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Abstract 

Three-dimensional (3D) printing refers to a group of digitally controlled, additive 

manufacturing technologies increasingly used to fabricate customised objects from a range of 

possible materials, including food ingredients, using a digital image file representing the object.  

A novel variation on 3D food printing is being developed to customise the appearance of foods 

with an embedded 3D colour image by the selective blending of primary colorants. This 

capability is beyond what is needed usually for the coloration of bulk, single food matrices. 

In this thesis, non-food techniques of colorimetric matching (used in computer match 

prediction) and colour gamut mapping (from cross-media colour reproduction), were 

investigated as potential methods for dye recipe computation by the new 3D colour food printer.  

The aim was to develop a model for transforming image RGB data to dye recipe data, taking 

into account the variable effects of food properties.  The two techniques were applied to the 

problem of matching a set of standard tile colours using a set of primary colorants in model food 

substrates.  Kubelka-Munk (K-M) blending equations underlying both techniques were 

developed for blends of Brilliant Blue, Ponceau 4R (red) and Tartrazine (yellow) food dyes 

when added to a microwave-baked cake and to four variants of a wheat starch gel.   Validation 

of the model for the cake blends was shown the by ΔE*ab,10 differences between computed and 

measured L*10a*10b*10 colours falling within range of a visually acceptable match (three 

ΔE*ab,10 units).  For some of the gel blends, the ΔE*ab,10 differences reached five units. 

Dye recipes computed by a modified colorimetric matching algorithm to match target tile 

colours with cake colours at times called for negative quantities, or totals that exceeded the legal 

limits for foods containing dyes, indicating that the target colour was outside the range (gamut) 

of the cake-dye system.  In these recipes, individual negative dye quantities were increased to 

zero, and totals scaled back to within the legal limit, retaining relative dye proportions.  This 

resulted in close differences between tile and cake before scaling (with computed ΔE*ab,10 values 

of less than three units for as many as eight of the twelve target colours) becoming much larger 
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after scaling (up to 39 ΔE*ab,10 units), though visual inspection of the colour pairs suggested that 

the matches might be closer. 

The gamut of perceived colours from a coloured food is not only constrained by legal 

restrictions on dye addition, but dependent on the properties of the food itself, such as its 

background colour (seldom white) and the light-scattering effects of surface texture.  Compared 

with colour images, foods are likely to have a more limited colour gamut, the size of which is 

expected to vary with changes in formulation and processing.  Gamut mapping techniques were 

used to investigate the extent to which the target tile colours themselves needed to be scaled 

back before matching solutions and corresponding dye recipes could be computed.  Using four 

samples of the gel that differed only in their level of (artificial) browning, including white, the 

impact of browning on the colour gamut was determined.  Using the cake, solutions from gamut 

mapping were compared with those from colorimetric matching.      

A gamut of discrete colours is treated as a continuous volume in colour space.  In the absence of 

a published gamut calculation for coloured foods, a technique was developed to compute a mesh 

of points on the colour gamut boundary.  Boundary colours were computed using dye blends not 

exceeding the legal limit, and spaced such that ΔE*ab,10 did not exceed three units.  This method 

was applied to the white (non-textured) gel containing dye blends, to generate a ‘base’ gamut.  

The absorption behaviour of each dye was found to be largely consistent among the white and 

browned gels which enabled quick computation of colour gamuts for the brown gels by 

substituting the absorption spectrum of a brown gel for that of the white in the K-M equation.  

The colour gamut was found to decrease in size and to shift position with increased gel 

browning.  The dye blends that were used to compute the colour gamut boundary for the 

whitened gel were combined with the absorption spectrum for the cake to compute the gamut 

boundary for the cake colours.  All colour gamuts were specific to the standard D65 illuminant 

and 10 degree standard observer.   
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In the investigation of the effects of browning, colour gamut mapping began with the initial 

replacement of each tile colour with a colour from the white gel gamut.  All colours were 

replaced gradually by a darker, and often less chromatic, colour, as the level of browning in the 

gel was increased.  As a result of the reduction in gamut size with increased gel browning, the 

difference between tile colours and their replacement targets in each of the reduced gamuts was 

smaller for tile colours having ‘brown’ characteristics (such as Orange, Red and Yellow) than 

they were for blue-, pink- and green- coloured tiles.  Larger increases in total dye quantity with 

increased gel browning were needed for the latter group of colours than for the former.  For 

most colours an increase in the relative proportion of the darkest dye in the recipe was also 

needed.  The actual dye quantities computed for each replacement colour depended on the 

availability of mesh points in the region of colour space in which the tile was located. 

Colour gamut mapping required a heavier computational load than the colorimetric matching 

technique to provide solutions for tile colours in the cake-dye gamut.  Although not always 

giving solutions in the same angular region of colour space as the tile colours, colorimetric 

matching was able to produce similar ΔE*ab,10 differences between tile colour and best cake 

match as did colour gamut mapping, for not necessarily more or less total dye.    

Two forms of a generalised algorithm are proposed for the computation of dye recipes by the 

3D colour food printer.  One algorithm is modelled on a workflow for cross-media colour 

reproduction.  A series of transformations that account progressively for the effect of individual 

characteristics of the food printing substrate on the achievable gamut from dye blends is 

incorporated into the main series of transformations that transcribes RGB image data to dye 

recipe data.  In the other algorithm, modelled on colorimetric matching, it is the progressive 

effect of each individual characteristic on the light-absorption characteristics of the un-dyed 

food printing substrate that is accounted for, and incorporated into the main matching workflow.   
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Preface 

This thesis is written in the style of (but not formally complying with) a submission based on 

publications, as described in the Handbook for Doctoral Study, Doctoral Research Committee, 

Massey University, Version 7, January 2011; each chapter following the Literature Review and 

preceding the final Overall Discussion is formatted as an extended research paper.  Within 

research Chapters Four, Five and Six, the methods and results are described and discussed for 

each stage of the work, rather than in separate Methods and Results sections for the entire body 

of work.  All research chapters (Chapters Four to Seven) have their own Introduction and 

General Discussion sections.  Appendices follow each of these chapters.  Due to the format of 

the thesis some of the detail that is covered in the Literature Review is repeated in the remaining 

chapters, which are presented in chronological order.   

A shorter form of Chapter Four was published as an original research paper in the Journal of 

Food Science (Kim et al., 2012).  A copy is not included here.  It is intended to use other 

chapters as the basis for future manuscripts.  

Unless stated otherwise, the figures in this thesis are the work of the author.   
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Chapter One: Introduction to 3D colour food printing 

The concept of personalised or customised foods is one of foods produced to individual 

specifications for selected characteristics.  Taste and flavor, convenience, and increasingly, 

nutritional functionality, are major considerations.  The Innovative Food Solutions research 

platform of the Riddet Institute Future Foods programme is focused on the development of 

‘personalised, high-quality food products’ based on novel products and concepts.  One such 

concept, POSIFoods™, has been patented (Boland et al., 2010), for point-of-sale individualised 

foods linking personalised nutrition with convenience and sensory preferences. 

A follow-up concept being developed within the research platform is a new version of three-

dimensional (3D) printed foods.  Like its non-food counterpart, 3D food printing is designed to 

build objects in 3D, layer-by-layer, and differs from mass production methods in that objects 

can be produced on an ‘as-needs’ basis.  3D printing is a process that can provide considerable 

design freedom.  Currently, 3D food printers range from concepts to prototypes to open-source 

or retail units.  Printers differ also in the outputs offered, which range from new and unusual 

combinations of ingredients and new forms (a feature mainly of concepts), to more conventional 

food items which are printable (by extrusion) per se (such as chocolate), or have been modified 

to be printable (such as cookie dough, and meat and seafood pastes) (Lipton et al., 2010), or are 

printable once ingredients have been reconstituted from powders (such as pizzas for long-

distance space travel) (Souppouris, 2013).  

The new 3D printer is being designed to offer outputs that are fully customised, in that they 

meet user specifications for shape, texture, flavour, nutrition and appearance.  A raw food 

composition is rapidly formed then cooked into a solid matrix in a self-contained unit in which 

formation and cooking both take place.  Outputs may not necessarily resemble conventional 

foods.  Attention is being given to understanding the mechanisms of structure formation as a 

function of composition.  This should enable the prediction of the likely textural outcomes when 
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users select ingredients to meet nutritional and sensory requirements.  As well, the same 

compositions need to be extrudable in their raw state. 

The way in which food appearance will be customised is a particularly novel aspect of the 

printer; the printer will have the capability to render a colour image or design in 3D within the 

food matrix.  Each colour element of the image or design will be reproduced by the selective 

blending of primary food dyes.  Dye blends will be positioned in the raw food composition to 

create a food comprised of 3D colour voxels (volume elements) upon cooking.  This aspect of 

the new printer concept speaks to the role that coloration already plays in making foods 

attractive, but at a finer level of detail and control; it is also an advance on foods coloured 

manually in 3D and on the printing of colour images and designs on to food surfaces.  Existing 

3D food printing concepts either do not offer a coloration option, or if one is available, the 

number and types of colorants needed is not given, nor are the details of methods that are 

needed to compute the required quantities (Yang et al., 2001; Inspix, 2014). 

Developing the concept poses numerous technical challenges.  The behaviours of (potentially a 

range of) matrix and colorant ingredients, and their interactions, under storage, forming and 

cooking conditions need to be understood so that structure setting and coloration can be a 

predictable and controllable process.  Colour reproduction capability needs to be fast, built-in, 

and sensitive to changes in food matrix formulation in order to calculate the required quantities 

of colorants, which calls for a different approach than what is usual for food coloration.  

Because foods are hugely diverse in their physical and chemical characteristics, and in their 

processing, exact shades can be difficult to predict and colour blends need to be tested in the 

intended food application.  Most solutions are based on visual assessment and provided by 

experienced colour formulators.  Other considerations specific to the food printer, all of which 

will have an impact on the overall visual effect, include: controlling the diffusion of colorants 

within the matrix; the partitioning of colorants between matrix elements; expansion of the 

matrix (if it cooks to a solid foam structure); the background colour of the matrix; the 
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contribution of surface texture to light reflectance; the extent to which colour image data can be 

transcribed into colorant quantity data.  

Automation of the coloration process may be possible using techniques from other industries 

such computer match prediction used for paint, textiles, plastics and ceramics, and cross-media 

(e.g. screen to print) colour reproduction.  Computer matching prediction algorithms draw on a 

database containing spectral information on colorants and substrates to select, quickly and 

accurately, the colorants and their quantities needed in a substrate to match target colours.  In 

contrast to the food industry, industries using computer match prediction have high 

requirements for matching precision, and cater for a smaller range of well-defined substrates.  

The techniques seem not yet to have been adopted by the food industry, as a similar approach to 

food coloration would involve considerable time, effort and cost to develop relevant databases.  

However, as speed and automation are necessary for a 3D food printer, the applicability of 

computer match prediction to food systems needs to be investigated.  An impediment to the 

adoption of cross-media colour reproduction techniques for food applications is, again, the 

complex nature of foods.  In the transcribing of colour data from one medium (e.g. monitor 

display) to another (e.g. print) differences in the range of colours achievable in each medium is 

accounted for; if the second medium is a customisable food substrate, the range of colours 

possible from colorant addition is expected to be much more variable. 

This thesis is focused on the development of a predictive colour matching toolbox for use by the 

new 3D food printer.  This work is separate to the development of printer hardware and 

software, and of formulations for the food substrate, and to investigations of the rheological 

properties of the raw substrate and of colorant-substrate mixing, which are the subjects of other 

student theses in the research programme.  The following Literature Review examines the 

novelty of the 3D colour food printing concept, the requirements for 3D colour food printing 

and to what extent existing coloration methods, both food and non-food, can meet these 

requirements.  This leads to the aims and objectives of the thesis. 
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Chapter Two: Literature Review, Part 1 – Principles of colour and 

coloration 

2.1. Scope of this Review 

The purpose of this Review is to survey and examine existing methods and technologies 

relevant to the goal of developing a predictive coloration algorithm for a novel 3D colour food 

printer.  The printer is being designed to produce customised foods within which complex 

colour images or designs are rendered in 3D, and for which the dye recipes needed for each 

voxel of colour are to be computed by the algorithm.  This review will be (necessarily) wide-

ranging in the topics that it covers, and may even be unique in bringing together relevant 

knowledge from the food and non-food areas in a way that has not been needed before.      

Due to the need for digitally-controlled food coloration, this review encompasses both 

automated processes such as colour image reproduction and computer colour matching and 

currently used food coloration techniques.  It also covers instrument-based methods for 

evaluating reproductions, and their relationship to visual assessments.  These topics are the 

subject of Part 1 of this Review (Thesis Chapter Two).  As much of the theory and principles 

underlying these methods is already well covered in the literature, in a number of places this 

Review takes the form of summaries referencing key texts and key authors in their respective 

areas.  Specific details of instrumentation are not included.  Examples of applications are 

predominantly those containing synthetic colorants, but some reference to natural pigments is 

made, where useful.  Part 2 of the Review (Thesis Chapter Three), examines the novelty of the 

3D colour food printing concept by exploring the current state of the customisation-3D printing-

3D coloration ‘space’, and investigates in detail the properties of a food system which could be 

an ideal model substrate for the printer.  Customised coloration requires an understanding of 

how the properties of materials impact coloration and how these effects can modelled and 

predicted; this is covered in both Part 1 for food and non-food examples and in Part 2 for an 

ideal food printing substrate.  Finally, the conclusions from this Review aim to partner 
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coloration approaches (Part 1) with printer and substrate specifications (Part 2) in the form of a 

required experimental approach, and lead to the aims and objectives of the thesis. 

2.2. Colour and Appearance 

The sensation of colour occurs when light reaching an object is modified by the object and is 

then detected and processed by the eye and the brain, or human visual system.  It follows that 

the sensation is very dependent on the properties of the light source, the material of the object 

and the observer (McClements, 2005), and that “colour exists only in the mind of the viewer” 

(Berns, 2000).  This first section of the review provides an overview of these properties and 

how they contribute to perceptions of colour and appearance.  The effects of light and object are 

considered together as the stimulus. 

2.2.1. The stimulus: light and object  

Colour and appearance, from the point of view of the stimulus, is due to the different directions 

in which light travels after it encounters the boundary between two media of differing refractive 

index, and the passage, directional changes and loss of light within the second medium.  These 

phenomena are described below, according to surface effects (reflection and refraction) and 

subsurface effects (transmission, absorption and scatter), and illustrated later in Figure 2.3.  

Their contributions to various appearance attributes are given later in Table 2.1.  For illustrative 

purposes the following descriptions use the examples of air and object as the first and second 

medium respectively. 

2.2.1.1. Light and sources of light 

Light is a visible form of electromagnetic radiation or energy.  Within the electromagnetic 

spectrum, the visible spectrum occupies a relatively narrow region, from about 380nm to about 

780nm (Berns, 2000), in between the shorter wavelength (higher frequency) gamma-ray, X-ray 

and ultraviolet regions, and the longer wavelength (shorter frequency) infrared, microwave and 

radio wave regions (Figure 2.1).  Within the visible spectrum, light of different colours is 

produced by electromagnetic energy of different wavelengths (Figure 2.1), and collectively 
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energy of all wavelengths is perceived as white light.  Sources of white or near-white light 

include the sun, filament bulbs and fluorescent lamps (Berns, 2000).  Light sources are 

represented by their spectral power distribution, the spectrum of intensity as a function of 

wavelength (Berns, 2000; McClements, 2005).  More specifically, intensity is expressed in 

terms of relative power, the power relative to that at 560nm; distributions are normalised with 

power at 560nm set to unity (Berns, 2000).   

 

 

2.2.1.2. Refractive index 

The difference in refractive index between two media contributes to the changes in the direction 

of light travel, both at the surface(s) of the object, and within the object.  The refractive index of 

a material is equal to the speed of light in air, divided by the speed of light in the material; 

therefore the refractive index of air is (very close) to unity (Berns, 2000), and that of many 

common materials is near 1.5 (Berns, 2000).  Effects other than refractive index differences also 

make a contribution to directional changes, as will be described below. 

2.2.1.3. Reflection 

At the surface of the object, a small amount of the incident light will be reflected back into the 

air.  Reflectance is the ratio of reflected to incident light under a given set of conditions (Berns, 

2000).  The proportion of reflected light increases as the difference in refractive index between 

the two media increases (McClements, 2005), and as the incidence angle, the angle at which 

Figure 2.1  The Electromagnetic Spectrum (PhotovoltaicLightingGroup, 2013) 
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light reaches the surface of the object, increases above 30° (Bridgeman, 1987).  To give a 

general indication of the amount of light that can be reflected, 4% of incident light is reflected 

from the (smooth) surface of an object with a refractive index of 1.5, if the light hits the surface 

at normal incidence (i.e. perpendicular to the surface, at 0°) (Bridgeman, 1987; Berns, 2000).  

Reflected light is either specular or diffuse, depending on surface topography (McClements, 

2005).  ‘Specular’ refers to the mirror-like reflections from smooth surfaces; the angle of 

reflection and the angle of incidence (to the normal) are equal (Berns, 2000; McClements, 

2005), and the reflected light is concentrated within a narrow region at this angle when specular 

reflectance is high (Bridgeman, 1987).  The reflection of incident light in many different 

directions from rough surfaces, or from beneath smooth surfaces, is referred to as ‘diffuse’.  

Reflectance from objects is typically a combination of the two types (McClements, 2005).  

Using an appropriate measurement geometry, reflectance can be measured to either include or 

exclude specular reflections (‘SCI’ and ‘SCE’ modes respectively).   

2.2.1.4. Refraction 

Any light hitting the object at normal incidence that is not reflected at the surface continues in 

this direction as it enters the sample, while any light hitting the object at an angle that is not 

reflected changes direction as it enters the sample.  The latter change in direction is referred to 

as refraction, and indicated by the angle of refraction (relative to the normal).  The angle of 

refraction is not necessarily the same as the incidence angle; the degree to which light is 

refracted within an object is dependent on wavelength, which explains the spectrum of colours 

seen when white light passes through a glass prism (Bridgeman, 1987; Berns, 2000). 

2.2.1.5. Transmission 

Transmitted light is light that has passed directly through an object.  If the object is clear and 

colourless all incident light is transmitted (Berns, 2000).  Transmittance in these materials is 

equal to the ratio of the intensity of transmitted light to the intensity of the incident light wave, 

with adjustments made for light reflected at the front and inside surfaces.    
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2.2.1.6. Absorption 

Visible light that penetrates the surface can be lost through the selective absorption of different 

wavelengths by colorants, which reduces the amount of light that is transmitted by clear objects, 

or that is otherwise produced from the sample.   Transmittance decreases exponentially with 

increasing colorant concentration or path length (object thickness) (McClements, 2005).  Light 

is absorbed by dyes that are dissolved in the medium, or by pigment particles so small that they 

are regarded as being effectively dissolved (Bridgeman, 1987).  The absorption of light by 

coloured, non-light scattering materials is better expressed as absorbance rather than as 

transmittance, because it is directly proportional to colorant concentration and path length 

(McClements, 2005). 

2.2.1.6.1. Molecular basis of light absorption (coloration) 

The selective absorption of light by colorants is related to changes in energy within the colorant 

molecules.  When light is absorbed, electrons transition from either  bonding or n non-bonding 

molecular orbitals, to the higher energy * anti-bonding orbitals.  Bonding orbitals are so called 

because they contain electrons which contribute to a chemical bond, while the anti-bonding 

orbital does not contain electrons.  Intermediate between these two is the non-bonding orbital, 

which contains electrons which are not part of a molecular bond, such as a lone pair of electrons 

from nitrogen.  These mechanisms occur in compounds containing ‘resonance structures’ - 

conjugated double bonds (alternating double and single bonds) and atoms contributing lone pair 

electrons; these are common features of food colorants, which exist as both hydrocarbon chains 

and ring structures (Moss, 2002).  The energy of the electron transitions decreases as the 

numbers of resonance structures increases, which causes the wavelengths of light that are 

absorbed to change (Moss, 2002).  The intensity of the absorption can also change.  These 

phenomena are described by an absorption spectrum, or a plot of absorbance versus wavelength 

(McClements, 2005).  Relationships between absorbed and observed colours of colorants are 

given in Figure 2.2.  The colour of an object will be a function of the shape of the curve and the 
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wavelength of maximum absorbance, while its intensity will be indicated by its height above the 

baseline (Bridgeman, 1987). 

 

 

2.2.1.6.2. Nomenclature  

‘Colorant’ is an umbrella term used to describe compounds that absorb electromagnetic energy 

in the visible region that is, in the wavelength range between 380 nm and 750 nm.  Within this 

group, a distinction is commonly made – from the point of view of colour chemistry - between 

colorants that are soluble in the medium in which they are dispersed, which are referred to as 

‘dyes’, and those that are insoluble, which are termed ‘pigments’.  However in a physiological 

sense, natural colorants of animal and plant origin are also referred to as pigments, and most are 

soluble (Moss, 2002).  Natural colorants are included in the classification of food colorants 

according to their origin (synthetic, natural or nature-identical).  Synthetic colorants do not 

occur in nature and are chemically synthesised; for this reason common food dyes (which are 

synthetic colorants) often evoke negative connotations, despite nature-identical colorants also 

being synthesised.  Another classification for food colorants is that based on their chemical 

structure (Moss, 2002). 

       

Figure 2.2  The relationship between the wavelengths of light absorbed by different colorants and the observed 
colours of the colorants.  Adapted from Moss (2002). 
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2.2.1.7. Scatter 

The scattering of light (that has penetrated the object surface) by pigment and other particles 

contained within the medium depends on the size of the particles, and on the difference in 

refractive index between the particles and the surrounding medium.  On the one hand, particle 

diameter needs to be at least ten times the wavelength of the light for scattering to occur 

(Bridgeman, 1987), though according to Berns (2000) scattering reaches a maximum when 

particles and wavelength are around the same size, and then decreases for larger particles.  On 

the other hand, light will not be scattered unless the refractive indices of the particles and 

medium are different; when there is no difference light will be transmitted (Berns, 2000).  

Pigment particles which scatter light absorb any light which is not scattered; light emerging 

from particles after absorption is available to be scattered by other particles.  Scattering results 

in a diffuse reflectance of light from the object, with light travelling from the object in all 

directions.  The appearance of coloured, light-scattering materials can be expressed in terms of 

the Kubelka-Munk absorption and scattering coefficients, K and S respectively.  These are 

described in more detail in Section 2.4.3.2.   

Rayleigh scattering is the selective scattering of blue (shorter wavelength) light by small 

particles (Gibbs, 1997).  Scattering by molecules of oxygen and nitrogen in the air is the reason 

that the day-time sky appears blue in clear, cloudless conditions.  The opalescence of some gem 

stones is also the result of Rayleigh scattering.  
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2.2.1.8. Summary illustration 

 

Figure 2.3  An illustration of the different phenomena (not including Rayleigh scattering) that can occur when 
visible light interacts with an object.  The specific phenomena that occur depend on the physical properties of the 
object.  The use of colour in this figure is not related to any object colour observed.  Compiled using Bridgeman 
(1987), Hutchings (1999) and Berns (2000). 

 

2.2.1.9. Effects on appearance 

The degree to which light is modified in the ways described above depends on the material 

properties of the object.  A general overview of the relationships between the surface and sub-

surface effects of the object on incident light and the appearance of coloured objects is given in 

Table 2.1.  Typically an object will modify light in a number of different ways simultaneously, 

as has been noted already for reflection at the surface (Section 2.2.1.3); in addition Table 2.1 

lists the combined effects on appearance of sub-surface transmission, absorption and scattering 

of light.  Reflected light, while not absorbed sub-surface (and therefore remaining the same 

colour as the incident white light) (Bridgeman, 1987), still impacts colour appearance; while 

smooth surfaces will appear more intensely coloured so long as viewing is adjusted to exclude 

the reflected light (a viewing condition represented in instrumental colour measurement by the 

SCE geometry), rough surfaces have will have dull, less intense colours because diffuse 
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reflection cannot be excluded from view, and will have a diluting effect (Bridgeman, 1987).  

Although rare, it is possible that under conditions of completely diffuse illumination that 

specular reflections of smooth and glossy surfaces will not be seen, but instead be included as 

uniform white light in the visual perception of the surface colour (Berns, 2000).  (Reflectance 

measurements that include the specular component however are required for the derivation of 

Kubelka-Munk absorption and scattering coefficients as described later in Section 2.4.3.2.).       

From the above, it follows that intentional changes to (colour) appearance of an object can be 

made by altering its physical properties, such as by the smoothing or abrading of the surface, or 

the control of scatter by selecting pigments with appropriate refractive index and particle size.  

The selection of pigments is not limited by the need to meet both refractive index and size 

criteria; particles can be effectively transparent if small enough, even if they differ in refractive 

index to the surrounding medium, and conversely, scatter is also possible when particles and 

medium have similar refractive index (Berns, 2000).  

Table 2.1  Examples of the relationships between object appearance and the interaction of light with the object. 

Appearance Light-material 
interaction 

Examples 

Surface1  
Glossy, intense colours Specular reflection Smooth surfaces such as paint films, also 

achieved by varnishing, waxing of other 
surfaces 

Matte, less intense colours Diffuse reflection 
(scattering) 

Textured surfaces, also achieved by 
roughening 

Sub-surface 
Transparent (‘clear’) Transmission and 

absorption 
Clear materials coloured by dissolved dyes, 
or by pigment particles which are very small 
(<0.2μm2) AND/OR have similar refractive 
index to the surrounding medium; selective 
absorption of different wavelengths by dyes 
and pigment particles 

Opaque (‘solid’) Absorption and intense 
scattering, no light 
transmitted  

Solids, concentrated emulsions; media 
containing inorganic pigments (e.g. titanium 
dioxide) with refractive index >2.0 (relative 
to medium of surface coating resin with 
typical refractive index of ~1.5 )2 OR 
containing organic pigments having similar 
refractive index to medium, through control 
of pigment particle size; dependent also on 
particle or droplet concentration 

Translucent (‘cloudy’) Partial scattering and 
partial transmission; 
absorption 

Dilute micellar dispersions such as low-fat 
and full-fat milk; full-fat milk is also a 
combined dispersion and emulsion 
 

1 Includes light absorption 2 Bridgeman (1987) 
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2.2.1.10. Structural colour 

The interaction of light with certain objects can produce colour without any dye or pigment 

being present.  This is possible only when the structural dimensions of the object are in the 

order of the wavelengths of visible light.  Objects having this property are referred to as 

(periodic) nanostructures.  Table 2.2 lists only a few examples of naturally-occurring and 

fabricated nanostructures, and within each, the relationships between the physical dimensions 

and the colours that are produced; Xu et al. (2011) and Luiggi (2013) are useful starting points 

for further reading.  In the metallic nanostructures, which are known as plasmonic 

nanostructures (Xu et al., 2011), different geometries influence colour by changing the nature of 

the surface plasmons, which are the electron oscillations occurring at the surface; it is these 

plasmons that interact with incident light and control the interaction of the light (photons) with 

the metal surface.  Photonic crystals are another type of periodic nanostructure capable of 

producing structural colour, but they will not be described in any detail here. 

The distinct advantage of coloration based solely on structure is that it is chemically stable, 

compared to pigment- and dye- based colours which are subject to fading.  Metallic 

nanostructures are particularly suitable for high-intensity or continuous illumination (Xu et al., 

2011).  The fabrication of such structures however, is currently beyond the scope of 3D printing 

technologies being covered in this review. 
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Table 2.2  Examples of naturally-occurring and fabricated nanostructures, illustrating the relationships between 
physical dimensions and colour. 

Type of nanostructure Effect on incident 
light 

Effect of physical dimensions Purpose 

Biological/natural 
Wing scales of the 
Indonesian male sub-
species of Papilio 
palinurus (‘Emerald 
Swallowtail’) 
butterfly1 

Iridescent, 
emerald green 
bands on each 
wing from the 
additive mixing of 
reflected yellow 
and blue light 

Regular 2D array of concavities on surface 
of wing scales, ranging from 4-6 microns 
in diameter and between 0.5 – 3 microns 
at maximum depth; flat regions between 
and within each concavity appear yellow; 
double reflection of light (incident along 
the normal) from one side of the 
concavity inclined at 45°, to the opposite, 
orthogonal, side of the concavity, and 
back along the normal results in intense 
blue light; the surfaces of each side are 
multi-layered and have equal spectral 
reflectivity 

Unclear 

Berry-like fruits of the 
African perennial herb 
Pollia condensata2 

Selective reflection 
of blue light, 
intensely bright 
and iridescent, 
with some red, 
purple and green 

Layers of cellulose microfibrils stacked in 
a helical manner within cell walls; helical 
pitch about the same as the wavelength 
of blue light; slight variations between 
cells in the spacing of the cellulose layers 
gives the other colours.  Cellulose 
structures also highly reflective, reflecting 
about 30 percent of incident light. 

Increase visibility 
and attractiveness 
of fruit to 
pollinating birds 
and other animals. 

Synthetic/fabricated3 
Fabricated arrays of 
silver nanoscale 
pillars4 

Selective reflection Dependent on the size and spacing of 
pillars in a given array; cylinder diameter 
ranges from 300 to 500 nm and centre-to-
centre separation from 320 to 540 nm. At 
the top of this range arrays appear red 
because they reflect light of 630 nm 
wavelength, while at the bottom of the 
range arrays appear blue, reflecting light 
of 490 nm. 

Possible 
application as 
optical filters in 
digital cameras 
and in large-area 
colour displays. 

Optically thick metal 
films perforated with 
periodic 
subwavelength hole 
arrays, either square-
lattice or triangular 
lattice5 

Selective 
transmission 

For square lattice arrays, λmax of 
transmitted light is proportional to the 
lattice constant; when the lattice constant 
for a 300 nm-thick silver film increases 
from 300 to 550 nm, λmax increases from 
436 to 627 nm. 

Spectral filtering, 
imaging and high-
resolution 
colour display. 

1Vukusic et al. (2000) 
2Luiggi (2013) 
3To exploit surface plasmons in metallic nanostructures 
4R&D Mag (2013) 
5Xu et al. (2011) 

 

2.2.2. Colour perception: the observer  

The process of colour perception begins with light entering the eye, which is absorbed by 

detectors which are densely packed (Berns, 2000) on the retina, the membrane lining the inside 

of the back of the eyeball (MacDougall, 2002a).  The retina carries two types of light detector, 
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which differ in their shape, number, light sensitivity and relative location.  The rods, numbering 

120 million (Hutchings, 2002) have the higher sensitivity to incident light, while the cones, 

numbering seven million (Hutchings, 2002), are much less sensitive (Berns, 2000).  Cones are 

concentrated in the centre of the eye, the fovea, which allows for the perception of fine details 

(Berns, 2000), and are more widely spread outside the fovea (Berns, 2000; MacDougall, 2002a).  

It is only the rods that function under very low-light conditions, under which only shades of 

grey will be seen, due to there being only one type of pigment (Berns, 2000).  The perception of 

colour is due to the cones, which begin to function as the amount of light increases until they 

become the only detector type active under daylight or well-lit conditions.  There are three cone 

sub-types which differ in their spectral sensitivities: the blue (β), green (γ) and red (ρ) receptors, 

which respectively span the short, medium and long wavelength regions of the visible spectrum, 

peaking in the blue, green and yellow-green regions.   The overlap of these regions ensures 

coverage of the entire spectrum, rather than the perception of three distinct hues (Berns, 2000).  

The β, γ and ρ receptors are said to be present in the ratio 40:20:1 (Hutchings, 2002) or 6:3:1 

(Berns, 2000).   

Signals from the rods and cones are transported from the retina to the visual cortex of the brain 

via the optic nerve.  It is the relative magnitude of the signals from the three cone types 

(McClements, 2005) and their cognitive processing (Berns, 2000) that result in the perception of 

colour; objects producing different cone signals will have different colours (Berns, 2000).  The 

signals that reach the brain take the form of brightness (achromatic) information, and colour 

information (Hutchings, 2002). Connections between rods or cones and the brain are not made 

individually, but through receptive fields, or areas of interconnected receptors (Berns, 2000).  It 

is assumed that three types of receptive field are formed from the addition and subtraction of the 

different types of cone signals, which are known as the black-white, red-green and yellow-blue 

opponent channels (Berns, 2000).  While literature sources agree on which cones are added and 

subtracted to form the chromatic opponent channels, they differ in the description of the black-

white channel; the achromatic signal is contributed either by all three cone types, weighted for 
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the relative proportion of each type in the retina, as well as by the rods (Hutchings, 2002), or by 

the addition of the γ and ρ cones only (Berns, 2000).   

Physiological differences among people, and physiological changes over time, mean that colour 

vision varies widely among those with normal colour vision.  Deficiencies in colour vision on 

the other hand are caused by the absence of one or both of the γ and ρ cone receptors or by a 

shift in the spectral sensitivity of one of these receptors; it is unusual for the β cones to be 

affected (Hutchings, 2002).  These defects have a genetic basis, and they are more common in 

males (8% of the population) than in females (0.5%) (Berns, 2000).  Obviously there are 

consequences for the matching of colours by observers.  Observers can be screened for (simply 

the) presence of a colour vision deficiency using the Ishihara charts.  More specific tests for 

colour vision include the Farnsworth-Munsell 100 hue test. 

2.3. Describing colour and the basis of colour measurement 

2.3.1. Colour coordinates and colour coordinate systems (colour 

spaces) 

Colours can be described by three orthogonal properties: hue, lightness and chroma.  A 

systematic ordering of colours in a three-dimensional space is therefore possible by using hue, 

lightness and chroma as the three coordinates.  Formal and informal definitions of the 

coordinates, and their relative axial positions in colour space, are given below. 

2.3.1.1. Hue 

Hue is the ‘attribute of a visual perception according to which an area appears to be similar to 

one of the colors, red, yellow, green and blue, or to a combination of adjacent pairs of these 

colours considered in a closed ring’ ([CIE] International Commission on Illumination, 1987).  

Hue forms a circle around the central axis in colour space.  In its meaning, hue is akin to the 

‘everyday’ descriptions of colour.  The mixing of hues forms a continuum of hues commonly 

known as a colour wheel (Minolta Camera Co. Ltd., 1993) (Figure 2.4).   
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2.3.1.2. Lightness 

Lightness is defined as the ‘attribute by which a perceived color is judged to be equivalent to 

one of a series of grays ranging from black to white’ (ASTM International, 2013).  Lightness 

forms the central, vertical axis in colour space.  Lightness can be evaluated independently of 

hue; different hues therefore can have the same lightness.  The convention is to represent the 

continuum of colours in colour space in order of decreasing lightness from top to bottom (Figure 

2.5).  In ‘everyday’ language ‘bright’ and ‘dark’ are terms commonly used to describe degrees 

of lightness (Minolta Camera Co. Ltd., 1993).   

2.3.1.3. Chroma 

Chroma is the ‘attribute of color used to indicate the degree of departure of the colour from a 

gray of the same lightness (ASTM International, 2013). In colour space chroma is represented 

by the radial axis.  Colours increase in chroma, or become more chromatic, with increasing 

distance from the lightness axis; this increase can be otherwise described as moving from weak 

or dull colours to strong or vivid colours (Figure 2.5).  Chroma is independent of both hue and 

lightness (Minolta Camera Co. Ltd., 1993; Berns, 2000).       

Figure 2.4  A representation of the colour wheel displaying a continuum of hues which have the same level of 
lightness and the same chroma range (Minolta Camera Co. Ltd., 1993). 
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2.3.1.4. Attributes for a more complete specification of colour appearance: 

Brightness, Colourfulness and Saturation 

Two further dimensions, brightness and colourfulness, are actually required in addition to hue, 

lightness and chroma for a full specification of colour appearance (Fairchild, 2005):   

Brightness is ‘the attribute of a visual sensation according to which an area appears to 

emit more or less light’ (Fairchild, 2005); 

Colourfulness is ‘the attribute of a visual sensation according to which the perceived 

colour of an area appears to be more or less chromatic’ (Fairchild, 2005). 

Brightness and colourfulness each describe a perception in the absolute sense, whereas lightness 

and chroma refer to brightness and colourfulness (respectively), relative to a similarly 

illuminated white, represented as follows (Fairchild, 2005): 

Figure 2.5  A representation of the lightness and chroma dimensions of colour space, shown in a plane of 
constant hue; increasing chroma is displayed for a single level of lightness only.  Adapted from Berns (2000). 
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Equation 2.1 

 

Equation 2.2 

Therefore, while brightness increases with the level of illumination, lightness is not affected 

because it is normalised according to the level of brightness under a given set of illumination 

and viewing conditions (MacDougall, 2002a; Fairchild, 2005).  Also, brightness and 

colourfulness are assessed in isolation from other colours whereas lightness and chroma are 

assessed in relation to other colours.   

Yet another attribute, saturation, can be determined from the combinations of colourfulness-

brightness or chroma-lightness (the latter being an alternative used in some appearance models):  

 

Equations 2.3 

Although similar to chroma in that it is also a relative colourfulness, saturation is relative to its 

own brightness, and unlike chroma, is assessed in isolation from other colours.  Saturation 

remains constant as a gradually deepening shadow is cast over a single colour to form a shadow 

series (Berns, 2000; Fairchild, 2005). 

In many situations however, it is only hue, lightness and chroma that are needed to specify 

colours because these situations involve the judgment of colours in relation to other colours 

(Fairchild, 2005).  Colour spaces defined by hue, lightness and chroma are the subject of the 

following sections.  Further mention will be made of brightness and colourfulness in a later 

section, with regard to colour appearance spaces for gamut mapping (Section 2.5.3.1). 
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2.3.1.5. Advantages 

Colour coordinate systems enable the assignment of numerical values to colours, thereby 

providing the basis for precise, standardised colour description and communication which 

would not be possible if relying solely on descriptions by human observers.  Observer 

descriptions will be more subjective and varied, even for the same object, due to differences in 

the perception (Section 2.2.2), experiences, vocabulary and descriptive ability between 

individual observers (Minolta Camera Co. Ltd., 1993; McClements, 2005).  These, together 

with the vast number of possible colours that would need describing (McClements, 2005), mean 

that observers would have enormous difficulty in quantifying colours.   

Each colour space is specific to a single set of viewing and illuminating conditions.  Colour 

spaces also differ in the sampling of the space, and in their application (Berns, 2000).  The 

following sections describe a selection of colour systems that are used in visual and in 

instrumental colour measurement. 

2.3.2. Visual colour description – The Munsell and NCS Colour Systems 

2.3.2.1. The Munsell System 

In its original form, the Atlas of the Munsell Colors, the Munsell colour system was developed 

to provide a physically realisable, numerical system in which the visual (perceptual) spacing 

between colours is equal (Berns, 2000).  Colours are defined by their Munsell hue (H), Munsell 

value (lightness, V) and Munsell chroma (C).  Ten hues divide the hue circle into equally 

spaced intervals: the five principal hues purple, blue, green, yellow and red, along with five 

intermediate hues (Fairchild, 2005).  The principal hues were originally selected by Munsell on 

the basis that they would be perceived as a neutral when spun together (Berns, 2000).  Each of 

the ten hues is divided into ten sub-hues giving a total of 100 steps.  Value is divided into 10 

steps, from black (zero) to white (ten).  Colours seen as intermediate between two hue or value 

steps are assigned decimal values (Fairchild, 2005).  Maximum chroma for a coloured stimulus 

depends on its hue and value, being limited by the physical properties of the stimulus, the 
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colorants that are used, and whether it is within range of the human visual response.  For 

example, only low chroma can be achieved for the combinations of yellow hue/low value, and 

for purple hue/high value (Fairchild, 2005). The Munsell solid therefore is neither cylindrical 

nor spherical. 

Colour communication products based on the Munsell system are among the most commonly 

used (Fairchild, 2005).  Products currently available include the complete Munsell Books of 

Color, in glossy (‘the master atlas’) and matte editions, and applications-specific charts for soil, 

rock and plant tissue colours (X-Rite Incorporated, 2014).  These products are used for visual 

comparisons with samples (Minolta Camera Co. Ltd., 1993) and are organised by one hue (step) 

per page or chart.  Munsell notation for each colour is H V/C; for the colour with H=5.0R (sub-

hue 5.0 of hue Red), V=4.0 and C=14.0, for example, the Munsell notation would be: 5.0R 

4.0/14.0. 

2.3.2.2. Natural Colour System®© 

The Swedish Natural Colour System®© (NCS), standard in Sweden and in some European 

countries, is based on the opponent theory of colour perception (Section 2.2.2) (Fairchild, 

2005).  In this system colours are described by their hue and ‘nuance’, a collective term for 

blackness and chromaticness.  Each hue is expressed in terms of its similarity to the four 

principal hues – red, yellow, green and blue – which divide the hue circle into four quadrants.  

Each quadrant is further divided into 100 equal steps.  Nuance is represented by a vertical 

triangle at each hue.  The two corners of the triangle which also define the vertical axis of the 

NCS space are at the points of maximum whiteness, w, and blackness, s (black = ‘swarthy’), 

with values of zero and 100 respectively, while the remaining, outermost corner is at the 

maximum chromaticness, c, of 100.  Although similar in concept, Munsell chroma and NCS 

chromaticness are unrelated, as are Munsell value and NCS blackness (Fairchild, 2005).  

NCS notation specifies blackness, followed by chromaticness and then hue.  It is not necessary 

to specify whiteness as the sum of blackness, chromaticness and whiteness must be 100.   The 
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notation for a given hue indicates the relative perceptual contributions of the neighbouring 

principal hues on either side; hue order follows the clockwise positions in the hue circle and 

numerical values are given for the second hue only.  Therefore S 1070-Y10R for example, 

denotes a colour which has 10% perceived blackness, 70% perceived chromaticness, 20% 

perceived whiteness, 90% perceived yellow and 10% perceived red (NCS Colour AB, 2014).  

2.3.3. Instrumental colour measurement - the CIE systems 

The systems of the CIE (Commission internationale de l’eclairage, or International Commission 

on Illumination) provide a means of standardised colour measurement.  The key to the 

development of these systems was the derivation of the colour matching functions for an 

average observer, or ‘standard observer’, which addressed the issue of variability of visual 

perception among individual observers.  The colour matching functions are the amounts of each 

of three primaries - three monochromatic lights covering short, medium and long wavelengths 

between them, in line with cone spectral sensitivities - required to match a test light stimulus at 

each wavelength of the visible spectrum. Because the actual colour matching functions ,  

and  included negative values (indicating that a primary needed to be added to the test 

stimulus to enable matching), they were transformed into the positive functions ,   and  .    

Colour matching functions have been defined for two standard observers:  the 1931 standard 

observer or 2° observer, based on the average results of 17 colour-normal observers, for whom 

the functions are denoted ,   and  , and the 1964 standard observer or 10° observer, based 

on a total of 76 subjects, and for whom the functions are ,   and  .  2° and 10° 

denote the sizes of the (bipartite) field of view that was used in the experiments; these are 

equivalent to object diameters of 15 mm and 75 mm respectively when viewed at 45 cm 

(Minolta Camera Co. Ltd., 1993; MacDougall, 2002a).   

The availability of the colour matching functions allows the colour of any stimulus to be 

described in terms of primaries, by following the steps below: 
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 At each wavelength of the visible spectrum, the relative power of (or the amount of 

light from) a standard illuminant (Table 2.3) is multiplied by the reflectance factor, , 

of the object, which is the ratio of the light reflected from the object to the light 

reflected from a perfect reflecting diffuser (an ideal surface that neither absorbs nor 

transmits light) under the same measurement conditions; 

 The spectral product is then multiplied, in turn, by each of the three colour matching 

functions resulting in a further three spectral curves;   

 The products at each wavelength in these three curves are added together and then 

normalised to give the CIE tristimulus values  ,  and .  

The procedure is illustrated in Figure 2.6.  It is common practice for the normalised spectral 

products of the illuminant and colour matching functions at each wavelength to be pre-

calculated as a first step, to give the normalised tristimulus weighting factors, ,  and  

(ASTM International, 2008).  Tristimulus values  ,  and  are then computed using  and .    

Tables 5 and 6 in ASTM Standard E308-06 (ASTM International, 2008) lists values of ,  

and  from 360 nm to 780 nm, for various combinations of standard illuminant and standard 

observer, and for both the 10 nm and 20 nm measurement intervals.  This wavelength range 

extends beyond the limits of most spectrophotometers (which measure reflectance from 400 nm 

to 700 nm) but is in keeping with the range for the colour matching functions (360 nm to 830 

nm).  In order to calculate ,  and , measured spectral reflectance needs to be extrapolated to 

360 nm and to 780 nm.  The measurement intervals for the weighting factors recognise that 

spectrophotometers measure in increments of 10 nm or 20 nm, rather than in the single nm 

intervals for which the colour matching functions are defined.  In Figure 2.6, the wavelength 

range illustrated begins at 380 nm (as in Berns (2000)); “between 360 and 379 nm, values of 

colour matching functions are so small that their inclusion or omission in the calculations would 

not lead to significant differences in the resulting tristimulus values” (ASTM International, 

2008). 
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Because the positive colour matching functions ,   and   are used in place of the actual , 

 and  functions, the ,  and  tristimulus values are regarded as ‘computational’ or 

‘imaginary’ primaries, rather than ‘real’ or visual primaries.    

Table 2.3 CIE standard illuminants (relative spectral power distributions1) for use in describing colour (compiled 
using information from Berns (2000). 

Illuminant Light represented Application/comments 
A Incandescent  
D65 Daylight Paints, plastics, textiles 
D50 Daylight Graphic arts and computer industries 
C Forerunner to D series Not recommended as representation of natural daylight 
F series Fluorescent  

          1Spectral power normalised at each wavelength, relative to power at 560nm 
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The original colour system that was derived using X, Y and Z tristimulus values is the 1931 CIE 

colour space defined by the lightness coordinate Y, and the chromaticity coordinates x and y 

(computed from X, Y and Z).  In visual terms, colours are not equally spaced in the Yxy system, 

due in part to the use of computational primaries rather than real primaries which would 

represent the visual response (Berns, 2000).  The original space has undergone a number of 

(linear and non-linear) transformations in order to develop more uniform colour systems for the 

purposes of describing colours as perceived visually, and the perceived differences between 

colours. 

Two of the commonly used colour systems of industrial importance are described briefly below.  

These are based on the concept of an opponent, rectangular (Cartesian) coordinate system and a 

central axis representing the neutral or achromatic colours (Figure 2.7).  These colour spaces 

were developed using the Munsell system (Berns, 2000), to provide an approximation of the 

visual spacing of the Munsell colours (MacDougall, 2002a):  

The 1958 Hunter Lab system, where: 

L  is the lightness coordinate, and  

a, b  are the red-green and yellow-blue opponent coordinates respectively; 

The CIE 1976 L*, a*, b* space, with the official abbreviation CIELAB, where: 

L*  is the lightness coordinate, and  

a*, b*  are the red-green and yellow-blue opponent coordinates respectively. 

Of the two, CIELAB is now the more commonly used in industrial applications; for this reason, 

it will be the colour system used in this thesis and detailed formulae will be given here for 

CIELAB only.  However, HunterLab does see continued use in the food industry (MacDougall, 

2002a). 
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CIELAB (and Hunter Lab) can be used for any combination of illuminant and observer, despite 

the Munsell system being defined for the 1931 standard observer and C illuminant only (Berns, 

2000).  In colour measurement usually the combination of the D65 illuminant and 10° observer 

is used, except for very small objects (MacDougall, 2002a) or those occupying a field of view 

of less than four degrees (Berns, 2000).  When the 10° observer is used, corresponding 

tristimulus and colour coordinate values need to be labelled with the subscript ‘10’; values 

otherwise indicate the 2° observer has been used, or are used to illustrate the general form of the 

equations.  

CIELAB formulae are as follows (ASTM International, 2008): 

 

 

Figure 2.7  CIELAB colour space diagram showing the red/green (+a/-a) and yellow/blue (+b/-b) opponent 
(rectangular) colour coordinates relative to the lightness, L* axis, and to the cylindrical polar coordinates chroma, 
C* and hue angle, h* (after MacDougall (2002a)).   
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Equations 2.4 

Where    and      

for    and   respectively. 

Values of ,  and  < 0.01 are not usually associated with coloured materials, 

but can be a property of some imaging systems (Fairchild, 2005). 

,  and  are the tristimulus values for the nominally white object colour stimulus, 

which is represented by the spectral radiant power of the illuminant reflected to the 

observer by the perfect reflecting diffuser; illuminant, observer and (spectral) 

measurement interval (nm) for ,  and  are the same as those used for the colours 

to which ,  and  will be applied. 

Values of L* usually range from zero (black) to 100 (diffuse white), though L* can 

exceed 100 for some stimuli including those which are highly fluorescent; in fluorescent 

materials absorbed light or radiation (including ultraviolet radiation) is re-emitted at a 

longer wavelengths, rather than being lost as heat (Berns, 2000).  Given the use of the 

Munsell system in the development of CIELAB and the limitations on Munsell chroma 

(Section 2.3.2.1), it follows that the range of values for both a* and b* depend on the 

properties of the stimulus.  Values of a* and b* are zero for achromatic stimuli, 

represented by the intersection of their axes with the lightness axis. 

The following cylindrical polar coordinates, chroma, C*ab, and hue (angle), hab, are also defined 

for CIELAB (Berns, 2000) (Figure 2.7); these terms are derived from a* and b* and correspond 

more to the visual perception of colours (MacDougall, 2002a):   
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Equation 2.5 

 

Equation 2.6 

Hue angle is expressed in (positive) degrees counter-clockwise from the +a* (red) axis.  

Appropriate conversions therefore need to be made from the result returned by the 

above formula, which will be the arctangent, or inverse tangent, of the a* and b* 

coordinates, in units of radians.  Also, the arctangent spans up to 180 degrees in either 

the counter-clockwise or clockwise directions, returning positive and negative values 

respectively. 

2.3.4. Colour differences: formulae 

The colours of objects need to be described and quantified for the purposes of describing the 

difference in colour between them.  Using a colour space such as CIELAB allows this 

difference to be expressed in the form of a numerical index.  This index should be able to 

predict, and represent, the visually perceived difference between colours.  In a visually uniform 

colour space the difference between two colours (1 and 2) should, in theory, equate to the 

distance between their positions within the space, which is referred to as the Euclidean distance.  

For CIELAB the formula for this difference, denoted ΔE*ab - with E standing for Empfindung, 

the German for ‘sensation’ (Berns, 2000) - , is: 

 

Equation 2.7 

As well as the total colour differences indicated by ΔE*ab, the colour differences can be 

expressed in terms of a difference in the lightness or chromatic attributes: 
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Equation 2.8 

-  

Equation 2.9 

 

Equation 2.10 

ΔH*ab is the Euclidean rather than the angular difference in hue.  Therefore ΔH*ab will 

increase with increasing ΔC*ab while hab remains the same (Berns, 2000). 

Alternative formulae, for calculating ΔH*ab directly, are given in Berns (2000), and 

MacDougall (2002a).    

In practice, the correlation between visually perceived and Euclidean colour differences is poor.  

In the assessment of visual differences a standard colour is paired with a selection of ‘test’ 

samples of near colours, and the degree of the visual difference between the standard and 

sample in each pair is made relative to the difference between the samples in an ‘anchor pair’, 

representing a defined instrumental colour difference.  A test sample is ‘passed’ or ‘accepted’ if 

the difference between it and the standard is the same, or smaller, than the difference displayed 

by the anchor pair.  This process can be repeated for other (standard) colours.  When the 

measured colours of the accepted, test samples are plotted in colour space about each relevant 

standard, not only does the size of the distributions differ between the standard colour ‘centres’, 

but the distributions are ellipsoidal rather than spherical.  Referring to the comparisons of the 

anchor pair with the standard/sample pair, this indicates that pairs with the same visual 

difference do not necessarily have the same measured difference.  Further, the differences 

between colour centres indicate that the disparity between visual and measured colours is a 

function of the colour centre, while the ellipsoids point to lightness, chroma and hue differences 

being affected in different ways.  These effects are the result of colour spaces not being truly 
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visually uniform; in reality, this is very difficult to achieve given wide observer variability, 

factors affecting perception, and that colour spaces very likely to need be described by more 

than three dimensions (Berns, 2000).         

Several weighted colour difference equations derived from CIELAB have since been developed 

taking into account the above effects, and have been used in a variety of applications, with some 

preferred by specific industries.  Weighted equations for total colour difference include:   

The CMC(l:c) Colour-Difference Equation (Colour Measurement Committee, Society 

of Dyers and Colourists) for difference designated ΔECMC(l:c), standard for textiles: 

 

Equation 2.11 

The CIE94 equation, for difference designated ΔE*94, used preferentially by industries 

such as the textile industry for accurate colour difference measurements related to 

perception and acceptability (MacDougall, 2002a): 

 

Equation 2.12 

The CIEDE2000 Colour-Difference Formula, difference ΔE00, a further improvement 

on earlier formulae (Luo et al., 2001a), now a new CIE/ISO standard (Melgosa, 2013); 

CIEDE2000 applies to colour-uniform samples with colour differences below five 

CIELAB units ([CIE] International Commission on Illumination, 2001): 

 

Equation 2.13 
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Corresponding formulae for lightness, hue and chroma differences are also available for 

ΔE00.    

2.3.4.1. Experimental conditions and the effects of texture 

In the weighted colour-difference equations, the l, c, kL, kC and kH coefficients are adjusting 

constants which represent the effects of experimental conditions (parametric effects), and the 

resulting relative influence of lightness, chroma and hue, on perceived total colour difference.  

The S coefficients are positional functions which account for the lack of visual uniformity in 

CIELAB.  The convention is to align the parametric constants for lightness and chroma (l, c, kL 

and kC) relative to that of hue (denoted kH in CIE94 and CIEDE2000 but undesignated in 

CMC(l:c)) which is set to unity.  An l or a kL of 2 for example would indicate that experimental 

conditions were such that hue had twice the influence of lightness on the perceived difference 

(Berns, 2000).  The values of kL and kC that are used depend on how much experimental 

conditions deviate from a set of reference conditions, in which a pair of colour-uniform samples 

are placed in edge contact against a background of L*=50, and viewed by observers with 

normal colour vision under illuminant D65 at a viewing angle of at least four degrees; under 

these conditions kL=kC=kH=1.  Details of the individual formulae for SL, SC and SH will not be 

given here, but can be found in Berns (2000) and in Luo et al. (2001a).   

In the textile industry it is common practice to use kL=2 for CIEDE2000 colour differences.  

Despite this, the correlation between objectively-measured CIEDE2000 (2:1:1) differences 

displayed by knitted polyester yarn samples of different textures (coarseness) and the 

corresponding visual differences was found by Gorji Kandi et al. (2008) to be poor, with an r 

value of 0.56 across all the textures.  Visual differences were much better correlated (r=0.94) 

with a measure of texture structure known as the Gabor texture difference (GTD), said to be 

more closely related to the processing by the primary visual cortex of the brain, though r values 

did vary among the individual colours, being as low as -0.10 for Yellow and 0.15 for Blue 

(Gorji Kandi et al., 2008).  By controlling viewing geometry and illumination conditions to 

maximise the perceptions of differences in colour, and in the visual texture attributes coarseness 
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and glint, and together with an instrument capable of coarseness, glint, as well as reflectance 

measurements, Huang et al. (2010) developed two formulae that could predict the total visual 

difference, ΔT, of pairs of metallic coating samples from their measured colour and texture.  

Two formulae were proposed: one for diffuse illumination conditions, which includes terms for 

differences in measured colour (CIEDE2000) and coarseness, and the other for directional 

illumination, based on total colour and glint differences.  

2.3.4.2. Tolerance levels 

Limits have been set on the sizes of calculated (total) colour differences beyond which a colour 

match between samples is deemed unsatisfactory.  These limits are referred to as instrumental 

colour tolerances and in various industry applications usually indicate when the colour 

difference is predicted to become a perceptible difference.  Perceptible differences include those 

which are just-perceptible or just-noticeable (‘threshold’) and those just above perceptible 

(‘supra-threshold’); for surface colours, perceptibility judgements are made relative to the 

difference between the samples in a standard pair.  Examples of colour tolerances used in 

various industries, or reported in different studies, based on either CIELAB or HunterLab, are 

given in Table 2.4.  Tolerance levels are seen to vary according to the application and some are 

above threshold.  Perceptibility tolerances can be increased by a commercial factor if colour 

differences encountered exceed those that are just perceptible (Berns, 2000; MacDougall, 

2002a).  Tolerances of 2.4 and 0.7 CMC2:1 units were used by two different textiles companies 

producing exactly the same product in similar colours, and both companies were meeting their 

customer needs, indicating that in these cases tolerances were related largely to commercial 

requirements (Gay and Hirschler, 2002).       

  



 

34 
 

Table 2.4  A selection of colour tolerance limits applied in different industries, or that have been used in various 
studies. 

Industry/application Difference 
formula 

Tolerance level, and comments 

Threshold CMC(1:1) 
CIELAB 

0.3 – 1.4 units 
0.4 – 1.8 units (Melgosa et al., 1992)1 

Automotive CIELAB < 1 unit 
Paint, plastics, textiles Unspecified Lab 

space 
= 1 unit for approximate commercial match 
(noticeable difference at ΔE=2 units, unacceptable at 
ΔE=3 units) (Francis and Clydesdale, 1975) 

Textiles CMC(1:1) 
CIELAB 

0.7 – 2.3 units 
1.0 – 2.8 units (Gay and Hirschler, 2002)2 

Food and beverage 
Red wine CIELAB = 3 units (Martínez et al., 2001) 
Muffins CIELAB = 3 units (Baixauli et al. (2008), referencing Francis and 

Clydesdale (1975)) 
Carrot puree with added 
green food colouring 

ΔE, HunterLab 0.1 to 0.15 units (allowed ranking of samples) (Huang et 
al., 1970b) 

Squash puree ΔE, HunterLab ~ 0.2 units (allowed ranking of samples) (Huang et al., 
1970a) 

Pale beers CIELAB 1.5 units (Hutchings, 1999) 
1Across surface colours, and experimental threshold results using visual colorimeters (coloured lights) 
2Across seven different textiles companies; individual values dependent on product range and marketing 
situation of companies 
 

Tolerance levels, and the difference formulae used in their calculation, vary also according to 

how well they correlate with visual assessments.  Of several formulae tested (including 

CIELAB and CIE94) tolerance levels calculated using CMC (2:1) were in best agreement with 

visual evaluations of textiles (Gay and Hirschler, 2002), while CMC(1:1) was the best 

performing formula with respect to visual threshold differences (Melgosa et al., 1992). For the 

purpose of comparing tolerances within and across studies only CMC(1:1) and CIELAB results 

are shown in Table 2.4; CMC(2:1) was not used in the study by Melgosa et al. (1992) while in 

the study by Gay and Hirschler (2002) the range of tolerance levels was the same for both 

CMC(2:1) and CMC(1:1), though the individual levels within each range were different.  For 

colour differences larger than threshold, such as those displayed between Munsell colours, 

CIELAB gave the better results (Melgosa et al., 1992).  Tolerances can also change with 

different surface textures and colours (Gay and Hirschler, 2002), consistent with the variable 

effects of surface texture, colour and their interaction on measured and perceived colours, 

described earlier.  Colour tolerances (for example, lightness tolerances in the textile industry), 

increase with sample surface texture.   
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2.4. Producing colour: colour blending and colour reproduction 

Colours are produced by the blending of primary colours which includes varying the total 

amount and the relative proportions of the primaries within each blend.  Primary colours are a 

small set of base colours which themselves cannot be produced by the blending of other colours.  

Colour mixing systems differ in their primaries (number and type), but are broadly categorised 

as being either additive or subtractive. 

2.4.1. Additive mixing systems: colours based on the RGB primaries 

Additive blending refers to the mixing of coloured lights, for example, in cathode ray tube 

(CRT) displays; because each colour in an additive blend adds light, the blend is lighter than the 

individual colours, and becomes lighter as more colours are added, or the intensity of a given 

colour is increased.  In additive blending the primaries are red (R), green (G) and blue (B).  

RGB colours are described in terms of their hue, lightness and saturation (HLS) in computer 

graphics applications, but these are not equivalent to perceived saturation and lightness (Berns, 

2000).    

2.4.2. Subtractive mixing systems:  colours based on dyes and pigments 

Subtractive blending refers to the mixing of colorants (dyes and pigments) for printing, paint, 

fabrics and plastics applications; colour is produced in these blends by the selective absorption 

(subtraction) of light by each colorant.  As a result, a subtractive blend is darker than its 

constituent colours.  The colour produced by a subtractive blend depends on the wavelengths 

absorbed by the colorants; the colour perceived is due to the remaining light that is not absorbed 

(Section 2.2.1.6.1, see also Figure 2.2). 

In subtractive mixing the minimum number of primaries used is three; when three primaries are 

used these will be typically cyan (C), magenta (M) and yellow (Y), or red, yellow and blue.  In 

theory, mixing based on the C, M and Y primaries will produce the widest range of colours 

possible, because the resulting blends will reflect light having colours that the visual system 

responds to:  C and Y will subtract red and blue lights respectively, leaving green (G); C and M 
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will subtract red and green to produce blue (B), and M and Y will subtract green and blue to 

produce red (R).  In reality, this is possible only from theoretical CMY primaries, each of which 

absorbs light only in their respectively spectral regions, without any overlap with the regions 

absorbed by the other two primaries; real primaries display some overlap and therefore 

strategies such as half-toning (explained below) or increasing the number of primaries are 

needed to maximise the number of possible colours.  

2.4.2.1. Mixing based on CMYK primaries 

In conventional (two-dimensional) colour printing which uses C, M and Y primary inks, each 

ink is applied ‘as is’ to the printing substrate, that is, separately and at a single concentration.  

At first it would appear that only eight, continuous-tone colours are possible:  the three 

primaries; their corresponding secondary colours R, G and B from the overprinting 

(superimposing) of the two-primary combinations; black, from the overprinting of all three 

primaries; and white, the background provided by the substrate.  Black is usually applied as a 

separate, fourth ink - denoted ‘K’ (for key) - for a number of reasons: for printing text that 

accompanies printed images; to extend the colour gamut; to improve image quality (Berns, 

2000); and to save on the amount of the coloured primaries that need to be used.  The addition 

of black ink to CMY doubles the number of possible colours to sixteen.   

The range of colours that can be achieved using CMYK inks is extended by the use of ‘half-

toning’, whereby the inks are printed as small dots which are too small to be perceived 

individually by the naked eye.  By printing dots varying in size, shape and positioning, half-

toning simulates the effects of varying ink concentration and therefore the properties of 

continuous-tone colours.  With halftoning, CMYK printing becomes a mix of subtractive 

blending (from dot overprinting) and additive blending (when light reflected from the dots is 

‘mixed’ by the eye).  CMYK printing is known to as ‘process printing’, referring to the blending 

of the primaries after they have been dispensed on to the substrate.  
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2.4.2.2. The Pantone Matching System (PMS)   

Another means of extending the range of colours is to have more than three or four primaries 

available for blending.  The Pantone Matching System (PMS), used mainly in printing but also 

in paint, fabric and plastics, is based on 13 base pigments, plus black and white.  Each of the 

1,114 colours – known as spot colours in contrast to process colours - is prescribed by a 

proprietary ink formula, denoting the quantities of ink to be pre-mixed before they are applied to 

the printing substrate.   CMYK is able to reproduce only a subset of the Pantone colours, due 

partly to limitations in the reproduction of light, saturated colours in which the halftoning 

pattern could be exposed.   

2.4.3. Mathematical models for colour blending 

Mathematical models are used to predict the colours that result from different blends of colours.  

Colour output depends on the spectral properties and the relative proportions of each colorant in 

the blend.  As suggested by the description of CMYK printing given above, colour output is not 

due simply to the colorants themselves; the contribution of the substrate is also accounted for in 

these models. 

The models described here are those that involve subtractive primaries and/or subtractive 

blending, which are applicable to the research objectives of this thesis.   

2.4.3.1. The Neugebauer model for CMY printing (additive blending using 

subtractive primaries) 

Although the CMY primaries are subtractive primaries, the use of halftoning renders their 

blending as largely additive rather than subtractive.  Each primary is printed using a unique 

halftone pattern (the angle at which the grids of dots are printed), and when all three are printed, 

there are eight possible colours, which are the same as those described earlier.  These eight 

colours are known as the Neugebauer primaries.  By using a unique halftone pattern for each 

CMY primary, each Neugebauer primary can be treated as a random variable, and their 

probabilities of occurrence, , calculated “for a given combination of C, M and Y ink areas” 
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(Berns, 2000).  These probabilities are used to weight the contribution of each primary (that is, 

its spectral reflectance, ) in the Neugebauer model, which predicts the colour (reflectance) of 

the area in which CMY are printed: 

 

Equation 2.14 

The model can be expanded to include more than three primary inks.  The modelling for colour 

printing becomes increasingly complex considering there are actually up to 64 instead of eight 

unique colours from the printing of three primaries (Berns, 2000), and that any subtractive ink 

mixing that occurs on the printing surface needs to be accounted for (Berns, 2000). 

2.4.3.2. Models based on Kubelka-Munk Theory (for ‘true’ subtractive blending) 

In subtractive mixing systems, stepwise increases in colorant concentration do not produce 

stepwise changes in the level of reflectance or transmittance spectra, that is, the relationship 

between colorant input and colour output is not linear.  When reflectance is expressed in terms 

of absorption and scatter, and transmittance in terms of absorption, colour prediction becomes 

more straightforward; after first accounting for non-wavelength-dependent surface reflections 

the relationships between absorption or scatter, and colorant concentration can often be linear. 

Because of the physical nature of the coloration systems (colorant-substrate combinations) that 

will be used in this thesis, this review is concerned with colour outputs for reflecting materials, 

specifically opaque materials.  To achieve linearity for these materials, spectral reflectance 

measurements are transformed to spectra of absorption, , and scatter, , using functions 

based on Kubelka-Munk (K-M) Theory.  These functions are simplifications which were 

developed using a translucent colorant layer (on an opaque background) within which light is 

assumed to be completely diffuse and within which absorption and scattering both occur.  K-M 

Theory is used for three types of material:  translucent materials, transparent films on an opaque 

backing, and opaque materials.  Another reason for using absorption and scatter in place of 

reflectance is that values for the latter can be very low for dark colours (Butts, 2010). 
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For opaque materials, the function is: 

 

Equation 2.15 

This function converts the internal reflectance of the material, , rather than its measured 

reflectance, .  Whereas measured reflectance ‘captures’ the combined effects of surface 

reflections, scattering and absorption, and losses through repeated cycles of internally reflected 

light, K-M Theory assumes that light travels only up and down within a colorant layer 

(perpendicular to its plane) without any light being ‘lost’ at the front or internal surfaces.  

Internal reflectance is measured reflectance corrected for these external and internal losses of 

light.  Surface reflections are also not wavelength dependent.  The Saunderson correction can 

be used to calculate internal reflectance (Berns, 2000).  Further details are given in the first 

experimental chapter (Chapter Four) of this thesis.    

Before the K-M function can be applied in models of subtractive blending, linear relationships 

between the absorption-scatter spectra and concentrations of individual colorants need to be 

verified.  Once verified for the constituent colorants of a blend, the spectra from each of the 

colorants (weighted by the concentration of the colorant in the blend) can be added together to 

compute, or predict, the spectrum for the blend.  The blending model is validated if the 

computed spectrum of the blend is the same as the measured spectrum of a prepared sample 

containing the same blend of colorants.   

The form of the K-M blending model that is used to compute the spectrum for a colorant blend 

depends on the properties of the colorants.  The simplest model is the single-constant form of 

the K-M blending equation, so called because the contribution of each colorant and of the 

substrate in the blend is expressed as a single constant, the ratio of its absorption to 

scatter, .  More specifically for each colorant, this constant is the unit absorption 

coefficient, or the absorption coefficient for unit concentration of dye at wavelength λ, denoted 
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(the slope of the line if the relationship between  and concentration, , for the colorant 

is linear):   

 

Equation 2.16 

The above equation applies to textile and paper dyes, which become dissolved in the substrate, 

and therefore contribute negligible scatter relative to that contributed by the substrate itself.   

For textiles, dye concentration is the concentration of dye in the fabric, as distinct from the 

concentration of dye in the dyebath; uptake of dye by the fabric approaches a maximum as 

dyebath concentration increases, an effect that needs to be taken into account when developing 

an overall blending model. 

A second form of the blending equation is used for the blending of pigments, which colour 

paints and plastics.  The two-constant K-M blending equation is so called because pigments are 

particulate colorants which scatter as well as absorb light; separate absorption and scatter 

coefficients therefore, are required for each pigment: 

 

Equation 2.17 

At higher pigment concentrations the two-constant model might not hold.   is proportional to 

pigment volume fractions or concentrations, even when these are high.  But while scatter is 

related linearly to pigment concentration at low concentration, at higher concentrations pigment 

particles interact due to the decrease in distance between them and this hinders scattering 

(Schabbach et al., 2009).   

The derivation of separate absorption and scatter coefficients is more complex than deriving the 

single constants, and is summarised in Berns (2000).  Further details will not be given here, as 

dyes will be the focus of this thesis. 
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2.4.4. Instrumental colour matching based on the K-M blending 

equations 

When the relationship between colorant input (including the substrate) and colour output is 

known (that is, the relationship has been modelled and validated) it becomes possible to 

reproduce or match any colour by combining the substrate with the colorants in the appropriate 

quantities.  When a match is possible between the colour output from the colorant-substrate 

system and the target colour output, it will be either non-metameric, that is, the two colour 

outputs will match under all viewing and illumination conditions, or it will be metameric, with 

the outputs matching under only one set of viewing and illumination conditions.   The methods 

described below form the basis for computer-based colour matching (‘colour recipe prediction’) 

used in such industries as the paint, plastics, ceramics and textiles industries.     

2.4.4.1. Non-metameric matching using spectral and colorimetric methods 

Non-metameric matches are possible only when the substrate and colorants that will be used for 

matching are the same as those used to produce the target colour, and when the target and match 

are produced under the same conditions.  In a non-metameric match, the spectral outputs of the 

target and matching systems will be identical, at all wavelengths.  For dyes, spectral matching 

using the single-constant blending equation can be used to compute the quantities needed to 

match a target.  Either: 

a) The equation is written for the wavelength of maximum absorption, λmax, for each dye 

(meaning the number of equations is the same as the number of unknown dye 

quantities) and the equations solved simultaneously, or 

b) If the number of wavelengths sampled exceeds the number of unknowns, the method 

of least squares can be used to solve for the unknown dye quantities.  This is the 

preferred method because λmax can change with concentration. 

Dye quantities for non-metameric matches can also be computed by the colorimetric method, 

which aims to match the pseudo- X, Y and Z tri-stimulus values, ,  and , of the target.  
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These are similar to ,  and  proper (Section 2.3.3 and Figure 2.6), but have the reflectance 

term replaced by for the substrate and target colours, or for the dyes.  The general 

form of the colorimetric matching equations is given below.  Full details can be found in Berns 

(2000). 
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Equations 2.18 

2.4.4.2. Metameric matching using the colorimetric method 

More commonly, it is possible to produce only a metameric match, because target and matching 

systems often differ in their substrates, dyes and dyeing conditions.  Under these conditions it is 

not possible to produce a spectral match, and attempts at spectral matching will very likely 

produce a poor visual match.  Colorimetric matching is useful in that different spectra can still 

produce the same tristimulus values, and therefore a visual match, under a single set of viewing 

and illuminating conditions.    Such a match is conditional, specific to the selected observer and 

illuminant conditions.  

For metameric matching using the colorimetric method, the inclusion of a partial derivative 

weighting function , in the calculation of ,  and , is needed to aid matching (Allen, 

1966).  If the colour difference between the target and predicted match is still large, a correction 

matrix is applied to calculate the changes that are needed in the dye recipe to reduce this 

difference.  Typically, colorimetric matching will be an iterative process (Figure 2.8) in which 

the colour difference between the target and predicted match is gradually minimised; the 

process is stopped when the difference falls within a predetermined limit, for example, if the 

differences in ,  and  tristimulus values (not the pseudo-tristimulus values) between the 

target and match fall within 0.01 (McDonald, 1987).  ,  and  tristimulus values are 

computed for the predicted match from the recipe generated at each iteration step. According to 
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the Allen algorithm (Allen, 1966), the inclusion of the weighting function , generates a more 

effective starting recipe, which can reduce the number of iterations required.   

 

 

2.5. Colour management   

2.5.1. Overview and definitions 

Colour printing is one version of colour reproduction in which the colours displayed by one 

medium or device are reproduced in another.  The set of colours displayed by the first medium 

are referred to as the original colours while the set displayed by the second medium is the 

reproduction.  Typically in colour printing, the original colours are seen in the form of a screen 

image (such as those displayed by monitors or digital cameras), and their reproduction 

displayed in hard copy form, such as on a paper surface.  Before proceeding it is important to 

establish some definitions: 

Figure 2.8  The iterative process of producing a match to a target colour using the colorimetric method (Berns, 
2000). 
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 An image is a two-dimensional visual stimulus, and has associated digital image data 

(Morovic, 2003); 

 A medium captures or displays colour information (e.g. a CRT monitor, digital camera 

or scanner); in printing, the colour reproduction medium is not the printer but the 

combination of printer, colorants and substrate (e.g. paper) (Morovic, 2008).  

 While a printer by itself is not a medium, it is a device.  Media such as monitors, 

cameras and scanners double as devices (Morovic, 2003).  A device links digital data 

and colour stimuli (Morovic, 2008); input devices (such as digital cameras and 

scanners) have colour sensors and produce data, whereas output devices (e.g. monitors, 

projectors, printers) receive data and produce colour stimuli.  Therefore the terms input 

and output do not necessarily refer to original and reproduction respectively; for 

example, original and reproduction data could each be monitor RGB data.   

The terms device and medium (media) will be used interchangeably in this review.  

The systems by which colours are encoded and the ranges of colours that can be displayed are 

device-specific or device-dependent.  In colour reproduction these incompatibilities are managed 

by device characterisation and gamut mapping, allowing the colours to be ‘handled’ within a 

common, device-independent space.  An overview of the colour management process is given in 

Figure 2.9. 

  Figure 2.9  Flowchart illustrating the general process of cross-media colour reproduction, using the example of 
device-independent colour imaging from screen to print.  Adapted from Fairchild (2005) and Morovic (2003). 
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2.5.2. Device characterisation (profiling) 

Data used by devices such as monitors, scanners, and digital cameras encode RGB values for 

each picture element (pixel) in the displayed image, while printers typically use data encoding 

CMYK values.  The device-dependent nature of these data however, actually refers to 

differences between devices that use the same type of data.  For example, the same CMYK 

values used by different printers can produce slightly different colours and different scanners 

and digital cameras can produce different RGB values for the same colour (Sharma, 2003).  In 

digital cameras, this is due to the sensitivities of the spectral sensors differing among cameras 

(Hutchings et al., 2002).  In CRT displays, it is the performance (‘colour’) of the phosphors 

(image dots) which glow and emit light that can vary between monitors (Sharma, 2007).  Media 

or devices displaying the original and reproduction might also use the same type of data, such as 

when images originally displayed by a camera are viewed on a monitor.    

The relationship between device-dependent values and their corresponding values in a device-

independent colour space need to be determined.  As well as acting as the common colour space 

in colour reproduction, the device-independent space is one which is based on the visual 

perception and matching of colours (such as the CIELAB space) rather than the mixing of 

colours (the RBG and CMYK spaces) (Sharma, 2003; Kang, 2006).  Furthermore, sensors in 

devices such as cameras do not share the same spectral sensitivities as the CIE standard 

observer (Hutchings et al., 2002).  CIELAB (and CIEXYZ) values are device-independent in 

that colour stimuli with the same values will appear the same when viewed under the same 

conditions (Hutchings et al., 2002), whereas stimuli having the same device-dependent values, 

such as RGB, can be different.    

The relationship between device-dependent and device-independent values takes the form of a 

device profile or device colorimetric characterisation model.  Profiles are computer files which 

follow a format set by the International Color Consortium (ICC), and are most often custom 

generated (Sharma, 2003).  Prior to characterisation devices should be calibrated to establish 

the settings for repeatable performance (Sharma, 2007).  The general procedure that is followed 
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for device characterisation is to have the device display or reproduce a series of colour patches, 

measure the CIE values of the displayed colours and then to derive the mathematical 

relationship between the CIE colours and the device values (RGB or CMYK) of each patch 

(Hutchings et al., 2002; Sharma, 2003).  Monitor characterisation is based on patches displayed 

by the monitor that are produced from increasing the digital counts of the three RGB primaries, 

up to and including each primary at full strength (a maximum count of 255) (Sharma, 2007).   

Scanner characterisation uses device RGB values obtained by scanning the colour patches in a 

test chart (such as those in the IT8 series) and the Lab values obtained by measuring the patches 

using a spectrophotometer.  Printer characterisation uses the known RGB or CMYK values for 

each patch in the digital test chart that is to be printed, and the measured colour values of the 

printed output (Sharma, 2007).  Data from device characterisation are stored in single and multi-

dimensional look-up tables (Sharma, 2007) and can be used in either forward or inverse 

transform modes, for original and reproduction data respectively.  

2.5.3. Colour gamut mapping  

The range of colours that can be produced by a given medium is also specific to that medium, a 

feature that remains after device characterisation.  This range, or colour gamut, is device- or 

medium- dependent owing to differences in the imaging process and colorants used by different 

media, or to differences in their physical properties.  Gamuts will differ in size between 

different media and devices.  Referring to the definitions given earlier, a gamut can be the set of 

colours contained in an image, or the colours that are reproducible by a given device or medium.  

A colour gamut is also specific to a given set of viewing conditions, and these conditions must 

be specified (Morovic, 2003).   

Gamut differences present a problem for colour reproduction in that some of the original colours 

might not be able to be displayed or produced by the reproduction unless suitable modifications 

are made to these original colours.  The process of altering colours in the original image, and 

replacing them with ‘ones that a given medium is capable of reproducing’ (Morovic, 2003) is 

called colour gamut mapping.  Colour gamut mapping is a necessary part of transcribing 
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display images to hard-copy print, because RGB gamuts are larger than CMYK gamuts (Grey, 

2004; Nate, 2004) .  RGB colours outside of the CMYK gamut are said to be out-of gamut.   

In colour gamut mapping, for practical reasons, gamuts are treated as continuous volumes in 

colour space, rather than as a set of discrete colours (Morovic, 2008).  Two properties of these 

volumes require definition before mapping can take place; these are the CIE colour space for 

mapping and the colour gamut boundary, which are discussed below. 

2.5.3.1. Colour appearance spaces: CIELAB and CIECAM97s 

Gamut mapping needs to take place in a device-independent space which also needs to take into 

account the conditions under which the original, and reproduction, are viewed.  This 

intermediate colour space should therefore be a colour appearance space that is based on a 

colour appearance model.  As defined by CIE Technical Committee 1-34, a colour appearance 

model is  

“Any model that includes predictors of at least the relative color appearance attributes 

of lightness, chroma and hue.  For a model to include reasonable predictors of these 

attributes, it must include at least some form of a chromatic adaptation transform.  

Models must be more complex to include predictors of brightness and colorfulness or to 

model other luminance-dependent effects such as the Stevens effect or the Hunt effect” 

(Fairchild, 2005).   

Chromatic adaptation refers to the ability of the human visual system to adjust to changing 

conditions of illumination, resulting in the colours of objects appearing more or less the same 

under, for example, daylight and incandescent illumination (Fairchild, 2005).   

While CIELAB is unable to predict luminance-dependency (such as the increase in 

colourfulness and contrast with luminance), or the effects of background and surround 

(Fairchild, 2005), it is considered a colour appearance model on the basis of its lightness, hue 

and chroma predictors and incorporated chromatic adaptation transforms.  Strictly speaking 

however, CIELAB was originally designed as a uniform colour space for the specification of 



 

48 
 

colour differences between colours of identical size, shape and viewing conditions.   Also, 

CIELAB can lack accuracy in its chromatic adaptation transforms and in its ability to predict 

hue in different parts of the colour space.  The latter feature however, is shared by other colour 

appearance models (Morovic, 2003).    

Another example of a colour appearance space is the one based on the CIE colour appearance 

model (1997), CIECAM97s, which has correlates for the appearance attributes brightness, 

colourfulness and saturation, as well as for lightness (denoted J), chroma (C) and hue (h).  The 

space also uses the coordinates J,a,b (Fairchild, 2005).  The choice of which appearance 

attributes to use for gamut mapping depends on the specified contribution of the light source 

under which the original is viewed, and on the properties that are desired in the reproduction, as 

specified by a rendering intent (Morovic, 2003).  Rendering intents are discussed in Section 

2.5.3.3 below.  

2.5.3.2. Gamut boundary computation and gamut sampling 

The formal CIE definition of a colour gamut boundary is ‘a surface determined by a colour 

gamut’s extremes’ (Morovic, 2008).  Being able to describe this boundary, in the form of a 

computed gamut boundary descriptor, or GBD, allows gamut mapping lines (as well as their 

direction, centre of gravity, and their intersections with the boundary) and mapping distances to 

be established.  In the case of colour printing, GBDs are needed for the original image and 

reproduction medium gamuts.  GBDs can be either generic, or medium-specific.  Generic GBDs 

are comprised of the points that from a convex hull or alpha shape around the gamut, or the 

points which are the maxima of evenly divided spherical segments of the colour space.  This 

type of GBD is suitable for image gamuts or palettes of spot colours (Morovic, 2008).  In this 

respect, the image gamut refers to the gamut of all the image pixels; this will differ to the 

perceived gamut of the image because not all pixels will be perceptible, or pixels will occur 

infrequently in an image.  Perceived image gamuts require a different approach which is yet to 

be firmly established (Morovic, 2003).  Medium-specific GBDs can be computed from a 

characterisation model, as the “the gamut of the device is implicitly quantified” during device 
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characterisation (Sharma, 2007).  One method for computing medium-specific GBDs is based 

on the Kubelka-Munk equations (Morovic, 2003).         

Rather than to base the computation of GBDs on entire sets of colours, which can number into 

the tens of thousands (for the colours in an image) or hundreds of thousands (for media gamuts), 

it is more practical to use a smaller sample.  Samples can be taken from the entire gamut 

volume, or from the gamut surface only (Morovic, 2003).  Indications are that a subset of 

around 1,000 colours is needed for volume sampling of image colours, referring to an example 

given in Morovic (2003).  Sampling is not required for smaller sets of colours, such as the 1,114 

colours of the Pantone Formula Guide® (Morovic, 2008).  In certain situations, a denser 

sampling is required (see below) which, for imaging media, means that the size of the sample is 

in the order of the size of the population gamut (Morovic, 2008).      

The GBD represents the combined effects of the size of the sample and whether the GBD 

algorithm results in a ‘tight’ or ‘loose’ gamut boundary.  Morovic (2008) gives a detailed 

discussion on the contributions of these effects, and on the implications for the relationship 

between sample-derived gamut boundaries and those of the colour population from which the 

samples are drawn.  Briefly, sample-derived gamut boundaries could either under- or over- 

estimate the population gamut, which itself can be small or large (Morovic, 2008), with 

consequences such as population colours remaining out-of-gamut even after mapping, colours 

being mapped unnecessarily, or regions of gamuts not being used.  The best estimation of a 

population gamut boundary will come from a combination of dense sampling and a ‘tight’ 

boundary.           

2.5.3.3. Gamut mapping algorithms and rendering intents 

In the process of altering colours in the original image, and replacing them with ‘ones that a 

given medium is capable of reproducing’ (Morovic, 2003) it is not only the difference between 

the gamuts of the original and reproduction (the source and destination gamuts respectively) 

that need to be taken into account.  Within these constraints, the properties that are desired in 
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the reproduction, relative to the original, also need to be specified.  Broadly speaking, either an 

accurate or a pleasant reproduction will be aimed for, and within each there are various sub-

types (Morovic, 2003).  These objectives are referred to as rendering intents.  An accurate 

reproduction specifies that the reproduction be as close as possible to the original, whether it is 

pleasant or unpleasant (Morovic, 2003), and both are compared side-by-side as in a copying 

environment (Braun et al., 1999).  A pleasant reproduction aims to be pleasant, irrespective of 

the pleasantness of the original (Morovic, 2003), and is not compared to the original, as in a 

printing environment (Braun et al., 1999).  The rendering intent decides the set of appearance 

attributes that are the focus of mapping.  The combination of lightness and chroma are used if 

the appearance of an original is taken to be its appearance relative to a reference white, while 

brightness and colourfulness are used in situations such as art reproduction where the conditions 

of the original surroundings are more important (Morovic, 2003). 

Typically it is accurate reproduction that is aimed for, because these are the better understood, 

and the more straightforward to achieve (Morovic, 2003).  There are two main types of mapping 

algorithm that are used to achieve an accurate reproduction: clipping algorithms and 

compression algorithms.   Clipping algorithms are applied to out-of-gamut original colours 

only, which are replaced by those on the surface of the destination gamut boundary, with the 

aim of maintaining overall accuracy.  Compression algorithms transform all colours, whether 

within or out-of-gamut, and are replaced by colours inside the destination gamut, thereby 

preserving relativity.  Clipping and compression algorithms are usually hue-preserving, that is, 

they take place within a plane of constant hue angle; colours are clipped or compressed along 

pre-defined lines (for example, towards a ‘centre of gravity’ on the lightness axis, Figure 2.10), 

or clipped along the line with the shortest distance (minimum ΔE clipping), toward the 

reproduction gamut boundary.  Alternatively, there are minimum ΔE clipping algorithms which 

do not preserve hue (Morovic, 2008).     
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2.5.3.4. Quality (evaluation) of reproduction: print 

The evaluation of the reproduction is made against the rendering intent, and will apply only to 

the image and media that are involved (Braun et al., 1999; Morovic, 2003).  However no 

established model exists for quantifying the appearance of complex images or for quantifying 

the difference between original and reproduction (Kang, 2006).  Braun et al. (1999) used panels 

of individuals (with various levels of experience) to judge reproductions of colour images that 

were made using various gamut mapping algorithms.  Clipping algorithms were overall the 

better performing when the reproduction was compared to the original.  Contrast-boosting 

algorithms newly developed by the authors did better than clipping algorithms when images 

were ranked in order of preference in the absence of the original.   The latter result highlights 

the influence of lightness or darkness in source image content (Morovic, 2003); the contrast-

boosting algorithms may have lightened images that were dark to begin with (Braun et al., 

1999). 

Figure 2.10  An illustration of colour gamut clipping (top) and colour gamut compression (bottom) towards a 
centre of gravity, E, on the lightness axis (Morovic, 2003). 
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2.6. Colour in food 

2.6.1. The role of colour in food: Colour is a part of total appearance 

In the context of this review, the role of colour in food refers to the role that colour plays in the 

selection and consumption of food, as distinct from the physiological role of pigments within 

the foods in which they naturally occur.   

Colour is an appearance characteristic which contributes to the visual assessment of food 

quality. Judgements of the safety, sensory characteristics (taste, texture, and flavour) and 

acceptability of a given food, prior to its selection and/or consumption, are made relative to the 

range of acceptable colours for that food (Clydesdale, 1993; Francis, 1999).  Learned 

associations of colours with different qualities create expectations of how foods might taste and 

of their flavour.  As a result, basic tastes in solution are detected at lower concentrations when 

solutions are coloured and flavoured appropriately for a given taste (Maga, 1974; Johnson and 

Clydesdale, 1982).  Fruit-flavoured beverages need to be appropriately coloured in order for the 

flavour to be correctly identified (DuBose et al., 1980), and perceived flavour intensity 

increases with increasing colour intensity.  Increasing levels of added red or orange colour 

increased the overall acceptability of cherry- and orange- flavoured beverage samples 

respectively, up to a point, before levelling off or decreasing, at most levels of added flavour.  A 

more interactive effect was seen between the levels of added yellow colorant and added flavour 

in cakes, with overall acceptability of cakes peaking at different concentrations of yellow 

colorant for each of the levels of added flavour (DuBose et al., 1980).   

While colour itself does provide a ‘very useful and intuitive indicator’ (Joshi and Brimelow, 

2002) of visual food quality, the role of colour in influencing judgements and expectations of 

quality depends on its importance relative to other appearance characteristics.  Colour is of 

major importance in the selection of paints and clothes (Hutchings, 2002), and the same could 

be presumed for transparent coloured beverages, such as the ones discussed above.  The 

psychophysical properties of foods (and beverages), such as translucency, gloss, surface texture 
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and shape, can have more influence in their colour appearance than the colorants contained 

within (Joshi and Brimelow, 2002).  For example, small changes in scatter could be more 

effective than changes in pigment concentration in changing colour appearance (MacDougall, 

2002a).  As well, individual appearance characteristics of foods can change over the lifetime of 

a product, or with different processing conditions (Hutchings, 2010).   

In turn, expectations of food quality are formed from their total appearance (Hutchings, 2002).  

Contributors to total appearance are the characteristics of the product, or scene, itself (including 

material and optical properties, and lighting) as well as those of the viewer (including such 

factors as vision, inherent and learned responses and need).  Images are derived in the brain of 

the viewer from total appearance.  These images are comprised of basic, and derived, 

perceptions.  Basic perceptions of food appearance are formed from the colour, translucency, 

gloss, size (including shape) and visual texture of each element of visual structure.  A slice of 

bacon is an example of a food having a multi-element visual structure.  Basic perceptions lead 

to derived perceptions, or expectations of taste, flavour and in-mouth texture (which together 

help to identify the food), safety, and satisfaction (Hutchings, 2003).  Expectations can be either 

positive or negative, based on previous experience.  Expectations are also created of similar 

foods.  Acceptability depends on the extent to which these expectations are met.     

An understanding of the contribution of colour to food quality, and of its effects on other 

sensory characteristics will be needed given the increased role that colour is expected to have in 

the design of new foods to meet dietary recommendations, which match the appeal of their 

traditional counterparts (Clydesdale, 1993).  For the traditional products themselves, colour and 

appearance can be optimised using methods to quantify acceptability tolerances and the 

expected levels of a range of sensory characteristics, based on the visual assessment of a large 

number of digitally-rendered colours, as has been done for orange juice (Wei et al., 2012).  The 

use of virtual colours in CIELAB space allows more detailed product profiles or maps to be 

developed for quality control and marketing purposes.  Control of food colour and appearance is 

important because acceptable or preferred colours for the same product can differ between 
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different international markets and even within a country as is the case for tomato soup colour 

in the UK (Hutchings, 2002).  At the same time, customers expect a high degree of product 

uniformity (Hutchings, 1999).         

2.6.2. Describing and measuring food colour 

2.6.2.1. Visual measurement   

In the food industry, colour is usually assessed using visual methods, rather than by the 

instrumental methods used for non-food materials that have been discussed earlier.  In non-food 

surfaces “colour can be isolated as a single visual and instrumental property” (Hutchings, 1999), 

and as previously described small tolerances are applied to the matching of surface colours, 

requiring accurate measurement.  In contrast, food colour and appearance is more complex in 

nature, and differences among food colours that exceed threshold or supra-threshold are less of 

a concern.  Visual assessments are typically performed under controlled viewing and 

illumination conditions by expert sensory panels that have been specially selected, screened and 

trained for the task (Hutchings, 2002).  Basic and derived perceptions of food colour and 

appearance are described using sensory descriptors and scales that are based on either memory, 

or comparison to physical standards representing foods (Hutchings, 1999).  Examples of the 

latter are colour atlases such as the Munsell system, and product-specific colour charts, 

photographs or standards such as the Roche Yolk Colour Fan, plastic tube standards for 

processed orange juice, and the Lovibond glass standards for beer, butter, milk and oils. 

2.6.2.2. Instrumental measurement 

On the other hand, sensory evaluation can be time- and labour- intensive (Joshi and Brimelow, 

2002), and a number of factors could affect panel performance such as fatigue, poor memory 

and an inadequately controlled environment (Hutchings, 1999).  In its place instrumental 

methods offer speed, standardisation and convenience.  As with non-food materials, instruments 

that are used to measure colours are proxies for human perception.  To this end reflectance 

should be measured using an illuminant close to the lighting conditions under which the food is 
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normally viewed (Joshi and Brimelow, 2002).  CIELAB values of meat measured under the 

D65 and 10° standard conditions might differ from the colour perceived under retail or domestic 

conditions, particularly with respect to hue (brown or red) (MacDougall, 2002a).  The specular 

component-excluded viewing geometry (SCE) eliminates front surface reflections and is 

applicable to most situations covering opaque, translucent and transparent samples (Joshi and 

Brimelow, 2002).  For glossy samples the SCE condition is the instrumental equivalent of an 

observer having to move the sample to view the colour independently of the mirror reflection 

(Berns, 2000). 

Importantly, as most instruments (colorimeters and spectrophotometers) have been designed to 

measure homogeneously coloured, flat and opaque surfaces such as paint and paper, 

consideration needs to be given to sample presentation, when catering to the much broader 

range of colour and appearance properties displayed by foods.   Flat surfaces can be created 

when needed by grinding, milling, cutting or pressing.  For non-colour-uniform surfaces, a 

number of measurements can be taken from different areas in order to obtain an average result.  

Translucent samples can be measured at a thickness at which it is optically opaque (i.e. the 

thickness beyond which there is no change in measured reflectance) or at a lower, standardised 

thickness against a white backing, using a large measurement aperture to ensure the light that is 

diffused within the sample is captured when it re-emerges. 

2.6.2.3. Describing colours, including the use of the Kubelka-Munk function 

Measured food colours can be expressed in a number of ways, depending on the application: as 

full reflectance curves or reflectance at a specified wavelength, or as CIELAB or HunterLab 

values.  L*a*b* is ideal for colour monitoring during production runs, while L*C*H* might be 

better correlated with visual sensory data (Joshi and Brimelow, 2002).   

The Kubelka-Munk approach to describing colour in terms of colorant content, which forms the 

basis of computer colour matching for non-food materials, has been attempted for foods, but for 

a different reason: to identify pigments and determine their concentrations in foods without 
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having to do chemical analysis (Hutchings, 1999).  A linear relationship was demonstrated 

between the log K/S values at around 510-520nm and concentration of added pigment in a 

model system for salmon (Hutchings, 1999), and the K-M function has been used to determine 

pigment content in fresh meat, also based on reflectance measurements at selected wavelengths 

(Dean and Ball, 1960).  Caution should be exercised when using this approach because of the 

contribution of effects other than pigment content to measured colour, such as those of sample 

structure.  Still, the K-M approach can be used to characterise a translucent sample in terms of 

scattering effects as well; the relative contributions of absorption and scatter can be determined 

by measuring thin sample layers against black and white backgrounds.  K/S ratios for tomato 

pericarp increased with storage time for cut fruits, relative to stored, intact fruits, in line with 

development of visual translucency.  The decrease in scatter might have been due to a decrease 

in refractive index differences as liquid replaced gas in the intracellular space (Lana et al., 

2006).            

2.6.2.4. Colour differences and colour tolerances 

Colour difference equations and tolerance levels, described earlier in Section 2.3.4 for non-food 

applications are used also in food applications.  These are used to correlate instrumentally-

measured colour data with sensory colour data for which CIELAB and CIE94 have seen 

increasing use (Joshi and Brimelow, 2002), or to describe the distance from a standard 

(Hutchings, 1999) where differences based on CIELAB and HunterLab have been used (Table 

2.4).  Colour matching in the food industry does not require the same high levels of accuracy as 

seen in non-food industries (Francis, 1999; Joshi and Brimelow, 2002), and therefore advanced 

colour equations (from CIE94 upwards) might be either too precise for needs (Joshi and 

Brimelow, 2002), or in the case of CIEDE2000, the need for this level of precision is not yet 

known (MacDougall, 2002a).   

As with non-food applications, the relative contributions and importance of lightness, hue and 

chroma to overall colour differences might differ according to the specific food application.  For 

example hue has more importance than the degree of lightness in tomato juice, while in roasted 
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ground coffee and canned tuna, lightness is more important (Francis and Clydesdale, 1975).  

Francis and Clydesdale (1975) suggested that for quality control purposes tolerance levels be 

based on all three (lightness and chromatic) dimensions, giving more weight to those 

dimensions having more importance, while something simpler could suffice for the evaluation 

of consumer acceptability.  Adding a red pigment to squash puree both reddens and darkens the 

colour, but acceptability may be based only on the change in redness (Francis and Clydesdale, 

1975).  

2.6.2.5. Challenges in correlating instrumental measurements with visual 

assessments 

Problems still arise because instrumental measurement conditions are ‘fixed’ or stipulated, 

whereas perceptions of colour and appearance can change according to the angles of viewing 

and illumination, the type of illumination, and orientation of the sample (Hutchings, 1999).  In a 

dilution series of orange juice concentrate the most dilute sample, when measured, is found to 

be the darkest (at infinite thickness) due to the lower concentration of scattering particles, 

consistent with a decrease in scatter coefficients from thin layer measurements against black and 

white backgrounds.  Visually however, the most dilute sample is perceived to be the lightest, 

due to multi-directional illumination creating ‘glow’ in translucent samples (MacDougall, 

2002a).  Similarly the measured lightness of semi-skimmed milk and tomato juice is around 10 

L* units (CIELAB, D65) lower than that of the NCS atlas colours which are the closest visual 

matches to these beverages (MacDougall, 2002b).  In the same study, measured L* values for 

cereals and baked goods were found to be up to 21 units lower than those of their NCS matches.  

In the case of the bread and cake, instrumental measurement includes the bubbles resulting in 

darker colours whereas visual assessments of colour are made separately from the bubbles 

(MacDougall, 2002b).  The flash illumination used in colour measuring instruments has a high 

power to compensate for the short illumination time, but this also means that the light is able to 

pass through most materials, and that therefore samples will be recorded as being darker than 

they are actually (Negueruela, 2010).      
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2.6.2.6. Calibrated digital image analysis systems 

The instrumental measurement of food colour and appearance is better served by calibrated 

digital image analysis systems.  These systems offer a controlled, non-contact, non-destructive 

means of measuring colour and appearance characteristics, including surface textures and 

uneven colours, meaning samples are measured as they would be viewed by the consumer.  As a 

digital format, so long as images are taken with consistency, calibrated imaging facilitates direct 

product comparisons across different locations.  Changes in food colour and appearance that 

occur over time and/or with changes in processing conditions can be monitored more 

effectively.  In contrast colorimeters and spectrophotometers are capable only of measuring 

average colour, and often the sample being measured will not be (or cannot be presented) in its 

original form.   

Table 2.5 lists the features of two different calibrated image analysis systems – DigiEye (Luo et 

al., 2001b) and the machine vision (MV) system by Luzuriaga et al. (1997) - designed 

specifically for food applications.  These systems are similar in their basic features, being made 

up of a digital camera, an enclosed cabinet or light box simulating the diffuse, D65 condition 

(additionally angled illumination for DigiEye), a monitor, and image analysis software.  

DigiEye also comes with a printer.  DigiEye is a fully calibrated system in which the camera, 

monitor and printer undergo characterisation.  Less detail is given about MV system calibration, 

only that it was calibrated using the Gretag Color Checker colour standards, and that a red 

reference object was placed next to the sample tray to calibrate fruit images (Balaban et al., 

2008).  The software in both systems measures the colours of individual pixels in the captured 

images and then groups the pixels according to a number of representative colours, thereby 

forming a useful basis for the analysis of all food colours, particularly the non-homogeneous 

colours in many natural and multi-component foods (Table 2.5).  DigiEye software also does 

simulations and runs the camera and monitor characterisation.   
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Table 2.5  Features comparison of the DigiEye and Machine Vision calibrated colour image analysis systems for 
food applications. 

 DigiEye (Luo et al., 2001) Machine Vision System (Luzuriaga et al., 1997) 
Camera Characterised SLR camera  CCD colour video camera  (Luzuriaga et al., 1997) or 

progressive scan digital camera (Balaban et al., 2008) used 
for capturing still images 

Light box: 
illumination 
and 
background 

Two sets of lamps simulating D65 
standards, each at 45° to the 
sample, from above; diffuse 
illumination (from both sides) 
used for measuring colours per se, 
and removes specular reflections 
from wet or glossy foods, angled 
illumination (single side only) 
produces higher contrast suitable 
for textured surfaces and fine 
detail; light box interior provides a 
neutral grey background. 

Originally developed with light box interior housing the 
sample being lit from above and below using two bulbs at 
each position; diffuse illumination provided by white 
interior walls and translucent acrylic sheets placed between 
bulbs and light box interior (Luzuriaga et al., 1997).  Two 
fluorescent light bulbs simulating D65 used in the study by 
Balaban et al. (2008), therefore samples presumed to have 
been lit from above; also in this study, samples were placed 
against neutral grey paper on a tray. 

Software for 
image capture 
and image 
analysis 

DigiEye Colour Clustering 
software: pixels in captured 
images grouped according to 
colour, each colour calculated as a 
percentage of the total number of 
pixels within the image.   
The software can also be used to 
digitally alter images to simulate 
the effect of adding different 
colours to different textures or to 
new and existing products, and to 
simulate the effects of other 
standard light sources. 
 
 
 

LensEye software (Balaban, 2008); analyses include those 
of: 

 average colour - from L*,a*,b* values of every 
pixel (Balaban et al.,2008); 

 indicators of non-homogeneity (Balaban, 2008), 
including: 

o colour blocks - division of RGB colours 
into 64 (43), 512 (83) or 4096 (163) 
blocks each represented by the colour 
at the block centre; pixels falling within 
each block counted and percentage 
area of each colour (centre) calculated 
based on total number of pixels; 

o colour primitives – continuous areas of 
the image within which the intensity of 
each pixels falls within a given threshold 
value, relative to an anchor or 
reference pixel; primitives share the 
same threshold constraint but differ in 
their reference pixel 

Examples of 
food 
applications 

Effect of baking time on bread 
crust colour and its surface 
distribution; separate in situ 
measurements of sauce and bean 
colours to compare different 
brands of baked beans (Leedham 
and Boulter, 2007); DigiEye 
images used by others as the basis 
for analysing the distribution of 
fruit pieces in a cake product as a 
function of viscosity when 
different cooking methods and 
times were used (Leedham and 
Boulter, 2007)  

Colour changes in shrimp during refrigerated storage 
(Luzuriaga et al., 1997); non-homogeneity of colours in 
fresh fruit and meat, and in ripening banana (Balaban, 
2008; Balaban et al., 2008) 

Features/use 
supporting the 
colour sensory 
analysis of 
foods 

Characterised printer allows hard 
copy images to be produced 
which can be used as accurate 
and reliable reference or master 
product standards for visual 
assessments; assessments by 
panellists could also be made via 
characterised monitors. 

Colours representing colour blocks occupying more than 
1% of the sample area from the image analysis of fruit 
samples were selected as reference colours (n=15) for 
visual evaluation of the same fruits (on trays or on screen) 
by untrained panellists; average colour of samples based on 
visual evaluations compared to average colours from image 
analysis of samples (Balaban et al., 2008).  
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2.6.2.6.1. As a tool supporting the colour sensory analysis of foods 

The performance of (untrained) panellists was found not to differ significantly between 

evaluations made of real samples and their images (Balaban et al., 2008).  Because it provides a 

visual record of a food at the time of imaging, calibrated image analysis is ideally placed to 

support the colour sensory analysis of foods in a number of ways.  These include the production 

of reference colour standards which are related directly to processing and pigment effects, and 

the visual evaluation of products by distance or at a time beyond the shelf life of perishable 

foods (Balaban et al., 2008; Harkness et al., 2010).   

The benefits of using a system such as DigiEye which is capable of simulations is that panellists 

can view virtual instead of real products thereby saving time on sample preparation; calibrated 

digital displays were used for the visual assessment of rendered orange juice colours in the 

study by Wei et al. (2012) in building an acceptability and expectations profile for this product. 

Another application of digital colour analysis in colour sensory evaluation is the use of machine 

vision to quantify sensory panel assessments of non-homogeneous food colours, the rationale 

being that consumers and industry still rely on visual inspections to make choices or in grading 

assessments (Balaban et al., 2008).  Fifteen colours from image analysis (see Table 2.5) were 

selected as reference colours for the visual evaluation (on trays or on screen) of fruit samples 

(displaying uniform and non-uniform colours) by untrained panellists.  Based on the selection of 

three reference colours and the estimated percentage area occupied by each, average L*a*b* 

colours were calculated for each sample, and compared with the average colours for the same 

samples from image analysis.   The ΔE difference between the average colours from panel 

evaluations and image analysis (or the ‘error of a panellist in quantifying the colour of a 

sample’) increased the more non-uniform the sample colour.  It was however, acknowledged 

that the size of the error might have been a function of the number of colours that the panellists 

were asked to select in their evaluations, and also of the number of reference colours provided.  
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No mention was made of the possible use of appropriate weighted colour difference equations 

(refer Section 2.3.4) which might have had an impact on the size of the error.     

2.6.2.7. Colour sorting of bulk foods using image analysis 

Image processing also forms the basis of large throughput sorters used in the food industry for 

the bulk sorting of products based on colour.  These machines offer an automated, more 

consistent and more cost-effective alternative to hand sorting.  The purpose of sorting is to 

maintain product quality, for example, by the removal of contaminants and/or blemishes, though 

for various reasons, colour sorters can never remove defects with 100% efficiency (Bee and 

Honeywood, 2002).  The types of products that are sorted include seeds, rice, coffee, nuts, fresh 

fruit, and fresh and frozen vegetables.  After products are fed into the sorting machine, the 

optical system measures the reflectance of each particle or object in the product stream; the 

image processing algorithm decides whether to ‘accept’ or ‘reject’ particles on the basis of 

information collected by the optical system, with the rejected particles removed by the ejection 

system.   Acceptability limits will have been determined beforehand in the laboratory to finalise 

the settings appropriate for the bulk sort.  

2.6.2.7.1. Reflectance measurement 

Rather than being based on colour per se, bulk sorting is based on the measured reflectance at 

selected single or multiple wavelengths, as described in Table 2.6.  At these wavelengths there is 

a difference between the spectra of accepted and rejected particles.  The wavelengths are set 

with the aid of band-pass optical filters. 
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Table 2.6  Descriptions of image-based methods for the bulk sorting of foods according to the wavelengths of 
light used. 

Sorting basis Description Application/examples 
Monochromatic1 Measured reflectance at single band of 

wavelengths 
Removal of dark items from peanuts, 
dried peas and white rice 

Dual monochromatic 
 
 
Bichromatic1 

Separate reflectance measurements at 
two different bands 
 
Simultaneous reflectance measurements 
at two different bands, expressed as 
ratio of the two measurements 
 

 
 

Rejection of two types of defects/foreign 
material, each having different spectra 
 
Green Arabica coffee beans to sort 
discoloured from acceptable beans 

Trichromatic Typically, measured reflectance at bands 
in the green and red visible wavelength 
regions and a third band in the infra-red 
region 

Detection of foreign bodies e.g. glass, 
stones, insects; size/shape sorting 

Fluorescence  Measured reflectance after irradiation 
with ultra-violet light 

Detection of non-visible defects e.g. 
bacteria 

Laser Narrow laser beam of single wavelength 
(within or beyond visible spectrum) used 
to illuminate product, which is then 
scattered and/or internally diffused 

Sorting based on structural properties 
(texture and sub-surface), in addition to 
colour; detection of foreign objects 

1Simultaneous monochromatic and bichromatic measurements can be made by some sorters 

 

2.6.2.7.2. Illumination and background 

With the exception of laser-based optical sorting, uniform lighting for sorting is provided by 

fluorescent tubes, incandescent filament bulbs (Bee and Honeywood, 2002) and increasingly, by 

Light Emitting Diodes (LED) (Woodside Electronics Corporation, 2013; Cimbria, 2014; Satake 

Europe Ltd, 2014).  Fluorescent lamps, which emit in selected wavelength regions within the 

UV-visible range, can meet most needs and are preferred for their diffuse light and cool 

operation; incandescent lamps with broad emission ranging from the visible blue to the near IR 

wavelengths, are used for bichromatic sorting or when IR is needed.  LED lighting is long 

lasting (for 100,000+ hours (Cimbria, 2014) or a minimum lifespan of three years (Satake 

Europe Ltd, 2014)), reliable and efficient, and has low heat dissipation (Cimbria, 2014). 
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For sorting based on the rejection of dark defects, particles are viewed against an illuminated 

background with brightness the same as the average brightness of the product, with and without 

the defect.  Dark particles will decrease the signal amplitude while light particles will increase 

it.  This type of sorting is made independently of the particle size.  For the sorting of shapes, the 

brightness of the background should differ from that of the product average, to highlight object 

boundaries.   

2.6.3. The addition of colour to food: reasons colorants are added 

The importance of the role colour has in food is indicated by the need to add colorants to 

preserve, restore or change the appearance of foods and beverages.  As previously discussed the 

addition of colour influences flavour identification and intensity perception, and judgements of 

food quality are made relative to an acceptable range; “we are comfortable if the food we are 

eating is the appropriate colour” (Hutchings, 1999).  Because consumers have learned to expect 

a high degree of product uniformity (Hutchings, 1999) the addition of colour is particularly 

useful where products vary naturally in colour, or where colour and appearance characteristics 

have been lost or damaged through processing.  Furthermore, by adding colour, colourless foods 

can be given an attractive appearance, and the intensity of colours can be increased in foods 

where it is naturally low.  On the flipside, the benefits of colour addition also mean that 

colorants have been used for adulteration purposes, including to mask deterioration, aging, poor 

quality and low nutritional values, and to dilute more expensive food materials, as with the 

replacement of cherry with grape and beetroot mixtures.  Bright, high contrast, ‘non-natural’ 

colours, whether added to the foods themselves, or used on packaging, are being used to attract 

people of all ages to consume foods and beverages that are frequently high in fat, sugar and salt 

(Hutchings, 2010).          

2.6.4. Synthetic food colorants 

In this part of the review, coverage of food colorants is limited to the synthetic or manufactured 

(‘artificial’) non-nature-identical colorant additives.  In this thesis, synthetic colorants will be 
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used to test the suitability of predictive colour matching algorithms being developed for the 3D 

colour food printer.  Synthetic colorants are being preferred over their natural counterparts 

which in general have produced dull shades, have poor stability and fade rapidly, and have been 

more difficult to handle (Roenfeldt Nielsen and Holst, 2002).  Synthetic colorants also come in 

a number of different formats which should provide a range of colouring options for a 

potentially diverse range of food printing substrates.  However it should be noted that use of 

natural colorants in foods and beverages has been growing at a more rapid rate than that of 

synthetic colours, owing to improved functionality through, for example, microencapsulation 

and emulsion technologies (Roenfeldt Nielsen and Holst, 2002), and to increased consumer 

demand for ingredients from natural sources for their associated quality, safety and nutritional 

benefits.  The latter feature will be compatible with the customised nutritional outputs offered 

by the 3D colour food printer.  

It is not the goal here to give detailed information on the manufacture, chemistry (structure, 

stability and solubility) and toxicological aspects of synthetic food colorants.  Such information 

can be found elsewhere (Francis, 1999; Beatriz and Gloria, 2005), and in Section 2.6.6 with 

reference to stability in different food systems.  Here, and in the following sections, the focus is 

on the applications of synthetic food colorants, including the selection of suitable colorants and 

the factors that may affect their performance in foods, and on the legislative restrictions on their 

use.  Because of the focus on synthetic colorants, detail is also reserved for addressing the 

concerns surrounding the link between synthetic colorant consumption and hyperactive 

behaviours in children.     

2.6.4.1. Available colorants and restrictions on use 

Table 2.7 is a list of synthetic colorants that are available for use in foods and beverages across a 

range of countries including New Zealand and Australia, the USA and the UK.  As well as their 

common names the labels by which they are otherwise known are also given.  The ‘FD&C’ 

labels refer to colorants that are certifiable for use in foods, drugs and cosmetics, and which 

belong to one of the three categories of coal-tar colorants created by the US Federal Food, Drug 
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and Cosmetic Act of 1938 (Francis, 1999).  An ‘E’ number is given to an additive that has 

passed safety tests and has been approved for use in the UK and in the rest of the European 

Union (Food Standards Agency UK, 2014).  Table 2.8 is more specific in listing the synthetic 

colorants allowed by various countries.       

Table 2.7  Colour guide to the common synthetic food colorants.  Compiled using Francis (1999), Sensient Colors 
Inc. (2005) and Food Standards Agency UK (2014). 

FDA name E number Common name λmax 
(nm) 

Approximate hue 

FD&C Blue No.1 133 Brilliant Blue 630 Greenish blue (turquoise blue) 
FD&C Blue No.2 132 Indigotine/Indigo Carmine 610 Deep blue (royal blue) 
FD&C Green No.3 143 Fast Green FCF 625 Bluish green (sea green) 
FD&C Red No.3 127 Erythrosine 526 Bluish pink (Watermelon red) 
FD&C Red No.40 129 Allura Red 504 Yellowish red (Orange red) 
FD&C Yellow No.5 102 Tartrazine 426 Lemon yellow 
FD&C Yellow No.6 110 Sunset Yellow FCF 485 Reddish yellow (Orange) 
 123 Amaranth 520 Magenta red 
 122 Azorubine/Carmoisine 516 Magenta red 
 124 Ponceau 4R 505 Strawberry red 
 104 Quinoline Yellow 411 Lemon yellow 
 142 Green S 632 Greenish blue 
 155 Brown HT 460 Chocolate brown 
 151 Brilliant Black BN 570 Purple 
 

Table 2.8  Synthetic food colorants listed according to the countries in which their use is permitted.  Adapted 
from Beatriz and Gloria (2005). 

Colorant Aus/NZ1 Brazil2 Canada2 Japan2 UK/EU3 USA4 
Brilliant Blue + + + + + + 
Indigotine/Indigo Carmine + + + + + + 
Fast Green FCF + + + + - + 
Erythrosine + + + + + + 
Allura Red + + + - + + 
Tartrazine + + + + + + 
Sunset Yellow FCF + + + + + + 
Amaranth + + - - + - 
Azorubine/Carmoisine + + + - + - 
Ponceau 4R + + - - + - 
Quinoline Yellow + - - - + - 
Green S +    + - 
Brown HT + - - - + - 
Brilliant Black BN + - - - + - 
1 Australia New Zealand Food Standards Code, Standard 1.3.1 (Food Additives), Schedule 4  
  (Australia New Zealand Food Authority, 2000) 
2 Beatriz and Gloria (2005) 
3 UK Food Standards Agency (2014) 
4 US Food and Drug Administration (2011) 
 

Restrictions apply also to the amounts of synthetic colorants that can be added to foods, and to 

the types of foods to which they can be added.  In Australia and New Zealand these colorants 
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are permitted in a range of beverages and foods to a maximum level of 70mg/L and 290mg/kg 

respectively.  Exceptions are erythrosine which is restricted to preserved cherry products (such 

as maraschino, cocktail or glace cherries) to a maximum level of 290 mg/kg (Australia New 

Zealand Food Authority., 2000), due to the erythrosine molecule containing iodine, which has 

been linked to thyrotoxicosis (Leatherhead Food International, 2008), and amaranth which is 

permitted only in confectionery, in fish roe and in formulated supplementary sports foods to a 

maximum of 300 mg/kg, in fruit and vegetable spreads (including jams, chutneys and related 

products) to 290 mg/kg, and in selected beverages to 30 mg/kg, including fruit and vegetable 

juice products, water-based flavoured drinks, wine-based drinks and reduced-alcohol wines, and 

spirits and liqueurs.  Equivalent information for the EU can be found in the food additives 

database on the European Commission website (http://ec.europa.eu/food/food/fAEF/additives).  

Restrictions must be taken into account when importing or exporting food products containing 

colouring additives. 

2.6.4.2. Synthetic colorants and hyperactivity in children: interpretations of findings 

A study commissioned by the UK Food Standards Agency (FSA), and conducted by the 

University of Southampton (McCann et al., 2007), investigated whether a link could be found 

between the intake of synthetic food colorants and adverse behavourial changes in children who 

were drawn from the general population and represented the full range of hyperactivity levels.   

Children in two groups – those aged three years, and those aged eight and nine years (with 137 

and 130 subjects respectively completing the study) – were given fruit juices containing sodium 

benzoate and one of two colorant mixes (A or B), or a placebo mix, according to a randomised, 

double-blinded, crossover study design.  The colorants used were those commonly found in 

food for children, while sodium benzoate is used as a preservative in soft drinks.  Mix A 

contained Sunset Yellow, Tartrazine, Carmoisine and Ponceau 4R to a combined total of 20mg 

or 25mg, plus 45mg sodium benzoate, and Mix B Quinoline Yellow, Sunset Yellow, 

Carmoisine, Allura Red to a combined total of 30mg or 62mg, plus 45mg sodium benzoate.  

The higher totals were the dosages for the older group.  The dosages in the study were 
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equivalent to those contained in two to four 56g bags of sweets per day.  The study reported 

significant adverse effects (increases in the mean level of hyperactivity) of Mix A on the 

behaviour of the three year old children, and of Mix A or Mix B on behaviour of the older 

children, relative to the placebo.  Further, Mix A had a greater effect on the younger group than 

it did on the older. 

The findings from the study were said to strongly support the argument “that food additives 

exacerbate hyperactive behaviours (inattention, impulsivity, and overactivity) in children at least 

up to middle childhood” (McCann et al., 2007). The advice to concerned parents from the FSA 

following the study was to reduce or exclude the six colorants from their children's diets.  A 

European Parliamentary committee voted to ban all synthetic colorants from foods consumed by 

babies and small children (Institute of Food Technologists, 2011b).  At present any food or 

drink in the European Union (except for drinks containing more than 1.2% alcohol) containing 

any of the six colorants that were the subject of the study must include a mandatory warning of 

the possible effects of colorant consumption on children (Food Standards Agency UK, 2014).  

At the same time, the FSA is encouraging manufacturers to use alternatives. 

The position of the US FDA was that there was “no information (in the Southamption study) to 

suggest that the behavioural changes noted were adverse, detrimental, or maladaptive" (Institute 

of Food Technologists, 2011b), a position it maintained after the vote of an expert panel it 

convened, and further, that there was no need for special warning labels on foods containing 

artificial colorants (Institute of Food Technologists, 2011a).  One of the notable shortcomings of 

the study pointed out by the FDA and by others, including the study authors themselves, was 

that the adverse effects could not be attributed to any of the individual additives, given that 

mixtures of colorants were used, and in combination with the preservative (McCann et al., 

2007; European Food Safety Authority, 2008; Institute of Food Technologists, 2011b).  

Significance of findings was based on means levels of hyperactivity; however large variation in 

the responses of individual children to the additive mixtures relative to the placebo meant that 

Mix B did not have any significant effects for the three-year-old children (Food Standards 
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Agency UK, 2007; McCann et al., 2007).  Factors other than dietary additives, such as genetics, 

are also associated with hyperactivity (Food Standards Agency UK, 2014).  Perhaps the larger 

concern is that the colorants can encourage the consumption of high-fat, high-sugar and high-

salt foods when added to these foods (Hutchings, 2010).  

Estimates of average exposure to synthetic colorants for children and adolescents, based on 

mean levels in foods likely to contain a high amount (such as brightly coloured soft drinks) 

together with data collected in a 24 hour recall of 3000 children and adolescents in the 2002 

National Children’s Nutrition Survey, were less than 5% of the relevant acceptable daily intake 

(ADI), and at most were 15%.  In animal toxicology studies, there were no adverse effects 

observed for most colours, even when fed at 5% of the total diet; typical human consumption 

would be less than 0.01% of the diet (New Zealand Food Safety Authority (NZFSA), 2008).  

Use of synthetic colorants is self-limiting due to their high colouring strength and to good 

manufacturing practice; this means that the amount of colorant needed is small anyway (Beatriz 

and Gloria, 2005).  

2.6.4.3. Synthetic colorant formats 

Synthetic colorants come in a number of forms each of which is suited to a different application, 

and there are advantages and disadvantages to using each form.  Synthetic colorants are 

available in soluble and insoluble forms which can be added either dry, or pre-dissolved or pre-

dispersed in a suitable solvent or carrier before use.  Table 2.9 compares the different properties 

of soluble and insoluble colorants, and Table 2.10 lists examples of the types of food 

applications to which the different formats are suited.  The examples in Table 2.10 are limited to 

those having some relevance to the 3D food printing substrate under development (refer 

Literature Review, Part 2) in that they share ingredients (e.g. sugar, starch, cake mixes) or 

physical properties (e.g. the consistency of edible inkjet inks and icings) in common. 
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2.6.4.3.1. Soluble formats: Dyes 

Soluble dye powders are used in applications in which water is added at the time of 

manufacture, or is added later by the consumer.  This includes the manufacture of coloured, dry 

mixes and ingredients, such as coloured sugar, which are sprayed with a liquid dye, before 

being dried.  When dissolved in water, dyes offer a convenient and efficient means of colour 

addition, though blends of primary-coloured powders may ‘flash’ momentarily when a dry mix 

is reconstituted with water, revealing spots of the individual colours until the mixture is stirred.   

For low moisture or non-aqueous applications, the dyes can instead be pre-dissolved in 

propylene glycol, or glycerine.  The higher solubility of dyes in glycerine allows for 

concentrated dye solutions to be prepared, which helps to keep the amount of added liquid to a 

minimum, and in doing so offsets the higher cost of glycerine (Sensient Colors Inc., 2005).  The 

potential for speckling and uneven colouring in high-fat applications can be mitigated by the 

addition of lecithin.  Specialist products such as gels and food-grade printing inks also require 

the highly concentrated colours that are made possible by using synthetic dyes.        

2.6.4.3.2. Insoluble formats: Lakes 

Lakes are an insoluble form of synthetic dyes which are produced by reacting the dye with an 

insoluble base.  Although they have a lower colorant content than their dye counterparts, they 

offer a number of advantages over dyes.  Dry mixes can be coloured more efficiently using 

lakes: lakes are easily incorporated into dry media, and there is no need for the mix to be 

sprayed with a liquid (dye) and subsequently dried.  By using lakes, the potential for uneven 

colour and speckling (as seen with dye use) in reconstituted dry mixes, high-fat fillings and 

coatings, and from residual moisture in the pan-coating of candies, can be avoided.  For 

applications other than dry, lakes are added in the form of a suspension or dispersion; suitable 

carriers include vegetable oils, propylene glycol, and glycerine.  However there is still a place 

for using dispersed dyes in coating applications, rather than lakes, if needed (Table 2.10). 
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Table 2.9  Properties of soluble and insoluble food colorants.  Adapted from Francis (1999), to include additional 
information from Sensient Colors LLC (2014a). 

Property Lakes  Pure colorants (dyes) 
Solubility Insoluble in most solvents (lakes are 

prepared by precipitating soluble 
colorants onto an insoluble base – only 
alumina permitted as the base for food 
colorants) 

Soluble in water, alcohol, propylene 
glycol (1,2-propanediol) and 
glycerol/glycerine; glycerine preferred 
for higher solubility, offsets costs by 
keeping addition of liquid to a minimum 

Method of colouring Dispersion (pre-dispersed in carrier or 
added directly as powder) 

Solution or as dispersion 

Pure colorant content 10-40% 90-93% 
Rate of use (usage level?) 0.1-0.3% 0.01-0.03% 
Particle size Approx 5microns 74-1,200 microns 
Stability 

Light 
Heat 

 
Better 
Better 

 
Good 
Good 

Colouring strength Not proportional to pure colorant 
content; higher opacity 

Directly proportional to pure colorant 
content 

Hue Varies with pure colorant content; 
colouring properties depend on 
manufacturing conditions, affecting 
particle size, crystal structure, colorant 
content and water content 

Less variation with pure colorant content 

Cost More expensive, however: 
 more finely ground forms are 

available, giving more surface 
area for light 
reflection/coloration, 
therefore money can be saved 
by using less  

Less expensive 

Suitable applications 
related to colorant 
properties (rather than to 
the properties of carrier) 

 where light stability and non 
migration properties are 
desired e.g confectionery and 
pharmaceutical coatings, 
icings/fondants and sandwich 
fillings 

 hydrophobic food 
 food packaging.  
 may bleed out if food outside 

pH 4.5 – 8.0; may settle out of 
low viscosity foods 

Any applications where colorant is 
dissolved as part of processing (see Table 
below)  
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Table 2.10  Examples of coloured foods and colorant formats suitable for each. 

Applications 

Colorant format 
Dry + Solvent or carrier 

Dyes (soluble) Lakes (insoluble) 
Liquid dyes (or 

dispersions 
where stated) 

Lake dispersions Gels 
Dr

y 
m

ix
es

 

Cake mixes 

Use fine grinds 
for rapid 
dissolution, to 
avoid streaking 
and speckling on 
reconstitution, or 
add pre-coloured 
sugar 

Preferred for this 
application 

Use for more 
attractive-looking 
mixes; if dry dye 
used, mix will 
remain 
uncoloured 

  

Coloured sugar 

Add dry colour to 
sugar, before 
blending with 
other ingredients 
in dessert mixes 

 

Alternative 
method for 
colouring cakes 
mixes, which 
contain added 
sugar 

  

Gelatin desserts 

Add fine grinds 
directly to the 
mix, or add pre-
coloured sugar 

    

Ba
ke

d 
go

od
s 

Cake batters   Yes   

Fillings and 
coatings   

Use propylene 
glycol and/or 
glycerine as 
solvent; + lecithin 
if fat content is 
high 

Gives the best 
results, especially 
in high-fat 
applications 

Highly 
concentrated and 
viscous 
preparations 
used to colour 
icings; gel 
ingredients 
include dyes, 
water, corn 
syrups, glycerine, 
sugar, modified 
food starch, and 
gums (Wilton 
Industries, 2014b) 

Co
nf

ec
tio

ns
/c

an
di

es
 Starch jellies   Recommended   

Cream centres   Yes   

Pan-coated 
candies   

If opacity is not 
desired; use dye 
dispersions 
containing 
titanium dioxide 
(TiO2) for opaque 
coatings 

Produce uniform 
colour with fewer 
coats, can also 
contain TiO2 

 

Inkjet edible printing   

High viscosity 
preparations of 
dyes in glycols, 
and optionally 
water and 
glycerine, for 
printing of 
coloured surface 
designs; high dye 
solubility in 
glycerine can help 
prevent dye 
solidification and 
clogging of 
printer nozzles 
(Baydo et al., 
2008)   
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2.6.5. Formulation of dye blends for food applications 

2.6.5.1. General considerations 

In most cases, the best results are achieved for minimal amounts of added colorant; these give 

delicate, bright and clear colours, which are suggestive of food flavours.  Attempts to intensify 

colours by adding more colorant will only result in darker and duller shades with an 

unappealing and artificial appearance.  The physical and chemical properties and manufacturing 

conditions of the food being coloured need to be considered in working out how much dye to 

add.  This is highlighted later in Section 2.6.6 by descriptions of possible mechanisms affecting 

coloration in different food systems.  The following describe some of the more general 

considerations.  For the same dye concentration, thicker materials having some degree of 

transparency will appear more intensely coloured than thinner pieces of the same material.  The 

colours of candy starch jellies containing added dyes are darkened and dulled by prolonged 

cooking (meaning dyes should be added towards the end of cooking), and lightened by the 

finishing process of sugar sanding.  For a given food substrate, the strategy of adding a dye 

concentrate at different volumes to change the added dye concentration and therefore the 

intensity of the colour may also cause the colour (hue) itself to change.  The challenge in using 

lakes, rather than dyes, to achieve a specified hue and intensity of colour is that the colouring 

properties of lakes are highly dependent on their conditions of manufacture. 

2.6.5.2. Available resources 

While instrument-based methods are used to produce dye recipes in non-food applications, in 

the food industry blends are developed by technical experts, who will make suitability 

judgments on a visual basis (Francis, 1999).  Because foods are very diverse in their 

formulations and processing conditions, added dyes are exposed to a much broader range of 

physical and chemical environments than those presented by the non-food substrates.  The 

potentially variable impact on the added colorants, and on the colours that result, makes the 

prediction of the final colour difficult, and the application of more ‘universal’ computer colour 

matching tools, which rely on knowing the relationship between colorant concentration and 
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colour, impractical.  Experts are needed to produce custom blends specific to a given food 

application, and blends should always be tested in the intended application.  Furthermore, food 

coloration does not require the same level of accuracy as do the non-food applications, making 

it difficult to justify the time and cost that would be needed to develop a spectral database of 

colorants derived using different foods, for the purposes of computer colour matching (Francis, 

1999).   

As a first step, industry clients can visit on-line colour selector tools such as the Automated 

Color Expert™ by Sensient Technologies, and the Hawkins Watts NZ Colour Selector (Figure 

2.11).  Both provide charts of colours from the Pantone Matching System to assist in shade 

selection.  The Sensient tool gives an assessment of compatibility between desired shade and 

application in response to information entered by the client and is used to generate a 

‘recommended product’ sample request; in deciding the final colouring system the performance 

of the sample is then to be evaluated by the client and subsequently discussed with a technical 

specialist.  Alternatively, details of the desired shade, food product and process are sent directly 

to the specialist, as directed by the Hawkins Watts resource.   
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Although done mainly on a visual basis, the assessment of colour blends for foods by experts 

can also make use of measured colours.  The relative positions of the colours of single colorants 

and their blends on a chromatic (i.e. a*b*) plot can be used to determine which colorants, and 

how much of each, are needed to produce a given blend (Francis, 1999).  Experts can also be 

guided by the generic recipes that are available for producing specific colours. 

     

Figure 2.11  Screenshots of on-line tools available to assist customers with the selection of suitable colorants for 
food and beverage applications.  Left: Steps 1 and 2 only of the Automated Color Expert by Sensient Food Colors 
(Sensient Colors LLC, 2014b).  Right: Sample recommendation from the Colour Selector by Hawkins Watts 
(Hawkins Watts Limited, 2014). 
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2.6.6. Factors affecting coloration in food materials: examples 

2.6.6.1. Stability of colorants to cooking conditions 

The reactivity of the double bonds in a conjugated system of a colorant molecule will have a 

bearing on food colour.  Food systems are a potential source of reducing agents (donors of 

electrons which become oxidised as a result) which can cleave double bonds and lead to loss of 

colour, but the extent to which this occurs can depend on the colorant (Scotter and Castle, 

2004).  Hydrogen is a reducing agent which can be produced from the reaction of tartaric and 

citric acids with the metal of cans.  High temperatures (110°C to 170°C and above) are reached 

in confectionery manufacture which can degrade sugars to highly reactive (reducing) agents.  In 

simulated candy manufacture Amaranth was degraded to naphthionic acid and amino R-salt, 

while Tartrazine and Sunset Yellow were not affected.  However low levels of these 

degradation intermediates (<1%) can already be present in dyes from dye manufacture.  

Synthetic dyes contained in soft drinks can potentially be reduced by ascorbic acid (AA) which 

is added as a dietary antioxidant and vitamin supplement, unless AA can be protected from 

oxidation within the drink by, for example, chelation of metal ion catalysts by sugars.  

Dissolved oxygen, or tungsten light at pH 5.5 can enhance AA oxidation.  The stability of most 

food dyes to reduction by sulfites which are used as food preservatives, ranges from fair to 

excellent, with the exception of Indigo carmine, which has poor stability (Scotter and Castle, 

2004).   

Natural pigments have been the subject of studies investigating the effects of shorter-time 

cooking processes – microwave cooking and extrusion cooking - on food colorants.  The effect 

of microwave cooking on the level of natural pigments appears to depend on the type of food.  

Microwave heating reduced total carotenoid content in papaya puree by up to 57%, and in 

kiwifruit puree loss of chlorophylls a and b was significant (de Ancos et al., 1999).  

Anthocyanin content of strawberries was unchanged, but this may have been due to more 

efficient extraction provided by heat-induced cellular disruption.  The stability of pigments to 

microwave cooking relative to other forms of heating could be due to its shorter duration.  For 
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some green vegetables, levels of pheophytins a and b (the degradation products of chlorophylls 

a and b) were lower after microwaving and steaming, compared with after boiling (Turkmen et 

al., 2006).  Loss of bixin, the major lipid-soluble carotenoid in annatto, was negligible or nil in 

biscuits containing added annatto that were cooked by microwave heating for 60 seconds.  

Losses were higher for conventionally baked cakes and deep fried flour based snacks where 

heating times were longer (Prabhakara Rao et al., 2005).  These latter findings should be viewed 

with some caution, as each cooking regime used a different recipe; the recipes had different 

concentrations of added annatto (82 to 340 mg/kg for the biscuits, 113 to 465 mg/kg for cakes 

and 125 to 513 mg/kg for the deep fried snacks), and for conventional baking and deep frying, 

bixin losses increased with increasing concentration.    

Some natural pigments show good stability to the thermal and physical stresses of extrusion 

cooking, where the maximum temperatures reached can be higher than those in microwave 

cooking.  94% of the norbixin (the water-soluble pigment from annatto) added to rice flour and 

water was retained after extrusion at 155°C, as determined by thin layer chromatography.  

Retention levels of bixin decreased from 74% in annatto before extrusion to 72% and 69% after 

extrusion at 125°C and 155°C respectively.  Degradation products from oil-soluble turmeric 

accounted for 27% and 38% of the colorant at the two temperatures.  Under the same conditions 

beet was the least stable, with only 29% of the original colorant remaining at 155°C (Maga and 

Kim, 1990). 

2.6.6.2. Colorant content and other contributors to colour appearance 

In some cases the level of colorant present in a food is seen in the final appearance of the food.  

Rice flour and water mixtures containing beet that were extruded at 125°C retained 63% of the 

original colorant and visually had a characteristic red colour.  On increasing the extrusion 

temperature to 155°C measured lightness (L*) increased from 64.6 to 76.2 units, yellowness 

(b*) from 3.8 to 8.6 units, and redness (a*) decreased from 19.0 to 10.3 units, in line with a 

visually observed change in colour to a very faded pink (Maga and Kim, 1990). The significant 

decreases found in the levels of chlorophylls a and b in kiwifruit puree after microwave cooking 
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were accompanied by a significant change in instrumentally measured colour (as indicated by 

by ΔE*) relative to the untreated puree.  High correlations (r2 0.89 to 0.96) were found between 

chlorophyll levels and measured chroma (de Ancos et al., 1999). 

At other times colorant level is not necessarily a good indicator of final colour, due to the colour 

contributed by other processes.  Significant changes in the lightness of strawberry puree were 

found for some microwave cooking conditions, but these were not strongly related to 

anthocyanin content.  It is likely that the colour change was the result of browning, given that 

polyphenol oxidase and peroxidase (responsible for enzymic browning in fruit) in strawberry 

showed resistance to inactivation under the same conditions (de Ancos et al., 1999).  The 

change in the greenness of vegetables after cooking could be due to changes in light scattering 

as water replaces intracellular air (Hutchings, 1999), rather than to a change in the level of 

chlorophylls.  Despite a difference in the amount of pigment degradation products in rice flour 

and water extruded with oil-soluble turmeric at 125°C and 155°C (27% and 38% respectively), 

yellow values were unchanged between the two temperatures (at 30.3 and 30.5 units 

respectively) suggesting that degradation products from oil-soluble turmeric were themselves 

coloured (Maga and Kim, 1990).  

2.6.6.3. Colorant-ingredient interactions 

The distribution of colour within a food is an indication of binding or interaction with food 

components, such as polysaccharides, starches and proteins.  These interactions depend on the 

structure and physical characteristics of the components, which determine the potential for 

electrostatic interactions, or for hydrogen and van der Waals bonding.  For proteins, these 

interactions can be enhanced by heating.   Heating at 60oC helped to preserve bands in SDS-

PAGE electrophoresis when proteins were stained with Sunset Yellow and Allura Red, and 

made otherwise very light stains produced at low and high pH conditions more visible 

(Badaruddin et al., 2007; Umer Abdullah et al., 2008).   For Sunset Yellow, heating may have 

enhanced electrostatic binding of the dye with protein via SO3
2- groups on the dye, with heat-

induced denaturation and unfolding of protein molecules exposing more binding sites.  The 
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coloration of reticulated waxy corn starch by the natural red colorants Cochineal Carmine and 

Beet Red could be explained by electrostatic interactions between the positively-charged 

pigment compounds and negatively-charged phosphoric groups in the starch (Berset et al., 

1995).  Anionic (negatively-charged) polysaccharides (carrageenans, pectins, alginic acid) were 

found to be ineffective removers of dyes from solutions mimicking dyehouse effluent, owing to 

electrostatic repulsion between the polysaccharides and the anionic dye molecules.  Although 

non-ionic, the galactomannans locust bean gum, guar gum and cassia gum performed very well 

as effluent dye removers.  Strong chain interactions between galactomannan molecules are 

prevented by their branched galactose residues, meaning galactomannans are available for 

hydrogen bonding with dyes (Blackburn, 2004).  The non-ionic starch, by comparison, was an 

ineffective effluent dye remover, as temperatures much higher than the one used (20°C) would 

have been needed to break the inter- and intra- molecular hydrogen bonding between amylose 

and amylopectin chains in starch for these to have become available for bonding with dye 

molecules.    

The binding of dyes to components can be enhanced by the addition of other agents.  In textile 

dyeing, mordants are used to increase the affinity of dyes for the substrate.  Metal salt-based 

mordants form complexes with dyes, and tannins increase adsorptivity via hydrogen bonding 

and van der Waals forces (Bechtold et al., 2007).  The addition of positively-charged 

electrolytes may overcome the electrostatic repulsion between negatively-charged dye and 

polysaccharide molecules in dye effluent, but this will depend on the strength of these charges 

(Blackburn, 2004). 

For starches, another property that could influence dye binding is the size of the starch grains. 

Native corn, native wheat and reticulated waxy corn starches retained higher levels of Cochineal 

Carmine and Beet Red (as determined from the absorbance of the supernatant), than did potato 

starch, yet potato starch was as strongly coloured as the other starches.  The was possibly due to 

the saturation of colorant binding sites on the potato starch grains, given the larger size of these 
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grains and their lower specific area (total surface area per unit mass, or per unit volume (Berset 

et al., 1995).   

2.7. The effects of changes in substrate on the modelling and 

prediction of colour and appearance  

In this thesis, an understanding of how changes in the colour appearance of materials are related 

to changes in the processing or physical characteristics of the material is of prime interest.  In 

order for the 3D colour food printer to be able to customise outputs it needs to be able to 

account for changes in the substrate.  The focus in this section therefore, is on effects other than 

those of added colorants which have been covered earlier in this review.   

The degree of light scattering from a material can be altered by changes in the physical 

properties of the material which, in turn, can affect the perceived intensity of its colour.  Such 

changes are brought about by processing or by deliberate manipulations, or they represent the 

(usual) variations within a product range.  The decrease in scatter causing visual translucency to 

develop in tomato pericarp in cut fruits with storage time was noted earlier (Section 2.6.2.3).   

The effects of light scattering from other materials have been quantified and it has been found, 

for example, that lightness of oil-in-water emulsions increases with increasing droplet 

concentration and with decreasing droplet size, and decreases the intensity of the colour from 

the added dye (Chantrapornchai et al., 1998); increasing the surface roughness of chocolate 

samples (by casting onto sandpaper of decreasing grit size) decreases gloss significantly and 

exponentially, while values for lightness and for whiteness index (as determined from image 

analysis) decreased significantly and linearly (Briones et al., 2006).  Fabrics made of finer fibres 

are lighter when dyed with the same amount of dye as fabrics made from coarser fibres (Li et 

al., 2009).  The relative contributions of bulk and surface reflectance, with increasing dye 

concentration, to measured reflectance differ between fibres of different denier.  Coarser fibres 

have larger diameter providing a longer distance for light to travel meaning more light is 

absorbed, but as dye concentration increases these fibres display decreasing colour efficiency as 
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the contribution of surface reflectance increases; the lower surface curvature of larger diameter 

fibres results in smoother surfaces compared with finer fibres (Li et al., 2009).  The K/S ratio 

calculated from the reflectance at selected wavelengths of injected-moulded pigmented plastics 

for automotive parts which differed in their measured gloss, decreased with decreasing gloss; 

the scattering coefficient increased as the roughness increased (Ariño et al., 2005).  In these 

studies, the only changes made to the samples were to characteristics affecting scattering, such 

as surface roughness and droplet size and concentration; no other changes, including changes to 

dye concentration, composition and processing, were made.   

A number of studies have gone further than to simply characterise the relationship between 

changes in light scattering and perceived or measured colour, and have developed mathematical 

models that show the potential to predict colour from physical measures of surface texture and 

droplet characteristics.  Such models might enable the appearance of food emulsions to be 

optimised (McClements et al., 1998), increase the performance and efficiency of dye 

formulations for textile dyeing (Li et al., 2009), and predict the impact of substrate and printer 

parameters on gloss in xerographic printing (Dalal and Natale–Hoffman, 1999).  Some of these 

models are based on adaptations to the Kubelka-Munk (K-M) equation.  In the prediction of 

food emulsion colour, K-M absorption and scattering coefficients (K and S respectively) were 

expressed in terms of the absorption and scattering cross-sections of the droplets, and their 

asymmetry factor, which were calculated by applying diffuse scattering theory (McClements et 

al., 1998).  Predicted and measured reflectance of emulsions that were based on the same 

concentrations of red food dye, mean droplet size, and droplet concentrations were in good 

agreement between 380 nm to 600 nm, however predictions overestimated reflectance at higher 

wavelengths.  In the prediction of fabric depth of shade, the ‘colour efficiency’ (equivalent to 

the dye coefficient relating dye concentration to absorption and scatter) was expressed 

collectively in terms of fibre diameter, geometric roughness of the fabric, and a dye parameter 

(Li et al., 2009).  In both cases, surface effects were accounted for – in the emulsions case, 

measured reflectance was corrected for the effects of the cuvette wall (McClements et al., 
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1998), while in the fabric study surface reflectance constants for each fibre diameter x dye 

combination were incorporated into the predictions together with predictions of bulk reflectance 

using K-M Theory (Li et al., 2009).      

The distinction between surface and sub-surface effects is also a feature of the model of gloss 

effects in xerographic printing developed by Dalal and Natale–Hoffman (1999).  In this model, 

measured reflectance is the sum of the portion of total front surface reflectance captured by the 

detector (with the amount captured in turn depending on both gloss, and on the measurement 

geometry), and sub-surface ‘intrinsic reflection’.  Intrinsic reflection appears to be constant for a 

given colour, and while not directly measurable, can be derived as the difference between 

specular included measurements (capturing all light from the sample) and the portion of total 

front surface reflectance in this measurement mode, which is calculated from the Fresnel 

equations using normal angle of incidence and refractive index.  The portion of total front 

surface reflectance captured by the detector for use in the predictive model of measured 

reflectance, for each measurement geometry, was derived using a set of black samples printed 

on different coated and uncoated papers, and expressed for each geometry as a function of gloss.  

This model allows measured colour of papers of different colour and gloss to be predicted from 

the gloss and intrinsic reflection values.  The approach used by Dalal and Natale–Hoffman 

(1999) was used and adapted by Ariño et al. (2005) to model the effect of both gloss and 

different surface textures on the colour of injection-molded plastics for the automotive industry.  

Included in this latter study were physical measures of topography (as well as gloss) of 

injection-molded plaques produced with smooth (glossy), fine and coarse surface textures, and 

the calculation of absorption/scatter (K-M) ratios based on measured reflectance predicted from 

the model. 
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2.7.1. Alternative model for print, based on Principal Components 

Analysis (PCA) 

Having the capability to predict the effect of printing substrate (paper) properties on colour 

outputs means that time and effort can be saved in not having to profile a printer every time the 

substrate is changed.  As stated earlier (Section 2.5.2), profiles are most often custom generated 

(Sharma, 2003).  For printers, a custom profile will be specific to the printer, paper and ink that 

were used to build the profile; changes to any of these require the profile to be reconstructed.  

Shaw et al. (2003) investigated and compared several methods, including one based on K-M 

Theory, for their ability to predict colour on a test substrate, based on the profile for a reference 

substrate, and a small amount of information about the test substrate.  Of these, an empirical 

method based on Principal Components Analysis (PCA) gave the lowest colour error - the 

difference between actual and predicted colour - compared to no recalibration.  In PCA 

multivariate data are ‘collapsed’ into orthogonal vectors (or dimensions) which each 

progressively account for more of the variability in the original data.  The reflectance data for a 

large number of colour patches on the reference substrate were able to be ‘expressed’ in terms 

of 10 basis vectors.  Based on the measured reflectance of the same set of patches on both the 

reference and test substrates, weights for each spectrum were determined corresponding to the 

10 basis vectors.  A linear transformation matrix was used to map the reference substrate PCA 

weights to the test substrate PCA weights.  The test substrate PCA weights were then converted 

back to reflectance spectra. 
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Chapter Three: Literature Review, Part 2 – Customising foods 

using 3D colour printing 

Part 1 of this Review dealt with the theory and application of coloration techniques used in both 

food and non-food industries, and which are relevant to the goal of developing a predictive 

coloration algorithm for a novel 3D colour food printer.  Attention now turns, in Part 2, to the 

specific context of this research, namely the areas of customisation, 3D printing and 3D 

coloration.  As with Part 1, contributions are drawn from various industries, including food.   

Part 2 ends with conclusions from the entire Review, leading to the aims and objectives of the 

thesis. 

3.1. The concept of customisation 

Mass production of goods has been the traditional way of meeting demand in mass consumer 

markets, and has its origin in the early 1900s in the Ford car production lines.  Mass production 

lines produce units which are the same.  Originally devised to meet skilled labour shortages 

(Day, 2011), mass production is an efficient and therefore cost-effective means of production 

(Boland, 2006).  

Customisation refers to being able to meet the needs of an individual customer.  Customisation 

recognises the increasing importance of meeting the preferences and needs of the individual, 

and in affording the individual the power to make their own choices; the ‘final customer’ is 

involved ‘in the design of a product prior to manufacture’ (Boland, 2006).  On a larger scale, a 

system of mass customisation can meet the individual needs of many customers.  Paradoxically, 

mass customisation can also be an efficient and cost-effective means of production.  For large 

numbers of customers, the individual needs of each are able to be met by assembling a relatively 

small range of component parts in a seemingly endless number of combinations (Boland, 2006), 

rather than by a range of mass-produced finished units that would require storage.  Mass 

production still features in mass customisation, in the prefabrication of component parts for later 

assembly. 
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3.2. 3D printing technologies 

3D printing is a digitally controlled process of building objects layer-by-layer.  Objects are built 

from typically one only of a variety of possible materials.  The successive layers of material 

correspond to successive cross-sections from a digital image file representing the object.  

Traditionally, 3D printing has been used for the purpose of rapid prototyping, but has been 

developing as a manufacturing technology in its own right; in this context ‘3D printing’ is also 

referred to as ‘additive manufacturing’ (AM) or ‘additive layer manufacturing’ (ALM), which 

distinguishes it from subtractive methods whereby objects are shaped by the removal of material 

from a starting block, using traditional machining techniques such as cutting or grinding. 

Available 3D printing technologies differ in their layering process, and in the materials to which 

they are applied.  Examples include: 

3.2.1. Fused deposition modelling, or extrusion deposition 

A coil of plastic filament or metal wire is progressively unwound and fed into an extrusion 

nozzle, which heats and extrudes the material and controls the flow (Wikipedia, 2014a).  The 

nozzle can moved horizontally across a platen so that layers of material can be formed.  The 

platen can be moved vertically to allow successive layers to be built.  The material hardens 

immediately after extrusion, creating a self-supporting structure. 

3.2.2. Granular materials binding 

Objects are built from layers of powder or granules.  Within each layer, regions corresponding 

to the relevant cross-section of the object are selectively fused using laser sintering (for plastic, 

metal, ceramic and glass powders) (Wikipedia, 2014b), inkjet binding (for plaster or resins) or 

heated air (for granulated sugar) (The CandyFab Project, 2014).  Melting, using lasers or 

electron beams, can be used in place of fusing to create denser and stronger materials from 

metal powders (Wikipedia, 2011).  As each layer is finished, the printing platform is lowered 
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before the next layer is deposited.  Unfused powder acts as a support for the growing structure, 

and is later removed.   

3.2.3. Laminated object manufacturing 

Sheets of paper (Mcor Technologies Ltd., 2013), plastic or metal (Wikipedia, 2011) are 

selectively cut to shape (following the outlines of each cross-section) and glued together.  

Knives or lasers are used for cutting (Wikipedia, 2011).  Support during the build is provided by 

the un-glued material.    

3.2.4. Advantages and applications 

As a manufacturing process, 3D printing offers a number of distinct advantages.  Objects can be 

produced without the use of a pre-cast mould, because the printing process by itself is able to 

(re)produce accurately any shape and to handle complex geometries.  Changes in object design 

are managed much more easily with 3D printing, and without the need to machine new moulds.  

3D printing brings together the design and manufacturing processes, but at the same time, the 

storage and portability of design files means that objects can be produced as and when needed. 

In a home use setting with a desktop 3D printing unit, these features mean that printing can be a 

single person, one-stop operation.  Alternatively, services are available which will 3D print 

objects to order from files sent by customers.  Both situations could allow for mass 

customisation of a single product type to occur.  For mobile phone cases, companies provide 

either web-based customisation software as well as a printing service (Vance, 2012), or the 

design files for the customer to do the printing themselves (BBC News, 2013).  In industry, 

parts can be printed locally when needed, rather than being manufactured offshore.  3D printing 

can be scaled up to such an extent as to produce buildings from concrete (Day, 2011).  

3D printing has been applied to a range of novel materials to create new versions of existing 

products which are intended to be better performing, and less time- and labour- intensive to 

produce than the conventional items.  Examples include: bicycles built from high-strength nylon 

powder, which are lightweight, all-in-one structures, custom built for the rider and therefore 
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requiring no adjustment (Airbus Group Inc., 2011); custom 3D-printed horseshoes offering a 

lightweight alternative to traditional shoes and therefore the opportunity to improve racing times 

(CSIRO Australia, 2013); facial prostheses printed from starch powder which are filled with 

silicone post printing (Wainwright, 2013).  Another potential application of the technology is 

the printing of tissue from living cells, for the purposes of transplantation or repair.  Potentially 

the earliest success will be with the printing of cartilage due to it lacking internal structure and 

vascularisation (blood supply) (Palmer and Danzico, 2011).     

3.3. Customisation of food 

(Mass) customisation to some extent, already occurs in the food industry, as seen in the 

assembly of fast food items (such as pizzas and sandwiches) to individual orders, and in the hot 

beverage vending machines which house a range of drink components which are selectively 

blended and dispensed to order (Boland et al., 2010).  Fully customised food outputs are 

possible if specifications for individual health needs can also be met, along with those for 

sensory outcomes.  Not only do consumers show a growing interest in, and awareness of, the 

link between the different foods they consume and their health, the fulfilment of health needs 

can be more important than meeting sensory needs (Boland, 2006).  Nutrigenomics is an area of 

research that aims to identify what these health needs are on a genetic and epigenetic level; 

certain foods or food components might have to be avoided or consumed in abundance by 

individuals of certain genotypes because of the effects of these components on their unique gene 

expression, and because of the (in)ability of their unique metabolism to accommodate these 

components. 

US Patent 7,762,181 B2 (Boland et al., 2010) describes a system, named POSIFoods™ (Point 

Of Sale Individualised Foods), by which such fully customised food outputs could be realised.  

The system takes the form of a vending machine which can formulate and dispense, on-the-spot, 

a customised food or beverage product.  Like conventional vending machines, the POSIFoods™ 

system serves food of a particular type, for example smoothies, ice creams, nutritional bars, or 
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pizza.  Unlike conventional machines however the system will be able to provide fully 

customised outputs on the basis of stored customer profile data (nutritional and health needs and 

sensory preferences), recipes and expert nutritional guidelines, and stored ingredients allowing 

the food items to be made from scratch.  The system uses algorithms to ensure that outputs are 

compatible with customer needs, including the need for safe foods by either keeping certain 

ingredients within safe limits, or excluding them altogether.  Based on the above information 

menu choices are presented to the customer after they have entered a personal identification 

number, from which they make their selection.  Once a choice has been made, select ingredients 

are dispensed, mixed and processed (i.e. cooked and formed, as necessary) before the serving is 

dispensed from the machine.  There is flexibility and scope for the customer to refine the 

formulation, within limits, depending on their specific needs at the time of consumption. 

3.4. 3D food printing 

As with ‘traditional’ 3D printing, 3D food printing is a digitally controlled process, beginning 

with a data file containing a CAD design or drawing or image of the object, and is designed to 

provide customised outputs, on demand, with most technologies on offer available as counter-

top models and using variations on layer-by-layer extrusion deposition.  As with non-food 3D 

printers, designs and recipes are in digital file format, and 3D printing templates can be saved, 

re-used and shared as open source hardware and software through online communities, forums 

and social networks, or as mobile ‘phone apps. 

Where food printers differ from each other, are in their main purpose of printing, their build 

material, their target consumers, whether they are capable of cooking the food during printing, 

and also in their stage of development (Table 3.1).  Some print conventional food items (such as 

chocolate and pizza), or conventional ingredients (e.g. sugar) into new shapes and forms, though 

sugar is used primarily as a safe and inexpensive material for model building rather than as an 

edible ingredient in CandyFab open source 3D printing (Cohen et al., 2009).  Other printers 

allow for the creation of new recipes and formulations from a set of base ingredients, and for the 
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control of (any or all of) shape, flavour, texture and nutritional value of the food through the 

control of the mixing, layering and cooking processes.  With ingredients stored in separate 

canisters and combined only when needed, 3D printing is particularly suited to long-distance 

space travel; NASA is funding the development of a 3D printer to supply the needs of 

astronauts during such missions with cartridges of powdered ingredients being designed to last 

30 years.  These printers need to be able to work in zero-gravity; results are pending for a Zero-

G 3D (non-food) printing demonstration by NASA in September 2014 (NASA, 2014).  The 

printing of artificial raw meat from ‘bio-ink’ containing live stem cells is being developed as an 

alternative to slaughter.  Although a prototype meat has been produced, it is not yet ready for 

consumption, and in the longer term 3D meat printing will face issues with production scale-up 

and consumer acceptability (Moskvitch, 2013). 

Between them available 3D food printers can meet several needs.  Printers designed for the 

main purpose of printing conventional foods in new shapes fulfil mainly an aesthetic need, 

bypassing the more fundamental need for health and well-being, or ‘safety’ in Maslow’s 

hierarchy.  Due to the digital nature of object design enabling the sharing of ideas, it can be 

argued that printers (both food and non-food) meet the need for belonging and esteem (again on 

Maslow’s hierarchy) which lie above the need for safety.  3D food printers capable of producing 

outputs that are fully customised for nutritional needs and sensory preferences are the only 

devices that will fulfil all needs, from safety upwards.   

3.4.1. 3D food printing: inputs and outputs 

As with non-food 3D printing, suitable build materials for 3D food printing include those that 

can be fused to form 3D structures, such as sugar (for granular materials binding), or that can be 

extruded from a nozzle (for freeform fabrication), and which can also be supported during the 

build to maintain the printed shape.  In freeform fabrication this support is provided by the 

solidifying of each layer before the next is deposited, or by the food composition itself having 

sufficient rigidity post extrusion to be self-supporting (Yang et al., 2001).  3D printed foods that 

undergo subsequent cooking need to retain their shape, and to have satisfactory texture and 
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flavour.  Foods such as chocolate, frosting, and processed cheese can be extruded ‘as is’ or after 

heating, and solidify upon cooling (Lipton et al., 2010).  In other cases, food compositions 

should include a liquid ingredient for flowability (with an optional heating element situated at 

nozzle to control fluidity) (Yang et al., 2001), and ingredients which enhance body and 

viscosity, for example starches, sugars (Yang et al., 2001) and edible natural polymer gels 

(Yang et al., 2001; Cohen et al., 2009) so that the food can be self-supporting during printing.  

‘Conventional foods’ (e.g. cookie dough) require changes to ingredient ratios, or processing to a 

paste (turkey and seafood purees) and the inclusion of additives to retain rheological properties, 

so that they can be both extruded, and retain their printed form when cooked by conventional 

methods (baking, deep-frying and sous-vide).  The printed foods cooked by the latter two 

methods (scallop and turkey respectively) largely retained their shape and were judged have 

acceptable flavour and texture by chefs (Lipton et al., 2010).   

The storage and on-demand combining of ingredients make 3D printers devices of convenience 

and creativity.  In reality, the potential for new and unlimited ingredient combinations or for the 

recreation of natural food matrices and structures, in the form of a ‘universal’ 3D food printer, is 

constrained by the impractical and uneconomical housing of every possible ingredient that 

would be needed.  Instead, a more focused and practical approach to printing is needed, in either 

its input or output.  An example of a more focused output is to create novel foods for 

personalised nutrition, such as the printing of nutrient-enriched soft foods for dysphagia 

sufferers (Hadhazy, 2013), or the printing of only one type or class of food; notably 3D printers 

at the prototype or retail unit stages of development are designed to print one type (chocolate, 

sugar), or class of related foods (wheat-based bakery and pasta products), while those designed 

for creativity have remained (largely) as concepts.  Alternatively, a limited number of input base 

materials could be used to produce a (wider) range of outputs, such as having three proteins, 

three carbohydrates, etc.  This approach requires an understanding of how to combine inputs to 

produce the outputs.  These principles have been applied by Cohen et al. (2009) in a proof of 

concept where a range of food textures could be simulated using mixtures of only xanthan gum 
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and gelatin in different relative proportions (Table 3.1) and printed using the syringe-based 

deposition tool in the open source Fab@Home printer.  And, owing to the neutral flavour of the 

two hydrocolloids, there is scope also for adding a range of flavours. 
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3.5. Baked goods as model substrates for the development of 

printable food pastes 

The question is then raised of the type of substrate or class of substrates that would be suitable 

for the 3D colour food printer, taking into account developments in printable foods to date, and 

the outputs the printer aims to provide.  Work on printable foods discussed in the previous 

section has focused largely on producing a range of satisfactory textures (for both real foods and 

in model systems) for minimal (ingredient) input or on meeting (personalised) nutritional needs, 

whereas the 3D colour food printer is being designed to do both, and simultaneously where 

needed.  Flour-based bakery products, another category of foods that are printable by current 

prototype printers or retail units, could be tailored to meet both nutritional and sensory needs.  

For a given product in this category (for example bread, cakes or cookies) not only can a range 

of textures be produced for different combinations of the same basic ingredients, the nature of 

these ingredients mean they are often the target of substitutions designed to improve the 

nutritional profile of the product.  This, together with the availability and convenience of rapid 

baking technologies, points to baked goods being suitable candidate substrates for the 3D colour 

food printer - which aims to produce customisable food outputs, and rapidly - or at the very 

least, being the type of food on which the substrate can be modelled.                

The following sections discuss in some detail the features of a selected baked product and its 

preparation that are relevant to 3D food printing.  The discussion focuses on cooked cake batters 

more than it does on bread and biscuit or cookie dough, as dough in its raw form might be less 

easy for current, early generation syringe-based printers to handle.  Issues concerning the 

storage or limiting the number of base ingredients will not be addressed here; rather it is the 

relationships between ingredients, processing and product characteristics that is being explored.  

The level of detail that will be presented is justified in that there is a need to understand the 

substrate environment into which dyes will be mixed and against which the final colours will be 

perceived.   
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3.5.1. Description of cake characteristics and the role of ingredients 

and processing 

A cake is a baked batter in which the basic ingredients are commonly wheat flour, sugar, eggs, 

shortening, leavening agents, salt, non-fat dry milk, flavours and water, in varying proportions 

across different ‘standard’ or ‘conventional’ formulations.  The terms ‘standard’ or 

‘conventional’ have been adopted here to distinguish usual cake formulations from their 

equivalent counterparts in which major ingredients have been replaced with alternatives, as 

discussed in later sections.  Before baking the batter is a complex emulsion of dispersed air 

bubbles and fat particles or oil droplets (the discontinuous phase) in a continuous aqueous sugar 

phase (Sahi, 2008).  Also dispersed or suspended within the emulsion are flour particles, starch 

granules and cell wall fragments.  In low-fat or fat-free formulations (such as Angel food cake) 

the emulsion takes the form of a conventional liquid foam in which air bubbles are surrounded 

directly by the aqueous phase.  In high-fat batters (such as pound cake) much of the air has 

become trapped within the emulsified fat particles through mechanical aeration (Sahi, 2008).  

After baking the batter becomes a semi-solid, porous, soft structure (Sahin, 2008), described as 

a sponge (Figoni, 2008), in which gas cell walls have fractured and set giving an open-celled 

elastomeric solid foam termed a crumb structure containing interconnected cells.   

High quality cakes are tender due to a high volume and a fine and uniform crumb, and have 

good tolerance to staling, giving cakes a long shelf life, as well as having good colour and 

flavour.  The keys to achieving desirable volume and texture are: the incorporation of fine, 

stabilised and uniformly distributed air and gas bubbles at the batter mixing stage together with 

sufficient viscosity in the batter to prevent the bubbles from coalescing and to slow their rise to 

the surface which would allow air to escape (Gomez, 2008; Sahin, 2008), and the timing of the 

leavening and structure formation processes that occur during baking.  For example, low 

volumes may result if structure development occurs either too early, ahead of leavening, or too 

late, when the structure is not yet able to support the leavening that has taken place, and 

collapses (Francis, 1999).  Another example of striking the right balance in baking is the 
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inclusion of tenderising ingredients to offset the development of toughness from structure 

formation (Figoni, 2008). 

3.5.1.1. From batter to cake:  The effects of processing (mixing and heating) 

The processing of cake batter begins with mixing.  Mechanical mixing of the batter serves 

several purposes: it incorporates air; as it proceeds it breaks down the initially large bubbles of 

air and CO2 (from leavening agents activated in the presence of water), into finer and more 

evenly distributed bubbles; it helps to dissolve or hydrate ingredients so that they can thicken 

the batter so that it can better retain the bubbles.  Although more gas is generated during baking 

it is the bubbles existing already in the batter that will be inflated and expanded by these gases.      

The changes to the batter that occur during baking are the result simultaneous heat transfer and 

mass transfer (the movement of water) brought about by the high temperatures used.   In a 

conventional baking oven the heat reaching the baking pan and product surface is supplied by a 

combination of radiant heat from oven walls, and the movement of hot air from inside the oven 

by natural or fan-assisted convection.  Driven by temperature gradients, heat is transferred to, 

and within the product by mainly conductive heat transfer (molecular transfer without material 

movement) and also by convection (though movement of water) (Zhou and Therdthai, 2008).  

Pressure gradients created by the heating of the outer batter layers and the resulting increase in 

partial water vapour pressure inside pores within the batter, drives vapour towards the centre, 

where it condenses due to the cooler temperatures at the centre.  In turn, a liquid gradient is 

created driving water though the pores back to the batter surface, and evaporates to the air 

surrounding the surface by mass convection owing to concentration gradients between the 

surface and air (Zhou and Therdthai, 2008).  Because the movement of water towards the batter 

surface is slower than that towards the centre, the crumb can become wetter than batter at the 

centre (Zhou and Therdthai, 2008).  Mass transfer is enhanced by the increasing porosity of the 

product as it sets to a sponge-type structure.       
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The combination of heat and mass transfer brings about the reactions leading to structure 

development, such as the melting or further dissolution of ingredients, the generation and/or 

expansion of leavening gases (air, steam and carbon dioxide), the subsequent gelatinisation of 

starches and coagulation of proteins which set the expanded structure, and crust formation and 

browning.   

In the early stages of baking, the skin that forms on the batter surface is not strong enough to 

retard volume expansion allowing expansion and structure setting to progress.  Surface drying 

after moisture has evaporated, together with heat from the oven, causes a hard, dry crust to form 

in its place.  Once evaporative cooling slows down and the surface temperature rises, the 

initially pale crust starts to develop colour and flavour due to caramelisation and Maillard 

browning.  More detail on caramelisation and Maillard browning is given in Section 3.5.5.2.2 

below. 

3.5.1.2. Role of ingredients  

The contributions of different ingredients to the development of structure, colour and flavour 

across different types of ‘conventional’ cake formulations are detailed in Table 3.2.  

‘Conventional’ cake formulations differ in the relative proportions of their ingredients, and the 

ways in which they are processed, which will in turn produce different variations on cake 

structure. 
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3.5.2. The effect of formulation and processing changes 

Given the important roles of the different ingredients described above in the formation of 

structure, colour and flavour in cakes, it follows that changing their relative proportions and the 

manner in which they are processed will produce different product outcomes.  This is already 

evident in the variety of textures that result from different ‘conventional’ cake recipes, which 

for example may or may not contain fat, or differ in their degree of mechanical aeration at the 

batter stage.  Changes to recipes can also take the form of full or partial substitution of 

ingredients in a standard formulation with alternatives in order to modify the nutritional profile 

of the product (the challenge here being to make the substitution for as little change in volume 

or texture as is possible), or the inclusion of functional additives in small amounts to improve 

textures, where needed.  Furthermore, as the behaviour of the ingredients during baking have so 

far been described for conventional baking oven conditions, it would be expected that other 

baking technologies, such as rapid baking, with different modes of heating will have their own 

effects on product quality. 

The facility to make rapid, called-for changes to a given product formulation to achieve desired 

textural and/or nutritional profiles will be one of the essential features of the 3D colour food 

printer, where the characteristics of the printing substrate itself will be able to be customised, in 

addition to the customisation of its appearance through the 3D rendering of colour images.  

Continuing this discussion using cake as a model system for the 3D colour food printing 

substrate proves useful here because, not only are the effects of conventional formulations and 

processing conditions well understood, cakes and related products have been the subject of 

numerous studies investigating the effects of alternative ingredients and baking environments.  

This has been for reasons of enhancing nutritional value and convenience, in line with what the 

printer aims to provide. 

3.5.2.1. To alter, improve, or correct volume and texture 

Although this discussion so far has focused on aeration of cake batters to achieve light textures 

and a fine and uniform crumb, it might also be desirable to have cakes that are deliberately 
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denser in texture.  Dense textures are achieved for (non-cake like) muffin formulations which 

are not beaten, but rather blended lightly, just until the dry ingredients are moistened by the 

liquid ingredients, including liquid fat (Figoni, 2008).  Fudge-type brownies, denser and moister 

than their cake-type counterparts, have relatively high sugar to flour content in batter.  The 

sugar competes with starch for available water, interfering with, and limiting the extent of starch 

gelatinisation; the structure is therefore unable to support the leavening that has taken place, and 

collapses after baking.  Likewise, unintentional low cake volumes can be corrected by adjusting 

sugar and water levels (Thomas and Atwell, 1999).  The replacement of solid fat ingredients 

(such as shortening and butter) with liquid oil is another way to achieving a dense and coarse 

crumb, though it will be moist and tender (Figoni, 2008).  Oils do not contribute to leavening, 

because it lacks air and water, but is able to coat structure-forming ingredients as early as during 

the batter mixing stage, without first having to melt. 

Textures can be adjusted or improved by the use of additives in small amounts.  Examples are 

pre-gelatinised (cold-water swelling) starches, and hydrocolloids or gums (which are high 

molecular weight, water soluble polysaccharides), that bind water and increase batter viscosity 

and bubble stabilisation.  The binding of moisture also improves product tenderness and shelf 

life.  Hydrocolloids also increase the water absorption capacity of flour (Sahin, 2008) and 

modify the pasting properties of starch, delaying the ‘setting’ of starch granules.  Emulsifiers, 

such as mono- and di- glycerides and lecithin, make their contribution by keeping fat and oil 

droplets dispersed in batter, and by strengthening the protein films around expanding air and gas 

bubbles.  Emulsifiers can be added as a separate ingredient, but it is more typical to use 

ingredients that contain natural (butter, egg yolk) or added emulsifiers (margarine and solid and 

liquid shortenings) (Figoni, 2008).  The use of liquid shortenings containing emulsifiers allows 

cake ingredients to be beaten together in a single step process.    

3.5.2.2. To alter nutritional profiles of formulations 

Changes to cake formulations to improve their nutritional profile, or to meet specific dietary 

needs or restrictions, will invariably alter final cake characteristics because the targets of these 
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changes are the very ingredients that are involved in leavening, structure formation and in 

colour and flavour development.  Examples of such changes included the partial or full 

replacement of fat and/or sugar to reduce energy content, the substitution of wheat flour with 

gluten-free alternatives, and the use of dairy- and egg- free ingredients.  It is clear therefore that 

a technological challenge is presented by modifying formulations to give more nutritionally 

beneficial product profiles that are also acceptable to the consumer.  By way of example, 

discussion here focuses on the replacement of fat and sugar.         

3.5.2.2.1. Replacement of fat and sugar 

High fat and sugar intakes, which increase dietary energy consumption, are implicated as causes 

of obesity, and also displace more beneficial protein- and carbohydrate- rich foods such as 

cereals and legumes from the diet.  High intakes of fat and sugar are due to a combination of 

high energy density (in the case of fat), the presence of fat and sugar in relatively high 

proportions in foods such as cakes, and the appealing tastes, flavours and textures that fat and 

sugar contribute to foods.  Other reasons to target fat and sugar for replacement in baked goods 

include the increased risk of cardiovascular disease from high fat intakes per se, or from high 

intakes of saturated fats that are part of high total intakes, and the reduced ability of individuals 

with diabetes for the cellular uptake of blood glucose.  Sugars can also promote the 

development of tooth decay (Gomez, 2008).   

Strategies to lower the energy contributions from fat and sugar in foods, and yet retain 

favourable textural characteristics, include: the replacement of sugars by alternative bulking 

agents which are either absorbed slowly and incompletely (such as polyols) or are metabolised 

to a limited extent (such as oligosaccharides), and replacing fat ingredients with those having a 

high capacity to absorb water (such as maltodextrin, fibres, gums and cellulose), thereby 

diluting energy content and imparting useful gel-like properties for structural purposes.  The 

oligosaccharides polydextrose and inulin double as fat replacers because of their ability also to 

absorb large amounts of water, though inulin is used mainly as a fat replacer (Gomez, 2008).  

Compared with sucrose, polyols and oligosaccharides do not promote tooth decay and are better 
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tolerated by diabetics but are lower in sweetness (thus requiring the addition of intense 

sweeteners such as saccharin and aspartame), and their excessive consumption can have a 

laxative effect.   

Fats can also be replaced by the use of small, spherical, protein-based insoluble micro-particles 

mimicking their mouthfeel because the particles are perceived collectively as smooth and 

creamy (Gomez, 2008).  The effects of fat on health could also be mitigated by the use of oils 

containing poly- or mono- unsaturated fatty acids in place of saturated fats, which comes with 

the added benefit of producing moister and tender cakes, though the grain tends to be coarser 

(Gomez, 2008).     

Details of some studies investigating the effects of fat and/or sugar replacement on final cake 

characteristics is given in Table 3.3.  Not all bulking agents have been found to have the same 

effect in sugar replacement.  Polyols (which are hydrogenated sugars) have been found to differ 

in their effect on the specific volume of sugar-free sponge cakes (Ronda et al., 2005).  Findings 

on the effects of polydextrose vary with respect to crumb structure in high-ratio cakes, with the 

population of small, sphere-like cells in the crumb either increasing (Hicsasmaz et al., 2003) or 

decreasing (Kocer et al., 2007) with increasing sugar substitution level, despite relative cake 

height and porosity being decreased, and bulk density increased in both studies.  Polydextrose 

raises starch gelatinisation temperatures, but not protein denaturation temperatures (Hicsasmaz 

et al., 2003).  On the one hand, the formation of the protein matrix at the crust lowers the rate of 

heat transfer, and therefore reduces the build-up of vapour pressure required to expand the 

bubbles (Hicsasmaz et al., 2003); on the other hand, bubbles in the crumb are able to be 

expanded by the moisture and vapour pressure that is prevented from escaping by the 

developing crust (Kocer et al., 2007).  Replacement of fat in reduced-fat cakes by maltodextrin, 

a starch derivative, was more effective when substitution was partial rather than full, or in the 

presence of an emulsifier (Lakshminarayan et al., 2006).  Sponge cakes in which up to 70% of 

the oil in the control formulation was replaced by inulin (a collection of fructose polymers 

which in this study had an average chain length of between eight and 12) did not differ 
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significantly to the control cakes in selected sensory attributes, despite changes in crumb 

structure related to inadequate bubble expansion in batter (similar to the findings of (Hicsasmaz 

et al., 2003)) and in cake texture due in part to the lack of the lubricating effect of oil 

(Rodríguez García et al., 2012).  Full replacement of fat by inulin resulted in significantly less 

acceptable cakes relative to the control, in line with the results from texture measurements.       

The replacement of sugar or fat with carbohydrate-based alternatives such as the ones described 

above would be expected also to have an effect on the colours of the cakes themselves.  As well 

as their contributions to structure and texture development, carbohydrates are involved in two 

types of non-enzymatic browning reactions: Maillard browning, which is the reaction of 

reducing carbohydrates and amino acids, and caramelisation, which is the breakdown of sugars 

in the presence of high heat.  For 3D colour food printing, the background colour of the printing 

substrate needs to be taken into account when computing dye quantities needed to render 

colours in 3D, and these same colours might be needed across substrates that differ in their 

‘native’ colour.  For 3D coloration, any changes in crumb colour that occur with carbohydrate 

substitutions are of the most interest.  Browning of the crust might either be a desirable feature 

to retain in the printed food (and could introduce an element of surprise in that rendered 3D 

colours are ‘hidden’ before eating), or a lighter crust colour may be preferred so that rendered 

colours can also be seen on the surface.  

While sucrose (‘sugar’) is itself not a reducing sugar, it does undergo caramelisation, during 

which it breaks down into glucose and fructose. Glucose and fructose themselves undergo 

caramelisation, and along with starch (a glucose polymer), are also reducing sugars, though the 

Maillard reaction occurs more slowly with fructose than it does with glucose (Damodaran et al., 

2008).  Carbohydrate-based fat- and sugar- replacers that are a source of reducing sugars 

include: starch derivatives such as maltodextrin and dextrin, and the fructose polymers inulin 

and its shorter chain length counterpart oligofructose which is derived from inulin degradation.  

Polydextrose, a manufactured complex carbohydrate made from glucose, sorbitol and citric acid 

also reacts with amino acids to produce Maillard browning (Mitchell, 1996).  Polyols, from the 
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catalytic hydrogenation of different sugars, do not undergo Maillard browning or 

caramelisation.   

Accordingly, polyols were found not to affect the measured lightness of crumb in sugar-free 

sponge cakes, and increased crust lightness relative to the control cake containing sucrose 

(Ronda et al., 2005).  Polydextrose was found to decrease the measured lightness and increase 

the measured redness of cake crumb (Hicsasmaz et al., 2003; Ronda et al., 2005), as well as to 

decrease crumb yellowness (Hicsasmaz et al., 2003; Kocer et al., 2007).  The pH of the cake 

batters in the study by Hicsasmaz et al. (2003) favoured the Maillard reaction over 

caramelisation.  Oligofructose was also found to increase the redness of cake crumb (Ronda et 

al., 2005).  On the other hand, increasing the inulin content increased the measured lightness of 

cake crumb and did not change the values for the chromatic parameters (Rodríguez García et 

al., 2012).  No explanation is offered as to why this might have been the case, however in this 

study inulin was used to replace the fat in the formulation, while sugar content remained 

unchanged; in the other studies polydextrose and oligofructose were used in the partial or full 

replacement of the sugar.  The increase in measured lightness of the crumb with increasing 

inulin content could have been due to the significant decrease that was seen in total (air) cell 

area; the inclusion of such ‘bubbles’ in instrumental colour measurement can lead to the finding 

of colours that are darker than when observed visually (MacDougall, 2002b).  Both 

oligofructose (in its role as a sugar replacer) and inulin (as a fat replacer) have been found to 

decrease the measured lightness and to increase the redness of cake crust (Ronda et al., 2005; 

Rodríguez García et al., 2012), with inulin also shown to decrease measured yellowness 

(Rodríguez García et al., 2012).  It should be noted that the colour measurement illuminant and 

observer conditions differed between the studies, meaning their findings should be compared in 

relative, rather than in direct terms.      
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3.5.3. Alternative (rapid) baking technologies:  Jet impingement oven 

technology and microwave cooking 

Other than customisation, a key feature of the 3D colour food printer under development is 

convenience; in this context, convenience refers specifically to the provision of outputs on-

demand and in short-time, and the integration of the printing and cooking steps into a single unit 

process.  The contribution that the cooking step could make to this rapid and integrated process 

is the subject of this section.  Currently the facility to heat printed foods as they are being 

extruded, or when they are on the printing tray exists only as a concept in the ‘Digital 

Fabricator’ and ‘Virtuoso Mixer’ (see Table 3.1), or is under development, as in the cooking of 

pizza dough layers in the NASA 3D food printer.  Modified cookie dough developed as a 

printable food for the Fab@Home printer, is baked after printing by conventional means away 

from the printer, and the dough is refrigerated for a time between printing and baking.   

If bakery- and cake- type formulations are being considered as model printing substrates, 

alternative cooking methods to conventional baking should be sought, as conventional baking 

by natural convection is a slow and inefficient process (Kocer et al., 2008).  Rapid baking 

technologies such as jet impingement oven and microwave oven technologies provide lower 

energy and shorter time alternatives to conventional oven baking.  Their higher efficiency is due 

to the faster rates of heat and mass transfer that can be achieved in the food product.  In jet 

impingement technology high-speed (10 to 50 m/s) jets of hot air (100°C to 250°C) impinge 

vertically on the food, from above and below.  Unlike conventional baking, heat is distributed 

more evenly and the surrounding cold boundary layer which normally acts as an insulating 

barrier to heat transfer is removed, leading to higher rates of heat and mass transfer at the 

surface.  In microwave cooking, electromagnetic energy is absorbed by charged particles and 

polar molecules such as water and salt, which directly and rapidly heats the product interior; in 

this case increased rates of heat and mass transfer are caused by the pressure and concentration 

gradients created by the internal heating.  Heating from the inside is a more efficient way of 
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cooking aerated doughs (such as bread) in which the insulating effect of the entrapped air would 

otherwise slow heat transfer from the outside into the product. 

Rapid baking technologies differ one to the other, and to conventional baking, in their effects on 

product quality.  Products baked by jet impingement have improved texture and structure, and a 

more uniformly baked surface, when compared with their conventionally-baked counterparts.  

Although the rate of moisture loss is higher with jet impingement technology, rapid crust 

formation, aided by the removal of surface moisture under hot air, and the shorter baking times 

result in higher moisture retention.  At the same time, an increased rate of heat transfer leads to 

faster cooking of the crumb.  However, lower temperatures should be applied in the earlier 

stages of baking to avoid premature formation of a crust which would act as insulation against 

further heat transfer.  Moisture can also be added to prevent crust formation, by spraying the 

product with water as it enters the oven, and then by steam or water injectors during the first 

half of baking (Loh et al., 1998).  Due to the dependence of browning reactions on high 

temperatures (>100°C) and the faster increases in surface temperatures seen with jet 

impingement, the rate of surface colour development is also faster than when using 

conventional baking. 

In contrast, microwave-baking is associated with numerous quality defects in the final product.  

These include dryness, low volumes, and dense and tough textures, as well as a soggy surface 

lacking crust and colour.  As with jet impingement baking, rates of moisture loss from 

microwave baking are high compared with conventional baking, however the high internal 

pressures created by microwave heating pushes more water to the product surface.  Formation 

of a crust that would curb moisture loss cannot occur, due to the cool, ambient temperature 

surrounding the product inside the oven causing condensation and cooling at the product 

surface.  Under these conditions browning reactions also cannot take place.  Low volumes and 

textural defects are due to structure-forming processes such as starch gelatinisation and 

expansion being limited by the short cooking time.  Microwave-induced gluten changes might 

also contribute to problems with structure.  Strategies to improve quality in microwave-baked 
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cakes include the addition of hydrocolloids, instant starches and pre-gelatinised starches to aid 

moisture retention; use of pre-gelatinised starches doubles as a solution for incomplete starch 

gelatinisation (Sumnu, 2001).  In optimising formulations for microwave-baked cakes, it has 

been found that volume is affected by the type of starch used (higher with wheat starch) and the 

gluten level in flour (higher with lower gluten); volume and texture are affected by microwave 

power level, and by monocalcium phosphate monohydrate in baking powder, with specific 

volume decreasing and crumb firmness increasing with increasing concentration (Kocer et al., 

2008). 

Due to their modes of heating being internal and external respectively, microwave- and jet-

impingement baking complement one another and are used in combination ovens.  As well as 

further decreasing the cooking time relative to the individual technologies, hot air is available 

from jet impingement to surround the product and to dry and heat the surface which allows for 

crust formation and browning.  This means that more moisture is retained in the product 

(preventing excessive drying), than when using microwave heating alone.  Due to the short 

cooking time, baking using combined technologies may require the use of creaming or a rapid-

acting chemical leavening agent to ensure sufficient leavening in the product before its structure 

sets.  Microwave-infrared ovens are another type of combination oven, in which halogen lamps 

emitting near-infrared radiation provide surface heating.  Results comparable with conventional 

baking can be obtained for comparatively less baking time, given the right combination of time 

and power level.  These include high-quality gluten-free cakes containing added gums and 

emulsifier (Kocer et al., 2008).           

3.5.4. A ‘case study’: low-fat cake doughnuts 

A process for making low-fat cake do(ugh)nuts, invented by Loh et al. (1998), provides a very 

good example on which the printing substrate for 3D colour food printing could be modelled.  

Whereas conventional cake-type donut batters are not self-supporting and are deep-fried, a 

conventional formulation was modified by the inventors to be formable, and intended for rapid 

baking in an air-impingement oven, thereby reducing the fat content.  The batter was made 
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formable by the inclusion of thermally-reversible gel, which made up 20% to 30% of the batter 

by weight, allowing the resulting dough to be shaped (by sheeting, stamping or extrusion) and to 

retain its shape during the early stages of baking; in the latter stages of baking, by which time 

heating has melted the gel, the dough itself has developed into a leavened, self-supporting 

structure.  The gel is comprised of 85% to 90% (preferably) of water, 8% to 12% of an 

insoluble, water-binding fibre (such as powdered cellulose), and 0.4 to 1% of a thermally-

reversible hydrocolloid gelling agent (such as agar).  This type of formulation and its processing 

combines a number of properties that are suited to a 3D food printing substrate, which 

individually have been described in the preceding sections: that is, it can be extruded due to the 

addition of a gel ingredient, it is a cake-type formulation that can be baked rapidly, and it is the 

result of modifying a conventional formulation to improve nutritional value. 

3.5.5. Predictive studies:  modeling the development of structure and 

colour in food systems of relevance to baking, and to 3D colour food 

printing 

Better control and optimisation of baking outcomes is possible using mathematical models that 

can predict the effects of formulation and processing changes on the physical and chemical 

characteristics of the product.  Not only is predictive capability useful for product development 

per se, but necessary for the 3D colour food printer which is being designed as an on-demand, 

customised food production system.  From a coloration point of view, the formulation and 

therefore the physical characteristics of the printing substrate – ‘the blank canvas’ - will vary 

according to user-defined specifications for sensory and nutritional properties.  If substrate 

characteristics likely to affect colour rendition, such as the degree of browning and light 

scattering (texture) can be predicted, then the dye recipes needed to reproduce desired colours in 

the substrate can accordingly be computed and adjusted.   

This section focusses on examples of studies in which the development of browning and 

structure under various conditions has been modelled, in different food systems, and is 
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organised by the different modelling methodologies used.  These studies have been selected for 

inclusion here because of their direct relevance to baking (De Cindio and Correra, 1995; Kocer 

et al., 2007; Mundt and Wedzicha, 2007), or because they cover ingredients or processes that 

feature in baking, such as browning (Han and Floros, 1998) and carbohydrates and 

caramelisation (Sleeuwen et al., 2013).  Browning has been modelled for reasons of it being a 

desirable quality in some food systems, but not in others. 

3.5.5.1. Using response surface methodology 

Response surface methodology (RSM) is used to measure then model the simultaneous effects 

of multiple independent variables, or factors, on the output(s) of a given system or process, 

usually with the goal of determining the combination(s) of factors that are needed give optimal 

outputs (Bezerra et al., 2008).  In developing the model, data are collected according to an 

experimental design that defines the levels of the different factors, and tests different 

combinations across multiple experimental runs.  Polynomial functions are fitted to the 

experimental data; a good fit is indicated by low residual values, or small differences between 

computed and experimental data.  The term ‘response surface’ refers to the graphical 

representation of the modelled data.  The predictive ability of RSM models is limited to the 

range of factor levels that are used in their development. 

Of direct relevance to baking, Kocer et al. (2007) modelled the interactive effects of 

simultaneous sugar- and fat- replacement by polydextrose in a high-ratio cake formulation, on 

batter and cake properties (including relative cake height, average bubble size, and Hunter L and 

b values) using response surfaces.  This was done to determine whether further reduction in 

energy content (relative to sugar-only and fat-only replacement) was possible for ‘tolerable’ 

changes in expansion characteristics and crumb colour (see also Table 3.3).  

Response surfaces were used by Han and Floros (1998) to model the change in colour of 

potassium sorbate powder as a function of heating time and temperature, to investigate the 

possible use of the powder as an indicator for high temperature processes such as baking.  As 
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indicated by the respective decrease and increase in measured HunterLab L and b values, 

heating caused the powder to turn a dark yellow, which was likely due to oxidative degradation.  

The implication for the addition of potassium sorbate as a preservative to foods is that the foods 

could discolour during heating, reducing their quality, by either oxidation of the preservative in 

the presence of other food components, or the involvement of its carboxyl group in Maillard 

browning.   

3.5.5.2. Using kinetic models   

Whereas RSM relies on producing replicate outputs from known factor and factor level 

combinations and using statistical techniques to fit an appropriate empirical function (Berns, 

2000, Bezerra et al., 2008), other models aim to describe a more direct relationship between 

outputs and changes in raw materials or processing variables (de Cindio and Correra, 1995), by 

investigating the rates at which these processes occur, and the factors influencing the rates of 

reaction.  Factors affecting reaction rates include the type, physical state and concentration of 

the reactants, temperature and pressure, and the presence of catalysts. 

3.5.5.2.1. Texture 

The kinetics of the various processes contributing to baking were combined to develop a 

comprehensive model for the baking process as a whole (De Cindio and Correra, 1995), with 

the model intended for use in the optimisation of textural characteristics.  The model takes into 

account the processes occurring at the level of bubble and the paste directly surrounding and 

interacting with the bubble (incorporating leavening kinetics, bubble expansion, paste rheology 

and diffusion of CO2 and water), and at the dough level (heat transfer and mass transfer of CO2 

and water).  Parameter values for the model were determined experimentally or taken from 

literature data (De Cindio and Correra, 1995).  In a simulation of the three main phases of 

baking – mixing, leavening and heating - using a yeast-leavened formulation, the model was 

able to predict changes in total mean specific volume (representing softness), moisture content 

(firmness) and pH, with time.   
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3.5.5.2.2. Browning 

The Maillard reaction is a non-enzymatic reaction between reducing carbohydrates and amino 

acids or proteins that contributes much of the desirable roasted flavours and brown colour on the 

surface of baked goods (Figoni, 2008).  It can also cause undesirable browning in processes 

such as during the preparation of condensed milk (Hofmann, 2001), and during the storage of 

milk powders because that the reaction can also occur at room temperature given enough time.  

Nutrients such as the amino acid lysine are lost through their involvement in the reaction 

(Koksel and Gokmen, 2008).  Usually temperatures of at least 50°C are needed for the Maillard 

reaction to occur (Zhou and Therdthai, 2008).  Caramelisation, which is the degradation of 

sugars in the presence of temperatures of at least 160°C to 170°C, also contributes browning, 

and gives cooked sugar flavours.   

Other than temperature and heating duration, the Maillard and caramelisation reactions are 

affected by such factors as pH, moisture content (as indicated by the level of water activity, aw, 

or available water), and the types of amino acid and sugar that are involved.  In both reactions, 

the rate of browning is increased by increasing the pH or in the presence of reducing 

monosaccharides, while lowering the pH slows browning (Figoni, 2008).  The presence of salt 

lowers batter caramelisation temperatures (Sahin, 2008).  For the Maillard reaction, colour 

development increases at intermediate moisture levels (aw 0.3 to 0.7), with the implication that 

the reaction will be slow in high moisture foods, and when temperatures are low, or in dry 

systems.  Aroma (flavour) development also depends on the total amount and relative 

proportions of amino acid and sugar on the product surface; unique aromas are produced with 

each different combination of temperature and time conditions (Sahin, 2008). 

Kinetic models that have been developed to predict the extent of browning in baked goods, and 

in other food systems, with time and under different experimental conditions, are used to predict 

changes in either CIELAB values (Zanoni et al., 1995; Broyart et al., 1998), or in reflectance or 

absorption spectra (Mundt and Wedzicha, 2007; Sleeuwen et al., 2013).  Although following a 

kinetic process, the direct fitting of a model to CIELAB values as a function of time is an 
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empirical approach (Mundt and Wedzicha, 2007).  Modelling of spectral changes with time 

effectively describes chemical kinetics, following the formation of reaction intermediates and 

products (Mundt and Wedzicha, 2007), since the concentration of a coloured species in solution 

has direct relationship to the measured absorption of the solution.  Where available, predicted 

changes in full absorption/transmission spectra as a function of time and temperature (rather 

than changes at a single wavelength or a few wavelengths) can then be expressed as a perceived 

change under specified illuminant and observer conditions, by subsequent derivation of 

CIELAB, followed by ΔE*ab or Browning Index, values (Sleeuwen et al., 2013).   

Mundt and Wedzicha (2007) developed their kinetic model to predict the change in measured 

reflectance (RGB values) with time during the browning of biscuit dough under controlled 

temperature and water activity conditions, with reflectance in the model expressed in terms of 

the Kubelka-Munk function.  The model fitted well to experimental RGB data collected for 

‘standard’ dough samples at three levels each of temperature and water activity, aw (and thereby 

revealing that aw had no effect on the rate of browning across the range observed).  The model 

also fitted well to data obtained from test doughs containing three levels of added sugar, where 

again aw was found not to have an effect on the browning kinetics.   The focus of the kinetic 

model developed by Sleeuwen et al. (2013) was the control of browning in a carbohydrate 

system in which excessive browning during heating might cause colour and flavour to deviate 

from specification.  Glassy carbohydrate microcapsules which are used for the encapsulation of 

food flavours, and which should be either un-coloured, or contain added colorants for providing 

visual appeal to foods, are exposed to elevated temperatures during their production.  The model 

was based on wavelength-dependent reaction rate constants and Arrhenius parameters 

(indicating respectively the kinetics and temperature dependence of colour formation) obtained 

from measured absorption/transmission spectra of maltodextrin (MD) and maltodextrin/sucrose 

(MD/S) melts which were used as model systems.  For both types of melt, when subjected to a 

simulated industrial thermal process, there was found to be little difference between the spectra 

predicted by the model and the experimental spectra.          



 

118 
 

In neither of the studies discussed (Mundt and Wedzicha, 2007; Sleeuwen et al., 2013) was the 

concentration of the browning intermediates and products themselves actually measured; the 

Maillard reaction for example leads to the formation of a multitude of low and high molecular 

weight compounds (Hofmann, 2001), through a complex series of reactions (Koksel and 

Gokmen, 2008).  However in future, there might be scope to relate the kinetics of browning, and 

perceived changes in browning directly to the formation of key Maillard browning reaction 

products.  Hofmann (2001) characterised the key chromophores in a Maillard reaction mixture 

of D-xylose and L-alanine by a process of HPLC analysis, screening by Color Dilution Analysis 

for the most intensely coloured HPLC fractions, and then, following identification of the 

compounds their relative colour impact was defined by a novel Color Activity Value (CAV), 

which is the ratio of concentration to visual detection threshold.  Furthermore, the percent 

contribution of each compound to the colour of the mixture was determined from the ratio of the 

CAV of the compound to the Color Dilution factor for the mixture.     

The spectral approach to the kinetic modelling of browning is compatible with the spectrally-

based Kubelka-Munk predictive colour blending models discussed earlier in Part 1 of this 

review.  This raises the possibility of combining principles from the two methods to model the 

effects of the ‘native’ colour of the 3D colour printing substrate on the dye quantities that are 

needed to render colours in the substrate.  In addition to investigating colour changes in melts 

that were initially un-coloured Sleeuwen et al. (2013) modelled the effect of browning reactions 

on a hypothetical MD/S melt initially light blue in colour (as referenced by a solution of 

Brilliant Blue FCF), which was predicted to change to green.   

Of course, the type of browning that 3D colour food printing is concerned with is internal 

(crumb) coloration rather than external crust browning, before any dye is added.  Kinetic studies 

of surface browning (such as the ones described above) do however provide useful modelling 

principles that could be applied to the printer.  Examples of variables whose effects might need 

to be modelled include the colours of egg yolk and of various and alternative fat, sugar and flour 

ingredients that get carried through from the batter stage to the final product.  The effects of 
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these ingredients would be set against a background of a structure developing over time, which 

in the end, depending on its density and moistness should make its own contribution to 

perceived (un-dyed) crumb colour.   

3.6. Controlled 3D coloration in food and non-food matrices 

Conventionally, 3D coloration in baked goods and confectionery is achieved by hand.  To make 

checkerboard-, zebra- and Battenberg-style cakes (Figure 3.1) the batters are coloured and then 

arranged manually into patterns either before or after baking.  Recipes have been posted on 

recipe community and blogging sites (Handmade Charlotte and Denneler, 2013; Hungry 

Happenings and Klosterboer, 2014) for so-called ‘Tie-Dye (Surprise) Cakes’ in which each slice 

of the baked, rectangular-shaped cakes reveals the same multi-coloured shape embedded within 

(Table 3.4).  This effect is achieved by following a time- and labour- intensive process in which 

two cakes need to be prepared; in short, shapes are cut from the first, coloured, cake and 

embedded in the second, uncoloured cake batter.  Also made by hand are the stick-shaped, 

boiled sugar confections known as ‘rock’ (Brighton Rock or Blackpool Rock in the UK), 

produced for both the consumer and corporate markets, in which wording (a town or company 

name) or a pattern (such as a company logo) is embedded along the entire length of the stick, 

and therefore seen in every bite or slice (Figure 3.2; Table 3.4).  Production of rock 

confectionery is a multi-step process during which a skilled person is needed to build the letters 

and shapes, and at many times their final size to allow for a decrease in diameter of the bulk 

mixture when it is later stretched and pulled (Attractions Blackpool, 2014). 
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Figure 3.1  Cake recipes in which 3D colour is achieved by the bulk coloration and arrangement of raw or cooked 
batters.  Top left: Checkerboard cake (Wilton Industries, 2014a).  Top right: Battenberg cake (Cook, 2014). 
Bottom: Zebra cake (White, 2014). 

Figure 3.2  Pieces of rock candy which display 3D coloration in finer detail, in the form of embedded letters or 
designs (Bolcheriet, 2014).   
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An alternative, more efficient means of 3D food coloration is offered by some versions of 3D 

food printers.  The capability to colour in 3D is a feature of an existing food printer (Inspix, 

2014) and printer concept (Yang et al., 2001) (see also Table 3.4);  by delivering colorants ‘in-

line’, coloration can be fully integrated into the food production process.  Printers such as these 

could be used to produce 3D-coloured cakes and confections in less time and for less effort than 

their handmade counterparts.  For the 3D colour food printer currently under development, this 

application of the technology is an attractive prospect given that cake formulations themselves 

are ideal targets for the customisation of food outputs.     

With 3D colour food printing there is the potential also for colours to be embedded within the 

substrate with greater control and in finer detail than is possible when using batters coloured by 

hand.  In turn, this sets up the potential for complex colour images or designs to be rendered in 

3D within the printed food matrix.  A precedent for fine colour resolution as a desirable feature 

in edible form exists in the printing of colour images directly onto cake frosting sheets using 

combinations of primary inks, and conventional 2D printing techniques.  In 3D, a patented food 

cooker extruder (Weinstein and Tolson, 1997) can add line colour detail at widths ranging from 

0.1 mm after extrusion (and without subsequent puffing) to 0.5 mm or more after expansion, 

using colorants, and coloured doughs or pastes added in-line.  The ProJet® 660 Pro (3D 

Systems, 2014) and the Objet500 Connex3 (Stratasys Ltd., 2014) are examples of non-food 3D 

printers that can print models and prototypes in full colour as well as with fine build resolution; 

ProJet® 660 Pro capabilities include detailed text labelling and colour topographical maps in 3D 

(Figure 3.3).  It is conceivable that a similar level of detail could be achieved using a 3D colour 

food printer; like the ProJet® 660 Pro, the Chef Jet printers use inkjet technology and can print in 

full colour, but use sugar instead of high performance composite as the printing substrate 

(Figure 3.3).  Fine colour detail might be more difficult to achieve if extrusion deposition 

technology were to be used for printing, due to the moving food stream and the potential for 

diffusion between each volume element (voxel) of colour if the rheological properties of the 

colorant and (raw) food substrate are not properly matched.   
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Specifications for the cooker extruder and for existing 3D food printers which are capable of in-

line 3D food coloration do not include any descriptions of methods for producing individual 

colours, including the number and types of primaries to use and methods for computing the 

quantities of primaries needed for each blend.  No indication is given also of the likely effects of 

food properties on target colour outputs.  It is presumed that the Chef Jet 3D food printers might 

use a set of primaries, with the sugar substrate providing the white background needed for 

obtaining the most chromatic colours possible when the primaries are blended.  Coloration 

methods are specified for 2D colour printing for food, and for non-food 3D printing in colour. 

Edible surface printing uses C, M, Y and K primary inks (All American Manufacturing and 

Supply Co., 2010); the ProJet® 660 Pro non-food printer uses five print heads (C, M, Y, K and 

Clear) from which up to 390,000 colours can be produced, while ten different colour palettes are 

available with the Objet500 Connex3, with each palette the result of combining sets of three 

colours from the group C, M, Y, K, Clear and White (Figure 3.4).  White printing backgrounds 

are provided by the frosting sheets used in edible surface colour printing, by the high 

performance composite used in the ProJet® 660 Pro, and by various materials in the Objet500 

Connex3.  The availability of translucent and transparent substrates for the Objet500 Connex3 

widens further the range of possible colours.   

 

Figure 3.3  Outputs from various printers which can print objects in full 3D colour.  Left:  Chef Jet printers using 
sugar as the printing substrate.  Middle: Objet500 Connex3.  Right: ProJet® 660 Pro. 
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3.6.1. Summary and conclusions 

Aspects of existing coloration technologies, both 2D and 3D, and both food and non-food, have 

something to contribute to the development of 3D food printing in full, complex 3D colour.  

Conceptually, 3D food colour printing lies between the printing of colour images onto edible 

surfaces, and the bulk coloration of cake batters in baking recipes and their arrangement in 

controlled patterns before or after baking.  In terms of available technologies, on the one hand it 

is possible to obtain the widest possible range of colours from a set of primaries, and in fine 

detail, using inkjet based methods and a white printing substrate, but, in reality, foods as (3D) 

printing substrates will not necessarily provide a white background.   

The 3D printing of food substrates modelled on baked goods, which undergo expansion upon 

cooking, is at present better suited to a freeform style of fabrication rather than to inkjet 

technologies in which the binding of powders sets the structure immediately.  This would 

appear to limit the preferred delivery method of colorants in 3D colour food printing to an in-

line method such as the one described by Yang et al. (2001), rather than the potentially more 

precise jetting methods.  A 3D colour food printing technology that could be considered in 

future is one based on the Objet500 Connex3 which is capable of combining several materials 

(including composites formed on-demand) in a single model, and in full colour; materials are 

jetted in layers and cured instantly by UV light.  The technology could provide another all-in-

Figure 3.4  Two of the ten colour palettes used in the 3D colour printing of objects by the Objet500 Connex3 
printer, which has multi-material capability.  Shown are the palettes from combining Cyan, Magenta and Black 
for opaque materials (left) and from combining Cyan, Yellow and Clear, for transparent and translucent material 
(right). 
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one 3D colour food printer, should suitably performing food formulations, and structure 

forming and setting methods be developed.       

Whereas the purpose of adding colour in non-food 3D printing is to create realistic and life-like 

models and prototypes, that of 3D colour food printing, in this thesis, is to customise the visual 

appearance and visual appeal of 3D printed foods in a novel and unusual way, by the rendering 

of any chosen complex image or design in 3D within the food matrix.  Coloration capability can 

be integrated into the 3D food printing process, and fits well with, and adds a further element of 

customisation to the printed food, beyond customising nutritional content and sensory 

characteristics.  The impact of 3D colour should be greater from a printed food than from a 3D 

printed non-food prototype because the internal colours of a food will be seen as it is being 

consumed, while prototype structures might remain largely unbroken, meaning their colours 

will essentially be viewed in 2D.  Although colour is normally strongly associated with flavour, 

the use and presence of novel and unusual colours in food (such as those from colour images) 

can be made acceptable by strategically ‘celebrating the very incongruity of a novel food 

colour’ (Garber Jr et al., 2001).  Given the unusual colours already used in baking recipes (i.e. 

cakes), such a strategy has already been successful; perhaps the only expectation of flavour 

from these colours is that of sweetness.  ‘Celebrating’ the use of novel and detailed colour in 3D 

colour food printing could be considered a major feature and point of difference of the 

technology.         
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3.7. Conclusions from this Review 

From this survey of the literature it can be concluded that the concept of a 3D colour food 

printer which produces rapidly fully customisable food outputs, including the 3D rendering of 

complex colour images within the food matrix, is as yet unexplored.  Advancing the concept 

however, can draw on the features it shares with a number of existing methods and technologies 

that have been covered in this review:  

 customised foods i.e. POSIFoods™, or the tailoring of recipes (such as baking recipes) 

to achieve specific nutritional or sensory properties; 

 3D printing technologies to produce customised outputs using a variety of food, non-

food and biological build materials; 

 rapid cooking (baking) technologies; 

 conventional (2D) colour printing on a variety of surfaces, including food; 

 conventional food coloration, tailoring dye recipes to the substrate, also the manual 

creation of 3D colour patterns (in home baking);  

 computer colour matching algorithms that draw on a database of colorant and substrate 

spectra, used in non-food industries; 

 mechanisms to deliver colorants in-line during food extrusion; 

 3D printing or prototyping in full colour, including the use of simple food substrates i.e. 

sugar. 

In bringing together these features in the form of a 3D colour food printer, the major challenge 

that will be faced will be in trying to achieve simultaneous rapid customisation of complex food 

formulations and of complex 3D colour outputs.  This thesis is concerned largely with the latter.  

On the one hand customised, rapid, automated, accurate, and complex coloration in both 2D and 
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3D is possible using available printing and computer colour matching techniques, but involve a 

limited range of substrates.  On the other, customisation of complex food outputs has not yet 

reached the same level of rapidity and neither has coloration of such outputs.  Although dye 

recipes can be tailored to food substrates, this requires the intervention of an expert due to the 

much broader range of substrates that foods present.   

3.7.1. Required experimental approach 

Predictive colour matching capability for the 3D colour food printer should be based ideally on 

techniques such as computer colour matching and colour printing, for the speed and complexity 

of their outputs, but have the means of adapting to more complex and diverse food outputs.    

3.7.1.1. Application of Kubelka-Munk (K-M) Theory  

K-M Theory could form the basis for developing a predictive colour matching algorithm for the 

3D colour food printer, as supported by the following:   

 The blending of dyes to produce colours can be modelled using functions based on K-M 

Theory, and in turn the quantities of an unknown blend can be computed to match a 

given colour, as done routinely in a number of non-food industries;  the food industry 

already makes use of the same relationships between colorant concentration and colour 

output, but more for the purposes of pigment identification and quantification, and for 

the modelling of food appearance, rather than for computing dye recipes; 

 For both food and non-food applications, the contributions of the physical properties of 

the substrate, especially in terms of the degree of light scattering produced, to the 

measured or perceived colour of the substrate has been modelled using K-M or spectral 

principles; an understanding of these effects is needed in order to optimise the product 

by either adjusting the quantities of added colorant or the conditions bringing about the 

changes in physical properties.  



 

130 
 

Therefore, a K-M based model for the 3D colour food printer has the potential to not only 

compute dye quantities to match colours, but to take into account the physical properties of the 

substrate being coloured when computing these quantities.  This is compatible with the 

provision of food outputs customised for both formulation and colour appearance.   

3.7.1.2. Colour gamut mapping 

The range of colours (including their strength) that can be achieved from the addition of 

colorants to foods depends on many factors.  Broadly speaking these include the absorption 

characteristics of the colorants and their physical format (whether soluble or insoluble), the 

physical and chemical properties and processing conditions of the substrate (including 

temperature and heating time, and ingredients that bind dyes), and legal restrictions on the final 

concentrations of colorants in the foods.  Therefore the range of colours that can be produced 

will be specific to a given combination of colorants and substrate, and also to the viewing 

conditions under which the coloured product is viewed.   

Therefore, as well as to determine the impact of colorants and substrate on food coloration per 

se, the limit of the achievable colour range for a coloured food needs to be formally computed 

so that image colours can be transcribed by the 3D colour food printer to fit within the colour 

range of the food, using colour gamut mapping.  This is because the range of colours in an 

image will far exceed that which can be produced by the combination of the 3D food printing 

device, the food substrate and colorants.  Further, the printer will need to have the capability to 

compute rapidly colour gamuts for different blank food substrates containing dye blends in line 

with its capability to customise food outputs (i.e. their formulations).  Again, this is where 

models based on K-M Theory should prove useful; such models can be used for the 

characterisation (profiling) of the 3D colour food printer, linking dye quantities with CIELAB 

values, as well as providing the basis for computing gamuts quickly. 
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3.7.1.3. Experimental samples and evaluation of coloration algorithms 

Baked goods, especially cakes, are a class of food that satisfies many of the requirements for the 

3D colour food printer substrate: these types of formulations are often targeted for modifications 

designed to achieve specific nutritional and/or sensory outcomes.   They can also be rendered 

extrudable and are able to be cooked rapidly.  Properties of the finished substrate affecting final 

colour rendition such as background colour, surface texture and volume can therefore be 

expected to vary according to changes in substrate formulation.  To have the printer compute 

on-demand dye recipes for changing formulations, something that would normally be done 

manually, represents a formidable challenge, and demands a novel approach.  This approach 

might involve investigating either the effects of each property on colour rendition in isolation 

from the rest, or the effects of several properties combined using representative ‘whole’ 

formulations.  The job of the predictive coloration algorithm within the 3D colour food printer 

software would then be to combine this information according to the substrate and image 

specifications ‘keyed-in’ by the user.  This algorithm would work in tandem with predictors of 

the substrate properties themselves; relevant predictive models developed by others for various 

applications should prove informative here.       

Although the 3D colour printed foods are being designed to contain voxels of many colours, it 

will be far more practical in this thesis research to apply a single colour per experimental 

sample.  In the wider printer research project, the mechanisms to deliver colorants for multiple 

voxels are yet to be settled.  As an automated process, the 3D coloration of food by the printer 

will need to rely on computed colour differences rather than the visually assessed differences 

between the original image colours and the food-rendered equivalents.  While models have not 

yet been established to evaluate the quality of colour (print) reproductions, the matching of 

single colours can be evaluated using colour difference formulae and associated tolerance 

indices, with consideration given to using formulae appropriate for the physical characteristics 

of the samples being compared.   

To colour the printed foods, it should be safe to use synthetic colorants provided they:  



 

132 
 

i. remain relatively stable to the formulation and processing conditions of the substrate; 

ii. are added to levels which ensure their final concentrations in the finished substrate do 

not exceed legal limits (and adhering to this limit for each voxel must ensure that the 

entire food remains compliant); 

iii. are permitted for use in the country in which the food will actually be printed; it is 

entirely possible that digital colour printing files could be sent from one country in 

which certain colorants are permitted, to a country in which they are not.   

3.7.2. Consumer aspects  

While the proposed 3D colour food printer can be seen as filling a technological gap, it needs 

also to be justifiable from a consumer point of view.  The coloration of food by the printer is 

less about the role of colour as an indicator of food quality and more about dissociating this 

colour-quality link in order to customise food appearance in an unusual, creative and appealing 

way.  The printing of colour images in 2D as cake toppers and the colouring of cake batters 

have paved the way for the acceptance of a technology that is able to print complex colour 

images in 3D within foods.  Another appealing aspect of the technology is that it could allow 

food production to become a social activity through the sharing of digital files containing design 

ideas or ready-to-print designs for printing off-site, which taps into the surge in the use of social 

media in recent years.   

3.8. Research aims and objectives of thesis 

The aim of this thesis is to develop a predictive coloration model for use by the new 3D colour 

food printer, one which can transform RGB image data into dye recipe data, taking into account 

the variable effects of food properties.  This research was separate to the other aspects of printer 

development. 

In support of this aim, the non-food methods of colorimetric matching and colour gamut 

mapping were to be applied to the problem of matching a set of standard colours with model 
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food substrates containing blends from a set of three primary dyes.  The objectives therefore, 

were: 

 To develop model food substrates appropriate to 3D colour food printing, and to the 

application of the coloration methods being tested; 

 To determine the absorption behaviour of each primary dye in each substrate, leading to 

the development and validation of models of dye blending for each substrate; 

 To use colorimetric matching to compute dye recipes for each target colour; 

 To use colour gamut mapping to find the best equivalent of each target colour and its 

corresponding dye recipe in each model substrate, including those which differ only in 

their level of a single food characteristics to measure the impact of this characteristic on 

the solutions possible; 

 To make appropriate assessments of the closeness of matching between target colours 

and the solutions provided by colorimetric matching and by colour gamut mapping; 

 To compare colorimetric matching and colour gamut mapping for the closeness of their 

solutions to the target colours, and in the dye quantities computed. 
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Chapter Four: Food coloration using computer colour matching 

4.1. Introduction 

Three-dimensional (3D) printing is an additive manufacturing technology whereby objects are 

built layer by layer, from a 3D image file held in a computer, using base materials as diverse as 

metal powders (Wikipedia, 2011), molten plastics (Wikipedia, 2014a), concrete (Day, 2011) and 

paper (Mcor Technologies Ltd., 2013).  3D printing offers an economical and convenient 

alternative to traditional forms of manufacturing:  it does not require the use of a mould, and it 

is designed to produce objects on-demand.  3D printing is also a developing technology for food 

manufacture, providing an ideal means for personalising food production to meet customer 

specifications for selected product characteristics.  Currently, 3D food printers exist as concepts 

(Seth, 2009; Coelho, 2010) or as prototypes (Moskvitch, 2011), or are available in the form of 

open-source hardware and software (fab@home Project, 2011) or retail units.  Open-source and 

retail units are designed to print conventional food items - such as chocolate  (Hao et al., 2010), 

cookie dough  (Lipton et al., 2010) and cakes (Natural Machines, 2014) - or ingredients (e.g. 

sugar) into new shapes and forms (Inspix, 2014; The CandyFab Project, 2014), while concept 

printers allow for new ingredient combinations to be created, leading to more fully customised 

outputs.  The technology being developed in the wider 3D food printing research project, of 

which this thesis forms one part, is a realisation of the latter type.  The provision of outputs 

which meet individual customer specifications for such product characteristics as shape, texture, 

flavour, appearance and nutritional value, will be underpinned by a thorough understanding of 

how these characteristics develop as a function of formulation.  Therefore it should be possible 

each time for the printer to not only select the appropriate ingredients, but to combine the 

ingredients and deposit the mixtures accurately in raw form, before the food is cooked rapidly to 

develop and set the structure.   

A less explored aspect of personalised foods is the concept of being able to customise the visual 

appearance of any prepared food.  The focus of this thesis is on customising the visual 
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appearance and visual appeal of 3D printed foods in a novel way: by the rendering of any 

chosen complex colour image or design in 3D within the food matrix.  During the printing 

process, dye blends will be delivered in small volumes to predetermined positions within the 

colour-neutral raw food, so that a multitude of colour voxels (volume elements) are produced in 

the finished food to match the original design.  Each blend, corresponding to a single voxel, will 

be produced from the same three or four primary dyes, but blends will differ in the relative 

proportions of these dyes.   

The formation, coloration and cooking of 3D colour printed foods is being designed as a rapid, 

bench-scale, one-stop, on-demand process, for home or industrial use.  The specifications for 

printing present a number of challenges to developing suitable colour matching capability.  The 

printed foods have the potential to be hugely diverse in their physical and chemical attributes 

(varying according to the formulation selected), all of which will affect final colour rendition.  

This, together with the need for colour matching capability to be fast, and built-in, rules out 

methods currently used by the food industry, such as custom blending by expert formulators, 

which are applied on a case-by-case basis and are based usually on visual assessment.  While 

conventional colour printing does use primaries (CMYK inks), it relies also on the size and 

positioning of fine ink dots on a two-dimensional, white printing surface to produce colours 

whereas the printed foods will require coloration in 3D, and not necessarily against a white 

background.  Potentially more suitable is the Pantone Matching System (PMS) which is used for 

a range of materials including dyed textiles and pigmented plastics, as well as for colour 

printing.  Pantone systems however, are based on a larger number of primaries (10 to 14) and 

take the form of extensive colour palettes with a proprietary ink recipe for each colour, which 

are used to communicate colour between designers and printers.  In contrast, the 3D colour food 

printer will need to compute (unknown) dye quantities on demand from a smaller number of 

available primaries.  And while non-food 3D colour printers are available which are capable of 

producing up to 390,000 colours with high resolution, using up to five print heads, printing 

again uses a white substrate (or alternatively, a clear substrate), in the form of a powder (3D 
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Systems, 2014).  In addition, the processes of structure formation and coloration in these 

printers differ to those being proposed for the 3D colour food printer.   

Predictive computer colour matching techniques used in the paint, textiles, plastics and ceramics 

industries might be more suitable for use by the 3D colour food printer.  These techniques are 

based on linear, additive models in which the relative contributions of colorants and substrates 

to measured colour are expressed in terms of their light absorption-scatter spectra (McDonald, 

1987; Berns, 2000).  Drawing on a spectral database, either spectral or colorimetric matching 

algorithms are used to select quickly and accurately the colorants, and the quantities of each, 

that are needed to match target colours.  Colorimetric matching, which is the conditional 

matching of tristimulus values under specified illuminant and observer conditions in spite of 

spectral differences, is more commonly used because in most situations the coloration systems 

of the target and match are not identical (McDonald, 1987).  Although measurements of 

absorption and scatter have been used in the analysis of various aspects of food appearance, 

such as the relationship between visual translucency and storage time of tomatoes (Lana et al., 

2006), the determination of pigment composition (Hutchings, 1999) and the prediction of food 

emulsion colour (McClements et al., 1998), predictive computer colour matching has not found 

wider application in the food industry.  Compared to the other industries, the food industry does 

not normally need the same level of precision for matching colours; the much broader range of 

substrates presented by foods has made it difficult to justify development of a spectral database 

for food colorants and substrates (Francis, 1999). 

The aim of the research which is the subject of this chapter was to develop a predictive color 

matching model based on colorimetric matching, which can compute the quantities of primary-

coloured food dyes that need to be added to a model food, in order for the food to match a range 

of target colours.  This work forms the first step in the development of colour matching 

capability for the 3D colour food printer.   Because it serves as an in-principle demonstration of 

the application of computer colour matching to food, the research used only a single food as the 

model substrate: a microwave-baked cake.  Microwave cooking suits the rapidity of 3D 
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printing, while baked goods are an ideal model on which to base 3D printed foods, providing 

potentially a range of desired characteristics in both raw and cooked states, which can be made 

to vary with changes in formulation. 

The specific objectives of this research were:  

 To derive the light absorption spectrum for the model substrate and the unit absorption 

spectra for each of three primary-coloured dyes when these are added separately to the 

substrate;  

 To validate the unit absorption spectra by investigating the colour outputs when the 

dyes are blended within the substrate;  

 To match a set of standard colours using the dye-substrate system and a modified 

colorimetric matching technique; and 

 To evaluate the degree of matching using colour difference formulae. 

4.2. Materials and General Methods 

4.2.1. Dyes 

Brilliant Blue, Ponceau 4R (red) and Tartrazine (yellow) dye powders were obtained as 

complimentary samples (Hawkins Watts Limited, Auckland, New Zealand).  These are 

permitted in processed foods in New Zealand to a maximum of 290 mg per kg (Australia New 

Zealand Food Authority., 2000)  Liquid concentrates were prepared from powders using reverse 

osmosis water.  

4.2.2. Microwave cake substrate 

The recipe for the microwave-baked cake was adapted from Sakiyan et al. (2007).  The recipe 

and its ingredients are described in Table 4.1. All ingredients, except for water, were purchased 

from a local supermarket. 
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Table 4.1  Details of formulation and ingredients for the microwave-baked cake used as the coloration substrate. 

Ingredient Brand and manufacturer Description Amount (g) per quantity 
of batter (yielding six 

individual cake samples)* 
White wheat flour ‘Champion’ brand, 

Goodman Fielder New 
Zealand Limited 

11% protein by weight, 
manufacturer’s analysis 

140 

White cane sugar 
(granulated) 

Chelsea®, New Zealand 
Sugar Company Limited 

 140 

Margarine Meadow Lea®,  Goodman 
Fielder New Zealand 
Limited 

65% vegetable oil, also 
containing beta-carotene 
colour 

35 

Skim milk powder Anchor®, Fonterra Brands 
(New Zealand) Ltd 

0.1 g fat, and 3.8 g 
protein, per 100 ml when 
reconstituted 

16.8 

Egg white (from fresh cage 
eggs) 

Farmer Brown® eggs, 
Waikouaiti, New Zealand 

 12.6 

Baking powder Edmonds®, Goodman 
Fielder New Zealand 
Limited 

Containing diphosphates, 
sodium carbonates, 
sodium aluminum 
phosphate and potassium 
biatrate 

7 

Iodised table salt Cerebos®, Cerebos-
Skellerup Limited, NZ 

Containing salt, anti-
caking agent, potassium 
iodate 

4.2 

Water   126 
Total   481.6  
*This amount is in excess of what was needed for six individual samples, to allow for additional samples in the event 
of any losses. 

 

To prepare the batter, sugar and egg white were first mixed together for 30 seconds using a 320 

Watt hand mixer (Sunbeam™ Beatermix Pro, model JM5900, Sunbeam Corporation Limited) 

set to speed 1 within the high-speed (‘HI’) range.  Melted margarine was added and mixed for 

another 30 seconds.  The remaining pre-mixed dry ingredients and water were then added and 

the batter mixed for 60 seconds at ‘HI’ speed 1, 60 seconds at ‘HI’ speed 2, and then 30 seconds 

at ‘HI’ speed 1.  Three equal-sized portions (mean portion weight 120.2 grams, SD 0.1) were 

weighed from each quantity of prepared batter.  Different dyes or dye blends (as described 

below) were added to each portion.  Each portion yielded two replicate cake samples.  For each 

sample, batter (50.2 grams, SD 0.1) was cooked in a lightly-greased 200 ml glass beaker, and 

two beakers cooked at a time in a 900 W microwave oven (model MW786, Kenwood Limited) 

at 50% power for 2 minutes, with a half turn of the beakers after the first and second 45 

seconds.  Cakes were left to cool to room temperature for two hours.  Beakers were weighed 

before cooking and after cooling to determine weight loss (6.0%, SD 0.7).  Mean measures are 
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‘indicative measures’ based on the samples used in development and validation of the dye 

blending model (Section 4.3 below).  Weight data were recorded for 83 of the 102 batter 

portions prepared, and recorded for all samples before and after cooking (n = 204).   

4.2.3. Colour targets 

Targets for colour matching were 12 glazed ceramic tile colour standards (Series 2, CERAM, 

Staffordshire, UK), each measuring 10 cm x 10 cm.  There were three neutral standards (Deep 

Grey, Mid Grey, Pale Grey), seven chromatic standards (Cyan, Deep Blue, Deep Pink, Green, 

Orange, Red, Yellow), and two colour difference standards (Difference Green, Difference 

Grey).  The standards are normally used to check the performance of colour measuring 

instruments. 

4.2.4. Colour measurement 

The colours of the cake samples and tiles were measured using a Minolta CM-2600d reflectance 

spectrophotometer (Minolta Co., Ltd., Osaka, Japan) with d:8 integrating sphere geometry, 

using standard illuminant D65, the 10 degree standard observer, and an eight mm diameter 

measuring area.  Measured data was captured using SpectraMagic NX software (Konica 

Minolta Sensing, Inc.).  Measurements were made with either the specular component included, 

SCI (for the tiles), or the specular component excluded, SCE (for tiles and cakes).  Reflectance, 

Rλ, was measured between 360 nm and 740 nm (at 10 nm intervals) relative to the white 

calibration plate supplied with the instrument, and CIELAB colour coordinates also measured, 

where L*10 = position on the lightness axis, a*10 = position on the green to red axis, and b*10 = 

position on the blue to yellow axis.  Measurements were made directly on the tile and cake 

surfaces.   

Twelve measurements were made of each tile, on two separate days.  The data were also used in 

a separate study of spectrophotometer performance (results not shown).  The spectrum of mean 

reflectance values, and the mean L*10, a*10 and b*10 values for each tile were calculated from all 

measurements (n = 24).  Cooked cakes were cut in half vertically, and three measurements each 
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made of the two cut surfaces.   Mean reflectance, and mean L*10, a*10 and b*10, for cake samples 

were calculated as described below in Sections 4.3.2 and 4.3.3.  

4.2.5. Calculation of colour coordinates from measured reflectance 

Mean reflectance spectra (Rλ) were converted to X10, Y10 and Z10 tristimulus values following 

CIE standard procedure (ASTM International, 2008), using the visual response curves of the 

standard observer, 10λ, 10λ and 10λ, and the energy distribution of the standard illuminant, Sλ:  

 

 

 

 

Equations 4.1 

Where: 

k is the normalisation constant which assigns the value Y=100 to the perfect reflecting 

diffuser (an ideal white reflecting 100% at all wavelengths), and 

 is the measurement wavelength interval (here 10 nm). 

L*10, a*10 and b*10 values for the CIE 1976 L*a*b* (CIELAB) colour space were calculated 

from X10, Y10 and Z10 using formulae also detailed in the standard (ASTM International, 2008):   
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Equations 4.2 

Where: 

,  and  are the tristimulus values for the nominally white object colour stimulus 

i.e. the spectral radiant power of the illuminant reflected to the observer by the perfect 

reflecting diffuser; 

,  and  are > 0.01 (as usually associated with coloured materials, see 

Literature Review, Section 2.3.3); and 

the illuminant, observer and (spectral) measurement interval (nm) for ,  and  are 

the same as those used for the colours to which ,  and  will be applied.  

4.2.6. Calculation of colour differences 

Colour differences were used to assess the degree of matching between computed and measured 

cake colours in the modeling of dye blending, and between tile targets and cake matches 

(computed or measured) in colorimetric matching.  Colour differences were calculated using the 

following formulae, which are based on the 1976 CIELAB colour space. 

ΔE*ab is an index of total colour difference, and is the Euclidean distance between two points 

(each defined by their individual L*a*b* coordinates) in the CIELAB colour space (Berns, 

2000): 
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Equation 4.3 

In non-food applications, a ΔE*ab difference of three or more units is considered a visually 

unacceptable match (Francis and Clydesdale, 1975).  This tolerance limit has been applied to 

differences between muffin samples (Baixauli et al., 2008), and is a suggested limit for red 

wines (Martínez et al., 2001).  The same criterion was used in this study to determine whether 

or not a match would be visually acceptable.  Values of ΔE*ab indicating a commercial match 

(ΔE*ab = 1), or perceptibly different samples (ΔE*ab = 2) (Francis and Clydesdale, 1975) were 

not used in this study, due to the likely influence of physical differences between tile and cake 

on perceived differences. 

ΔE*ab,10 was also divided into lightness, chroma and hue differences, ΔL*10, ΔC*ab,10 and 

ΔH*ab,10 respectively (Berns, 2000).  Chroma is equivalent to the perceived purity of colour, and 

hue the equivalent to a colour description:  

 

Equation 4.4 

-  

Equation 4.5 

 

Equation 4.6 

CIEDE2000 or ΔE00 ([CIE] International Commission on Illumination, 2001) is the latest in a 

series of improvements to ΔE*ab, designed to give better predictions of visually-perceived 

colour differences.  It applies to data obtained under a set of reference experimental conditions 

(including uniform, non-patterned sample colours, with ΔE*ab differences below five units): 
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Equation 4.7 

The dependence of lightness, chroma and hue differences on lightness, chroma and hue position 

(arising from the lack of visual uniformity in the CIELAB space) are accounted for by 

positional functions ,  and .  ,  and  are parametric factors denoting experimental 

conditions; under reference conditions  =  =  = 1.  The  term is used to improve 

performance in the blue region.  Equations for each term, and worked examples of ΔE00, are 

given by the [CIE] International Commission on Illumination (2001), and by (Luo et al., 

2001a).   

4.3. Development and validation of the dye blending model 

4.3.1. Background 

Colour blending models should be based on a linear relationship between colorant input and 

colour output, specifically spectral output; that is, one where the relationship between input and 

output is scalable, and where the spectral output for mixtures is the sum of the spectra from the 

individual components.  For subtractive blending, spectral data need to be transformed to 

achieve linearity.  For materials that both absorb and scatter light, reflectance measurements are 

transformed using functions based on Kubelka-Munk (K-M) Theory.   For opaque materials, the 

function is: 

 

Equation 4.8 

Where: 

 is the ratio of absorption to scatter at wavelength λ; 
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 is the ‘internal’ or corrected reflectance: K-M Theory assumes that light travels 

only up or down, within a translucent absorbing and scattering layer, perpendicular to 

its plane, and that there is no change in refractive index at the boundaries which would 

otherwise change the direction of travel.  K-M Theory therefore does not account for 

front surface reflections, nor does it account for light reflected back into the sample 

from inside surfaces.   is measured reflectance corrected for these losses, and is 

calculated using the Saunderson correction (Hutchings, 1999): 

 

Equation 4.9 

Where: 

 is reflectance measured with the specular component included (SCI), 

capturing all surface reflections, or without the specular component (SCE), 0 < 

 <1; 

 is the fraction of incident light reflected externally, usually ~0.04 for most 

coatings and plastics (Berns, 2000), which is the maximum value (Hutchings, 

1999);  is removed from the numerator for specular excluded (SCE) 

reflectance measurements (Berns, 2000); 

 is the fraction lost internally through repeated cycles of reflection from the 

inside surfaces, usually between 0.4 and 0.6. 

For opaque and coloured materials, there are two forms of the colour blending model based on 

the K-M function, according to whether dyes or pigments are used.  Pigments, which are used to 

colour paints and plastics, are particulate colorants which selectively scatter as well as absorb 

light.  Separate absorption and scatter coefficients are therefore needed for each colorant, giving 

rise to the two-constant form of the equation (Berns, 2000).  Dyes, which are used to colour 
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textiles and paper, become dissolved in the substrate and therefore contribute negligible scatter 

relative to the substrate.  Only a single constant, the (unit) ratio of absorption to scatter, is 

needed for each dye, which can be referred to simply as the absorption coefficient.  The single-

constant form of the K-M colour blending equation is used here in this chapter, and throughout 

this thesis.  The equation is as follows (Berns, 2000):  

 

Equation 4.10 

Where: 

 is the ratio of absorption to scatter at wavelength λ; 

c is dye concentration; 

subscripts 1, 2, and 3 denote the different dyes; 

 is the absorption coefficient for unit concentration of dye, at wavelength λ; these 

are derived for each dye when added separately to the substrate in a concentration 

series, and validated using dye blends to confirm additivity, as described in the next 

sections. 

4.3.2. Derivation of unit absorption coefficients for dyes in the cake 

substrate 

4.3.2.1. Method 

Brilliant Blue, Ponceau 4R (red), and Tartrazine (yellow) dyes were added separately to raw 

cake batter at 0, and at 1.7, 3.5, 6.9, 13.8 and 27.4 mg/100 g batter (denoted levels ‘1’, ‘2’, ‘3’, 

‘4’ and ‘5’ respectively) (Figure 4.1), representing a doubling concentration series.  Six samples 

were independently prepared for each dye-level combination.  All samples were designed so 
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that final dye levels in the cake fell within the legal limit (290 mg/kg), allowing for weight loss 

(see 4.2.2) after cooking.  However, at the highest level of dye addition, the final level in the 

cake will have exceeded this limit slightly.     

 

Figure 4.1  Samples of a microwave-baked cake containing Ponceau 4R (red), ‘P’, Tartrazine (yellow), ‘T’, or 
Brilliant Blue, ‘B’, food dyes.  Each dye was added to raw cake batter at 1.7, 3.5, 6.9, 13.8 and 27.4 mg/100 g 
batter (denoted by labels 1, 2, 3, 4 and 5 respectively).  Samples ‘P0’, ‘T0’ and ‘B0’ were prepared from the same 
standard microwave cake recipe but do not contain added dye.     

 

Individual reflectance measurements (SCE only) from all cakes were pooled to calculate a 

spectrum of mean reflectance values for each dye-level combination (n = 36).  Mean reflectance 

spectra (SCE) for each dye-level combination were converted to spectra of  values, using 

an adapted form of the K-M function, Equation 4.8: 

 

Equation 4.11 
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For cakes, the reflectance measured with the specular component excluded (SCE), was used in 

place of internal reflectance to approximate  spectra, given the observed lack of reflection 

from the cut surfaces of the cakes, and also of an appropriate  term.   

By way of example, Figure 4.2 shows the mean reflectance spectra, and corresponding  

spectra, for Brilliant Blue.   

 

Figure 4.2  Spectra of percentage light reflectance (top), and corresponding light absorption spectra (bottom), for 
samples of a microwave-baked cake containing Brilliant Blue (‘B’) food dye which was added to raw cake batter 
at 1.7, 3.5, 6.9, 13.8 and 27.4 mg/100 g batter (denoted by labels 1, 2, 3, 4 and 5 respectively).  The cake sample 
which does not contain added dye is labelled ‘B0’.   
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The results for each dye were inspected at selected wavelengths for a linear relationship 

between  and dye concentration.  A linear relationship was not immediately apparent from 

plots such as the one in Figure 4.2 due to the use of a doubling concentration series; it was 

displayed more clearly when the values for the five dyed samples and the un-dyed cake at a 

given wavelength were plotted against dye concentration.  This is shown for Brilliant Blue in 

Figure 4.3.   

 

Figure 4.3  Absorption against dye concentration for the Brilliant Blue dye in the microwave-baked cake, at 
selected wavelengths including the wavelength of maximum absorbance, λmax, for the dye (630 nm). 

 

Unit absorption coefficients, , denoting the increase in absorption, , for every 

milligram of dye in 100 grams of cake batter, were determined as the slopes of the lines at each 

measurement wavelength by a rearrangement of a shortened form of Equation 4.10 (McDonald, 

1987): 

 

Equation 4.12 
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At wavelengths where was more than 50% of the value at λmax for each dye, the value of 

the squared Pearson correlation coefficient, R2, for the fitted model was either 0.99 or 1.00, 

confirming the relationship between and dye concentration as being linear.  At other 

wavelengths (e.g. at 460 nm in Figure 4.3) the of the sample appears not to change with 

increase in dye concentration; this indicates that  – the value at the intercept - is due 

entirely or almost entirely to the un-dyed substrate.     

In reality, values of  might approximate the relationship between  and dye 

concentration at wavelengths where the relationship appears to deviate from linearity.  This 

deviation is seen at around λmax (630 nm and 640 nm) for Brilliant Blue (Figure 4.3) and is likely 

due to slight shifts in λmax that can occur with changes in dye concentration. 

4.3.2.2. Results 

The unit absorption, , spectra for Brilliant Blue, Ponceau 4R and Tartrazine, and the 

absorption, , spectrum of the cake substrate, are shown in Figure 4.4.  Although these 

spectra were derived using means for pooled cake reflectance data (Section 4.3.2.1), measures 

of uncertainty were not available for the absorption spectra themselves because absorption 

spectral data were not mean data (Equation 4.11).   

Further analysis provided the standard errors that are displayed superimposed on the dye spectra 

in Figure 4.4.  Pooled cake reflectance data for each dye-level combination (n = 36) were 

regrouped as three replicates (each n = 12, corresponding to the measurements from each pair of 

samples prepared from a quantity of batter, see Section 4.2.2), and unit absorption spectra for 

the three dyes derived for each replicate.  Standards errors were for the mean of the three 

replicate spectra for each dye.   
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Figure 4.4  The unit absorption spectra for Brilliant Blue, Ponceau 4R (red) and Tartrazine (yellow) dyes in the 
microwave-baked cake (top) and the absorption spectrum for the cake without added dye (bottom).  Standards 
errors displayed for the unit absorption spectra are for mean spectra based on a regrouping of the original 
reflectance data (see main text).   

 

4.3.3. Validation of unit absorption coefficients by investigation of dye 

blends 

4.3.3.1. Methods 

To validate the spectra of unit absorption coefficients for the dyes, spectra were used to compute 

(predict) the colours of cakes containing selected dye blends, and predictions then compared 

with the measured colours of cakes prepared using the same dye blends.  Two-dye blends 
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contained dyes (X and Y) in the following combinations: X1Y1, X1Y4, X2Y3, X4Y1 and 

X4Y4.  Selected three-dye blends contained dyes in 1:1:1 and 1:1:4 combinations.  Again, 

blends were designed so that the dye levels in the cakes were within the legal limit, post 

cooking. 

To compute colours, the dye concentrations for the blends, together with the unit absorption 

spectrum of each dye, and the  spectrum of the cake substrate, were substituted into 

Equation 4.10 to give the computed spectrum for the blend.  This was converted to 

computed reflectance, by the inverse of Equation 4.11, and then to computed ,  and   

and L*10a*10b*10 values for the blend (Equations 4.1 and Equations 4.2). 

Four cakes were prepared for each two-dye and three-dye blend described above.  L*10, a*10 and 

b*10 were measured with the specular component excluded.  Mean measured L*10, a*10 and b*10 

was calculated for each blend, using individual replicate cakes (n = 4).   

Computed L*10a*10b*10 values were compared with the mean measured L*10a*10b*10 (SCE) of 

the samples by the colour difference indices ΔE*ab,10 and ΔE00, to test the strength of the 

predictions, and therefore the validity of both the dye unit absorption spectra and the blending 

model.  

4.3.3.2. Results 

Figure 4.5 shows the positions of the L*10a*10b*10 cake colours computed using the K-M 

blending model (Equation 4.10) as the first step, and the corresponding mean measured cake 

colours in L*a*b* space.  All individual computed and measured L*10a*10b*10 values are given 

in Appendix Table 4.5.   Also shown in Figure 4.5 is the position of the un-dyed cake substrate.   

Visually, the cake without added dye was pale yellow in colour (Figure 4.1), with mean 

measured L*10, a*10 and b*10 values of 77.4 (SD 3.3), 0.1 (SD 0.3) and 20.7 (SD 1.6) units 

respectively (n=17).  
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The ΔE*ab,10 and ΔE00 differences between computed and measured cake colours are shown in 

Table 4.2.  Total differences between computed and measured L*10a*10b*10 colours ranged from 

0.6 to 2.9 for ΔE*ab,10, and from 0.4 to 1.9 for ΔE00.  All except one of the ΔE*ab,10 differences 

were less than three units, indicating a visually acceptable match.  These results indicate that the 

spectrum of unit absorption coefficients derived for each of the dyes separately can be used to 

predict the colours of blends of any two or three of the dyes, in the combinations tested.   The 

size of the difference, and therefore the strength of the prediction, appears to depend on the dye 

blend.  For two-dye blends, Tartrazine and Brilliant Blue blends resulted in the largest ΔE*ab,10 

and ΔE00 differences, including a ΔE*ab,10 of three units for one of the blends.  Differences 

between computed and measured colours could be due to dye-dye interactions that cannot be 

predicted from the dyes individually (Butts, 2010), or to the use of linear unit absorption 

coefficients for dyes having non-linear relationships between and dye concentration at 

some wavelengths.   

Separation of ΔE*ab,10 differences into differences between computed and measured L*10, a*10 

or b*10 reveal that for all but two of the blends, at least one of the constituent differences is 

statistically significant, despite ΔE*ab,10 being visually significant for only one of the blends 

(Appendix Table 4.5).  This suggests that the differences themselves were not large enough in 

magnitude to increase the ΔE*ab,10 difference towards visual significance.  Differences between 

computed and measured L*10, a*10 or b*10 that are statistically significant could still prove 

useful in refining the dye blending model.  For the Tartrazine and Brilliant Blue blends, 

computed values were found to consistently, and significantly (except in one case), 

underestimate measured a*10 and to overestimate measured b*10 (Figure 4.5 and Appendix Table 

4.5).  When the trends appear consistent for given blends, and cause a discrepancy between 

computed and measured colours, deviations can be quantified and corrections built into colour 

matching software (Butts, 2010).      
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Table 4.2  ΔE*ab,10 and ΔE00 differences between cake colours computed using the Kubelka-Munk blending model 
from selected dye blends, and the measured colours of cakes prepared using the same dye blends.  Dye blends 
are described in the main text.      

Two dye blends (n=4) Three dye blends (n=4) 
Ponceau 4R, red (P) and 

Brilliant Blue (B) 
Tartrazine, yellow (T) and 

Ponceau 4R 
Tartrazine and Brilliant 

Blue 
 ΔE*ab,10 ΔE00  ΔE*ab,10 ΔE00  ΔE*ab,10 ΔE00  ΔE*ab,10 ΔE00 

P1B1 0.6 0.6 T1P1 1.7 0.8 T1B1 2.9 1.3 P1B1T4 2.4 1.9 
P1B4 0.9 0.4 T1P4 0.8 0.7 T1B4 1.7 1.0 T1B1P4 1.1 0.6 
P2B3 1.0 0.8 T2P3 1.0 0.5 T2B3 2.4 1.0 T1P1B1 1.2 0.8 
P4B1 1.4 1.0 T4P1 1.7 0.9 T4B1 1.9 1.2 T1P1B4 1.6 1.3 
P4B4 1.1 0.9 T4P4 1.6 0.8 T4B4 2.4 1.5 T3P3B3 2.0 1.8 
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4.4. Matching cake colours to tile colours using the colorimetric 

method  

4.4.1. Background 

The method used to match tile colours with cakes containing dye blends, was colorimetric, 

rather than spectral, matching.  Colorimetric matching is used when the target and matching 

systems, and therefore their spectral properties, are different to one another (see Literature 

Review, Section 2.4.4.2).  Target and match can still be made to match conditionally in their 

tristimulus values under a single set of viewing and illumination conditions.   

The tristimulus values being matched are the pseudo- ,  and  tri-stimulus values , and 

 of the target, rather than ,  and  proper (Equations 4.1).  , and  differ from ,  

and  in that they have the reflectance term replaced by  or  spectra.  A partial 

derivative weighting function, , is included in the calculation of , and  to improve 

matching (Allen, 1966): 
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Equations 4.13 

 

In colorimetric matching Equations 4.14 are solved for the unknown dye concentrations:  

 

 

 

Equations 4.14 

More typically, colorimetric matching is an iterative process in which larger differences 

between the target and prediction are gradually minimised (McDonald, 1987).  According to the 

Allen algorithm (Allen, 1966), the inclusion of the weighting function, , generates a more 

effective starting recipe, which can reduce the number of iterations required.  At each iteration 

step a correction matrix is applied until the colour difference between target and match falls 

within a predetermined limit.  This will be explained in more detail in Chapter Six, Section 

6.8.1.  

4.4.2. Methods 

In this study only the Allen algorithm was used to generate recipes for each target, without any 

subsequent iterations.  Because the range of achievable cake colours was unlikely to match the 

range of the tile colours, it was expected that negative dye concentrations would be computed; 

negative concentrations can stop the iteration process (McDonald, 1987).  Accepting the starting 

recipe as the solution was also designed to reduce computational load.  Furthermore, three sets 

of ,  and  values were computed for each tile colour target, based on  derived from 
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Equation 4.8 Equation 4.9 Figure 4.6 , and directly from (SCI) and from (SCE) 

without using the Saunderson correction.  The latter approaches were used given the obvious 

physical differences between the tiles and cakes, which were unlikely to have similar 

contributions of surface reflectance and internal losses to their measured reflectance.  This 

meant that three separate recipes were computed for each tile colour target.  Any necessary 

adjustment of recipe concentrations to within usable range meant up to six possible L*a*b* 

match predictions were generated for each target colour.   

4.4.2.1. Steps used to match each target colour 

Figure 4.6 shows a flow diagram of the steps used to compute cake matches for the tile colours. 
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Figure 4.6  Flow chart outlining the steps used to compute dye concentrations for cake colours to match tile 
colours, based on the colorimetric approach.  
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4.4.2.2. Sample photography 

Photographs were taken of the tile colour standards (matching targets) and the microwave-baked 

cake samples prepared to match the tiles.  Cake samples were those prepared using dye 

concentrations computed on the basis of measured reflectance of the tiles.  Photographs were 

taken indoors in non-standardised, combined fluorescent/daylight conditions with an Olympus 

EP-1 camera.  A neutral gray card with 18% reflectance (Jessops, Leicester, England) was used 

to set the white balance.  Images (4032 x 3024 pixels) were taken with the following settings: 

ASA 100, lens aperture f8, shutter speed 1/6 sec, without flash, and saved in the memory card as 

RAW files.   Images were downloaded using a USB digital reader and compensation applied in 

the purple-green region using Adobe Photoshop Lightroom 3, to correct for a slight colour cast 

affecting the white balance.  Files were saved in JPEG format. 
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4.4.3. Results and Discussion 

4.4.3.1. First match predictions based on computed concentrations 

Table 4.3 shows the computed ΔE*ab,10 and ΔE00 differences between tile colours and the cake 

colours computed to match the tiles.  These cake colours were the first solutions computed from 

colorimetric matching before any adjustments were made for negative or out-of-range dye 

concentrations.  Cake L*10a*10b*10 computed using X10
P, Y10

P and Z10
P values of the tile target 

derived from measured reflectance - Rλ,m(SCI) and Rλ,m(SCE) – in place of internal reflectance, 

Rλ,i, gave closer matches to tiles than computed L*10a*10b*10 derived from Rλ,i per se, for 11 of 

the 12 tiles (Rλ(SCE)) and for all 12 tiles (Rλ(SCI)).   Eight of the 12 matches (Rλ(SCE)) and 

seven of the 12 matches (Rλ(SCI)) had ΔE*ab,10 of less than three units, indicating the colour 

matching algorithm gave good first solutions.  For nine of the 12 tiles, the match for Rλ(SCI) 

was better than for Rλ(SCE).   

All computed concentrations had been used to compute SCE cake colours: concentrations were 

substituted into the colour blending equation (Equation 4.10) and the resulting  

substituted into the inverse of Equation 4.11 to give Rλ,m(SCE).  As explained in the methods, 

Equation 4.11 for the cake defined a relationship between  and measured (SCE) 

reflectance, rather than between  and corrected reflectance (Equation 4.8) as normally.  

Had the matching system been a tile rather than a cake, concentrations computed based on 

target tile corrected reflectance would have sufficed, and computed for the matching tile 

would have been converted to internal (corrected) reflectance before conversion to computed 

measured reflectance (using the inverse of Equation 4.9).  It was thought not appropriate to use 

Equation 4.8 when computing cake reflectance using dye concentrations based on the corrected 

reflectance of the tiles, as the cakes were regarded as not having any significant specular 

reflectance to ‘add back’.  This approach however, resulted in the poorest computed matches; in 



 

161 
 

hindsight both the specular and internal reflectance of the tiles may have been needed when 

computing the cake colours.   

The alternative approach of replacing the internal reflectance of the tiles with their measured 

reflectance (SCI or SCE) in the K-M equation was an attempt to ‘capture’ the overall visual 

colour appearance of the tiles (and the associated dye concentrations) in the cakes, and indeed 

resulted in closer computed matches between the two.  Because these findings support the use 

of Rλ(SCI) and Rλ(SCE) of the (tile) target, in place of Rλ,i,, in the matching of cake colours to 

tile colours, subsequent discussion is based on target Rλ(SCI) and Rλ(SCE) only.       
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Table 4.3  ΔE*ab,10 and ΔE00 differences between measured L*10a*10b*10 tile colours (SCI and SCE) and the cake 
colours (SCE) computed to match the tiles, before any adjustments were made for negative or out-of-range dye 
concentrations.  Matching was targeted at either the corrected (internal) reflectance, Rλ,i, or measured 
reflectance - Rλ,m(SCI) and Rλ,m(SCE) – of the tiles.  

Form of tile target reflectance used 
to compute first solutions for cake 
L*10a*10b*10 (SCE) matches:  

Rλ,i = Rλ,i Rλ,i = Rλ,m(SCI) Rλ,i = Rλ,m(SCE) 

Form of measured tile L*10a*10b*10 
against which computed cake 
L*10a*10b*10 (SCE) compared: 

SCI SCE SCI SCE 

Cyan 
ΔE*ab,10 7.4 11.0 2.1 2.5 

ΔE00 5.8 10.0 1.5 1.7 

Deep Blue 
ΔE*ab,10 35.7 16.7 3.3 26.5 

ΔE00 13.5 7.6 2.8 7.8 

Deep Grey 
ΔE*ab,10 3.9 10.5 3.3 3.7 

ΔE00 4.3 8.7 3.9 4.4 

Deep Pink 
ΔE*ab,10 9.8 11.8 4.3 4.7 

ΔE00 6.2 10.7 2.9 3.0 

Difference Green 
ΔE*ab,10 8.3 11.1 2.3 2.5 

ΔE00 6.0 10.1 1.4 1.5 

Difference Grey ΔE*ab,10 6.8 10.9 1.7 2.0 
ΔE00 5.8 9.5 2.0 2.4 

Green 
ΔE*ab,10 8.1 11.0 2.3 2.5 

ΔE00 6.0 10.2 1.5 1.5 

Mid Grey 
ΔE*ab,10 6.8 11.0 1.6 2.0 

ΔE00 5.9 9.6 2.1 2.6 

Orange 
ΔE*ab,10 17.2 23.7 3.9 4.9 

ΔE00 10.4 10.6 2.5 3.2 

Pale Grey 
ΔE*ab,10 8.4 10.3 1.8 1.2 

ΔE00 7.4 8.5 1.9 1.2 

Red 
ΔE*ab,10 17.7 19.5 7.9 2.8 

ΔE00 7.5 14.0 4.7 1.7 

Yellow 
ΔE*ab,10 15.6 15.2 2.7 1.7 

ΔE00 7.7 8.4 1.6 0.6 
 

4.4.3.2. Second match predictions based on adjustments to computed 

concentrations 

For some colours, first recipes prescribed negative dye concentrations, and for others, the sum 

total of concentrations exceeded the legal maximum for processed foods.  Negative 

concentrations can result when trying to adjust a starting recipe which is far away from the 

target in colour space (McDonald, 1987).  Figure 4.7 shows the positions in the three-

dimensional L*a*b* space of the tile colours relative to the gamut of cake colours that can be 

achieved by the addition of dye blends.  The colours of cakes containing a single dye or two-dye 

blend at a range of concentrations up to the allowable maximum, were used to construct the 

view of the lightness range; this boundary is comprised of the colours with the minimum and 
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maximum a*10 value at each value of L*10.  This is a more detailed view of the lightness range 

than the one given in Kim et al. (2012) in which the range was defined only by the lightest and 

darkest cake samples.  The chromatic limit of the boundary is defined by the colours of cakes 

containing a single dye or two-dye blend at the maximum allowable concentration only.  Those 

tile colours which lie outside the gamut of cake colours are those for which out-of-range dye 

concentrations were computed.   
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Figure 4.7  Positions in the three-dimensional L*a*b* colour space of the measured target tile colours relative to 
the gamut of computed colours achievable in the cake-dye matching system.  Values are L*10a*10*b*10.  (a) 
Frontal a*L* view of the lightness range; (b) Chromatic a*b* view.   

 

Adjustments involved increasing individual negative dye concentrations to zero, and scaling the 

new dye totals which were in excess of the legal maximum of 27.4 mg/100 raw cake batter, 

back to this level, whilst retaining the relative proportions of the non-zero quantity dyes.  At this 
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point Pale Grey was excluded as a matching target; the first recipe computed for this colour 

called for negative quantities for all three dyes which were then adjusted to zero.  As expected, 

for the other out-of-gamut targets (Cyan, Deep Blue, Deep Grey, Deep Pink – SCE only, Mid-

Grey – SCI only, Orange, Red and Yellow), the effect of adjusting concentrations was to 

increase the ΔE*ab,10 and ΔE00 differences between tile colour and computed cake colour.  

Discussion is focused here on the ΔE*ab,10 differences which are presented in Table 4.4, with 

ΔE00 differences given in Appendix Table 4.7.  The resulting increase in ΔE*ab,10 ranged from 

0.5 and 0.8 units respectively for Mid Grey SCI and Deep Pink SCE (suggesting these targets 

were not very far out-of-gamut), to 30 units for Orange SCE.  For Orange, as well as for Deep 

Blue and Deep Grey, the increase in ΔE*ab,10 for the SCE colour was larger than that for the SCI 

colour.  Darker, high-gloss tile colours are not only lower in their SCE-measured reflectance 

and SCE-measured lightness relative to their lighter-coloured counterparts, they are subject to 

much larger increases in these measures when the specular component is included as uniform 

white light (MacDougall, 2002a).  Because  is inversely related to reflectance, ,  

and  values of the tile targets would have been higher for Rλ(SCE)-based predictions, 

demanding higher concentrations for matching (Equation 4.8, Equations 4.13 and Equations 

4.14).  Much larger changes were therefore needed to bring these concentrations to within 

usable range.   

4.4.3.3. Comparison of computed (predicted) differences between tile and cake 

colours with measured (actual) differences 

ΔE*ab,10 differences between measured tile and measured cake colours (‘measured ΔE*ab,10’), 

excluding Pale Grey, are also given in Table 4.4 and again alongside ΔE00 differences in 

Appendix Table 4.7.  Measured cake L*10a*10b*10 values are given in Appendix Table 4.6.  In 

many cases, measured cake L*, a* or b* values were found to differ significantly to their 

computed values.  Despite this, measured ΔE*ab,10 values were in good agreement with ΔE*ab,10 

differences between measured tile and computed cake colours (‘computed ΔE*ab,10’); for 19 out 
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of the 22 colours (SCI and SCE), the difference between computed ΔE*ab,10 and measured 

ΔE*ab,10 was less than three units.  Among the remaining colours, the difference was as high as 

nine units for Orange SCE, though computed ΔE*ab,10 and measured ΔE*ab,10 were of a similar 

order of magnitude, at 35 and 26 units respectively.  This suggests that computations for some 

colours need refinement, or that a criterion other than a ΔE*ab,10 difference of three units is 

needed to evaluate computed differences as predictors of measured differences.   
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4.4.3.4. Comparison of tile colours with measured colours of prepared cake matches 

For tile colour targets that were originally within the gamut of the cake-dye system, differences 

between tile colours and measured colours of cakes that were prepared to match the tiles ranged 

from 1.4 to 7.3 units for ΔE*ab,10 and from 1.6 to 4.8 units for ΔE00, across SCI and SCE 

colours.  For targets that were originally out-of-gamut, differences between cake and tile colours 

ranged from 3.4 to 37.1 units for ΔE*ab,10 and from 3.7 to 20.7 units for ΔE00.  ΔE00 values are 

given in Appendix Table 4.7.   

A sample photograph of the tile colour standards and microwave-baked cake samples prepared 

to match the tiles is shown in Figure 4.8.  The cake samples shown in Figure 4.8 were those 

prepared using dye concentrations computed on the basis of the measured reflectance of the 

tiles, with the specular component included (SCI).  Overall these cake samples were closer 

matches to the tiles, as indicated by the ΔE*ab,10 differences between measured tile L*10a*10b*10 

(SCI) and measured cake L*10a*10b*10 (SCE) (Table 4.4).  

 

Figure 4.8  Tile colour standards and microwave-baked cake samples prepared to match the tiles, on the basis of 
measured reflectance (SCI) of the tiles.  Values are ΔE*ab,10 differences between tile and cake colours.     
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4.5. General Discussion: Visual implications 

4.5.1. Interpretation of total colour differences between tile and cake 

colours   

Ultimately, the goal of computer colour matching is to achieve a good visual match.  The 

convenience and speed of computer colour matching is balanced against the need for a colour 

difference index applied to the computed match which represents the degree of the visual match 

between the colours of two samples.  This discussion is focused largely on the ΔE*ab,10 

differences between tile and cake colours, rather than on both the ΔE*ab,10 and ΔE00 differences, 

because tolerance limits are available for ΔE*ab,10 albeit mostly from non-food industries.  Put 

simply, tolerance limits indicate the limit of an acceptable colour match.  These limits can vary 

according to the application: while a ΔE*ab,10 of three units or more is considered a visually 

unacceptable match in non-food applications (Francis and Clydesdale, 1975), the tolerance limit 

can be as low as less than one ΔE*ab,10 unit in the automotive industry (for a commercial match).  

In the middle of this range, a ΔE*ab,10 of two units can indicate a perceptible difference (Francis 

and Clydesdale, 1975). 

The physical differences between target and matching systems (tile and cake respectively) were 

very likely to influence how the differences in colour between them would be perceived, despite 

best matching efforts.  Differences in the range of colours (i.e. the colour gamut) that can be 

achieved in each system also need to be taken into account.  In 3D colour food printing also, 

target and match might not necessarily be viewed side-by-side, and the perception of each 

colour voxel might be influenced by the colours of the surrounding voxels.  Therefore, applying 

a tolerance limit in this study which is higher than that for a visually perceptible difference was 

reasonable.  Without the benefit of having established an appropriate tolerance limit for use in 

this study with a panel of observers, this study was instead guided by values from the literature.  

The tolerance limit chosen was a ΔE*ab,10 difference of three units, which was also used by 

Baixauli et al. (2008) for a bakery type product (muffins) and by Martínez et al. (2001) for red 
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wines.  It should be noted however that while this limit was established for red wines on the 

basis of both observer and instrumental data, for the muffin work the reference for the three-unit 

limit on ΔE*ab,10 was also Francis and Clydesdale (1975) with no explanation given as to 

whether this tolerance limit is actually suitable for muffins.   

Eight of the original 24 tile target L*10a*10b*10 colours (across SCI and SCE) were within the 

cake colour gamut.  Of these eight colours, seven had a ΔE*ab,10 difference between tile colour 

and measured cake colour of more than three units.  For SCI and SCE tile colours that were 

originally out-of-gamut, the ΔE*ab,10 differences between tile colour and measured cake colour 

ranged from 3.4 to 37.1.  As expected, these latter differences were comparatively large as a 

result of having to adjust concentration outputs from colorimetric matching. Visual inspection 

of the matches between tile and cake, for the SCI colours at least (Figure 4.8) suggests that these 

matches are closer than are indicated by their ΔE*ab,10 differences, and that new, more 

appropriate tolerance limits, or alternatively another colour difference index, are needed.  The 

tolerance level of three ΔE*ab units has typically been used to compare samples of the same 

type, and might be too strict to compare samples such as the tiles and cakes, which differ 

physically.  A new tolerance limit could take into account that in baked goods, measured 

colours are found to be darker than visually perceived colour; instrumentally-measured colour 

averages the effect of surface crumb texture by including the bubbles, yet visual colour is seen 

as separate from the bubbles (MacDougall, 2002b).  Formulae for the total difference between 

samples that differ in colour and surface texture have been proposed (Huang et al., 2010), which 

are based on physical measurements of the samples, and which could be used to predict visual 

differences. 

4.5.1.1. The use of ΔE00 vs. ΔE*ab,10 

The need for a more precise colour difference index, such as ΔE00, in food applications warrants 

further consideration (MacDougall, 2002a).  Measures of ΔE00 were included in this study 

because ΔE00 is the most recent colour difference formula, providing an improvement on 

previous colour difference formulae.  As was the case here, the size of the ΔE00 difference is 
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usually smaller than the ΔE*ab,10 difference for a given comparison between two samples, but 

the units for the two indices are on different scales.  Strictly speaking, ΔE00 applies to uniform 

surface colours with ΔE*ab,10 differences below five units.  With the exception of a small subset 

of the ΔE*ab,10 differences between tile colours and measured cake colours being less than five 

units, the experimental conditions in this study differ to the reference conditions to which ΔE00 

applies.  This will affect the performance of ΔE00 as an indicator of visually-perceived colour 

differences ([CIE] International Commission on Illumination, 2001).       

4.5.2. Differences in lightness, hue and chroma   

The ΔE*ab,10 and ΔE00 formulae give an index of total colour difference, incorporating lightness, 

hue and chroma differences, but do not indicate the relative contributions of each.  Table 4.4 

also shows the ΔE*ab,10 differences between tile colours and measured cake colours expressed in 

terms of lightness, chroma and hue differences.  For Cyan and Orange, ΔE*ab,10 stemmed 

predominantly from hue and chroma differences.  Lightness difference was the largest 

contributor for Deep Grey SCE, whereas lightness and chroma largely influenced the difference 

for Deep Blue and Red SCE.  Yellow colour difference was most influenced by lightness and 

chroma differences, to a similar extent for the SCI and SCE colours; the SCI and SCE colours 

also displayed similar ΔE*ab,10 differences between tile and cake L*10a*10b*10.  For future 

reference, ΔE00, like ΔE*ab,10, can also be expressed as separate lightness, hue and chroma 

differences. 

Tiles and cakes could differ also in the relative importance of lightness, chroma and hue in the 

visual perception of their colours, with implications for interpreting the degree of overall colour 

matching between tiles and cakes.  Even within foods, hue is much more important visually for 

some foods (such as tomato juice), and lightness more so for others (for example, roasted 

ground coffee and canned tuna) (Francis and Clydesdale, 1975).  Furthermore, humans are able 

to better detect changes in hue and lightness, but less so changes in chroma.  With the 

parametric factors in the formula for ΔE00 kept as kL = kC = kH = 1 (as in reference experimental 

conditions), lightness, chroma and hue were assumed to be of equal importance for both tile 
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colours and cake colours in this study.  Further work is needed to determine parametric factors 

more appropriate to comparing food colours to standards. 

4.5.3. The appropriateness of using tile colours as matching targets 

For glossy materials such as the tiles, their colours measured with the SCE may have been the 

more appropriate as matching targets; the exclusion of specular reflections is equivalent to an 

observer being able to see mirror reflections and having to move the sample at different angles 

to observe the colour (Berns, 2000).  The conditions in which the visual equivalent of SCI 

measurements can occur are rare in reality (Berns, 2000).   

The tiles may appear to have been an unusual choice of target for colour matching; compared to 

cake colours, tile colours were uniform and glossy, with more than half being out-of-gamut.  

The tiles were not specially procured for this project; a set was available within the Institute and 

therefore a set of useful colour standards was already accessible.  Out-of-gamut colours as 

matching targets were not to be avoided as the problem of out-of-gamut colours will be 

encountered in the transcribing of screen or image colours to food colours by the 3D colour 

food printer.      

4.6. Conclusion 

The (computed) ΔE*ab,10 colour differences based on the first outputs from colorimetric 

matching indicate that good visual matches to tiles could be achieved using the cake-dye 

matching system.  This implies that colours can be reproduced in this food system to an 

acceptable degree.  The findings validate the use of the derived unit absorption spectra of the 

dyes, and the use of the colorimetric matching technique.  However an extra step may be 

required in that colorimetric matching should be aimed at the measured reflectance of the tile 

target (with the SCI or SCE) rather than its corrected reflectance, due to physical differences 

between the target and matching systems. Adjustment of computed concentration outputs can 

result in large ΔE*ab,10 and ΔE00 colour differences for out-of-gamut colours, but the true visual 

impact remains to be assessed.  Visual inspection of colour matches between tiles and prepared 
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cake samples suggests that the matches might be closer than are indicated by their measured 

ΔE*ab,10 differences (across within-gamut and out-of-gamut tile colours), and that the tolerance 

limit of three ΔE*ab,10 units needs to be revised for this type of matching scenario.    

In 3D colour food printing a voxel must be coloured to match a target contained in an image file 

rather than a glossy target, and images might also contain out-of-gamut colours.  On balance it 

appears that the colorimetric algorithm overlaid by adjustment of computed dye quantities to 

remain within legal limits, or to zero where a negative concentration is called for, will indeed 

provide a rapid and accurate calculation tool.  Ensuring no voxel contains an unsafe dye amount 

will ensure the entire printed food item remains compliant. 

In the following chapters colour gamut mapping is investigated as a technique for handling 

target colours (labelled ‘original’ colours in a mapping context), especially out-of-gamut 

colours, before dye recipes are computed for these colours.  Colour gamut mapping, used in the 

cross-media colour reproduction of images, aims to replace each out-of-gamut colour with the 

best equivalent of that colour within the range achievable by the reproduction system.  Selection 

of the method to find the ‘best equivalent’ is made according to the attributes of the original 

colours (and of the relationships between them) that are to be retained, or preserved, in the 

reproduction. 

To address some of the issues raised by using samples with surface texture (cakes) to match 

colour-uniform targets (tiles), work on colour gamut mapping initially uses a simpler food 

system without surface texture, a gel, to replace the cake as the reproduction system (previously 

referred to as the ‘matching system’).  In keeping with the purpose of 3D colour food printing, 

where colour outputs need to be produced for any specified combination of food characteristics, 

the gel system will allow the impact of changing the level of a single characteristic on possible 

colour outputs to be seen.  Later, to consolidate findings, work returns to the cakes to compare 

the solutions from colour gamut mapping with those from colorimetric matching.  

4.7. Appendix  
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Chapter Five: Colour gamut boundary computation allowing for 

the effects of browning 

5.1. Introduction 

The work of the previous chapter demonstrated that by using a food substrate, together with 

primary food dyes and a computer-based coloration method appropriate to the development of a 

3D colour food printer, target colours could be matched satisfactorily by the combination of the 

substrate and dyes, as long as the targets were within the colour gamut of the substrate-dye 

system.  For out-of-gamut colours, much larger colour differences between target and match 

resulted from having to adjust computed dye quantities to remain within legal limits.  

The cake formulation that was used as the substrate for the previous chapter provided only one 

example from a class of substrates – baked goods - that are potentially suitable for 3D colour 

food printing.  The printer however is intended to provide fully customised outputs not only in 

terms of colour, but also in the selection of substrate ingredients, in order to meet specifications 

for nutrition, taste and flavour, and texture.  Changes in formulation might change substrate 

characteristics and in turn change the colour output, even though it might be desirable to 

reproduce the same image or design in different substrates.  Examples of the physical effects of 

these types of changes on colour rendition include the decrease in colour intensity with 

increasing droplet concentration in emulsions (McClements et al., 1998), the higher lightness of 

dyed fabrics made with finer fibres when compared to fabrics made of coarser fibres (Li et al., 

2009), and the dilution of colour intensity when a smooth, glossy, coloured surface is 

roughened, increasing light scattering.  These effects are seen when dye concentration is kept 

the same between the different sample variants.  The printer will need to have the ability to react 

to changes in the substrate by computing and adjusting the dye quantities that are needed, to 

produce as close as is possible to the same colour output.   
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Colour gamuts will also very likely change with changes in substrate characteristics.  For 

example, a darkening of substrate colour, combined with restrictions on the level of dye 

addition, might be expected to decrease the range of colours that are achievable when dyes are 

added, when compared with a lighter coloured version of the substrate.  Therefore a vital part of 

printer capability will be the handling of out-of-gamut colours, a step that needs to be taken 

before dye quantities can be computed for these colours.  This chapter, and the following 

chapters, investigates more closely the subject of colour gamuts, and of colour gamut mapping, 

the process by which out-of-gamut colours are replaced with in-gamut colours (Morovic, 2003), 

in the context of 3D colour food printing.  As in the previous chapter, the approach involves 

applying techniques from a non-food application, which this time is the cross-media colour 

reproduction of images.  Different media, such as on-screen displays and print, usually differ in 

their colour gamuts, often making gamut mapping necessary.  Various techniques are available 

for mapping, and for the computation of the gamut boundary (Morovic, 2003). 

The intention in this thesis work was to take colour gamut boundary and colour gamut mapping 

data analysis a step further, and to see whether these could be used to develop simple 

transformations by which dye quantities are adjusted for a given substrate characteristic.  These 

would form part of an overall colour matching algorithm for the printer, which would be 

comprised of different transformations for different characteristics.  The characteristic which 

was the subject of this research is browning.  Browning in baked goods is the combined 

darkening and reddening of substrate colour caused by Maillard and caramelisation reactions 

which also contribute to flavour development.  Furthermore, changes in formulation designed to 

improve nutritional quality (as one might want to do with the 3D printed food) target ingredients 

which are also involved in colour formation.  For example measured lightness and yellowness 

of crumb decreases, and crumb redness increases, with increasing substitution of polydextrose 

for sugar in high ratio cakes (Hicsasmaz et al., 2003), and with oxidised oat β-glucan 

supplementation of wheat-flour sponge cakes (Lee et al., 2011).  Similar effects are seen with 
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increasing substitution of chickpea flour for wheat flour in bread (Mohammed et al., 2012) 

except that crumb yellowness increases.   

As a first step in colour gamut research in this thesis, the aim of the work in this chapter was to 

compute the colour gamut boundary when the same blends of dyes were added to variants of a 

model substrate which differed in their level of browning.  To date, no-one has published a 

gamut boundary calculation for a coloured food.  Appropriate model substrates and methods for 

colour gamut boundary computation needed to be developed and established.  A model 

substrate was needed that could display the browning attribute in isolation, to different degrees, 

including a completely un-coloured version against which to compare the effects of browning.   

In the previous chapter the colour gamut boundary that was drawn for the cake-dye system was 

based on only a few points.  The computation of a more detailed boundary would allow colour 

gamut mapping techniques to be applied to provide better, closer solutions for each tile colour, 

however the number of individual points (colours) required was not known.  For non-food 

media, indications are that around 1,000 colours are needed, whether these form a subset of the 

gamuts of image colours and of imaging media (Morovic, 2003), or are entire sets of colours, 

such as the 1,114 colours of the Pantone Formula Guide®.  For foods coloured with synthetic 

food dyes, legal limits on dye addition naturally impose a limit on the range of colours that can 

be achieved; therefore it should be possible to describe the boundary using samples containing 

up to and including the maximum allowable dye quantity, without the need to sample the entire 

gamut.  In the absence of a published gamut calculation for coloured foods a targeted spacing of 

three ΔE*ab,10 units or less between gamut boundary colours could be used potentially as a 

‘sampling rule’ for food colours, with a ΔE*ab,10 of three units being considered one limit of a 

visually acceptable match (Francis and Clydesdale, 1975).     

For practical reasons, the colour gamut boundaries in this study were comprised of colours that 

were computed using the Kubelka-Munk (K-M) linear, additive blending model, rather than the 

measured colours of real samples.  Therefore the first objectives were to derive the absorption 
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spectra for the variants of the model substrate, and to derive and validate the unit absorption 

spectra for the primary dyes in each variant.  The next objectives were to validate the 

consistency of the unit absorption spectra of each primary dye across all the substrate variants, 

and then to compute the colour gamut boundaries for all variants when they contain the same 

blends of the primary dyes.   

5.2. Materials and General Methods 

5.2.1. Model system 

5.2.1.1. General description and preparation 

The substrate used in this chapter was not intended to be a model of a rapidly cooked food (as 

was the cake in Chapter Four), but instead to be a more simple system that could be 

manipulated to model different substrate characteristics separately from one another.  The 

model substrate chosen was a wheat starch gel.  The gel also contained added whitener, with or 

without added brown dye, and primary dyes or dye blends.  Brown dye was added to create 

variants of the gel which differed only in their degree of browning.  Composition of the gels is 

summarised Table 5.1.  The selection of appropriate levels of whitener, browning and primary 

dyes is discussed in subsequent sections.   

Table 5.1  Composition of the model gel system used in this study 

Component Ingredient Format Concentration in raw gel 
mix 

‘Brown1’ 
‘Brown2’ 
‘Brown3’ 

gel 
substrates 

‘White’ 
gel 

substrate 

Unmodified wheat starch Powder 8% w/w (based on dry 
weight of starch) 

Titanium dioxide pigment 
(whitener) 

Anatase crystal type 0.5% w/w 

 Chocolate Brown HT dye 
(‘Brown HT’) 

Liquid concentrate 2.5, 5.0, 10.0 mg/100 g 

Primary dyes 

Brilliant Blue, Ponceau 4R, 
Tartrazine 

Liquid concentrates As specified in text for 
derivation of derivation 
and validation of unit 
absorption coefficients 

Reverse osmosis (RO) 
water 

  To 100 g per batch of raw 
gel mix (yielding two gel 
samples) 
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Gels were prepared in batches of 100 g of raw mix.  Ingredients and RO water were weighed 

into a 200 ml stainless steel beaker and mixed together at moderate speed for 30 seconds (using 

a magnetic stirrer) before heating, to help disperse the particles.  The mix was then covered with 

aluminium foil and heated in a 93°C water bath with a magnetic stirrer plate (Heidolph MR 

3001, Germany) placed underneath, and stirred at 200 rpm, for 15 minutes.  Heated gel mix was 

cast on to a smooth surface (trays from the Baccarat ‘Professional’ non-stick bakeware range, 

model 1010589) by pouring into plastic rings with an inner diameter of 32 mm and a height of 

20 mm.  The upper (uncast) surface was levelled using a palette knife.  Rings containing the 

gels were removed from trays after cooling to room temperature for two hours and kept on their 

sides in lidded plastic containers until colour measurement.  

5.2.1.2. Starch 

Unmodified wheat starch (Penford Corporation, USA) was selected as the basis for the substrate 

because of its (visually) white colour, and because it could be prepared reproducibly to form a 

simple solid with a visually smooth surface.  Starch is also fundamental to the formation of 

structure during the cooking of baked goods (the type of food that the 3D printer might 

produce), and could be used to increase the viscosity of the raw batter so that it is sufficiently 

rigid and self-supporting during the build process (Yang et al., 2001). 

Moisture content of the unmodified wheat starch (n=3) was determined as 12.37% (SD 0.02) 

using AACC Method 44-15A (American Association of Cereal Chemists and American 

Association of Cereal Chemists. Approved Methods Committee, 1995).  After initial trials, 8% 

w/w was selected as the starch concentration in the raw (unheated) gel mixtures, based on the 

dry weight of the starch.  The mean weight of wheat starch (n=109) added to a single 100 gram 

batch of raw gel mix was 9.14 grams (SD 0.01).          

5.2.1.3. Gel whitening 

Although visually white, starch gels are also translucent.  The model substrate needed to be 

white and opaque, in order to represent a close approximation to a non-coloured, non-textured 
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surface to which primary dye blends can be added to derive a ‘standard’ colour gamut.  

Titanium dioxide pigment (TiO2), anatase crystal type (No. 03970, Sensient Colors Inc., St. 

Louis, USA), with at least 99% purity, and 90% of particles less than 1.70 microns in size 

(manufacturer’s analysis), was added to the gel to achieve this effect.  It is permitted in 

processed foods in accordance with Good Manufacturing Practice in New Zealand and Australia 

(Australia New Zealand Food Authority., 2000), but restricted to 1% by weight of the finished 

food in the USA (Sensient Colors Inc., 2008).  

The selection of a suitable TiO2 concentration for the gel was based on visual assessment and 

colour measurement; of gel samples ranging in TiO2 concentration from 0.1% to 0.5% w/w raw 

gel, the sample containing 0.5% w/w raw gel was visibly the most white and most opaque, and 

reflected the most light at all wavelengths, ranging from 89% to 94% reflectance between 400 

nm and 740 nm (Figure 5.1).  Reflectance of gels was measured as described below, Section 

5.2.2.  The TiO2 levels used in the concentration series were within existing restrictions, and 

within range of those used in studies investigating the use of TiO2 as a whitener in other food 

gels (Hsu and Chiang, 2002; Benjakul et al., 2004).  In these studies, TiO2 was shown to be an 

effective whitener when used in surimi at concentrations up to 0.8% w/w, without affecting gel 

texture, for a gel moisture content of around 80% (which is within range of the moisture content 

of the starch gels used in the present study, of close to 90%). 

Based on these results, TiO2 was added to raw gel mix at 0.5% w/w, on a wet basis, with the 

resulting cooked gel referred to as the ‘White’ gel, or substrate.  The mean weight of TiO2 

(n=103) added to a single 100 gram batch of raw gel mix was 0.50 grams (SD 0.001).        
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5.2.1.4. Gel browning 

Chocolate Brown HT powder (‘Brown HT’), minimum pure dye content 70% (Cathay 

Industries, Sydney, Australia), was used for artificial browning of the starch-TiO2 gel.  Brown 

HT was prepared as a liquid concentrate (2.5% w/w in RO water) and added at 2.5, 5.0 and 10.0 

mg/100 g raw gel mix to three create variants of the gel which differed only in their degree of 

browning, denoted ‘Brown1’, Brown2’ and ‘Brown3’ respectively.   

The selection of brown dye levels was also based on visual assessment of the finished gels; 

browned gels needed to be visibly different to the white gel and to each other, and to become 

obviously darker with increasing level of brown dye.  The level of browning also needed to be 

relevant to a (printed) food context.   While it was not the aim here to match exactly the colour 

of the microwave cake using the combination of the whitened gel and brown dye, the cake was 

found to be similar to the computed Brown3 substrate colour in lightness and chroma (see 

Appendix Table 5.5).         

5.2.1.5. Primary dyes 

Brilliant Blue, Ponceau 4R and Tartrazine were again used as the primary colorants.  Brilliant 

Blue (denoted ‘B’) and Tartrazine (yellow) (‘T’) granules, minimum pure dye content 85% 

(Cathay Industries, Sydney, Australia), and Ponceau 4R (red) powder (‘P’), minimum pure dye 

Figure 5.1  Mean measured reflectance of cooked wheat starch gels (8% w/w starch in raw gel mix), containing 
titanium dioxide, TiO2, added to raw gel mix at concentrations ranging from 0.1% w/w to 0.5% w/w.   
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content 85% (Vidhi Dyestuffs, India), were used to prepare liquid dye concentrates (2.5% w/w) 

in reverse osmosis (RO) water.    

5.2.1.6. Sample weight loss after cooking 

For practical reasons weight loss measurements were approximated, based on additional bulk 

samples (n=13, including four samples from the trials to determine the TiO2 level for the White 

gel, Section 5.2.1.3), single replicates of which were prepared on different days.  These were 

samples containing starch (9.13 grams, SD 0.009), TiO2 (0.5 grams, SD 0.001), and water, 

mixed and heated together for 15 minutes, as for normal gel preparation.  After heating, the 

beaker was removed from the water bath, the foil cover removed, and the sample left to cool 

completely to room temperature.  Weight loss was determined as the difference in the weight of 

the sample (which included the beaker) before heating, and after cooling.  

Mean weight loss of the bulk cooked sample (n=13) was 5.39% (SD 0.42), giving a mean final 

sample weight of 94.79 grams (SD 0.47).  On this basis, dye levels in the individual cooked gel 

samples should have remained at or within the legal maximum.  At the maximum level of dye 

addition, 27.5 mg of dye to 100g of raw gel mix, the final dye content of the cooked gel should 

have been at the maximum allowable concentration of 290.1 mg/kg, assuming that the dye had 

remained stable during cooking. 

5.2.2. Colour measurement 

The reflectance, Rλ, and L*10a*10b*10 of cooked gels were measured as reported in Chapter 

Four, for the D65 standard illuminant and 10 degree standard observer.  Therefore the colour 

gamut boundaries computed in this, and in the following, chapters are specific to these 

measurement conditions, but for convenience they will be referred to often as simply as the 

‘gamut boundary(ies)’.  Measurements were made with the specular component included (SCI) 

only and made directly on the cast surface of the gels, with the sample still in the mould, which 

was held against the measurement port when the spectrophotometer was laid on its side.  
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Keeping the samples in the mould provided additional rigidity to the gels to prevent distortion 

of the surface while the gels were handheld for measurement.  

Gel preparation yielded two samples (of the same dye blend x concentration combination) for 

every 100 grams of raw mix.  Three measurements were made of each sample.  The two 

samples equated to one replicate measurement, which was the mean of the six individual 

measurements.  Typically each replicate (for a given dye blend x concentration combination) 

was prepared and measured on a different day to the other replicates.  The exceptions to this 

were the TiO2 samples in the concentration series used to determine the TiO2 level for the White 

gel; for each TiO2 level, individual measurements from all samples from different days were 

pooled together to calculate mean Rλ and L*10a*10b*10.   

The numbers of replicate samples prepared for each dye blend x concentration combination is 

given in the following sections. 

5.3. Development and validation of dye blending models 

5.3.1. Derivation of dye unit absorption coefficients and substrate 

absorption coefficients 

5.3.1.1. Methods 

Kubelka-Munk unit absorption coefficients for Brilliant Blue, Ponceau 4R and Tartrazine in the 

White gel substrate were derived using the method reported previously in Chapter Four, with 

the following changes:  

a) Each dye was added separately to the White gel at 0, and at 5.0, 12.5, 20.0, and 27.5 

mg/100g (denoted ‘Blank’, and levels ‘1’, ‘2’, ‘3’, and ‘4’ respectively) prior to heating, 

to provide a more even spacing between concentration levels, in place of the doubling 

concentration series used for the cakes in Chapter Four;  



 

190 
 

b) Each dye was also added separately to the Brown1 and Brown3 substrates in an 

abridged concentration series of 0, and 12.5 and 27.5 mg/100 g raw gel mix (levels ‘2’ 

and ‘4’ respectively); Brown1 and Brown3 (and not Brown2) were selected for 

derivation of , as they represented the ‘extremes’ of browning in this study;   

c) Unit absorption coefficients for the dyes,  , and absorption coefficients for the 

substrates, , were calculated from internal reflectance, Rλ,i, of the gels, 

that is, reflectance measured with the specular component included, SCI, corrected for 

surface losses (see Equation 4.9, from Chapter Four).  Previously, in Chapter Four, 

absorption coefficients were calculated directly from reflectance of the cake samples 

measured with the specular component excluded (SCE), as an approximation.  

However, because the gel surface visually had more gloss than the cake surface, it was 

expected that front surface reflections would have a greater contribution to the 

measured reflectance of the gels.   

Two replicate measurements of reflectance were made of each dye x level combination (for 

example, of B1, B2, B3 and B4), in each substrate.  For each substrate (White or Brown), a 

separate spectrum of  for each dye (e. g. for Brilliant Blue, ‘B’) was derived for each 

replicate.  The final  spectrum for each dye (in each substrate) was the mean of the 

replicate spectra.   

For the un-dyed White substrate itself (the ‘Blank’), the total number of gels prepared was more 

than the number of samples for any given dye x concentration combination, with the former 

having been prepared on each day that the dyed samples were prepared.  Blank samples were 

divided into two groups according to whether the date of preparation corresponded to the dates 

for the first or second replicates of the dyed samples.  The pooled mean reflectance 

measurements for each group were used to calculate two replicate   spectra, and in 
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turn, a grand mean   spectrum for the White gel.  Two replicate measurements 

were made of each Brown substrate, and the data handled in the same way as for the dyed 

samples described above. 

5.3.1.2. Results 

Figure 5.2 shows the replicate plots of absorption against dye concentration at the wavelength of 

maximum absorbance, λmax, for the Brilliant Blue, Ponceau 4R and Tartrazine dyes in the White 

gel substrate.  These give a good indication of a linear relationship between absorption and dye 

concentration for each dye, and are being used to represent the same findings at each 

wavelength.   

 

The relationship between absorption and concentration was also found to be linear at λmax for the 

dyes in the Brown1 and Brown3 substrates (Appendix Figure 5.10 and Figure 5.11).  Brown1 

and Brown3 were selected for the additional derivation of , as they represented the 

‘extremes’ of browning in this study.   

Figure 5.2  Absorption against dye concentration at the 
wavelength of maximum absorbance, λmax, in the 
whitened wheat starch gel for Brilliant Blue, Ponceau 
4R (red) and Tartrazine (yellow) primary dyes.  Shown 
are the means for two replicate data sets (n=6 for each 
replicate). 
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Figure 5.3 shows the full spectra of White gel-derived linear unit absorption coefficients for 

each of the dyes, and for each dye, overlaid unit absorption spectra derived from the White, 

Brown1 and Brown3 substrates.  The absorption spectra for the un-dyed White, Brown1, and 

Brown3 gel substrates, as well as the spectrum for the Brown2 substrate are shown in Figure 

5.4.  Dye absorption is seen to occur at a much smaller scale in the gels than was observed for 

the cakes (Figure 4.4, Chapter Four), despite the effects of the substrate itself having been 

subtracted.  As well as being due to darker samples, higher absorbance readings can result from 

more light being lost from samples during colour measurement (Negueruela, 2010).  This may 

have been the case for the cake samples, which were more porous than the gels.  Sample 

presentation itself was also not standardised for the different substrates.  

  

 

 

Figure 5.3  The mean unit absorption spectra (of n=2 replicates) for Brilliant Blue, Ponceau 4R (red) and Tartrazine 
(yellow) primary dyes in the whitened wheat starch gel (‘White’ substrate) (top left), and the mean unit 
absorption spectra for the dyes derived from the White substrate and from its artificially-browned counterparts 
Brown1 and Brown3, superimposed in a single plot for each dye. 
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5.3.2. Validation of dye unit absorption coefficients (1) 

5.3.2.1. Methods  

Computed (predicted) L*10a*10b*10 colours from selected dye blends were compared with the 

measured (actual) colours of samples prepared using the same blends, to validate the derived 

unit absorption coefficients of the dyes.  Two-dye blends were a 50:50 blend, and three-dye 

blends a 1:1:1 blend.  Totals for the blends were either 12.5 mg/100 g raw gel (denoted ‘low’), 

or 27.5 mg/100g raw gel (denoted ‘high’).  The dye blends that were used to validate the Brown 

gel-derived were a subset of the ones used to validate the White gel-derived .  

To compute L*10a*10b*10 values, dye concentrations from the blends were substituted into the 

Kubelka-Munk blending model together with grand mean  and derived   

from the White, Brown1 and Brown3 substrates as appropriate.  Computed   was 

converted to computed internal reflectance, Rλ,i, before being converted to computed measured 

reflectance, Rλ,m, and then to X10, Y10, Z10, rather than being converted directly to Rλ,m as 

Figure 5.4  Absorption spectra for the ‘White’, ‘Brown1’, ‘Brown2’ and ‘Brown3’ gel substrates without added 
primary dyes.  Brown1, Brown2 and Brown3 are each the same gel as the White substrate, but contain added 
Brown HT dye at 2.5, 5.0 and 10.0 mg/100 g raw gel respectively.    
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previously for the computation of L*10a*10b*10 cake colours.  Measured L*10a*10b*10 of samples 

were compared with computed L*10a*10b*10 by use of ΔE*ab,10.   

For further validation of a linear, additive dye blending model based on  , the model can 

be used to compute the colours of samples containing single dyes at concentrations that were 

not part of the series for the derivation of  (Butts, 2010).  In the present study colours 

were computed and measured for additional White gel samples containing single dyes at 

concentrations intermediate to the ones used in the original series.  In these samples dyes were 

added at 8.75 mg/100g raw gel (denoted ‘1.5’) and 23.75 mg/100g raw gel (denoted ‘3.5’).   

A full list of the blends used for validation is given in Table 5.2. 

5.3.2.2. Results 

Table 5.2 shows the ΔE*ab,10 differences between the computed (predicted) and measured 

(actual) L*10a*10b*10 colours for selected dye blends and for additional single dye 

concentrations in the White substrate, and also shows the equivalent differences for a subset of 

these dye blends in the Brown1 and Brown3 substrates.  For all blends in all substrates the 

measured values were compared to the computed values which were based on the mean unit 

absorption spectrum for each dye, as well as to computed values based on each of the two 

replicate unit absorption spectra from which each mean spectrum was derived.  Unit absorption 

spectra that were used to compute L*10a*10b*10 colours for a given gel substrate were the ones 

that had been derived in that same substrate. 

In the previous chapter a ΔE*ab,10  of three units or less was used to indicate the validity of the 

spectral unit absorption coefficients, and of the dye blending model.  For the White gel samples 

containing the additional single dye concentrations, which were intermediate to the ones used in 

the original series used to derive the unit absorption spectra, mean unit absorption coefficients 

and the blending model were able to predict the measured colours to within three ΔE*ab,10 units, 

providing one form of validation (Butts, 2010).  For some of the blends in each substrate, 
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ΔE*ab,10 exceeded three units, when predictions were based on mean unit absorption values.  

The values for ΔE*ab,10 when predictions were based on unit absorption values from individual 

replicates suggest some effect of variability; for the three-dye blends (‘BPT high’ and ‘BPT 

low’) in the White gel, ΔE*ab,10  was within three units when using data from replicate #2, but 

exceeded three units when using data from replicate #1 and mean data.  Also, because  

is taken as the slope of the line in plots of  against dye concentration, the intercept, at 

zero dye concentration, might not necessarily correspond to the   value for the un-

dyed substrate at that wavelength.  The effects of this discrepancy would become apparent when 

the derived unit absorption values for the dyes are used in the predictive colour blending model, 

but added to the correct    for that wavelength.  
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Based on the ΔE*ab,10 values, the linear blending model appears to be less effective in predicting 

the L*10a*10b*10 colours from some dye blends, across the White and Brown substrates.  

ΔE*ab,10 exceeded three units (ranging from four to five units), when the blue and yellow dyes, 

with or without the red dye, were blended in equal amounts to the lower combined total dye 

level.  This is a significant result because this was found for both the White and Brown 

substrates even though for each dye was derived separately in each.  Interestingly, the 

blue-yellow combination at the lowest combined total dye level also had the highest ΔE*ab,10 

between the computed and measured colours (though this was still within three units, at 2.9) in 

Chapter Four where  was derived for the same dyes in the cake substrate.   

As discussed previously in Chapter Four, ΔE*ab,10 is better expressed as separate chroma, 

lightness and hue differences because ΔE*ab,10 by itself does not indicate which of the these 

individual differences contributes most to the overall difference.  The magnitude of these 

differences, and their implications for gamut boundary computation, are discussed later in 

Section 5.5.1.  

5.3.3. Validation of dye unit absorption coefficients (2): Comparison of 

dye unit absorption spectra derived from the different substrates 

5.3.3.1. Methods  

The second type of validation of  sought to confirm whether or not for each dye, its unit 

absorption spectrum was (largely) unchanged across White and Brown substrates.  If this were 

shown to be the case, then the impact of browning on colour gamuts could be determined by 

computing the new colours using only the absorption spectra of the Brown substrates as new 

information, without having again to derive dye unit absorption spectra in the Brown substrates.  

(Or in other words, that the unit absorption spectra of the dyes are interchangeable.) 
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L*10a*10b*10 colours of dyed Brown1 and Brown3 gels were computed using the 

of the Brown gels and the  for the primary dyes that were derived from 

the White gels, and compared with those previously computed using the of the 

Brown gels and the  for the dyes that were derived from the Brown gels as described in 

Section 5.3.2 above, for the same dye blends.  New predictions were not compared with any 

measured colours. 

5.3.3.2. Results 

Ideally, the colour gamut that results from the browning of the White gel (containing blends of 

primary dyes) could be computed quickly using the absorption spectrum for the browned 

version of the White gel (not containing primary dyes) as the only new information.  For this to 

be possible, the spectrum of unit absorption coefficients for each dye will need to be the same 

whether they are derived from the White substrate or from the Brown substrates.  Therefore 

computation of the new gamut would require only the substitution of the spectrum of the Brown 

substrate for that of the White substrate in the blending model, while retaining the White gel-

derived unit absorption coefficients for the dyes.  Figure 5.3 shows, for each dye, the unit 

absorption spectra derived in the White, Brown1 and Brown3 substrates.  A very small increase 

is seen in the  values for Ponceau 4R and Tartrazine in the Brown3 substrate, relative to 

the values for the White and Brown1 substrates which appear not to be different from each 

other.  Table 5.3 compares the predictions of gel substrate colour made using for 

the Brown gels added to the Brown gel-derived , with those made using 

for the Brown gels added to the White gel-derived , when applied to the 

same blends.  The two groups of computed L*10a*10b*10 colours are well within three ΔE*ab,10  

units of each other.  These findings imply that in going from the White to Brown gamuts, the 
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only step that is required is substitution of the Brown substrate for the White in the blending 

model.  

Table 5.3.  ΔE*ab differences between L*10a*10b*10 colours computed using Brown gel substrate absorption 
spectra and Brown gel-derived unit absorption spectra for the three dyes, and those computed using Brown gel 
substrate absorption spectra and White gel-derived dye unit absorption spectra. 

Blend Substrate Gel colour computed using 
substrate and dye spectra from 

Brown gels 
(1) 

 

Gel colour computed using 
substrate spectra from Brown gels 

and dye spectra from White gel 
(2) 

ΔE*ab,10 for 
the 

difference 
between 

(1) and (2) 
  L*10 a*10 b*10 L*10 a*10 b*10  

BP high Brown1 55 -5 17 55 -5 -17 0.7 
 Brown3 53 -5 -8 53 -6 -9 1.1 

BT low Brown1 70 -32 7 70 -32 7 0.8 
 Brown3 63 -19 9 64 -20 9 0.8 

PT high Brown1 72 32 32 72 32 31 0.3 
 Brown3 68 30 31 68 30 30 1.2 

BPT low Brown1 66 -12 2 67 -12 2 0.3 
 Brown3 62 -7 7 63 -7 7 0.9 

 

5.4. Colour gamut boundary computation 

5.4.1. Colour gamut boundary for the ‘White’ gel containing primary 

dye blends 

Having validated the unit absorption coefficients for the primary dyes that were derived in the 

White gel substrate, the Kubelka-Munk blending model (Equation 4.10, from Chapter Four) was 

used to compute individual L*10a*10b*10 gamut boundary colours for the White gel containing 

added primary dyes and dye blends:  

 

For each blend, the absorption values for the un-dyed White gel substrate,  and the 

White gel-derived unit absorption coefficients for each dye, , at wavelength λ, together 

with dye concentrations, cn, were substituted into the equation to compute a spectrum for the 
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blend.  Colours were computed first from single dyes, then from two-dye blends, and lastly 

from three-dye blends, as explained in the following sections.     

5.4.1.1. Computed L*10a*10b*10 colours from single dyes: 

For each of Brilliant Blue (‘B’), Ponceau 4R (‘P’), and Tartrazine (‘T’), a series of colours was 

computed for concentrations ranging from 0 mg/100 g raw gel, to 27.5 mg/100g of raw gel.  

The concentrations were selected to ensure a ΔE*ab,10 difference of three units between the 

colours in the series for each dye.  The maximum concentration was chosen to keep the 

concentration of dye in the finished gels to within the legal limit, allowing for weight losses 

after cooking.   

5.4.1.2. Computed L*10a*10b*10 colours from two-dye blends: 

The two-dye blends were the combinations of Brilliant Blue and Tartrazine (‘BT’), Brilliant 

Blue and Ponceau 4R (‘BP’), and Ponceau 4R and Tartrazine (‘PT’).  For each blend, multiple 

series of colours were computed, with the colours in each series computed for total dye 

concentrations ranging from 0 mg/100 g raw gel, to 27.5 mg/100g of raw gel.  The multiple 

series for each blend differed in the relative proportions of the dyes; within a given series the 

same relative proportions of the dyes was applied to each total dye concentration.  The relative 

proportions were designed by gradually decreasing the proportion of one dye in the blend from 

100%, while gradually increasing the proportion of the second dye towards 100% (with 100% 

of either dye corresponding to the colours from the single dyes, as explained above).  Again, the 

dye blends (including dye totals and relative dye proportions) were selected to maintain a three-

unit ΔE*ab,10 difference between all colours. 

Following the computation of gamut boundary colours from single dyes and from two-dye 

blends, the boundary was starting to take shape.  These colours formed a ‘canopy’ with the 

colour of the un-dyed White gel substrate (the lightest and least chromatic) at the apex.  The 

colours from the apex to the ‘rim’ represent increasing total dye concentration and become 
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progressively higher in chroma and lower in lightness.  A chromatic view of this canopy is 

shown in Figure 5.5. 

 

Figure 5.5.  Chromatic (a*b*) view of individual L*10a*10b*10 colours computed for a whitened starch gel 
containing single primary dyes or two-dye blends at concentrations up to and including the maximum allowable 
in foods.  Blends are described in the main text.  As an example the series of colours computed from blending 
12% blue and 88% yellow is highlighted in bold.   

 

5.4.1.3. Computed L*10a*10b*10 colours from three-dye blends: 

According to the theory of subtractive mixing, the addition of further dye to an existing blend 

will result in darker colours.  Therefore any colours from three-dye blends that are derived from 

the two-dye blends should fall inside the canopy, with colours from three-dye blends containing 

the maximum total dye concentration forming the bottom surface of the shape.  Because only 

boundary colours were required, colours were computed from three dye blends containing only 

the maximum allowable total dye concentration of 27.5 mg/100g of raw gel. 

Each series of colours computed from three-dye blends was generated by starting with a two-

dye blend corresponding to the maximum total dye concentration (located on the chromatic rim 
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of the canopy), fixing the level of one dye and progressively adding the third at the expense of 

the second, and finishing with a two-dye blend comprising the first and third dyes in the same 

proportions as the starting blend of the first and second dyes.  Not every two-dye blend 

corresponding to a rim colour was used as a starting point; however the total number of series 

was divided roughly equally between BT, BP and PT as the starting two-dye combinations, and 

the series were roughly evenly spaced (starting with approximately every third two-dye blend 

on the rim).  The three-unit ΔE*ab,10 spacing was applied to the colours within each series, but 

not to the colours in adjacent series.  Figure 5.6 provides an illustration of how each series of 

colours was generated. 
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The establishment of the ΔE*ab,10 spacing rule between computed colours, and the consequent 

selection of dye blends to enter into the model, resulted in the computation of 4,724 individual 

colours.       

5.4.2. Effect of substrate browning 

On the basis of ‘cross-validation’ of the spectra of unit absorption coefficients for the primary 

dyes in the White, Brown1 and Brown3 gel substrates (Section 5.3.3), gamut boundary colours 

for each of the three Brown substrates (including Brown2), each containing the same blends as 

the White gel, were computed by the simple substitution the absorption spectrum of the Brown 

gel for that of the White in the K-M blending model, while keeping dye blends and total dye 

concentrations the same. 

ΔE*ab,10 differences of three units between computed colours were retained with all levels of 

browning.  Browning decreased the lightness and chroma ranges that were achievable in the 

White substrate, with the ranges decreasing with increasing level of brown dye addition to the 

White substrate (Figure 5.7).  A type of dose response is observed in the way that the gamut 

‘reacts’ to increasing levels of browning; basic shape characteristics are retained, but the 

magnitude of the shape changes.  The largest reduction in the lightness range occurs in the 

higher lightness region, and is accompanied by a slight shift of the bottom surface in the 

direction of decreasing lightness.  For chroma, the direction of shape reduction appears to 

follow the changing position of the substrate colour, towards the red-orange a*b* quadrant.  The 

dose response-like effect is also seen in the various hue angle views of the four gamut 

boundaries in the next chapter. 
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Figure 5.7  Outlines of the colour gamut boundaries computed for the four gel substrates containing the same 
blends of primary dyes: the whitened wheat starch gel (‘White’) and the same gel with increasing levels of 
artificial browning (‘Brown1’ to ‘Brown3’).  Also shown are the positions of the un-dyed gels.  Constituent gamut 
boundary colours are L*10a*10b*10.  Top: chromatic a*b* view.  Bottom: ‘frontal’ a*L* view.  
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For colour gamut mapping, the implication of the reduction in gamut size is that out-of-gamut 

blue-green-purple-type colours will likely require mapping over longer distances than will out-

of-gamut red-orange-brown colours, and that for the former colours, there might be a larger 

difference between the original colour and the nearest, or best possible, equivalent in the 

reproduction gamut.  This will depend of course on the exact characteristics of the original 

colour, and on the rendering intent of mapping. 

5.4.3. Visualisation of the gamut boundaries in colour  

To visualise the gamut boundaries in colour, L*a*b* values were transformed to values in the 

sRGB colour space and plotted using MATLAB® software, Release 2011b (The MathWorks, 

Inc.).  The X, Y, Z values of the reference white point (i.e. the ideal white, see Literature 

Review) were those specified for the D65 standard illuminant.  To achieve continuous colour in 

the plots, marker size was increased to 10 point. 

The MATLAB® code used to generate the colour gamut boundary plots is given in the 

Appendix (Section 5.7.3).  A description and explanation of the commands used can be found at 

www.mathworks.com. 

Figure 5.8 shows, in colour, the gamut boundary colours computed for the White and Brown3 

gels (the lightest and darkest substrates before dye addition).  Visually, the colours computed 

for the Brown3 gel are darker and less chromatic than those computed for the White gel.  This is 

consistent with a reduction in the lightness and chroma ranges of the colour gamut resulting 

from the addition of artificial browning to the White gel.   
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Figure 5.8  Visualisation in colour of the gamut boundary L*10a*10b*10 colours for the White (left) and Brown3 
(right) gel substrates containing the same blends of primary dyes.  Colours were transformed to sRGB values and 
plotted using MATLAB® R2011b (7.13.0.564).  Code is given in the Appendix.  Top: chromatic a*b* view.  Bottom: 
three-dimensional L* and a*b* view, with rotation around the L* axis.  Gamut boundary colours are specific to 
the D65 standard illuminant and 10 degree standard observer measurement conditions. 
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5.5. General Discussion 

5.5.1. Strength of colour predictions and implications for gamut shape 

For gamut boundary computation, examining chroma, lightness and hue differences 

individually, rather than collectively as ΔE*ab,10, between computed (predicted) and measured 

(actual) colours, takes on even more importance as colour gamut mapping is performed in these 

dimensions.  The hue differences here are the angular differences, Δhab, rather than the 

Euclidean distances, ΔH*ab,10 that were used previously in Chapter Four, because it is hue angle 

that is used in gamut mapping.  Overall, predictions of colour that were based on the derived 

dye unit absorption coefficients and the linear blending model overestimated measured chroma 

and underestimated measured lightness (Table 5.4).  This means that the actual shape of the 

gamut is likely to be smaller than the one computed, needing to be ‘pulled in’ slightly in three 

dimensions towards the apex.  The extent to which this may be necessary differs between 

samples containing different dye blends, which in turn corresponds to different regions of the 

gamut surface.  For example, the largest reduction in chroma is needed for the sample 

containing blue and yellow dyes at the lowest combined total dye level (i.e. ‘BT low’), which 

also had the highest ΔE*ab,10 of five units between computed and measured L*10a*10b*10 in all 

substrates.  The sample containing all three primary dyes at the lowest combined total dye level 

(‘BPT low’), which also had an associated high ΔE*ab,10, had the largest difference between 

computed and measured lightness in all substrates.  The difference between computed and 

measured hue angle also varies among the samples.  The differences range from zero, for the 

additional single dye samples in the white substrate, to 25 degrees for the ‘BPT low’ sample in 

Brown3.  This blend also had associated with it the largest Δhab difference in Brown1, and the 

second to highest Δhab difference in the White substrate.  The high Δhab for the ‘BPT’ low 

sample is a result of the point being close to the origin.  In polar coordinates, when close to the 

origin, any small error will result in a relatively large variation in angle.  A large mismatch 

between computed and measured hue angle is potentially more problematic than the lightness 

and chroma differences because many gamut mapping algorithms aim to preserve hue.  The 
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effect of a discrepancy between computed and measured gamut boundary colours is illustrated 

for the White gel colour gamut, by way of example, in Figure 5.9. 
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Figure 5.9  Positions in colour space of L*10a*10b*10 gamut boundary colours computed using the Kubelka-Munk 
blending model for the White gel containing selected dye blends and additional single dye levels, and those of the 
measured colours of the gel prepared using the same single dyes and dye blends.  Top: chromatic a*b* view. 
Bottom: ‘frontal’ a*L* view.    
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5.5.2. Gamut boundary sampling technique: density of sampling points 

For computed colours, an even sampling of the gamut surface was desired, that is, an even 

coverage of the gamut as well as even spacing between sampling points.  The aim was to 

achieve a sufficiently dense sampling of the gamut to avoid false concavities, and at the same 

time to devise and impose a rule on the (minimum) number of points needed.  The combination 

of the three-unit ΔE*ab,10 spacing rule, and the Kubelka-Munk-based colour prediction model 

yielded a well-defined gamut boundary.  The boundary comprised over 4,000 individual points, 

which is a large number compared to the number of points used to describe the gamut 

boundaries in other methods.  In the Segment Maxima Gamut Boundary Descriptor (SMGBD) 

method, the gamut boundary can be comprised of hundreds, rather than thousands, of colours, 

depending on the number of segments chosen (Morovic and Luo, 2000), and an example of a 

primary data set to which the method can be applied is a colour reproduction device gamut 

ranging from 3,750 to 15,000 colours.   

The gamut boundaries in this study could potentially have been computed from a smaller subset 

of points.  Whereas the ΔE*ab,10 spacing rule applied to each and every point in the canopy of 

colours from single dyes and two-dye blends, it was not applied to colours in adjacent series 

which formed the bottom surface, and without any apparent loss of definition.  This was an 

attempt to avoid over-sampling of points on a surface which was already partly defined by the 

rim of the canopy, and in the knowledge that every point would be a bottom surface point.  The 

SMGBD method could be used to select the points for a sub-sample.  These points, in turn, will 

correspond to a set of dye blends which can be used to compute standard, or ‘base’ gamuts 

(similar to the gamut computed for the whitened starch gel) for substrates other than the gels.  

For the whitened gel, the gamut boundary based on the full set of points could be used to 

evaluate or validate the boundary that is based on any sub-set of the points. 
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5.6. Conclusions 

Because colour gamut boundary computation in this study relied on the prediction of colours 

from dye blends, there was a need to know how good these predictions were of actual, measured 

colours.  Although there were good indications of a linear relationship between absorption 

coefficients and concentration for each individual dye (at each wavelength), the ability of the 

linear, additive model to predict the actual L*10a*10b*10 colours appears to depend on the dye 

blend.  In the computation of a gamut boundary comprised of colours generated by using the 

Kubelka-Munk model, this means that the actual size and shape of the gamut may differ slightly 

from the one computed.  If the difference between computed and measured colours were to 

prove consistent for given dye blends, then the corresponding regions of the computed gamut 

boundary could be adjusted by a known set of ‘rules’ to give something closer to the actual 

shape.   

The finding that the unit absorption coefficients for each dye remained largely consistent with a 

change in substrate colour from white and brown allowed for the effect of substrate browning, 

which was to decrease progressively the size of the colour gamut, to be seen quickly; all that 

was needed was the simple substitution of the brown for the white substrate absorption spectra 

in the blending model. However the possibility of dye unit absorption coefficients changing 

with increased browning of the (un-dyed) substrate needs further investigation, but will not be 

explored further in this thesis. 

The well-defined colour gamut boundary that was computed using a combination of the three-

unit ΔE*ab,10 spacing rule, and the Kubelka-Munk-based colour prediction model provides a 

primary data set from which a smaller subset of sampling points could be drawn, and provides a 

method for the computation of colour gamut boundaries for substrates other than the dyed gels 

used in this study. 
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5.7. Appendix 

5.7.1. Comparison of gel and microwave-baked cake substrate colours 

without added primary dyes 

Table 5.5.  Computed L*10a*10b*10 colours, and computed chroma, C*ab,10, and hue angle, hab, of the four model 
gels used in this chapter, prior to the addition of primary dyes and their blends.  For comparison the measured 
values of the un-dyed cake substrate from the study in the previous chapter.  The results show that the computed 
Brown3 gel colour was found to be similar to the lightness and chroma of the cake colour (refer also Section 
5.2.1.4).   

Substrate L*10 a*10 b*10 C*ab,10 hab,10 

White  97.2 -0.4 0.4 0.6 135 
Brown1 86.5 9.0 10.7 14.0 50 
Brown2 81.8 12.3 14.3 18.8 49 
Brown3 76.0 16.3 18.5 24.7 49 

Cake 77.4 0.1 20.7 20.7 90 

5.7.2. Unit absorption spectra at λmax for each primary dye in the 

Brown1 and Brown3 gel substrates 

5.7.2.1. In the Brown1 gel 

 

 

Figure 5.10  Absorption against dye concentration at 
the wavelength of maximum absorbance, λmax, in the
Brown1 gel for Brilliant Blue, Ponceau 4R (red) and 
Tartrazine (yellow) primary dyes.  Shown are the
means for two replicate data sets (n=6 for each
replicate).  
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5.7.2.2. In the Brown3 gel 

 

5.7.3. MATLAB® code for the gamut boundary colour figures (Figure 

5.8). 

5.7.3.1. For the White gel: 

clear; 
close all; 
clc; 
  
data=colour_xyz_white(); 
x=data(:,2); 
y=data(:,3); 
z=data(:,1); 
  
WP=whitepoint('d65'); 
lab=data; 
cform=makecform('lab2srgb','AdaptedWhitePoint',WP); 
srgb=applycform(lab,cform); 
  
hold on 
for i=1:4724 
plot3(x(i),y(i),z(i),'o','MarkerFaceColor',srgb(i,:),'MarkerEdgeColor'
,srgb(i,:),'MarkerSize',10) 
end 
hold off 
xlabel('a*','FontSize',14); 

Figure 5.11  Absorption against dye concentration at 
the wavelength of maximum absorbance, λmax, in the 
Brown3 gel for Brilliant Blue, Ponceau 4R (red) and 
Tartrazine (yellow) primary dyes.  Shown are the means 
for two replicate data sets (n=6 for each replicate).  
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ylabel('b*','FontSize',14); 
zlabel('L*','FontSize',14); 
xlim([-70,70]); 
ylim([-50,80]); 
zlim([50,100]); 
axis equal 
axis vis3d 
daspect([1 1 1]) 
 

5.7.3.2. For the Brown3 gel: 

clear; 
close all; 
clc; 
  
data=colour_xyz_brown(); 
x=data(:,2); 
y=data(:,3); 
z=data(:,1); 
  
WP=whitepoint('d65'); 
lab=data; 
cform=makecform('lab2srgb','AdaptedWhitePoint',WP); 
srgb=applycform(lab,cform); 
  
hold on 
for i=1:4724 
plot3(x(i),y(i),z(i),'o','MarkerFaceColor',srgb(i,:),'MarkerEdgeColor'
,srgb(i,:),'MarkerSize',10) 
end 
hold off 
xlabel('a*','FontSize',14); 
ylabel('b*','FontSize',14); 
zlabel('L*','FontSize',14); 
xlim([-50,50]); 
ylim([-50,80]); 
zlim([50,100]); 
axis equal 
axis vis3d 
daspect([1 1 1]) 
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Chapter Six: Food coloration using colour gamut mapping 

6.1. Introduction 

For a novel food printing technology which aims to render complex colour images or designs in 

3D within a variety of food matrices, any colour that the matrix itself has needs to be taken into 

consideration.  For matrices modeled on baked goods, changes in formulation (made according 

to consumer specifications for nutritional composition, for example) might cause simultaneous 

changes in the lightness, yellowness and redness of crumb colour (Hicsasmaz et al., 2003; 

Ronda et al., 2005), as might thermal reactions during cooking.  These will be referred to 

collectively as browning.  In the previous chapter, the colour gamut boundary was computed for 

a model food substrate containing blends of primary dyes.  This boundary represented the limit 

of the colours that could be produced using the dye blends, up to and including the maximum 

level permitted in foods.  The model substrate, initially uncoloured, was also manipulated to 

display the browning characteristic, in isolation, to different degrees, to model the effects of 

increased browning on the boundary limits.  As the level of browning in the substrate increased, 

the gamut decreased in both the lightness and chroma dimensions.  Furthermore, the simple 

substitution of brown for white in the computation of individual gamut boundary colours was 

shown to be a quick and valid approach to computing the effects of browning. 

The implication of the decrease in gamut size with substrate browning is that colours that are 

within the larger gamut from the white substrate, but outside the smaller gamut from the brown 

substrate, will not be able to be reproduced in the browned substrate.  This is the type of issue 

that is routinely encountered, and handled, in the cross-media reproduction of colour images, as 

media such as computer and television screens, and print, will usually have different colour 

gamuts (Morovic, 2003). Colours that are within the gamut of the original medium but are 

outside the gamut of the reproduction medium need to be transformed into reproducible colours, 

in a process known as colour gamut mapping.  There are two main types of mapping algorithm: 
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 Clipping algorithms transform only the out-of-gamut colours, replacing each with a 

colour on the boundary of the reproduction gamut.  A replacement colour will have 

either:  

o the smallest ΔE difference between it, and the original colour, whether or not it 

shares the same hue angle as the original colour, or  

o is at the intersection of the reproduction gamut boundary and a vector drawn 

from the original colour to a nominated centre of gravity (for example, L*a*b* 

50,0,0) in the reproduction gamut, within the hue angle plane for the original 

colour.   

 Compression algorithms are applied to both out-of-gamut, and within-gamut colours, 

with all finishing inside the reproduction gamut, within its boundary.  The linear type of 

compression algorithm maps colours either  

o sequentially (typically their lightness, followed by their chroma) within a plane 

of constant hue angle, or  

o simultaneously in both dimensions within the hue angle plane along lines 

pointing to a centre of gravity.   

Clipping aims to maintain the accuracy of colours, while compression aims to maintain the 

relative spacing between them.  The choice of algorithm to use depends on the properties 

desired in the reproduction, as specified in a rendering intent.  The assessment of algorithm 

performance is made against this intent, and is specific to the image and media to which it is 

applied (Braun et al., 1999; Morovic, 2003). 

The desired, and novel, outcome of colour gamut mapping in this research is to use the results 

of mapping to develop a set of simple transformations that could be used by the 3D colour food 

printer to correct dye recipes very rapidly for the effects of substrate browning.  It is envisaged 

that the printer would hold information on ‘standard’ dye quantities needed to render a given 
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colour in a particular voxel (for example, in a white substrate), and be able to predict the level of 

browning in the substrate for a given set of ingredients and processing conditions.  Accordingly 

it will adjust the ‘standard’ dye quantities in order to produce the best equivalent of the colour 

for a given level of browning.  The dose-response-like reduction in the lightness and chroma 

ranges of the colour gamut with increased gel browning suggests that such transformations 

should be possible.  These transformations might form a part of an overall transformation 

‘toolbox’ in which the step preceding mapping is the rapid computation of colour gamut 

boundaries for the printed food matrix by substitution of brown substrate spectral absorption 

values for the white substrate values in the Kubelka-Munk blending model, the approach that 

was validated in Chapter Five for the model food gel.    

The objectives of the work in this chapter were: 

 To map each tile colour from its original position (in the L*a*b* colour space) to a new 

‘starting position’ in the colour gamut from the dyed, White gel substrate, and then to 

map the colour from here to each of the colour gamuts from the three, dyed, Brown 

gels, using clipping and compression methods; 

 To compute the dye quantities for the mapped colours in each of the four substrates; 

 To determine any relationships (i.e. those that can be fitted by a mathematical model) 

that exist between substrate colour and the dye quantities computed for a given tile 

colour within each mapping method, which might lead to the development of simple 

transformations between dye quantities with increase in substrate browning.  

6.2. Materials and General Methods 

6.2.1. Selection of appropriate methods 

Colour gamut mapping was applied to the same tile colours that were used in Chapter Four, and 

utilised the gamut boundaries computed in Chapter Five.  Mapping was specific to the D65 

standard illuminant and 10° standard observer, the conditions under which tile colours were 
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measured and for which gamut boundary colours were computed.  For this chapter, both gel 

gamut boundary colours and the tile colours being mapped were SCI colours. 

Following trends identified in a survey of gamut mapping algorithms (Kang, 2006), in which 

most algorithms were found to be hue-preserving, and preceded by lightness compression, the 

algorithms developed in this study also aimed to preserve hue (that is, they were applied in a 2D 

plane defined by chroma, C*, and lightness, L*, at the hue angle of each tile colour), and began 

with lightness compression.  In each hue angle plane clipping algorithms were limited to the 

minimum ΔE type, and compression algorithms to the linear, sequential type.  Neither clipping 

nor compression was possible towards a centre of gravity, because the combined decrease and 

shifting of the lightness and chroma ranges with increased substrate browning made it difficult 

to set a common centre on the L* axis.  The use of simultaneous compression to investigate the 

effect of increased substrate browning on dye quantities would have relied on a common centre 

of gravity for all four substrate gamuts.    

6.2.2. General procedure 

1. At the hue angle of each tile colour, gamut boundary polygons were drawn for the 

White, Brown1, Brown2 and Brown3 gel substrates containing primary dye blends in a 

180 degree, two-dimensional chroma-lightness (C*L*) plane. 

2. Each tile colour was mapped to each gamut, as follows: 

a. The lightness of the tile colour was compressed to fit within the lightness range 

of the colour gamut from the dyed, White gel, before the tile colour was 

clipped, or its chroma compressed linearly, to the boundary of the White gel 

gamut; 

b. The lightness of the tile colour on the gamut boundary of the dyed, White gel, 

as well as the lightness of the White gel gamut boundary colours themselves, 

was compressed to fit within the lightness ranges of the colour gamuts of the 

dyed, Brown gels, before the colour was clipped, or had its chroma compressed, 

to the Brown gel gamuts. 
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3. Dye recipes were found corresponding to the new (clipped or compressed) colour in 

each reproduction gamut; dye recipes resulting from each mapping method (clipping or 

compression) were investigated for a possible relationship between increased substrate 

browning and the quantities of dye required to provide the best equivalent of the colour 

at each level of browning.  Dye recipes from clipping and compression were also 

compared.  Samples were not prepared using the computed dye recipes. 

Figure 6.1 shows a schematic representation of the general procedure. 

 

 

 

 

The following sections detail the methods and results for each step.   

6.3. Gamut boundaries at planes of constant hue angle  

6.3.1. Computation 

To recap, each point on the gamut boundary represents a colour computed from blending two 

dyes (for the upper surface of the boundary) or from blending three dyes (for the bottom 

surface).  Concentration totals for the two-dye blends ranged from zero, to the legally permitted 

maximum.  The permitted maximum concentration was needed only for the three-dye blends.  

The choice of blends ensured that the distance between boundary colours was three ΔE*ab,10 

units or less.   

Figure 6.1  Schematic representation of the general procedure for mapping each tile colour to the colour gamuts for 
model food gels (substrates) which differ in their level of browning but contain the same blends of primary dyes. 
Tile colours were initially mapped to the gamut for the White gel containing primary dye blends, before being 
mapped to the gamuts for the Brown gels, which were the same as the White, except for having increasing levels of 
artificial browning.  (*For the initial mapping of Tile to White, lightness compression applied to the tile colour only, 
and not also to the gamut of tile colours, which was not known.)    
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Chroma,  and hue angle, , were calculated for each individual gamut boundary 

colour (in each substrate), and for each SCI tile colour: 

 

Equation 6.1 

 

Equation 6.2 

The formula above for hue angle, returns a result in radians, which was subsequently converted 

to a result in degrees, anti-clockwise from the +a*10 axis (i.e. from zero, to 360 degrees). 

At the hue angle of each tile colour, the gamut boundary points from each substrate having the 

same hue angle as that of the tile were plotted in a two dimensional chroma-lightness (C*-L*) 

plot.  To provide adequate detail, gamut boundary points and tile colour were regarded as 

having the same hue angle, X degrees, if their hue angles ranged from X.0 to X.9 degrees.  To 

help visualise the boundaries, and their intersections with the L* axis, the gamut boundary 

points in the opposite hue angle plane, located at 180 degrees from the hue angle of the tile 

colour, were also plotted, and their chroma assigned as negative values.  This then provided an 

outline of a polygon cross-section through each gamut in a 180 degree plane. 

To ensure that the gamut boundaries in each plane extended to the rim of the chromatic 

boundary on either side, the boundaries needed to include points corresponding to a two-dye 

blend containing the maximum dye quantity.  If these were not already available from the gamut 

boundary computation in Chapter Five, they were interpolated from the two nearest available 

points, each from a hue angle either side of the tile hue angle, and each corresponding to a two-

dye blend containing the maximum dye quantity.  The boundary rim point in the tile hue angle 

plane was taken as the intersection of the line connecting the neighbouring points with the hue 

angle plane.  The method used here for computing line-plane intersections in three dimensions 

is given in Morovic (2008).  
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6.3.2. Results 

Figure 6.2 shows the colour gamut boundaries for the four gels (each containing the same 

primary dye blends) at the hue angle of each tile colour; each boundary extends to the opposite 

hue angle to form a polygon in a plane spanning 180 degrees.  Also shown are the original 

positions of each tile colour.  Results are shown for ten out of the twelve tiles.  Very little 

difference was found between the gamut boundary plots for Green and Difference Green, and 

between those for Mid Grey and Difference Grey (results not shown). The purpose of the 

Difference tiles, which are manufactured to differ by only a small amount to the main tiles, is to 

assess the sensitivity of colour measuring instruments to detecting these small differences 

(Lucideon, 2014).  Only Green and Mid Grey were included as colours for gamut mapping in 

this chapter.   
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  Figure 6.2  Colour gamut boundary polygons at the hue angle of each SCI tile colour for the White, Brown1, 
Brown2 and Brown3 gel substrates containing the same primary dye blends to the maximum level allowable in 
foods.  Also shown are the original positions of each tile colour, prior to gamut mapping (continued on the next 
page). 
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At individual hue angles, the plots provide a more detailed view of the dose response-like effect 

of substrate browning first discussed in Chapter Five.  Each gamut boundary polygon is shown 

in full detail, with the points (colours) that were computed in Chapter Five, as well as the lines 

joining the points.  The number of computed points available differed between hue angles and 

between the four gamuts.  There was also a need to interpolate colours at the chromatic 

extremes (the rim) of the boundaries at some hue angles.  Even though sampling was 

sufficiently dense and evenly spread to visualise entire gamut boundaries, the positions of the 

individual colours meant that they were not necessarily aligned along each hue angle in equal 
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number.  However the combination of available points and interpolated rim points, gave 

reasonable definition to the boundaries at the individual hue angles.  

6.4. General colour gamut mapping procedures 

6.4.1. Lightness compression  

In the C*-L* plane at the hue angle of the tile, the lightness of the (points in the) original gamut 

boundary, and the lightness of the original colour, was compressed by linear scaling, using 

Equation 6.3.  This is the same equation as given in Morovic (2003), but has lightness, , 

replaced by lightness, , in accordance with the use of CIELAB in place of CIECAM97s as the 

colour appearance space for mapping: 

 

Equation 6.3 

Where: 

LO is the lightness of the original colour; 

LR is the lightness of the reproduction colour; 

LOmax and LOmin are maximum and minimum lightness values respectively of the 

original gamut; and 

LRmax and LRmin are maximum and minimum lightness values respectively of the 

reproduction gamut. 

6.4.2. Chroma compression 

Chroma compression followed lightness compression.  The chroma of the colour was 

compressed linearly at its compressed lightness, by the following equation (Morovic, 2003): 
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Equation 6.4 

Where all points are distances (equivalent to the chroma value) along a horizontal line from the 

lightness axis: 

 CR is the distance to the reproduction (mapped) colour; 

 CO is the distance to the lightness-compressed original colour; 

 GR is the distance to the reproduction gamut boundary; 

GO is the distance to the lightness-compressed original gamut boundary.  

6.4.3. Clipping  

Clipping also followed lightness compression.  Specifically, a hue-preserving nearest-point 

clipping approach was used, as distinct from geometric nearest-point clipping which maps out-

of-gamut colours to the closest point on the reproduction gamut boundary (Morovic, 2003), 

which might not be necessarily at the same hue angle as that of the out-of-gamut original colour.   

The hue-preserved nearest-point clipped colour was located on the line segment of the 

reproduction gamut boundary from which a line could be drawn at 90 degrees to the out-of-

gamut original colour.  The clipped colour was at the intersection of these two lines (Morovic, 

2008).  The chroma of the clipped colour on the reproduction boundary needed to be within the 

chroma values of the points at each end of the line segment. 

6.5. Colour gamut mapping to a ‘standard’ colour gamut 

6.5.1. Lightness compression 

For mapping of each Tile colour to the White substrate gamut, lightness compression was 

applied to the original tile colour only, and not also to the tile gamut boundary colours because 

these were not available.  For lightness compression of the tile colour itself, the lightness range 
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of the tile colour gamut was assumed to be from 0 (LOmin) to 100 (LOmax), assuming there was no 

restriction on the level of dye used in the manufacture of the tiles.  

6.5.2. Chroma compression 

Lightness-compressed tile colours were either already inside the White (reproduction) gamut 

and did not require chroma compression, or remained outside the White substrate gamut.  The 

chroma of the latter colours was not able to be compressed to inside the White (reproduction) 

gamut using Equation 6.4, in the absence of the tile colour gamut and therefore the absence of 

the GO term.  Instead, these colours were mapped to as far as the White gamut boundary.  

Following the method given in Morovic (2008) to compute line-line intersections in two 

dimensions, lightness-compressed colours were located by calculating the intersection of the 

two lines defined by:   

 the light-compressed tile colour and the point on the lightness axis having the same L* 

value as that colour, and  

 the line segment on the White substrate gamut boundary defined by the points having 

L* values immediately above, and immediately below, that of the light-compressed tile 

colour. 

If the chroma at the intersection was greater than the chroma of the lightness-compressed tile 

colours, this indicated that the colour was already within the White gamut boundary.  Otherwise 

the colour was compressed to the intersection point.  Examples of both type of scenario are 

depicted in Figure 6.3.  
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6.5.3. Clipping 

Lightness-compressed colours were also clipped, where possible, to the White substrate gamut 

boundary following the procedure given in Section 6.4.3 (Figure 6.3).  Clipping was not 

required if line-boundary intersections (see 6.5.2 above) had indicated that the lightness-

compressed colour was already within-gamut.    

6.6. Colour gamut mapping: effects of browning 

6.6.1. Lightness compression 

For mapping of colours from the White gamut to each of the Brown gamuts, lightness 

compression was applied to both the original colour, and to the original White gamut boundary 

colours.  Lightness of both the original colour and the original gamut boundary colours was 

compressed to fit within the lightness range for the relevant Brown substrate. 

6.6.2. Chroma compression 

As a result of lightness compression, colours were moved to one of four possible locations 

relative to the Brown gamut boundary, which are described in Table 6.1, and for which 

Figure 6.3  Examples of colour gamut mapping of tile colours to a ‘standard’ colour gamut (computed for a 
‘White’ gel containing dye blends).  Left: Mapping to the White gamut boundary by lightness compression, 
followed by clipping or chroma compression.  Right: Mapping to inside the boundary by lightness compression 
only. 
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examples are shown Figure 6.4.  The exact location depended on the original position of the 

colour in the White gamut boundary (following the steps described in 6.5), prior to lightness 

compression, and the degree of lightness compression required (6.6.1).  Colours were located by 

calculating the intersection of the line at the colour’s lightness, and the appropriate line segment 

on the Brown gamut boundary (with the line segment defined in the same way as described in 

6.5.2, for the mapping of the Tile colour to the White gamut).  Depending on the location, the 

lightness-compressed colour either did not require chroma compression, or was chroma-

compressed using Equation 6.4 (Table 6.1).  

Table 6.1  Description of the different methods used to compress the chroma of tile colours from a ‘standard’ 
colour gamut (computed for a ‘White’ gel containing dye blends) to the colour gamut for the same gel containing 
different levels of artificial browning (‘Brown’); methods differed according to the location of the colour in the 
‘White’ colour gamut following initial lightness compression. 

Location following lightness compression Action to compress chroma 
On the lightness-compressed White gamut boundary 
and outside the Brown gamut boundary (Figure 6.4, 
Cyan) 

Chroma compressed to the Brown gamut boundary 
using Equation 6.4, where CO = GO, and therefore CR = GR 

On the lightness-compressed White gamut boundary 
and inside the Brown gamut boundary (Figure 6.4, 
Orange)  

Chroma compression not required 

Inside the light-compressed White gamut boundary but 
outside the Brown (Figure 6.4, Deep Pink) 
 

Chroma compressed to inside the Brown gamut 
boundary using Equation 6.4, where GO is the 
intersection of the horizontal line at the original colour’s 
lightness with the appropriate line segment on the 
White gamut boundary, and GR the intersection with the 
Brown gamut boundary 

Inside the Brown gamut boundary (Figure 6.4, Green)  Chroma compression not required 
 

6.6.3. Clipping 

Lightness-compressed colours were also clipped, where possible, to each of the Brown gamuts, 

following the procedure given in Section 6.4.3.  Again, clipping was not required if line-

boundary intersections (see 6.6.2 above) had indicated that the lightness-compressed colour was 

already within-gamut.  
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6.7. Results from colour gamut mapping 

Figure 6.5 to Figure 6.9 show the final C*-L* positions of the mapped tile colours in each of the 

four gel gamuts.  For clarity, individual gamut boundary points have been removed.  These 

figures indicate the extent to which the full mapping algorithms of lightness compression, 

followed by either clipping, or chroma compression, could be applied.  Not only is lightness 

compression a feature of the majority of gamut mapping algorithms surveyed (Kang, 2006) it 

was particularly useful in this study in that the notable effect of increased gel browning was to 

decrease the lightness range of the gel colour gamut.   The degree of gel browning set the degree 

Figure 6.4  Examples of colour gamut mapping of tile colours from a ‘standard’ colour gamut (computed for a 
‘White’ gel containing dye blends) to the colour gamut for the same gel containing different levels of artificial 
browning (‘Brown’).  Left: Mapping to the Brown gamut boundary by lightness compression, followed by clipping 
or chroma compression.  Right: Mapping to inside the boundary by lightness compression only. 
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of lightness compression necessary for both the colour being mapped (located in the White gel 

gamut) and the White gel gamut boundary colours themselves, thereby setting the distances for 

mapping from White to Brown.   More details on the extent of mapping that was possible are 

given in Appendix Figure 6.15, which illustrates the mapping of each tile colour between each 

pair of original and reproduction gamuts, and in Appendix Table 6.2, which lists the C*ab,10 and 

L*10 values for the mapped colours.  These should be referred to also when reading the 

following discussion.    

Although compression algorithms would normally have colours positioned inside the 

reproduction gamut boundary following mapping, for some tile colours (Cyan, Deep Blue, 

Orange, Red and Yellow) only ‘partial’ compression was possible, to as far as the White gamut 

boundary in the initial mapping step (Figure 6.5, Figure 6.7 and Figure 6.8).  This was due to the 

absence of a chromatic boundary for the tiles (and therefore of the GO term in Equation 6.4) 

which would have been needed for the compression of chroma to within the reproduction 

boundary, following lightness compression.  In lieu of chroma compression proper, the colour 

was ‘clipped’ horizontally until the mapping line intersected the White gel gamut boundary (see 

Section 6.5.2).  Other colours (Deep Grey, Deep Pink, Green, Mid Grey and Pale Grey), were 

mapped to inside the White gel gamut by lightness compression alone, without the need for 

chroma compression (Figure 6.6 and Figure 6.9).  All subsequent compressions of Cyan and 

Deep Blue from White to Brown gel gamuts were also partial compressions (from boundary to 

boundary), while those for Orange, Red and Yellow were either partial compressions, or 

lightness-only compressions.  For the remaining colours, compressions to the Brown gel gamuts 

were either possible by full compressions or lightness only compressions, or not at all possible.  

Solutions were not always available from compression algorithms because some chroma 

mapping lines were seen to not reach the reproduction gamut boundary (in the compression of 

Deep Pink to Brown3), or intersected the boundary in the plane which was 180 degrees from the 

hue angle of the tile colour (in the compression of Cyan to Brown2 and to Brown3) (Appendix 

Figure 6.15).  Mid Grey could not be compressed to Brown2 and to Brown3, nor Pale Grey to 
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any of the Brown gel gamuts; the sections of the original and reproduction gamut boundaries 

closest to the colour in the original gamut that would define the  and  terms for Equation 

6.4 are located on opposite sides of the lightness axis, rather than on the same side (Appendix 

Figure 6.15).  The colours could have instead been ‘clipped’ horizontally to the reproduction 

gamut boundary, but this technique was defined only for the mapping of the colour to the White 

gel gamut (see Section 6.5.2).      

The full algorithms of lightness compression, followed by clipping, were able to be applied to 

the mapping of Cyan, Deep Blue, Orange, Red and Yellow to the White gel gamut and to their 

subsequent mapping to each of the Brown gel gamuts.  The full algorithm was not required for 

Deep Pink, Green, Mid Grey and Pale Grey until their mapping to some or all of the Brown gel 

gamuts, as lightness compression alone otherwise provided the solution.  For Cyan, Deep Blue, 

Deep Pink, Orange, Red and Yellow, clipping mapped the colour to a point outside some or all 

of the colour gamuts for the gels.  These are indicated by a shaded symbol in Figure 6.5 to 

Figure 6.8, and noted also in Figure 6.15 and Table 6.2 in the Appendix.  These out-of-gamut 

points were replaced by the outermost point on the relevant gel gamut boundary (the point with 

the highest chroma, and the nearest achievable colour) which was taken to be the final solution.  

Deep Grey could not be clipped to any of the four gamuts from its position within these gamuts 

following lightness compression, meaning the only mapping solutions for Deep Grey were those 

from (lightness) compression.        

6.7.1. Description of the changes in C* and L* across the mapped 

colours 

The following discussion is divided into different groups of tile colours.  The colours in each 

group display similar patterns of mapping, and similar relative positioning of original and 

reproduction gamuts at their respective hue angles.  These same groupings are used later when 

discussing the quantities of dye needed in the reproduction gel substrates to produce the mapped 

colours, in Section 6.9.2. 
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6.7.1.1. Cyan, Deep Blue, Deep Pink and Green  

For Cyan and Deep Blue, mapping of the original colour to the White gel gamut boundary 

resulted in two new different starting positions, with the clipped colour darker and more 

chromatic than the compressed colour (Figure 6.5).  For Deep Pink and Green, there was only 

one new position, resulting from lightness compression only of the original colour (Figure 6.6).  

As the level of browning in the reproduction gel substrate increases, the gamut shrinks with 

respect to its lightness and chroma ranges, and gamut mapping replaces gradually each original 

tile colour with a darker and less chromatic colour.  In most of the substrates the clipped colour 

is darker and more chromatic than the compressed colour; increased browning of the gel 

substrate increases the distance between the compressed and clipped colours because (following 

initial lightness compression of the White gamut boundary) compression has occurred in a 

single dimension (chroma) whereas clipping has occurred simultaneously in two dimensions 

(lightness and chroma) (Appendix Figure 6.15)..  The exceptions are Deep Pink in White, and 

Green in White and in Brown1, which were neither clipped nor compressed further following 

lightness compression.   
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  Figure 6.5  The original positions of each Cyan and Deep Blue SCI tile colour in its hue angle plane, and its position 
in each of the four reproduction colour gamuts (for the White, Brown1, Brown2 and Brown3 gels) following 
mapping by compression and clipping algorithms.  Lightness compression preceded clipping or chroma 
compression. 
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6.7.1.2. Orange and Yellow 

Clipped colours are again more chromatic than the compressed colours on the colour gamut 

boundary for the White gel, a trend that largely continues with increased browning of the gel 

(Figure 6.7).  As the level of browning in the reproduction gel substrate increases, compressed 

colours become darker, but their chroma remains unchanged due to lightness compression alone 

placing the colours within each Brown gel colour gamut boundary.  The exception to this was 

Yellow in Brown3 for which chroma also needed to be compressed, but only over a very short 

distance (Appendix Figure 6.15).  The outermost chromatic point in each reproduction gel 

Figure 6.6  The original positions of each Deep Pink and Green SCI tile colour in its hue angle plane, and its 
position in each of the four reproduction colour gamuts (for the White, Brown1, Brown2 and Brown3 gels) 
following mapping by compression and clipping algorithms.  Lightness compression preceded clipping or chroma 
compression. 
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gamut boundary was used in place of all clipped colours, and became darker and less chromatic 

with substrate browning.  Although the lightness of the compressed colours is initially higher 

than that of the clipped colours, increased browning sees a reversal of this trend (Appendix 

Figure 6.15 and Appendix Table 6.2). 

 

 

 

 

 

Figure 6.7  The original positions of each Orange and Yellow SCI tile colour in its hue angle plane, and its position 
in each of the four reproduction colour gamuts (for the White, Brown1, Brown2 and Brown3 gels) following 
mapping by compression and clipping algorithms.  Lightness compression preceded clipping or chroma 
compression. 
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6.7.1.3. Red 

As the level of browning in the reproduction gel substrate increases, the chroma and lightness of 

both the clipped and the compressed colours decreases, with the exception of no change in the 

chroma of the compressed colour when the gel substrate changes from white to the lowest level 

of browning (Figure 6.8).  In each substrate the clipped colours are more chromatic than the 

compressed colours.  Compressed colours are initially the lighter but clipped colours have 

become the lighter by the time the highest level of browning in the gel has been reached.   

 

 

 

 

6.7.1.4. Deep Grey, Mid Grey and Pale Grey 

The Deep Grey colour was able to be mapped to each of the reproduction gamuts by lightness 

compression only (Figure 6.9).  As the level of browning increased in the reproduction gel, the 

lightness of the mapped Deep Grey colour decreased while chroma remained unchanged.  Mid 

Grey become darker with increased gel browning, as well as more chromatic at the higher levels 

of browning (Figure 6.9). Lightness of Pale Grey also decreased with substrate browning, 

together with an overall increase in chroma (Figure 6.9). 

Figure 6.8  The original position of the Red SCI tile colour in its hue angle plane, and its position in each of the 
four reproduction colour gamuts (for the White, Brown1, Brown2 and Brown3 gels) following mapping by 
compression and clipping algorithms.  Lightness compression preceded clipping or chroma compression. 
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Figure 6.9  The original positions of each Deep Grey, Mid Grey and Pale Grey SCI tile colour in its hue angle plane, 
and its position in each of the four reproduction colour gamuts (for the White, Brown1, Brown2 and Brown3 gels) 
following mapping by compression and clipping algorithms.  Lightness compression preceded clipping or chroma 
compression. 
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6.8. Computing dye recipes for mapped colours 

6.8.1. Recipe correction method 

The results from gamut mapping were the L*10 and C*ab,10 values of the new colours in the 

reproduction gamuts.  The process of obtaining the dye recipe that corresponds to each new 

colour made use of the high density of points (colours) computed for the gamut boundaries and 

of their corresponding dye blends (Chapter Five).  A gamut boundary point, if sufficiently close 

to the mapped colour, could be used as the starting point for convergence towards the mapped 

colour.  Because the mapped colour was computed and therefore not a measurable target, the 

dye recipe could not be obtained by the colour matching techniques used previously, in Chapter 

Four. 

Procedure: 

1. The a*10 and b*10 values of each mapped colour were calculated from its C*ab,10 value, 

and from the hue angle of the tile colour, using the following formulae: 

 

Equation 6.5 

 

Equation 6.6 

2. The colour on the reproduction gamut boundary with the smallest ΔE*ab,10 difference 

between it, and the L*10a*10b*10 values of the mapped colour was found 

3. The X10, Y10 and Z10 values of the mapped colour, and of the gamut boundary colour 

closest to the mapped colour, were calculated from their L*10, a*10 and b*10 values, as 

follows: 
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Equation 6.7 

 for   > 0.008856; in other words, if L*10 > 7.9996 (Kang, 2006)  

4. The (recipe) correction matrix was used to reduce the difference between the target 

colour (the mapped colour), and the nearest colour. 

The correction matrix is the inverse of the influence matrix (McDonald, 1987).  The 

influence matrix is: 

 

 

 

Equation 6.8 

Where the following are the partial derivative coefficients: 

 

 

 

Equation 6.9 

And: 
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Eλ is the relative spectral power of the standard illuminant (D65); 

, and are the colour matching functions of the standard observer (here the 

10 degree observer); 

Rλ is the reflectance of the target, which in this case was the mapped colour; 

however, because the mapped colour was not a measureable target, the 

computed Rλ of the nearest colour (from its dye recipe that was used in gamut 

boundary computation) to the mapped colour was used at the beginning of the 

loop (McDonald, 1987); subsequently the computed Rλ from the recipe at the 

end of each iteration loop was used;   

 is the unit absorption coefficient for dye n at wavelength λ. 

The influence matrix is inverted by standard matrix algebra to give the correction 

matrix: 

 

 

 

Equation 6.10 

And the corrected recipe: 

New c1 = original c1 + Δc1 

New c2 = original c2 + Δc2 

New c3 = original c3 + Δc3 

Equation 6.11 
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Where: 

c is dye concentration in the gel prior to heating, in mg dye/100g gel; 

1, 2 and 3 denote the dyes. 

5. The  and L*10a*10b*10 values for the gel colour corresponding to the corrected 

recipe were computed, using the methods described previously in Chapter Five.   

6. The iteration loop was repeated, using computed  from Step 5, and stopped when 

one or more negative dye concentrations were computed for a recipe (McDonald, 1987), 

or when the total dye quantity in the recipe exceeded the legal maximum.  The dye 

recipe for the colour with the smallest predicted (computed) ΔE*ab,10 difference, and the 

smallest hue angle difference, to the target (the mapped colour) was taken to be the 

recipe for the mapped colour.  The criteria for a satisfactorily close match between the 

two colours were: 

a. a ΔE*ab,10 difference of three units or less (the same criterion used previously in 

Chapter Four), and  

b. a hue angle difference of one degree or less, given that the mapping algorithms 

used in this study were hue-preserving.    

6.8.2. Effect of browning on computed dye quantities 

The changes in dye quantities that were required to clip or compress each tile colour as the 

degree of browning was increased in the reproduction gel substrate, were examined.  In Chapter 

Five, the measured lightness, L*10, of the substrate itself (without any primary dye blends 

added) was found to decrease, and its chroma, C*ab,10, to increase, with increased artificial 

browning, while its hue angle remained virtually unchanged (at either 50 or 49 degrees, see 

Figure 5.7 and Table 5.5, from Chapter Five).  Visually, these changes were perceived as a 

simultaneous darkening and reddening of the gel colour, relative to the un-dyed White gel.  

Potentially then, either L*10 or C*ab,10 of the substrate could be used as a simple index of 

browning.  L*10 was chosen as the browning index in this study because it might be regarded as 
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a more obvious description of the change in visual appearance of the gels, and because 

potentially it could be used as a common index of changes in several substrate characteristics, in 

addition to browning, such as the light scattering effects of surface texture.  Linear and non-

linear models were fitted to dye quantity data against decreasing substrate lightness, for each tile 

colour.  Dye quantity data included total quantity, and quantities for the individual primary dyes 

in the recipes. 

6.9. Dye recipes for mapped colours: Results and discussion 

6.9.1. Extent of recipe correction 

Because the mapped colours in each of the reproduction gamuts were not measurable targets the 

dye recipes required to produce them could not be obtained directly by the colorimetric 

matching technique used in Chapter Four; instead the dye recipes and dye totals shown in 

graphical form in Figure 6.10 to Figure 6.13 and in Appendix Figure 6.16 are for colours with 

the smallest ΔE*ab,10 and Δhab,10 differences to the mapped colours by the end of iterative dye 

recipe correction.  The computation of negative dye quantities was the reason for stopping the 

correction loop in the majority of cases.  The loop was also stopped when the ΔE*ab,10 and/or 

Δhab,10 differences between the closest colour and the mapped colour reached zero.  For the 

clipped Mid Grey and Pale Grey colours in Brown2, and the clipped Yellow in Brown3, the 

correction loop was stopped when it became clear that recipe correction, rather than converging 

to the mapped colour, appeared to alternate between two sets of recipes, with the recipes in each 

set having similar dye proportions.  The two sets of recipes were for colours located either side 

of the mapped colour. 

Appendix Table 6.3 shows the smallest ΔE*ab,10 and Δhab,10 differences reached between the 

closest and mapped colours by the end of iterative recipe correction.  In most cases, the 

condition that the closest and mapped colours are within three ΔE*ab,10 units, and within one 

degree, of each other, was satisfied.  One notable exception to this was the Deep Grey colour 

compressed to the White and Brown1 gamuts, for which the ΔE*ab,10 distances to the closest 
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colours were 11.0 and 7.7 units respectively.  The Deep Grey colour was located well inside 

these reproduction gamuts following (lightness only) compression (Appendix Figure 6.15), and 

clearly not near enough to a starting colour on the gamut boundary for recipe correction to 

converge to a satisfactorily close solution.  Therefore for colours that have undergone full 

compression, and which lie within the reproduction gamut boundary, gamut boundary points 

cannot solely be relied upon for starting dye recipes; more detail is needed within the boundary 

to increase the number and proximity of starting recipes.   

In some cases the closest possible hue angle difference between colours from iterative recipe 

correction and mapped colours was more than one degree.  This was found for the Cyan and 

Deep Pink tile colours compressed to the White gel gamut, and for the Cyan and Deep Blue 

colours compressed from the White to the Brown1 gamuts, as soon as after the first iteration 

step.  The starting colour however, was also found to be the same angular distance from the 

mapped colour, but in the opposite direction (Appendix Table 6.4), as well as being a similar 

ΔE*ab,10  distance from the mapped colour.    The colours from the two ‘consecutive steps’ also 

had similar dye recipes; with both recipes producing a colour within similar range of the 

mapped colour, either would have been an acceptable solution.  For Mid Grey mapped to the 

White gel gamut, and from the White to the Brown1 and Brown2 gel gamuts, and for Pale Grey 

mapped to the White, and then to the Brown1 gel gamuts, the hue angle differences between 

closest and mapped colours were large, ranging from 11 to 47 degrees (Appendix Table 6.3).  

However, the low chroma of these colours (and therefore their close proximity to the lightness 

axis) meant that the mapped and nearest colours were much closer to each other than suggested 

by the Δhab,10 differences.  As indicated in Chapter Five, Section 5.5.1, colours low in chroma 

are subject to relatively large angular variation from small errors. For these colours, ΔE*ab,10 

should be a more useful indicator than Δhab,10 of the proximity of the colours from recipe 

correction to mapped colours.  

Some of the differences between mapped colours and closest colours in Appendix Table 6.3 are 

differences between the outermost gamut boundary point in the hue angle plane, which replaced 
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the mapped colour, and its closest colour.  The replacement of mapped colours with outermost 

gamut boundary points (the point with the highest chroma, at the ‘rim’ of the boundary) applied 

to colours which were clipped to a point outside the reproduction gamut boundary.  Recipe 

correction for an out-of-gamut clipped colour would have begun with a starting recipe for a 

colour on the reproduction gamut boundary and converged (back) to the out-of-gamut colour. 

6.9.2. Relationships between gel browning and computed dye 

quantities 

Figure 6.10 to Figure 6.13 show the changes in computed total quantities of dye required to 

produce the best equivalent of each tile colour in the gel with decreasing measured lightness of 

the gel (as an indicator of increasing gel browning).  The traces for the individual dyes in each 

recipe can be found in Appendix Figure 6.16.  In the following sections, the full impact of gel 

browning is discussed for those tile colours for which a recipe is available for each reproduction 

gamut.    

6.9.2.1. Cyan, Deep Blue, Deep Pink and Green 

Figure 6.10 shows that for Cyan, Deep Blue, Deep Pink and Green, the (computed) total 

quantity of dye needed to produce the clipped colour in most of the reproduction gel substrates 

is more than that needed to produce the compressed colour.  More dye is needed to produce 

clipped colours because they are darker and more chromatic than the compressed colours.  The 

exceptions are Deep Pink in White, and Green in White and in Brown1, where the quantity of 

dye needed for the clipped and compressed colours is the same.  As the lightness of the 

reproduction gel substrate decreases, the total quantity of dye in the recipes needed to produce 

the clipped colours increases, whereas the quantity needed to produce the compressed colours 

increases comparatively less (for Deep Blue), or not at all (for Green).  The relatively small 

change in dye quantity needed to achieve compressed colours with increased substrate browning 

indicates that browning itself makes a larger contribution to these colours than it does to the 

clipped colours.  For clipping, an increasing amount of dye is needed to achieve an increasingly 
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darker and more chromatic result with substrate browning, relative to compression, as indicated 

by the increasing distance between compressed and clipped colours.   

For Deep Blue, Deep Pink and Green, in addition to an increasing total amount of dye, an 

increasing proportion of Brilliant Blue dye is needed in the recipes, relative to the other dyes, to 

produce the clipped colours as they darken with increased browning of the substrate (Appendix 

Figure 6.16).   Though accounting for a lower proportion of the predominant dyes in the recipes, 

Brilliant Blue is the darkest of the three dyes, on a unit concentration basis.  For the clipped 

Cyan colour, the proportion of blue to red dye decreased with substrate browning, however the 

blue dye already accounted for a higher proportion of total dye in the recipes for this colour than 

it did in the recipes for the other three colours.  For the compressed Deep Blue colour, the 

patterns observed for its clipped equivalent are also seen: an increasing proportion of blue to red 

dye in addition to the increase in total dye quantity, which together should achieve the 

increasingly darker, compressed colours with substrate browning.  The lack of apparent change 

in total dye quantity for the compressed Green colour follows the pattern observed for the 

predominant, yellow dye. 
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6.9.2.2. Orange and Yellow 

For Orange and Yellow, more total dye is needed to produce clipped colours than to produce 

compressed colours in most of the gel substrates, as clipped colours are more chromatic than the 

compressed colours.  However, opposite to what was observed for Cyan, Deep Blue, Deep Pink, 

and Green, as substrate lightness decreases, it is the quantity of dye needed to produce the 

compressed colours that increases, and the quantity of dye for the clipped colours that is 

unchanged, remaining at the permitted maximum (Figure 6.11).  Compressed colours did 

become darker with increased substrate browning, but chroma remained unchanged (with the 

small exception of Yellow in Brown3); the necessary increase in dye quantity was likely due to 

the combined need to darken the colour, and to maintain the chroma at the same level.  For 

Orange, the need to darken the compressed colour with substrate browning can also be met by 

an increasing proportion of Red dye (the darker dye) in the recipe (Appendix Figure 6.16).  

Figure 6.10  The total quantities of dye needed to produce the best equivalent of the Cyan, Deep Blue, Deep Pink 
and Green tile colours in each of the four reproduction gel substrates, according to the increase in the measured 
lightness of the substrate.   Each dye recipe total is for the colour in the reproduction gamut that was closest to 
the mapped (clipped or compressed) colour after iterative dye recipe correction.   
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Clipped colours, located at the outermost chromatic point in each substrate gamut boundary, 

became darker and less chromatic with substrate browning.  The same (or similar) total dye 

quantities can be used for each of these colours; the difference between them is due largely to 

the decreases in substrate lightness and chroma.  The quantities of the predominant dyes in the 

recipes for the clipped colours also show little or no change with substrate browning (Appendix 

Figure 6.16).  The total dye quantities needed for clipping and compressing the colours converge 

as the substrate darkens, and the reason for this can be seen in Appendix Figure 6.15: in moving 

from the White through to the Brown3 gamuts, the compressed colour moves gradually towards 

the bottom surface of the Brown3 gamut; as with outermost (rim) points, bottom surface points 

were computed from recipes containing the maximum permitted dye level.  

 

 

 

6.9.2.3. Red 

For Red, there is a more marked increase in the total quantity of dye needed to produce the 

compressed colour when moving from the White substrate to the Brown1 substrate, compared 

with the increase in dye needed to produce the clipped colour (Figure 6.12).  Not only is the 

compressed colour in the White substrate lighter and less chromatic than the clipped colour, 

therefore requiring less dye to begin with, the increase in dye quantity in moving to Brown1 

needs to cause both a darkening in colour, and to maintain the chroma that is unchanged in 

Figure 6.11  The total quantities of dye needed to produce the best equivalent of the Orange and Yellow tile 
colours in each of the four reproduction gel substrates, according to the increase in the measured lightness of the 
substrate.   Each dye recipe total is for the colour in the reproduction gamut that was closest to the mapped 
(clipped or compressed) colour after iterative dye recipe correction.   
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moving from White to Brown1.  This is the same as what was observed for the compressed 

Orange and Yellow colours.  In moving from Brown1 to Brown3 comparatively smaller 

changes are seen in the quantity of dye needed to produce both clipped and compressed colours.  

Similar to the clipping of Orange and Yellow, and the compression of Cyan, Deep Blue, Deep 

Pink and Green, the change in the mapped colour is due largely to the effects of the substrate.  

As the substrate darkens from Brown1, the dye quantities needed for the clipped and 

compressed colours converge to similar levels because, as was observed for Orange and Yellow, 

the Red colour is replaced by a boundary rim point or by a bottom surface point on the relevant 

Brown substrate gamut, and both require the same amount of dye.  The changes in total dye 

quantity that are needed to produce the clipped and compressed colours with substrate browning 

are due to changes in the quantity of red dye; no change is observed for the other dye in the 

recipe, the yellow dye (Appendix Figure 6.16).  

 

 

6.9.2.4. Deep Grey, Mid Grey and Pale Grey 

Of the Grey colours, full dye quantity data are available only for the clipped Mid Grey and Pale 

Grey colours.  The total quantity needed for these colours increases with substrate browning, in 

line with their decreasing lightness and increasing chroma, though for Pale Grey the trace is less 

clear cut (Figure 6.13).  Overall, less dye is needed for these colours than for other mapped 

colours which will be due to their comparatively low chroma.  Although not the predominant 

dye in the recipes for the clipped Mid Grey colour, the relative proportion of Brilliant Blue 

Figure 6.12  The total quantities of dye needed to 
produce the best equivalent of the Red tile colour in 
each of the four reproduction gel substrates, according 
to the increase in the measured lightness of the 
substrate.   Each dye recipe total is for the colour in the
reproduction gamut that was closest to the mapped 
(clipped or compressed) colour after iterative dye 
recipe correction.   
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increases with substrate browning, which likely contributes to the progressive darkening of the 

colour.  Conclusions were not able to be drawn about the dye quantities needed for the 

lightness-compressed Deep Grey colour, due to the relatively large distances between the 

closest colours computed from iterative dye recipe correction and the mapped colours in the 

White and Brown1 substrates (Appendix Table 6.3). 

  

 

6.9.3. Models fitted to the relationships between gel browning and 

computed dye quantities for mapped colours 

Linear and non-linear models were fitted to the computed dye quantity data only where they 

were available for all four substrates.  According to the squared Pearson correlation coefficients, 

R2, for the models fitted to the dye quantity data (Appendix Table 6.5), the increase seen in total 

quantity with increasing substrate browning in the clipping of Deep Pink and Green is best 

described as non-linear (quadratic).  For the number of observations for these dyes (n=4), the R2 

Figure 6.13  The total quantities of dye needed to 
produce the best equivalent of the Deep Grey, Mid 
Grey and Pale Grey tile colours in each of the four 
reproduction gel substrates, according to the increase 
in the measured lightness of the substrate.   Each dye 
recipe total is for the colour in the reproduction gamut 
that was closest to the mapped (clipped or 
compressed) colour after iterative dye recipe 
correction.   
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values exceed the thresholds for significance at 5% for quadratic models (that is, R2 ≥ 0.994) 

(Lindley and Scott, 1984).  For clipped Cyan and Deep Blue, and for compressed Orange, the 

relationship between total dye quantity and substrate browning can be described as either 

quadratic or linear, with the R2 values for the fitted linear models also exceeding the threshold 

(of 0.903) for significance at 5%.  However, similar to the traces for Deep Pink and Green, the 

traces for Cyan, Deep Blue and Orange display some curvature, and therefore a quadratic model 

is deemed more appropriate.  A significant increase in total dye quantity with increased 

substrate browning is also found for the clipping of Mid Grey, where the relationship is linear.  

For significance at 10%, threshold values for R2 are 0.810 and 0.976 respectively for linear and 

quadratic models.  These see the traces for the compression of Deep Blue and Yellow as being 

fitted best by a linear model and that for the clipping of Red by a quadratic model, while at 

0.951 the R2 value for the quadratic model fitted to the compressed Red data approaches 

significance.  The relationship between dye quantity and substrate browning is not significant 

for Pale Grey, due to noisy data (Figure 6.13).  Models were not fitted to the dye quantity data 

for Deep Grey. 

Examining the quadratic models further, the trends for the individual dyes in the recipes for the 

clipped Cyan, Deep Blue, Deep Pink, Green colours, and the compressed Orange colour, follow 

the significant non-linear trends for the recipe totals, with the exception of Brilliant Blue in 

Cyan, for which a linear model is the better fit (Appendix Table 6.5).  The trends observed for 

the predominant dyes in the recipes for the mapped Red and Yellow colours (quadratic and 

linear respectively) follow those observed for the corresponding dye totals, at 10% significance.  

The linear increase in total dye quantity required to produce the clipped Mid Grey colour with 

substrate browning is mirrored by the significant, linear trend for the predominant, red dye.     

Caution is needed when applying quadratic models; owing to their flexibility they can be made 

to fit most data.  While R2 values were either significant or high for the quadratic models fitted 

to the red dye data in the compression of Deep Blue, to the total and yellow dye data in the 

compression of Green, and to the yellow dye data in both the clipping and compression of Red 
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and in the clipping of Mid Grey (ranging from 0.93 to 0.99), R2 values for the linear models 

fitted to the same data were comparatively low, and not significant, ranging from 0.1 to 0.6.  

The attempts to fit the linear model support the observation that the levels of these dyes in these 

recipes do not appear to change markedly with browning of the substrate, for the number of data 

points available.  The fitted equations shown in Figure 6.10 to Figure 6.13 and in Appendix 

Figure 6.16 are the ones regarded the most appropriate, based on the above discussion. 

The fitted models, linear or quadratic, for the relationships between dye quantity and decreasing 

substrate lightness were not intended as absolute or final solutions; rather they were intended to 

show the pattern of changes in dye recipe, not only with substrate browning, but also with target 

(tile) colour.  The ‘relationships’ between target colours and mapping outcomes are discussed 

further in the following section.  

6.10. General Discussion 

Colour gamut boundaries provide information on the limits of viewable or printable colours in 

different media, and are used to determine the degree of mapping of colours that is required 

from one gamut to another, so that they can be displayed or reproduced by different media.  In 

3D colour food printing, colour images from an original medium such as a computer screen or 

smartphone device will be rendered within a food matrix using the reproduction medium of 

printer, food dyes and food substrate.  In terms of its characteristics the food substrate will not 

be a fixed, nor small range, commodity.  Gamuts of coloured foods are expected to vary 

according to the formulation and processing of the substrate.   

In this study the model systems of coloured tiles and conventionally cooked food gels 

represented original and reproduction media respectively.  A single food gel was manipulated to 

display the browning characteristic to different degrees, starting with white.  Gamut boundary 

colours resulting from the addition of the same primary-dye blends to each gel variant were 

computed.  The tile colours were mapped to each gel colour gamut, starting with mapping to the 

gamut from the dyed, White gel, before being mapped from here to each of the colour gamuts 



 

254 
 

from the dyed, Brown gels.  The aim was devise an algorithm for rapid computation of dye 

quantities in order to render the best equivalent of a target colour for a given level of substrate 

browning, which could be used by the 3D food printer. 

6.10.1. Observed trends in the lightness, chroma and dye recipes of the 

mapped colours 

For all tile colours, the results provide information on the limits of available replacement 

colours.  The hue angle range covered by the Orange, Red and Yellow tile colours (30 to 88 

degrees, anti-clockwise from the +a* axis) coincides with the regions of the gamuts from the 

dyed, Brown gels having a larger population of colours available for replacing the original 

colours (see also Figure 5.7 in Chapter Five).  At these hue angles the (light-compressed) White 

substrate gamut boundary appears to fit more tightly around the Brown substrate gamut 

boundary, and the resulting overlap increases the chances of light compression alone placing the 

tile colour inside the reproduction gamut.   

At the hue angles for Cyan, Deep Blue, Deep Pink, and Green (ranging from seven to 151 

degrees in the clockwise direction from the +a* axis), the range of colours available to replace 

the original colours shrinks with substrate browning.  When this occurs, compression may not 

always provide a solution because compression lines may not be able to reach the reproduction 

gamut boundary.  

Larger increases in dye quantities with substrate browning were observed when the decrease in 

lightness of the mapped colour was large, relative to the change in chroma.  Again, this is where 

the Cyan/Deep Blue/Deep Pink/Green and Orange/Yellow/Red groupings displayed differences; 

for Cyan, Deep Blue, Deep Pink and Green the trend was observed for the clipped colours, 

while for Orange, Yellow and Red it was found for the compressed colours.  
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6.10.2. Effects of gamut boundary detail and choice of mapping 

algorithm 

In this chapter, colour gamut mapping utilised the colour gamut boundaries for the dyed 

substrates that were computed in Chapter Five, which in their entirety were computed in great 

detail with a very high density of points.  The rationale for this level of detail was to allow 

mapping of tile colours to the required gamut boundary with relative ease, but this came at the 

expense of not being able to obtain dye recipes for colours that were mapped to within a 

reproduction boundary by compression.  Therefore it is recommended that some of the detail in 

the computed gamut boundaries be sacrificed, and to instead fill the inside of the boundary with 

some detail.  This should increase the range of starting recipes for iterative recipe correction, 

which are closer to colours that have undergone full compression and which therefore lie within 

the gamut boundary.  Full compression can take place when the original gamut boundary is 

available, as would normally be the case; in this study the gamut boundary of the tile colours, 

which would have enabled initial, full compression to the White gel gamut boundary, was not 

known.  Any further detail needed at individual hue angles could be filled by interpolation of 

boundary points, in the same way that some of the outermost boundary points were derived by 

interpolation in this study. 

The choice of hue-preserving gamut mapping placed a heavy constraint on the accuracy of the 

results, and there may not be a need for this level of accuracy for a printed food application.  For 

consistency, recipe correction was used to find solutions for all mapped colours.  For many of 

these colours however, the closest colour on the gamut boundary (the source of the starting 

recipe) was already within three ΔE*ab,10 units and one degree of the mapped colour.  For the 

Deep Blue colour clipped from the White to the Brown1 and Brown2 gamuts hue angle 

differences between the clipped colour and the starting colour exceeded the one degree limit 

before recipe correction, ranging from five to seven degrees; recipe correction reduced these 

differences to between zero and two degrees, and yet the dye quantity traces before and after 

recipe correction appear similar (Figure 6.14).  The dye quantity traces for the clipped Mid Grey 
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colour before and after recipe correction show more obvious differences (Figure 6.14).  

Although the large hue angle differences (31 to 114 degrees) in the Brown1 and Brown2 gamuts 

indicated the need for recipe correction, again this should not have been necessary due to the 

low chroma of the colours.  To save on computational load a suggested approach for the 3D 

colour food printer is to keep to a minimum ΔE* mapping approach in a constant hue angle 

plane, but to either relax the constraint on the hue angle of the nearest colour (removing the 

need for dye recipe correction), or impose a chromatic threshold above which the hue angle 

differences are deemed too large, therefore making recipe correction necessary; a given hue 

angle difference might be more problematic at a higher chroma than at a lower chroma.  Such an 

approach would combine aspects of minimum ΔE* clipping proper, which clips to the nearest 

point per se, with those of hue-preserving minimum ΔE* clipping.  The application of ΔH*, the 

Euclidean hue difference, alongside the angular difference might prove useful here.   

 

 

Figure 6.14  Comparison of dye recipes for colours closest to the clipped Deep Blue and Mid Grey tile colours 
before (left) and after (right) iterative dye recipe correction.  Each dye recipe is for a colour in each of the four 
reproduction gel substrates, which differ in their level of measured lightness.   
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6.10.3. Implications for 3D colour food printing 

The findings in this study were as much a function of using the tile colours as models of original 

colours, as they were of using the gels and food dyes for reproducing the colours.  The 

chromatic boundaries of the tile colours was not known, and colour gamut mapping in this study 

worked to assumed lightness range of zero to 100 units for tile colours.  In actual 3D printing of 

colour in food, it is expected that the full gamut of the original image or medium would be 

known, as they are in conventional colour printing.  Therefore all sequential lightness-chroma 

compressions of original colours to the gamut of a dyed, white substrate would be full 

compressions, placing the compressed colours within the gamut boundary, rather than partial 

compressions placing the colours on the boundary itself.  For colours similar to the Cyan, Deep 

Blue, Deep Pink and Green colours in this study, full compressions would have resulted in 

steeper increases in dye quantities with substrate browning (compared to the very small 

increases that were observed for their partially compressed counterparts) if the overlap of light-

compressed White gamuts and Brown gamuts meant that the chroma of the compressed colours 

with browning remained unchanged, similar to what was found for the Orange, Red and Yellow 

compressions in this study. 

For 3D colour food printing also, a decision needs to be made on whether clipping or 

compression should be used as the basis of the algorithm which will compute dye quantities in 

response to changes in characteristics of the food substrate.  Compression algorithms are 

regarded as working better than clipping algorithms when the differences between media and/or 

gamuts are large (Morovic, 2003).  In this study, original and reproduction media were either 

the same (as in the mapping of colours from White to Brown gamuts) or had similar properties 

(the smooth surfaces of the tiles and gels for the initial mapping of the tile colour to White), 

which means that the clipping algorithm should have given the better results.  For the food 

printer, we would expect very large differences between image gamuts and food substrate 

gamuts, and therefore compression might be the favoured approach.   
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6.11. Appendix 
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Figure 6.15  Plots showing the mapping of each SCI tile colour, by compression and clipping algorithms, to each of 
the four reproduction colour gamuts (for the White, Brown1, Brown2 and Brown3 gels), in more detail than is
shown in Figure 6.5 to Figure 6.9 in which the original and final positions only of the tile colours are shown.  In 
the present figure, results are separated into individual plots for each reproduction gamut and show the 
positions of the lightness-compressed original colours prior to clipping or chroma compression (continued on the 
following pages). 
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Table 6.2  Computed chroma, C*ab,10, and lightness, L*10, values of each SCI tile colour following mapping by 
clipping or compression algorithms to each of the four reproduction colour gamuts (for the White, Brown1, 
Brown2 and Brown3 gels) (see also Figure 6.5 to Figure 6.9 and Appendix Figure 6.15).  Letter labels refer to the 
extent to which mapping was possible; key to labels is shown below table.  

Original 
Tile Colour 
C*ab,10, L*10 

Mapping 
Algorithm 

Original gamut to Reproduction gamut 

Tile to White White to Brown1 White to Brown2 White to Brown3 

C*ab,10 L*10 C*ab,10 L*10 C*ab,10 L*10 C*ab,10 L*10 

Cyan 
30.3, 56.6 

Clipping 20.7 71.9 16.7 62.8 14.8 57.7 12.5 51.3 

       BP   10.2 53.1 

Compression PC   15.0 79.3 PC     5.3 72.9 OP   -0.4 69.9 OP   -6.7 66.1 

Deep Blue 
20.7, 28.0 

Clipping 12.6 65.7 9.3 60.5 8.0 58.3 5.6 52.8 

       BP     4.5 54.1 

Compression PC   12.3 67.4 PC     7.1 63.9 PC     5.9 62.1 PC     0.1 59.5 

Deep Grey 
1.5, 35.8 

Clipping LC      1.5 70.7 LC      1.5 66.4 LC      1.5 64.2 LC      1.5 61.3 

Compression LC      1.5 70.7 LC      1.5 66.4 LC      1.5 64.2 LC      1.5 61.3 

Deep Pink 
23.1, 45.4 

Clipping LC    23.1 74.6 22.8 68.8 19.2 63.8 16.7 54.8 

       BP   13.9 56.9 

Compression LC    23.1 74.6 16.2 69.4 8.0 66.8 NO  

Green 
30.7, 55.5 

Clipping LC    30.7 78.8 LC    30.7 72.6 30.1 68.2 28.7 61.3 

Compression LC    30.7 78.8 LC    30.7 72.6 17.4 69.6 14.3 65.8 

Mid Grey 
0.5, 59.6 

Clipping LC      0.5 80.5 LC      0.5 73.8 1.9 69.5 3.6 63.6 

Compression LC      0.5 80.5 LC      0.5 73.8 NO  NO  

Orange 
67.3, 65.8 

Clipping 62.6 71.1 46.8 74.9 46.1 73.5 45.6 71.2 

 BP   48.5 76.6 BP   45.6 74.4 BP   44.0 72.6 BP   42.7 69.9 

Compression PC   32.8 83.1 LC    32.8 75.8 LC    32.8 72.4 LC    32.8 68.2 

Pale Grey 
1.1, 84.0 

Clipping LC      1.1 90.6 3.2 80.1 7.3 70.3 5.4 66.9 

Compression LC      1.1 90.6 NO  NO  NO  

Red 
45.3, 45.6 

Clipping 44.2 72.7 43.7 69.3 43.5 68.2 43.2 66.0 

     BP   43.2 68.2 BP   42.1 65.7 

Compression PC   40.6 74.7 LC    40.6 69.4 PC   37.4 66.9 PC   33.9 63.6 

Yellow 
78.7, 83.2 

Clipping 78.6 88.0 58.2 86.0 57.2 84.1 57.3 80.4 

 BP   61.5 89.1 BP   54.8 84.1 BP   48.2 79.0 BP   39.8 72.2 

Compression PC   43.0 90.3 LC    43.0 81.2 LC    43.0 77.2 PC   39.7 72.2 

BP:  boundary rim point, replacing original mapping solution in row immediately above; 
PC:  partial compression i.e. compression from one gamut boundary to the other; 
OP: solution located in opposite hue angle plane (not used); 
LC:  lightness compression only, without subsequent chroma mapping; 
NO:  no solution possible. 
 
No label indicates that a full algorithm could be applied (lightness compression, followed by clipping or chroma 
compression), and that the mapped colour was located within the reproduction gamut boundary in the hue angle 
plane of tile without it having to be replaced by an alternative listed above. 
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Figure 6.16  Full details of the dye recipes (total quantity and quantities of the constituent dyes) needed to 
produce the best equivalent of each SCI tile colour in each of the four reproduction gel substrates, according to 
the increase in the measured lightness of the substrate.   Each dye recipe is for the colour in the reproduction 
gamut that was closest to the mapped (clipped or compressed) colour after iterative dye recipe correction 
(continued on the following pages).   
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Table 6.3  Overall differences, ΔE*ab,10, and hue angle differences, Δhab,10, between mapped (clipped or 
compressed) tile colours and the closest colours to the mapped colours following iterative dye recipe correction.  
Refer letter labels, and key to labels given below table for more details.   

Original 
Tile Colour 

Mapping 
Algorithm 

Original gamut to Reproduction gamut 

Tile to White White to Brown1 White to Brown2 White to Brown3 

ΔE*ab,10 Δhab,10 ΔE*ab,10 Δhab,10 ΔE*ab,10 Δhab,10 ΔE*ab,10 Δhab,10 

Cyan 
Clipping S         0.5          0.7 0.4 -0.9 0.4 -0.7 B 

Compression S         0.8         1.8 S         0.7         5.7 n/a n/a 

Deep Blue 
Clipping 0.4 0.6 0.2 0.0 0.5 -2.2 C        0.0 0.0 

Compression 0.4 -0.5 1.7 -9.1 0.2 -1.4 0.0 0.0 

Deep Grey 
Clipping n/a n/a n/a n/a 

Compression S      11.0          2.9 S         7.7      -23.1 0.0 -0.3 0.0 0.5 

Deep Pink 
Clipping 2.5 -6.0 0.2 -0.1 S         0.6        -0.1 C        0.0 -0.1 

Compression 2.5 -6.0 1.4 -3.7 1.1 -0.1 n/a 

Green 
Clipping 3.3 1.0 S         1.8        -0.9 0.5 0.7 0.5 -0.7 

Compression 3.3 1.0 S         1.8        -0.9 2.6 0.7 0.7 0.3 

Mid Grey 
Clipping 2.9 36.4 2.1 46.6 1.4 21.0 0.0 -0.1 

Compression 2.9 36.4 2.1 46.6 n/a n/a 

Orange 
Clipping B CS      1.1 1.1 B CS      0.2 -0.3 

Compression S         1.3        -2.2 2.1 -0.3 2.6 1.2 S         3.3          2.3 

Pale Grey 
Clipping 2.5 13.6 S         1.0       11.1 2.2 1.5 S         0.6          0.6 

Compression 2.5 13.6 n/a n/a n/a 

Red 
Clipping 0.6 -0.7 S         0.7        -0.1 B B 

Compression 1.0 -1.3 S         0.9 S0.2 0.2 0.2 0.7 0.5 

Yellow 
Clipping CS      1.0 0.3 CS      0.3 0.3 CS      0.7 0.3 CS      0.3 0.3 

Compression S         1.2        -1.5 S         3.4        -1.1 S         1.4        -1.3 S         0.3          0.3 

S: differences between the mapped colour and the starting colour for recipe correction on the reproduction 
gamut boundary, which was already the closest colour to the mapped colour;   

B  indicates that a colour on the chromatic rim of the reproduction gamut boundary replaced the mapped 
colour, and that the rim colour was derived from a dye recipe during gamut boundary computation, 
removing the need for iterative recipe correction;   

C also indicates that a chromatic rim colour replaced the mapped colour, but recipe correction was needed 
because the rim colour had been interpolated and therefore did not have an associated dye recipe;   

n/a indicates that mapping was not possible.   
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Table 6.4  Overall differences, ΔE*ab,10, and hue angle differences, Δhab,10, between selected compressed colours 
and their starting colours for iterative dye recipe correction, and between the compressed colour and the colour 
from the first recipe correction iteration step.  The table also compares the dye recipes for the colours from the 
two steps, for a given compression.  The dye recipes indicated in bold are those that were selected as the dye 
recipe for the mapped colour. 

Original Tile 
Colour 

Recipe 
correction 

iteration step 

Compression from Tile gamut to White gamut 

Distance of solution from 
mapped colour Dye quantities, mg dye/100 g raw gel 

ΔE*ab,10 Δhab,10 Blue Red Yellow 

Cyan 
Starting colour 

(closest available)  0.8 1.8 1.4 1.1  

1 1.1 -2.0 1.3 1.4 0.0 

Deep Pink 
Starting colour 

(closest available) 2.7 6.6 0.2 8.0  

1 2.5 -6.0 0.2 8.6 0.9 

Original Tile 
Colour 

Recipe 
correction 

iteration step 

Compression from White gamut to Brown1 gamut 

Distance of solution from 
mapped colour Dye quantities, mg dye/100 g raw gel 

ΔE*ab,10 Δhab,10 Blue Red Yellow 

Cyan 
Starting colour 

(closest available) 0.7 5.7 1.6 2.4  

1 0.8 -6.0 1.6 2.9 0.0 

Deep Blue 
Starting colour 

(closest available) 2.2 9.3 3.2 8.8  

1 1.7 -9.1 3.1 10.5 1.1 
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Table 6.5  Squared correlation coefficients, R2, for linear and quadratic models fitted to total and individual 
primary dye quantity data against increased artificial browning of the gel substrate colour, for clipped and 
compressed tile colours.  Statistical significance is indicated for the number of observations for each dye and dye 
total (n=4).     

Original Tile Colour Dye quantity 
R2 for fitted model 

Clipping Compression 
Linear Quadratic Linear Quadratic 

Cyan 
Total 0.9719a 0.9955c 

n<4 Brilliant Blue 0.9788a 0.9864d 
Ponceau 4R (red) 0.9544a 0.9995c 

Deep Blue 
Total 0.9661a 0.9969c 0.8113b 0.9142 

Ponceau 4R 0.9833a 0.9994c 0.4446 0.9847d 
Brilliant Blue 0.9304a 0.9957c 0.9584a 1.000c 

Deep Grey 

Total 

n/a n/a 
Ponceau 4R 

Tartrazine (yellow) 
Brilliant Blue 

Deep Pink 
Total 0.8921b 0.9987c 

n<4 Ponceau 4R 0.9354a 0.9978c 
Brilliant Blue 0.7516 0.9955c 

Green 
Total 0.7922 1.000c 0.1434 0.9869d 

Tartrazine 0.8458b 0.9994c 0.4866 0.9286 
Brilliant Blue 0.8189b 0.9961c 0.9111a 0.9424 

Mid Grey 

Total 0.9869a 0.9896d 

n/a 
Ponceau 4R 0.9661a 0.9764d 
Brilliant Blue 0.8714b 0.9999c 

Tartrazine 0.5889 0.9854d 

Orange 
Total n/a 0.9736a 0.9972c 

Tartrazine 0.0539 0.6845 0.9749a 0.9948c 
Ponceau 4R 0.0540 0.6846 0.9730a 0.9985c 

Pale Grey 
Total 0.2909 0.3278 

n/a Ponceau 0.3176 0.3486 
Brilliant Blue 0.7979 0.8227 

Red 
Total 0.7712 0.9890d 0.7588 0.9511 

Ponceau 4R 0.9434a 0.9826d 0.8781b 0.9607 
Tartrazine 0.3858 0.9831d 0.1370 0.9756d 

Yellow 
Total n/a 0.8365b 0.8405 

Tartrazine n/a 0.8653b 0.8700 
a: significant at 5% for linear model (threshold critical value for R2 of 0.903); 
b: significant at 10% for linear model (R2 ≥ 0.810); 
c:  significant at 5% for quadratic model (R2 ≥ 0.994); 
d:  significant at 10% for quadratic model (R2 ≥ 0.976); 
n/a: mapping was not possible (Deep Grey clipping; Mid Grey and Pale Grey compression), or  

no change in dye quantity with substrate browning (total quantities for clipped  
Orange and Yellow), or 
iterative dye recipe correction unsuccessful (Deep Grey compression).   
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Chapter Seven: Comparing colorimetric matching and colour 

gamut mapping  

7.1. Introduction 

This chapter revisits the problem of matching the colours of the tile standards with coloured 

microwave-baked cakes containing blends of primary dyes, which was the subject of Chapter 

Four, but now incorporates the colour gamut boundary computation, and colour gamut mapping 

approaches developed in the intervening chapters.  This chapter will consolidate the two 

different methodologies, colorimetric matching and colour gamut mapping, and in doing so 

compare their performance in finding the best equivalents of each original tile colour within the 

gamut of (possible) cake colours.  This chapter does not include methods which adjust for 

substrate characteristics because the cake was taken to be a single substrate of mixed 

characteristics. 

In Chapter Four, a predictive colour matching model was developed which combined Kubelka-

Munk linear absorption coefficients that were derived for each primary dye in the cake, with the 

colorimetric matching technique based on the Allen algorithm.  This model computed dye 

recipes for the cakes which were good first solutions in that cake colours computed using these 

recipes were largely within the numerical limit of a good visual match to the corresponding tile 

colours.  Differences in the physical properties of the tiles and cakes meant that the solutions 

were much better when matching was targeted at the measured reflectance of the tile colour, 

rather than to its measured reflectance corrected for surface effects.  However, for some tile 

colours, the computed recipes called for negative dye concentrations, or concentration totals that 

exceeded the legal maximum.  On the basis of an approximate cake colour gamut boundary it 

was seen that those tile colours for which out-of-range concentrations were computed lay 

outside this boundary.  As expected, for out-of-gamut colours much larger differences between 

tile colour and cake colour resulted from having to adjust computed dye quantities to keep the 

total to within the legal limit.  The computation of a more detailed gamut boundary for cake 
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colours should allow colour gamut mapping techniques to be applied to provide potentially 

more satisfactory solutions, which are closer to the tile colours and to possibly allow more 

efficient use of dyes.  The comparison of colorimetric matching and colour gamut mapping 

outputs for each tile colour will help to decide which colour rendition technology will be more 

suitable for use by the 3D colour food printer being developed. 

The aims of this work in this chapter were: 

 To compute the detailed colour gamut boundary for the range of colours possible by 

adding Brilliant Blue, Ponceau 4R red and Tartrazine yellow dyes, and their blends, in 

quantities up to the legal maximum, to the microwave-baked cake substrate; 

 To apply colour gamut mapping to all tile colours, mapping these colours to the 

reproduction (cake) gamut; 

 To compute the dye quantities needed to produce the mapped colours in the cake; 

 To compare the solutions for each tile colour from the two approaches, colorimetric 

matching and colour gamut mapping, and then to make a recommendation on whether 

one method is favoured over the other in providing the best equivalent of the tile colour 

in the cake; and should colour gamut mapping be favoured, to specify whether a 

compression or clipping algorithm provides the better solution. 

Returning to the cake substrate also leads to the following supplementary aims: 

 For each tile colour, to map both its specular component included (SCI) and specular 

component excluded (SCE) colours, to allow comprehensive comparisons with 

colorimetric matching results (previously, only the SCI tile colours were mapped to the 

gel colour gamut boundary, due to the tiles and gels having similar surface properties, 

as discussed in Chapter Six); 

 To map each colour both with and without initial lightness compression (previously all 

mapping to the gel gamuts was done with lightness compression, due to the effects of 

increased gel browning on decreasing the lightness range of the gamuts). 
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7.2. Materials and Methods 

The analyses presented in this chapter are based on the methods reported in Chapters Five and 

Six for colour gamut boundary computation and colour gamut mapping respectively, as they are 

applied to the cake-derived data from Chapter Four.  These chapters can be referred to for more 

information.  The steps are described here again in only general detail, with an emphasis on any 

differences to previous methods.   

For convenience colorimetric matching will often be referred to simply as ‘matching’ and 

colour gamut mapping as ‘mapping’.  The mention of any colour refers to both its SCI and SCE 

versions, unless otherwise specified. 

7.2.1. Boundary for the entire cake gamut 

The basis for computing the colour gamut boundary for the microwave-baked cake containing 

blends of primary dyes was the computation of individual L*10a*10b*10 colours using the 

Kubelka-Munk model (Equation 4.10 below, from Chapter Four), which is the same method as 

was reported in Chapter Five for computing the colour gamut boundary resulting from the 

addition of primary dye blends to the initially White gel.   

 

For each blend, the spectrum of absorption values for the cake substrate,  and the 

cake-derived spectral unit absorption coefficients for each dye,  (from Chapter Four), 

together with dye concentrations, , were substituted into the equation to compute a spectrum 

for the blend.  The dye blends were the same as those used to compute the colour gamut 

boundaries for the gels in Chapter Five.  For the cake gamut boundary L*10a*10b*10 values were 

computed from  via direct conversions to computed, measured  and then to , 
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, , as explained in Chapter Four, whereas for the gels, was converted first to 

computed internal reflectance, before being converted to computed .   

7.2.2. Gamut boundaries at planes of constant hue angle 

From the computed cake gamut boundary colours, gamut boundary polygons were drawn in the 

180 degree, two dimensional chroma-lightness (C*L*) plane at the hue angle of each tile colour, 

following the method reported in Chapter Six.  In the present chapter two polygons were drawn 

for each tile colour, one for each of the hue angles of the SCI and SCE tile colours, whereas in 

Chapter Six a single polygon was drawn, for the SCI colour only.  

7.2.3. Gamut mapping 

At the hue angle of each tile colour (SCI and SCE), the tile colour was mapped to the cake 

gamut boundary (see also Chapter Six for methodology).  In the present chapter colours were 

clipped and compressed with and without initial lightness compression, whereas previously, in 

Chapter Six, lightness compression always preceded clipping or chroma compression to the gel 

gamuts.  Although lightness compression features in many gamut mapping algorithms, gamut 

mapping is possible also without lightness compression (Kang, 2006).  Again, lightness 

compression was defined by an assumed range of zero to 100 L* units for the tile colours, and 

the lightness range for the entire reproduction (cake) colour gamut. 

7.2.4. Dye quantities for mapped colours 

The dye quantities needed to produce the mapped colours in the cakes were computed using 

iterative dye recipe correction, with the nearest available gamut boundary point to the mapped 

colour as the starting colour, following the methods described previously in Chapter Six. 

7.2.5. Comparison of outputs from colour gamut mapping and from 

colorimetric matching 

ΔE*ab,10 differences, as well as the lightness, chroma and Euclidean hue differences, ΔL*10, 

ΔC*ab,10 and ΔH*ab,10 respectively, between the tile colours and their mapped counterparts were 
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computed.  These differences, along with the dye recipes, were compared to those previously 

computed from colorimetric matching in Chapter Four. 

7.3. Results and Discussion 

7.3.1. Gamut boundaries 

7.3.1.1. Boundary for the entire cake gamut 

Figure 7.1 shows the gamut boundary for the range of computed colours resulting from the 

addition of the three primary dyes and their various blends to the cake substrate.  The same dye 

blends that had been used to compute the gamut boundary colours for the dyed, White gel in 

Chapter Five were used for the cake.  For gel colours, dye blends (i.e. their total concentration 

and relative dye proportions) had been designed so that the ΔE*ab,10 spacing between colours on 

the computed gamut boundary was no more than three units; by using the same dye blends for 

the cake colours, it was not guaranteed that the spacing between the computed colours on the 

cake colour gamut boundary would be the same.  While the three-unit ΔE*ab,10 spacing 

condition was met by the vast majority of the computed cake colours, a small number of the 

differences between colours rose to between four and five units. 

Also shown superimposed in Figure 7.1 is the less-detailed gamut boundary that was drawn for 

the cake colours in Chapter Four.  This clearly shows the impact that a lack of boundary detail 

would have on the mapping of tile colours to this reproduction gamut.  In general terms, out-of-

gamut colours in the chromatic green-yellow quadrant would be clipped further than is 

necessary towards less chromatic replacement colours, and some within-gamut colours clipped 

unnecessarily.  Similarly, dark colours located to the right (redder) side of the lightness axis 

might become much lighter than they need to be as a result of mapping to the less-detailed 

boundary.  At individual hue angles a lack of gamut boundary detail will be more evident.  

Although the comparison between the cake colour gamut and the White gel colour gamut was 

not a focus of this work, it is still interesting to note the differences between them.  The gamut 
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of colours from the cake and White gel substrates are similar in shape, but differ in their 

lightness and chroma ranges (Figure 7.1).  The chroma range of the cake gamut is more 

extended in the +a* and +b* directions (i.e. towards redder and more yellow colours), but 

reduced in the –b* (blue) region.  This is consistent with the cake itself having a yellow colour 

when it does not contain any added dye.  The lightness range of the cake gamut is a similar size 

to the lightness range of the White gel gamut, but occurs at a lower region of the lightness axis.  

It might be harder therefore to achieve matches in the cake for lighter tile colours, and for blue- 

and purple- type colours, without colour gamut mapping.  Although the un-dyed cake may be 

darker per se than the un-dyed White gel, it may be darker also by virtue of it being a more 

porous sample, and therefore of more light being lost during colour measurement (Negueruela, 

2010).   
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  Figure 7.1  Plots showing the chromatic (top) and lightness (bottom) ranges of the colour gamut boundaries for 
the microwave-baked cake and whitened starch gel containing primary dye blends to the maximum level allowed 
in foods.  Also shown is the less-detailed gamut boundary for the cake colours from Chapter Four. 
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7.3.1.2. Gamut boundaries at planes of constant hue angle 

Figure 7.2 shows the cake gamut boundary polygons in a 180 degree plane originating at the hue 

angle of each tile colour (SCI and SCE), and the original positions of the tile colours.  The 

detailed gamut boundary has the Deep Pink SCI colour located within the gamut of cake 

colours, rather than being out-of-gamut as was found in Chapter Four (Figure 4.7), and the Deep 

Pink SCE and Red SCI colours only slightly out-of-gamut, rather than being further away.  Mid 

Grey SCI, which was shown previously to be within-gamut according to the less-detailed 

boundary, is also shown to be slightly outside the detailed boundary.  

In fact, while colorimetric matching in Chapter Four returned mostly positive, within-range 

concentrations for Deep Pink SCE and Red SCI, at 30.3 mg/100 g batter the computed dye total 

for Deep Pink SCE was slightly more than the legal maximum of 27.4 mg/100 g batter, as was 

the computed total for Red SCI (of 28.9 mg/100 g batter). The computed dye recipe for Mid 

Grey SCI from colorimetric matching included a small, negative concentration for the yellow 

dye (-0.1 mg/100g).  These dye quantities provide another indication of the colours being only 

slightly out-of-gamut, and clearly demonstrates the accuracy of the detailed gamut boundary 

computation.    
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Figure 7.2  Plots showing the original position of each tile colour (SCI and SCE) in its hue angle plane, and its 
positions following mapping by various gamut mapping algorithms (continued on the following pages). 
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7.3.2. Gamut mapping 

In addition to the original positions of the SCI and SCE tile colours in their hue angle planes, 

Figure 7.2 also shows their positions in the cake colour gamut following mapping.  Appendix 

Figure 7.13 illustrates each individual mapping.  As in Chapter Six, clipping or chroma 

compression was preceded by lightness compression, for the colour to fit within the lightness 

range of the cake gamut.  However the work in this chapter differs from that in Chapter Six, in 

that clipping and compression were also done without initial lightness compression, where 

possible.   

In accordance with the explanation given previously in Chapter Six, Mid Grey and Pale Grey 

colours were only clipped (with or without initial lightness compression) and not chroma-

compressed. 

7.3.2.1. Mapping with initial lightness compression 

For all colours except Orange (SCI only), Pale Grey and Yellow, initial lightness compression 

(prior to clipping or chroma compression) increased the lightness of the original tile colours 

(Figure 7.2).  The largest increases in lightness were for Deep Blue, Deep Grey, Deep Pink and 

Red (ranging from nine to 30 L*10 units across SCI and SCE colours).  Comparing SCI and SCE 

colours, the larger increases in lightness were for the SCE colours.  The degree of increase in 
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lightness for a given tile colour was related to how much darker the colour was relative to the 

darkest possible cake colour having a computed L*10 of 36 units.  The original Orange SCI, Pale 

Grey and Yellow colours were lighter than the lightest possible cake colour (with a computed 

L*10 of 78 units), and were darkened by initial lightness compression; as a result the lightness of 

Pale Grey and Yellow was decreased by more than 10 L* units, ranging from 11.3 to 13.3 units 

across the SCI and SCE colours.  

For Deep Pink SCI, which was already within the gamut of cake colours, lightness compression 

pushed this colour out-of-gamut, in addition to increasing its lightness.  An alternative approach 

would have been to apply lightness compression only to those colours that were out-of-gamut, 

or, if applying lightness compression to all colours, to use the lightness range of the 

reproduction (cake) gamut at the hue angle of the colour to be mapped, rather than to use the 

lightness range for the entire reproduction gamut. 

When lightness compression preceded clipping or chroma compression, a result was always 

returned, however following sequential compression of lightness and chroma, the Cyan SCI 

colour was mapped to the section of the gamut boundary which was 180 degrees from the hue 

angle of the tile colour (Figure 7.2).  As in Chapter Six, in the absence of full (chromatic) gamut 

information for the tile colours, sequential lightness-chroma compressions were not full 

compressions, but only partial compressions, placing colours on to the cake gamut boundary, 

rather than inside the boundary.  Again, for some colours, lightness compression alone placed 

the colour inside the boundary and therefore further clipping or chroma compression was not 

necessary (Deep Grey, Green, and Red SCI).  When lightness compression followed by clipping 

placed the colour outside the cake gamut boundary, it was replaced by the outermost chromatic 

point (Deep Blue SCE, Orange SCI, Red SCE and Yellow SCE) (Appendix Figure 7.13).   

7.3.2.2. Mapping without initial lightness compression 

Without initial lightness compression, chroma compression alone was possible only for Cyan, 

Orange, and Red SCI.  Chroma compression alone was not possible if the lightness of the tile 
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colour was outside the lightness range of the cake gamut (Deep Blue, Deep Grey, Deep Pink 

SCE, Red SCE and Yellow) meaning the chroma compression line would not have been able to 

reach the gamut boundary, or if the original position of the tile colour was already within the 

cake gamut (Deep Pink SCI and Green).  Chroma compression alone could still have been 

applied to the latter colours if the chroma range of the tile colours were known.  Without initial 

lightness compression, clipping was possible for most tile colours, except for those already 

inside the cake gamut boundary (Deep Pink SCI, Green, and Mid Grey SCE).  The clipping-

only ‘solution’ was replaced by the outermost chromatic boundary point for Deep Blue, Orange, 

Red SCE and Yellow SCE.     

7.3.2.3. Final L* and C* after mapping 

When initial lightness compression increased the lightness of a given SCI or SCE tile colour, 

the colour following subsequent clipping or chroma compression was lighter than its 

counterpart that was clipped or compressed without lightness compression.  These conclusions 

were able to be drawn for the following colours: Cyan (clipped and compressed), Deep Blue 

SCI (clipped only), Deep Pink SCE (clipped only), and Mid Grey SCI (clipped only).  When 

initial lightness compression darkened the tile colour, clipped or compressed colours were 

darker than they were without initial lightness compression: Orange SCI (compressed only), 

Pale Grey (clipped only), and Yellow SCI (clipped only).   

If a given colour (SCI or SCE) was able to be both compressed and clipped (with or without 

initial lightness compression), the compressed and clipped colours differed in one of the 

following ways: 

 the clipped colour was darker and more chromatic than the compressed colour (Cyan, 

Deep Blue, Deep Pink, Orange SCI);   

 the clipped colour was the lighter and more chromatic (Red and Yellow); 

 the clipped and compressed colours were the same (Orange SCE). 
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7.3.3. Dye quantities for mapped colours 

As in Chapter Six, the source of the dye recipe for the mapped colour was the colour having a 

computed ΔE*ab,10 difference of up to three units, and a hue angle difference of one degree or 

less, to the mapped colour.  In the majority of cases, dye recipe correction converged to a 

solution with zero ΔE*ab,10 difference to the mapped colour.  Otherwise, with the exception of 

the lightness-compressed Deep Grey SCE colour, the ΔE*ab,10 difference was 0.9 units or less.  

These small or null differences were achieved for a hue angle difference of 0.5 of a degree or 

less, with the exception of the lightness- and chroma-compressed Cyan SCE and clipped Deep 

Grey SCE colours, for which the differences between the colours from recipe correction and the 

mapped colours were 188 and 181 degrees respectively.  The mapped colours however, are 

located very close to the L* axis, and therefore the colours from recipe correction and the 

mapped colours are likely to be much closer than is suggested by their hue angle differences.  

For lightness-compressed Deep Grey SCE the computed ΔE*ab,10 difference between the colour 

from recipe correction and the mapped colour was eight units, due largely to the difference in 

lightness between the two colours (7.9 units), while the hue angle difference was only 1.5 

degrees.  As with the findings reported in Chapter Six, the nearest available gamut boundary 

colour providing a starting point for recipe correction was likely too far away from the mapped 

colour for recipe correction to have converged to a satisfactorily close solution.   

Dye recipes are shown in graphical form in the next Section (7.3.4), in Figure 7.3 to Figure 7.12, 

where outputs from colour gamut mapping and colorimetric matching are compared.  The effect 

of initial lightness compression is evident in the dye recipes for colours that were subsequently 

clipped or compressed (i.e. colours other than Deep Grey, Green and Red SCI).  As a result of 

initial lightness compression, some of the clipped or chroma-compressed colours required either 

less total dye (Cyan, Deep Blue SCI, Deep Pink SCE, clipped Mid Grey SCI) or more dye 

(compressed Orange SCI and clipped Pale Grey) than their non-lightness-compressed 

counterparts, due to the former colours being lighter or darker respectively.  Dye recipes for 

other clipped or compressed colours were unaffected by lightness compression; with or without 
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initial lightness compression, these colours were mapped eventually to an outermost chromatic 

point (clipped Orange SCI, Deep Blue SCE, Red SCE, and Yellow SCE colours, and clipped 

and compressed Orange SCE), and also to a bottom surface point (clipped Yellow SCI) which 

all require the maximum dye amount. 

Irrespective of whether or not initial lightness compression was applied, either 

 the clipped version of a given colour (SCI or SCE) demanded higher total dye quantities 

to be used than did the compressed counterpart, consistent with clipping solutions being 

darker and more chromatic (Cyan, Deep Blue, Deep Pink, and Orange SCI) or simply 

more chromatic (Red SCI), or 

 clipped colours needed the same total quantity of dye as did the compressed colours, 

because both are among colours in the cake gamut which require the maximum dye 

quantity (Orange SCE, Red SCE, and Yellow); however the relative proportions of the 

different dyes within each recipe differed according to whether the colour had been 

clipped or compressed (Red SCE, and Yellow). 

7.3.4. Differences between outputs from colorimetric matching and 

colour gamut mapping, in providing the best equivalents of the original 

tile colours 

7.3.4.1. Rationale 

A key focus of this chapter, which sets it apart from the previous chapter on colour gamut 

mapping, is that as well as comparing the performance of the different mapping algorithms to 

each other (in the L* and C* values and dye recipes of the mapped colours), the mapped colours 

are also compared to the original tile colours.  In the previous chapter on colour gamut mapping, 

Chapter Six, the aim was to find the best equivalent of each tile colour in a set of gel substrates 

which differed only in their level of browning.  Therefore it was expected that each new, 

replacement colour would be different to the original tile colour.  However, for the purpose of 
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directly comparing the relative merits of colorimetric matching (Chapter Four) and colour 

gamut mapping, the differences between the colour outputs from each method and the original 

colours needed to be investigated.  For Pale Grey, the discussion below compares the different 

outputs from colour gamut mapping only; these were not able to be compared with an output 

from colorimetric matching, which was unavailable due to the computed quantities for all three 

dyes being negative.   

To recap, the dye recipes computed from colorimetric matching in Chapter Four, were scaled 

back to within legal range if negative concentrations were called for, or if the total exceeded the 

legal maximum.  This occurred if the tile colour was out-of-gamut, on the basis of an 

approximate gamut boundary.  Any negative concentrations for individual dyes were increased 

to zero, and recipe totals were scaled to within 27.4 mg/100g batter, whilst retaining the relative 

proportions of the non-zero-quantity dyes.  The exceptions were Deep Pink (SCI), Green (SCI 

and SCE), and Mid Grey (SCE), which were within-gamut.   

7.3.4.2. Magnitude of differences between mapped or matched colours, and the 

(original) tile colours, and in their corresponding dye quantities 

Figure 7.3 to Figure 7.12 show the computed ΔE*ab,10 total colour differences between the tile 

colours (SCI or SCE) and the outputs from colorimetric matching and colour gamut mapping.  It 

also shows the total colour difference expressed in terms of individual lightness, chroma and 

Euclidean hue differences (ΔH*ab,10).  Because these differences are the values from 

colorimetric matching or gamut mapping subtracted from the values for the tiles, positive values 

indicate that the tile was the lighter and more chromatic; conversely, negative values indicate 

that the colour from matching or mapping was lighter and more chromatic than the tile colour 

was originally.  Figure 7.3 to Figure 7.12 also show the total dye quantities and the dye recipes 

required to achieve the colours from the different methods. 
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7.3.4.2.1. Observations for each tile colour 

Cyan:  For both the SCI and the SCE colours (Figure 7.3), ΔE*ab,10 differences between clipped 

colours (with and without lightness compression) and the tile colour were of similar magnitude 

to the ΔE*ab,10  differences between the colours from colorimetric matching and the tile colours 

(19.1 or 19.0, vs. 20.1 for SCI; 17.7 or 17.3, vs. 17.2 for SCE).  The colours from matching 

however needed less total dye than the colours from clipping.  The colours from mapping 

algorithms involving chroma compression have the largest ΔE*ab,10 differences to the tile 

colours, due to relatively larger shifts (i.e. decrease) in chroma, but these colours require the 

least amount of dye.  The main, and potentially most important, difference between the 

matching and mapping outcomes is the relative contribution of lightness, chroma and hue 

differences to the ΔE*ab,10 differences.  In matching, hue difference is predicted to be by far the 

main contributor (by 19.3 ΔH*ab,10 units for SCI and 16.3 ΔH*ab,10 units for SCE), with 

comparatively less input from lightness and chroma differences, whereas in mapping, lightness 

and chroma differences are the main contributors, with hue differences contributing 

comparatively little (zero to 2.6 ΔH*ab,10 units across SCI and SCE).  Visually, the match 

between the Cyan SCI tile colour and the cake match from Chapter Four was one of the least 

satisfactory (Figure 4.8), which might have been due to the large hue difference between them.  

These observations suggest that for this colour, clipping is preferable to matching and 

compression, and that as much dye as possible, plus a lower proportion of blue to red dye in the 

recipe (down from the 86% blue to 14% red (SCI), and the 88% blue to 12% red (SCE), for the 

colours from matching) is needed to produce the most chromatic colour of the correct hue.  
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Deep Blue:  For the SCI colour (Figure 7.4), the colours from mapping algorithms involving 

lightness compression were the most different to the original tile colour (ΔE*ab,10 values of 25.5 

and 15.3 units) than were the colours from matching, or from clipping alone, which differed to 

the tile colour by 11.1 and 10.6 ΔE*ab,10  units respectively.  The lightness-compressed colours 

also needed less dye than did the colours from either matching, or clipping alone.  The colours 

from both matching, and clipping only, required the maximum possible dye quantity; the total 

dye quantity computed from colorimetric matching exceeded the legal limit and was scaled back 

to this limit, while the quantity for the clipped-only colour was for an outermost chromatic 

point, defined by the legal limit.  For the SCE colour, the colours from matching and clipping 

only are again closest to the original tile colour (by 38.7 and 38.4 ΔE*ab,10 units respectively), 

and require the maximum amount of dye possible, for the same reasons as for the SCI colour, 

and are this time joined by the colour clipped with initial lightness compression, which is an 

outermost chromatic point.  At a ΔE*ab,10 of 43.4 units, the colour from sequential lightness-

Figure 7.3  Left: Differences in overall colour (ΔE*ab,10) and in lightness, chroma and hue (ΔL*10, ΔC*ab,10, and ΔH*ab,10
respectively) between the measured Cyan SCI and SCE tile colours and their best equivalents in the microwave-baked
cake computed using colorimetric matching and colour gamut mapping algorithms.  Right: Corresponding dye recipes 
for the computed colours.  
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chroma compression has the largest difference to the original tile colour, and needs the least 

amount of dye, due to it being slightly lighter and less chromatic.  Recipes for colours needing 

the maximum total dye quantity have in common an absence of yellow dye.  ΔL*10 and ΔC*ab,10 

differences between the colours from matching or mapping, and the original tile SCI and SCE 

colours mirror the ΔE*ab,10 differences.  Gamut mapping reduced the ΔH*ab,10 difference 

between the colours from matching and the original tile colours from 2.6 or 5.9 units, to zero, 

for SCI and SCE respectively.    

 

 

 

 

 

 

 

 

Deep Grey:  Lightness compression (only) of both the SCI and SCE colours produced much 

lighter colours than did either clipping alone or matching, which contributed to the larger 

ΔE*ab,10 differences between the lightness-compressed colours and the original tile colours (14.8 

and 20.8 units for SCI and SCE respectively); ΔE*ab,10 differences between the colours from 

Figure 7.4  Left: Differences in overall colour (ΔE*ab,10) and in lightness, chroma and hue (ΔL*10, ΔC*ab,10, and ΔH*ab,10
respectively) between the measured Deep Blue SCI and SCE tile colours and their best equivalents in the microwave-
baked cake computed using colorimetric matching and colour gamut mapping algorithms.  Right: Corresponding dye 
recipes for the computed colours. 
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matching and the tile colours were 3.8 and 13.8 units for SCI and SCE respectively, and 

between clipped-only colours and tile colours they were 2.9 units for SCI and 14.0 units for 

SCE (Figure 7.5).  Because lightness compression had lightened the original tile colours, it was 

expected that the resulting colours would require the least amount of dye; this was found for 

Deep Grey SCI, but harder to conclude for Deep Grey SCE, as the dye recipe from recipe 

correction was for a colour that was eight ΔE*ab,10 units from the mapped colour.  As with Deep 

Blue, the colours from matching required the most dye – the maximum amount – as the result of 

having to scale back the computed dye quantities for these colours.  The clipped-only colours 

were expected to need the same amount of dye, having been mapped to the bottom surface of 

the boundary, but the quantities fell short of the maximum suggesting more detail may have 

been needed to fill the boundary at these locations.  Mapping reduced the ΔH*ab,10 difference 

between the colours from matching and the original tile colours from 1.6 to zero (SCI) or from 

1.5 to 0.7 (SCE) units.  

 

 

    

Figure 7.5  Left: Differences in overall colour (ΔE*ab,10) and in lightness, chroma and hue (ΔL*10, ΔC*ab,10, and ΔH*ab,10 
respectively) between the measured Deep Grey SCI and SCE tile colours and their best equivalents in the microwave-
baked cake computed using colorimetric matching and colour gamut mapping algorithms.  Right: Corresponding dye 
recipes for the computed colours. 
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Deep Pink:  For both the SCI and SCE colours, the ΔE*ab,10 differences between the colours 

from sequential lightness-chroma compression and the original tile colours (18.2 and 17.1 units 

for SCI and SCE respectively) were much larger than those between the colours clipped with or 

without initial lightness compression and the tile colours (ranging from 2.2 to 9.6 across SCI 

and SCE) and between the colours from matching and the tile colours (4.3 and 5.5 for SCI and 

SCE respectively) (Figure 7.6).  Originally, the tile colours were either already within the cake 

gamut (SCI) or very close to the gamut boundary (SCE), so therefore matching had already 

provided a satisfactory solution in the form of a dye recipe.  Sequential lightness-chroma 

compression only served to move the colour furthest away from this ‘best’ position, and it is 

seen that the resulting ΔE*ab,10 differences are due to changes in both lightness and chroma.  

Lightness-compressed colours, whether subsequently clipped or chroma compressed, do 

however need less dye than the colours from matching.   Only clipping alone (without initial 

lightness compression) of the SCE colour resulted in the smallest ΔE*ab,10 difference to the tile 

(2.2 units), and this colour could be achieved by using the same amount of dye, and a similar 

dye recipe, as was needed for the colour from matching.  Because the SCE colour was already 

close to the cake gamut, it was expected that, in the absence of lightness compression, clipping 

would provide a similar outcome to matching.  There is zero ΔH*ab,10 difference between 

mapped colours and the original tile colours, though the colours from matching differ from the 

tile colours by only 2.7 and 3.1 ΔH*ab,10 units for SCI and SCE respectively.      
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Green:  Like the Deep Pink SCI colour, the positions of the Green SCI and SCE colours were 

already within the cake colour gamut, before mapping.  Therefore any attempt at mapping was 

going to increase the ΔE*ab,10 differences between the tile colours, and their replacement 

colours, relative to the differences between the tile colours and the solutions from matching.  

Lightness compression, the extent to which mapping was possible, did increase the differences 

relative to the original colours, and because the colours became lighter, required less dye 

overall.  These effects were observed for both the SCI and SCE colours with the SCE outcomes 

needing more dye than the SCI outcomes.  Mapping reduced the ΔH*ab,10 difference between the 

colours from matching and the original tile colours from 1.9 (SCI) or 1.8 (SCE) units, to zero 

(Figure 7.7).  

 

Figure 7.6  Left: Differences in overall colour (ΔE*ab,10) and in lightness, chroma and hue (ΔL*10, ΔC*ab,10, and ΔH*ab,10 
respectively) between the measured Deep Pink SCI and SCE tile colours and their best equivalents in the microwave-
baked cake computed using colorimetric matching and colour gamut mapping algorithms.  Right: Corresponding dye 
recipes for the computed colours. 
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Mid Grey:  The largest differences are found here between the colours from clipping and the 

tile colours (2.5 to 2.8 ΔE*ab,10 units across SCI and SCE), relative to the differences between 

the colours from matching and the tile colours (2.0 and 2.1 units) (Figure 7.8).  This is due to the 

larger relative differences in lightness and chroma seen with clipping.  There is however zero 

ΔH*ab,10  difference between clipped colours and the original tile colours, though the colours 

from matching do differ from the tile colours by only 1.3 ΔH*ab,10 units or less.  Overall, 

ΔE*ab,10, ΔH*ab,10, ΔC*ab,10 and ΔL*10 differences are small, relative to what was found for other 

tile colours; this was due to a combination of the close proximity of the original Mid Grey tile 

colours to the cake gamut boundary, and to these colours being among the least affected by 

initial lightness compression.  For the SCI colour, clipped colours needed the most dye.  For 

SCE, originally a within-gamut colour, the colour from matching needed the most dye; lightness 

compression moved the colour out-of-gamut, and also lightened the colour, and therefore the 

colour from subsequent clipping needed less dye than the colour from matching.   

Figure 7.7  Left: Differences in overall colour (ΔE*ab,10) and in lightness, chroma and hue (ΔL*10, ΔC*ab,10, and ΔH*ab,10
respectively) between the measured Green SCI and SCE tile colours and their best equivalents in the microwave-baked
cake computed using colorimetric matching and colour gamut mapping algorithms.  Right: Corresponding dye recipes 
for the computed colours. 
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Orange:  The outermost chromatic boundary point was the solution for the SCI colour clipped 

with or without initial lightness compression.  This colour is closest overall to the original 

colour, by 10 ΔE*ab,10 units.  The compressed SCI colours (with or without lightness 

compression) are furthest from the original colour (by 23.0 and 30.1 ΔE*ab,10 units), due 

predominantly to the decrease in chroma, and are followed by the colour from matching (17.2 

units).  Whereas the colour from matching had a high contribution of hue difference (11.2 

ΔH*ab,10 units) to its overall difference to the tile colour, the predicted ΔH*ab,10 differences 

between the mapped colours and the original colour are zero (Figure 7.9).  As with Cyan, the 

visual match between the cake colour from matching and the SCI colour was one of the least 

satisfactory, which might have been due to the hue difference between them.  Unlike Cyan 

though, the ΔE*ab,10 between the colour from matching and tile colour also had a large 

contribution from their difference in chroma.  The clipped colours, in addition to being the same 

hue as the original colour, have the smallest differences in chroma to the original tile colour (5.4 

Figure 7.8  Left: Differences in overall colour (ΔE*ab,10) and in lightness, chroma and hue (ΔL*10, ΔC*ab,10, and ΔH*ab,10 
respectively) between the measured Mid Grey SCI and SCE tile colours and their best equivalents in the microwave-
baked cake computed using colorimetric matching and colour gamut mapping algorithms.  Right: Corresponding dye 
recipes for the computed colours. 
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ΔC*ab,10 units).  This suggests that the clipped colour might be the best match visually to the 

original colour, but the clipped colours also require the highest dye quantity (the maximum 

possible). The colours from the compressions require the least amount of dye.   

 

 

 

 

For the SCE colours, where all mapping algorithms return virtually the same solution – the 

outermost boundary rim point - the ΔE*ab,10 differences to the original colour (ranging from 28.1 

to 28.4 units) are due entirely to ΔC*ab,10 differences.  The colour from matching has the largest 

difference to the original colour (by 34.5 ΔE*ab,10 units), due predominantly to hue difference 

(25.0 ΔH*ab,10 units) and to ΔC*ab,10 (22.7 units).  Again, mapping decreases ΔH*ab,10 to zero.  

All mapping and matching solutions require the maximum level of dye allowable, but the 

relative proportions of red and yellow dyes in the matching recipe is different to those in the 

mapping recipes, with a higher proportion of yellow to red needed for the colour from matching.  

Figure 7.9  Left: Differences in overall colour (ΔE*ab,10) and in lightness, chroma and hue (ΔL*10, ΔC*ab,10, and ΔH*ab,10
respectively) between the measured Orange SCI and SCE tile colours and their best equivalents in the microwave-
baked cake computed using colorimetric matching and colour gamut mapping algorithms.  Right: Corresponding dye 
recipes for the computed colours. 
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This might in part explain the large overall difference between the colour from matching and the 

original SCE colour.  

Pale Grey:  Discussion here is limited to comparing the colours clipped with and without initial 

lightness compression, with the tile colours.  Solutions from matching were not available, due to 

the computation of negative quantities for all three dyes.   In addition, chroma compressions 

were not applied to this colour.  For both the SCI and SCE colours, the colours clipped without 

lightness compression are closest to the tile colours (by 17.5 ΔE*ab,10 units for SCI, and by 15.7 

units for SCE), than are the colours clipped with lightness compression.  This is due mainly to 

the larger decrease in lightness of the lightness-compressed colours; as a result, these colours 

also require the higher total dye quantity.  These colours are however, closer in chroma to the 

original colour.  All clipped colours do not differ in hue to the original colour (Figure 7.10). 

 

 

 

 

Figure 7.10  Left: Differences in overall colour (ΔE*ab,10) and in lightness, chroma and hue (ΔL*10, ΔC*ab,10, and ΔH*ab,10 
respectively) between the measured Pale Grey SCI and SCE tile colours and their best equivalents in the microwave-
baked cake computed using colorimetric matching and colour gamut mapping algorithms.  Right: Corresponding dye 
recipes for the computed colours. 
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Red:  In order of decreasing overall colour difference to the original SCI colour, the colour 

from chroma-only compression was the most different (by 17.5 ΔE*ab,10 units), followed by the 

colours from lightness compression only (9.1 units), matching (7.8 units), and clipping only (2.0 

units) (Figure 7.11).  Contributions to these ΔE*ab,10 differences reflect the particular type of 

mapping:  for the lightness-only and chroma-only compressions, ΔL*10 and ΔC*ab,10  differences 

are respectively the sole contributors to ΔE*ab,10, while for the clipped-only colour, ΔE*ab,10 is 

due to a combination of ΔL*10 and ΔC*ab,10 differences.  There is no difference in hue between 

the mapped colours and original SCI colour.  For the colour from matching, the ΔE*ab,10  

difference to the tile colour is the result of a combination of ΔL*10 (4.3 units), ΔC*ab,10 (5.5 

units) and ΔH*ab,10 (3.5 units).  The colour from matching needs as much dye as the colour from 

clipping only, but as the original colour was already very close to the cake gamut, either method 

would have been expected to provide a satisfactory solution.  The compressed colours were 

lighter and less chromatic and thus needed comparatively less dye.   

Like the Orange SCI colour, the colour from clipping the Red SCE colour with or without initial 

lightness compression, yields the same solution (the outermost chromatic point) and is closest 

overall to the original colour, this time by 22.6 ΔE*ab,10 units.  Then, in order of increasing 

distance from the original colour, are the colours from matching (24.2 units), followed by the 

colour from sequential L*-C* compression (28.1 units) (Figure 7.11).  All findings are due to 

combined contributions from lightness and chroma differences, with hue differences making a 

contribution to the colour from matching only.  The colours from both matching and gamut 

mapping needed the maximum amount of dye, having been scaled back to the legal maximum 

(for matching) or being located on the chromatic rim or bottom surface, but differed in the 

relative proportions of red and yellow in their dye recipes (red being 56%-59% of the recipes for 

the mapped colours, and 47% of the recipe for the colour from matching).  Mapping reduced the 

ΔH*ab,10 difference between the original SCE colour and the colour from matching, from 5 units 

to zero. 



 

304 
 

   

 

 

Yellow:  For the SCI colour, the colour from matching had the largest difference to the original 

colour (by 15.9 ΔE*ab,10 units), followed by the colour from sequential L*-C* compression (14.1 

units) and then the colours from clipping (10.1 and 8.1 units).  For the colours from mapping, 

these differences are due to ΔL*10 and ΔC*ab,10 differences only, but the colour from matching is 

due to a combination of ΔL*10 and ΔC*ab,10 differences, as well as to a hue difference of 5.2 

ΔH*ab,10 units (Figure 7.12).  The colour from matching needed around half the amount of dye 

as did the colours from mapping; most likely due to the colour from matching being the least 

chromatic, relative to the original SCI colour (by 12.7 ΔC*ab,10 units).  This implies more dye is 

needed to obtain the best result, meaning a colour of the correct hue which is also more 

chromatic.  For the SCE colour, the colour from sequential L*-C* compression had the largest 

difference to the original tile colour (by 23.5 ΔE*ab,10 units), due to it having the largest ΔL*10 

and ΔC*ab,10 differences to the original colour.  This was followed by the colours from matching 

(15.0 ΔE*ab,10 units), and the colour(s) from clipping (12.5 units).  Mapping reduced the ΔH*ab,10 

Figure 7.11  Left: Differences in overall colour (ΔE*ab,10) and in lightness, chroma and hue (ΔL*10, ΔC*ab,10, and ΔH*ab,10 
respectively) between the measured Red SCI and SCE tile colours and their best equivalents in the microwave-baked 
cake computed using colorimetric matching and colour gamut mapping algorithms.  Right: Corresponding dye recipes 
for the computed colours. 
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difference between the original SCE colour and the colour from matching, from 3.6 units to 

zero.  All mapped SCE colours needed the maximum amount of dye, due to their being located 

at the most chromatic point or at the bottom surface of the gamut boundary. 

 

 

 

 

7.3.4.3. Summary of findings and general discussion 

Table 7.1 lists, for each tile colour, the colour gamut mapping and colorimetric matching 

techniques in order of ascending ΔE*ab,10 difference between the resulting computed cake colour 

and the tile colour.  Table 7.2 lists the techniques in ascending order of total dye quantity needed 

in the cake to produce the resulting colours.  These tables do not indicate the magnitude of the 

differences between the various techniques, which have already been discussed.  Where useful, 

some of the discussion of the differences in the preceding sections is repeated here, with the 

exception of further discussion of the results for Pale Grey, for which comparisons between the 

Figure 7.12  Left: Differences in overall colour (ΔE*ab,10) and in lightness, chroma and hue (ΔL*10, ΔC*ab,10, and ΔH*ab,10
respectively) between the measured Yellow SCI and SCE tile colours and their best equivalents in the microwave-
baked cake computed using colorimetric matching and colour gamut mapping algorithms.  Right: Corresponding dye 
recipes for the computed colours. 
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matching and mapping techniques could not be made, in the absence of a result from 

colorimetric matching. 

As summarised in the Table 7.1, the colours from colorimetric matching and clipping are closest 

overall to the original tile colours, for the majority of these colours.  Orange SCE and Yellow 

SCI were the exceptions in that the colours from matching had the largest ΔE*ab,10 differences to 

the tile colour.  For Cyan, Deep Blue and Deep Grey SCE, clipping (with or without initial 

lightness compression) produced similar results to matching.  Clipping and matching might 

have been expected to produce the better results; clipping is a nearest point mapping approach, 

while the adjustment of out-of-range dye quantities computed by colorimetric matching for out-

of-gamut original colours seeks to find the nearest workable dye recipe.  If a tile colour was 

already within the gamut of cake colours, matching should already have provided the best result 

(Deep Pink SCI, Green, Mid Grey SCE). The colours from gamut mapping algorithms 

involving chroma compression (with or without initial lightness compression), or lightness 

compression alone, had the largest ΔE*ab,10 differences to the original tile colours.  This was due 

to the original colours being shifted longer distances along the lightness and chroma mapping 

lines.  The impact of lightness compression on individual colours depended on their original 

position.  Additionally, for the Deep Pink SCI, Green, and Mid Grey SCE colours which were 

within the cake gamut to begin with, lightness compression only served to move the solution 

away from this ‘already best position’.  

  



  

307 

Ta
bl

e 
7.

1 
 G

en
er

al
 s

um
m

ar
y 

co
m

pa
rin

g 
ou

tp
ut

s 
fr

om
 c

ol
or

im
et

ric
 m

at
ch

in
g 

an
d 

co
lo

ur
 g

am
ut

 m
ap

pi
ng

 a
lg

or
ith

m
s 

fo
r t

he
ir 

cl
os

en
es

s 
to

 th
e 

or
ig

in
al

 ti
le

 c
ol

ou
rs

.  
Fo

r e
ac

h 
til

e 
co

lo
ur

 (S
CI

 
or

 S
CE

) a
lg

or
ith

m
s a

re
 ra

nk
ed

 in
 a

sc
en

di
ng

 o
rd

er
 o

f Δ
E*

ab
,1

0 d
iff

er
en

ce
 b

et
w

ee
n 

th
e 

co
m

pu
te

d 
ca

ke
 c

ol
ou

r a
nd

 th
e 

til
e 

co
lo

ur
 (1

 =
 s

m
al

le
st

 Δ
E*

ab
,1

0 d
iff

er
en

ce
). 

Co
lo

ra
tio

n 
al

go
rit

hm
 

As
ce

nd
in

g 
ra

nk
 o

rd
er

 o
f Δ

E*
ab

,1
0 d

iff
er

en
ce

 b
et

w
ee

n 
co

m
pu

te
d 

co
lo

ur
 fr

om
 a

lg
or

ith
m

 a
nd

 ti
le

 c
ol

ou
r  

 
Cy

an
 

De
ep

 B
lu

e 
De

ep
 G

re
y 

De
ep

 P
in

k 
G

re
en

 
M

id
 G

re
y 

O
ra

ng
e 

Pa
le

 G
re

y 
Re

d 
Ye

llo
w

 
 

SC
I 

SC
E 

SC
I 

SC
E 

SC
I 

SC
E 

SC
I 

SC
E 

SC
I 

SC
E 

SC
I 

SC
E 

SC
I 

SC
E 

SC
I 

SC
E 

SC
I 

SC
E 

SC
I 

SC
E 

M
at

ch
in

g 
=1

 
=1

 
=1

 
=1

 
2 

=1
 

1 
2 

1 
1 

1 
1 

2 
2 

 
 

2 
2 

4 
2 

L*
 c

om
pr

es
sio

n 
on

ly
 

 
 

 
 

3 
2 

 
 

2 
2 

 
 

 
=1

 
 

 
3 

 
 

 
L*

-C
* 

co
m

pr
es

sio
n 

 
3 

3 
2 

 
 

3 
4 

 
 

 
 

3 
=1

 
 

 
 

3 
3 

3 
C*

 c
om

pr
es

sio
n 

on
ly

 
2 

2 
 

 
 

 
 

 
 

 
 

 
4 

=1
 

 
 

4 
 

 
 

Cl
ip

pi
ng

 w
ith

 L
* 

co
m

pr
es

sio
n 

=1
 

=1
 

2 
=1

 
 

 
2 

3 
 

 
=2

 
2 

=1
 

=1
 

2 
2 

 
=1

 
2 

=1
 

Cl
ip

pi
ng

 o
nl

y 
=1

 
=1

 
=1

 
=1

 
1 

=1
 

 
1 

 
 

=2
 

 
=1

 
=1

 
1 

1 
1 

=1
 

1 
=1

 
  Ta

bl
e 

7.
2 

 G
en

er
al

 s
um

m
ar

y 
co

m
pa

rin
g 

co
lo

rim
et

ric
 m

at
ch

in
g 

an
d 

co
lo

ur
 g

am
ut

 m
ap

pi
ng

 a
lg

or
ith

m
s 

fo
r 

th
e 

co
m

pu
te

d 
to

ta
l d

ye
 q

ua
nt

ity
 n

ee
de

d 
in

 t
he

 m
ic

ro
w

av
e-

ba
ke

d 
ca

ke
 fo

r 
th

e 
ca

ke
 c

ol
ou

rs
 to

 p
ro

vi
de

 th
e 

be
st

 e
qu

iv
al

en
ts

 fo
r t

he
 ti

le
 c

ol
ou

rs
.  

Fo
r e

ac
h 

til
e 

co
lo

ur
 (S

CI
 o

r S
CE

) a
lg

or
ith

m
s a

re
 ra

nk
ed

 in
 a

sc
en

di
ng

 o
rd

er
 o

f c
om

pu
te

d 
to

ta
l d

ye
 q

ua
nt

ity
 (1

 =
 le

as
t d

ye
). 

Co
lo

ra
tio

n 
al

go
rit

hm
 

As
ce

nd
in

g 
ra

nk
 o

rd
er

 o
f t

ot
al

 d
ye

 q
ua

nt
ity

 fo
r c

ak
e 

co
lo

ur
s c

om
pu

te
d 

to
 m

at
ch

 ti
le

 c
ol

ou
rs

  
 

Cy
an

 
De

ep
 B

lu
e 

De
ep

 G
re

y 
De

ep
 P

in
k 

G
re

en
 

M
id

 G
re

y 
O

ra
ng

e 
Pa

le
 G

re
y 

Re
d 

Ye
llo

w
 

 
SC

I 
SC

E 
SC

I 
SC

E 
SC

I 
SC

E 
SC

I 
SC

E 
SC

I 
SC

E 
SC

I 
SC

E 
SC

I 
SC

E 
SC

I 
SC

E 
SC

I 
SC

E 
SC

I 
SC

E 
M

at
ch

in
g 

2 
3 

=3
 

=2
 

3 
=2

 
3 

=3
 

2 
2 

1 
2 

3 
=1

 
 

 
=3

 
=1

 
1 

=1
 

L*
 c

om
pr

es
sio

n 
on

ly
 

 
 

 
 

1 
=2

 
 

 
1 

1 
 

 
 

=1
 

 
 

1 
 

 
 

L*
-C

* 
co

m
pr

es
sio

n 
 

1 
1 

1 
 

 
1 

1 
 

 
 

 
2 

=1
 

 
 

 
=1

 
=2

 
=1

 
C*

 c
om

pr
es

sio
n 

on
ly

 
1 

2 
 

 
 

 
 

 
 

 
 

 
1 

=1
 

 
 

2 
 

 
 

Cl
ip

pi
ng

 w
ith

 L
* 

co
m

pr
es

sio
n 

3 
4 

2 
=2

 
 

 
2 

2 
 

 
2 

1 
=4

 
=1

 
2 

2 
 

=1
 

=2
 

=1
 

Cl
ip

pi
ng

 o
nl

y 
4 

5 
=3

 
=2

 
2 

1 
 

=3
 

 
 

3 
 

=4
 

=1
 

1 
1 

=3
 

=1
 

=2
 

=1
 



 

308 
 

Table 7.2 shows that the colours from colorimetric matching and clipping typically needed the 

highest total dye quantities than did the colours from compression, due to the former colours 

being darker and/or more chromatic.  When the colours from matching and clipping shared a 

similar ΔE*ab,10 difference to the original tile colour (Cyan SCI and SCE), these did not 

necessarily call for the same total dye quantity.  Conversely, when clipped or compressed 

colours and the colours from matching called for the same, or similar total dye quantity, they 

did not necessarily share the same ΔE*ab,10 difference to the original tile colour (Red SCI and 

SCE, Deep Pink SCE, Orange SCE and Yellow SCE).  Solutions also differed in their dye 

recipes.  For example, in addition to less total dye being needed for the Cyan colours from 

matching (compared to those from clipping), the recipes for the colours from matching had a 

higher proportion of blue to red dye (SCI – 86:14; SCE – 88:12) than did the recipes for the 

clipped colours (SCI – 65:35 and 67:33; SCE – 69:31 and 75:25).  For Orange SCE, the recipe 

for the colour from matching had a higher proportion of yellow to red dye than did the colours 

from mapping.   

The observed differences in dye recipe and in total dye quantity between the methods could be 

due to the different ways in which the two types of recipe were reached.  Matching was targeted 

at the colours at their original positions, whether within- or out-of-gamut, and computed dye 

recipes ‘corrected’ in a rudimentary way where necessary for out-of-gamut colours by scaling 

back dye quantities to within legal range, conserving internal dye proportions.  Iterative recipe 

correction was applied to colours which all should have been within-gamut as a result of 

mapping, thereby increasing the likelihood of computing within-range dye quantities.  For both 

Cyan and Orange, the colours from matching were predicted to be substantially more different 

in hue to the original tile colours, than were the colours from mapping (by more than 10 

ΔH*ab,10 units), suggesting that a basic form of recipe adjustment cannot guarantee a colour of 

the correct hue.  The mapping algorithms on the other hand were hue-preserving methods. 
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As discussed previously in Chapter Four, ΔE* is an index of total colour difference, and while 

the numerical magnitude of the contributions from lightness, hue, and chroma differences to 

overall difference can be determined, these still do not indicate which of the differences are the 

most important determinants of overall difference.  However in this study, there may be a more 

direct relationship between magnitude and importance of difference.  For Cyan and Orange, the 

visual match between the colours of the cakes prepared with dye quantities computed from 

colorimetric matching and the SCI tile colours were the least satisfactory (see Figure 4.8, 

Chapter Four).  These cake colours had a large contribution of ΔH*ab,10 to ΔE*ab,10, whereas the 

contribution of ΔH*ab,10 to ΔE*ab,10 is much smaller, or zero, for the colours from gamut 

mapping, which is consistent with the mapping approach being hue-preserving.  This suggests 

the corresponding cakes prepared using dye recipes computed from gamut mapping might be 

the better matches visually and that for these cakes, the question then becomes one of whether 

lightness or chroma differences are the more important.  An understanding of the importance of 

these differences for both tile colours and cake colours will aid selection of the best approach 

for dye recipe computation, whether it is based on colorimetric matching or colour gamut 

mapping.  

The performance of the colour gamut mapping algorithms, and their performance relative to 

colorimetric matching, was also a function of the gamut boundary information that was 

available for each tile colour. The degree of lightness compression for the tile colours was based 

on an assumed lightness range of zero to 100 L* units – black to white - for these colours.  The 

manufacturer of the tile colour standards used in this study also offers a set of ‘Neutral 

Standards’ – a range of greys from white to black – with reflectance values ranging from 88% to 

0.5% (using the 0/45 measurement geometry, which for glossy materials is equivalent to the 

specular excluded geometry used in this thesis), and also an opaque black glass with 0% 

reflectance (Lucideon, 2014).  On this basis, using an assumed L* of zero units as the bottom of 

the lightness range for the tile colours was reasonable, but the true maximum lightness of the 

range might be short of the 100 L* units used.   Lightness of the tile colours was compressed to 
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fit within the lightness range of the entire cake gamut.  Using these lightness ranges for the tile 

and cake colours, lightness compression pushed within-gamut colours (Deep Pink, Mid Grey) 

out of gamut, requiring additional computation (clipping or chroma compression) to bring them 

back to within gamut.  Colours might have been kept within-gamut had the lightness range of 

the cake gamut at the hue angle of the tile colour been used instead, which was often different to 

the range for the entire cake gamut.   

Without knowing the chromatic limits for the tile colours, full chroma compressions were not 

possible.  Therefore out-of-gamut colours, which could otherwise have been placed within the 

cake gamut boundary, were mapped to the boundary itself.  Full compressions for all colours 

would have resulted in larger shifts in chroma, rendering most colours less chromatic than was 

possible in this study, and needing less dye.  In turn, the ΔE*ab,10 differences between the 

compressed colours and the original colours would have increased, thereby increasing the 

distance between the solutions from colorimetric matching and from compression.    

The results from the clipping only of tile colours, without initial lightness compression, were 

unaffected by the level of detail about the tile colour gamut, as clipping alone involved simply 

the replacement of the tile colour with its nearest colour on the cake gamut boundary.   

7.4. Conclusions 

By using the same dye blends and dye quantities (for the same number of gamut boundary 

points) that were used for the model gel substrate, a colour gamut boundary can be computed 

for the range of colours achievable in the microwave-baked cake when blends of Brilliant Blue, 

Ponceau 4R (red) and Tartrazine (yellow) dyes are added to the cake, which has greater 

definition and accuracy than the one previously computed using a much smaller number of 

points (Chapter Four).  This allowed the mapping of out-of-gamut tile colours to take place, and 

the density of points located on the cake gamut boundary provided a useful source of starting 

recipes for iterative recipe correction, for most of the mapped colours. 
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Of the two colour gamut mapping approaches, clipping of colours to the reproduction colour 

gamut could be favoured over compression in that the colours from clipping are predicted to be 

closer to the original colours, and more chromatic, than those provided by compression, but 

might require more total dye for some colours.  Clipping should always return a solution for 

out-of-gamut colours, and will leave within-gamut colours untouched.  Lightness and/or chroma 

compression may not always return a solution, or could move the colour away from the best 

possible solution.  However, this does not preclude compression proper being applied should 

more information about the gamut of the original (target) colours be available.  Based on 

computed dye quantities alone, it is difficult to favour the colour gamut mapping approach over 

the colorimetric matching approach, as one method does not consistently compute more or less 

dye than the other method.  In this case the colorimetric matching approach might provide a 

fast, convenient method as it can produce similar ΔE*ab,10 results to clipping, however clipping 

has the notable advantage (like compression), in that it can be a hue-preserving method, and 

therefore could produce a more visually acceptable result.  Whether colorimetric matching or 

colour gamut mapping is selected should also be based on the: 

 proximity of the original colour to the reproduction gamut boundary (i.e. those tile 

colours already in close proximity to the reproduction gamut might be adequately 

catered for by colorimetric matching);  

 relative importance of lightness, chroma and hue differences to the overall difference 

between the original colour and the computed colour reproduction;  

 desired properties of the colours relative to each other, post matching.   

For the 3D colour food printer, multiple algorithms could be made available to the user and 

contained within the printer set-up, offering a choice of speed, economy of dye usage, or high 

computational capacity (for accuracy), or a combination of all three, depending on need.  

7.5.  Appendix 
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Figure 7.13  Plots showing the original position of each tile colour (SCI and SCE) in its hue angle plane, and its positions 
following mapping by various gamut mapping algorithms.  The results shown here are the same as those shown in Figure
7.2 but with plots separated into individual plots for tile colour and for mapping of the tile colour with and without 
lightness compression, including mapping lines (continued on the following pages). 

 



 

313 
 

 

 

 



 

314 
 

 



 

315 
 



 

316 
 

 

 



 

317 
 

 



 

318 
 

 

 



 

319 
 

 



 

320 
 

 

 



 

321 
 

 



 

322 
 

Chapter Eight: Overall Discussion 

8.1. Recap: The background to the thesis 

The research in this thesis contributes to the development of a novel 3D colour food printer in 

the Riddet CoRE Technofoods programme.  To recap, the printer is being designed to produce 

fully customised, on-demand, food outputs that meet user specifications not only for nutritional 

and sensory characteristics, but also for visual appearance, having the capability to render any 

chosen complex image or design in 3D colour within the food matrix.  The specific type of 

printing technology that is being developed is one in which three or four primary-coloured 

liquid dyes are each contained in separate ‘cartridges’ and are blended in the correct quantities 

and delivered at the correct time, for each voxel, to an uncoloured raw substrate paste as it is 

being extruded from a separate vessel.  The dyes are blended with the substrate immediately 

prior to the point of extrusion resulting in a continuous stream of coloured raw voxels, which is 

built layer by layer into a desired 3D shape, in the style of fused deposition modelling (see 

Chapter Three, Literature Review, Part 2).  The final step is rapid cooking which develops and 

sets the structure, resulting in a food object containing a multitude of colour voxels to match the 

original design. 

While other PhD and Masters thesis research in the Technofoods programme has been focussed 

on developing printer hardware and software, on the mixing of liquid dyes with model food 

materials, and on controlling the rheology, and structure formation, of the food printing 

substrate, this thesis was concerned with developing algorithms to compute dye recipes, as 

needed, for each voxel coloured.  The biggest challenge to developing such an algorithm is 

presented by the combination of the large number of colours needed within a short time frame, 

the printing substrate being a food matrix; and printing being in 3D.  Even before any colorants 

are added, customisation of the printed food substrate itself means that printed outputs will vary 

in their physical and chemical characteristics.  These, along with processing conditions, will all 

impact final colour rendition and, together with restrictions on dye levels in food, the range of 
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colours that can be achieved.  Examples of such characteristics are: the chemical and thermal 

environment of the substrate prior to and during cooking; the native colour of the substrate (post 

cooking); the degree of viewed surface texture (affecting the degree of light scattering); volume 

expansion, which will have a diluting effect on the colour from the dyes relative to the colour 

from the dyed, raw substrate.  The printer will need the capability to render (as closely as 

possible) the same colours across different customised food outputs, and to do this by correcting 

quickly and on-demand, the dye recipes for each colour according to the type of food substrate 

requested. 

A review of the literature (Chapter Two) concluded that non-food methods of computer colour 

matching (computer recipe prediction) and colour gamut mapping, rather than methods usually 

applied to food would best suit the needs of the printer.  These methods offer between them 

speed, and can be applied to colorants that are mixed into a substrate matrix.  These techniques 

have not been applied to foods, which are more diverse and more complex, particularly as 3D 

colour reproduction substrates.  This thesis therefore sought to investigate whether computer 

colour matching and colour gamut mapping could be applied to the controlled coloration of 

food substrates, and how these techniques might be modified to account for the effects of 

different food characteristics.  In the following sections the main findings from the thesis are 

revisited, and the extent to which these meet the original research objectives (listed at the end of 

Chapter Three) is discussed.  Then, to properly consolidate the work of the thesis, and to fulfil 

its main aim, consideration is given to how the findings could be integrated into an overall 

colour image reproduction process for the 3D colour food printer. 

8.2. Research objectives and summary of main findings 

To develop model food substrates appropriate to 3D colour food printing, and to the 

application of the coloration methods being tested 

To simplify the experimental approach, two model food systems were used as the colour 

reproduction substrates, which shared some characteristics with the types of food outputs that 



 

324 
 

the printer might produce.  A microwave-baked cake was used in both colorimetric matching 

(Chapter Four) and colour gamut mapping (Chapter Seven).  The cake was regarded as an 

appropriate model substrate in that it already had many of the properties suitable for a printed 

food.  Variants of a wheat starch gel which differed in their levels of artificial browning were 

used to investigate the impact of browning (in isolation from other food properties) on the 

outputs from colour gamut mapping (Chapter Six).  The maximum level of gel browning 

resulted in the gel and cake being similar in lightness and chroma (Chapter Five). 

In hindsight, the gel would have sufficed as the single model system throughout the thesis.  It 

was a simpler system which already shared (measurement) surface characteristics with the tile 

colours, and could have been built gradually to a more complex system by adding more 

features, beyond browning.  This would have allowed the impact of several food properties 

(individually and together) to be investigated, on both colour gamut mapping and colorimetric 

matching outcomes.    

To determine the absorption behaviour of each primary dye in each substrate, leading to the 

development and validation of models of dye blending for each substrate 

One of the key findings from this thesis research is that, by using the single-constant form of the 

Kubelka-Munk (K-M) colorant additive blending model (which forms the basis of controlled 

coloration in various non-food industries), it was possible to predict the colour of the food 

substrates containing added primary-dye blends, from the spectral contributions of the substrate 

itself, and the unit spectral contributions of the dyes scaled by the (known) quantities of dyes in 

the blends (Chapters Four and Five).  This then enabled: 

 colorimetric matching to compute the (unknown) quantities of the dyes that were 

needed in a food substrate (the microwave-baked cake), for the substrate to match the 

colours of non-food materials (the standard tiles) (Chapter Four); 
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 computation of detailed colour gamut boundaries for food substrates containing primary 

dye blends, specific to the D65 standard illuminant and 10 degree standard observer 

conditions used in this thesis (Chapters Five and Seven); 

 iterative recipe correction to compute dye recipes for colours that were mapped (by 

colour gamut mapping) to fit within the achievable range of colours in the food 

substrates (Chapters Six and Seven). 

Further: 

 It was shown that the magnitude of the absorption spectra for unit concentration of each 

primary dye did not appear to change significantly in substrates (model starch gels) 

which differed only in their intensity of a single characteristic, i.e. in their level of 

artificial browning (Chapter Five), and therefore: 

 by capping the total quantity of dye in a blend at the legal limit for each individual gel, 

it was possible to:  

o compute the colour gamut boundary for each of the related (brown) gel 

substrates by substituting the same dye blends and the unit absorption spectra 

for the dyes into the K-M blending equation, changing only the spectral 

contribution of the substrate, and  

o observe the changes in the colour gamut with increased artificial browning of 

the gel substrate, which were a decrease in its size, and a shift in its lightness 

and chroma ranges. 

Although the blends used to validate the dye blending models represented a range of dye 

combinations, the number of blends was small compared to the vast number of combinations 

possible.  Based on a single criterion, a ΔE*ab,10 difference of three units or less between 

computed and measured colours, there were indications that the models might not apply with 



 

326 
 

equal measure to all blends within a single substrate (Chapter Fours and Five) or across the 

variants of a substrate (Chapter Five), or to low-chroma blends (Chapter Five).   

In reality the contribution of scatter should be more significant in food systems than is allowed 

for by the single-constant K-M equation, for example in foods such as gels which can vary in 

their translucency.  The extension of colour prediction models for coloured foods to include 

two-constant blending should be investigated in future.        

To use colorimetric matching to compute dye recipes for each target colour 

Colorimetric matching was applied to finding matches for the tile colour targets using the cake-

dye system only (Chapter Four).  The technique gave good first (computed) solutions for all 

colours.  In practice, colorimetric matching can be applied successfully to targets that are within 

the gamut of a food coloration system.  Out-of-gamut targets require extra computation, without 

the guarantee of a good visual match for some colours. 

To use colour gamut mapping to find the best equivalent of each target colour and its 

corresponding dye recipe in each model substrate, including those which differ only in their 

level of a single food characteristic, to measure the impact of this characteristic on the 

solutions possible 

The original positions of the tile colours relative to the position of the reproduction gamut 

boundary colours determined the extent to which colour gamut mapping was possible using the 

algorithms that were applied.  In the vast majority of cases, tile colours were able to be mapped 

to a reproduction colour gamut, whether this was the gamut of cake colours (Chapter Seven) or 

the gamut of colours for a given gel variant (Chapter Six).  The exceptions were the compressed 

Cyan and Deep Pink colours for which solutions were not available at the higher levels of 

browning tested (Chapter Six).  However, finding the ‘true’ best equivalent of certain colours 

(for example, Cyan and Deep Blue in Chapter Six) in each model substrate was limited by not 

having full colour gamut information for the tile colours.  On the other hand, a lack of colour 

gamut information (i.e. computed colours) for the reproduction gamut (Chapter Five) limited 
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the ability to find dye recipes corresponding to some of the mapped colours (Deep Grey, 

Chapter Six).  Computed gamut colours were a source of starting recipes for the iterative 

correction technique used to find recipes for the mapped colours.  

Using the variants of the wheat starch gel, dye recipes were computed to provide the best 

equivalent of each tile colour for each level of gel browning (Chapter Six).  The results were 

intended to provide examples of the effects on dye quantities and on colour outcomes of 

changing the intensity of a single characteristic.  The changes in dye recipes for mapped colours 

with increasing levels of substrate browning were measured against substrate lightness as an 

indicator of browning (Chapter Six).  These changes appeared to be a function of whether a 

clipping or compression algorithm was used, and also of tile colour.  The dye recipes computed 

usually reflected the changes observed in the lightness and chroma of the mapped colours.   

To make appropriate assessments of the closeness of matching between target colours and the 

solutions provided by colorimetric matching and by colour gamut mapping 

The conclusions drawn about the closeness of the matches can be constrained by applying the 

criterion of a maximum three-unit ΔE*ab,10 difference to all matches.  This criterion might be too 

strict for situations where non-food colours are matched with coloured foods, as indicated by the 

visual inspection of the tiles with their prepared cake matches (Chapter Four).   For colorimetric 

matching, examining lightness, hue and chroma differences individually may prove more 

informative than relying on a total colour difference.   

Target colours are not expected to differ in hue to computed matches from colour gamut 

mapping if the mapping algorithms used are hue-preserving.  These matches need to be 

inspected for differences in lightness and in chroma, given the different ways in which 

compression and clipping algorithms impact these dimensions.  In this thesis these assessments 

were made on the basis of computed outcomes only. 

To compare colorimetric matching and colour gamut mapping for the closeness of their 

solutions to the target colours, and in the dye quantities computed 
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The cake was a substrate for both methods, which allowed them to be compared on the basis of 

the overall differences, and differences in lightness and chroma, between the original or target 

colour and the reproduction obtained using the computed dye recipe (Chapters Four and Seven).    

Table 8.1 lists the features and relative merits of colorimetric matching and colour gamut 

mapping, which are based on the findings of this thesis. 

Table 8.1  Features and relative merits of colorimetric matching and colour gamut mapping as applied to the 
problem of computing microwave-baked cake colours (and their corresponding primary-dye recipes) which best 
match the standard tile colours. 

Colorimetric matching Colour gamut mapping 
Clipping Compression 

 Least computational load 
 Hue of original colour not 

necessarily preserved 
 Applied to all colours 
 Can produce similar ΔE result 

to clipping (satisfactory 
results if used in place of 
clipping for out-of-gamut 
colours that are close to 
reproduction gamut) 

 Does not necessarily use 
more or less dye than is 
needed for mapped colours 

 Heavier computational load 
 Hue preserved if hue-preserving mapping algorithm applied 

 Applied to out-of-gamut 
colours only 

 Resulting colours closer than 
compressed counterparts to 
original colours  

 Clipped colours more 
chromatic than compressed 
colours 

 Might use more dye than 
compressed colours, 
depending on the colour  
being mapped 

 Applied to all colours 
 Needs to be preceded by 

lightness compression in 
order to return a solution  

 Resulting colours further 
away (i.e. larger ΔE) than 
clipped counterparts from  
original colours  

 Less chromatic than clipped 
colours 

 Might use less dye than 
clipped counterparts for 
some colours 

 

Comparisons were made on the basis of computed colours and dye recipes.  There was enough 

detail in the results from colorimetric matching and colour gamut mapping to allow discussion 

of their relative merits as methods for reproducing target colours in food substrates.  Dye 

recipes were not used to prepare samples for a visual assessment of the solutions from the 

different methods, but it would have been very useful to have done so for at least two or three 

representative tile colours.    

8.3. Translation to 3D colour food printing 

This thesis research has shown that colorimetric matching and colour gamut mapping, which 

until now have not been used for the controlled 3D coloration of foods, can be applied to the 

problem of matching the colours of non-food materials with a food substrate containing added 
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primary dye blends.  Furthermore, colour gamuts are able to be computed rapidly to 

accommodate changes in the characteristics of the coloration substrate itself, allowing dye 

recipes to be computed to give the best equivalent of a given original (i.e. target) colour with 

each change.  Between them colorimetric matching and colour gamut mapping offer choices in 

the desired levels of computational load, colour accuracy, and dye usage.      

With the colours of standardised non-food materials (the tiles) having stood in for screen or 

image colours, and model foods standing in for printed food substrates, this discussion now 

naturally turns to how the findings and methodologies developed in this thesis translate to the 

3D colour food printer.  What is needed for the 3D colour food printer is an algorithm, or set of 

‘transformations’ or calculations to process a colour image data file (containing RGB values for 

each pixel) to a dye recipe file, and which accounts for the complexity of the printed food 

matrix by correcting for the effects of different food substrate characteristics.   

8.3.1. Transformations models for use with colour gamut mapping 

8.3.1.1. Transformations for single, individual substrate characteristics 

Colour gamut mapping already forms the pivotal step in existing processes for cross-media 

colour reproduction, for example, those which transcribe colours from screen to print.  Cross-

media colour reproduction is described in (Morovic, 2003) and Fairchild (2005), and illustrated 

in Figure 8.1 (which is the same as Figure 2.9 from the Literature Review).  On the other hand it 

has been shown in this thesis that it might be possible to compute rapidly colour gamuts on the 

basis of substrate characteristics alone, because the absorption properties of the dyes do not 

appear to change across a set of substrates that differ only in the level of a single characteristic.  

This raises the possibility of incorporating a set of substrate-driven transformations into the 

main colour reproduction workflow, feeding in at the point of gamut mapping, resulting in a 

process which is compatible with the aims and customised nature of 3D colour food printing.   
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Figure 8.1  Flowchart illustrating the general process of cross-media colour reproduction, using the example of 
device-independent colour imaging from screen to print.  Adapted from Fairchild (2005) and (Morovic, 2003). 

 

In this new scenario (Figure 8.2), the substrate-driven transformations take the form of stepwise 

changes to the colour gamut (size and shape) with each individual characteristic (type or level) 

that is ‘read’ by the printer as being a part of the food that is requested, or ‘keyed in’ by the 

user.  The transformations process begins with a ‘standard’ colour gamut (i.e. the colour gamut 

for a smooth-surfaced, colour-neutral food substrate containing primary dye blends) and ends 

with a single reproduction colour gamut representing the combined effects of the individual 

substrate characteristics, and which is used in the gamut mapping step in the main colour 

reproduction process.  The change in the substrate gamut with each additional characteristic is 

computed by an as yet unknown function, , and the changes in gamut that occur 

collectively during the transformations process are based on, but are different to, the changes 

that occur with each characteristic separately.  By using dyed samples displaying multiple as 

well as single characteristics, the transformations functions could be determined and validated.  
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Figure 8.2  Generalised algorithm proposed for the 3D colour food printer, modelled largely on device-
independent colour imaging (Figure 8.1), for rendering 3D colour images within food matrices, with provision for 
accounting for the effects of each individual food characteristic on the reproduction colour gamut via an 
additional series of transformations.     

 

The process to transform the colour gamut of the dyed substrate will begin, and end, with a 

gamut of colours in the L*10a*10b*10 colour space, the last of which is available for use as the 

reproduction colour gamut in the mapping stage of the main colour reproduction process.  

Conventionally however, colour gamut mapping as part of cross-media colour reproduction is 

done in a colour appearance space (such as CIECAM97s, with coordinates J,a,b or J,C,h), in 

which viewing conditions have been accounted for by using a colour appearance model.  For 

convenience, the uniform L*10a*10b*10 colour space is used here in place of a colour appearance 

space (or intermediate colour space).  The limitations of using the CIELAB space should be 

kept in mind, which include it applying strictly to colours of identical size, shape and viewing 

conditions for specifying the differences between them, and its inability to predict luminance-

dependency (such as the increase in colourfulness and contrast with luminance), or the effects 

of background and surround (Fairchild, 2005).    
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8.3.1.2. How the transformations might take shape (an example) 

8.3.1.2.1. Other characteristics in addition to browning 

While it is only the effects of browning that were investigated in this thesis, examples of other 

substrate effects that could be modelled include volume expansion and surface texture.  

Expansion upon cooking and the setting to a foam structure are processes that would result in 

desirable textures and eating qualities in a printed food.  Using again the example of the model 

starch gel, increasing the volume alone of the standard White gel containing primary dye blends 

would be expected to increase the lightness, and decrease the chroma of the achievable colours 

due to a dilution effect.  Increasing the degree of surface texture (i.e. surface roughness) alone 

might be expected to increase lightness, this time due to the increase in scattered light relative to 

specularly reflected light.  In future work, surface texture of the gels could be modified by 

moulding the gels over sandpaper of different grit sizes to create surface textures of different 

roughness, as has been done for chocolate (Briones et al., 2006). 

Other processes requiring transformations to account for might include axial dispersion of dye 

material through contiguous voxels, chemical changes in dye material during cooking, 

partitioning of dye between different phases of a food material, and others. 

8.3.1.2.2. Transformations process 

In a transformations process that accounts for browning, surface texture and volume - in that 

order - the progressive changes that might be seen in the standard colour gamut of the substrate, 

are as follows: 

 with browning, a decrease in the lightness and chroma ranges, with a shift towards 

redder and darker colours, followed by 

 a shift in the lightness range, back towards lighter colours with the addition of surface 

texture, followed by 
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 another shift in the lightness range, with the addition of volume, with the direction of 

the shift depending on the relative effects of volume and surface texture on lightness, 

but remaining in the region of lighter colours, together with 

 a possible shift in the chroma range away from redder colours by virtue of the effective 

dilution of the volume concentration of the dyes; the size of the chroma range itself 

could also change (i.e. decrease) as the effective volume concentration of dye 

decreases, but this will depend on the relative effects of browning and volume. 

An example of what might occur (in part) to the colour gamut, as a result of the cumulative 

effect of transformations, is depicted in Figure 7.1 (Chapter Seven).  Although the gel and cake 

differ in their formulation, preparation, and measured sample size, the colour gamut for cake – a 

complex substrate having background colour, surface texture and volume - is shifted towards 

redder, more yellow, and darker colours, relative to the standard colour gamut based on the 

dyed, white gel, when both contain the same primary-dye blends. 

8.3.1.2.3. Added complexities 

In practice the transformations might embody more complexity than simply accounting for the 

spectral contribution of the un-dyed substrate (Chapter Five).  The transformations will need to 

factor in any changes in the (magnitude of the) unit spectral contribution from each dye that 

might occur with changes in substrate characteristics.  In this study slight changes in unit 

absorption spectra for the dyes in the starch gel were seen with an increase in the level of 

artificial gel browning (Chapter Five); because absorption is inversely related to reflectance, 

small differences in dye absorption spectra will translate to large differences in colour values 

(here L*10a*10b*10).  Therefore, computed gamut L*10a*10b*10 values from the substitution of the 

substrate absorption spectral values only in the K-M equation when moving from one level of 

artificial substrate browning to the next (Chapter Five) will differ from those computed when 

substitutions are made for both the substrate and primary dye absorption values.  In turn, the 

colour gamuts resulting from the two different sets of L*10a*10b*10 values are likely to differ in 

size and shape. 
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Transformations will be made to the colour gamut for a reproduction substrate which is 

comprised of computed colours.  Therefore a computed gamut will need to be a good 

representation of the colours that can actually be achieved in the reproduction substrate.  The 

work of Chapter Five showed that discrepancies between computed colours and measured 

colours of a starch gel containing primary dye blends meant that the actual size of a colour 

gamut is likely to be smaller than the one computed.  Accordingly, transformations might need 

to correct for these discrepancies by shrinking the reproduction substrate colour gamut at each 

step.    

Weight loss and final weight of a food substrate after processing also need to be taken into 

account, in order to not breach the legal limit of dye (of 290 mg/kg) in the finished food, 

assuming that dye has remained stable during processing.  In turn, final sample weight sets the 

maximum concentration of dye that can be added to the food in its raw form, prior to 

processing, for the computation of gamuts.  For example, in this study, mean weight loss of the 

gel material after cooking was 5%, meaning a final dye concentration of 29.0 mg/100 g cooked 

gel was achieved by adding 27.5 mg of dye to 100 g of raw gel; if weight loss were 10%, the 

maximum level of dye addition allowed would have been 26.1 mg/100 g raw gel (Figure 8.3).  

The plot of the relationship between dye concentrations before and after cooking in Figure 8.3 

resemble plots used in textile dyeing, where a distinction is made between the concentration of 

dye in the dye bath (the ‘theoretical concentration’) and the dye that is taken up from the bath by 

the fabric (the ‘effective concentration’) (Berns, 2000).   

Note that for this research we elected to apply a rule that dye substance must not exceed the 

legal concentration in each and every component voxel of a food object, rather than over the 

entire food object.  This was primarily for reasons of conservation and partly for simplicity of 

calculation. 

Weight needs to be accounted for because, while colour might be perceived visually more on 

the basis of volume rather than on the basis of weight of the food, restrictions on dye addition 
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are applied on a weight basis.  In transformations accounting for single substrate characteristics 

the substrate weight will be that of the ‘standard’ or ‘starting’ substrate, and remain unchanged 

throughout the transformations.    

 

Figure 8.3  The relationship between the concentration of added dye in a model starch gel before cooking (mg 
dye/100g raw gel), and the concentration after cooking.  Weight loss of 5% after cooking was a measured loss, 
whereas the weight loss of 10% is a theoretical loss.   

 

8.3.1.3. Alternative approach: transformations for different sets of mixed substrate 

characteristics 

In reality, a substrate-driven transformations approach based on one transformation per 

characteristic will be difficult to translate to the food printer; the approach was developed using 

a simple model system not necessarily representative of all foods that the 3D colour food printer 

might produce, and changes in each characteristic of a printed food are unlikely to occur in 

isolation from one another.  A better approach might be to have the printer set up to print foods 

of a single type (referencing the POSIFoods™ approach), such as a cake-type formulation, or 

alternatively, a small, well-defined range of foods.  Instead of storing colour gamut information 

for individual characteristics, gamut information is stored for a range of (whole) outputs, or 

variants, of the food (such as a cake) which meet different sensory and nutritional specifications 

- for example, for cakes with lighter ‘sponge-type’ or dense ‘fudge-type’ textures, and for cakes 

that are ‘low in sugar’, ‘low in fat’, and ‘gluten free’.  Each variant will have associated with it a 

unique mix of characteristics (including background colour and texture), each with its own 
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effect on the possible range of colours that can be achieved, relative to a standard cake 

formulation, for the same set of primary dyes.  For an emulsion-based product such as a dairy 

dessert, the colour outputs from high-fat and low-fat variants may differ due to the relative 

partitioning of dyes between the different phases of the emulsion.  The user would be presented 

with a number of options for sensory and nutritional outputs, and the option to combine outputs 

if these are compatible with one another.  The printer would then combine or process the colour 

gamut information for the constituent outputs from each variant, to arrive at a final, single 

colour gamut which is used in the gamut mapping stage of the main cross-media colour 

reproduction process.  This alternative approach is illustrated in Figure 8.4. 

 

Figure 8.4  An alternative approach to substrate-based gamut transformations based on the effects of different 
variants of a standard substrate (i.e. different sets of mixed characteristics) rather than of individual 
characteristics.  

 

Developing this alternative approach would require unit absorption spectra for the primary dyes 

to be derived in a ‘standard’ cake formulation (meaning one made with wheat flour), and again 

for the cake variants, and the colour gamuts to be computed for each variant containing the 

same primary dye blends (with the maximum quantity capped at the legal limit).  Again, 

methods to compute the final colour gamut for a given combination of sensory and nutritional 

outputs from the gamuts of the individual variants would need to be developed and validated, 
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taking into account any changes in the unit absorption spectra of the dyes that might occur 

across different cake variants, any adjustments that are needed in gamut size and shape, and the 

final weight of the substrate.  As final substrate weight is likely to vary with each new version 

of the cake, these alternative transformations would need to make an allowance for this at each 

step.   

Any changes that are made to the standard substrate (e.g. cake) formulation to meet individual 

nutritional or sensory specifications that involve major ingredients are likely to have the biggest 

impact on background colour and surface texture, and therefore the biggest impact on the range 

of colours that can be achieved from the addition of primary dye blends.  For example, when the 

rice flour in a standard, microwave-baked idli (Indian savoury cake) recipe is replaced with 

other types of gluten-free flour, each flour produces a finished idli with a different colour (as 

indicated by their measured L* values) and foam structure to the idli made with the other flours, 

even though there is no change in final idli volume (Teresa Wegrzyn, personal communication).   

8.3.1.4. Computation of dye recipes for the reproduction 

In the latter phase of the cross-media colour reproduction workflow, recipes for the colorant 

primaries are computed to produce the reproduction.  Here, recipes will be computed which will 

specify the quantities of primary-coloured Brilliant Blue, Ponceau 4R (red) and Tartrazine 

(yellow) food dyes that are needed for each voxel in the cake, with each voxel corresponding to 

a pixel in the original image.  The reproduction medium characterisation model to convert the 

X,Y and Z tristimulus values for each colour in the reproduction to primary dye quantities will 

in this case be the process that was used to compute dye quantities for the mapped colours – 

iterative recipe correction - in Chapter Six.   

The results of Chapter Six indicated that a more appropriate number and distribution of 

computed gamut colours was needed, to fill the inside of the gamut as well as the boundary 

itself.  This feature should be applied to the colour gamut computed for the standard substrate at 

the start of the transformations to ensure that the gamut for the final reproduction substrate has 
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enough starting colours (and therefore corresponding dye recipes) for iterative dye recipe 

correction to arrive at a recipe for each voxel.  This is particularly important because the colours 

that will be reproduced - image colours - are those for which full gamut information should be 

available; this will enable colours mapped by compression algorithms to be mapped to inside 

the reproduction gamut rather than to as far as the gamut boundary (as was the case for some of 

the tile colours).  The validation of the Kubelka-Munk dye blending model for food coloration 

becomes useful again here, because unit absorption spectra for the dyes are used in the recipe 

correction equations (Chapter Six). 

8.3.2. Transformations models for use with colorimetric matching 

The method other than colour gamut mapping that was used to compute dye recipes for the tile 

colours – colorimetric matching – did so for a single, complex reproduction substrate (the 

microwave-baked cake) and was not applied to other substrates, or to different substrate 

characteristics.  However this does not preclude colorimetric matching as an alternative basis for 

a substrate-driven transformations model.  Substitutions could be made for the substrate term in 

the matching equations, producing dye recipes for potentially less computational load than is 

involved in gamut computations and gamut mapping, if highly accurate colour rendition 

(specifically, the preservation of hue) is not desired. 

A transformations model for use with colorimetric matching that accounts for substrate 

properties (Figure 8.5) resembles the colorimetric matching workflow shown in Figure 4.6 of 

Chapter Four, and in Figure 2.8 of the Literature Review, rather than the cross-media colour 

reproduction process that involves gamut mapping.  In the cross-media process image RGB data 

is converted into device-independent tristimulus values (X, Y and Z), using the characterisation 

model for the imaging device, whereas colorimetric matching requires the pseudo-tristimulus 

values (XP, YP and ZP), and therefore the measured spectra of the original colours, or 

alternatively, an arbitrary starting recipe (McDonald, 1987) or recipe for a colour close to the 

original, as the starting point to obtaining the dye recipe (Chapter Six). 
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Figure 8.5  A second generalised algorithm proposed for the 3D colour food printer for rendering 3D colour 
images within food matrices, this time is modelled on a colorimetric matching algorithm (Chapter Four), with a 
second series of transformations accounting for the effects of individual food characteristics on the absorption 
spectra of the un-dyed substrate itself and (possibly) of the dyes.   

 

The transformations model for use with colorimetric matching accounts for substrate properties 

in a similar way to the gamut-based process.  The former will still need to account for any 

changes in the unit absorption spectra of the dyes, and in substrate weight and volume that occur 

with changes in the substrate, as well as for any discrepancy between computed colours and 

measured colours.  As with the gamut-based approach, transformations can be applied to 

specific substrate characteristics, or to different variants of the (whole) substrate.  But instead of 

transformations taking the form of stepwise changes in the colour gamut of the substrate, it is 

the absorption spectrum of the substrate that changes.  Also, while changes in the colour gamut 

indicate changes in the substrate and primary dye spectra occurring together, here the two feed 

separately into the dye recipe computation step (Figure 8.5).   

Once the spectra for the substrate and primary dyes have been finalised, the colorimetric 

matching equations (Equations 4.14, Chapter Four) can be used to compute the dye recipes 
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which are needed to match the original or target colour, when the dyes are mixed with the 

substrate in the specified quantities.  Individual negative dye quantities and recipe totals 

exceeding the legal maximum indicate the resulting colour will be outside the range achievable 

in the substrate, and should be scaled back accordingly, maintaining the proportions of the non-

zero quantity dyes. 

8.3.3. Summary: transformations models 

For each colour voxel in a 3D colour printed food, computation of its dye recipe will be a ‘once 

only’ step in the colour image reproduction process.  However different food characteristics will 

have different effects on the colour output(s), in turn impacting the quantities of dyes that are 

needed.  In order to compute single dye recipes on the basis of a single collection of food 

characteristics (that belong to the final printed food substrate), the effects of individual substrate 

characteristics, or subsets of characteristics, on colour outputs first need to be accounted for; this 

takes place in a separate series of transformations which are added to the main set which 

transcribes colour image data to dye recipe data.    

Embedded in the substrate-driven transformations, , are: 

 the spectral contribution of the un-dyed substrate; 

 any changes in the magnitude of the unit absorption spectra (Chapter Five), should these 

occur with changes in individual substrate characteristics (type or level), or with 

changes in different sets of mixed characteristics; 

 any necessary adjustments to gamut shape, to correct for any discrepancies between 

measured colours and computed colours (Chapter Five), for colour gamut-based 

transformations only; 

 weight loss and final weight of the substrate after cooking - this will remain the same 

for transformations based on individual characteristics, but will be different for each 

transformation as the result of changes to sets of mixed characteristics. 
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Substrate transformations compatible with gamut mapping might be preferred over those for use 

with colorimetric matching.  The former transforms the colour gamut of the substrate which 

contains primary dye blends, with changes in the gamut occurring with changes in substrate 

characteristics (individual or mixed sets).  At each stage, the colour gamut can be seen as 

embodying all the changes that occur together: in the substrate and dye spectral contributions, 

and in substrate weight.  The colour gamut is also the outcome of the physical and chemical 

interactions between substrate and dyes that occur during processing.  For transformations 

compatible with colorimetric matching, changes in substrate and dyes are treated somewhat 

separately before the dye recipe computation stage.  

It should be possible for the printer to have stored in its memory dye recipes computed for foods 

printed previously.  In this way, if a food is selected again as the substrate in which to render 

colour images, the substrate transformations process can be bypassed, and coloration can 

proceed straight away.      

8.3.4. Alternative printing technologies 

The type of 3D colour food printing technology that has been the subject of this thesis research 

is a set-up that works largely on the subtractive blending of the primary dye colours, and on the 

liquid dyes and raw substrate having compatible rheology to allow for the mixing of dyes into 

the substrate without any diffusion of dyes between voxels being allowed to take place.  

Alternative printing technologies and alternative dyes could be considered.  One alternative is to 

use primary-coloured raw pastes, which are blended selectively to create each voxel prior to the 

point of extrusion, which has the advantage of blending materials which (should) have the same 

rheological properties.  Voxels can be extruded either in a continuous stream (using a single 

nozzle arrangement) or several voxels at a time (for example, voxels of a single colour) using 

multiple nozzles, with the voxels positioned selectively to create each layer before the next layer 

is built up.  For the mixing of pre-coloured batters, the laws of subtractive mixing, and therefore 

the predictive coloration algorithms developed in this thesis, would still apply.   
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For 3D colour food printing using liquid primary dyes, diffusion of liquid dyes into 

neighbouring voxels could be minimised by using insoluble, particulate dyes, known as lakes.  

Lakes have the added advantage of imparting high opacity which potentially could help to mask 

the background colour of the substrate.   The use of lakes would require substantial expansion of 

the algorithms developed, to include the scattering effects of the particles, which can be 

modelled using the two-constant Kubelka-Munk approach, rather than the single-constant 

approach which is used for dyes.  However the potential drawback of using lakes is that their 

colouring strength is not necessarily proportional to their dye content; it is very dependent on 

the physical properties of the lakes, which in turn will vary according to their manufacturing 

conditions (Francis, 1999). 

8.3.5. Single-coloured model substrates vs. multi-coloured printed 

foods 

When attempting to apply the findings and methodologies from this thesis to the 3D colour food 

printer, some important differences between a multi-coloured printed food item, and the single-

coloured model substrates that were used in this study for practical reasons, need to be 

considered.  In the printed food the proposed colour voxel size is 0.5 cm x 0.5 cm x 0.5 cm 

(0.125 cm3), corresponding to an area of 0.25 cm2 when viewed in two dimensions, and each 

voxel will be surrounded by voxels of other colours.  This voxel area will be smaller than the 

smallest substrate surface area measured in this study (the cast surface of the gels, at eight cm2) 

and therefore will occupy a smaller field of view.  The eye might be less sensitive to colours 

when the angle of view is smaller, as ‘large field colour matching has higher precision’ (Berns, 

2000).  The perception of each colour voxel might also be subject to the contrast effects of the 

surrounding colours.  Simultaneous contrast usually refers to the perception of two identical 

samples of colour as being different when each is placed against a different background to the 

other, and viewed side-by-side.  While the definition of simultaneous contrast might not strictly 

apply to the printed food, it is conceivable that a single voxel surrounded by one set of voxels 

might be perceived as being of a different colour when surrounded by a different set of voxels.  
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The combined effects of voxel size and surrounding voxels potentially mean that the dye recipe 

computed for a voxel to be perceived as a given colour might be different to that computed for a 

larger field equivalent in a model substrate.  Also, with a voxel being at a smaller scale, any dye 

that is needed for a recipe in very small quantities for the larger scale equivalent could be 

discarded for the voxel; the effects of such dyes might not be easily seen, and it might not be 

practical to physically deliver the correspondingly very small quantities of dye.   

8.3.6. Quality of reproduction 

Ultimately though, the colours inside a printed food will not be evaluated individually by the 

consumer, but as a whole, against the entire original colour image or design.  In conventional 

cross-media colour reproduction of images, either an accurate, or a pleasant, reproduction is 

desired, yet no established model exists for quantifying the difference between original and 

reproduction (Kang, 2006).  In this thesis gamut mapping algorithms for accurate, rather than 

pleasant, reproduction were used because they are the more extensively studied (Morovic, 

2003).  However, for 3D colour food printing it might make more sense to aim for pleasant 

reproduction (bearing in mind notions of ‘pleasantness’ can differ between individuals and 

between populations) for a number of reasons:  

 it would be very difficult to achieve the same resolution in the reproduction as in the 

original, when both are at their original scale, given the relatively large voxel size 

relative to image pixel size;  

 original and reproduction may not necessarily be viewed side-by-side (as they would 

need to be for the evaluation of accuracy); a potentially appealing aspect of the 3D 

colour food printer would be the ability to print the food locally from an image file sent 

remotely from another location;   

 users of the 3D colour food printer may not have a high expectation of accuracy of 

reproduction, knowing that food is obviously different to the usual substrates for the 

reproduction of colour images and patterns, such as paper and plastics; 
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 users may want to add special effects to the rendered image at the point of printing, 

such as those available in cameras and in photo editing software (e.g. sepia toning, 

which gives warm, reddish-brown hues), thus removing expectations of colour 

accuracy. 

Therefore it can be concluded that the main benefit of adapting and applying non-food 

coloration algorithms to 3D colour food printing will lie in their speed of computation, while 

getting the results to within acceptable reach of the original colours.  Performance of these 

algorithms will ultimately rely on feedback from users, as food printing as a technology and as 

an element of popular culture matures over time. 
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