQlh = [0 .7947 0.0228 0 . 1825] .

The process is now iterated, recording successive values of On and /3n .

80 = [0.0816 0 .1599 0.2615 0.4970] , /30 = [0 . 1 741 0.2847 0.5412]

81 = [0.2990 0.5571 0 .0160 0. 1279] , /31 = [0. 7947 0 .0228 0. 1825]

82 = [0.3963 0. 1023 0 .0557 0.4457] ' /32 = [0 . 1695 0 .0923 0.7382]

83 = [0.5514 0.3565 0.0102 0.0819] ' /33 = [0.7947 0 .0228 0. 1825]

54 Chapter 3. The range, averaged range and asymptotic averaged range processes

As expected, the weightings amongst all four states are tending towards the limiting distribution of

P, [1 0 0 0] . At every second iteration f3n = v, and at odd iterations f3n = vQ/ l lvQl l l , as expected.

(In this case the next largest eigenvalue of p2 is 0 (as is obvious from the transient state transition

matrix) , so f3n adopts the limiting values after a single iteration. This does not happen in general .)

Using the limiting weightings v and vQ/ l lvQ lh , found above,

and similarly

lim 'Ykd k---+oo

Theorem 3 .3 .3 then gives

[1 0. 1695
0. 1695+0.0923

= [1 0.6475 0.3525 1]

0.0923 0.7382]
0. 1695+0.0923 0.7382

lim 'Ykd+l = [1 0 .9721 0.0279 1] . k---+oo

[1+1 0.6475+0.9721
HI 0.6475+0.3525+0.9721+0.0279

0.3525+0.0279 HI]
0.6475+0.3525+0.9721+0.0279 1+1

[1 0.8098 0 . 1902 1] ,

whence

1 0 0 0 1 0 0 0 1 0
1 0 0 0

0 0.8098 0 0 0 . 1 0 0 . 1 0 . 8 0 1
R 0 1 1 0

0 0 0. 1902 0 0.2 0.8 0 0 0 1
0 0 0 1

0 0 0 1 0.3 0 .7 0 0 0 0

1 0 0

0 . 1 190 0.2331 0.6478

0.3 0 .7 0

0

0

0

1

This transition matrix, together with the initial probability distribution in the range given by ooM,

defines the asymptotic averaged range process approximation to the cyclic domain process.

In the limiting average derivation of R provided in [49] , however, the asymptotic averaged range

3.3. Existence of the asymptotic averaged range process

process may not be correctly defined. There the equation

R =
1 N-l

lim
N l: Rn N->oo n=O

1 N-l
Hm

N
l: MTdiaghn)PM

N->oo n=O

1 N-l
- MT diag(Hm

N
l: In)P M

N-+oo n=O

55

is given. This formulation is appropriate for algorithms with primitive Q, since then Theorem 3.3 .2

shows that Hm Rn = R, but when Q is cyclic the transition matrix generated in this way may be n-->oo

substochastic.

The definition of In shown in Subsection 2 .2 . 1 provides for the case where P(Yn = !(Xk)) = 0 by

arbitrarily setting In(k) to O. While these zero entries made no difference to the running of ARP (the

marginal range distributions of ARP are identical with those of the range process, so that ARP never

requires information concerning what to do from level ! (Xk) at iteration n unless P(Y� = !(Xk)) > 0) ,

it will make a difference to AARP. If in the limit P(Yn = !(Xk)) = 0 once or more in each cycle of d

iterations, then at least lid of the Rn will have a row of zeros. The formula for R will then include

these rows, producing averaged rows that do not sum to 1 ; but R should be stochastic. The correct

definition of R given in Theorem 3.3 .3 forms In by averaging only over the number of iterations in

each cycle where P(Yn = !(Xi)) > O.

This situation is demonstrated in the following example.

56 Chapter 3. The range, averaged range and asymptotic averaged range processes

Example 3

Consider the domain transition matrix

1 0 0 0

0. 1 0 0 . 1 0.8
p =

0.2 0 .8 0 0

0 .3 0 .7 0 0

from Example 2 and initial probability distribution 80 = [0 .3 0 .7 0 0] . Thus, with probability 0 . 3 the

algorithm samples the optimum immediately; otherwise it begins in the second state, whence it will

transition either to the optimum or to either the third or fourth state. From the initial distribution, it

is clear that the process will never be in state 2 on odd iterations , or in states 3 or 4 on even iterations.

As before,

M =

1 0 0

0 1 0

0 1 0

o 0 1

so state 4 is the only state at the third level , and the process will never be at the t.hird level at

even iterations. Equation (2.3) therefore arbitrarily sets In (4) at even iterations to zero. This is the

situation when rows of zeros appear in Rn. Thus

1 o o

Ro = 0 . 1 0 . 1 0 .8

o o o

1 o 0

RI = 0 .2 0 .8 0

0 .3 0 .7 0

and each alternating Rn also has a zero row. (In fact, for this example Rn = Ro at even iterations

and Rn = RI at odd iterations.) Consequently, the limiting average R found using the formula for

3.3. Existence of the asymptotic averaged range process

primitive Q given in [49] has a row that does not sum to 1 :

1 o o

R = 0.15 0.45 0.4

0 . 15 0.35 0

57

It would be sensible to ignore rows of zeros in Rn when taking the limiting average, since they are

arbitrary. This is effectively the result of applying the revised definition of R given in Theorem 3 .3 .3 ,

in the manner illustrated in Example 2 .

Application of Theorem 3.3.3 provides the proper AARP transition matrix,

1 0 0

R = 0 . 15 0 .45 0 .4

0 .3 0 .7 0

Note that this is the matrix that would be obtained by averaging the Rn matrices ignoring zero

rows. Each row of R is the limiting average of transition probabilities from that level on the iterations

at which the process has positive probability of transitioning from that level. This is clearly the logical

extension of AARP to cyclic processes.

Finally, it may be observed that the same algorithm used in Example 2 with a different initial

vector produces a different asymptotic averaged range process approximation. This dependency on

the initial probability distribution reflects the fact that the algorithm is periodic .

The construction of AARP described in [49] fails on this example because AARP requires a single

matrix to direct what to do at each range level at each iteration, even though the domain process

provides no data for some levels at some iterations . The construction of R in Theorem 3 .3 .3 defines

the AARP approximation to this example by effectively interpolating local range distributions for

states at each iteration even though the domain process has zero probability of reaching those states

on each alternating iteration. A reasonable approach to overcoming the special challenges presented

by cyclic examples is thus presented. This analysis extends the definition of AARP from that given

in [49] , to apply over all domain processes with irreducible transient state transition matrices.

58 Chapter 3. The range, averaged range and asymptotic averaged range processes

An alternative solution to the problem illustrated above is to start the process with a positive

probability of being in each domain state. There is therefore also a positive probability of being in the

absorbing state at any subsequent iteration, and it can be shown by induction that the distribution at

each iteration also assigns positive probability to each transient state. Suppose that the process has

a positive probability of being in each transient state at iteration n. (This is true when n = 0 since

the process starts with a positive probability of being in each domain state.) At iteration n + 1 the

process has probability L P(Xn = Xi)Pij of being in each other transient state j . This probability is
i

positive provided Q is irreducible, using the above supposition. Thus by induction there is positive

probability of being in each state at all iterations n E {O, 1 , 2, . . . } , and thus P(Yn = !(Xk)) > 0 for all

n. In this case Rn will never have a zero row. Hence the limiting average definition of AARP given

in [49] applies to domain processes where Q is irreducible and the initial probability distribution is

positive.

The latter condition could be imposed by commencing with pure random search with some pos-

itive probability. (This condition is not required for primitive Q, or for the definition of R given

in Theorem 3 .3 .3 .) The irreducibility condition required for either definition of R means that the

algorithm never completely writes off any part of the domain, which is a sensible assumption for good

algorithms.

Using the general definition of the asymptotic averaged range process given in Theorem 3 .3 .3 ,

a Markov homogeneous process in the range can thus be defined as an approximation of any time-

homogeneous Markovian optimisation algorithm. The accuracy of this approximation in estimating

the expected number of iterations before convergence will determine its usefulness; this accuracy is

now considered in the following section.

3.4 Convergence time of AARP

As shown in Section 3.2, the averaged range process approximation to a general stochastic global

optimisation algorithm preserves the distribution of the number of iterations to convergence. The

asymptotic averaged range process does not; yet the expected number of iterations until convergence

3.4. Convergence time of AARP 59

for this process seems empirically to be close to the expected number of iterations wltil convergence

for the domain, range and averaged range processes. The example in Subsection 2 .2 .3 illustrates this

tendency.

In this section it is shown that the error in expected convergence time introduced by the asymptotic

averaged range process approximation is in general unbounded. However, it can be shown that the

difference in convergence times of the asymptotic averaged range and domain processes is given by a

summation where the terms tend to decay geometrically, in the case where the transient domain state

transition matrix is primitive. In many cases, therefore, the difference in expected convergence times

between the domain and asymptotic averaged range processes will be small.

Denote the convergence time of the asymptotic averaged range process by Nb , and the marginal

distribution in the range at the nth iteration by Tn . Now, employing a result similar to one in [4J (and

recalling that Tm is equal to the identity matrix of size m with the first column removed) ,

E(Na) = (71"0 + 71"1 + 71"2 + . . ·)Tmlm-1

1 - 71"0 (1) + 1 - 71"1 (1) + 1 - 11"2 (1) + . . .

since 71"n is stochastic. Similarly,

and the error introduced by approximating the averaged range process with the asymptotic averaged

range process is given by

(3.9)

(since the initial distributions for the averaged range and asymptotic averaged range processes are

identical) .

Equation (3.7) shows that all contributions to 8nd except that of VI die out geometrically with rate

>"2/ >"1 = >"2 · The following theorem establishes that when d = 1 , it is also true that all contributions

60 Chapter 3. The range, averaged range and asymptotic averaged range processes

to Tn die out geometrically with the same rate (since the eigenvector corresponding to the largest

eigenvalue of the asymptotic averaged range process transition matrix R places all the weight in the

absorbing state and the second largest eigenvalue of R can in fact be shown to be).2) . Thus the

differences in Equation (3.9) tend to decay towards zero geometrically. If).2 is not close to one then

the decay will be rapid and the total error in expected convergence time may be small.

Theorem 3.4.1 When the transition matrix amongst transient domain states is primitive, the second

largest eigenvalue of the domain process transition matrix P is the same as the second largest eigenvalue

of the asymptotic averaged range process transition matrix R.

Proof The proof begins with Equation (3 .7) . For any eigenvector Vi of P, it must be true that

since P is stochastic. Therefore ViII = 0 wherever).i i= 1 . This implies that , since v is defined in

Lemma 3 .3 .3 as the last l - 1 components of V2 (where d = 1) , and).2 < 1 , the fuH I-vector V2 must

be the vector [-1 v] (since v is stochastic) . It will now be shown that [-1 v] M is a stationary vector

of R.

When d = 1, the definition of 'Y in Theorem 3.3.3 and the definition of lim 'Ykd+i beneath it
k->oo

combine to show that 'Y(1) = 1 and

'Y(i) = _---:-:-
v(;....;.i) __

L v(j)

for i E {2, 3, . . . , I} . (Since P is irreducible, v must be positive so the denominator is always positive.)

Comparing this with Equation (2.3) , it can be seen that if Ok = [0 v] then 'Y(i) = 'Yk (i) for i E

{2, 3 , . . . , 1} .

Equation (3.2) then gives [okMMTdiag("()] (i) = ok (i) for i E {2, 3 , . . . , I } . Moreover, 'Y (1) = 1 and

3.4. Convergence time of AARP 61

all components of the first row and column of M are zero except Mu = 1 ; therefore i t i s also true

that [- 1 vJMMTdiagb) = [-1 v] . Thus, expanding R using Theorem 3 .3 .3 ,

[- 1 vJMR = [-1 vJMMTdiagb)PM

[-1 vJPM

=).2 [-1 vJM.

It thus follows that [- 1 vJM is an eigenvector of R corresponding to).2 .

This vector is nonnegative, except for the first component. As the transient part of P is primitive,

there is a transient state that can transition to itself in either n or n + 1 iterations, for some n . Thus

the transient part of R is also primitive. Since the stationary distribution of the submatrix of R

pertaining to transient states is unique, therefore, it is given by the part of [-1 vJM corresponding

to transient range levels; hence).2 is the largest eigenvalue of that submatrix. The second largest

eigenvalue of R is thus).2; as in Equation (3.7) , therefore, Tnd tends to the limiting vector (which,

since R is absorbing, places all the weight in the initial level) geometrically with rate).2. •

Both 6n(1) and Tn(l) thus tend to one geometrically with rate).2 . Initially the difference between

them is biased towards zero by the contributions of other eigenvectors (since the initial error is exactly

zero) ; as other eigenvectors die out the error will adopt a geometric decay with rate).2 .

The proof applies only for domain processes where the transient state transition matrix is primitive.

Otherwise P has d eigenvalues equal to the d complex roots of).2 , so [- 1 vJP i=).2 [- 1 v] . It is possible

to ensure that the transient state transition matrix is acyclic by altering the algorithm to conduct

pure random search from some level with positive probability; with this slight alteration, the result of

Theorem 3 .4. 1 is applicable.

In random matrices the difference between the largest and second largest eigenvalues may often be

large enough that this rate of decay will be fast, and ARP will have only a few iterations before settling

down to the limiting behaviour of AARP. In this case the convergence times of the two processes will

be similar.

62 Chapter 3. The range, averaged range and asymptotic averaged range processes

It is possible, however, to construct transition matrices with the difference between magnitudes

of these eigenvalues set arbitrarily small. In this case ARP will differ significantly from AARP for a

large number of iterations; the convergence times may then be very different . In principle, therefore,

the error introduced in approximating the averaged range process with the asymptotic averaged range

process is unbounded. In practice, the approximation tends to be quite close for many algorithms and

problems. Experimental results are reported in Chapter 6.

As an example, take an algorithm with domain transition matrix

1

0.001

o

0.99

o 0

0 .002 0 .007

0.003 0.004 0 .99 0 .003

0.5 0 . 1 0 .2 0 .2

and the random initial probability distribution 60 = [0 .0816 0 . 1599 0.2615 0.497] from Example 1 .

The eigenvalues o f this (acyclic) transition matrix are 1 , 0 .995, 0.987 and 0 . 198 . The asymptotic

averaged range process approximation can be constructed using the same mapping matrix M as in

Example 2 . The error terms 7l'n (1) - Tn(l) are recorded at each iteration and plotted in Figure 3 . 1 .

The sum of the error at each iteration in Figure 3 .1 gives the total error in expected convergence

time introduced by the asymptotic averaged range process approximation to the domain process. In

this case the total error is only 0.7 iterations; the expected number of iterations before convergence

for the domain process is 12 1 .4 and that of the asymptotic averaged range process is 120.7. Thus

even though the behaviour of the averaged range process takes some time to settle down to that of

the asymptotic averaged range process, the overall error is still small. If the domain process had its

largest eigenvalues even closer to one, however, then the convergence would be slower and total error

would increase.

Note that Figure 3 . 1 illustrates a reason why the error is small: the errors are initially biased

towards zero. Indeed, as mentioned above, there is initially no error at all , since the asymptotic

averaged range process and the averaged range process start with identical probability distributions.

Despite the worst case analysis revealing unbounded error in the approximation of expected conver-

3.4. Convergence time of AARP

X 1 0-4 2

0

-2

-4

-6

:r -8 .'!!
I

� -10
'0.

-12

- 14

-16

-18

-20 0 200 400 600 800
iterations

1 000

63

1 200 1 400 1 600

Figure 3 . 1 : Time series plot of the error 7rn(l) - Tn(l) at each iteration in the example, illustrating
geometric decay.

gence times using the asymptotic averaged range process, it can be anticipated that many algorithms

applied to various problems will give rise to domain processes with eigenvalues far enough from one

for the approximation to be very close . If it were possible to check this property of the algorithm,

a small value of the second largest eigenvalue could provide an assurance that the averaged range

process transition matrices converge quickly to their limit and thus that the error introduced by the

asymptotic averaged range process is small . The process in the domain is thus very closely linked

with the time-homogeneous Markov process in the range, AARP. If the backtracking adaptive search

approximation to the asymptotic averaged range process is accurate, then it will be possible to find

a good estimate of the expected number of iterations before convergence for the original algorithm in

the domain.

64 Chapter 3. The range, averaged range and asymptotic averaged range processes

3 . 5 Summary

This chapter fills out the theoretical background to the approximation framework outlined in Chap­

ter 2. Firstly, the averaged range and asymptotic averaged range processes have been shown to be

well-defined approximations to any time-homogeneous Markov domain process. The possibility of

weakening this restriction on the domain process has been remarked.

Secondly, the number of iterations to convergence for the averaged range process has been shown to

be identical in distribution to that of the domain process, and reasons have been advanced to suggest

that the asymptotic averaged range process may have an expected number of iterations to convergence

that very closely approximates the value for the domain and averaged range processes.

It remains therefore to complete the approximation process by finding a backtracking adaptive

search approximation to the asymptotic averaged range process; this is the theme of the next chapter .

65

Chapter 4

Backtracking adaptive search

4. 1 Introduction

Attention is now turned to the end-point of the approximation framework: backtracking adaptive

search. This chapter provides a definition of backtracking adaptive search and, in particular, analysis is

provided for this process as defined on a finite range. Then a method of approximating the asymptotic

averaged range process with backtracking adaptive search is described.

In particular, the following section contains a description and definition of backtracking adaptive

search. Section 4.3 then provides analysis of the number of iterations before convergence for back­

tracking adaptive search on a finite range, and Section 4.4 extends this analysis to allow an arbitrary

initial distribution; this is of particular interest in the context of the framework of approximations.

In both cases, a method is shown whereby the expected number of iterations before convergence for

backtracking adaptive search can be found quickly via computer. Section 4.5 provides examples of

backtracking adaptive search algorithms and shows how this analysis generalises several algorithms

for which analysis has already been published. Finally, Section 4.6 details the method by which the

asymptotic averaged range process is approximated by backtracking adaptive search. This completes

the approximation framework; it is then possible to approximate the progress on the range of any

algorithm with a backtracking adaptive search process and estimate the number of iterations required

to reach a solution with a specified objective function level.

66 Chapter 4. Backtracking adaptive search

The entire moment generating function of the number of iterations before convergence for back­

tracking adaptive search on mixed domains is left to Chapter 5; this chapter seeks only to introduce

enough theory to provide an end-point to the approximation framework.

4. 2 Defining backtracking adaptive search

In this section backtracking adaptive search is described and the relevant notation is introduced. The

basic concepts of backtracking adaptive search are discussed in the context of other similar theoretical

optimisation algorithms.

The pure adaptive search algorithm has been defined and analysed in [54, 56] . Pure adaptive search

is a theoretical algorithm for stochastic global optimisation in which successive iterates are generated

from the improving region in the domain. This algorithm is an ideal, which is currently prohibitively

difficult to implement in general. A recent encouraging advance towards implementing pure adaptive

search is given in [39] .

In general , algorithms will sometimes "hesitate" at the current point in the domain for a number of

iterations before finding an improvement , or even "backtrack" by accepting new iterates with worsening

objective function values . These generalisations are incorporated in hesitant adaptive search (HAS)

and backtracking adaptive search (BAS) , respectively. The full distribution of the number of iterations

until convergence is given for HAS in [51] .

In this chapter HAS is extended to BAS, and a closed form expression for the expected number

of iterations before convergence for BAS on a finite domain is presented. This process is used in the

expectation that BAS will provide a sufficiently flexible family of homogeneous Markov range pro­

cesses for approximating the asymptotic averaged range distributions of stochastic global optimisation

algorithms. In [31] a more general variant of BAS on finite domains is discussed, and bounds for

expected search duration are presented. A closed form expression for the expected search duration of

a special case studied in [31] is presented in Section 4.5 .

The central idea of backtracking adaptive search is as follows. At each iteration, the objective

function value either improves, remains at the current level, or worsens. It is assumed that the

4.2. Defining backtracking adaptive searcb 67

distribution of the next objective function value is then a normalised restriction of a single distribution

on the range, constant with respect to time. This is acknowledged to be restrictive.

The definition of backtracking adaptive search now given applies only to problems with finitely

many range levels. Only finite backtracking adaptive search is analysed in this chapter; analysis for

the remaining cases is provided in Chapter 5.

The finite number of range levels in f(8) are (without loss of generality) labelled 1 , 2 , . . . , m.

Initially BAS samples Ye from this set according to the range probability measure P(Ye = y) = 1fy ,

with masses assumed to be strictly positive for all y E {I , 2 , . . . , m} . (For simplicity, the notation

(Yn) for backtracking adaptive search is used in this chapter and the following, instead of the notation

(Y�") used in Figure 2 . 1 to distinguish backtracking adaptive search from the other processes in that
y

figure.) Define py = I>i' (Note that the symbol 1fn is used in Chapter 3 to represent a vector of
i=l

probabilities relating to the averaged range process; the use of 1fy in this chapter is unrelated to the

meaning applied there.) At each iteration thereafter , one of three things happens. With a known

probability byn , the algorithm will make an improvement, sampling the next evaluation point Yn+1

according to the normalised restriction of 7i to the current improving set. With a second known

probability Wyn , the algorithm will backtrack, sampling the next evaluation point Yn+1 according to

the normalised restriction of 7i to the current worsening set. Otherwise, the algorithm will hesitate,

remaining at the current evaluation point. The functions b and W depend only on the current level.

Define b1 = Wm = 0, and impose the condition by + Wy > 0 for all y E {2 , 3, . . . , m} to ensure that

the algorithm can attain any objective function level in finite time. The algorithm is now presented

formally.

Backtracking adaptive search

Step 1 Generate Ye in f(8) according to 1f. Set n = O.

Step 2 With probability bYn choose the next iterate Yn+1 according to the normalised restriction

of 7i to { I , 2, 3 , . . . , Yn - I} . With probability WYn choose Yn+1 according to the normalised

restriction of 7i to {Yn + 1 , Yn + 2, Yn + 3, . . . , m} . Otherwise set Yn+1 = Yn.

Step 3 If a stopping criterion is met, stop. Otherwise, increment n and return to Step 2 .

68 Chapter 4. Backtracking adaptive search

Note that HAS is the special instance of BAS occurring when Wy = 0 for all y E f (8). In turn,

pure adaptive search (PAS) is the special instance of HAS occurring when by = 1 for all y E f (8) .

Thus PAS must improve at every iterate.

The increasingly general families of homogeneous first order Markov chains provided by PAS , HAS

and BAS can serve to approximate the asymptotic averaged range process of a stochastic optimisation

algorithm.

4 . 3 Expected search duration

In this section a difference equation for the expected number of iterations of finite backtracking

adaptive search before convergence is derived and then solved, as in [lJ .

Define N(y) = min{n : Yn :::; y} for all y E { I , 2, . . . , m} . Since the initial objective function value

is denoted Yo, N(y) is the number of iterations before reaching level y.

There is a well-known procedure for computing the expected search duration of a Markov process

such as BAS, generally requiring matrix inversion (see for instance [27]) . The theorem and corollary

presented in this section take advantage of the structure of BAS, however, to allow this quantity to

be evaluated without any call for inverting a matrix. Expected search durations can thus be found

quickly by computer for problems of a size that would ordinarily prohibit such calculation.

Theorem 4 .3 .1 The expected number of iterations of finite backtracking adaptive search before reach-

ing a certain level y, E [N(y) J , satisfies

i) For all m, E[N(m)J = O .

ii) For m > 1 , E[N(m - l) J = 7Tm/bm .

iii) For m > 2 ,

E[N(y - 1)] - E[N(y)]

for all y E {2, 3, . . . , m - I} .

7Ty(wyE[N(y - 1)] + 1 - py)

py (7TyWy + (1 - py) (by + wy))

4.3. Expected searcll duration 69

Proof First the formulce are established for E[N(m)] and E[N(m - l) J . Evidently, Yo � m so

E[N(m)] = O. If m > 1 then Yo � m - I with probability 1 - ?Tm; in this case N(m - 1) = O.

Otherwise, Yo must be m and the first value distinct from Yo must b� less than m; in this case

N(m - 1) is the length of the initial hesitation at Yo. As Wm = 0, the probability of hesitating at each

iteration is 1 - bm , whence E[N(m - 1)] = ?Tm/bm.

The proof of the difference equation makes use of the following equality, valid for m > 2 and

y E {2, 3 , . . . , m - I } :

E[N(y - 1)] P(Yo < y)E[N(y - l) !Yo < y]

+ P(Yo = y)E [N(y - l) !Yo = y]

+ P(Yo > y)E[N(y - l) !Yo > y] .

The expectation of N (y - 1) in the first term above is zero, since Yo � y - 1 . Thus

E[N(y - l)J ?TyE[N(y - l) lYo = yJ

+ (1 - py)E[N(y - l) I Yo > yJ . (4. 1)

Define h as the first iteration number where Yh differs from Yo . In the case where Yo = y, conditioning

N(y - 1) on whether Yh is smaller or larger than y gives

E[N(y - 1)] ?TyP(Yh < y)E[N(y - l) !Yh < Yo = y]

+ ?TyP(Yh > y)E[N(y - l) IYh > Yo = y]

+ (1 - py)E[N(y - l) IYo > yJ

?TyE[hlYo = yJ

+ ?TyP(Yh < y)E[N(y - 1) - h!Yh < Yo = y]

+ ?TyP(Yh > y)E[N(y - 1) - h lYh > Yo = y]

+ (1 - py)E[N(y - l) !Yo > yJ .

70 Chapter 4. Backtracking adaptive search

The e xpectation o f N(y - 1) - h in the second term abo ve is zero, since in this case the sample path

first falls below y at iteration h, whence N(y - 1) = h. Thus

E[N(y - 1)] � + _�y�w�y�E�[_N�(_y_-_1�)�IYr_o_>_y�]
by + Wy by + Wy

+ (1 - py)E[N(y - l) IYo > y] ,

since the total probability o f leaving y at any iteration is by + wy . The e xpectation in the second

term abo ve has been simplified using the fact that the local range distribution o f Yh, gi ven that

Yh > Yo = y, is a normalised restriction o f the entire range distribution, and that the search algorithm

is memoryless. Transition probabilities from le vel Yh > y are thus independent o f any prior history.

Rearranging the equation gi ves

E[N(y - l) IYo > y]

Combining this with (4. 1) yields

E[N(y - l) IYo = y] =

(by + wy)E[N(y - 1)] - �y
�yWy + (1 - py) (by + wy) .

wyE[N(y - 1)] + 1 - Py
�yWy + (1 - py) (by + wy) "

(4.2)

The difference equation can now be established in the following way, for y E {2 , 3, . . . , m - I } :

E[N(y - 1)] - E[N(y)] E[N(y - 1) - N(y)]

P(YN(y) = y)E[N(y - 1) - N(y) IYN(y) = y]

+ P(YN(y) < y)E[N(y - 1) - N(y) IYN(Y) < y] .

The expectation o f N(y - 1) - N(y) in the second term abo ve is zero, since YN(y) :S y - 1 , whence

N(y - 1) = N(y). Thus

E[N(y - 1)] - E[N(y)]

=

�yE[N(y - 1) - N(y) IYN(Y) = y]
Py

�yE[N(y - 1) IYo = y]
Py

·
4.3. Expected search duration 71

again using the fact that the search algorithm is memoryless.

Substituting the expression for E [N(y - 1) IYo = y] from (4.2) provides the desired result. •

The following corollary can now be derived, using theory of difference equations.

Corollary 4.3.1 The expected number of iterations of finite backtracking adaptive search before reach-

ing level y, E[N(y)) , satisfies

i) For all m, E [N(m)] = O.

ii) For m > 1 , E[N(m - 1)] = 7rm/bm .

iii) For m > 2,

E [N(y)] = 7rm + L 7rj IT Vi IT 2.
(m-I (m-I)) m-I

bm j=y+1 pj bj + Pj-I Wj i==j i=y+1 Vi

Proof The expectations of N(m) and N(m - 1) are proved in the theorem. It is convenient to write

the difference equation of Theorem 4 .3 . 1 as follows,

E[N(y - 1)] - A(y)E[N(y)] = B(y) (4.3)

where A(y) = py (7rywy + (1 -py) (by + wy)) /((1 -py)(Pyby + Py-IWy)) and B(y) = 7ry/(pyby + Py-IWy) ,

for all y E {2, 3 , . . . , m - 1 } .

When m = 3 , (4.3) can be used with y = 2 to show that E[N(1)] = (7r3/b3)A(2) + B (2) , which

agrees with the result stated in the corollary.
m-I

Assuming now that m > 3 , divide both sides of (4.3) by IT A(i) (valid since A(i) > 0 for all

i E {2, 3, . . . , m - 1 }) , to give

E[N(y - 1)]
m-I IT A(i)
i=y

i=y

E[N(y)] B (y) _'-:--'-'-''- = m-I m-I IT A(i) IT A(i)
i=y+I i=y

72 Chapter 4. Backtracking adaptive search

m-I
for y E {2, 3, . . . , m - 2}. The left hand side is now a first difference of E[N(y)J / IT A(i) . The

i=y+1
general solution for an equation of this form is a constant plus a summation in which the right hand

side provides the term [33 , p. 153J . Thus

E[N(y)]
m-I IT A(i)
i=y+1

c +
m-I B (j) L -m---:-I '-'---

j=y+1 IT A(i)
i=j

Observe that this solution satisfies Equation (4.3) for all y E { I , 2, . . . , m - 2} .

(4.4)

It remains to find the constant C. Since E [N(m - 1)] = 1fm/bm , (4.3) implies that E[N(m - 2)] =

(1fm/bm)A(m - 1) + B(m - 1) . Setting y = m - 2 in (4.4) gives E[N(m - 2)] = CA(m - 1) + B(m - 1) ,

and since A(m - 1) > 0 it follows that C = 1fm/bm. Substituting the expressions for A(y) , B (y) and

C back into (4.4) now yields the result of the corollary. •

Thus the expected number of iterations before convergence for a backtracking adaptive search ap-

proximation to any domain process can be found without need for matrix inversion. This is illustrated

in Section 4.5 via several examples, including special cases for which analysis has been published

elsewhere. Section 4.6 then shows how the backtracking adaptive search approximation is formed.

First, though, a digression is made to generalise the result of this section.

4 . 4 Expected search duration for a n algorithm with arbitrary initial

distribution

This section produces a result completely analogous to the result of the preceding section, for a general

backtracking adaptive search algorithm in which an initial distribution distinct from 1f is specified. The

general stochastic global optimisation algorithm of Chapter 2 specifies a particular initial distribution;

it is therefore sensible that the backtracking adaptive search approximation for this algorithm should

be modified by incorporating this initial distribution. This section provides the necessary extension

to the theory of backtracking adaptive search.

As before, the expression for the expected convergence time of this generalisation of backtracking

4.4. Expected search duration for an algorithm with arbitrary initial distribution 73

adaptive search can be evaluated quickly by computer with no need for complicated procedures such

as matrix inversion. This form of backtracking adaptive search is the one implemented in Chapter 6 .

Backtracking adaptive search is defined exactly as before, except that the initial range level Yo is

generated not according to the range distribution 7r but according to a new distribution defined as
y

P(Yo = y) = a-y . Define Sy = La-i . It is required that 7rl > 0 and that either a-y or 7ry must be
i=l

positive for all y E {2, 3, . . . , m} . Define y* = max{y : 7ry > a} . Also Wy = a for all y 2 y* ; b1 = 0

and by + Wy > 0 for all y E {2, 3, . . . , m} . Finally, the notation for expectations is now extended to

specify to which form of backtracking adaptive search the expectation applies . Expectations denoted

En [·] refer to ordinary finite backtracking adaptive search, while those denoted Ea [·] apply to the

generalisation with arbitrary initial distribution considered here.

Theorem 4.4. 1 The expected number of iterations of finite backtracking adaptive search with an

arbitrary initial distribution before first reaching a certain level y, Ea [N(y)] , satisfies

i) For all m, Ea [N(m)] = O.

m
ii) For m > 1 , Ea [N(y)] = I: a-i/bi for all y E {y* , y* + 1 , . . . , m - I } where y* < m and

i=y+l
m

Ea [N(y* - 1)] = (1 - Sy')7ry• /by• + L a-i/bi where y* > 1 .
i=y'

iii) For m > 2,

Ea [N(y - 1)] - Ea [N(y)] (a-ypy + 7ry (l - Sy)) (wyE1r [N (y - 1)] + 1 - Py)
Py (7r Y Wy + (1 - Py) (by + wy))

where

En [N(y - 1)] = 7rm + L 7rj IT Vi IT -
(m-I (m-I)) m-I 1

bm j=y pjbj + Pj-I Wj i=j i=y �

Proof As in the proof of Theorem 4.3 . 1 , the formulre for special cases are first established. Evidently,

Yo :S m so E[N(m)] = O.

74 Chapter 4. Backtracking adaptive search

If m > 1 then Yo � y with probability Sy ; in this case N(y) = O . Otherwise, if y 2: y* then the

first value distinct from Yo , labelled Yd, must be no greater than y ; in this case N(y) is the length of

the initial hesitation at Yo . Since Wy = 0 for y 2: y* , the probability of hesitating at each iteration is
m

1 - by , whence Ea [N(y)] = L cri/bi where y* � y < m.
i=y+l

Clearly, Ea [N (y* - 1)] is positive only if Yo 2: y* . Then since y* is the only level greater than

y* - 1 for which 1fy > 0, Ea [N(y* - 1)] is the sum of any initial hesitation plus the hesitation at y* if

this level is visited. The probability of hesitating at each iteration is 1 - by for all y 2: y* ; thus when

y* > 1 and Sy*-l < 1

m

Ea [N(y* - 1)] = P(Yo = y*)Ea [N(y* - l) IYo = y*] + L P(Yo = i)Ea [N(y* - l) lYo = i]

= P(Yo = y*)Ea [dIYo = y*]
m

i=y·+ l

+ L P(Yo = i) (Ea[dlYo = i] + Ea [N(y* - 1) - dlYo = iD

m
= L P(Yo = i)Ea [dIYo = i]

i=y*
m

+ L P(Yo = i) (P(Yd = y*) (Ea [N(y* - 1) - dlYd = y* < Yo = i]
i=y*+ l

+ P(Yd < y*) (Ea [N(y* - 1) - dlYd < y* < Yo = i])
;-. cri (1 - Sy.)1f y*
L..,. - + -'---"--'---"'-

. • bi by. t=y

since N(y* - 1) = d when Yd < y* < Yo . The formula also correctly gives E[N(y* - 1)] = 0 when

SY*-l = 1 .

The proof of the difference equation now proceeds using the following equality, valid for m > 2

and y E {2, 3, . . . , y* - I} where y* > 2:

Ea[N(y - 1)] - Ea [N(y)] Ea [N(y - 1) - N(y)]

= P(YN(y) = y)Ea [N(y - 1) - N(y) IYN(y) = y]

+ P(YN(y) < y)Ea [N(y - 1) - N(y) IYN(y) < y]

= P(YN(y) = y)Ea [N(y - 1) - N(y) IYN(Y) = y] . (4.5)

4.4. Expected search duration for an algorithm with arbitrary initial distribution 75

Observe that YN(y) = y either if Yo = y or if Yo > y and level y is reached in the process of the

algorithm. This gives P(YN(Y) = y) = (Jy + (1 - Sy)7ry/Py.

Now since the algorithm is memoryless, and the different forms of backtracking adaptive search

are identical conditional on any current level, Ea [N(y - 1) - N(y) IYN(y) = y] = E7r [N(y - l) lYo = y] .

Substituting into Equation (4.5) the probability derived above, the expression for E7r [N(y - 1) \Yo = y]

from Equation (4 .2) and then an expression for E7r[N(y - 1)] from Corollary 4 .3 . 1 provides the desired

result. •

The usual form of backtracking adaptive search is a special case of the general form treated here;

Theorem 4.3 .1 can be obtained from Theorem 4.4 . 1 by letting 7r = (J .

In the same way as Corollary 4 .3 . 1 was derived, the following corollary is now obtained.

Corollary 4.4.1 The expected number of iterations of finite backtracking adaptive search with an

arbitrary initial distribution before reaching level y, Ea [N(y)] , satisfies

i) For all m, Ea [N(m)] = O.

m

ii) For m > 1 , Ea [N(y)] = L (Ji/bi for all y E {y* , y* + 1 , . . . , m - I } where y* < m and
i=y+1

m
Ea[N(y* - 1)] = (1 - Sy.)7ry• /by• + L (Ji/bi where y* > 1 .

iii) For m > 2,

where

i=y·

E7r [N(y - 1)] = 7rm + L 7rj IT Vi IT -
(m-I (m-I)) m-I 1

bm j=y Pjbj + Pj-I Wj i=j i=y Vi

Proof The expectations of the special cases are proved in the theorem. To solve the difference

76 Chapter 4 . Backtracking adaptive search

equation of the theorem, note that

y* -l

Ea[N(y)J = Ea[N(y* - l)J + L (Ea[N(k - l) J - Ea [N(k)]) ,
k=y+l

into which the difference equation may be substituted to provide the solution. •

Analytic expressions for the expected number of iterations before convergence for a backtracking

adaptive search approximation to any domain process have thus been found. The following section

provides several examples. Finally, in Section 4.6 a method of forming a backtracking adaptive search

approximation to an asymptotic averaged range process is presented.

4 . 5 Examples

The results of the preceding sections allow expected convergence times to be calculated for any algo-

rithm that can be represented within the framework of finite BAS, with any initial distribution. This

section illustrates the results using several instances of finite BAS.

4 . 5 . 1 A s mall example

Progress of the algorithm may be demonstrated on an artificial problem with a small range. (The

exact nature of the domain in the artificial problem is irrelevant, since the definition of backtracking

adaptive search makes use only of parameters defined in the range.) A uniform probability distribution

with m = 4 levels is used, so 1fi = i for i E {1 , 2, 3, 4} . The vectors (b1 , b2 , b3 , b4) = (0, 0 .1 , 0.8, 0 .9)

and (Wl , W2 , W3 , W4) = (0, 0.4, 0.2, 0) are chosen to reflect a decreasing likelihood of improvement as

the algorithm nears the optimum. Applying Corollary 4.3.1 with y = 1 now shows that the expected

number of iterations before reaching range level 1 is 3% .

Figure 4 . 1 shows the distribution of the number of iterations this algorithm takes to reach the

absorbing state, using simulation. Corollary 4.3 .1 provides the expected value of the number of

iterations; the moment generating function of this distribution is derived in the following chapter.

Taking range level 1 as an absorbing level (representing convergence of the algorithm) gives rise

4.5. Examples 77

to the following Markov range transition matrix. (Transition probabilities from the other levels are

derived from the backtracking adaptive search parameters according to the definition of backtracking

adaptive search in Section 4 .2 . For instance, the probability of improving from level 3 is b(3) = 0.8

and the normalised restriction of 7r to the first two levels is 1/4�1/4 [� �] = [� �J ; thus the first two

entries in the third row of the transition matrix are 0.8 [� �J = [0 .4 O.4J .)

1 2 3 4

1 1 0 0 0

2 0 . 1 0 .5 0.2 0.2
Level

3 0.4 0 .4 0 0.2

4 0.3 0 .3 0.3 0. 1

Standard matrix theory [27J confirms that the expected time is 3i iterations. To obtain this result,

the transient portion of the transition matrix is subtracted from the 3 x 3 identity matrix, and the

difference inverted. Multiplying the transient portion of the initial distribution by the vector of row-

sums of this inverse then gives the solution. However, forming the transition matrix and applying this

method is prohibitively time-consuming for problems with a large number of range levels, due to the

need for matrix inversion. This highlights the contribution made by Corollary 4 .3 . 1 .

4 . 5 . 2 A small example with randomly generated initial distribution

The same problem is now solved using a backtracking adaptive search algorithm with randomly gen-

erated initial distribution (J = [0 .2166 0 . 1 130 0 .2900 0.3804J .

Corollary 4.4 . 1 now shows that the expected number of iterations before reachitlg range level 1 is

3 .32. Figure 4.2 shows the distribution of the number of iterations this algorithm takes to reach the

absorbing state, using simulation.

In exactly the same way as before, standard matrix theory [27J can confirm that the expected

time is 3.32 iterations . Matrix inversion is again necessary using this method; however, the result can

be obtained using Corollary 4.4. 1 without this requirement. The corollary thus provides a means of

calculating expected convergence times in problems too large for solution via matrix inversion.

78 Chapter 4. Backtracking adaptive search

2500rT------.------.------.------.------.------.------.-------

2000

1 500

o 5 1 0 1 5 20 25 30 35 40
Number of iterations

Figure 4 .1 : Number of iterations before convergence to the optimal state for 10000 runs of the algorithm
given in Example 4 .5 . 1 .

2500,-----,-----.-----,------r-----.-----,------,-----.-----,

2000

1 500

1 000

500

0 --­

o 5 10 1 5 20 25 30 35 40 45
Number of iterations

Figure 4.2: Number of iterations before convergence to the optimal state for 10000 runs of the algorithm
given in Example 4.5.2.

4.5. Examples

4 . 5 . 3 Combination o f pure adaptive search and pure random search

79

A particular realisation of BAS is analysed in [31] . This algorithm samples uniformly from points

in the domain of equal or better objective function value with probability p, and otherwise performs

pure random search. Worsening points are accepted with probability tj otherwise the algorithm

hesitates. Bounds for the expected convergence time with constant p and t are presented in that

paperj an expression for the exact value is now available. In this case, the appropriate formulre are

by = Ppy-I/py + (1 - p)Py-l and Wy = (1 - p) (l - Py)t . Thus, from Corollary 4 .3 . 1 , E[N(m)] = 0,

E[N(m - 1)] = Trm/Pm-l and

The result holds also

if P and t are functions of y.

Figure 4.3 shows how expected convergence times vary with P and t in this algorithm. The proba-

bility mass function Try is chosen to be uniform on { I , 2, . . . , 20} . Unsurprisingly, since this algorithm

will never benefit by backtracking, convergence time increases with decreasing P and increasing t .

When P = 0 the algorithm has the convergence properties of pure random search; when P = 1 the

algorithm is PAS . In neither of these cases does the probability of accepting a worsening point have

any effect on convergence time: in PAS worsening points are never generated, while in pure random

search the number of iterations remaining until reaching the optimum is the same whether worsening

points are accepted or not. The results shown here verify the result of Corollary 4.3 .1 using a previous

investigation, reported in Figure 1 1 of [31] .

4 . 5 . 4 Finite hesitant adaptive search

Corollary 4.4 . 1 provides as a special case the expected number of iterations before convergence for

finite hesitant adaptive search with arbitrary initial distribution. The result for finite hesitant adaptive

search is obtained by making the substitution Wy = 0 for all y.

80 Chapter 4. Backtracking adaptive search

20
p = 0 (pure random search)

1 8

1 6

VI 14
.� "§ �

p - 0.1

� 1 2
'0 Cl) "E 1 0
:;:,
z

8
� 6

4

2 o 0.1 0.2 0.3

p = 0.5

p = 1 (pure adaptive search)

004 0.5 0.6 0.7 0.8 0.9
Acceptance probability t

Figure 4.3: Number of iterations until convergence to the optimal state for the example given in
Subsection 4 .5 .3 as t , the acceptance probability, ranges from 0 to 1 and for P E {O, 0. 1 , 0 .5 , I } .

Theorem 4 .5 . 1 The expected number of iterations of finite hesitant adaptive search with an arbitrary

initial distribution before first reaching level y, Eu [N (y)] , satisfies

i) For all m, Eu[N(m)] = O .

m (JiPi + 7ri (l - Si) ii) For m > 1 , Eu [N(y)] = L . b . for all Y E { 1 , 2 , . . . , m - 1 } .
i=y+l Pt t

Proof The first case is inherited from Corollary 4.4. 1 . The second case in that corollary implies
m

that for m > 1 , Eu [N(y)] = L (Ji/bi for all y E {y*, y* + 1 , . . . , m - I } where y* < m; Theorem 4 .5 . 1
i=y+l

simplifies to this expression since 7ry = 0 for y > y* . Also,

Eu[N(y* - 1)]

4.5. Examples 81

(4.6)

where y* > 1; this also agrees with Theorem 4.5 . 1 .

It remains therefore to prove that the third case of Corollary 4.4 .1 is given by the expression of

Theorem 4.5 .1 when Wy = 0 for all y. This substitution leads, after simplification, to

for all y E { I , 2 , . . . , y* - 2} where y* > 2. Now substitution of the expression for Ea [N(y* - 1)] from

Equation (4.6) produces the desired result . •

When the initial distribution is 7r, this further simplifies to

m

E[N(y)] = L 7r�.
j=y+l PJ J

for all y E { I , 2, . . . , m - I} and m > 1 , with E[N(m)] = O. Note that the summation is over only

transient range levels; this constitutes a minor correction to the result shown in [51] .

4 . 5 . 5 Finite pure adaptive search

The equivalent results for PAS are now easily derived from the above.

Theorem 4 .5 .2 The expected number of iterations of finite pure adaptive search with an arbitrary

initial distribution before first reaching level y, Ea [N (y)] , satisfies

i) For all m, Ea [N(m)] = O.

� (JjPj + '71"](1 - Sj) ii) For m > 1 , Ea [N(y)] = � for all y E { I , 2, . . . , m - I } .
j=y+l Pj

Proof Substituting by = 1 for all y in Theorem 4 .5 . 1 provides the result. •

82 Chapter 4. Backtracking adaptive search

When the initial distribution is 7r , this gives

m
E[N(y)] = L 7rj

j=y+1 Pj

for all y E { I , 2 , . . . , m - I } and m > 1 , with E[N(m)] = O. A special case of this formula is derived

in [56] . There the search duration is defined to include the final iteration, and thus the solution is
m

reported as E[N(l)] = 1 + L7rdpi where m > 1 .
i=2

4 . 5 . 6 Pure random search

Corollaries 4 .3 . 1 and 4.4 .1 also provide expected convergence times for pure random search with

arbitrary initial distribution.

The expected number of iterations before convergence for pure random search is available from

Corollary 4.3. 1 by letting by = Py-l and Wy = 1 - Py . Thus

E[N(y)] (� + 1:1 (-..!!..L If Pi-I)) If �
Pm-1 j=y+1 pj-1 i=j Pi i=y+1 Pi-1 (7rm + 1:1 �) Pm-1
Pm-1 j=y+1 Pm-1 Py

1 - Py
Py (4.7)

for all y E { I , 2, . . . , m - 2} and m > 2. Note that this formula also correctly gives the values of

E [N (m - 1)] = 7rm/Pm-1 and E [N(m)] = 0 for all m. This agrees with the result of direct calculation.

Substituting this result into Corollary 4.4. 1 now provides the expected number of iterations before

convergence of pure random search with arbitrary initial distribution (1. Note that y* = m for pure

random search, so Ea [N(y* - 1)] = O'm/Pm-1 where m > 1 . Thus

Ea [N(y)] (1m �l (1kPk + 7rk (l - Sk)
- -- + 6 Pm-1 k=y+l Pk-lPk f: (1 - Sk-l _ 1 - Sk)

k=y+1 Pk-1 Pk

4. 6. Approximating the asymptotic averaged range process with backtracking adaptive search 83

for all y E { I , 2, . . . , m - 2} and m > 2. Note that this formula also correctly gives the values of

E[N(m - l)] and E[N(m)] = 0 for all m. Equation (4.7) can immediately be recovered by substituting
m

a = 7r. The same result can, of course, be calculated directly from Equation (4.7) as l: ak/py .
k=y+l

4 . 6 Approximating the asymptotic averaged range process with back-

tracking adaptive search

This section details the method used to find a finite backtracking adaptive search approximation to

an asymptotic averaged range process. The approach used is very simple and intended only as an

illustration; a more complicated method is later shown to yield better results.

Finite backtracking adaptive search uses three parameters : b, w and 7r. (When the initial dis-

tribution is not 7r, a fourth parameter is used, the value of which is known.) Since the asymptotic

averaged range process transition matrix has none of the restrictions imposed for finite backtracking

adaptive search, any method of estimating these parameters inevitably introduces some error: the

expected convergence times of the two processes will differ. The approach used in this thesis is one

sensible approach among several that could be used. It is possible that another method may be proved

better than the one described here; the present aim is only to initiate an approximation method in

order to indicate the kind of results attainable. This approximation method stands to be improved

by subsequent research.

Bettering probabilities at each level can be found directly from the asymptotic averaged range

process transition matrix R as

i-I
bi = l: �j (4.8) j=1

84 Chapter 4. Backtracking adaptive search

for i > 1 and bl = 0. Similarly,

for i < m and Wm = 0 .

m
Wi = L Rij

j=i+1
(4.9)

As illustrated in Subsection 4.5 . 1 , there is a Markov range transition matrix corresponding to any

particular values of b, w and 7r. This matrix has a special form, not in general shared by the transition

matrix of the asymptotic averaged range process . It then remains to find an estimator for 7r given

these values for b and w, so that the discrepancy between the asymptotic averaged range process

transition matrix R and the transition matrix implied by backtracking adaptive search is made as

small as possible.

An intuitive justification for the method chosen is first provided . A sensible estimate of the range

distribution can be obtained from a weighted average of the bettering and worsening range distributions

at each level in the asymptotic averaged range process. Distributions for levels more commonly visited

are given a greater weighting and levels less frequently visited are given a smaller weighting. Note

that this estimation method excludes hesitations in the range from consideration, since 7r is only used

when the backtracking adaptive search algorithm either betters or worsens.

Using the results of Subsection 3.3.3, the limiting average probabilities of being in each transient

domain state given that the process has not converged may be denoted by the vector

(4 .10)

No transitions from the absorbing level are to be considered (since the algorithms involved make

no use of these) ; thus the full l-vector of weightings for each state is �T? and the limiting average

probabilities of being in each transient range level given that the process has not converged is �T? M.

Let

�; � {

Rij , i = j

0, otherwise;

4. 7. Summary

then the estimate of 7f is

�1!T M(R - Rd)
\ \,67? M(R - Rd) \ \ l '

85

(4 . 1 1)

The heuristic for estimating 7f described above is easy to evaluate for any asymptotic averaged range

process. This section provides a simple method of estimating parameters b, w and 7f for backtracking

adaptive search. Refinement of this approach is possible; however, the approach described in this

section is sufficient to allow the full approximation process to be demonstrated.

4 . 7 Summary

This chapter provides the theory of backtracking adaptive search required for the approximation

process described in Chapter 2. Any Markovian algorithm for which the domain process is known

can now be approximated by a backtracking adaptive search algorithm in the range. The expected

convergence time of the backtracking adaptive search algorithm is then an estimate of the expected

convergence time of the original algorithm. Chapter 6 demonstrates this approximation process.

For the sake of completeness, however, the following chapter generalises the analysis in Section 4 .3 ,

where there is no parameter for the arbitrary initial distribution, to obtain the complete distribution

of the number of iterations before convergence for backtracking adaptive search on mixed domains.

86

Chapter 5

The distribution of the number of

iterations to convergence for

backtracking adaptive search

5 . 1 Introduction

This chapter provides a full summary of results obtained concerning the distribution of the number

of iterations before convergence for backtracking adaptive search. The factorial moment generating

function of this distribution is derived for backtracking adaptive search in the general case where the

range distribution has a mixture of continuous and discrete components.

The results of Section 4.3 could be taken as a special case of the material presented in this chapter;

however, the later sections of that chapter are not dependent on the distributions derived in this

chapter. Whereas Chapter 4 was concerned with defining and analysing backtracking adaptive search

as an end-point to the approximation framework, this chapter provides a more complete analysis of

the algorithm in a general context.

In Section 5.2 backtracking adaptive search is defined using a range distribution that may be

continuous, discrete or a mixture of both. Section 5.3 presents the distribution results for each pos­

sible type of range distribution. In Subsection 5 .3 . 1 a moment generating function is provided for

5.2. Defining backtracking adaptive search with a general range distribution 87

the delays between improvements in the best level reached so far by the algorithm; this is used in

Subsections 5.3 .2 , 5.3.3 and 5.3.4 to treat the discrete, finite and continuous cases respectively. Sub­

section 5.3 .5 then provides a factorial moment generating function for backtracking adaptive search

with a general range distribution. The final section presents a summary of the analysis of backtracking

adaptive search.

5 . 2 A general definition o f backtracking adaptive search

Since the results of this chapter apply to backtracking adaptive search where the range distribution

may be continuous, the notation of finite backtracking adaptive search must be generalised.

The range is now allowed to be the real numbers. Define a range probability measure p, so that

P (Yo E A) = p(A) for any measurable set of real numbers A. Finite backtracking adaptive search

notation p({t}) = 7ft is used when the set A is a singleton. The cumulative range distribution function

is defined as Py = p({t : t :::; y}) . The algorithm terminates on reaching any point with sufficiently

low objective function level . The termination region is denoted by T. Note that for all levels y such

that Py = 1 , the number of iterations before convergence is exactly zero. In what follows, analysis is

restricted to the number of iterations before reaching levels y for which Py < 1 .

Again, the algorithm initially samples Yo from the range according to the probability measure p.

At each iteration thereafter, one of three things happens. At the nth iteration, with probability byn ,

the algorithm improves, sampling the next evaluation point according to the normalised restriction of

p to the current improving set. With probability Wyn , the algorithm backtracks, sampling the next

evaluation point according to the normalised restriction of p to the current worsening set. Otherwise

the algorithm hesitates, remaining at the current evaluation point. Functions b and W depend only on

the current level.

Restrictions are required on b , w and p to ensure that the algorithm will sample from T in finite

time. Firstly, if there exists a level t such that 7ft > 0 and Pt = 1 then assume Wt = o.

Secondly, it is assumed that there exist a positive real number E < 1 and a real number K so that

the following conditions are satisfied:

88 Chapter 5. The distribution of the number of iterations to convergence for BAS

1 . p({y : y � K}) 2: E and by � E for all y � K

2. p(T) 2: E

3 . by + Wy 2: E for all y � T

Then whenever a new level is chosen, that new level is either better or worse than the current level.

If it is better, there is a probability at least E > E3 of sampling from Tj if it is worse, the probability

of sampling a level no less than K is at least E, the probability of improving at the next iteration is

also at least E, and finally the probability that this improvement is to an element of T is again at least

E. Thus the probability of the algorithm terminating at either the next level chosen or the one after

that is at least E3 . The number of pairs of levels required is therefore stochastically dominated by a

geometric random variable with probability of success E3 > O . Hence the number of levels is almost

surely finite.

The third condition ensures that the number of iterations at any level is finite. This and the pre­

vious conditions combine to ensure that the algorithm will almost surely sample from the termination

region in finite time.

The algorithm is now formally presented in the more general context.

Backtracking adaptive search

Step 1 Generate Yo according to p. Set n = O.

Step 2 With probability bYn choose Yn+1 according to the normalised restriction of p to (-00, Yn) .

With probability wYn choose Yn+1 according to the normalised restriction o f p to (Yn , 00) . Oth­

erwise set Yn+ 1 = Yn.

Step 3 If a stopping criterion is met, stop. Otherwise, increment n and return to Step 2.

This definition of the algorithm is suitable for continuous, discrete or mixed range distributions p.

Analysis for each of these cases is now presented.

5.3. Factorial moment generating functions for distributions of hitting times 89

5 . 3 Factorial moment generating functi ons for distributions o f hit-

ting times

In this section distributions of the number of iterations before convergence are derived for backtracking

adaptive search, using factorial moment generating functions. A brief definition of these functions is

now given.

The factorial moment generating function of a random variable X is M(z) = E[zx] , if this ex-

pectation exists in some interval 1 - E < z < 1 + E where E is a positive real number [3J . Then

M(r) (l) = E[X(X - l) (X - 2) . . . (X - r + l)J . This property can be used to derive moments of the

distribution of X .

The key result required is the distribution of the number o f iterations between improvements in

the best level seen. Define a record as a level Yk better than any preceding level, so Yk < Yn for all

n < k . A record Yk is said to be current from iteration k until a new record is sampled. The number

of records encountered by backtracking adaptive search before reaching a level no greater than some

fixed level y is almost surely finite, owing to the conditions described in the previous 8ection. Denote

these records , ordered from largest to smallest , by Y(1) , y(2) , y(3) , · . . , yCR) ; then if N(i) denotes the

delay at record yCi) , the total number of iteratlons before first reaching a level no greater than y is

given by

R
N(y) = L N(i) . (5 .1)

i=l

Note that the delay N(i) is the number of iterations for which Y(i) is current.

The distribution of these delays is established in Subsection 5 . 3 . 1 . The following subsections then

use this result to derive the distribution of the number of iterations before convergence of backtracking

adaptive search in each of the cases where the range distribution p is countable, finite, continuous or

finally mixed.

90 Chapter 5. The distribution of the number of iterations to convergence for BAS

5 . 3 . 1 Delay distributions

The distribution of the delay at level l(i) is that of N(Y(i)) given that Yo = Y(i) , where N(y-) =

min{n : Yn < y} . This follows from the fact that backtracking adaptive search is Markovian. The

distribution is provided in the following theorem.

Theorem 5 .3 . 1 Let D(y, z) = E[zN(Y-) IYo = y] be the factorial moment generating function of the

delay distribution at level y. Then

D(y z) = z (bypy (l - Py) + wy(py - 7ry) (M(y, z) - py)) , py (l - py) (l - z (l - by - wy)) - z'Trywy(M(y, z) - Py)

where Py < 1 and M(y, z) = E[zN(Y)] is the factorial moment generating function of N(y) .

Proof An expression is first required for E[zN(Y-) IYo > y] . Note that

M(y, z) E [ZN(Y)]

P(Yo � y)E[zN(Y) IYo � y] + P(Yo > y)E [zN(Y) IYo > y]

py + (1 - Py)E[zN(Y) IYo > y]

since N(y) = 0 when Yo � O . Also

E[ZN(y-)-N(y) IYo > y] = P(YN(y) < y)E[zN(y-)-N(y) IYo > y > YN(y)]

+ P(YN(y) = y)E [zN(y-)-N(y) IYo > y = YN(y)]
Py - 'Try 7ryD(y, z)

= + --.!<............:.::..c........:... Py Py

(5 .2)

(5.3)

using the fact that the search algorithm is memoryless. Therefore, since the number of iterations

before achieving a record is independent of the number of subsequent iterations before bettering it ,

E[ZN(Y-) IYo > y] = E[zN(Y) IYo > y]E[zN(y-)-N(Y) IYo > y]
M(y, z) - Py (py - 7ry(l - D (y, Z)))

, 1 - Py Py (5 .4)

'.
5.3. Factorial moment generating functions for distributions of hitting times 91

substituting expressions for E[zN(Y) lYo > y] and E[zN(y-)-N(y) lYo > y] from Equations (5.2) and (5 .3)

respectively.

Now define h as the first iteration number where Yh differs from Yo . Then

00

E[zh lYo = yJ = L P(h = i)zi
i=l

00
= L(by + wy) (1 - by - wy)i- 1i

i=l
=

z(by + wy)
1 - z (1 - by - wy) (5 .5)

where -1 - E < z < 1 + E. The proof now follows, since the length of the initial hesitation and the

number of iterations before convergence thereafter are independent:

D(y, z) E[ZN(Y-) lYo = y]

E[zh lYo = y]E [zN(y-)-h IYo = y]

= E[zh lYo = y] (P(Yh < y)E[zN(y-)-h IYh < Yo = y]

+ P(Yh > y)E[zN(y-)-h IYh > Yo = y])
E[zh lYo = y] by + wyE[z y lYo > y] (N(-)) by + Wy by + Wy

using the fact that the algorithm is memoryless. The final result may be obtained by substituting the

expressions for E[zh lYo = y] and E[zN(Y-) IYo > y] given in Equations (5 .5) and (5 .4) respectively . •

The distribution of the delays at each record may now be used to find the overall factorial moment

generating function for the number of iterations before convergence for backtracking adaptive search.

In the following subsections these results are derived separately for discrete, continuous and general

range distributions.

5 . 3 . 2 Discrete range distribution

In this subsection a factorial moment generating function is given for the number of iterations before

convergence for backtracking adaptive search where the range distribution is discrete. The mean

92 Chapter 5. The distribution of the number of iterations to convergence for BAS

and variance of this distribution are derived in the following subsection, in the case where the range

distribution is not only countable but finite.

Since the range distribution is discrete, there is a countable number of points of discontinuity. Let

Iy be the set of points of discontinuity having a level greater than y .

Theorem 5.3.2 For discrete backtracking adaptive search, the factorial moment generating function

of N(y) is

M(y, z) = IT Pt - 1ft (l - D(t, z))

tEIy Pt

where py < 1 and D (t, z) = E [zN(t-) IYo = t] is the factorial moment generating function of the delay

distribution at level t .

Proof Define Nt to be the number of iterations for which t is a record; if level t is never a record

then Nt = O. Then

M(y, z) E[zN(Y)]

L Nt
E[ztEly]

IT E[zNt] (5 .6)
tEly

since the numbers of iterations for which each level is a record are independent of each other. Now

P(YN(t) < t)E[zNt IYN(t) < t] + P(YN(t) = t)E[zNt IYN(t) = t]

Pt - 1ft + 1ftD(t , z) (5.7)
Pt Pt

since the search algorithm is memoryless. Substituting this into Equation (5 .6) yields the result . •

5 .3 .3 Finite range distribution

When there is a finite number of range levels y for which 1fy > 0, the factorial moment generating

function for N(y) can be used to find the mean of the distribution, as derived in Section 4.3.

5.3. Factorial moment generating functions for distributions of hitting times 93

Without loss of generality, label the finite sequence of range levels (in increasing order) as 1 , 2 , . . . , m.

Theorem 5 .3.2 can then be stated as

M(y, z) = IT Pi - 7ri (l � D(i, z))
i=y+l Pt

The factorial moment generating function is now expressed as a difference equation, using Theo-

rem 5.3. 1 :

(zB + zM(y, z)C) M(y - 1 , z) = M(y, z) A + D + zE - zM(y, z)F '

where A = Py-I!py, B = 7rypy (by (1 - Py) - WyPy-l) , C = 7ryPy-lWy , D = p� (1 - Py) , E = p; (7ryWy ­

(1 - py) (1 - by - wy)) and F = 7ryPyWy, for y E {2 , 3 , . . . , m - 1 } . (Note that M(y, 1) = 1 for any level

y, and hence the expression in parentheses above has the value 1 when z = 1 .)

Differentiation of both sides with respect to z yields

M'(y - l , z) M' (y, z) (A + zB + zM(y, z)C) D + zE - zM(y, z)F
+ M(y, z) (B + M(y, z)C + zl\l['(y, z)C)

D + zE - zM(y, z)F
_ (zB + zM(y, z)C)(E - M(y, z)F - zM'(y, Z)F)) (D + zE - zM(y, z)F)2

for y E {2 , 3, . . . , m - 1 } . Setting z = 1 gives

(C(D + E) + BF) (B + C)D E[N(y - 1)] = 1 + (D + E - F)2 E[N(y)] + (D + E - F)2 ·

Substituting the expressions for A,B ,C ,D ,E and F and rearranging now yields the recursion for

E[N(y)] of Section 4.3 . (The special cases are dealt with in that chapter also.)
The factorial moment generating function also allows calculation of higher moments.

Theorem 5.3.3 For finite backtracking adaptive search, E[(N(y))2 - N(y)J satisfies

i) For all m, E[(N(m))2 - N(m)) = O.

ii) For m > 1, E[(N(m - 1)) 2 - N(m - 1) J = 27rm(1 - bm)/b?n .

94 Chapter 5. The distribution of the number of iterations to convergence for BAS

iii) For m > 2, E[(N(y - 1))2 - N(y - l)J is given by

py (7ryWy + (1 - py) (by + wy)) E[(N(y))2 _ N(y)]
(1 - py) (pyby + Py-lWy)

+ 27rypyWy(7rY
2
WY + (1 - py) (by + �y)) (E[N(y)])2 (1 - Py) (pyby + Py - 7ryWy)

+ 27rypy (by (1 - Py) + wy(2 - p�-d) E[N (y)J (1 - py) (pyby + Py-lWy)
27ry (py (by - 1) + PY-l wy)

(pyby + PY_IWy)2

for all y E {2 , 3 , . . . , m - 1 } .

Proof Since Yo � m, E[N(m)J = E[(N(m))2J = 0, and thus E[(N(m))2 - N(m)J = O. For m > 1 ,

N(m - 1) > 0 only i f Yo = m; N(m - 1) i s then the number of iterations until the algorithm leaves

level m. Since the probability of leaving level m at any iteration is bm , E[N(m - l) J = 7rm/bm and

Differentiating both sides of the factorial moment generating function again with respect to z

shows that MI/(y - 1 , z) is

M"(, z) (A + zB + z1l1(y, z)C) y D + zE - zM(y, z)F

M'() (B + M(y, Z)C + ZM'(Y, z)C) + 2 y, z D + zE - zM(y, z)F
_ (zB + zM(y, z)C) (E - M(y, z)F - zM'(y, Z)F))

(D + zE - zM(y, z)F)2
+ M(y, z) (2M'(y, z) C + zM"(y, z)C

D + zE - zM(y, z)F
(zB + zM(y, z)C) (2M' (y, z)F + zM" (y, z)F)

+
-'--------'-'-(D

---'-
+-z

-'-
E
-'--

--z
-'-
M-(-:-'y-, z-:-)-F-:-C) 2;0-----

---'-

, (B + M(y , z)C + zM'(y, z)C - 2(E - M(y, z)F - zM (y, z)F) (D + zE _ zM(y, z)F)2
_

(zB + zM(y, z)C) (E - M(y, z)F - zM'(y, Z)F)))
(D + zE - zM(y, z)F)3

for y E {2 , 3, . . . , m - 1} , recalling the expressions for A,B ,C,D,E and F given above. Setting z = 1

5.3. Factorial moment generating functions for distributions of nitting times

now shows that E[(N(y - 1))2 - N(y - l)J is

(1 + c(�::� +F�2F) E[(N(y))2 - N(y)]

2(C(D + E) + BF) (D + E) (E[N()J)2 + (D + E - F)3 Y

2D(BF + (B + 2C) (D + E)) E [N()J _ 2(E - F)(B + C)D + (D + E - F)3 Y (D + E - F)3

95

Substituting the expressions for A,B ,C ,D ,E and F and rearranging provides the desired result. •

In Section 4.3 a closed form expression for E[N(y)] is derived , using theory of difference equa-

tions [33, p. 153] . The same theory now allows the above difference equation to be solved, treating

E[N(y)J as known. Thus the following corollary is derived .

Corollary 5.3. 1 The variance in the number of iterations of finite backtracking adaptive search before

reaching level y, Var[N(y)] ' satisfies

i) For all m, Var[N(m)J = O.

ii) For m > 1, Var[N(m - l) J = 7Tm(2 - bm - 7Tm)/b:n .

iii) For m > 2, Var [N(y)] is given by

(27Tm(l
2
- bm) + 11 (B(j) If _1 .)) If A(i) bm . 1 . . A(7,) . 1 J=Y+ t=J t=y+

+ E[N(y)] (l - E[N(y)])

Proof The difference equation of Theorem 5.3.3 can be written as follows,

E[(N(y - 1))2 - N(y - 1)] - A(y)E[(N(y)) 2 - N(y)] = B(y) ,

with A(y) and B(y) as defined above.

(5 .8)

96 Chapter 5. The distribution of the number of iterations to convergence for BAS

The variances of N (m) and N (m - 1) are found as in the theorem, making use of the relationship

Var [N(y)] = E[(N(y))2] - (E[N(y)])2. The remainder of the proof also lies in applying this rela-

tionship, using a closed form expression for E[(N(y))2 - N(y)] found by solving Equation (5.8) . The

method of solution is exactly that employed in Section 4 .3 . •

This corollary and Corollary 4 .3 . 1 now provide closed expressions for the mean and variance of the

number of iterations before convergence for BAS with finite range distributions. The variances of the

numbers of iterations before convergence for hesitant adaptive search and pure adaptive search with

finite range distributions are available as special cases.

Setting Wy = 0 in Corollary 5 .3 . 1 for all y and simplifying yields the variance of the number of

iterations before convergence for hesitant adaptive search with a finite range distribution:

for all y E {I , 2, . . . , m - I} where m > 1, with Var [N(m)] = 0 for all m. This result is given in [51]

(noting that the summation is to be taken over transient range levels only) .

Further substituting by = 1 for all y gives the variance of the number of iterations before conver-

gence for pure adaptive search with a finite range distribution:

m
Var [N(y)] = 2::

j=y+l

for all y E {I , 2, . . . , m - I } where m > 1 , with Var [N(m)] = 0 for all m.

5 . 3 .4 Continuous range distribution

In this subsection a factorial moment generating function is found for the number of iterations before

convergence for backtracking adaptive search where the range distribution is continuous. The mean

of this distribution is then derived.

The derivation of the factorial moment generating function rests on the following result concerning

the distribution of record values for backtracking adaptive search.

5.3. Factorial moment generating functions for distributions of hitting times 97

Lemma 5.3 .1 Record values of backtracking adaptive search with a continuous range distribution

form a Poisson process with mean value function m(y) = - lnpy .

Proof Record values of pure adaptive search with a continuous range distribution are shown to form

a Poisson process with mean value function m(y) = - lnpy in [54, Theorem 4.2 , Corollary 5 . 1] . (The

function stated there includes the absorbing iteration and is thus 1 - In py.) The proof then follows by

observing that record values for pure adaptive search and backtracking adaptive search with identical

continuous range distribution are identically distributed. •

The following theorem may now be derived.

Theorem 5.3 .4 The factorial moment generating function of N(y) for backtracking adaptive search

with a continuous range distribution is

. 1.00 D(t , z)-l d M(y, z) = e t=y -P-t- Pt

where Py < 1 and D(t, z) = E[zN(t-) jYo = t] is the factorial moment generating function of the delay

distribution at level t .

Proof Note first that M(y, z) can be written as

using Equation (5 . 1) . Conditioning on the number R and values 1'(1) , 1'(2) , 1'(3) , ' " , 1'(R) of records

visited by backtracking adaptive search before convergence then gives

R
L N(i)

M(y, z) = ER[EY(1) ,Y(2) 'Y(3) ' ' ' ' 'Y(R) [E [zi=l III
R

ER[E1(1) ,1(2) ,Y(3) ' ' ' ' ,Y(R) [IT E[zN(i) J J]
i=l

since, given the values of all records, the delays at each record are independent. Substituting D(y, z) =

98 Chapter 5. The distribution of the number of iterations to convergence for BAS

E[ZN(Y)] gives

M(y, z)
R

ER[EY(I) 'Y(2) 'Y(3) " " ,Y(R) [IT D(Y(i) , z)]] .
i=l

Lemma 5 .3 .1 shows that records occur as a Poisson process with mean m(y) j their values given the

total number R are therefore independent identically distributed random variables in (y, (0) with

common cumulative distribution function F(t) = 1 - m(t)/m(y) [28, p22] . Let T denote this common

random variable for record values. Then

R
M(y, z) ER[IT ET [D(Y(i) , z)]]

i=l

since R has a Poisson distribution with mean m(y) and the expected delay at any level is finite.

Now since F (t) = 1 - m(t)/m(y) and Lemma 5 .3 . 1 gives m(t) = - lnpt , differentiation of F(t)

with respect to Pt leads to

and the proof follows:

by Equation (5 .9) , as required.

dF(t)
dpt

M(y, z)

Ptm(y) ,

eET [m(y) (D(t,z)-l)]

eh:y m(y) (D(t,z)-l)dF(t)

J,oo D(t,z)-1 d t
= e t=y Pt P

(5 .9)

•

This expression can be solved for M(y, z) when Py is an absolutely continuous function, as shown

5.3. Factorial moment generating functions for distributions of hitting times 99

in the following corollary.

Corollary 5 .3 .2 The factorial moment generating function of N(y) for backtracking adaptive search

with an absolutely continuous range distribution is

_ fY P(t,z)dt e Jto
M(y , z) = f'"

J.'" - P(t,z)dt foo Q() - P(t ,z)dtd e to + u , z e to U y

h 1 P() p�(l-Pt) (z-l)-zWt Q() w ere Py < , t , z = pt(l-pt)(l-z(l-bt-Wt)) ' u , z

integration point and p� denotes � .

Proof From the statement of Theorem 5.3.4, it follows that

ln M(y, z) 100 D(t, z) - 1
-----'---dpt , t=y Pt

whence, differentiating with respect to y,

1 aM(y, z)
M(y, z) ay

1 - D(y, z)
Py

Since py is absolutely continuous , 'Try = 0 for all y. Theorem 5.3.1 then gives

D(y z) = z (by(l - Py) + wy(M(y, z) - Py)) . ,
(1 - py) (1 - z (1 - by - wy)) ,

substituting this expression into Equation (5. 1 1) and rearranging produces

oM(y, z) 2
ay + P(y, z)M(y , z) = Q(y, z) (M(y, z))

(5 . 10)

(5 . 1 1)

with P(y, z) and Q(y , z) as defined above. This is an example of Bernoulli's equation, for which the

solution is

1 - J.Y P(t,z)dt --- e to
M(y, z) =

- lY Q(u, z)e - Jt� P(t ,z)dtdu + c(z)
to

(5 . 12)

100 Chapter 5. The distribution of the number of iterations to convergence for BAS

where to is an arbitrary integration point and c(z) is a constant of integration [6, p367] .

To find the value of c(z) , note that lim N(y) = 0, so that taking the limit as y tends to infinity of y--+oo
Equation (5. 12) gives

- 1.00 P(t,z) dt 100
Q

() - ru P(t,z)dtd () e to = - u, z e ho u + c z .
to

Solving this equation and Equation (5. 12) simultaneously provides the result. •

Substituting Wy = 0 for all y in this equation now yields the factorial moment generating function

for the number of iterations before convergence for hesitant adaptive search:

M(y, z)
_ roo p�(z-ll dt e JIJ Pt (l z (l bt ll

roo z- l d e - Jt= IJ pd 1-z(1-bt l l Pt

_ roo Ptm(IJ)(z- l l dF(t) e Jt=y pt (l z(l bt l l

by Equation (5 .9) . Analogously to that equation,

thus

as presented in [51] .

dF(t) 1
d7rt Ptm(y) '

rco % - 1 d M(y, z) = e - Jt=y pt (l-z(l btll 7rt ,

(5 . 13)

To conclude this subsection, the factorial moment generating function of Theorem 5.3 .4 is used

to find the expected number of iterations before convergence for backtracking adaptive search with a

continuous range distribution, as derived by different means in [9] .

Differentiating Equation (5 .10) with respect now to z gives

1 8M(y, z)
M(y, z) OZ

=
tOO � D(t , z) - 1

dpt. Jt=y oz Pt

5.3. Factorial moment generating functions for distributions of hitting times 101

The expression for D(t , z) can be substituted in from Theorem 5 .3 . 1 and the differentiation carried

out. Substituting z = 1 then yields

E[N(y)]

by Equation (5.9) . Equation (5 .13) then gives

as given in [9] . That paper continues to solve this equation for the case when Py is absolutely contin-

uous. (The same result could be obtained using the factorial moment generating function for back-

tracking adaptive search with an absolutely continuous range distribution, given in Corollary 5 .3 .2 .)

5 . 3 . 5 Mixed range distribution

In the general case, the range distribution is a mixture of discrete and continuous components. Again

let Iy be the set of points of discontinuity having a level greater than y. The complement of Iy in

(y, oo) is a countable number of open intervals; let Ui denote these intervals and Cy the set of all Ui .

The distribution of the number of iterations before convergence for backtracking adaptive search is

now derived.

Theorem 5.3.5 The factorial moment generating function of the number of iterations before conver-

gence for backtracking adaptive search is

M() IT Pi - 7ri (l - D(i, z)) IT 1, u . D(t ,Z)- l dpt
y, Z = e tE , Pt

. I Pi U C tE y i E y

where Py < 1 and D(y, z) = E[zN(Y-) IYo = y] is the factorial moment generating function of the delay

distribution at level y.

102 Chapter 5. The distribution of the number of iterations to convergence for BAS

Proof If the number of iterations with the current record an element of Ui is denoted N(Ui) then

the total number of iterations before convergence is

N(y) = L Ni + L N(Ui)
iEly UiECy

where all N(Ui) and Ni are independent of each other, since the number of iterations between reaching

a level or set of levels and reaching a better level is unrelated to the progress of the algorithm before

or after. Then

M(y , z) E [ZN(Y)]

L Ni + L N(Ui)
E [ziEIII UiECy]

IT E [zNi] IT E[zN(Ui)] .
iEIII UiECII

(5 . 14)

Now since the derivation of E[ZNi] in Equation (5 .7) is valid also for a general range distribution, it

remains only to determine an expression for E[zN(Ui)] . This will be done analogously to the proof of

Theorem 5 .3 .4 .

Define ai and bi so that Ui = (ai , bi) for each bounded interval Ui . Let � be the number of records

that fall in Ui . The number of records reached· before convergence to level y has a Poisson distribution

with mean - lnpy ; therefore the number of records falling in Ui has a Poisson distribution with mean

ln Pb-:- - lnpai ' where Pb-:- refers to Pbi - 7rbi . The values of records falling in Ui given their number
, ,

� are thus independent identically distributed random variables in (ai , bi) with commOll cumulative

distribution function F(t) = 1 - (lnPb-:- - lnpt)/ (lnPb-:- - lnpai) . As in the proof of Theorem 5 .3 .4,
, ,

then,

M(y , z)
(In pb- -ln Pai) (ET [D (t,z)]-l) e i

since the expected delay at any level is finite.

5.4. Summary

Differentiating F(t) with respect to Pt gives dF(t)/dpt = l/(pt (lnPb:- - lnpaJ) ; thus
,

M(y, z)
ET[(ln Pb- -In Pa;l (D(t,z)-l)]

= e i

1, u . (In pb- -ln Pai) (D(t ,z) -l)dF(t)
e tE , i

r D(t,z)- l dpt
eJtEUi Pt •

103

This expression and that in Equation (5 . 7) can now be substituted into Equation (5 . 14) to complete

the proof. •

This theorem provides the factorial moment generating function for the number of iterations be-

fore convergence for backtracking adaptive search with a general range distribution; the results in

Subsections 5 .3 .2 and 5 .3 .4 are thus special cases of this result.

5 . 4 Summary

This chapter is a theoretical digression in the thesis, included for the state of completeness; a general

theory for backtracking adaptive search is presented. Factorial moment generating functions for the

number of iterations before convergence for backtracking adaptive search with discrete, continuous

or mixed range distributions are derived, and solved for the finite and absolutely continuous cases.

All results previously published on the number of iterations before convergence for hesitant adaptive

search and pure adaptive search are special cases of the results of this chapter.

The following chapter now returns to the problem of approximating the expected number of itera-

tions before convergence for a general stochastic global optimisation algorithm, taking up the theory

of Chapter 4 and applying it to some examples.

104

Chapter 6

Computational Results

6 . 1 Introduction

In this chapter the prediction mechanism is implemented on some small examples. Each step in the

framework can then be seen in practice. The usefulness of this method of modelling the movement of

a search algorithm in the range is then illustrated, at least on certain examples.

Future work may be directed at improving the method by which some of the steps in the framework

are implemented. Another important area for future work is to assess how well the initial behaviour

of the range process reflects later behaviour. The implicit assumption made in estimating the con­

vergence time of a process based only on a finite observation period is that the observ�d behaviour

is characteristic of unobserved behaviour in the future and in regions of the domain that have not

previously been observed. It may be possible to link the degree to which this assumption is justi­

fied with certain characteristics of the problem class and algorithm type applied. A third avenue for

investigation is the extent to which the approach is affected by the "curse of dimensionality" . The

approach outlined is not directly dependent on the dimensionality of the domain, but it may be the

case that the quality of the estimate of convergence time is affected by the number of variables in the

problem. The aim in this chapter is simply to demonstrate the ideas on some examples. No statistical

inference on the general effectiveness of the method is to be drawn from the few examples considered;

rather , an illustration of the approach is provided.

6.2. Approximating two stochastic global optimisation algorithms 105

All programs have been written using Matlab software. These are included as an appendix to the

thesis. Electronic versions are available from the author on request .

The layout o f Section 6 . 2 is similar to that o f Section 2 .2 . Two disparate examples are introduced

and the method for predicting expected convergence times is carried out on each. Details relating to

the implementation are discussed at each stage. Section 6.3 then considers issues relating to actual

implementation of the approximation method in practice. Two examples demonstrate aspects of the

prediction method. The final section summarises the effectiveness of the approximation framework as

implemented in this chapter. The potential for further development is also discussed.

6 . 2 Approximating two stochastic global optimisation algorithms

Two simple examples of stochastic global optimisation algorithms are analysed in this section, in order

to illustrate the approximation algorithms described in Chapter 2 . The first is a small example for

which transition matrices in the domain and range can conveniently be written out in full ; the second

is a more practical algorithm on a more testing domain, demonstrating how the kind of analysis

introduced in this thesis can be used to estimate the convergence time of a real algorithm applied to

an unknown but complicated domain.

Note that the examples are presented purely to provide a numerical implementation of the theory

that has been developed and exemplified earlier in the thesis. Their purpose is to demonstrate the

degree of accuracy of the method as it has been presented. The successive stages in the approximation

process as it is applied to each example are described in the following subsections, beginning with

the domain process and continuing through range, averaged range and asymptotic averaged range

processes to the final backtracking adaptive search approximation.

6 . 2 . 1 The domain process

The two examples are now introduced, defining a problem and an optimisation algorithm in the

domain.

Example 1 A Markovian search algorithm is applied to a very simple problem with six points in the

106 Chapter 6. Computational Results

domain S, labelled { I , 2, 3, 4, 5 , 6} . Suppose that the first two points have objective function value 1 ,

the next two have objective function value 2 and points numbered 5 and 6 have objective function

values 3 and 4 respectively. The aim is to minimise objective function value. S ince there are two

points with minimal objective function value, they may be combined; the search algorithm stops as

soon as it samples either of them. The search algorithm on this set is then described by a Markov

domain process with transition matrix P. For this example, we arbitrarily take P to equal

1 or 2
3

Current state 4
5

6

1 or 2
1
0.2
0.1
0
0.2

Next state

3 4 5 6
0 0 0 0
0.3 0 .2 0 . 1 0.2
0.2 0 .3 0.2 0 .2
0.2 0 .2 0.4 0.2
0.4 0 . 1 0.1 0.2

If the first iterate is chosen randomly from a uniform distribution on the six possibilities (so

60 = [� i i i iD, then standard Markov Chain theory [27] gives the expected number of iterations

before convergence for the process as 5 .049.

Example 2 A Markovian search algorithm is used to minimise an unknown function on the domain S

consisting of 0 ::; x, y ::; n. The search algorithm to be used in this example wil l only accept successive

iterates if they are not worsening or with a constant probability if they are worsening. Successive

candidate solutions are generated using the Hit-and-Run algorithm of [46] (discussed on p . 7) .

In order to apply the full approximation framework, it is necessary to define the objective function

and the domain transition matrix of the algorithm; in practice, of course, transition probabilities to

the optimal state are unknown until the optimal state has been sampled, so an empirical approach may

be necessary. As suggested in Chapter 2, the asymptotic averaged range process can more practically

be estimated directly by observing progress of the search algorithm on the range, but in this section

the aim is to illustrate each stage of the framework, comparing the expected convergence times of each

approximation in the sequence. Section 6.3 discusses a more practical approach to the estimation of

expected convergence times for black box algorithms and objective functions. (The term "black box

6.2. Approximating two stochastic global optimisation algorithms 107

algorithm" is applied here to any global optimisation algorithm that is applied to a problem in order

to produce solutions, where in general there is no knowledge of how the algorithm produces these

solutions. A unique feature of the prediction method described in this thesis is its applicability to a

general Markovian algorithm with no requirement on the structure of the algorithm.)

The objective function used is -2 .5 sin (x) sin(y) - sin(5x) sin(5y) , as used in [53J ; this can be

shown analytically to have a global minimum at (x , y) = (1f/2, 1f/2) . This objective function is chosen

because it has several local minima, as shown in Figure 6 . 1 . The algorithm is of course applied to the

problem as though the objective function is unknown, so that algorithm results can be compared with

the known global minimum.

0.5

0

-0.5

-1

-1 .5

-2

-2.5

-3
-3.5

3

y
x

Figure 6 . 1 : Objective function -2.5 sin(x) sin(y) - sin(5x) sin(5y) used in Example 2 .

The search is conducted over a grid with mesh size 1f /50 . The domain transition matrix P i s thus

a 512 x 512 matrix. The algorithm can now be implemented as a Markov chain. Each successive Hit­

and-Run iterate is rounded to the nearest grid point. At each iteration, improving points are accepted

with probability one and non-improving points are accepted with probability 0. 1 . The algorithm

continues in this way until the global optimum is sampled. The number of iterations before sampling

108 Chapter 6. Computational Results

the optimum can thus be estimated. It is clear that the algorithm thus described makes no use of the

analytic form of the objective function.

Suppose the initial distribution 60 is uniform on the domain. The domain transition matrix P can

be constructed using the structure of the Hit-and-Run algorithm. (The matrix P used in this example

is calculated only approximately, to simplify computation. Since the aim here is simply to construct a

transition matrix, this discrepancy is immaterial.) Standard matrix theory then provides the expected

number of iterations before convergence for this algorithm as 1 1 99.53.

6 . 2 . 2 The range process

The range processes for each example are now identified.

Example 1 (continued) The range process is defined as the image of the domain process projected

onto the range using the objective function. The number of iterations before convergence for the

range process is identical with the number of iterations before convergence for the domain process.

This range process is not Markovian, since its progress is viewed in the range but determined by the

algorithm in the domain.

The range process is observed in the range, which in this example consists of four pussible levels,

though the algorithm is actually operating on a domain consisting of five independent states (treating

the two optimal points as effectively one state of the process) . Some data is thus lost by the simpli­

fication of considering only range levels. For instance, an observation of range level 2 could reflect a

domain state of either 3 or 4. Observation of the range process alone is therefore insufficient to predict

its future behaviour.

Example 2 (continued) The range process is again defined as the image of the domain process in

the range. The distribution of the number of iterations before convergence for the range process is

thus identical to that of the domain process.

Note again that the process cannot be predicted solely by observation in the range; it effectively

"runs" in the problem domain. The range process is merely an observation of the domain process

projected into a single dimension. Several domain points share objective function values; the number

6.2. Approximating two stochastic global optimisation algorithms 109

of range levels is only 326. As before, though, the range process is not Markovian on these range

levels. (For instance, the probability of moving to the optimum from range level 0 is 0.00021 if the

preceding range level was -0.8637, but 0.00022 if the preceding range level was -2.2613.)

6 . 2 . 3 The averaged range process

The range process for each of the two examples is now approximated by the averaged range process,

a time-inhomogeneous Markov process in the range. The method used is that of Subsection 2.2 . 1 .

Example 1 (continued) The objective function mapping matrix for this example is

1 0 0 0

o 1 0 0

M = 0 1 0 0

o 0 1 0

0 0 0 1

Equation (2 .3) of Subsection 2 .2 . 1 states that "'n (i) = 8n (i) where 0 = oopn . Using I � On (j) ' n

{j :f(xj)=f(Xi) }
the value of 00 provided above, 01 = [152 �� 125 125 125 J and 02 = [0.49 0 . 1 6 0 .12 0 . 1 1 0 . 12J . Since

the second and third states in P share a level, "10 = [1 0.5 0 .5 1 1] , "11 = [1 0.579 0.421 1 1J and

"12 = [1 0.581 0.419 1 1] .

1 10 Chapter 6. Computational Results

Equation (3 . 1) then gives Rn. = MTdiag (-Yn)PM, so

1 0 0 0 1 0 0 0

0. 1 5 0 .5 0 .15 0 .2 0. 1579 0 .5 0. 1421 0 .2
Ra = , R1 =

0 0.4 0 .4 0.2 0 0.4 0.4 0 .2

0 .2 0 .5 0 .1 0 .2 0.2 0 .5 0 . 1 0 . 2

1 0 0 0

0 .1581 0 .5 0 . 1419 0 .2
and R2 =

0 0.4 0.4 0.2

0.2 0 .5 0 . 1 0 .2

Corollary 3.2 . 1 shows that Na , the number of iterations before convergence for the process defined in

this way, has the same distribution as that of the original process. The mean of this distribution is

thus 5.049 iterations, the same as the expectation determined on p. 106.

Example 2 (continued)

The objective function mapping matrix M can be constructed from the objective function f using

the definition of Subsection 2 .2 . 1 . Averaged range process transition matrices are then available using

Equations (2.3) and (3 .1) . Since there are 326 range levels, the averaged range proCf']SS transition

matrices are too large to write out here in full. The top left corner of Ra (calculated using Matlab) is

1 o o o

0.0062 0.3433 0.0022 0 .0017

Ra = 0.0488 0.0210 0.4599 0.0253

0.0031 0.0171 0 . 1014 0 .3899

This part of the matrix Rn remains identical to four decimal places for all n.

Again, Corollary 3.2.1 shows that the averaged range process now defined has the same expected

number of iterations before convergence as the domain process, so E[Nal = 1 199.53.

6.2. Approximating two stochastic global optimisation algorithms

6 . 2 . 4 The asymptotic averaged range process

1 1 1

A time-homogeneous Markov approximation to the averaged range process is now found for the two

examples.

Example 1 (continued)

The limit of Rn as n tends to infinity can be found using Theorem 3 .3 .3 to be

1 o o o

0 .1582 0 .5 0 . 1418 0 .2
R =

o 0.4 0.4 0 .2

0 .2 0 .5 0 .1 0 .2

This limit can also be found directly from the averaged range process transition matrices; Rn is

identical with R to four decimal places when n > 2 .

Since this example i s small , the expected number o f iterations before convergence for the asymptotic

averaged range process approximation, E[Nb] , can be found directly using standard matrix theory [27J

to be 5.024. This underestimates the true value by 0 .025 iterations, or 0.5%. The relative error in this

stage of the approximation process is usually small, as discussed in Section 3.4.

Example 2 (continued)

Theorem 3.3 .3 again allows the limit of Rn as n tends to infinity, R, to be calculated for this

example. It is also possible to obtain this result by calculating several values of Rn; for n > 5 these

matrices are identical with R to four decimal places. The top left corner of R is the same to four

decimal places as the top left corner of Ra displayed in the previous subsection.

Clearly, R will be very large when the grid used is very fine. In the present case, though, it is

possible to find the expected convergence time of the asymptotic averaged range process E[NbJ directly

by matrix inversion. The value, 1 199.54, overestimates the true value by 0 .005 iterations, or 0 .0004%.

The relative error is thus very small in this case; the Markov process in the range with 5 12 = 2601

states has a convergence time almost exactly the same as that in the range with only 326 levels.

This reduction in size and complexity of the problem could be used in some cases to provide analysis

112 Chapter 6 . Computational Results

of the expected convergence time for a process with a domain transition matrix too large for direct

analysis. If an accurate estimate of R Ci,in be obtained, then (in this example at least) an accurate

estimate of the number of iterations before convergence for the domain process can be found. For

many problems, though, even the asymptotic averaged range process transition matrix R will be too

large for direct analysis; a method of approximating the convergence time for a Markov process in the

range is thus required. The following subsection uses a backtracking adaptive search approximation

for this purpose; this is just one of several methods that could be used.

6 . 2 . 5 Backtracking adaptive search

In the last stage of approximation, a backtracking adaptive search algorithm approximates the asymp­

totic averaged range process. The expected number of iterations before convergence for this approx­

imation can then be found; this is an estimate of the expected number of iterations required by the

original algorithm.

Example 1 (continued)

Vectors b = [0 0 . 1 582 0.4 0 .8] and w = [0 0 .3418 0.2 0) can easily be found from R, using

Equations (4 .8) and (4.9) . The limiting relative weightings of transient domain states are � =

[0.32 0 .23 0.22 0 .23] . This vector can be found either empirically or by Equation (4. 10) . Finally,

Equation (4. 1 1) gives ?T = [0 .23 0 .34 0 . 17 0.26) .

The expected number of iterations before convergence for the backtracking adaptive search ap­

proximation can be found using Corollary 4.4.1 to be 3.709. This underestimates the true value by

1 .34 iterations, or 26.5%. The last stage in the approximation process is currently the least refined;

the relative error in the final approximation is quite large. Improving the accuracy of the backtracking

adaptive search approximation may lead to significant reduction in this error. However, the estimate

is at least in the same order of magnitude as the true convergence time; some gauge of the likely

convergence time is thus provided.

Example 2 (continued)

The same method can also be used to find parameters b = [0 0 .0062 0.0698 0. 1217 . . .) , w

..
6.2. Approximating two stochastic global optimisation algorithms 1 1 3

[0 0.6505 0.4703 0 .4885 . . .] and 1f = [0.0012 0.0037 0.0038 0.0034 . . .] for the second example. (These

are not written in full , for reasons of space.) The expected number of iterations before convergence for

the backtracking adaptive search approximation can then be found, using Corollary 4.4.1 . The value,

443 . 5 iterations, underestimates the true value by 756 .0 iterations, or 63.0%.

The error in this final approximation is again large. There are two possible reasons for this .

Firstly, the way in which a backtracking adaptive search approximation to the asymptotic averaged

range process is found may need to be improved. Secondly, the backtracking adaptive search model

itself may not be sufficiently flexible to represent adequately the structure of the asymptotic averaged

range process. If this is true for some situations then there is no method of approYimation that will

reliably produce a backtracking adaptive search process with expected convergence time closer to the

true value.

It is possible for the present examples to investigate alternative backtracking adaptive search ap-

proximations in order to test which of the two postulated reasons is the major cause of error. Improved

backtracking adaptive search approximations are now presented for both examples, indicating that for

these examples at least the error in the predicted mean convergence time is attributable largely to the

method by which the backtracking adaptive search model is fitted to the asymptot�c averaged range

process and not to an intrinsic inadequacy in the backtracking adaptive search model.

Example 1 (continued)

Define b and w as before, based on the asymptotic averaged range process transition matrix

R determined in Subsection 6 .2.4. It is possible to find a vector 1f that maximises the likelihood of

observing a backtracking adaptive search process over a finite number of iterations to give the empirical

transition probabilities of R. This results in the vector 1f = [0 . 14 0.61 0 . 1 1 0 . 1 5] . The expected number

of iterations before convergence for this new backtracking adaptive search approximation can be found

using Corollary 4.4 . 1 to be 5 .052. This overestimates the true value by only 0 .003 iterations, or 0 .06%.

Example 2 (continued)

Applying the same approach, let b and w take the values assigned previously, but adopt a new

1f = [0.0001 0.0003 0.0004 0.0004 . . J The expected number of iterations before convergence for the

1 14 Chapter 6. Computational Results

new backtracking adaptive search approximation can now be found, using Corollary 4.4 . 1 . The value,

1272.6 iterations, overestimates the true value by only 73.0 iterations, or 6 . 1%.

In both cases the estimates of expected convergence time are greatly improved. The maximum

likelihood estimate of Jr used in both cases takes even longer to evaluate than does finding the expected

convergence time of the asymptotic averaged range process directly via matrix inversion. But the

whole aim of approximating with backtracking adaptive search is to remove any need for the amount of

computational effort required to invert large matrices, so that this is not a practical method. However,

it serves to illustrate that in these examples there is a backtracking adaptive search algorithm with

expected convergence time that matches fairly closely the true value. This indicates that for these

examples at least, the errors in predictions of expected convergence times are due not to insufficient

flexibility of the backtracking adaptive search process but to the method used to estimate its parameter

Jr. A refined method of approximating the asymptotic averaged range process with backtracking

adaptive search could yield much more accurate results.

The choice of Jr in the backtracking adaptive search approximation is in itself an optimisation

problem. The maximum likelihood approach used above was somewhat successful for these examples;

however, this method is not practical when R is large. The simple method described in Chapter 4 is

quick to implement but much less accurate in its results. The challenge is then to find an improved

method, still capable of execution in reasonable computer time but yielding an improved estimate for

Jr. Improvement of this step would allow the accuracy of the estimate of expected convergence time

obtained using the simpler method of Chapter 4 to be significantly improved.

However, even this estimate gives some indication of convergence time. If estimating convergence

times for general stochastic global optimisation algorithms is genuinely "hard" , perhaps this estimate

is as accurate as can be expected by any method. Certainly, errors of this magnitude are commonplace

in estimating the runtimes of processes in other fields, for instance software engineering projects and

internet downloads. Improving this last stage of approximation remains an avenue for future research.

This completes the analysis of the approximation framework as applied to these two examples.

The asymptotic averaged range process approximations in both cases provide very accurate estimates

of the number of iterations required before algorithm termination, while the backtracking adaptive

6.2. Approximating two stochastic global optimisation algorithms 1 1 5

search approximations are much less precise.

A further complication encountered in practice is that even the problem specification itself must

be estimated. This issue is discussed in the following section.

6 . 3 Implementation considerations

In this section a method of implementing the approximation framework methodology on a true black

box optimisation algorithm and objective function is suggested. The method proposed is designed

to illustrate one possible application of the theoretical ideas of this thesis to some realistic problem

scenarios.

The examples of the previous section used an explicit statement of the structure of the domain

optimisation algorithm given by the transition matrix P. Averaged range process transition matrices

Rn, the asymptotic averaged range process transition matrix R and backtracking adaptive search

parameters b, w and 7r were calculated from one another in succession, using P, the objective function

mapping matrix M and the initial distribution in the domain 00 . In practice, only 00 can be taken as

known; the others require estimation.

Several possibilities present themselves as candidates for this estimation procedure. These are now

listed with a description of how each might be implemented.

l . Domain process start. One approach is to estimate P and M from a run of the algorithm,

allowing the rest of the approximation framework to follow through as in Section 6 .2 . While M

can easily be constructed from its definition in Subsection 2 .2 . 1 , the estimat�on of P requires

the observation of a very large number of iterations. A sufficient number of transitions must be

observed to estimate the distribution on the domain of transitions from each state or grouping of

states in the domain, needed for rows of P. This approach is unlikely to prove computationally

efficient unless the domain is very small.

2 . Averaged range process start. An alternative is to estimate the averaged range process tran­

sition matrices Rn directly. This avoids any need to estimate P or M explicitly; Corollary 3 .2 . 1

is invoked so that an unbiased estimator of the mean number of iterations before convergence

1 16 Chapter 6. Computational Results

for the averaged range process is also an unbiased estimator of the number of iterations of the

original process in the domain. To estimate transition matrices Rn for each integer n from

zero up to some finite number no requires repeated runs of no + 1 iterations of the process, so

that an empirical distribution of transitions from each range level at each iteration number no

greater than no can be built up. An estimate of the asymptotic averaged range process transition

matrix R must then be made by extrapolation of the observed behaviour of the matrices Rn.

For instance, R may be obtained by a weighted average of Rn that places more weight on later

estimates. A further backtracking adaptive search approximation can then be found, as in the

preceding section, allowing an estimate of the expected convergence time to be calculated.

3. Asymptotic averaged range process start. A third approach is to estimate the asymptotic

averaged range process transition matrix R directly. (A method by which this can be accom­

plished is outlined below.) The backtracking adaptive search approximation to this process can

then be used to estimate its expected convergence time. Section 3 .4 discusses reasons to believe

that the expected convergence time of the asymptotic averaged range process will often be close

to that of the original domain process.

4. Backtracking adaptive search start. Finally, it is possible to estimate the parameters

of backtracking adaptive search immediately, perhaps based on setting the ith component of

1f to the proportion of times that the ith level is visited during an observation period and

setting the ith component of b and w to be the proportion of times the algorithm bettered or

worsened respectively after visiting the ith level during the observation period. (However, this

method of estimating 1f ignores the interaction with b and w and is thus biased; alternative

methods may be found to give more accurate results.) This avoids all the approximation stages

detailed in this thesis but also loses the theoretical properties of the processes and approximation

techniques that have been developed. In the other methods described above, backtracking

adaptive search approximates an asymptotic averaged range process , which is already a Markov

process in the range. If the parameters for backtracking adaptive search are estimated in a way

that avoids approximating the domain process with a Markov process in the range (namely the

6.2. Approximating two stochastic global optimisation algorithms 117

asymptotic averaged range process) then the beginning and endpoint of the approximating step

to backtracking adaptive search are much more disparate than in any of the other methods. The

approximation might well therefore be that much less likely to be close.

A good approximation method would be one that takes advantage of the theoretical results concerning

convergence times of the range, averaged range and asymptotic averaged range processes while avoiding

prohibitively great computational requirements.

The approach illustrated here is the third of these possibilities: to observe range values of a

stochastic global optimisation algorithm and to estimate the transition matrix of an asymptotic av­

eraged range process from them. The discussion in Section 3.4 shows that the asymptotic averaged

range process approximation often has an expected convergence time very close to that of the original

algorithm. A single further stage of approximation to backtracking adaptive search is then required .

The expected number of iterations before convergence can then be calculated for this approximation.

The first three methods all make use of the asymptotic averaged range process and therefore share

this advantage over the fourth method, which requires the less flexible backtracking adaptive search to

approximate the observed behaviour of the optimisation algorithm directly. Of the first three methods,

the third is the simplest and therefore likely to be preferable. Other methods may be considered if

the accurate estimation of asymptotic averaged range process parameters directly from observation of

the process proves difficult.

In this case the accuracy of the estimate of convergence time rests on the accuracy of the empirical

estimation of asymptotic averaged range process parameters , on the accuracy of the expected conver­

gence time of this asymptotic averaged range process and on the quality of its backtracking adaptive

search approximation. The first of these is unknown. Probabilities of transitions between levels visited

commonly may well be estimated accurately, but there will in general be levels from which only a few,

if any, transitions are observed. The second of these has received comment in Section 3.4; for a wide

range of problem instances the expected convergence time for an asymptotic averaged range process

approximation is close to the expected convergence time for the original process. The third of these,

approximating the asymptotic averaged range process with backtracking adaptive search, is the area

where the approximation process becomes inaccurate. As exemplified in Section 6.2, an estimate for

1 18 Chapter 6 . Computational Results

convergence time no more than ten times greater or less than the true value seems as much as can be

expected from this step. (However, even an estimate no more accurate than this still provides at least

some gauge of how long the process may be expected to run. Refining the methods of Section 4.6 may

allow the accuracy of this approximation to be improved.)

The approach illustrated therefore involves running an algorithm on a problem for a large number of

iterations. Transitions in the problem range are noted, so that the asymptotic averaged range process

transition matrix R can be approximated empirically. In particular , order the observed range levels

from least to greatest and label them as 1 , 2, 3 , . . . , m. If Wij is the number of observed transitions

from the level labelled i to the level labelled j then the estimate of R is obtained by letting �j =
m

Wij / L Wik · (If the optimal level is visited then the corresponding row in R is altered to a row of zeros
k==l

with an initial one, so that R is absorbing. Otherwise such a row must be added and the probability of

transitioning to the optimal level at each iteration must be estimated in some way for each other level .

Also if no transitions from the last level visited have been recorded then this level must be excluded

from the estimate of R in order to ensure that the transient portion of R is irreducible.) It would be

possible to ignore the initial iterations of the algorithm, allowing it to settle in before commencing

observation; however, this technique is not employed in the analysis discussed in this section. The

initial level is chosen uniformly on the domain (and new initial levels are chosen in the same way if

the algorithm does happen to visit the optimal level during the observation period) .

Note that in general the number of range levels visited by the algorithm will be less than the total

number of range levels. (This will certainly be true if the range is continuous.) The labelling of levels

in R will therefore be different in general to the labelling i f R was generated from a true domain

process transition matrix P. Provided the algorithm visits a level within the termir.ation region,

there is sufficient information for the expected number of iterations before sampling a value in that

termination region to be estimated from R. However, if no levels within the termination region are

sampled then the transition probabilities from each level to the termination region must be estimated

in some other way. It must be stressed that this latter possibility is the normal situation for difficult

optimisation problems; if a short observation period is sufficient for the algorithm to find the optimal

solution then the need to estimate expected convergence times is not so great.

6.2. Approximating two stochastic global optimisation algorithms 1 19

Predicting convergence times in this manner for a black box process before a single observation of

convergence necessarily involves extrapolation. Clearly, no guarantee can be made for the accuracy

of such an extrapolation without additional information about the process. Only if the algorithm has

already been observed to converge can an estimate from data of the probability of absorption from

any level be made and the expected convergence time calculated as in the previous section.

To illustrate the approach, the two subsections following exemplify the approximation process on

two examples. In the second of these, a simple method of extrapolation is used to estimate probabilities

of convergence to the absorbing level before it is sampled.

6 . 3 . 1 Example 2 revisited

The algorithm used in Example 2 of Section 6 .2 is run for 1000000 iterations. There is no need in this

case to discretise the algorithm, since the division of the range into discrete range levels can be made

independently of the exact levels visited by the algorithm. For instance, the range may be divided

into a finite number of intervals (perhaps, but not necessarily, of equal width) . All transitions to

or from each interval can then be combined in order to generate the discrete approximation to R.

However, the following analysis again uses the discretised version of the algorithm, to provide a point

of comparison with Section 6 .2 . The expected convergence time of the process is thus known to be

1 199 .5 iterations.

After 1000000 iterations, the algorithm had visited all 326 range levels, so the empirical R is a

326 x 326 matrix. The expected convergence time of the asymptotic averaged range process with this

estimate of R is directly calculated to be 1 1 77.9 iterations, providing a reasonable estimate of the true

convergence time. The true value is underestimated by 2 1 .6 iterations, or 1 .8%.

In this case the number of levels is small enough for the expected convergence time of the asymptotic
,

averaged range process approximation to be calculated directly. If the number of levels was greater ,

though, a further stage of approximation would be required. This further level of approximation is

provided by backtracking adaptive search. (Or else a more coarse division of the range into levels

could be used to reduce the dimension of R to a point where its expected convergence time could

conveniently be discovered directly.) The backtracking adaptive search approximation in this case has

120 Chapter 6. Computational Results

an expected convergence time of 439.0 iterations, underestimating the true value by 63.4%. This error

is comparable with that in the previous section; the comments on accuracy made there are again valid.

6 . 3 . 2 A further example

In this subsection the approximation process is applied to a three dimensional generalisation of the

previous example. The number of iterations before convergence for this generalisation will be much

greater; the probability of sampling the optimum within a few hundred observations is very small. After

a number of observed iterations, therefore, the prediction method applies some simple extrapolation

to estimate the probability of convergence required for 7r.

In this example the same algorithm is applied to the problem of minimising the three dimensional

function -2.5 sin(x) sin(y) sin(z) - sin(5x) sin(5y) sin(5z) over the domain 0 :S x , y , z :S 7r. The global

minimum of this function can be shown analytically to be at (x, y, z) = (7r /2, 7r /2, 7r /2) . The value at

this point is -3 .5 . Since this problem is much harder than its two dimensional analogue, it is no longer

possible to evaluate the expected number of iterations before convergence directly, as was the case in

Section 6.2. However, it is still small enough that the expected convergence time can be estimated

empirically by running the algorithm several times and taking the average of all convergence times.

This average can then be compared with estimates obtained by the prediction method, providing a

point of reference by which the effectiveness of the method can be measured.

It would be possible to increase the dimension of the problem further to make it harder and thus

more like the problems for which this method is designed. However, in that case there would be no

way of checking the accuracy of expected convergence times. .

The algorithm of Example 2 in Section 6 .2 is applied 1000 times to this problem, recording the

number of iterations required to sample a value with objective function value less than -3.49. The

average number required is 47000.

The prediction method is now applied to this example. The algorithm is run for 1000 iterations,

from which data the expected convergence time is to be estimated. Note that the estimate itself is a

random variable, dependent on the observed behaviour of the stochastic global optimisation algorithm

in its first 1000 iterations. Different realisations of these iterations will therefore result in different

6.2. Approximating two stochastic global optimisation algorithms 121

estimates of the expected convergence time. Ideally the variance of these estimates would be small,

but there is no reason why it should be so.

There is a slight possibility of sampling the optimum within these 1000 observations, in which case

the method of Subsection 6 .3 . 1 can be used. (The estimated convergence time in this case is likely

to be an underestimate, since the algorithm was observed to converge within 1000 iterations.) Much

more likely, however, is that the 1000 observations will not include any within the te::-mlnation region.

In this case the behaviour of the algorithm over the rest of the range must be used to predict its

behaviour over the unsampled lower end.

An obvious estimation technique is simply to estimate 7r over the region of the range that has been

sampled, using Equation (4. 1 1) as before, and then to fit a curve to it. The value that this curve takes

at the target range level , in this case - 3 .49 , will determine an estimate for the value of 7r at this level .

With the estimate of the first component of 7r obtained in this way, the method illustrated in previous

sections may now be used to complete the approximation process.

The length of the fitted 7r vector is another parameter of the approximation process. The values

observed by the algorithm must be divided into a number of distinct range levels. For the purposes

of this example, the observed values will be divided into 100 range levels.

Figure 6.2 illustrates the procedure. After 1000 iterations of the algorithm, 7r is fitted to the

observed range values by calculating an empirical estimate of the asymptotic averaged range process

transition matrix R and applying the method of Section 4.6 . A smooth curve is then fitted, in order

to estimate the values of 7r outside the observed range values. A cubic has been chosen for this task;

the smoothed curve is also plotted in the figure. (In order to ensure that predictions for 7r are never

negative, the curve is fitted to the log of the data.) A prediction for 7r at level -3.49 is then available.

Other extrapolation methods could, of course, be used; a polynomial may be a bad choice if 7r

must be extrapolated too far from the data. The cubic estimate appears reasonable in the example of

Figure 6.2 .

This procedure is now applied 10000 times to give an idea of the distribution of predictions available

from this procedure. The average of the predictions is 132000000, which is 2800 times the average

convergence time already found of 47000. However, the distribution of the 10000 estimates is highly

122

0.045

0.04

0.035

0.03

0.025
�

0.02

0.0 15

0.01

0.005

0 -3.5 -3 -2.5 -2 -1 .5 -1
range level

Chapter 6. Computational Results

-0.5 o 0.5

Figure 6.2: Fitting a curve to the estimate of Jr in the example of Subsection 6 .3 .2 .

right skewed, as shown in Figure 6 .3 . Note that the plot is logarithmic, to counter the effect of the

right skew so that the shape of the distribution can be seen.

Two outliers, with values over 1011 , are heavily influencing the average; almost all the data is

much less than this average. Without these values , the mean comes down to 772000, only 16 times

the average convergence time found previously. The median, by contrast , is only 5000 , around a ninth

of the empirical average convergence time.

This point estimate is perhaps not as much use as the histogram itself, which reveals the variation

in estimates obtained from the prediction method. Estimates vary from as little as 100 up to a limit

of around 400000, with 5% of values even higher. About half of these values fall within a factor of ten

of the empirical average; however, the variation is such that little confidence could be placed in any

particular estimate.

Estimates are highly sensitive to the first component of Jr, which is found based on extrapolation

of the other values in Jr based on the observed behaviour of the algorithm in its first 1000 iterations.

This behaviour is naturally highly variable. Less variation in estimates might be obtained by use of a

6.4. Summary

1 500r-------r------,,------,,------,------�------�------_,

1000

500

0'------
10° 1 06 108

estimated time

123

Figure 6.3: Distribution of estimates of expected convergence time for the example of Subsection 6.3 .2 .

longer observation period, or by a more robust method of calculating and extrapolating 1i .

While there remains scope for fine tuning the method, this example illustrates the approach to

estimating convergence times of a stochastic global optimisation algorithm. The usual cautions neces-

sary when applying extrapolation are applicable here: firstly, the implicit assumptiun has been made

that the trend observed in 1i continues at lower range levels, but this is always unproven. It is even

possible that there are no feasible solutions at the range level to which 1i is extrapolated. Secondly,

the extrapolation leads to highly variable results.

This section illustrates an application of the approximation framework to a genuine black box

process. The expected convergence time of the process is estimated from the asymptotic averaged

range process and backtracking adaptive search approximations.

6 . 4 Summary

This chapter illustrates the approximation framework on several examples. Estimates of convergence

times using the asymptotic averaged range process approximation for the examples are shown to be

124 Chapter 6. Computational Results

very accurate, though this accuracy is (naturally) not so great if the transition matrix R is only

estimated empirically from an actual run of the algorithm.

The backtracking adaptive search approximation gives a much less accurate estimate of convergence

time. The example of Subsection 6.3.2 shows that although the distribution of estim3.tes places a

large weighting on values close to the true expected convergence time, the variance in this version of

the estimation procedure is too large for any great guarantee of accuracy to be made. Estimation

of the convergence rate of a general optimisation algorithm by this technique as implemented here

would thus be somewhat unreliable. Nonetheless, a method is now available for gaining an indication

of the approximate runtime required by a stochastic global optimisation algorithm. In some cases

where comparison is to be made between two algorithms sufficiently different from each other in their

convergence behaviour, it may be possible to distinguish between them using this method.

If the range is discretised into a small enough number of intervals , the expected convergence

time of R may be found directly via matrix inversion, avoiding the difficulty of approximating with

backtracking adaptive search. A problem domain of high dimension will in general have a very large

number of feasible solutions to consider; but since the range has only a single dimension, the number

of possible range levels for the asymptotic averaged range process may be much less than the number

of states for the original process in the domain.

Some avenues for future work are now highlighted. It may be possible to improve the accuracy

of the backtracking adaptive search approximation to the asymptotic averaged range process; this is

a significant contributor to the error in the estimates of expected convergence time for the examples

examined in this section. Alternatively, a better means of approximating the expected convergence

time of the asymptotic averaged range process may be found. Finding a suitable method for approx­

imating the asymptotic averaged range process in situations where no transitions to the termination

region have been sampled also remains an area for research.

The sequence of approximating processes developed and analysed in this thesis make a first step to­

wards the estimation of the number of iterations before convergence for a general Markovian stochastic

global optimisation algorithm. Subsequent research can develop these ideas further in order to improve

the accuracy with which convergence times can be estimated; the examples in this chapter provide a

6.4. Summary 125

taste of the kinds of results that may be obtained in this way.

126

Chapter 7

Conclusion

7 . 1 Sumlnary of thesis

Two challenges are addressed in this thesis. The first of these is the analysis of backtracking adaptive

search, the logical extension of pure adaptive search and hesitant adaptive search algorithms that have

already received attention in optimisation literature. The second, more far-reaching goal is to provide

a framework whereby the theoretical analysis now available for backtracking adaptive Eearch can be

used to estimate the convergence time of a general stochastic global optimisation algoriL1m.

The first of these aims is achieved in Chapters 4 and 5 . A moment generating function for back­

tracking adaptive search on discrete, continuous or mixed domains has been presented. The mean

and variance of convergence times for finite backtracking adaptive search are derived explicitly in

Corollaries 4 .3 . 1 and 5 .3 . 1 . The former of these has been published in [1] ; the analogous result for a

continuous range function 1f is given in [9] .

In Section 4.4 a closed expression for the expected convergence time for finite backtracking adap­

tive search with arbitrary initial distribution is presented. Several special cases are illustrated in

Section 4.5, including the derivation of results discussed in [31 , 5 1 , 56] .

Chapter 5 contains a definition of backtracking adaptive search for a general range distribution.

Moment generating functions for the number of iterations before convergence are then derived. The

moment generating function approach also appears in [50] .

7. 1 . Summary of thesis 127

The second of these aims seeks to apply backtracking adaptive search as a model for a general

stochastic global optimisation algorithm. The analysis of the convergence rate of this algorithm,

summarised above, is now complete. The challenge is then to model a general optimisation algorithm

with backtracking adaptive search and use this model for the prediction of convergence times. Much

further research is possible in this direction.

A framework of processes for approximating the convergence rate of an arbltrary Markovian

stochastic global optimisation algorithm is presented in Chapter 2 , with several theoretical results

proved in Chapter 3. A paper outlining this framework and containing some of the analysis has also

been published [49J. A chain of intermediate processes serve to break the approximation into several

further stages. Each process in this chain is derived from the previous one, and can be used to approx­

imate its convergence behaviour . The chain culminates in a tractable stochastic process, backtracking

adaptive search. Using the results outlined above, convergence rates can be quickly obtained for the

backtracking adaptive search model.

The range process is the image of the solutions sampled by an optimisation process in the domain,

projected into the range using the objective function. Since the range process is not Markovian,

the averaged range process is introduced as a time-inhomogeneous Markovian approximation to the

range process. Theorem 3.2 . 1 shows that this process is identical in marginal di8tribution to the

range process. Corollary 3.2 . 1 then shows that the number of iterations before convergence for both

processes is also identical in distribution. An accurate estimate of the convergence time of the averaged

range process would therefore also provide an accurate estimate of the convergence time of the original

process.

Although the averaged range process is time-inhomogeneous, in many situations the transition

matrices tend to a limit very quickly. The Markovian process using this limit tre.nsition matrix is

called the asymptotic averaged range process. Theorem 3.3 .3 provides a general definition of the

asymptotic averaged range process transition matrix pertaining to any optimisation process . The

expected convergence time of this process differs from that of the original process; however, under

a weak assumption, Theorem 3 .4 . 1 shows that the difference in expected convergence time between

the asymptotic averaged range process and the original process it approximates is the sum of a series

128 Chapter 7. Conclusion

whose terms tend to decay geometrically. The required assumption can be ensured by imposing the

weak condition that pure random search be conducted from some level with positive probabil ity. For

a range of examples discussed in Chapters 2, 3 and 6, the convergence rate of the asymptotic averaged

range process is very similar to that of the optimisation process it approximates .

The asymptotic averaged range process and backtracking adaptive search are both time-homogeneous

Markov processes defined on the range. The advantage of approximating the asymptotic averaged

range process with backtracking adaptive search is that predictions can easily be made of the conver­

gence rate of a backtracking adaptive search model. Similar predictions on general Markov processes

require matrix inversion, which is in general very time-consuming. The special structure of backtrack­

ing adaptive search allows expected convergence times to be calculated using the analytical results of

Chapters 4 and 5.

A method is proposed in Section 4.6 for approximating any asymptotic averaged range process

with backtracking adaptive search. The complete framework thus provides a sequential procedure

by which a backtracking adaptive search algorithm can be chosen as a model for any optimisation

process . Prediction of convergence times for optimisation processes can then be made based on this

model. Some examples of the complete procedure are given in Chapter 6.

Section 6.2 illustrates the entire framework under the assumption that the structure of the Marko­

vian optimisation algorithm is known exactly. Although asymptotic averaged range process approxi­

mations give very good estimates of the expected convergence time, the simple method of obtaining

backtracking adaptive search models suggested in Section 4.6 yields much less accurate estimates.

An alternative method using maximum likelihood estimation provides much better results, but this

method has impractical computational requirements.

Section 6 .3 addresses the issue of estimating parameters for use in the model from a finite number

of observations of the optimisation algorithm. Several possible approaches are listed. The preferred

method is to estimate parameters for the asymptotic averaged range process directly from observation

of the optimisation algorithm and then to proceed to the backtracking adaptive search model. The

asymptotic averaged range process is much simpler than the original process in the domain, or the

range or averaged range processes; yet Theorem 3.4. 1 implies that its expected convergence time is

7.2. Further y.;ork 129

in many cases very close to that of the original algorithm. The technique illustrated in this section

is a practical method for estimating convergence time for any optimisation algorithm, based on the

analysis developed in this thesis of the approximation framework and backtracking adaptive search

model.

7 . 2 Further work

The method of Section 4.6 is very simple; improvement in this step remains an important area for

development. Aside from the error inherent in the prediction of parameters from a finite number

of observations of a process, this step is the major source of error in the approximation framework.

A maximum likelihood technique was much more successful in the examples of Sect.ion 6 .2 , but this

method is too complex to be practicable. Other methods may be able to give improved performance

within an efficient time frame.

A second difficulty is encountered in Section 6 .3 , that the probabilities of transitions to optimal

states must in general be estimated before such transitions have been observed. Evidently much

uncertainty must inevitably surround such prediction. Future research may focus on restricted problem

types for which such probabilities can be estimated with some accuracy.

One remaining challenge is thus to improve the method used to approximate the asymptotic

averaged range process with backtracking adaptive search. Another major area to be addressed is

the prediction of parameters for model processes based only on the observation of a finite number of

iterations of an algorithm, before it converges. Both of these areas to be addressed represent significant

difficulties in applying the methodology to estimate convergence rates of optimisation algorithms.

If these challenges can be answered, the prediction method put forward in this thesis stands to

fill an important need. The complete strategy for analysis allows prediction of how long a particular

stochastic global optimisation algorithm should be run to reach a set level. Quantitative measures

of the effectiveness of stochastic global optimisation algorithms can then be made. A method for

estimating the time required by an optimisation algorithm would be a valuable addition to the resources

of optimisation practitioners. Information of this kind is also useful for tuning algorithms, for example

130 Chapter 7. Conclusion

through tailoring search region to landscape.

131

Bibliography

[lJ Alexander, D . L. J . , Bulger, D. W. and Wood, G . R. (2003) , Expected search duration for finite

backtracking adaptive search, Journal of Algorithms 47 78-86.

[2J Althofer, 1 . and Koschnick, K.-u. (199 1) , On the convergence of "threshold accepting" , Applied

Mathematics and Optimization 24 183-195.

[3] Bain, L. J . and Engelhart, M. (1992) , Introduction to Probability and Mathematical Statistics ,

PWS-KENT Publishing Company, Boston.

[4] Baritompa, W. P. and Steel, M. A. (1996) , Bounds on absorption times of directionally biased

random sequences, Random Structures and Algorithms 9 279-293.

[5] Belisle, C. J . (1992) , Convergence theorems for a class of simulated annealing aigorithms on]Rd ,

Journal of Applied Probability 29 885-895.

[6] Beyer, W. H. (1981) , GRG Standard Mathematical Tables, 26th Edition, CRC Press, Inc . , Boca

Raton.

[7] Boender, C. G. E. and Rinnooy Kan, A. H. G . (1 987) , Bayesian stopping rules for multistart

global optimization methods, Mathematical Programming 37 59-80.

[8] Brooks, S. H. (1958) , A discussion of random methods for seeking maxima, Operations Research

6 244-251 .

[9] Bulger, D . W., Alexander, D . L . J . , Baritompa, VV. P., Wood, G . R . and Zabinsky, Z. B . (2004) ,

Expected hitting times for backtracking adaptive search, Optimization (to appear) .

132 Bibliography

[10] Bulger, D . W. , Baritompa, W. P. and Wood, G. R. (2003) , Implementing pure adaptive search

with Grover's quantum algorithm, Journal of Optimization Theory and Applications 1 16 5 17-

529.

[11] Bulger, D. W. and Wood, G. R. (1998) , Hesitant adaptive search for global optimisation, Math­

ematical Programming 8 1 89-102.

[12] Chatelin, F. (1993) , Eigenvalues of Matrices , John Wiley & Sons Ltd, Chichester.

[13] Diaconis, P. and Saloff-Coste, L. (1998) , What do we know about the Metropolis algorithm?,

Journal of Computer and System Sciences 57 20-36.

[14] Dixon, L. C. W. and Szego, G . P. , Eds. (1975) , Towards Global Optimization, North-Holland,

Amsterdam.

[15] Dixon, L. C . W. and Szego, G. P., Eds. (1978) , Towards Global Optimization 2 , North-Holland,

Amsterdam.

[16] Dueck, G. (1993) , New optimization heuristics: the great deluge algorithm and the record-to­

record travel, Journal of Computational Physics 104 86-92.

[17] Dueck, G. and Scheuer, T. (1990) , Threshold accepting: a general purpose optimization algorithm

appearing superior to simulated annealing, Journal of Computational Physics 90 151-175.

[18] Gademann, A. J . R. M. (1993) , Linear Optimization in Random Polynomial Time, PhD thesis,

Department of Applied Mathematics, University of Twente, Enschede, The Netherlands.

[19] Gantmacher, F. R. (1959) , Matrix Theory, Chelsea Publishing Company, New York.

[20] Glover, F. and Laguna, M. (1997) , Tabu Search, Kluwer Academic Publishers, Boston.

[21] Hajek, B . (1988) , Cooling schedules for optimal annealing, Mathematics of Operations Research

13 311-329 .

[22] Hanafi, S . (2000) , On the convergence of tabu search, Journal of Heuristics 7 47-58.

Bibliography 133

[23J Hendrix, E. M. T . , Ortigosa, P. M. and Garda, I. (2000) , On success rates for controlled random

search, Technical Note 00-01 Department of Mathematics, Wageningen University, Wageningen,

The Netherlands.

[24J Holland, J . H. (1975), Adaptation in natural and artificial systems , The University of Michigan

Press, Ann Arbor.

[25J Hopfield, J. J. and Tank, D. W. (1985) , "Neural" computation of decisions in optimization pro­

cesses, Biological Cybernetics 52 141-152.

[26J Jacobson, S. H . and Yucesan, E. (2004) , Global Optimization Performance Measures for Gener-

alized Hill Climbing Algorithms, Journal of Global Optimization (to appear) .

[27J Kemeny, J . G . and Snell, J. L. (1960) , Finite Markov Chains , Van Nostrand, New York.

[28J Kingman, J . F . C . (1993) , Poisson Processes , Oxford University Press, Oxford.

[29J Kirkpatrick, S . , Gelatt, C. D. Jr . and Vecchi, M. P. (1983) , Optimization by simulated annealing,

Science 220 671-680.

[30J Koehler, G. J. (1997) , New directions in genetic algorithm theory, Annals of Operations Research

75 49-68.

[31J Kristinsdottir, B. P. , Zabinsky, Z. B. and Wood, G. R. (2002) , Discrete backtracking adaptive

search for global optimization, in Stochastic and Global Optimization, Nonconvex Optimization

and its Applications, Volume 59 (G. Dzemyda, V. Saltenis and A. Zilinskas, Eds.) , Kluwer Aca­

demic Publishers.

[32J Leary, R. H. (2000) , Global optimization on funneling landscapes, Journal of Global Optimization

18 367-383.

[33J Levy, H. and Lessman, F. (1961) , Finite Difference Equations, The Macmillan Company, New

York.

[34J Locatelli, M. (2001) , Convergence and first hitting time of simulated annealing algorithms for

continuous global optimization, Mathematical Methods of Operations Research 54 1 71-199.

134 Bibliography

[35] Metropolis , N . , Rosenbluth, A. W., Rosenbluth, M. N. , Teller, A . H . and Teller, E. (1 953) ,

Equations of state calculations by fast computing machines, The Journal of Chemical Physics 2 1

1087-1092.

[36] Papadimitriou, C . H . and Steiglitz, K . (1982) , Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, Inc . , New Jersey.

[37] Patel, N. R . , Smith, R. L. and Zabinsky, Z. B. (1989) , Pure adaptive search in Monte Carlo

optimisation, Mathematical Programming 43 317-328.

[38] Price, W. L. (1978) , A controlled random search procedure for global optimization, in Towards

Global Optimization 2 (L. C. W. Dixon and G. P. Szego, Eds.) , North-Holland, Amsterdam.

[39] Reaume, D . J . , Romeijn, H. E. and Smith, R. L. (2001) , Implementing pure adaptive search for

global optimization using Markov chain sampling, Journal of Global Optimization 20 33-47.

[40] Rechenberg, 1. (1973) , Evolution strategie: Optimierung technischer systeme nach prinzipien der

biologischen evolution, Frommann-Holzboog, Stuttgart .

[41] Rinnooy Kan, A. H. G . and Timmer, G . (1984) , A stochastic approach to global optimization, in

Numerical Optimization (P. Boggs, R. Byrd and R. B. Schnabel, Eds.) , SIAM, Philadelphia.

[42] Romeijn, H . E. and Smith, R. L. (1994) , Simulated annealing and adaptive search in global

optimization, Probability in the Engineering and Informational Sciences 8 571-590.

[43] Rudolph, G. (1994) , Convergence analysis of canonical genetic algorithms, IEEE Transactions on

Neural Networks 5 96-101 .

[44] Seneta, E. (1981) , Non-negative Matrices and Markov Chains, Springer-Verlag, New York.

[45] Smith, K. A . (1999) , Neural networks for combinatorial optimization: a review of more than a

decade of research, INFORMS Journal on Computing 1 1 1 5-34.

[46] Smith, R. L . (1984) , Efficient Monte-Carlo procedures for generating points uniform,y distributed

over bounded regions, Operations Research 32 1296-1308.

Bibliography 135

[47J Triantaphyllou, E. (2000) , Multi-Criteria Decision Making Methods: A Comparative Study ,

Kluwer Academic Publishers, Dordrecht, The Netherlands.

[48J Trouve, A . (1996) , Cycle decompositions and simulated annealing, SIAM J. Control and Opti­

mization 34 966-986.

[49J Wood, G . R , Alexander, D . L. J. and Bulger, D . W. (2002) , Approximation of the distribution of

convergence times for stochastic global optimisation, Journal of Global Optimization 22 277-284.

[50J Wood, G . R , Alexander, D . L . J . and Bulger, D . W. (2002) , Backtracking adaptive search:

the distribution of the number of iterations to convergence (Technical Report , IIST, Massey

University) .

[51J Wood, G . R , Zabinsky, Z . B. and Kristinsdottir, B. P. (2001) , Hesitant adaptive search: the

distribution of the number of iterations to convergence, Mathematical Programming 89 479-486.

[52] Zabinsky, Z . B. (2003), Stochastic Adaptive Search in Global Optimization, Kluwer Academic

Publishers, Boston.

[53J Zabinsky, Z . B . , Graesser, D. L . , Tuttle, M. E. and Kim, G. 1. (1992) , Global Optimization of

Composite Laminates using Improving lljt and Run, in Recent Advances in Global Optimization

(C. Floudas and P. Pardalos, Eds.) , Princeton University Press.

[54] Zabinsky, Z. B. and Smith, R. L. (1992) , Pure adaptive search in global optimization, Mathemat­

ical Programming 53 323-338.

[55] Zabinsky, Z . B . , Smith, R. L . , McDonald, J. F. , Romeijn, H. E. and Kaufman, D . E. (1993) ,

Improving hit-and-run for global optimization, Journal of Global Optimization 3 171-192.

[56J Zabinsky, Z . B . , Wood, G . R. , Steel, M. A. and Baritompa, W. P. (1995) , Pure adaptive search

for finite global optimization, Mathematical Programming 69 443-448.

136

Appendix A
•

Programs

function [p, M, delta_O, t j = Cbapter6(divisions)

%>Tailor made for the current situation; it would be better if it was more flexible. Set divisions = 51 for x values pi/50 apart.

%Checking

%ITS GOT A SIMULATED ANNEALING PART

[x y] = Grid2(O. pi. pi/(divisions - 1 » ; %x is a column vector I . 2 • . . . • divisions"2; y = f(x)

%probability(J . 1) = 0; %probability of moving nowhere; his is updated for each state later
%for xincrement = 1 :divisions
% for yincreme:nt = O:xincrement - I
% probability(xincrement + 1. yincrement + 1) = ?; %probability of going along xincrement and up yincrement < xincrement
% end
% probability(xincrement + 1 . xincrement + I) = ?; %probability of going along xincrement and up xincrement
o/oend

ouh = I ;

number I = 1 ; %row ofP. corresponding at this stage to x = 0
for i 1 = I :divisions

currentstate = [(il - 1) · pi/(divisions - I) 0]; %the first one is (x,y) = (0.0)
for jl = 1 :divisions

number2 = 1; %destination column ofP
tic
for i2 = I :divisions

nextstate = [(i2 - I) • pi/(divisions - I) 0];
for j2 = I :divisions

if numberl -...= number2
ify(number2) - y(numberl) <= 0.00005

weight = 1 ;
else

weight = 0.1 ;
end

transforrnedcurrentstate = currentstate;

xincrement = nextstate(1) - currentstate(I);
ifxincrement < 0 %make all xincrements positive (this works based on symmetry)

transforrnedcurrentstate(I) '; pi - currentstate(1);
xincrement = -1 • xincrement;

end

yincrement = nextstate(2) - currentstate(2);
ifyincrement < 0 %make all yincrements positive (this works based on symmetry)

Appendix. Programs

transformedcurrentstate(2) = pi - currentstate(2);
yincrement = -I • yincrement;

end

ifyincrernent > xincrement %make sure yincrement < xincrement (this works based on symmetry)
temp = transformedcurrentstate(I);
transformedcurrentstate(I) = transformedcurrentstate(2);
transformedcurrentstate(2) = temp;
temp = yincrement;
yincrement = xincrement;
xincrement = temp;

end

% P(numberl , number2) = probability(xincrement + I, yincrement + I);

if yincrement = 0
d = pi • (I + J/(divisions - I »;

else
xintercept = -I · pil(2 -(divisions - I»;
yintercept = transforrnedcurrentstate(2) + (transformedcurrentstate(1) - pil(2 · (divisions - I))) ·

yincrementlxincrement;
ifyintercept < -I • pi/(2 • (divisions - I »

yintercept = -I • pil(2 · (divisions - I »;
xintercept = (-I • pi/(2 • (divisions - I » - yintercept) · xincrementlyincrement;

end

xend = pi · (1 + 1/(2 • (divisions - I)));
yend = yintercept + pi • (1 + 1 /(2 • (divisions - I))) ·yincrementlxincrement;
if yend > pi • (1 + 1/(2 • (divisions - I }))

yend = pi • (I + 11(2 · (divisions - I)));
xend = (pi • (1 + 1 /(2 • (divisions - I))) - yintercept) • xincrementlyincrement;

end

d = sqrt(xend - xintercept)"2 + (yend - yintercept),,2);
end
r = sqrt(xincrement"2 + yincrement"2);
P(numberl , number2) = weight • (Pil(divisions - I »"2 /(Pi • r · d); %weight produces the simulated annealing part

end

nextstate(2) = nextstate(2) + pil(divisions - I);
number2 = number2 + I ;

end
end
P(numberl , number I) = I - sum(p(numberl , : » ; %P(here, here) = I - P(here, anywhere else)
ifP(numberl , numberl) < 0

P(numberl , number I) = 0;
P(numberl , :) = P(numberl, :)Isum(P(numberl , :»;

end
currentstate(2) = currentstate(2) + pi/(divisions - I);
number I = numberl + I ;

ifmod(numberl , I OO) = °
number I

end

t(ouh) = toe;
ouh = ouh + I ;

end
end

%P

delta_O = ones(l , divisions"2)1divisions"2; %uniformly random

[M, P, delta_O} = FindM(x,y, P, delta_O); %P and delta_O are now ordered and M has been created

P(I , I) = I ; o/ornake it absorbing
for i = 2:divisions"2

P(I ,i) = 0;
end

137

138 Appendix. Programs

function Ix,y) = Grid2(minimum, maximum, fineness);

%>Produces a colunm vector x corresponding to the states of a grid over a Cartesian Plane starting at minimum and going up to
maximUin
%in steps
%of
%fineness, and a corresponding vector y with values of f on the grid.

%It would be better to have this function independent of
%problem dimension, but I can't immediately see how to program that.

%Set minimum and maximum to be vectors containing values for each dimension?

%checked

%Calls f.m

number = I ;
numberOfStates = ceil«maximum - minimum)lfineness) + I ;
for i = 1 :numberOtstates

state = [minimum + (i - I) • fineness minimum];
for j = 1 :numberOtstates

x(number) = number;
y(number) = {{state);
state(2) = state(2) + fineness;
number = number + I ;

end
end

x = x';
y = y';

function [M, newP, newdeltB_OJ - FindM(x,y, P, delta_O);
%>Takes a column vector of distinct x values and a corresponding vector ofy values, and outputs an ordered mapping matrix M
%Transition matrix P and initial distribution delta_O are also sorted to move states into the proper order.
%Objective function values are taken to be equal if they're within 0.00005 of each other.

%checked

%Should warn if x -> Y is not a function
%Should check that states in x are distinct

order = sortrows([x y], 2);

total States = length(x);
j = I ;
oldlevel = order(1 ,2) - 1 ; %initialised to some value less than order(l ,2)
for entry = I :tolalStates

if order(entry, 2) - oldlevel > 0.00005
oldlevel = orrer(entry, 2);
for i = 1 :totalStates

if 0 <= order(i,2) - order(entry, 2)
if order(i,2) - order(entry, 2) <= 0.00005

M(ij) = 1 ;
else

M(ij) = O;
end

end
end
j = j + 1 ;

end
end

thismanylevels = j - I ;

for i = I : total States

Appendix. Programs

lempP(i,:) = P(order(i, 1), :);
newdelta_O(i) = delta_O(order(i, l) ;

end

for i = I :totalStates
newP(:,i) = tempP(:,order(�l» ;

end

function result = f(x)
%>This function is the one Eva uses (reference?). It takes a vector of cooroinates and returns a (row) vector offunction values.

%Checked

%resull = abs(x(1) - x(2» ; 'Yoa check function

for i = I :Iengfu(x(:, I »
product = I ;
product2 = I ;
for j = I :Jengfu(x(J,:»

product = product • sin(x(i, j» ;
product2 = product2 • sin(S • xli, j» ;

end

resull(i) = -2.5 • product - product2;
end

%>Returns the ARP transition matrix after n iterations for a domain Markov transition matrix P with initial domain distribution
o/odelta °
%and mapping matrix M. Matrix P should have a single absorbing state and all other states should be transient. States
corresponding
%to the same level should be congruent in P .

%Waming! Eventually the prooability of being in a transient state i s so small, i t gets confused with 0 . Then the weightings go
wrong
%and the answer is incorrect when n is too large.

%checked
%There should be a function which orders P and M so the user doesn't have to.
%It should be able to tell when probabilities of being in a state are so small that error is introduced, and stop if that happens.

P;
M;
delta_O;
n;

a = length(P);
m = length(M(I , :» ;

if P _ nminusone = °
P_n = P"n;

else
P _n = P • P _nminusone;

end
delta_n = delta_O • P _n;

b = ones(I , a) • M; 'Yob contains the number of domain levels with each range level
c = I ;
for i = I :m

total = sum(delta_n(c:c + b(i) • I»;

139

140

for j = I :b{i);
if total > °

gamma_nee) = delta_n(e) I total;
else

gamma_nee) = 0;
end
e = e + I ;

end
end

R_n = M' · diag(gamma_n) · p . M;

function [expectedConvergenceTime, R, v, b, w, rbo, AARPexpectedConvergenceTimeDelta,
BASexpectedConvergenceTimeinit) = Approximateinit(P, M, delta_O)

Appendix. Programs

%>Finds BAS with arbitrary initial distribution approximation to a Markov Chain with tranition matrix P, initial distribution
delta_O
%and mapping matrix M. Matrix P
%should have a single
%absorbing
%state and all other states should be transient. States corresponding
%to the same level should be congruent in P.

%There should be a function which orders P and M so the user doesn't have to.

%checked

%Calls Expected.m, ARPinfm, AARPtoBAS.m and BAS.m and BASinit2.m

expectedConvergenceTime = Expected(p,delta_ 0)

%R = ARPinf(p,M,delta_O); %this is awful and the line below should be used.
[R v period) = AARPmatrix(P,M,delta_O);
[b w rho) = AARPtoBAS(R, P, M, v, period);
%rho
AARPexpeetedConvergenceTimeDelta = Expected(R, delta_O · M)
AARPexpectedConvergenceTimeRho = Expected(R,rho) %hopefully bigger than BASexpectedConvergenceTime, since then the
BAS approximation
%gives an upper bound to the AARP convergence time. To work this out takes as long as working
BASexpectedConvergeneeTime out without
%using the results of the FBAS paper
BASexpectedConvergenceTime = BAS(b, w, rho, 0)
BASexpectedConvergeneeTimeinit = BASinit2(b, w, rho, delta_ ° • M, 0)
AndTheErrorls = expectedConvergenceTime - BASexpectedConvergenceTimeinit
RelativeError = AndTheErrorlslexpectedConvergenceTime

function mean = Expected(p, delta_O)

%>Retums the expected number of iterations before absorption to the first state for a Markov chain with transition matrix P and
%initial distribution
%delta 0,
%including the absorbing step

%checked
%Should check all states except the first are transient

Appendix. Programs

a = length(P);
mean ; delta_0(2:a) • inv(eye(a - I) - P(2:a, 2 :a» • ones(a - I , I) + I ;

function (R. v . period) = AARPmatrix(p. M. delta _0);
o/o>Finds l imiting weigbtings amongst transient states (after k period iterations) v and AARPmatrix R for an algorithm with
transition
%matrix P whose transient component has period period, objective function mapping matrix M and initial
%probability distribution delta_O, according to the method in AARP2.tex. P should have one absorbing state fiISt and the rest
should
%be transient.

%checked

P;
ell = length(p);
k = length(M(I,:» ;

period = Periodfinder(p);

[W D] = eig(p"period.'); %D is eigenvaJues ofP"period. This failed for P = [I 0 0 0; I 0 0 0; ° 0.1 0 0.9; ° ° I 0]
W = W.'; %W is left eigenvectors of P"period
top = D(2,2);
rows = 0;
for i = 2:ell

if I > abs(D(i,i» & abs(D(i,i» > top
top = abs(D(i,i» ;
rows = 0;

end
ifD(i,i) = top

rows = [IOWS i];
end

end %period eigenvectors sharing second largest eigenvalue top occupy rows ofW lilted in rows

a = delta_O • inv(W); %decomposition of delta_O onto eigenvectors
v = zeros(I,ell - I);
for i = I :length(rows)

v = v + a(rows(i» • W(rows(i),2:ell�
end
v = real(v/sum(v» ;

%the next bit was coded twice
beta = zeros(period, ell);
for i. = O:period - I

beta(i+I , :) ; [I v • (p(2:ell, 2:ell»)"i];
end %beta(i,:) is beta_{kd+a-I } , with a I in front

m = sum(M); %mO) states have the ith level
n = I ;
betay = beta • M;
for i = I :k %for each level

for j = I :m(i) %for each state at that level
gamma(n} = 0;
total = 0;
for p = I :period

if betay(p,i) > °
gamma(n) = gamma(n) + beta(p,n)'betay(p,i);
total = total + I ;

end
end %garnma{kd+a-I }(n) is defined for total/period iteration numbers
gamma(n) = garnma(n)/total;
n = n + I ;

end
end

%1 coded this twice, by mistake; if the above doesn't work, try the below:

141

142

%beta_kdplusa = l imit;
%gamma = zeros(J ,ell);
%gamma{ l) = I ;
%total = zeros(l ,ell); %total number of subclasses for which P(Y _n = f(xj» > 0
%for a = O:period - I
% k = 2;
% for i = 2:length(m) %for each level
% weightAtLevel = [0 beta_kdplusa) * M(:,i);
% if weightAtLevel > 0
% for j = I :m(i) %for each state at that level
% gamma(k) = gamma(k) + beta _kdplusa(k - J)/ weightAtLevel;
% total(k) = total(k) + I ;

% k = k + J ;
% end
% end
% end
% beta_kdplusa = beta_kdplusa • P(2:ell,2:ell);
o/oend

'

%for i = 2:ell
% gamma(i) = gamma(i)ltotal(i);
%end

Appendix. Programs

R = real(M" diag(gamma) · p . M); %numerical error sometimes introduces a tiny fraction of imaginary number to entries ofR

function period = Periodfinder(p);

%>Finds period of transient component of transition matrix P. P should have one absorbing state first and the rest should
%be transient

%I'm changing its name to Periodfmder

%checked

P;
ell = length(p);

available = ones(l ,ell); %not put into tree yet
groups = zeros(ell,ell); %groups(I,:) is a list of all levels of the tree into which state i fits
for i = 2:ell

if i = 2
current = 2;
groups(2, 1) =); %assign state 2 to group)
available(2) = 0; %state 2 is being used in tree

else
for j = 3:ell

if groupsG, I) • availableQ) > 0 %if state j is in tree but has no branches from it
current = j;
availableG) = 0; %state j is being used in tree
break

end
end

end

for j = 2:ell
i f P(currentj) > 0 %if transition is possible then add branch from state current to state j in tree

for k = I :ell
.

if groupsG, k) = 0
grouPSG, k) = groups(current, I) + I ; %adding the branch
break

elseif groupsG, k) = groups(current, I) + I
break %branch is already there

end
end

end
end

end

Appendix. Programs

period = groups(2,2) - J ; %this is one possible number of steps in which state 2 can transitiQn to itself
for i = 2:eU

forj = 2:ell
if groups(ij) > 0

period = gcd(period, abs(groups(ij) - groups(i,l »); %greatest common factor of current period value and a possible
number

else %of steps in which state i transitions to itself
break

end
end

end

function Ib, w, rbo) = AARPtoBAS(R, P, M, v, period);

%>Takes AARP transition matrix R (as output from ARPinf.m) and outputs BAS parameters using FindIho.m.

'V.checked

%Calls FindRho.m, BASmatrix.m

R;
m = length(R);
for i = I :m

wCi) = 1 - sum(R(i, J :i» ;
b(i) = 1 - R(i, i) - wCi);

end

%tic
rho = Simplerho(R, P, M, v, period);O/OMLErho2(R);O/OMLETho(R);O/OFindRho(R);%
%toc
%B = BASmatrix(rho, b, w);

function rbo - SimpJerbo(R, P, M, v, period)

ell = lengthcP);
Q = P(2:ell, 2:ell);

betabar = :zeros(l , ell - I);
for a = O:period - 1

addon = v • Q"a;
betabar = betabar + addon/(period • sum(addon» ;

end

R = R - diag(diag(R»;
rho = [0 betabar) • M • R;
%sum(rho)
rho = rho/sum(rho);

function hestrbo = MLErho2(W) %my attempt at programming MLErho, NOW with MultiStan!

m = sizeCW, J);

ifm = 3
rho = W(3,:);
rho(3) = (Tho(l) + rho(2»)/2;
bestrho = rholsum(rho);

143

144

return
end

rho = surn(W(2:m,:» ;
for i = 2:m

rhozeros(i) = rho(i) - W(i,i);
end

rhozeros(l) = rho(1);
rho = rhozeros/sum(rhozeros);
bestrho = rho;

%retum
%rho = [0.307 1 0.2468 0.0759 0.3702J

loglikelihood = L(W,rho) %not the actual loglikelihood, hit a scaled version of it
maxLLL = loglikelihood;
iteration = 0;

MS = I ;
for ii = I :MS

num_steps = 0;
while (num_steps = 0) I (sum(abs(delta» > 0.000001)

num steps
% Firstly determine 'd' & 'E', vector & array of first & second derivatives
% of the log-likelihood with respect to the elements of rho:

p = cumsum(rho);
d = zeros(1 , m); %unnecessary?
E = zeros(m);

for a = I :m
ifa < m

for i = a + I :m
c(i) = W(i,a)/rho(a) - sum(W(i, l :i - I »)/p(i - I);

end

Appendix. Programs

if a = I %this kind of conditional statement is because otherwise infinity - infinity type errors occur
d(1) = surn(c(3:m» ;

else
d(a) = sum(c(a + I :m» ;

end
end
ifa > 2

for i = 2:a - I
f(i) = W(i,a)/rho(a) - sum(W(i,i + I :m» /(I - p(i»;

end
ifa = m

d(m) = surn(f(2:m - 2» ;
else

d(a) = d(a) + surn(f{2:a - I » ;
end

end

ifa < m
for i = a + I :m

rei) = sum(W(i, I :i - I »)/(P(i - 1»"2 - W(i,a)/(rho(a»"2;
end
ifa = 1

E(I , I) = sum(r(3:m» ;
else

E(a,a) = sum(r(a + I :m» ;
end

end
ifa > 2

for i = 2:a - 1
q(i) = sum(W(i,i + I :m» /(I - p(i»"2 - W(i,a)/(rho(a»"2;

end
ifa = m

Appendix. Programs

E(m,m) = sum(q(2:m - 2» ;
else

. E(a,a) = E(a,a) + sum(q(2 :a - I » ;
end

end

ifa < m
for b = a + \ :m

ifb < m
for i = b + I :m

g(i) = sum(W(i,l :i - 1 »)/(P(i - 1 »)"2;
end
E(a,b) = sum(g(b + \ :m» ;

end
ifa > 2

for i = 2:a - \
h(i) = sum(W(i,i + I :m»)/(1 - P(i))"2;

end
E(a,b) = E(a,b) + sum(h(2:a - 1 » ;

end
E(b,a) = E(a,b);

end
end

end
d;
E;
sumE = sum(sum(E» ;
if sumE > 0

% fprint/{l , 'oops! sum(sum(E» > 0');
end

% Einv = inv(E);

% delta = «d'Einv*ones(m» /(sum(sum(Einv») - d)*Einv;
Einvones = E\ones(m,J);

delta = (sum({d'Einvones)/(sum(Einvones») - d)/E;

% Now increment rho & loop:
rho = rho + delta;

rho = reaJ(rho); %the real part of rho - unnecessary, I think
rho = rho + (abs(rho) - rho)/2; %make rho non-negative
minrho = max(rho);
for i = \ :m

if 0 < rho(i) & rho(i) < minrho
minrho = rho(i); %this was only a quick fix - when pi_m > 0 the other pU (except pU) are allowed to be O.

end
end

for i = I :m
ifrho(i) = 0

rho(i) = minrho; %this was only a quick fIX - when pi_m > 0 the other pU (except pU) are allowed to be O.
end

end

spectrum = eig(E);

rho = rho/sum(rho);
oldLll(num_steps + I) = loglikelihood;
loglikelihood =L(W,rho); %not the actual loglikelihood, rut a scaled version of it

num_steps = num_steps + I ;
if num_steps = 340

delta = 0;
end
if num_steps > 1 0999999999999 & oldLLL(J) > loglikelihood

delta = 0;

145

146

end
end
fprintf(l , 'The search used %d steps.\n', num_steps);

rho;
oldLLL;

loglikelihood
if loglikelihood < -1 . 1 925
% fjlfintf(l , 'oops! ditTerent rho');
end

if loglikelihood >maxLLL
fprintf(l , 'Hurrah\n');
bestrho = rho;
maxLLL = loglikelihood;
iteration = ii;

end

rho = rand(l , m);
for i = I :m

if rhozeros(i) = 0
rho(i) = 0;

end
end
rho = rholsum(rho);
loglikelihood =L(W, rho);
oldLLL = 0;

end

fprintf{l , 'Maximum likelihood of%ffound at iteration %d for rho as below', maxLLL, iteration);

function expected = BAS(b, w, rho, vector);

Appendix. Programs

o/o>Ca1culates expected number of iterations until convergence for BAS with parameters b, w and rho, including the absorbing
step, using
%the FBAS corollary. It seemed useful at the time to allow calculation of the entire expected vector; set vector = I if you want it
to
%do that. Anything calling this probably won't specifY the vector parameter, since I only just did that part.

%A big problem is that it should take into account the initial vector, which is known. That would improve accuracy lots.

%checked

m = length(rho);

p_i(I) = rho(I);
for i = 2:m

p_i(i) = p_i(i - I) + rho(i);
end

for i = 2:m - 1
a(i) = p_i(i) ' (rho(i) • w(i) + (I - p_i(i)) ' (b(i) + w(i»);
c(i) = p_i(i) • b(i) + p)(i - I) ' w(i);
if (I - p)(i» · c(i) = 0

(I - p_i(i» • c(i);
end
dei) = a(i)/«(I - pj(i) ' c(i»;
e(i) = IId(i);

end

for i = 2:m - 1
f{i) = rho(i)/c(i) • prod(e(i:m - 1 » ;

end

ifm > 2
if vector = I

top = m - 2;
else

Appendix. Programs

top = I ;
end

else
top = 0;

end

for i =] :top
mu(i) = prod(d(i + I :m - I » ' (rho(m)lb(m) + sum(/{i + I :m - I») + I ; %J got a divide by zero problem here once

end

if m > I
muCm - J) = rho(m)Jb(m) + I ;

end
muCm) = J ;

i f vector = I
expected = mu;

else
expected = mu(l);

end

function expected = BASinit2(b, w, rho, pi_O, vector);

%>Calculates expected number of iterations until convergence for BAS with parameters b, w and rho and initial distribution
pLO,
%including the absorbing step, using
%the FBAS with arbitrary initial distribution coroll3l)'. It seemed useful at the time to allow calculation of the entire expected
%vector; set vector = I if you want it to
%do that.
%checked

%caJls BAS.m

pi_O;
rho;
b;
W;

m = length(rho);

p _i(J) = rho(l);
PhU(J) = pi_O{l);
for i = 2:m

p_i(i) = p_i(i - I) + rho(i);
PhUCi) = PhU(i - I) + pLO(i);

end

mu(m) = I ;
for i = 2:m

top = m + 2 - i; %top is greatest y such that E[NCy-l) - N(y)IY _N(y) = y] is defined = y' -]
if rho (top) > ° %then E[N(y-]) - N(y)IY _NCy) = y] is defined, unless w(top) = ° (which it inevitably will)

ifw(top) = 0 %in which case E[N(y-J) - N(Y)IY_NCy)=y) will be defined for y = top-J and mu(top-I) can be calculated
directly

mu(top - I) = mu(top) + pi_O(top)lb(top) + (J - PhU(top» ' rho(top)lb(top);
top = top - I ;

end
break

else %try another top and calculate mu(top) directly
if top < m

mu(top) = mu(top + I) + pi_O(top + I Yb(top + I);
end

end
end

nolnitExpected = BAS(b, w, rho,]); %E[NCy- I)] + I where phi = pi

147

148 Appendix. Programs

for i = 2:top
j = top + 2 - i;
mu(j - I) = mu(j) + (pi_ O(j) • p_i(j) + rho(j) • (I - PhU(j))) * (w(j) • (noInitExpected(j - I) - I) + I - p_i(j» /(p_i(j) • (rho(j) *

w(j) + (I - p_i(j)) · (beD + w(j» » ;
end
mu;
if vector = I

expected = mu;
else

expected = mu(1);
end

function (R, v, b, w, rho, AARPexpectedConvergenceTimeDelta, BASexpectedConvergenceTimeinit] =
EstimateViaAARPHaR4(dimension, n, size, target)

%Different extrapolation method

for i = I :dimension
point(i) = rand(I);

end
point = pi • point;

value = f(point);
values = value;

for i = I :n
[point, value] = steplliaR(point, value);
vaJues(i + I) = value;

end

plot(values)

sortValues = sort(values);
distinct = sortValues(I);
for i = 2:n + I

if sortValues(i) > sortValues(i - I)
distinct = [distinct sortValues(i)];

end
end
plot(distinct)

numberOfBetters = length(distinct);
for i = 1 :Iength(distinct)

if target < distinct(i)
numberOfBetters = i - I ;
break

end
end

cutoml) = target;
ifnumberOfBetters > 0

distinct = distinct(numberOfBetters + 1 :Iength(distinct» ;
end

for i = I :size - 2
cutomi + I) = distinct(Ooor(i • length(distincty(size - I» + I);

% cutoff(i + I) = sortValues(l) + i · (sortValues(n + I) - sortVaJues(I)y(size · I);
end
%BUT WHAT IF IT DOES SAMPLE THE OPTIMUM? THEN THERE'S NO EXTRAPOLATION REQlnRED
%I've more or less allowed for this

R = zeros(size);
visited = 0;
for j = I :size • I

Appendix. Programs

if values(I) < cutoff(j)
visited = 1 ;
break

end
end
if visited = I

to = j;
else

to = size;
end

for i = 2:n + I
from = to;
visited = 0;
for j = l :size - I

if values(i) < cutoff(j)
visited = I ;
break

end
end
if visited = I

to = j;
else

to = size;
end
R(from, to) = R(from, to) + I ;

end

go = O;
for j = 2: 1ength(R)

if sum(R(j,1 :j- I » + sum(R(jj+1 :size» = 0;
go == I ; %wait until there's enough data to estimate all of b am w
break

end
end

while go = I
[point, value] == stepll-laR(point, value);

values(length(values) + I) = value;
sortValues = sort(values);
if value < target

numberOfBetters = numberOfBetters + I ;
end

from = to;
visited = 0;
for j = I :size - I

ifvalue < cutoffU)
visited == I ;
break

end
end
if visited = I

to = j;
else

to = size;
end
R(from, to) = R(from, to) + I ;

n = n + 1 ;

go = O;

end

for j = 2:length(R)
if sum(R(j, 1 :j- l » + sum(R(jj+ I :size» = 0;

go = 1 ; %wait until there's enough data to estimate all of b and w
break

end
end

R(I ,:) = [1 zeros(J , size - I)];

1 49

150

v = sum(R(:,2:size» ;
v = v/sum(v);

for i = 2:length(R)
R(i,:) = R(i,:) / sum(R(i,:» ;

end

[b w rho) = AARPtoBAS(R, R, eye(size), v, Periodfmder(R)); %rho estimate no good here

v2 = sum(R);

fit = zeros(1 ,size);
if numberOfBetters = 0

x = (sortValues(1) + cutotT(2» /2;
rho(2) = v2(2)/(cutotT(2) - sortValues(l » ;
for i = 2:size - 2

xCi) = (cutotT(i) + cutotT(i + 1)Y2;
rho(i + I) = v2(i + I)I(cutofl{i + I) - cutotT(i));

end
x(size - I) = (cutotT(size - 1) + sortValues(n + 1 » /2;
rho(size) = v2(size)/(sortValues(n + I) - cutofl{size - I » ;

rho = rho/sum(rho);
plot(x, rho(2:size»
rho = [0 log(rho(2:size»);
plot(x, rho(2:size»

order = 3;
p = polyfit(x, rho(2:size), order);
for i = I :size - I

for j = O:order
fit(i + I) = fit(i + I) + (x(i»"j • p(order + I - j);

end
end
for j = O:order

fit(l) = fit(I) + target"j · p(order + 1 -j);
end
rho(l) = fit(I);

%rho(1) = rho(I)/1 0;
% total = sum(rho);
% fit = fit/total;
% rho = rho/sum(rho);

x = [target x);
plot(x,[rho; fit]')

rho = exp(rho);
fit = exp(fit);

total = sum(rho);
fit = fitltotal;
rho = rho/sum(rho);

plot(x,[rho; fit]')

AARPexpectedConvergenceTimeDelta = 0;
else

AARPexpectedConvergenceTimeDelta = Expected(R, rho)
end

BASexpectedConvergenceTimeinit = BASinit2(b, w, rho, rho, 0);
%AndTheErrorIs = expectedConvergenceTime - BASexpectedConvergenceTimeinit
%RelativeError = AndTheErrorIslexpectedConvergenceTime

Appendix. Programs

Appendix. Programs

function [newpoint, newvalue) = StepmaR(point, value)

%Simulates a transition from point according to Hit and Run and accepts it ifit improves or with probability 0.1 if it doesn't It's
%set up specifically for points in at least two dimensions with each coordinate between 0 and pi.

%x = rand(l) • pi;
%y = rand(I) · pi;

%checked

dimension = length(point);

angle = pi • rand(l);
direction(J) = sin(angle);
direction(dimension) = cos(angle);
for i = 2:dimension - I

previousAngle = angle;
angle = pi • rand(I);
direction(i) = direction(i - I) • sin(angleYtan(previousAngle);
direction(dimension) = direction(dimension) • cos(angle);

end

%check = direction • direction';

while(J)
distance = sqrt(dimension) · pi · (2 · rand(J) - I);
newpoint '" point + distance • direction;
if min(newpoint) >= 0

if max(newpoint) <= pi
break

end
end

end
newvalue = f(newpoint);
if newvalue > value

randomnumber = rand(1);
if randornnumber >= 0. 1

newpoint = point;
newvalue '" value;

end
end

151

