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Abstract 

With advances in high-throughput sequencing technologies, computational biology, and 

evolutionary modelling, pathogen sequence data is increasingly being used to inform 

infectious disease outbreak investigations; supporting inferences on the timing and 

directionality of transmission as well as providing insights into pathogen evolutionary 

dynamics and the development of antimicrobial resistance. This thesis focuses on the 

application of pathogen whole-genome sequence data in conjunction with social network 

analysis to investigate the transmission dynamics of two important pathogens; 

Campylobacter jejuni and Staphylococcus aureus.   

The first four studies centre around the recent emergence of an antimicrobial resistant C. 

jejuni strain that was found to have rapidly spread throughout the New Zealand 

commercial poultry industry. All four studies build on the results of an industry survey 

that were not only used to determine the basic farm demographics and biosecurity 

practices of all poultry producers, but also to construct five contact networks representing 

the on- and off-farm movement patterns of goods and services. Contact networks were 

used in study one to investigate the relationship between farm-level contact risk pathways 

and the reported level of biosecurity. However, despite many farms having a number of 

contact risk pathways, no relationship was found due to the high level of variability in 

biosecurity practices between producers.  

In study two the contact risk between commercial poultry, backyard poultry and wild 

birds was investigated by examining the spatial overlap between the commercial contact 

networks and (i) all poultry transactions made through the online auction website 
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TradeMe® and, (ii) all wild bird observations made through the online citizen science bird 

monitoring project, eBird, with study results suggesting that the greatest risk is due to the 

growing number of online trades made over increasingly long distances and shorter 

timespans.  

 

Study three further uses the commercial contact networks to investigate the role of 

multiple transmission pathways on the genetic relatedness of 167 C. jejuni isolates 

sampled from across 30 commercial poultry farms. Permutational multivariate analysis 

of variance and distance-based linear models were used to explore the relative 

importance of network distances as potential determinants of the pairwise genetic 

relatedness between the C. jejuni isolates, with study results highlighting the importance 

of transporting feed vehicles in addition to the geographical proximity of farms and the 

parent company in the spread of disease.  

 

In the last of the four C. jejuni studies, a compartmental disease transmission model was 

developed to simulate both the spread and sequence mutations across an outbreak within 

the commercial poultry industry. Simulated sequences were used in an analysis mirroring 

the methods used in study three in order to validate the approaches examining the 

contribution of local contacts and networks contacts towards disease transmission. An 

additional analysis is also performed in which the simulated sequence data is used to infer 

a transmission tree and explore the use of pathogen phylogenies in determining who-

infected-whom across different model systems.  

 

A further study, motivated by the application of whole genome sequence data to infer 

transmission, investigated the spread of S. aureus within the New Zealand dairy industry. 

This study demonstrated how whole-genome sequence data can be used to investigate 

pathogen population and evolutionary dynamics at multiple scales: from local to national 

and international. For this study, the genetic relatedness between 57 bovine derived S. 
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aureus isolates sampled from across 17 New Zealand dairy herds were compared with 59 

S. aureus isolates that had been previously sampled and characterised from humans and 

domestic pets from across New Zealand and 103 S. aureus isolates extracted from 

GenBank that included both human and livestock isolates sampled from across 19 

countries. Results from this study not only support evidence showing that the movement 

of live animals is an important risk factor for the spread of S. aureus, but also show that 

using cattle-tracing data alone may not be enough to fully capture the between farm 

transmission dynamics of S. aureus. 

 

Overall, by using these two pathogen examples, this thesis demonstrates the potential use 

of pathogen whole-genome sequence data alongside contact network data in an 

epidemiological investigation, whilst highlighting the limitations and future challenges 

that must be considered in order to continue to develop robust methods that can be used 

to reliably infer the transmission and evolutionary dynamics across a range of infectious 

diseases.  
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C H A P T E R 1
Introduction 



1.1. Infectious disease dynamics in a connected world 

A report published by The National Academy of Medicine, formerly known as the 

Institute of Medicine in the United States, in 1992 identified six key factors as the most 

likely driving forces behind future trends in emerging and re-emerging infectious 

diseases. These factors were (i) human demographics and behaviour, (ii) technology and 

industry, (iii) economic development and land use, (iv) international travel and 

commerce, (v) the breakdown of public health measures and, (vi) microbial adaptation 

and change (Institute of Medicine, 1992). Since then, there have been many additional 

factors proposed in relation to the global trends of infectious diseases and our capacity to 

effectively prevent, control and treat these diseases (Jones et al. 2008). Central to many of 

these discussions are the effects of population growth and increased global connectivity 

(Wilson, 1995; Institute of Medicine, 2010). Over the past century, both human and 

animal movement patterns have grown in distance, volume and speed; blurring the 

geographical boundaries for infectious diseases (Tatem et al. 2006) and as of yet, the full 

consequences of this increased connectivity on the spread, persistence, risk and control 

of diseases are just beginning to be understood.  

In order to continue the fight against infectious diseases, it is clear that a greater 

understanding is needed into how population contact patterns, particularly those 

occurring at the animal-human-ecosystem interface, may be contributing to the changing 

patterns in disease emergence and spread (Lloyd-Smith et al. 2009; Hassell et al. 2017). 

Traditionally in epidemiological studies, mathematical compartmental model, such as a 

Susceptible–Infectious–Removed (SIR) model, have been used to describe the 

transmission dynamics of a disease within a population, with the earliest model described 

in work by Daniel Bernoulli (1700- 1782) on the inoculation of smallpox (Bernoulli, 

1760). However, in recent years, a growing number of studies are turning to network-

based approaches in order to overcome the simplifying assumption of homogeneous-

mixing that is inherent to many compartmental models (Keeling et al. 2008). This 
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assumption, that all individuals within the population mix both uniformly and randomly, 

overlooks the influence of the population contact patterns on disease dynamics (Bansal 

et al. 2007) however, in many of these homogeneous mixing compartmental models, 

there is just not enough information known to inform the underlying population contact 

structure. Difficulties in accurately capturing population contact patterns, particularly 

within wildlife and livestock populations, is one of the major limitations to many of the 

network-based approaches that exist in the literature (Craft, 2015) and is major driver 

behind many new methods that aim at integrating multiple complementary data sources 

such as network data and pathogen sequence data.  

 

1.2. Host contact networks and pathogen phylogenetics 

Network-based approaches are grounded in graph theory; the basic concept of which was 

introduced back in the late-18th century by Leonhard Euler (1707-1783) (Euler, 1995). 

Since then, the development of graph theory has provided an array of quantitative tools 

for describing networks, many of which have been used across a number of research 

disciplines including sociology, epidemiology, psychology, computer science and 

economics (Otte and Rousseau, 2002; Borgatti et al, 2009; Scott and Carrington, 2011). 

Network graphs can be constructed from a set of elements, often referred to as nodes, 

vertices or actors, which represent the unit of interest, and edges or contacts to show the 

relationships between them. For example, in infectious disease studies nodes can 

represent individuals (i.e., a human or an animal), or any larger epidemiological group 

(i.e., a hospital or a farm), with nodes connected via different types of contacts that are 

known to be pathways for disease transmission.  In systems with relatively complete 

information on the contact network nodes and edges, it may be possible to identify who-

infected-whom as all transmission events will be captured by a contact in the network 

(Keeling and Eames, 2005; Danon et al. 2010). However, correctly identifying which 

contacts contribute towards the spread of disease is complicated by both incomplete 
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network data and multiple networks relevant to disease transmission existing within the 

host population (Eames et al. 2015).  

Over the last few decades, the increasing availability of molecular sequence data has seen 

a rise in the number of studies using pathogen phylogenetics to strengthen the 

epidemiological inferences made from host contact networks (Pluciński et al. 2011; 

Vasylyeva et al. 2016; Gilbertson et al. 2018). This has also led to the rapid expansion of 

molecular epidemiological tools that aim at making inferences on disease dynamics based 

on observed genetic mutations between sampled pathogen sequences and attached 

epidemiological information. This basic concept sets the foundation for most molecular 

epidemiological studies (Hall, 1996) in addition to many other studies that identify with 

other research disciplines but similarly use approaches grounded in population genetics 

to infer disease transmission dynamics from the population demographics of the 

pathogen population. However, the development of epidemiological methods that can 

integrate such evolutionary dynamics are still in their infancy and it remains unclear the 

impact of phylogenetic complexities on the validity of these new approaches (O’Dea and 

Wilke, 2011; de Maio et al. 2016). 

1.3. Research focus 

Within New Zealand, there is a growing concern for the transmission of zoonotic 

pathogens from farmed animals to humans. Recent disease outbreaks have served as a 

reminder of the potential impacts of endemic diseases such as, the 2016 

campylobacteriosis outbreak in Havelock North that resulted in an estimated 5,500 cases, 

45 hospitalisations, and 4 deaths (Ministry of Health, 2017). In addition to public health 

consequences, the economy of New Zealand is highly dependent on the health of its 

livestock populations and recent disease incursions, such have Mycoplasma bovis (Roche, 

2019), has further highlighted the potential impact of exotic diseases on not only the 

health and welfare of livestock but also the stability of New Zealand’s primary sector and 
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access to global trade. Therefore, in order to protect public health, ensure the wellbeing 

of livestock populations and, maintain a competitive edge in global trade markets, we 

must develop new approaches to minimise the impact of endemic diseases, reduce the 

transmission of zoonotic diseases and prevent the incursion of exotic diseases. However, 

many modern farming practices have created unique opportunities for disease to spread 

between animal populations through the movements of animals, vectors, personnel, and 

equipment. The continuing development of the urban landscape is also creating diverse 

wildlife–livestock–human interfaces that represents a critical point for the transmission 

and emergence of zoonotic diseases, although the interacting patterns occurring at these 

interfaces are not always clear (Karesh et al. 2012; Reperant et al. 2013). Only with a better 

understanding of how these contacts and behaviours shape pathogen evolution and 

transmission dynamics, will it be possible to design more cost-effective disease control 

strategies in often what is a resource-limited setting. 

 

This thesis forms part of a larger network of studies funded through New Zealand’s 

Biological Heritage (NZBH) National Science Challenge in a project collectively entitled 

“Biosecurity Network Interventions”. Across all the studies, the overarching aim is to 

bring together multiple disciplinary perspectives in network modelling in order to 

identify opportunities for intervention and reduce the spread of pests, pathogens and 

weeds within four human-assisted networks across New Zealand these are; (i) the plant 

nursery network, (ii) the livestock transport network, (iii) the freshwater recreational user 

network and (iv) the natural area visitor network. The main focus of this thesis is looking 

at how livestock transport networks can be used to inform different stages of an 

epidemiological investigation with a particular interest in integrating pathogen whole-

genome sequence data within a network analysis to help determine the contribution of 

different network pathways on pathogen population dynamics. This thesis describes two 

livestock networks, one constructed from the movement of goods and services within the 

commercial poultry industry and another from the movement of live-animals within the 
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commercial dairy cattle industry, in order to investigate the transmission and 

evolutionary dynamics of two pathogens; Campylobacter jejuni within the poultry 

network and Staphylococcus aureus within the dairy cattle network.   

1.3.1. New Zealand’s commercial poultry industry 

The historic introduction of poultry into New Zealand is highly disputed with records 

dating back to the late-1700s with the arrival of Captain James Cook (1728-1779) (Wintle 

and Lepper, 2012). In the decades to come production remained largely subsistence with 

an estimated half of all New Zealand households keeping hens in their backyard to supply 

eggs (Binney et al. 2014). However, during the early 20th century several events resulted 

in a gradual shift from predominantly backyard production to small-scale production of 

both meat and eggs including increased recognition by the New Zealand Government for 

the nutritional value of eggs, increased demand for chicken by US hospitals in the Pacific 

for recovering soldiers following the Second World War, improved production 

techniques, the lifting of import restrictions from outside Australia, and the increasing 

popularity of chicken meat largely driven by rising public affluence, recognition of health 

benefits in comparison to red meat, increased popularity of international cuisines and 

convenience (Stafford, 2017). 

Today modern poultry production in New Zealand focuses around three major species 

(chickens, turkeys and ducks) plus several minor species including geese, guinea fowl, 

quails, pheasants and ostriches. The commercial chicken industry is the largest of these 

consisting of approximately 119 million meat chickens raised annually (mainly Cobb and 

Ross), 3.5 million layer chickens, with a further 3 million replacements raised each year 

(mainly Shaver Browns and Hyline Whites), and 2.5 million meat and layer breeder birds 

(StatsNZ, 2018). The market is largely domestic, however, increasing amounts of meat 

and eggs are being exported due to international recognition of New Zealand’s high 

poultry health status with New Zealand national flock remaining free from major avian 
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disease including both Newcastle disease and Highly Pathogenic Avian Influenza 

(Davidson, 2002; Cobb and Smith, 2013) and until recently, Infectious Bursal Disease 

(MPI, 2019a).  

Industry structure varies by sector (Figure 1.1) with the broiler industry characterised by 

a small number of large vertically integrated companies such that, the four largest poultry-

meat suppliers; that is, Tegel Foods, Inghams Enterprises, PH van den Brink, and Turks 

Poultry, supplies over 90% of the country’s poultry meat. This structure supports the 

vertical integration of most broiler operations with individual producers relying on 

suppliers to control all stages from primary production and processing to distribution. In 

comparison, the layer industry is dominated by many smaller independent producers that 

rely on horizontal integration and depend almost entirely on a domestic market with 

many producers selling directly to the wholesalers within a single administrative 

boundary or marketing through co-operatives (Stafford, 2017).  

1.3.2. Epidemiology of Campylobacter jejuni in New Zealand  

Within the commercial poultry industry there are many concerns associated with 

production it may be argued that considering the high health status of New Zealand 

national flock and strict industry guidelines to ensure that both environmental 

contamination is minimised and animal welfare standards are maintained (Coriolis, 

2017), that food safety remains one of the primary concerns for the industry. Within the 

broiler industry, this includes the control of pathogens responsible for major foodborne 

illnesses such as Campylobacter, Salmonella and Listeria whereas the primary concern for 

egg producers will be Salmonella. In particular, a major concern in New Zealand is 

Campylobacter with incidence rates of human Campylobacteriosis greatly exceeding that 

in comparison to other developed countries (Olson et al. 2008). 
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Campylobacteriosis is a foodborne disease caused by an infection from a number of 

Gram-negative bacterial species belonging to the genus Campylobacter (Moore et al. 

2005). In New Zealand, the disease is typically attributed to infection with C. jejuni and 

to a lesser degree, C. coli and C. fetus (Müllner et al. 2010) with infection most often 

resulting in acute, self-limiting gastroenteritis. Common symptoms mostly include 

abdominal pain, diarrhoea, vomiting, nausea, and fever; however, occasionally severe and 

persistent gastroenteritis will result in hospitalisation with macrolides and 

fluoroquinolones recommended as the first-choice antimicrobials for treating the more 

severe cases or immunocompromised individuals. A further 5–10% of cases are also 

associated with post-infectious extraintestinal complications such  

as meningitis, carditis, pancreatitis, urinary tract infections, reactive arthritis, and on rare 

occasions, the neurological syndrome Guillain-Barre (WHO, 2012).  

 

Many animals act as natural hosts for Campylobacter spp. with many showing little to no 

sign of carriage including most species of domestic animals such as cattle, sheep, poultry, 

pigs, dogs and cats (Blaser et al. 1984). Campylobacter can also survive in host faecal 

matter and although recent genotyping has demonstrated some degree of host association 

between Campylobacter spp. it is known that environmental contamination can also act 

as an indirect route of transmission between different host species as well as having the 

potential to contaminate other food sources, such as fruits and vegetables, through 

contact with contaminated soil or water sources (Whiley et al. 2013). In New Zealand, 

source attribution studies have indicated that a high proportion of campylobacteriosis 

cases are due to the ingestion of contaminated food, most frequently undercooked poultry 

(Müllner et al. 2009). This prompted the New Zealand Food Safety Authority into 

launching New Zealand’s first Campylobacter risk management strategy back in 2006, 

focusing on reducing the contamination of chicken meat with the implementation of both 

mandatory and voluntary control strategies along the poultry supply chain (NZFSA, 

2008). As a result of control efforts, the number of notified cases declined from 379 cases 
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per 100,000 in the population in 2006 to 125 cases per 100,000 in the population in 2017 

(Sears et al. 2011).  

However, in May 2014, a previously unreported C. jejuni sequence type (ST) 6964 was 

found after routine sampling at a sentinel surveillance site in the Manawatu region of New 

Zealand (Bolwell et al. 2015). Following the emergence of C. jejuni ST-6964, several cross-

sectional studies were conducted in both poultry and humans in order to investigate 

possible changes in the resistance patterns of C. jejuni. Results from these studies found 

30% of human C. jejuni isolates to be resistant to fluoroquinolones, 77 % of which were 

also resistant to tetracycline, and 37% of poultry C. jejuni isolates to be resistant to both 

ciprofloxacin and tetracycline (Muellner et al. 2016). In addition to the significant 

increase in resistance, this ST-6964 was also found to be widely distributed across all four 

major poultry producers (Muellner et al. 2016) despite the industry being vertically 

integrated with little contact between producers belonging to different suppliers. This 

suggested a major epidemiological shift as previously the dominant ST in any given year 

was typically associated with individual suppliers (Müllner et al. 2010). In the years to 

follow many human cases of campylobacteriosis associated with ST-6964 have been 

identified in outbreaks across New Zealand however, the origin and transmission 

dynamics of this ST remain unclear.  

1.3.3. New Zealand’s dairy cattle industry 

The New Zealand dairy industry has a history dating back to the early-1800s when the 

first shorthorn cattle were imported into New Zealand by the Reverend Samuel Marsden 

(1765-1838) (Peden, 2008). In the following years, more cattle breeds were imported into 

New Zealand establishing the parent breeds of the modern national herd including 

Ayrshire, Jersey and Friesian cattle. Dairy export was limited during this time with only 

small amounts of butter and cheese being exported to Australia up until the mid-1880s 

when refrigeration was developed.  Further development of new technologies, such as the 
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mechanical milking machine in 1918, and improvements in genetics, pastures and 

feeding resulted in almost a continuous increase in both the total number of cows and the 

number of cows per herd ever since (Stafford, 2017). Recent results from the 2017 

agricultural survey now estimate the total number of dairy cattle to have reached over 6.5 

million cows of which the dominant breed is Holstein Friesian x Jersey crosses, otherwise 

known as KiwiCross cows (Morris, 2013). In New Zealand, dairy production is largely 

focused on a pasture-based system with seasonal calving taking place in the spring (July-

October) (Figure 1.2). This varies greatly in comparison to countries in the northern 

hemisphere where there is a greater reliance on indoor housing systems and year-round 

calving. The industry is highly integrated with processors encompassing production, 

manufacturing and marketing. This structure was established with The Dairy Board back 

in 1923, which was responsible for the marketing and sale of all milk products until 2001 

when the two largest dairy processors merged with The Dairy Board to form Fonterra 

Cooperative Group Ltd. who now controls approximately 85% of the raw milk produced 

in the country (Stringleman and Scrimgeour, 2008).   

Figure 1.2. A typical annual production cycle for New Zealand dairy farms using a 

pasture-based system with seasonal calving taking place in the spring (purple; July-

October), followed by mating (yellow; October-December), lactation and drying off 

(green; October-June), and weaning and pregnancy testing (blue; February-April).  

 

The growth of New Zealand’s dairy industry is reflected in the contribution the dairy 

sector makes to the New Zealand economy. In 2018 it was calculated that the dairy sector 
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contributed approximately $8.7 billion New Zealand dollars (NZD) to New Zealand’s 

total gross domestic product (GDP). This is largely dependent on the export market with 

over 95% of milk exported, accounting for approximately 30% of all dairy products on 

the global market (MPI, 2019b). Continued access to the global market was one incentive 

that led to the development of the National Animal Identification and Tracing System 

(NAIT) in 2009 at a time when the World Animal Health Organisation (OIE) was actively 

encouraging the standardisation of animal identification and tracking systems in order to 

improve the management of livestock diseases and provide assurance within the global 

market of food safety, traceability and quality. The current NAIT scheme aims to link 

producers, property and livestock using radio frequency identification device (RFID) ear 

tags.  

The strengths and weaknesses of NAIT in providing traceability of individual animals was 

tested with a 2017 outbreak of M. bovis, a bacterial disease that can lead to serious 

conditions in cattle impacting both animal welfare and productivity. In July 2017, the 

disease was detected on a South Island dairy farm and subsequent contact tracing, 

surveillance and testing have resulted in a further 51 properties having undergone phased 

eradication (MPI, 2018). During this time NAIT was highly criticized however, it 

emphasised the important contribution of live animal movements towards infectious 

disease dynamics and the significance of being able to capture livestock contact networks 

in order to rapidly be able to respond to a disease outbreak. Despite this, the use of NAIT 

data in infectious disease research is still limited particularly for endemic diseases. In 

addition to NAIT, the Livestock Improvement Corporation (LIC), a multinational 

farmer-owned co-operative, provides members with a computerised herd management 

software called MINDA which can provide information on both the movement of adult 

lactating dairy cows as well as basic production data making it ideal for modelling the 

spread of contagious pathogens within the dairy industry such as those pathogens 

responsible for mastitis.  
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1.3.4 Epidemiology of Staphylococcus aureus in New Zealand  

New Zealand is free from many infectious diseases that are known to cause significant 

losses in cattle such as Vesicular Stomatitis Virus (VSV), Enzootic Bovine Leucosis (EBL) 

and brucellosis (Vermunt, 2000; Davidson, 2002; Seleem et al. 2010) with eradication 

programs in place for many others including Bovine Viral Diarrhoea Virus (BVDV) (Han 

et al. 2018). However, one disease well recognised as imposing major production costs on 

the dairy industry is bovine mastitis with annual costs in New Zealand estimated to be 

over $180 NZD (Petrovski, 2007). Bovine mastitis is an inflammation of the mammary 

gland in response to physical trauma or a pathogenic infection. Infection can result in 

either sub-clinical or clinical disease with clinical mastitis presenting a number of 

symptoms including udder abnormalities (such as swelling, heat, hardness, redness, or 

pain) and milk defects (such as a reduction in yield, a watery appearance, a change in milk 

colour, flakes, clots, or pus). The severity of symptoms is influenced by many factors 

including several environmental variables such as humidity and temperature as well as 

the nutritional or immune status of the cow, however, one of the biggest influencing 

factors is the responsible pathogen (Eberhart, 1986; Bogni et al. 2011; Gomes et al, 2016). 

Bovine mastitis can be caused by over 137 different organisms including bacteria, yeasts 

and algae (Watts, 1988). The relative importance of these different pathogens is largely 

country dependent however, more than 90% of all new intra-mammary infections in 

dairy cattle are caused by a small number of pathogenic bacteria namely Escherichia coli, 

Streptococcus dysgalactiae, Streptococcus uberis, Streptococcus agalactiae and 

Staphylococcus aureus (Bradley, 2002).  Traditionally, these mastitis-causing pathogens 

can be classified as either contagious or environmental pathogens based on 

epidemiological observations such that contagious pathogens spread from cow-to-cow 

usually during the milking process whereas environmental pathogens spread from a 

contaminated environment such as bedding, soil or manure (Watts, 1988). For some 

pathogens, the distinction between contagious and environmental is not clear. For 
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example, some Streptococcus spp. that have previously been classed as environmental 

pathogens are now also considered contagious in some circumstances however, 

historically the major contagious pathogens are considered to include S. agalactiae, S. 

aureus and Mycoplasma spp. and the most common environmental pathogens include E. 

coli, S. uberis, S. dysgalactiae and many Klebsiella spp. 

 

In New Zealand the epidemiology of the predominant mastitis-causing pathogens varies 

greatly in comparison to countries in the northern hemisphere where there is a greater 

reliance on indoor housing systems and year-round calving practices (McDougall, 2002; 

Heffernan et al. 2015). Within the last five decades, New Zealand has seen a notable 

change in the contribution of the major pathogens responsible for mastitis in dairy cows 

with major changes first noted following the introduction of the mastitis control strategy 

in the early 1990s. The Seasonal Approach to Managing Mastitis (SAMM) plan was 

introduced by The National Mastitis Advisory Committee in conjunction with an 

industry initiative to reduce the incidence of mastitis through the selective breeding of 

dairy cows.  The current strategy for mastitis control (SmartSAMM) builds on the original 

SAMM plan with an additional drive for antibiotic dry-cow therapy and the treatment of 

intra-mammary infection during drying off (Lacy-Hulbert et al. 2011). The successful 

uptake of these programs by New Zealand farmers has resulted in an epidemiological 

transition with a decreasing prevalence of contagious pathogens, such as S. agalactiae, in 

comparison to environmental pathogens which are now on the rise (McDougall et al. 

2007; Petrovski et al. 2011). Despite this transition, a significant proportion of the total 

cost of mastitis for New Zealand dairy farmers is attributed to infections associated with 

the contagious pathogen S. aureus as it is most commonly associated with chronic 

subclinical mastitis that is both hard to detect and hard to treat successfully. 

 

Staphylococcus is a genus of Gram-positive cocci belonging to the family 

Staphylococcaceae. Infections with S. aureus may result in clinical mastitis, especially after 
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calving, however, the infection is usually subclinical, causing elevated somatic cell counts 

but no detectable changes in milk or the udder (Bonsaglia et al. 2018).  S. aureus infections 

are notoriously difficult to treat with antibiotics alone, therefore, based on the costs and 

benefits of treatment, it is commonly advised that infected cow be removed from the herd 

(Sandholm et al. 1990). The difficulty with antimicrobial therapy is thought to be due to 

numerous biofilm-associated genes (BAGs) that are known to play a role in mechanisms 

that assist the pathogen in evading the host’s immune response and acquiring multi-drug 

resistance (Kot et al. 2018). Antimicrobial resistant S. aureus has been widely documented 

in many countries creating a growing concern over the use of antimicrobials for the 

treatment and control of mastitis. This is not only due to the general concern of using 

antibiotics in food-producing livestock, but also more specifically to the increasing 

presence of methicillin-resistant S. aureus (MRSA) infection in dairy cattle alongside 

evidence for livestock-associated methicillin-resistant S. aureus (LA-MRSA) infections in 

humans creating a huge concern for both livestock and public health (Wulf and Voss, 

2008; Hillerton and Allison, 2015).  

 

Since the first LA-MRSA was described in Belgium in 1972, deriving from a case of bovine 

mastitis (Deriese et al. 1972), there has been an influx of studies looking at the emergence, 

evolution and dissemination of LA-MRSA with particular attention given to the most 

widely spread LA-MRSA clonal complex (CC) 398. The first communications on LA-

MRSA CC398 originated from nasal swabs isolated from breeding pigs, however, since 

then it has been reported in veal calves, poultry, dairy cattle, goats, cats, dogs, mice, rats 

and horses (Price et al. 2012; Mohammed and Nigatu, 2015). The mechanisms of 

methicillin resistance have been well documented with MRSA evolving from methicillin-

susceptible S. aureus (MSSA) by the acquisition of SSCmec elements containing a mec 

gene, most commonly mecA but also mecC (Aires de Sousa, 2017).  These mec genes code 

for an additional penicillin-binding protein that has low affinity for β-lactam antibiotics, 

therefore, mediating resistance to nearly all compounds from this antibiotic class which 
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are still used frequently to treat mastitis. Recent studies in New Zealand looking at the 

susceptibility of S. aureus have found increases in the prevalence of both fusidic acid 

resistance and mupirocin resistance (McDougall et al. 2014; Petrovski et al. 2015) 

however, despite these findings, the antimicrobial susceptibility patterns of mastitis-

causing pathogens in New Zealand and their threat to the future control of bovine mastitis 

and public health remains unclear. 

1.4. Thesis structure 

This thesis begins with a literature review (Chapter 2) that aims at expanding the 

introduction by presenting and critiquing some of the existing epidemiological tools in 

the literature that utilises either host contact networks or pathogen sequence data to help 

infer disease transmission dynamics, as well as, outlining some of the basic principles 

integral to both network analysis and phylogenetics and discussing both the limitations 

and future challenges that need to be considered in order to successfully integrate the two 

data sources.  This review is then followed by a series of five research chapters (Chapters 

3-7) with each chapter having different research objectives that align with the research

focus. Repetition between the chapters has been kept to a minimum however, all chapters 

have been prepared as a manuscript intended for publication in a peer-reviewed journal, 

resulting in a small amount of repetition throughout the thesis.  

Chapters 3-5 focus largely on New Zealand’s commercial poultry industry with Chapter 

3 reporting the results from a cross-sectional survey that was conducted across all 

commercial poultry operations in 2016. Chapter 4 expands on the survey results 

presented in the previous chapter to reconstruct contact networks from the reported on- 

and off-farm movements of goods and services and investigate the disease transmission 

risk within the commercial poultry industry from both the sale of backyard poultry and 

the migration of wild birds. Chapter 5 describes the genetic population structure of 167 

C. jejuni isolates from a sample of commercial poultry farms whilst further using the
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contact networks to investigate the relative importance of different contact types as 

determinants of the pairwise genetic relatedness between the isolates. Chapter 6 conducts 

a similar analysis to that in the previous chapter but instead uses simulated C. jejuni 

sequence data generated from a network simulation model in order to validate the 

methods used in Chapter 5. Chapter 7 then moves on to describe the genetic population 

structure of 57 bovine-derived S. aureus isolates from a sample of New Zealand dairy 

herds, determining their relationship with other S. aureus isolates collected previously 

from domesticated pets and humans both within New Zealand and internationally in 

order to demonstrate how a range of phylogenetic tools and network analysis can be used 

to further investigate transmission dynamics at a range of geographical scales. Following 

this research chapter, there is a general discussion (Chapter 8) that summarises the main 

research findings from Chapters 3-7 whilst giving further consideration to the limitations 

present in each study, the potential application of results in the real world and how they 

may be used to guide future research. 
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2.1. Abstract 

Understanding how an infectious disease spreads through a population is a fundamental 

step in developing a successful control strategy, particularly when resources are limited. 

In recent years, social network analysis has become a popular framework for 

characterising the complex and heterogeneous contact structures inherent in host 

populations, with network models providing valuable insights into the transmission 

dynamics of many important infectious diseases. In the real world, however, multiple 

transmission pathways amongst multiple host populations make it difficult to capture all 

the potential contacts that could be contributing to the spread of an infectious disease.  

This has led to an upsurge in new methodologies that aim at integrating molecular 

sequence data in network analyses; supporting inferences on the origin, spread, and 

differentiation of pathogen populations based on the degree of similarity between the 

genetic sequences of sampled pathogen isolates. This concept, although not new, requires 

the development of epidemiological methods that can incorporate the evolutionary 

processes commonly described in population genetics, however despite the increasing 

availability of molecular sequence data, many molecular epidemiological methods are still 

in their infancy and have yet to be validated. With this in mind, it is clear that there is 

need for critical discussions on how pathogen sequence data can be integrated into 

epidemiological approaches such as social network analysis and network simulation 

models.  

In this review, the focus is on how host population contact networks can be used in 

complement with pathogen sequence data to (i) make inferences on disease transmission 

dynamics and (ii) increase our understanding of how population contact structures may 

be influencing the evolution of pathogen populations, whilst also providing a background 

into some of the basic phylogenetics concepts that are needed to quantify the genetic 

relatedness of sampled pathogens. The review begins by summarising the existing 

literature on network analysis with reference to epidemiological studies that have 
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successfully used network models to infer disease dynamics in both livestock and human 

populations, before examining how pathogen sequence data has been used to reconstruct 

transmission trees and make inferences on the spatial and temporal dynamics of different 

diseases.  Finally, the potential for integrating pathogen sequence data into traditional 

network analysis is explored, including discussions on the current limitations and future 

opportunities including consideration for how human behaviour drives the evolution of 

both host contact structures and pathogen populations; a feature that is often overlooked 

in traditional infectious disease models. 

   

27



Chapter 2 | Literature review 

2.2. Introduction 

Over the past few decades, there has been a steady decline in the burden of infectious 

diseases with Global Health Estimates (GHE) in 2000 attributing 16.4% of deaths to this 

cause in comparison to only 9.7% of deaths in 2016 (WHO, 2018). Yet despite this trend, 

the overall number of human infectious disease outbreaks continues to rise (Smith et al. 

2014) with a growing number thought to be zoonotic in origin (Taylor et al. 2001). The 

recent emergence and spread of zoonotic diseases such as Nipah Virus (NiV), Ebola 

Haemorrhagic Fever (EHF), Severe Acute Respiratory Syndrome (SARS), and Highly 

Pathogenic Avian Influenza (HPAI) have exposed gaps in our understanding of how 

interactions occurring at the human-animal-ecosystem interface are shaping the 

evolutionary history of pathogens and driving disease emergence and transmission 

between multiple host species (Malave et al. 2010; Kumar and Kumar, 2018; Munster et 

al. 2018). 

However, accurately capturing the complexity of these interactions presents several 

challenges; many of which, call for integrative approaches that have arguably been 

hindered both by dysfunction in the governance of global health and shortcomings in 

academic, institutional, and disciplinary silos (Lee and Brumme, 2013). In the meantime, 

the threat of infectious diseases to both human and animal health continues to rise, 

accelerated by both an increase in the virulence and resistance patterns seen in many 

pathogens in response to various anthropogenic and ecological factors that are not fully 

understood (Lebarbenchon et al. 2007; Gottdenker et al. 2014; Hendry et al. 2017). These 

challenges have fuelled a growing body of research that aims at integrating molecular 

sequence data from sampled pathogens and populations contact networks in order to gain 

understanding of how the structure of host populations and the dynamic interactions 

between multiple host species influence the emergence and spread of infectious diseases, 

as well as increasing understanding into the importance of feedback from human 

interventions on the evolutionary dynamics of pathogen populations.  
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There are many existing epidemiological tools geared towards understanding how 

infectious diseases spread through populations; however, in recent years the construction 

of host contact networks has become an increasingly popular tool with the ability to 

capture interactions between multiple host species and the different types of contacts that 

may exist between them (Luke and Harris, 2007; Danon et al. 2011; Stattner and Vidot, 

2011). Social network analysis (SNA) is the analytical framework often used to describe 

contact networks which can then be used to build infectious disease models with 

demographics that more accurately reflect the heterogenous contact structure within the 

population. Network models, such as these, have provided valuable insights into the 

transmission dynamics of many important diseases (Keeling, 2005; Bansal et al. 2007; 

Volz et al. 2011), helping to guide control and surveillance activities (Eames and Keeling, 

2003; Kiss et al. 2006a). However, for many diseases multiple contact networks relevant 

for disease transmission may exist, and it is often difficult to determine which subset of 

contacts in a real-world outbreak have contributed to the spread of a disease; a process 

that is often further hindered by both a lack of complete disease data and contact data 

(Craft, 2015). Therefore, an increasing number of studies are integrating molecular 

sequence data into traditional epidemiological methods, such as SNA and network 

models, to provide a greater resolution into the complex transmission pathways of many 

pathogens (Gardy et al. 2011; Inns et al. 2017; Campbell et al. 2018).  

 

Such molecular epidemiological studies can broadly take one of two standpoints: static or 

dynamic. In the static approach, sampled individuals who have isolates with a high degree 

of genetic similarity are considered as clusters, with analyses focusing on determining if 

any common epidemiological factors exist within a cluster such as the presence of a direct 

link within the population contact network (Booth et al. 2013; VanderWaal et al. 2014), 

or individual-level characteristics including age, sex and specific risk behaviours (Mullner 

et al. 2010; Jaros et al. 2013). In contrast, the dynamic approach quantifies the 

epidemiological relatedness between individuals from whom isolates were sampled by 
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modelling the genetic mutations; an application that often involves the construction of 

transmission trees based on genetic sequences of samples. Until recently, many molecular 

epidemiological studies have taken a static approach, similar to that in many 

phylogenetics studies, and have been able to infer disease dynamics by determining the 

tree topology that describes the evolutionary relationship between sampled pathogens 

(i.e., a phylogenetic tree). For example, Kouyos and colleagues (2010) were able to identify 

important demographic factors of individuals from a phylogenetic tree containing 11,400 

human immunodeficiency virus (HIV) sequences by first determining transmission 

clusters in the tree topology (Kouyos et al. 2010). However, with the advent of whole-

genome sequencing (WGS) technology, which can provide a greater resolution in 

comparison to traditional genotyping methods (Gardy et al. 2011; Price et al. 2014; 

Ahlstrom et al. 2015) and the emergence of freely-available software such as BEAST 

(Drummond and Rambaut, 2007), Outbreak Tools (Jombart et al. 2014a) FastML 

(Ashkenazy et al. 2012), and MrBayes (Huelsenbeck and Ronquist, 2001), an increasing 

number of studies are transitioning onto dynamic approaches that have thus far been 

more common in population genetics as a means of identifying factors associated with 

genetic divergence (Kühnert et al. 2011). While both standpoints have offered promising 

insights into infectious disease epidemiology, these methods are still in their infancy with 

many genealogy-based approaches yet to be able to incorporate the complex 

demographic structures that are known to be an important for infectious disease 

dynamics.  This crossroad presents a timely opportunity to review the developments in 

analytical methods integrating host contact structures and molecular sequence data and 

discuss the underlying concepts and assumptions behind each method.  

In this review, the current uses of both network data and molecular sequence data in 

epidemiological research are summarised, with further discussion into some of the 

underlying principles inherent to many of the methodologies. Before moving on to 

examine how the two data sources have been integrated; using examples of both human 
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and animal diseases to highlight some of the limitations that need to be assessed in order 

to ensure the continued development of robust and reliable approaches.  

 

2.3. Population structure, contact networks, and infectious disease 

dynamics 

The use of infectious disease models in epidemiology has a rich history (Lessler and 

Cummings, 2016; Brauer, 2017) with Ronald Ross (1857-1932) capturing the 

fundamental difference between the study of infectious diseases in  populations in 

comparison to other health conditions with the term “dependent happenings”, 

emphasising the importance of the interactions between individuals with differing disease 

statuses and disease dynamics (Ross, 1916). Despite this, many earlier infectious disease 

models were constructed under the simplifying assumption of homogeneous mixing; that 

is, all individuals in a population mix both uniformly and randomly with each other 

(Bansal et al. 2007). However, with the development of numerous methods capable of 

incorporating different contacts rates into epidemiological models, it has become 

increasingly clear just how much heterogeneity in host contact patterns can profoundly 

shape population-level disease dynamics.   For example, one key parameter often used to 

estimate the transmission potential of a pathogen is the basic reproduction number (R0): 

defined as the expected number of secondary infections that are a direct result of a single 

infected individual interacting within an entirely susceptible host population (Anderson 

and May, 1992). This parameter has been widely used in epidemic models to predict the 

speed at which a pathogen may spread through a population and determine the potential 

size of an outbreak, with pathogen success dependent on having an R0 that is greater than, 

or equal to, one (Ridenhour et al. 2014; Delamater et al. 2019). However, there is often 

considerable variation in the estimated value for R0 as a result of different assumptions 

about the underlying host contact structure.  

 

The impact of the homogeneous assumption was evident in many of the disease 

transmissions models that were used to estimate important transmission parameters in 
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the recent SARS epidemic.  In the start of the outbreak, original estimates for R0 were 

based largely on transmission data from local settings in Guangdong, China, where the 

outbreak was believed to have been started, with values varying from 2.2 to 3.6 (Meyers 

et al. 2005).  With this range of R0 values, it was predicted that without intervention there 

could have been anywhere from 30,000 to 10 million SARS cases in the first 120 days 

(WHO, 2003); however, only 782 cases were actually reported in China during this time 

period.  Large discrepancies in the value for R0 for SARS were also reported between 

countries and between different social settings within a country (Xu et al. 2004; Meyers 

et al. 2005). Further investigation suggested that these differences were caused from 

studies estimating R0 using transmission data from settings such as hospitals or crowded 

apartment buildings where the contacts between individuals are much closer and more 

frequent than in the general population, especially considering changes in human 

behaviour that were likely to have occurred during the epidemic, overall leading to higher 

transmission estimates (Riley et al. 2003; Yu et al. 2004). This is just one example that 

emphasises the influence of host population contact structure on disease dynamics, 

resulting in a distribution of R0 values for a single pathogen. 

 

2.3.1. Network theory  

One popular method that can be used to describe features within a population contact 

structure is SNA, with a growing number of studies using network data in disease 

transmission models to gain an understanding of the influence of contact patterns on 

transmission dynamics (Christley et al. 2005; Keeling, 2005; Shirley and Rushton, 2005a; 

Parham and Ferguson, 2006). Principally SNA uses graph theory to provide a conceptual 

framework that can be used to help gather, visualise, and analyse population contact data 

(Otto and Rousseau, 2002). Basic contact networks are generated with a set of elements, 

often referred to as nodes, vertices or actors, which represent the unit of interest, and 

edges or contacts to show the links between them (Figure 2.1).  For example, in infectious 

disease studies nodes often represent an individual (i.e., a human or an animal) or a larger 
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unit, such as a hospital or a farm, that are connected via different contact pathways that 

are known to be important for disease transmission such as the transfer of a patient 

between two hospital or the movement of an animal between two farms. Once the nodes 

and edges have been defined, networks can be represented and recorded in three ways; (i) 

simple network diagrams, (ii) mathematical notations that list the network in the form G 

= {ni, nj}, where G refers to a network made up of sets of interacting nodes (ni, nj), and 

(iii) an adjacency matrix showing N × N nodes and the number of contacts between. 

Further information on node attributes may also be collected to determine important risk 

factors for disease (Friedman and Aral, 2001; Christley et al. 2005; El-Sayed et al. 2012). 

Figure 2.1. (left) Directed network graph G = {V, E} showing a set of vertices otherwise 

known as nodes or actors; A, B, C and, D connected by multiple edges each representing 

a different relationship including  a unidirectional edge (ud), multiple edges (m), 

bidirectional edges (bd) and loops (L). 

 

SNA and graph theory have been used in many research disciplines including sociology, 

economics and marketing, psychology, anthropology, biochemistry, neurology, physics, 

and computer science. Within epidemiological research, it has been used as a tool to help 
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explore the transmission dynamics of numerous human infectious diseases including; 

human immunodeficiency virus (Curtis et al. 1995; Morris et al. 1995; Service and 

Blower, 1995; Barbosa et al, 2000; Bell et al. 2002), tuberculosis (Klovdahl et al. 2001; 

McElroy et al. 2003; Cook et al. 2007; Gardy et al. 2011), hepatitis C (Aitken et al. 2004; 

Brewer et al. 2006; Pilon et al. 2011), chlamydia (Stoner et al. 2000; Wylie and Jolly, 2001), 

gonorrhoea (De et al. 2004) and syphilis (Rothenberg et al. 2000; Choi et al. 2007; 

D’Angelo-Scott et al. 2015). Many of these early studies focussed on the spread of sexually 

transmitted infections (STIs) because, unlike many infectious diseases, STIs have a very 

clear transmission route making contacts easier to trace with a process called ‘snowball 

sampling’ whereby an individual in the network recalls all their sexual partners over a 

given period, these partners are then traced and asked for their partners, and the process 

is repeated (O'Malley and Marsden, 2008). However, this approach is not without its 

limitations, often suffering from potential biases if participants cannot recall perfectly 

every contact made or do not wish to fully disclose all information due to the sensitive 

nature of a contact.  

 

Other limitations in capturing a full network have been widely recognised with many 

SNAs constrained by the use of incomplete network data containing both missing nodes 

and edges (Farine and Whitehead, 2015). For this reason, a variety of methods have been 

developed to infer synthetic networks (Kiss et al. 2006b; Gates et al. 2015; Liu et al. 2018), 

which can either be entirely theoretical, with set structural properties, or be created using 

probability distributions and known attributes from the biological network. However, it 

is often hard to validate these inferred synthetic networks, and it is often more important 

to understand why network data may be incomplete, what impact this will have on the 

network structure, and what the importance is of missing data in terms of the biological 

question under investigation. For example, missing data are common in networks where 

the disease dynamics are not fully understood and the host population remains 

undefined, as is the case with many zoonotic diseases for which there may be multiple 
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species acting as reservoir hosts with many transmission pathways still unclear (Craft, 

2015), making it very difficult to fully capture the properties of the real network. Even in 

well-defined networks, contact patterns may also change dynamically over time and 

therefore cannot be adequately represented using traditional static network constructions 

(Bansal et al. 2010; Masuda and Holme, 2013; Pastor-Satorras et al. 2015; Enright and 

Kao, 2018). Given this uncertainty, many approaches can be used to try and assess the 

precision of estimates in an observed network including bootstrapping (Lusseau et al. 

2008) and hierarchical models (Cross et al. 2012), and despite missing data many 

networks have been used to great success in infectious disease research. 

 

2.3.2. SNA and infectious disease dynamics  

In SNA, a number of networks metrics can be used to characterise individual nodes and 

the structures between them. For the purpose of this review only measures of ‘centrality’ 

and ‘cohesion’ will be summarized as more comprehensive reviews of general network 

concepts are already widely available in the literature (Wasserman and Faust, 1994; Dubé 

et al. 2009). Measures of node centrality were first formalised by Freeman (1978) to help 

determine the importance of each individual node in a network with measures including 

node degree, node closeness, and node betweenness (Table 2.1). These simple network 

characteristics are easy to compute and have been used to characterise a variety of 

network types, including random graphs, lattice, small-world and scale-free networks 

(Martínez-López et al. 2009). Measures of cohesion focus less on individual nodes and 

instead are used to determine the level of connectivity over the entire network, allowing 

the network resilience to be assessed by removing individual nodes or edges. These 

measures include network density, average path length and the clustering coefficient all 

of which, offer a comparative way to summarise networks graphs and can be manipulated 

in network simulation models to understand the impact of topological structures on 

disease transmission dynamics (Keeling and Eames, 2005; Shirley and Rushton, 2005b; 

Gates and Woolhouse, 2015).  
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Table 2.1. Network analysis glossary of terms for measures of centrality and cohesion 

Broadly, network simulation models can be divided into two categories: data‐driven 

simulations and simulated networks. Data‐driven simulations use construct models with 

matching properties. The impact of the network characteristics in the observed network, 

such as the degree distribution, to structure on the spread of disease within the population 

can then be determined, often using a process called network re-wiring to identify which 

features present in a biological network have the biggest impact on disease spread, as well 

as being able to assess the importance of an individual in the network by systematically 

Network measure Definition 

Measures of 
centrality 

Degree 
distribution 

Degree distribution is the sum of nodes connected to an 
individual in the network and can be used to indicate 
their overall involvement. In a directed graph, it can be 
further categorised into out-degree (number of contacts 
originating from a node) and in-degree (number of 
contacts received by a node). 

 Closeness  Closeness is the sum of the length of the shortest paths 
between an individual and all other nodes in the 
network. 

 Betweenness  Betweenness is the frequency of which an individual is 
on the shortest path between any pair of nodes. 

Measures of 
cohesion 

Network 
density 

Network density is the proportion of all possible 
contacts an individual could have compared with those 
that are actually observed in the network.  

 Average 
path-length 

 Average path-length is the average number of contacts 
along the shortest path between all pairs of nodes. 

 Clustering 
coefficient 

Clustering coefficient is the ratio between the number 
of connections linking the neighbours of a node and the 
maximum number of connections that could possibly 
exist between the neighbours of the node. 
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removing a node with given properties (Green et al. 2006; Mossong et al. 2008; Read et 

al. 2008; Danon et al. 2011). In comparison, simulated networks stochastically simulate 

entire networks based on a minimum set of rules which can either then be compared to 

the observed network, a random network, or be used in isolation to study the influence of 

different network features. For example, a study by Ames and colleagues (2011) used 

stochastic simulations to generate artificial networks with different degree distributions, 

clustering coefficients, and average path lengths in order to investigate the influence of 

these network properties on the spread of disease. Study results showed that these three 

attributes contributed to over 98% of the variation in endemic disease levels and can be 

used as robust measures to predict the spread of disease through a network (Ames et al. 

2011). Simulated networks have also been used to characterise different types of networks 

based on the properties they share and their impact on disease spread such as small-world 

networks that are identified by a high clustering coefficient and short average path 

lengths; two attributes that are thought to increase the speed of transmission due to a 

relatively small number of ‘unclustered’ or random links, and cause a rapid depletion of 

local susceptible contacts (Watts and Strogatz, 1998; Holme and Kim, 2002; Newman, 

2003; Volz et al. 2011). In comparison, scale-free networks are characterised by a small 

number of individuals that have a disproportionately large number of contacts in the 

network (i.e., they have a highly skewed degree distribution) which results in elevated 

values for R0  even when the transmission probability is low, although it is important to 

note that not all highly skewed distributions are scale free (Barabási and Albert, 1999; 

Newman, 2002; Woolhouse et al. 2005; Kiss et al. 2008). 

 

For many populations, a simulated network is necessary due to the limitations in 

observing real-world contacts. However, an increasing number of databases, utilising a 

range of technologies, are being constructed to capture population dynamics, particularly 

in livestock systems where the fostering of regulations on the reporting of livestock 

movements has resulted in an influx of available data making it relatively easy to quantify 
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the frequency of direct animal movements onto and off farms. Much of the research using 

livestock movement data followed the 2001 foot-and-mouth disease (FMD) epidemic in 

the United Kingdom (UK) as many of the early models had a limited predictive ability 

due to the assumptions around the contact structure of farms (Woolhouse and 

Donaldson, 2001). Subsequently, livestock movement networks for both sheep and cattle 

in the UK have been described and analysed using SNA to try and identify network 

structures and risk factors that were important in the FMD outbreak. This has helped to 

identify potential targets for control including key farms, auction markets, dealers and 

slaughterhouses which showed high connectivity and would have been important in the 

initial spread of the disease (Ortiz-Pelaez et al. 2006; Robinson and Christley, 2007).  

 

In addition to FMD, SNA has been used to study other livestock diseases such as bovine 

tuberculosis (Corner et al. 2003; Gilbert et al. 2005; Carrique-Mas et al. 2008; Christley et 

al. 2011; Gates et al. 2013; Grear et al. 2014), equine influenza (Christley and French., 

2003), scrapie (Kao et al. 2007), avian influenza (Dent et al. 2008; van Kerkhove et al. 

2009; Martin et al. 2011; Fournié et al. 2013; Poolkhet et al. 2013), brucellosis (Savini et 

al. 2017) and bovine viral diarrhoea virus disease (Tinsley et al. 2012). However, despite 

increasing access to network data, many of these studies suffer from the same limitations 

resulting from knowledge gaps or mismatches between relevant contact patterns and 

disease dynamics (Craft, 2015). To overcome some of these challenges many approaches 

have been taken, including both observational and experimental studies, however, more 

recently an increasing number of studies are using molecular sequence data to reconstruct 

pathogen phylogenies and infer transmission dynamics (Grenfell et al. 2004; Colijn and 

Gardy, 2014; Kamath et al. 2016).  

 

2.4. Pathogen population dynamics and infectious diseases 

Over the last decade, molecular epidemiology is a discipline that has rapidly expanded 

(Eybpoosh et al. 2017), with many earlier studies using molecular typing methods as a 
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diagnostic tool with no consideration for the evolutionary information contained within 

the sequence. Used in this way, genotyping data can provide a more detailed case 

definition as strain types within the same pathogen can be identified and more 

meaningful inferences on disease epidemiology can be made with different strain types 

often having distinct transmission patterns. More recently with developments in 

population genetics, computational biology and evolutionary modelling, many molecular 

epidemiological studies can use typing data to investigate the distribution, dynamics, and 

determinants of health and disease in populations (Field et al. 2014). For the purpose of 

the review no comparison has been made between the different typing methods, with 

comprehensive reviews already provided in the literature (Ranjbar et al. 2014), however 

it is important to note that in epidemiological studies the selection of specific molecular 

marker among various typing methods depends on the purpose of the analysis, and the 

spatial and temporal extent to which the study aims to make inferences (van Belkum et 

al. 2001). Nevertheless, the basic principles used remain the same regardless of the typing 

methods; that is, that the amount of differences between pathogen sequences represent 

the temporal divergence from a common ancestor (Restif, 2009; Field et al. 2014). This 

principle is rooted in coalescent theory (Kingman, 2000) and tree-thinking approaches 

(Box 1) that often require the incorporation of evolutionary information such as the 

mechanism of change in the genetic marker, and the rate of evolution. Acquiring this 

information is often the limiting factor in many molecular epidemiological studies due to 

the relatively coarse molecular data provided by some typing methods (Riley, 2004). 

However, with the advent of high-throughput sequencing technologies providing 

unprecedentedly high-resolution WGS data, many studies have been able to disentangle 

complex epidemiological phenomenon that could not be previously identified using 

conventional methods.  

 

The differences in the resolution of molecular data has led to two broad standpoints in 

molecular epidemiological research with many earlier studies that used more traditional 
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typing methods treating data in a static manner, with the exception of a few applications 

such as stepwise mutation models (Aandahl et al. 2012). Many static approaches have a 

history in phylogenetics and focus on identifying the topology of evolutionary 

relationships so that sampled pathogen isolates can be categorised into different groups 

based on their genetic closeness (Pagel, 1999). In comparison, WGS data is often treated 

in a dynamic manner, taking approaches from different disciplines such as population 

genetics to make inferences on the dynamics of pathogen populations at different 

spatiotemporal scales. Although it is acknowledged that many of the underlying concepts 

and assumptions in phylogenetics are also prerequisite to the dynamic approaches used 

in population genetics such as the molecular clock hypothesis (Box 2) and substitution 

models (Box 3).  
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Box 1 – Coalescent theory  
 

 
The coalescent model was first formulated by Kingman (1939-present) as a 
mathematical model to randomly construct genealogies backwards in time (Kingman, 
2000). The figure above shows a schematic of the most basic coalescent, with (a) 
representing the complete genealogy of a population where N = 6,  (b) represents a 
sample within the population (n = 3; A, B, and C) that has been traced back along their 
descendent line until their most recent common ancestor (MRCA). In a traditional 
coalescent model, a pair of individuals are randomly selected and merged to form a 
single ancestor from the present (generation t = 0) to the past (generation t = 1 to t = 
6). The probability of two individuals randomly selected from the population sharing 
a common ancestor at generation t = 1 is 1/N and the probability of not finding a 
common ancestor is 1 – 1/N (Aldous et al. 2001). This can be easily extended to 
describe the probability that any two randomly selected individuals from the 
population sharing a MRCA in a past generation. Many extensions have been made to 
relax assumptions made in the basic coalescent model; however, the concept that a 
distribution of generation intervals and hence the time to MRCA can be described as 
a function of population size is fundamental to any of these models.  
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Box 2 – Molecular clock hypothesis 

The molecular clock hypothesis was originally introduced in the 1960’s by 
Zuckerkandl and Pauling who proposed that genetic mutations accumulate at 
constant rate over time (Zuckerkandl and Pauling, 1962). This assumption allows for 
the estimation of historical dates of events such as the time to the most recent common 
ancestor (TMRCA), as shown in the figure above, meaning in an epidemiological 
investigation, the evolutionary history of pathogens can be aligned with 
epidemiological events that have occurred in comparable time. Molecular clocks can 
be broadly divided into strict molecular clocks and relaxed molecular clocks, with the 
former assuming that the evolutionary rate is constant over every branch of a tree 
whilst relaxed molecular clocks allow the evolutionary rate to vary across tree 
branches in different ways depending on the model. For example, in an uncorrelated 
relaxed molecular clock model the evolutionary rate follows a specific underlying 
distribution such as exponential, log-normal or inverse Gaussian distribution 
(Drummond et al. 2006). To assist in molecular clock model selection, standard 
statistical methods such as likelihood ratio test and Akaike information criterion 
(AIC) can be used (Arbogast et al. 2002); however, in many cases it has been found 
that the basic assumptions underlying the chosen molecular clock have been violated 
(Kumar, 2005), with a large number of studies resorting to unrooted trees instead. 
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Box 3 – Substitution Models and Tree Reconstruction 

 

The topology of phylogenetic trees is constructed either based on the genetic distance 
between samples or modelling the nucleotide patterns in each site. The simplest 
genetic distance is often the p-distance. This metric is, however, often inappropriate 
when the time span between sequence sampling is long and the substitution rate is 
high. This is because a single nucleotide site can experience multiple substitution 
events which might be masked by more recent substitutions and cannot be accounted 
for by this simple distance measure. Such underestimation can be adjusted by either 
explicitly formulating a relationship between the observed and expected distance or 
constructing a likelihood function that describes the probability of observing a set of 
nucleotides at each site of alignments given the expected distance. Both methods are 
based on different substitution models that specify the probability of substitutions 
between each of the four nucleotides (i.e., transitions versus transversions) and the 
base composition, as summarised in the figure above (a, b, c, d, e, f).   

Different substitution models have different parameters to be estimated. The figure 
above shows how different substitution models are nested within each other including 
the Jukes and Cantor model (JC) (Jukes and Cantor 1969), the Felsenstein model (F81) 
(Felsenstein 1981), the Kimura model (K80/1) (Kimura 1980), the Hasegawa-
Kishino-Yano model (F84) (Hasegawa et al. 1985), the Tamura-Nei model (TrN) 
(Tamura and Nei, 1993), the transitional model (TIM), the transversion model 
(TVM), the symmetrical model (SYM) (Zharkikh 1994) and, the general time 
reversible model (GTR) (Rodríguez et al. 1990) with either equal base frequencies (ef), 
highlighted by the green arrows, or unequal base frequencies (uf) as highlighted by the 
purple arrows, and the number of substitution classes in each model shown by the 
corresponding number on each arrow.  
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2.4.1. Pathogen phylogenetics 

Phylogenetics studies aim to reconstruct the evolutionary history or phylogeny of related 

organisms based on their evolutionary similarities and differences. For the purpose of this 

review, many of the detailed steps that preclude a phylogenetic analysis, such as multiple 

sequence alignment, are not discussed as more comprehensive reviews already exist in 

the literature; although, it is worth recognising the importance of each step and the impact 

they have on phylogenetic reconstruction (Harrison and Langdale, 2006; Yang and 

Rannala, 2012). Nevertheless, the main focus of many molecular epidemiological studies 

is in describing the inferred phylogeny, often in the shape of a phylogenetic tree, and 

investigating its association with disease dynamics. For example, the genetic similarity 

between isolated pathogen sequences can be assessed with clustering algorithms, using 

both hierarchical or margining approaches, to identify the origin of epidemic strains by 

comparing the sequences of epidemic and non-epidemic isolates (Kühnert et al. 2011).  

 

There are various methods that can be used to construct a phylogenetic tree but mostly, 

they can be characterised into two broad classes based on either discrete character or 

distance-based algorithms. Discrete character methods such as maximum parsimony, 

maximum likelihood (Felsenstein, 1981) and Bayesian approaches (Rannala and Yang, 

1996) generally search for an optimal tree topology that fits the observed data based on 

some criteria (e.g., minimum substitution or likelihood), whilst distance based methods, 

such as neighbour-joining and Unweighted Pair-Group Method with Arithmetic mean 

(UPGMA), use algorithms to construct a tree by sequentially connecting nodes based on 

the fraction of sites that differ between two sequences (Rizzo and Rouchka, 2007). There 

are many different advantages and disadvantages to each of these methods (Whelan et al. 

2001; Holder and Lewis, 2003; Steel, 2005; Simmons, 2014) and how to select the most 

appropriate method is highly debated with a number of considerations to account for 

such as the complexity of the evolutionary model being used and computation time 

(Douady et al. 2003; Bos and Posada, 2004). However, regardless of the method used, it 
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is important to bear in mind that the homologous sites of genes or amino acids should be 

compared to provide a meaningful tree that can be used in epidemiological investigations 

(Lemey et al. 2009). Further uncertainty in tree reconstruction also makes it impossible 

to guarantee that the identified tree topology reflects the true phylogeny and although 

standard statistical methodologies such as bootstrapping and jack-knifing are available to 

evaluate the reliability of a constructed tree, they typically assess the reproducibility of 

branches and not the accuracy of the topology. This means that some care must be taken 

when interpreting trees in an epidemiological context as many different scenarios can 

reproduce the same tree topology whilst many different topologies can also equally 

explain the observed data. 

 

Despite the uncertainties in the topology of a phylogenetic trees, they have proven to be 

a valuable tool in determining the spatiotemporal spread of many pathogens (Osmani et 

al. 2014; Rosendal et al. 2014). For example, the global spread of HPAI has sparked 

numerous investigations into the role of wild bird migration and poultry trade in the 

emergence and circulation of the virus with phylogenetic analyses being used to 

investigate dynamics on a range of geographical scales (Liang et al. 2010; Lewis et al. 2015; 

Tian et al. 2015; Briand et al. 2017). Other studies have adapted a range of methodologies 

rooted in multiple disciplines to incorporate phylogenetic data including 

multidimensional scaling (Bergholz et al. 2010; Carrel et al. 2012; Wehner et al. 2014; 

Carrel et al. 2015), spatial Eigenfunction analysis (Diniz-Filho et al. 2013; Tedersoo et al. 

2013), spatial autocorrelation (Pybus et al. 2012; Garbelotto et al. 2013; Omedo et al. 

2017), analysis of similarities (Voss et al. 2007), permutational analysis of variance 

(Grange et al. 2015), multivariable linear-mixed models (Zhang and He, 2013; Tamminen 

et al. 2019), generalized additive model (French et al. 2005), and quadratic assignment 

procedures (Marquetoux et al. 2016). However, many of these approaches are limited in 

their ability to incorporate evolutionary processes and while the topology of phylogenetic 

trees provides useful information about disease epidemiology, the traditional 
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phylogenetic approach cannot be used to estimate quantitative parameters that can be 

readily used in epidemiological models. In contrast, many genealogy-based approaches, 

looking at genetic diversity and its change over time, have the ability to produce 

quantitative estimates on the demographic history of pathogen populations in the past 

and therefore have been used to infer infectious disease dynamics (Welch et al. 2005; 

Kühnert et al. 2011). 

 

2.4.2. Genealogy-based modelling 

At the centre of genealogy-based approaches are different methods that can estimate 

population divergence time or the time to the most recent common ancestor (TMRCA). 

These methods have vastly different frameworks which require making different 

assumptions about the presence of evolutionary processes, such as recombination and 

demographic structure; however, the TMRCA can provide insight into different disease 

dynamics. For example, if the TMRCA is homogeneous and recent back in time, then this 

may suggest the recent introduction of their ancestor or the presence of a transmission 

bottleneck event such as an outbreak in which only a small portion of infected individuals 

were responsible for the spread of a disease (Romano et al. 2010; Bataille et al. 2011; 

Famulare and Hu, 2015; Kamath et al. 2016). The estimated TMRCA of pathogen 

populations may also provide further epidemiological inference such as the plausibility 

and direction of transmissions. For instance, if the TMRCA between two sampled isolates 

is prior to the age of both individuals from which the isolates were sampled, then 

transmission could not have occurred between two as neither of the individuals were born 

at the estimated TMRCA and hence could never have harboured a common strain 

(Didelot et al. 2012). 

 

The increasing use of genealogy-based approaches has been facilitated by the 

development of Bayesian approaches that can readily incorporate evolutionary processes 

into an existing phylogenetic framework by specifying genealogy-based models as prior 
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information for tree topology, the implementation of which is easily accessible in freely 

available computer software. However, while genealogy-based models have provided 

valuable information on the dynamics of many infectious disease, the assumptions 

underlying many of these approaches are easily violated, and how such assumptions and 

sampling bias affect the estimates is not yet fully understood. Moreover, current 

genealogy-based models are not able to consider the complex population demographics 

which are important components in epidemiological-based models. For these reasons, 

there has been a strong interest among epidemiologists to develop a unified method that 

can incorporate detailed population contact structures as well as high-resolution 

pathogen sequence data. 

 

2.5. Epidemiological models incorporating genetic data 

One of the first pivotal papers combining epidemiological data into a phylogenetic 

analysis was that by Cottam and colleagues (2008) that reconstructed the transmission 

pathways of FMD by using known contacts to substantially reduce the number of possible 

transmission trees that were consistent with the genetic data (Cottam et al. 2008). 

Transmission tree reconstruction begins in a similar process to constructing a 

phylogenetic tree whereby sampled pathogen isolates are genotyped, using molecular 

markers to identify genetic variants, and the genetic distance between isolates calculated 

to quantify the relatedness between each sample (Whelan et al. 2001; Edwards, 2009; 

Yang and Rannala, 2012). Several parameters and their estimators exist to measure the 

genetic distance between samples with some metrics being more appropriate than others 

when taking into consideration the underlying geometric and evolutionary assumptions 

inherent to phylogenetics with many detailed reviews discussing the appropriateness of 

different methods (Jombart et al. 2011; Joly et al. 2015).  The observed genetic distance 

can then be matched to the epidemiological relationships between infected hosts with 

direct transmission ruled out by using either a fixed threshold for substitutions or by 

using evolutionary models to estimate the expected genetic distance between isolates 
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(Gonzalez-Candelas et al. 2003; Jombart et al. 2014; Croucher and Didelot, 2015; Lau et 

al. 2015). Simply put, transmission trees can be inferred based on the assumption that the 

genetic relatedness between pathogen isolates will be shorter if the hosts from which the 

isolates were sampled from were closer in the chain of transmission (Ypma et al. 2012; De 

Maio et al. 2016). These techniques based on pathogen phylogenies have been used in 

numerous infectious disease outbreaks with increasing popularity for foodborne 

pathogens for which it is often vital to be able to trace the origin of an outbreak across 

different geographical and temporal scales (Deng et al. 2016; Dunn, 2016; Nadon et al. 

2017; Pightling et al. 2018; Brown et al. 2019).   

In addition to combining data, several studies have also used epidemiological and genetic 

models in parallel in order to compare the results. For example, Scarpino and colleagues 

(2015) applied two Bayesian frameworks to the Ebola outbreak in 2014 using genetic data 

to reconstruct transmission taking into account the genetic variation, collection dates, 

duration of pathogen colonization and time interval between cases. Results from both 

models were found to be consistent to a network-based compartment model that 

accounted for the clustering of contacts between individuals (Scarpino et al. 2015). 

However, despite the success of these approaches, it is increasingly clear that the genetic 

relatedness between pathogens cannot always be explained by a clear epidemiological 

link, and with many of these methods relying on densely sampled host populations and a 

rapidly mutating pathogen that allows for discrimination between pathogen genomes on 

an epidemiological timescale (Campbell et al. 2018), the impact of sampling bias on these 

estimates has not been fully understood (Hidano and Gates, 2019). Furthermore, only a 

limited number attempt to distinguish between the mode of transmission and the 

transmission route between infected hosts; a differentiation important for effectively 

controlling the spread of disease. For this reason, many studies are moving towards 

approaches centred around epidemiological modelling in order to achieve a greater 
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resolution into disease dynamics, with a growing number of studies using SNA 

frameworks to integrate host contact networks into a phylogenetic analysis.  

 

One of the seminal papers incorporating heterogeneous host contact patterns into 

simulation models was that by Lemey and colleagues (2014). This study used a 

phylogeographic approach to compare the observed peaks for influenza H1N1 in 14 air 

communities to those derived from compartmental susceptible-infectious-recovered 

(SIR) simulation models with different transmission parameters (Lemey et al. 2014). 

Phylogeography is one field taken from phylodynamics, a framework that unifies 

evolutionary biology, epidemiology, and immunodynamics (Grenfell et al. 2004), which 

mainly studies spatiotemporal disease dynamics based on genetic information (Holmes 

and Grenfell, 2009). Using this framework, the study by Lemey and colleagues (2014) 

highlighted that the use of transmission coefficients derived from solely phylogeographic 

models did not produce results that matched to the observed peak, however models that 

incorporated parameters derived by using both phylogeographic and epidemiological 

models showed a high correlation to the observed data, revealing that air transportation 

and the population size of the transport destination were important risk factors for 

transmission.  

 

Further use of detailed contact information has provided insights into the contribution of 

different contacts towards the spread on disease. For example, a study by Young and 

colleagues (2017) evaluated the spatial correlation of avian influenza isolates with various 

models of geographical distance including Euclidean, road network, road network via 

intervening live bird markets and least-cost paths. Seventy-three sequenced avian 

influenza isolates were used in the phylogenetic analysis with isolates from backyard 

poultry found to be associated with least-cost path distance, whilst isolates from 

commercial farms were more strongly associated with road network distance; suggesting 
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that the role of wild birds and human-mediated transmission differ between the different 

systems of poultry production (Young et al. 2017). In a more recent study by Tamminen 

and colleagues (2019), information from environmental sampling of a highly virulent 

strain of verotoxigenic Escherichia coli (VTEC) from 80 farms was combined with 

information from farmer questionnaires and whole genome sequencing to investigate 

different risk factors; providing insight into the importance of ongoing local transmission 

mechanisms for the spread of VTEC and disease persistence in the population 

(Tamminen et al. 2019). Similar studies can be found throughout the literature that use 

sequenced pathogen data to identify important risk pathways (French et al. 2005; Booth 

et al. 2013; Jaros et al. 2013; Alkhamis et al. 2017); with many focusing on livestock 

networks on account of the development of many databases aimed at capturing livestock 

movements as well as different technological advances such as remote sensors that allow 

researchers to capture different types of contacts (Handcock et al. 2009). The successful 

integration of these two complementary data sources, alongside advances in network 

modelling, has also led to a growing number of studies looking at the influence of host 

contact structures on the evolutionary potential and trajectories of pathogen populations 

in order to comprehend the risk of disease and help design effective prevention and 

control strategies (McDonald and Linde, 2002; Barrett et al. 2008; Robinson et al. 2013; 

Leventhal et al. 2015). 

2.5.1. The coevolution of host contact structures and pathogen traits 

It has long been known that the spatial structure of pathogen populations can influence 

the selection pressure on specific pathogen traits (Ewald, 1993) and the coevolution 

between host and pathogens (Thompson, 1999) however, the extent to which network 

structures drive the selection for pathogen traits remains largely unclear. Numerous 

models such as the geographic mosaic theory of coevolution aim to capture the effect of 

spatially structured populations on the co-evolutionary dynamics of pathogens (Lively, 

1999; Thompson and Cunningham, 2002). In a study by Buckee and colleagues (2004) 
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stochastic spatially heterogeneous models were used to investigate the effects of different 

host contact networks on pathogen strain diversity and dynamics.  The study showed that 

an increasingly diverse pathogen population emerged as contacts between hosts become 

more localized. Whilst not eluding to any individual characteristic, these results imply 

that host contact network structure plays a significant role in mediating the emergence of 

varying pathogen population structure (Buckee et al. 2004).  

 

However, the relationship between host population contact structure, evolutionary 

dynamics and pathogen traits are not always so clear. For example, the trade-off between 

two pathogen traits; virulence and transmissibility (Keeling, 2000; Kao, 2006; Lin et al. 

2016), has been shown to be influenced by a number of properties in a host population as 

a consequence of a pathogen’s adaptive response to maximize its R0 (van Baalen, 2002). 

Network models have shown that in highly clustered populations, transmission rates will 

increase even as virulence decreases in order to avoid the rapid depletion of susceptible 

hosts and pathogen extinction (Read and Keeling, 2003; Boots et al. 2004). Whilst in 

populations with a higher proportion of contacts between clusters there is a reduced risk 

of depleting susceptible hosts, increasing the selection for virulence and reducing the 

transmission rate. This relationship shows how host population contact structures may 

be acting as major selection pressures for adaptive pathogen traits however, this 

relationship has been debated with other models considering the level of virulence to be 

coincidental (Levin and Bull, 1994; Weiss, 2002; Ebert and Bull, 2003), or dependent on 

the within-host competition between pathogen strains (Alizon et al. 2009). This 

uncertainty emphasises the importance of understanding the link between host contact 

networks and pathogen dynamics in order to effectively capture disease transmission; 

however, many of the current evolutionary models have a limited ability to account for 

host contact structure whist many disease transmission models neglect pathogen 

evolutionary dynamics (Buckee et al. 2004; De Smet and Marchal, 2010; Valente, 2012).  
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2.6. Current limitations and future challenges 

A number of additional challenges also exist that further limit understanding about the 

link between host population dynamics, epidemic processes, and pathogen evolution. 

Besides the many constraints in the epidemiological and evolutionary models currently 

available (Frost et al. 2015; Metcalf et al. 2015), there is also a general lack of consensus, 

consistency and validation for many of the methods being developed (Firestone et al. 

2019); often driven by both a lack of quality and quantity of suitable data to inform the 

models. However with an ever-increasing mass of sequence data becoming available, 

many of these limitations are now starting to be addressed in the literature alongside the 

use of other big data sources that are facilitating the development of models that aim to 

account for additional factors that may be driving disease transmission such as human 

behaviour changes and host dynamics.  

 

2.6.1. Missing or imperfect contact network data 

Many of the limitations in network-based methods is due to the unobserved individuals 

in the population leading to both missing nodes and edges.  The challenges in collecting 

network data have been previously discussed (Mikolajczyk and Kretzschmar, 2008; 

Eames et al. 2015) however, despite it being a common problem, it is often difficult to 

quantify the impact of analysing incomplete network data on network-level statistics and 

epidemiological inferences (Kossinets et al. 2006). One previous study by Pfeiffer and 

colleagues (2015) has used a simulation algorithm to estimate the required fraction of a 

network that needed to be sampled to ensure population estimates of a known precision 

however, the estimate still relied on being able to fully characterise the population at risk; 

which can be particularly difficult in isolated wildlife populations or for a disease 

involving multiple host species (Pfeiffer et al. 2015). A recent review by Craft (2015) 

instead highlights important steps that should be considered when trying to capture 

contact networks in order to ensure that they can be incorporated effectively into 

infectious disease studies including giving careful consideration to how a contact is 
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defined, how an infection may alter the contact structure, how an observed network may 

be scaled-up to a biologically relevant size, and how contacts between multiple host 

species can be captured (Craft, 2015). Nevertheless, for current network-based 

approaches to continue to develop, it is clear that improvements in the collection of 

network data is required, eliminating any uncertainty around inferring missing nodes and 

edges. 

 

2.6.2. Modelling dynamic networks 

With continued improvements in network data, more realistic transmission models that 

have captured all the relevant contacts that may be playing a role in disease transmission 

can be developed; helping to improve epidemiological inferences. However, further 

considerations are also needed to overcome limitations arising from the use of static 

contact networks whereby nodes and edges remain fixed for the duration of a model 

(Bansal et al. 2010). This assumption disregards any changing dynamics within a 

population which may have a huge impact on the spread of a disease depending on the 

timescale over which the pathogen spreads (Volz and Meyers, 2007), and a number of 

studies have shown the effects of dynamic network properties, such as the regularity and 

duration of contacts, on disease spread (Fefferman and Ng, 2007; Read et al. 2008; 

Smieszek, 2009). However, these studies rely on good quality longitudinal data sets that 

provide information about the timing, identity and duration of contacts which is often 

limited. Developing the necessary processes in a disease transmission model would also 

require a basic understanding of the underlying mechanisms. For example, to include a 

feedback loop that considers the influence of a disease outbreak on the population contact 

pattern, it would be crucial to have some understanding of patterns in human behaviour 

and how they influence disease spread (Funk et al. 2010). Model feedback systems such 

as these would not only consider ‘how’ and ‘why’ a disease is present in a population but 

also ‘what next’, with many of the dynamic network models in the literature investigating 

how changes in human behaviour in response to a disease outbreak alter disease 
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transmission patterns (Shaw and Schwartz, 2008; Prado et al. 2009; Marceau et al. 2010; 

van Segbroeck et al. 2010; Jolad et al. 2012). Host behaviour has also been shown to play 

an important role in animal populations with links between host behaviour, host 

demography, and the transmission of infection thought to be important in determining 

the impact of disease at different stages of population growth and decline (De Castro and 

Bolker, 2005; Silk et al. 2019). However, capturing both human and animal behaviour, 

particularly in response to an event such as a disease outbreak, is not easy and many of 

the concepts and methodologies needed to approach these research questions are not 

widely familiar to the epidemiology community or those developing the models. 

2.6.3. Phylogenetic complexities 

The same is true when handling molecular sequence data in disease models as it requires 

a basic understanding of pathogen evolution and population genetics. This barrier could 

somewhat explain why pathogen evolution until recently has been largely neglected in 

epidemiological models, but also highlights the importance of multidisciplinary research 

teams especially if current methods using pathogen sequence data to make 

epidemiological inferences are to be extended and include evolutionary complexities such 

as changing mutation rates, selection, re-assortment, recombination and within-host 

variation (Kretzschmar et al. 2010; De Maio et al. 2016; Campbell et al. 2018). The 

incorporation of feedback loops is also very important to solve some of these problems as 

infectious disease dynamics are further affected by changes in pathogen characteristics 

such as virulence, infectiousness, and fitness, which may be influenced by disease 

interventions. Further expertise is also required in all stages of a phylogenetic analysis in 

order to avoid some of the potential artefacts that can arise during each step, starting from 

errors in the genome sequencing to genealogy-based models and tree building exercises, 

all of which can distort inferences made about historical evolutionary events (Stevens and 

Schofield, 2003). Nevertheless, the increasing accessibility of sequence data alongside the 

advent of freely-available computer software may result in the misuse of sequence data in 
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which important assumptions underlying phylogenetic approaches may be violated 

particularly in cases where the effect of such assumptions and sampling bias on the 

estimates is not yet fully understood. For example, one key assumption grounded in 

coalescent theory is that sampled pathogens are all tips on a phylogenetic tree and the 

internal nodes correspond to a coalescent event, the timing of which depends on the 

generation interval and with-in host evolutionary dynamics (Yang et al. 2014), but none 

of the samples at the tip are direct ascendants of other samples. This assumption is 

unlikely in an epidemic and the nodes in a transmission tree correspond to a transmission 

event meaning that both ancestors and descendants may both be present in an outbreak 

resulting in incomplete lineage sorting, erroneous trees and, biased transmission 

estimates (Gavryushkina et al. 2014; Didelot et al. 2016).  

 

Another simplification that is often made in evolutionary models is the mechanisms by 

which sequence variation arises. The clonal model underlines much of bacterial 

population genetics, maintaining that in the absence of sexual processes, chromosomal 

variation arises through random de novo mutations which can then be passed on to 

following generations by processes of vertical transmission, with distinct lineages arising 

from the accumulation of single mutations (Jackson et al. 2011; Acuna-Hidalgo et al. 

2016). However, with advances in sequencing technology came a growing recognition for 

other evolutionary mechanisms including the role of multiple horizontal DNA transfer 

processes such as conjugation, transduction and natural transformation (Ochman et al. 

2000; Gogarten and Townsend, 2005; Thomas and Nielsen, 2005; Soucy et al. 2015). 

However, despite the importance of these processes in generating genetic diversity, the 

direct effect of spatial heterogeneity and contact patterns on these mechanisms is still 

largely unknown and methods to quantify the correlation between differences in 

population structures to the differences in pathogen sequences are limited (Metcalf et al. 

2015). Therefore the focus of many evolutionary models is often the diversity arising from 

de novo mutations which itself can be weighted by a number of uncertainties due to the 
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unknown influence of different factors on the mutation rate including biological and 

geographical factors such as the transmission mode, host species and environmental 

stresses (Messinger and Ostling, 2009; Streicker et al. 2012; Maharjan and Ferenci, 2015), 

time-dependent heterogeneous evolution rates (Biek et al. 2015; Ho and Larson, 2006), 

intra-genome heterogeneity of mutation rates, different disease phases such as latent 

periods, dormancy and endospores (Ford et al. 2011; He et al. 2013), and hyper-mutation 

(Köser et al. 2012). Some models have been developed to allow for differences in the 

mutations rates either over time or sites in genome (Bielejec et al. 2014); however, many 

of the current models are constructed using a Bayesian framework and thus require prior 

information the impact of which may  seriously bias the results particularly in data limited 

settings (Fourment and Holmes, 2014). 

Similarly, a lack of data also makes it difficult to validate many of the current methods 

integrating pathogen sequence data and epidemiological data. In order to support 

decision making, methods must be transparent and capable of producing accurate 

predictions, however, with a lack of real-world examples, many experimental models are 

yet to be tested (Bansal et al. 2007; Craft, 2015; VanderWaal et al. 2016). This further 

highlights not only the importance of data collection but also in building and maintaining 

strong lines of communication across research disciplines in order to promote 

transparency and innovation (Strober, 2006), fuel discussion around the challenges of 

integrating multiple data sources such as how to weight evidence from different datasets 

and handle the dependencies between them (De Angelis et al. 2015), and work towards 

finding a consensus between all the methodologies currently being developed. Further 

discussions considering how to critically assess complex models would also aid 

researchers when deciding on the most appropriate models to use, which can be 

considered a skill in itself, and is dependent on the research question, the quality of the 

data, and the desired output (Keeling and Rohani, 2008; Grant et al. 2020).  
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2.7. Conclusion 

The application of network-based approaches in infectious disease epidemiology has led 

to invaluable insights on how heterogeneity in host contact structures affects disease 

dynamic; however, it is clear that disease dynamics are dependent on more than just the 

underlying population contact structure, with the co-evolution of pathogens playing a 

major role in the emergence and spread of a disease. Unified approaches integrating both 

epidemiological and evolutionary information will undoubtedly provide a greater 

understanding into both infectious disease dynamics and pathogen evolutionary trends, 

with current molecular epidemiological approaches having successfully been used to 

identify important disease risk factors and infer pathogen transmission. The additional 

use of network-based models has also highlighted how population contact structures can 

act as constraints on the evolutionary behaviour of pathogen populations. However, the 

continued development of these models is constrained by a lack of understanding of how 

host contact structures may be driving pathogen differentiation and trait selection. This 

knowledge gap emphasises the need to build long-lasting multidisciplinary relationships 

in order to not only develop methodologies that are robust and transparent whilst also 

maintaining the assumptions underlying each approach, but also to effectively integrate 

additional data that will be crucial to understanding infectious disease dynamics.  
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3.1. Abstract 

AIMS: To (i) collect and update baseline data on the contact patterns and biosecurity 

practices of farms within the New Zealand commercial poultry industry, (ii) investigate 

the relationship between the estimated farm-level contact risk and biosecurity practices, 

and (iii) identify important poultry health concerns that may be influencing the risk 

management behaviour of producers. 

METHODS: A cross-sectional survey of all registered New Zealand commercial poultry 

operations was conducted in 2016 collecting information on farm demographics, 

biosecurity practices, and contact risk pathways. The quantitative survey responses were 

used to generate a subjective contact risk score based on the presence of eight potential 

disease transmission pathways and a subjective biosecurity score based on the frequency 

with which producers reported implementing seven common biosecurity measures.  The 

correlation between the two scores was analysed with a Kruskal-Wallis rank sum test. 

Thematic analysis was performed on the qualitative free-text survey responses to further 

investigate producer opinions towards poultry health issues.    

RESULTS: The survey response rate was 29.0% (120/414) from 57 (47.5%) broilers, 33 

(27.5%) layers, 24 (20.0%) breeders, and 6 (5.0%) other poultry production types. The 

presence and absence of different contact risk pathways on each farm were highly variable 

both within and between each poultry sector. However, for both broiler and layer 

enterprises the greatest contribution to the contact risk score was associated with the 

movement of employees whereas, for breeder enterprises, the on- and off-farm 

movement of goods and services was considered the greater risk. Biosecurity adoption 

was generally low with only 14 (11.7%) reporting the use of all seven surveyed biosecurity 

measures. Overall, no significant correlation was found between the biosecurity score and 

contact risk score on each farm. Producer free-text responses showed a high level of 
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concern over the efficacy of biosecurity measures, highlighting an important future area 

of research.  

 

CONCLUSIONS: The uptake of biosecurity measures in the New Zealand commercial 

poultry industry is highly variable but generally low despite the significant potential risk 

for diseases to spread through frequent between-farm contacts. This may be related to the 

low prevalence or absence of many important infectious poultry diseases in New Zealand 

leading farmers to believe there is a limited need to maintain good biosecurity as well as 

farmer uncertainty around the efficacy of different biosecurity measures.  Further 

research is needed to understand barriers towards biosecurity adoption including 

evaluating the cost-effectiveness of biosecurity interventions.  

 

KEYWORDS: Poultry health, Biosecurity, Risk ranking, Producer behaviour, Contact 

networks 
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3.2. Introduction 

The emergence and spread of infectious diseases can have a devastating impact on 

commercial poultry industries, especially if the disease is zoonotic or foodborne in origin 

with potentially major implications on public health (Astill et al. 2018). To minimise the 

risk of disease introduction and spread, many different biosecurity measures can be 

implemented with some designed to target specific pathogens while others are more 

generalised.  However, in many countries, it is widely recognised that a proportion of 

producers are failing to implement commonly recommended biosecurity practices 

(Moore et al. 2008; Kruger et al. 2009; Mankad, 2016) resulting in a huge variation in risk 

management practices between producers. Various factors are thought to play a role in a 

producer’s decision to adopt different biosecurity measures, including physical farm 

characteristics (such as land area, flock size, number of neighbouring operations, 

company policies and the distance to the nearest road) (Lestari et al. 2012; Susilowati et 

al. 2013), producer characteristics (such as age, education level, gender, income, 

household size, years of experience, risk awareness and tolerance) (Racicot et al. 2012a; 

Akintunde and Adeoti, 2014), local factors (such as policy obligation, social expectations 

and local disease prevalence) (Funk et al. 2010; Itagaki, 2013; Hidano et al. 2018) and 

factors relating directly to implementation (such as the direct costs, public health benefits 

and the ease and practicality of adoption) (Fraser et al. 2010; Garforth et al. 2013).  This 

makes it difficult to ensure a minimum level of biosecurity is maintained across all 

production premises and identify those farms that are of greatest risk in the event of a 

disease outbreak.  

 

Being able to classify production premises based on their risk for disease introduction and 

spread is an important step in both the development of risk-based control and 

surveillance strategies as well as in many disease transmission models (Niemi et al. 2009; 

Van Steenwinkel et al. 2011). Despite this, there is only a limited number of studies that 

have tried to quantitatively assess the level of risk on productions premises with 
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consideration for more than just one infectious agent (Bridges et al. 2007; Lewerin et al. 

2015). However, more recently, a growing number of studies have used network-based 

approaches to identify high-risk sites that would be important to target in the event of a 

disease outbreak (Martínez-López et al. 2009; Rautureau et al. 2012; Sánchez‐Matamoros 

et al. 2013). Nevertheless, only a limited number take into account on-farm biosecurity 

practices despite their clear influence on the risk of disease introduction and spread. This 

may be due to the difficulties in accurately assessing the level of biosecurity across 

different production premises (Nespeca et al. 1997; East, 2007) as well as a general 

unawareness as to how effective individual biosecurity measures are at preventing or 

reducing the spread of an infectious agent.  

 

New Zealand’s poultry industry offers a unique opportunity to study the relationship 

between disease risk and biosecurity adoption mainly due the industry’s comparatively 

small size with approximately 119 million meat chickens (i.e., broilers) raised annually, 

3.5 million laying hens excluding a further 3 million replacements raised each year, and 

2.5 million meat and layer breeder birds (Anonymous, 2018). In addition, there are 

previous studies that have focused on characterising the network structure within the 

New Zealand commercial poultry industry (Lockhart et al. 2010) that offers a great 

opportunity for comparison, with further studies that have quantified the frequency of 

routine biosecurity practices within the commercial poultry industry and investigated the 

importance of different disease risk pathways (Rawdon et al. 2007; Rawdon et al. 2008). 

A comparison with these studies would be both timely and relevant given the recent 

emergence and rapid spread of a previously unidentified antimicrobial resistant strain of 

Campylobacter jejuni that has since been responsible for both sporadic and outbreak-

associated human cases of campylobacteriosis (Zhang et al. 2010; Taveirne et al. 2017). 

This emerging strain was found across all of the major poultry suppliers responsible for 

serving over 90% of the industry (Muellner et al. 2016). This represented a major 

epidemiological shift as previous Campylobacter strains have been strongly associated 
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with individual poultry suppliers (Müllner et al. 2010); highlighting a need for updated 

information on biosecurity practices and contact patterns.  

As part of efforts to better understand the mechanisms responsible for this 

epidemiological shift a cross-sectional survey was conducted across all commercial 

poultry producers in New Zealand in order to (i) collect and update baseline data on farm 

biosecurity practices and contact risk pathways, (ii) investigate the relationship between 

contact risk pathways and on-farm biosecurity, and (iii)  identify important poultry 

health concerns for producers that may have contributed to a shift in biosecurity 

practices.   

3.3. Materials and Methods  

3.3.1. Survey implementation 

Contact details for commercial poultry enterprises in New Zealand were obtained from 

the Poultry Industry Association of New Zealand (PIANZ) and the Egg Producers’ 

Federation (EPF). The database was accessed on June 2016 and listed 426 enterprises 

including hatcheries, breeding and rearing units, layer farms and broiler production 

units. This database was believed to capture the majority of commercial poultry 

enterprises since it is a mandatory requirement for layer farms to be members of EPF 

under the Commodity Levies (Eggs) Order 2009, whilst PIANZ membership represents 

over 99% of the country’s chicken meat producers. Enterprises no longer in production 

or with no production facilities (i.e., head offices) were removed along with duplicate 

records leaving 414 records believed to be active poultry producers. A pre-survey 

sensitisation e-mail was distributed through the PIANZ and EPF e-mail lists prior to 

paper copies of the questionnaire being mailed to the 414 active poultry producers 

identified including all broiler, layer, turkey, and duck enterprises. Paper copies were 

mailed on 15th June 2016 and the survey remained open until 15th December 2016 with 

two reminder e-mails sent to non-respondents during this period. The study was judged 
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to be low risk thorough peer evaluation and consequently was not formally reviewed by 

any of the University’s Human Ethics Committees. 

 

3.3.2. Survey design 

The 11-page survey was based on a previous questionnaire administered to New Zealand 

poultry producers by Lockhart and colleagues (2010) in 2006 and modified in 

collaboration with PIANZ, EPF and the Ministry for Primary Industries (MPI) (Lockhart 

et al. 2010). The survey was designed to collect information on the farm demographics, 

contact patterns, and biosecurity practices of New Zealand commercial poultry 

operations and a copy of the complete survey questionnaire can be found in Appendix A. 

To summarise, the farm demographic variables included in the survey questionnaire 

aimed at capturing the (i) name and mailing address of the farm, (ii) spatial location of 

the farm, (iii) types of poultry produced, (iv) average number of birds present on the farm, 

(v) total number of poultry sheds on the farm, (vi) average maximum capacity of each 

shed, (vii) total farm capacity, (viii) predominant housing type,  (ix) flow management of 

birds, (x) length of an average production cycle, (xi) downtime between production 

cycles, and (xii) number of full-time and part-time workers on the farm.  

 

The contact variables aimed at capturing all movements of (i) transporting vehicles, (ii) 

feed, (iii) live birds and hatching eggs, (iv) table eggs and poultry products, (v) personnel, 

and (vi) poultry waste and litter, on- and off-farm over the previous one-year period.  For 

each type of movement, producers were asked to provide additional details regarding the 

name and business location of each source or destination company, the direction of the 

movement (i.e., onto or off-farm), the type and quantity of any products transferred by 

the movement, and the frequency of movements.  It was also recorded whether the farms 

had direct contact with backyard poultry flocks through the sale of poultry, including 

end-of-lay or point-of-lay birds, or adjacent backyard poultry flock.  
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The biosecurity variables aimed at capturing the (i) allocation of workers across the farm, 

(ii) biosecurity measures implemented on farm, (iii) sharing and cleaning of equipment

and vehicles between farms, (iv) sources of water supply and water treatment, and (v) 

presence of wild birds and waterfowls either in the same areas as poultry or on farm ponds 

and waterways. Lastly, all producers were asked to indicate their views on the importance 

of different poultry health issues using various Likert scales and open-ended questions.   

3.3.3. Data processing 

All responses were entered into a Microsoft Access database by two separate individuals 

and cross-checked for discrepancies. Ambiguous answers (i.e., indicating both “yes” and 

“no” for a given question) were recorded as a missing response before data were imported 

into the R statistical software (R-Development Core Team, 2010) for processing. Firstly, 

enterprises were categorised in accordance with their primary production type resulting 

in four categories: broiler, layer, breeder, and all other poultry.  If survey respondents 

indicated that multiple production types were present within a single enterprise, the 

primary production type was considered to be the one where over 80% of the poultry on-

site were contributing to this purpose.  The ‘other’ category combined pullet, duck, and 

turkey enterprises since there were relatively few of these in the study sample.  A postal 

address for each of the study farms was retrieved by using the addresses provided in the 

survey. These addresses were checked using Google Maps (2017), to make sure they 

corresponded to a poultry production unit (indicated by the presence of poultry sheds) 

and not the producer’s residential address. For non-responders, addresses were obtained 

from the PIANZ-EPF producer list and checked accordingly. All addresses were used to 

obtain coordinates that could be used to map the location of (i) all active poultry 

producers in the PIANZ-EPF database and (ii) the producers that responded to the 

survey.  
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3.3.4. Generating the farm-level contact risk score 

A subjective-unweighted contact risk score was calculated for all farms that responded to 

the survey questionnaire with the aid of a risk ranking matrix (Table 3.1). This was used 

as a proxy for the farm’s potential to acquire and/or spread infectious diseases through 

the contact network.  Eight risk criteria were contained within the matrix each reflecting 

a potential contact pathway for disease transmission. Risk criteria were selected if they 

had been previously identified as a risk pathway in the study by Rawdon and colleagues 

(2007, 2008) or based on evidence in the current literature highlighting their role in a 

disease transmission pathway (Rawdon et al. 2007; Rawdon et al. 2008). For each 

surveyed poultry farm, the presence or absence of a contact was identified from  survey 

responses by looking at the farm characteristics and management practices in regards to 

(i) the number and assignment of employees, (ii) the sharing and cleaning of equipment, 

(iii) the presences of wild birds and waterfowl, (iv) contact with non-commercial poultry, 

(v) litter management, and (v) the supply and treatment of drinking water.  

 

In addition, five network graphs were constructed from the reported on- and off-farm 

movements relating to (i) feed, (ii) live birds and hatching eggs, (iii) poultry waste, litter, 

and dead birds, (iv) additional poultry products, (v) personnel and (vi) all on- and off-

farm movements. Further details on how the network graphs were constructed have been 

provided in Appendix B; however, for the purpose of this study only the network graph 

constructed from all the on- and off-farm movements was used to perform a social 

network analysis (SNA) and generate a degree centrality score was for each node (i.e., a 

surveyed poultry farm) with a full description of the complete SNA also provided in 

Appendix B. The degree centrality score was used as an additional risk criterion to try and 

capture the potential transmission risk due between farms due to the on- and off-farm 

movements of goods and services. One last risk criterion, the number of neighbouring 

commercial poultry farms, was also calculated without reference to survey responses.  

This criterion was selected to try and capture the potential transmission risk due to the 
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spatial proximity of neighbouring poultry producers, not including backyard poultry 

producers. For this study, two poultry enterprises were considered neighbours if they 

were within a 5km radius of each other. This was determined for each farm by drawing a 

circular window, with a 5km radius, around a centroid position marked by the farm 

coordinates that had been extracted from the PIANZ-EPF database. Poultry farms 

captured within this window were considered as a neighbouring poultry premises.  

 

Table 3.1. The disease risk-ranking matrix showing the contribution of risk attributes 

within each of the eight-risk criterion to the estimated disease risk score. 

Risk Criterion 
(#) Risk attribute  

Likelihood of disease introduction and transmission 
Minimal Low Moderate High 

Neighbouring 
farms 

0 1-5 6-15 >15 

Drinking-Water 
(1) Sources  

(1) Water 
from low-risk 

sourcesc 

(1) Water 
from low-risk 

sourcesc 

(1) Water from 
high-risk 
sourcesc 

(1) Water from 
high-risk 
sourcesc 

     
(2) Treatment (2) Water 

treated 
(2) Water 
untreated 

(2) Water 
treated 

(2) Water 
untreated or 
only filtered 

Litter 
management  
(1) Cleaning of 
poultry sheds 

(1) Poultry 
sheds fully 
cleaned out 

and 
disinfected 

with 
replacement 
litter treated 

 

(1) Poultry 
sheds fully 
cleaned out 

and 
disinfected, 

but 
replacement 

litter not 
treated 

(1) Either 
poultry sheds 
fully cleaned 

but not 
disinfection, or 

sheds only 
partially 

cleaned and 
disinfected 

(1) Sheds 
partially 

cleaned with 
no disinfection 

or litter 
treatment 

     
(2) Litter moisture (2) Litter just 

right 
(2) Litter just 

right 
(2) Litter too 

dry 
(2) Litter too 

wet 
     
(3) Downtime a (3) >28 days (3) 15-28 

days 
(3) 5-14 days (3) <5 days 

Table 3.1 continues next page  
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Table 3.1 continued 

 

 

Risk Criterion 
(#) Risk 
attribute  

Likelihood of disease introduction and transmission 

Minimal Low Moderate High 

Non-
commercial 
poultry 

    

(1) Number of 
bordering 
backyard 
poultry 

(1) No 
bordering 

backyard farms 

(1) 1 bordering 
backyard farm 

(1) 2 bordering 
backyard farms 

(1) ≥3 
bordering 

backyard farms 

     
(2) Sale of end-
of-lay or point-
of-lay birds 

(2) No sales (2) No sales (2) Sale of end-
of-lay or point-

of-lay birds 

(2) Sale of end-
of-lay or point-

of-lay birds 
Wild birds and 
waterfowl 

    

(1) Birds 
present 

(1) No birds 
present on the 

farm 

(1) Birds 
present on 
farm ponds 

(1) Birds 
present on 
farm ponds 

(1) Birds 
present in 

production 
areas 

     
(2) Distance of 
birds from the 
production 
area  

(2) NA (2) >50m from 
the production 

area 

(2) ≤50m from 
the production 

area 

(2) Within the 
production 

area 

Equipment     
(1) Shared  
 

(1) No 
equipment 

shared 

(1) Equipment 
shared 

(1) Equipment 
shared 

(1) Equipment 
shared 

     
(2) Cleaned  (2) NA (2) All 

equipment 
cleaned 

(2) Only some 
equipment 

cleaned 

(2) No 
equipment 

cleaned 
Table 3.1 continues next page 
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Table 3.1 continued 

Each of the eight risk criteria were then ranked on a Likert-scale so that for each risk a 

node received a score of either zero (minimal risk), one (low risk), two (moderate risk) or 

three (high risk) (Table 3.1). The score was given based on a biological understanding of 

the poultry production system and the likelihood that the attribute would result in disease 

introduction or dissemination without consideration of a specific pathogen. Overall using 

this risk ranking, the total contact risk score could range between zero, indicating that the 

level of potential risk on a farm was minimal, to 24, the maximum level of potential risk.  

3.3.5. Generating the farm-level biosecurity frequency score 

A subjective biosecurity score was calculated for each surveyed farm from responses that 

indicated the frequency at which seven common biosecurity practices were implemented 

on farm. The seven surveyed biosecurity measures included the use of (i) dedicated 

coveralls for each shed, (ii) dedicated foot covers for each shed, (iii) footbaths at shed 

entrances, (iv) rodent bait stations, (v) bird-proofed housing, (vi) bird-proofed feed 

stores, and (vii) vehicle disinfection before entering the farm. These measures were 

Risk Criterion 
(#) Risk 
attribute  

Likelihood of disease introduction and transmission 

Minimal Low Moderate High 

Employees 
(1) Number (1) 0 (1) 1-4 (1) 5-10 (1) >10

(2) Shed
assignment

(2) NA (2) Specific
sheds

(2) Specific
sheds

(2) >1 full farm

Degree
centrality b

0 1-10 11-25 >25

a time in days between production cycles in which poultry sheds are left empty 
b sum of node in-degree and out-degree calculated from all movements going either on 
to or off farm 
c water collected from the town supply was considered low risk compared to water 
collected from roofs, rivers, streams, and springs which were considered high-risk 
sources  
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selected for inclusion in the survey on the basis that they are routine daily practices 

recommended as a minimum biosecurity requirement on broiler farms in the PIANZ 

biosecurity manual (PIANZ, 2015).  For this study, all biosecurity measures were 

considered equally important due to the limited research comparing the effectiveness of 

biosecurity measures in mitigating disease transmission; making it difficult to give 

weights to individual biosecurity measures. In the survey, responders indicated the 

frequency of implementing each biosecurity measure on a five-point Likert-scale, making 

it easy to rank answers with no consideration of the efficiency of the control measure for 

preventing disease transmission. Responses were given a corresponding score ranging 

from zero (never), one (rarely), two (sometimes), three (often) and four (always). The 

sum of these indicators made up the biosecurity score for each farm, resulting in a range 

of zero (minimum level of biosecurity) to 28.0 (maximum level of biosecurity).  

3.3.6. Statistical analysis 

Basic descriptive statistics were conducted as appropriate using R statistical software (R-

Development Core Team, 2010) to summarise survey results and make a comparison 

between the different poultry production types. To further investigate if there was a 

difference in the contact risk score and the biosecurity score between the different poultry 

production types, a Kruskal-Wallis rank sum test was performed. If this initial test was 

found to be significant (p <0.05), an additional Dunn’s (1964) test was then performed 

with multiple comparisons adjusted for using a Bonferroni adjustment. The relationship 

between the contact risk score and biosecurity score on each farm was visualised with five 

basic scatterplots plots showing (i) all survey respondents, (ii) only surveyed broiler 

enterprises, (iii) only surveyed layer enterprises, (iv) only surveyed breeder enterprises 

and (v) all other survey farms. The Pearson’s correlation coefficient (PCC) was then 

calculated for each plot due to the non-normal distribution of the data. Lastly, to analyse 

the open-ended survey responses regarding producer opinions towards poultry health 

concerns and future research interests, word frequency queries were performed using 
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NVivo v12.0 (QSR International Pty Ltd., 2018) in order to group responses. Groups were 

then examined manually to identify any common themes between producers.  

3.4. Results  

3.4.1. Poultry demographics 

The postal survey was returned by 29.0% (120/414) of the active poultry producers 

registered in the PIANZ-EPF database as of December 2016.  The breakdown of responses 

varied by production type with the two largest industry sectors, broilers and layers, 

unequally represented (Table 3.2). However, there was a representative geographical 

distribution of respondents from across New Zealand (Figure 3.1).  

3.4.2. Contact patterns and contact risk scores 

The contact risk pathways identified on each farm were highly variable both within and 

between each of the poultry sectors resulting in a wide range of contact risk scores (Figure 

3.2).  For example, when considering the potential risk from contact with non-

commercial backyard poultry, 84.2% (101/120) of the study farms had minimal risk 

(Table 3.3). Out of the remaining farms, 94.7% (18/19) were layer enterprises whose risk 

with non-commercial backyard poultry was largely due to the sale of point-of- lay and 

end-of-lay birds.  Despite this variation, the greatest risk for both layer and broiler 

enterprises was from the potential movement of employees between sheds, with 78.8% 

(26/33) of layer operations and 98.2% (56/57) of broiler operations indicating that they 

have a number of employees assigned to work across the whole farm (Table 3.3). For 

breeder enterprises, the greatest risk was attributed to the on- and off-farm movement of 

goods and services with 95.8% (23/24) having a network degree centrality measure 

greater than 25  (Appendix B, Figure B1) while the number of neighbouring farms, litter 

management practice and water sources were only considered to present a moderate level 

of risk across all the study farms. 
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Table 3.2. Summary of demographic information amongst 120 producers in the New 

Zealand commercial poultry industry all of whom responded to the 2016 poultry survey. 

Poultry production type 
Broilers Layersd Breeders Pullets Ducks Turkeys 

Number of 
survey 
responders (%) 

57 
(47.5) 

33 
(27.5) 

24 
(20.0) 

2 
(1.7) 

3 
(2.5) 

1 
(0.8) 

Sector response 
(%)a 

57/157 
(36.3) 

33/169 
(19.5) 

24/55 
(43.6) 

2/15 
(13.3) 

3/6 
(50.0) 

1/11 
(9.1) 

Housing (%) 

Free-range 
10/57 
(17.5) 

22/33 
(66.7) 

1/24 
(4.2) 

1/2 
(50.0) 

0/3 
(0.0) 

1/1 
(100) 

Colony NAc 
4/33 

(12.1) 
0/24 
(0.0) 

0/2 
(0.0) 

0/3 
(0.0) 

0/1 
(0.0) 

Barn 
43/57 
(75.4) 

2/33 
(6.1) 

23/24 
(95.8) 

1/2 
(50.0) 

3/3 
(100) 

0/1 
(0.0) 

Mixedb 
1/57 
(1.8) 

5/33 
(15.2) 

0/24 
(0.0) 

0/2 
(0.0) 

0/3 
(0.0) 

0/1 
(0.0) 

Median number 
of poultry per 
farm (range) 

97820 
(19500-

1000000) 

8750 
(20-

150000) 

15000 
(5600-

140000) 

2500 
(50-

35000) 

14000 
(1000-
18000) 

22000 
(-) 

Median number 
of sheds per 
farm (range) 

4.0 
(2-12) 

3.0 
(1-14) 

2.0 
(1-24) 

1.0 
(1-5) 

2.5 
(2-3) 

4.0 
(-) 

Table 3.2 continues next page 
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Table 3.2 continued 

Poultry production type 
Broilers Layersd Breeders Pullets Ducks Turkeys 

Flow of birds 
(%) 

All-in-all-out 
40/57 
(70.2) 

11/33 
(33.3) 

22/24 
(91.7) 

2/2 
(100) 

3/3 
(100) 

0/0 
(0.0) 

Multiple ages 
16/57 
(28.1) 

15/33 
(45.5) 

2/24 
(8.3) 

0/0 
(0.0) 

0/0 
(0.0) 

0/0 
(0.0) 

Mixed 
1/57 
(1.8) 

7/33 
(21.2) 

0/24 
(0.0) 

0/0 
(0.0) 

0/0 
(0.0) 

1/1 
(100) 

Median days 
of production 
cycle (range) 

42.0 
(18-56) 

420 
(42-630) 

294 
(140-560) 

180 
(-) 

70.5 
(43-98) 

40.0 
(-) 

Median days 
downtime 
length (range) 

8.0 
(0-18) 

14.0 
(0-120) 

42.0 
(35-360) 

26.5 
(18-35) 

8.5 
(7-10) 

9.0 
(-) 

Median part-
time 
employees per 
farm 

1.0 3.0 1.0 0.5 1.0 1.0 

Median full-
time 
employees per 
farm 

1.0 1.0 4.0 3.0 1.0 1.0 

a Sector includes the 414 active poultry farms identified in the PIANZ-EPF 
database as of October 2016 
b Colony housing not applicable to broilers as all broiler/meat chickens must be 
on the floor in sheds or free-range. Despite this 3/57 (5.3%) of broiler producers 
reported colony housing, therefore, for the purpose of this study, these responses 
were considered as mistakes by the producer and have not been included 
c Mixed production systems include farms that indicated having both free-range 
birds and either birds in barns or colony housing 
d Includes mixed pullet and layer enterprises 
- A range cannot be calculated as only one response has been given
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Figure 3.2. Boxplot showing the estimated risk score for 120 poultry producers in New 

Zealand’s commercial poultry industry including 33 layer enterprises, 57 broiler 

enterprises, 24 breeder enterprises and 6 enterprises representing either duck, turkey or 

pullet operations. The values in the graph represent the minimum, maximum, median, 

first quartile and third quartile in the data with the median value (x̃) printed below each 

plot 
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Table 3.3. Contribution of risk criteria to the estimated disease risk score amongst 120 

producers in the New Zealand commercial poultry industry including 33 layer enterprises 

(including mixed pullet and layer operations), 57 broiler enterprises, 24 breeder 

enterprises and 6 other poultry enterprises (including duck, turkey and pullet operations). 

A risk score of zero indicates a minimal risk of disease introduction or spread where a 

score of 3 indicates a maximum level risk. 

Risk Criterion  
Risk 
Score 

Total number of farms (% within sector) 

Layers Broilers Breeder 
All other 
poultry 

Number of 
neighbouring 
farms 

0 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
1 29 (87.9) 32 (56.1) 14 (58.3) 5 (83.3) 
2 2 (6.1) 15 (26.3) 10 (41.7) 1 (16.7) 
3 2 (6.1) 10 (17.5) 0 (0.0) 0 (0.0) 

Water source 
and treatment 

0 8 (24.2) 50 (87.7) 20 (83.3) 1 (16.7) 
1 14 (42.4) 3 (5.3) 4 (16.7) 5 (83.3) 
2 6 (18.2) 4 (7) 0 (0.0) 0 (0.0) 
3 5 (15.2) 0 (0.0) 0 (0.0) 0 (0.0) 

Litter 
management 

0 1 (3.0) 0 (0.0) 0 (0.0) 0 (0.0) 
1 16 (48.5) 38 (66.7) 21 (87.5) 3 (50) 
2 9 (27.3) 19 (33.3) 2 (8.3) 1 (16.7) 
3 7 (21.2) 0 (0.0) 1 (4.2) 2 (33.3) 

Contact with 
backyard 
poultry  

0 15 (45.5) 57 (100) 24 (100) 5 (83.3) 
1 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
2 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
3 18 (54.5) 0 (0.0) 0 (0.0) 1 (16.7) 

Contact with 
wild birds and 
waterfowl 

0 11 (33.3) 26 (45.6) 17 (70.8) 1 (16.7) 
1 1 (3.0) 6 (10.5) 2 (8.3) 1 (16.7) 
2 0 (0.0) 4 (7.0) 4 (16.7) 1 (16.7) 
3 21 (63.6) 21 (36.8) 1 (4.2) 3 (50.0) 

Equipment 
sharing 

0 24 (72.7) 20 (35.1) 2 (8.3) 3 (50.0) 
1 4 (12.1) 20 (35.1) 21 (87.5) 1 (16.7) 
2 0 (0.0) 3 (5.3) 1 (4.2) 0 (0.0) 
3 5 (15.2) 14 (24.6) 0 (0.0) 2 (33.3) 

Table 3.3 continues next page 
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Table 3.3 continued  

Risk Criterion  
Risk 
Score 

Total number of farms (% within sector) 

Layers Broilers Breeder 
All other 
poultry 

Number of 
employees  

0 2 (6.1) 3 (5.3) 0 (0.0) 0 (0.0) 
1 15 (45.5) 48 (84.2) 5 (20.8) 5 (83.3) 
2 10 (30.3) 6 (10.5) 12 (50.0) 1 (16.7) 
3 6 (18.2) 0 (0.0) 7 (29.2) 0 (0.0) 

Network 
degree 
centrality 

0 1 (3.0) 0 (0.0) 0 (0.0) 0 (0.0) 
1 18 (54.5) 5 (8.8) 0 (0.0) 1 (16.7) 
2 9 (27.3) 16 (28.1) 1 (4.2) 0 (0.0) 
3 5 (15.2) 36 (63.2) 23 (95.8) 5 (83.3) 

 

The complete breakdown of the different contact risk pathways reported in the survey 

can be found in Appendix B (Tables B4-B8) in addition to summaries on each of the 

reconstructed networks graphs (Appendix B, Tables B9) and statistics from the SNA 

(Appendix B, Tables B10). Overall, the mean contact risk score was 14.6 (median: 15, 

range: 9-21) across all farms. The contribution of different risk criteria to the final score 

is presented in Table 3.3. Results from the Dunn’s test (Appendix B, Table B3) show that 

there was a significant difference between the production types (p<0.0001) with duck, 

pullet and turkey enterprises having the greatest average risk score (mean: 16.7, median: 

17, range: 14-19)  followed by layer enterprises (mean: 15.9, median: 16, range: 11-21), 

broiler enterprises (mean: 14.2, median: 14, range: 9-21), and finally breeder enterprises 

(mean: 12.4, median: 11, range: 10-17).  

 

3.4.3. Biosecurity practices and biosecurity frequency scores 

The reported use of each biosecurity measure varied greatly (Figure 3.3). For example, 

95.8% (115/120) of the survey respondents indicated ‘always’ using rodent bait stations 

in comparison to only 22.5% (27/120) that indicated ‘always’ disinfecting vehicles. In 

addition to rodent bait stations, the use of bird-proofed housing and bird-proofed feed 

stores were reportedly used by over 90% of all the survey respondents whilst disinfecting 

vehicles, dedicated shed overalls and footbath were the least reported (Figure 3.3) with  
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Figure 3.3. The reported frequency of implementing seven common biosecurity measures 

amongst 120 poultry producers in New Zealand’s commercial poultry industry.   

101



Chapter 3 | Disease risk and biosecurity 

responses varying between the production types (Appendix B, Table B1). Overall, the 

mean biosecurity score was 20.4 (median: 22, range: 0-28) with the largest heterogeneity 

seen within the layer sector (Figure 3.4). Results from the Dunn’s test (Appendix B, Table 

B2) show that there was a significant difference in the biosecurity scores between the 

production types (p<0.0001) with breeder enterprises having the greatest average 

biosecurity score (mean: 24.3, median: 22, range: 20-28) followed by broiler enterprises 

(mean: 22.4, median: 23, range: 16-28), duck, pullet and turkey enterprises (mean: 20.8, 

median: 20, range: 19-23), and finally layer enterprises (mean: 14.0, median: 14, range: 0-

26). 

 

3.4.4. Association between the contact risk and biosecurity scores 

The relationship between the estimated contact risk score and the biosecurity score 

(Figure 3.5) resulted in a PCC of -0.23 (p = 0.01, df = 118, 95% CI = -0.39 to -0.05) 

indicating there is no correlation between the number of contact risk pathways and the 

level of on-farm biosecurity, although the strength of this relationship varies when 

considering each production type individually (Appendix B, Figure B2).  

 

3.4.5. Producer concerns and opinions about poultry health 

When asked about six common poultry health concerns, the majority of survey 

respondents indicated being either ‘not at all’ concerned or ‘extremely’ concerned with 

very few responses in-between these extremes (Table 3.4). However, the proportion of 

responses in each of the two categories differed between the different production types 

with a higher proportion of layer enterprises showing little to no concern for 

campylobacter (42.4%, 14/33), salmonella (36.4%, 12/33), avian influenza (36.4%, 12/33), 

coccidiosis (54.5%, 18/88) or antimicrobial resistance (63.6%, 21/33) in comparison to 

the majority of broiler enterprises who showed the least concern for welfare (19.3%, 

11/57) and antimicrobial resistance (15.8%, 9/57).  
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Figure 3.4. Boxplot showing the estimated biosecurity score for 120 poultry producers in 

New Zealand’s commercial poultry industry including 33 layer enterprises, 57 broiler 

enterprises, 24 breeder enterprises and 6 enterprises representing either duck, turkey or 

pullet operations. The values in the graph represent the minimum, maximum, median, 

first quartile and third quartile in the data with the median value (x̃) printed below each 

plot.  
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Figure 3.5. Scatter plot showing the relationship between the estimated biosecurity score, 

calculated from the reported frequency of implementing seven common biosecurity 

practices, and the estimated disease risk score for 120 poultry producers in New Zealand’s 

commercial poultry industry including 33 layer enterprises, 57 broiler enterprises, 24 

breeder enterprises and 6 enterprises representing either duck, turkey or pullet 

operations. Point circumference if proportional to farm frequency whilst the pie chart 

shows the breakdown of farms by production type. Pearson’s correlation coefficient 

(PCC) has been calculated and 95% confidence intervals are shown for a p-value <0.01.  
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Table 3.4. Level of concern over poultry health issues amongst 120 producers in the New 

Zealand commercial poultry industry including 33 layer enterprises (including mixed 

pullet and layer operations), 57 broiler enterprises, 24 breeder enterprises and 6 other 

poultry enterprises (including duck, turkey or pullet operations). 

    Number of Farms (%) 

    Layers Broilers Breeder 
All other 
poultry 

Campylobacter Not at all 14 (42.4) 6 (10.5) 12 (50.0) 2 (33.3) 
Slightly 7 (21.2) 8 (14.0) 11 (45.8) 0 (0.0) 
Somewhat 3 (9.1) 7 (12.3) 0 (0.0) 1 (16.7) 
Moderately 3 (9.1) 16 (28.1) 0 (0.0) 1 (16.7) 
Extremely 6 (18.2) 20 (35.1) 1 (4.2) 2 (33.3) 

      
Salmonella Not at all 12 (36.4) 7 (12.3) 11 (45.8) 2 (33.3) 

Slightly 6 (18.2) 6 (10.5) 1 (4.2) 0 (0.0) 
Somewhat 5 (15.2) 8 (14.0) 0 (0.0) 1 (16.7) 
Moderately 2 (6.1) 16 (28.1) 0 (0.0) 1 (16.7) 
Extremely 8 (24.2) 20 (35.1) 12 (50.0) 2 (33.3) 

Avian Influenza Not at all 12 (36.4) 7 (12.3) 12 (50.0) 2 (33.3) 
Slightly 7 (21.2) 9 (15.8) 0 (0.0) 1 (16.7) 
Somewhat 2 (6.1) 7 (12.3) 0 (0.0) 0 (0.0) 
Moderately 4 (12.1) 6 (10.5) 1 (4.2) 1 (16.7) 
Extremely 8 (24.2) 28 (49.1) 11 (45.8) 2 (33.3) 

Coccidiosis Not at all 18 (54.5) 4 (7.0) 13 (54.2) 2 (33.3) 
Slightly 5 (15.2) 8 (14.0) 0 (0.0) 2 (33.3) 
Somewhat 5 (15.2) 11 (19.3) 0 (0.0) 0 (0.0) 
Moderately 1 (3.0) 15 (26.3) 11 (45.8) 1 (16.7) 
Extremely 4 (12.1) 19 (33.3) 0 (0.0) 1 (16.7) 

Antimicrobial 
resistance 

Not at all 21 (63.6) 9 (15.8) 12 (50.0) 2 (33.3) 
Slightly 5 (15.2) 6 (10.5) 1 (4.2) 2 (33.3) 
Somewhat 2 (6.1) 13 (22.8) 11 (45.8) 0 (0.0) 
Moderately 1 (3.0) 13 (22.8) 0 (0.0) 1 (16.7) 
Extremely 4 (12.1) 16 (28.1) 0 (0.0) 1 (16.7) 

      
Welfare Not at all 16 (48.5) 11 (19.3) 11 (45.8) 2 (33.3) 

Slightly 2 (6.1) 4 (7.0) 0 (0.0) 0 (0.0) 
Somewhat 1 (3.0) 1 (1.8) 0 (0.0) 0 (0.0) 
Moderately 4 (12.1) 8 (14.0) 0 (0.0) 2 (33.3) 
Extremely 10 (30.3) 33 (57.9) 13 (54.2) 2 (33.3) 
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Seventy producers also provided free-text responses when asked about the biggest 

concerns facing their operations with several major themes emerging.  First, producers 

were concerned that the new animal welfare legislation was based on public opinion 

rather than science, and worried about the impact of the changes on farm production 

levels as well as biosecurity; particularly when switching to free-range housing systems 

where their poultry would have greater contact with wildlife.   Second, several producers 

were also concerned that urbanisation in their region and increased foot traffic from the 

general public was leading to increased contact with backyard poultry operations. This 

was seen as a potential pathway for both endemic diseases to spread between farms but 

also exotic diseases to enter the New Zealand commercial poultry industry if there were 

to be a lapse in border biosecurity with foreign visitors frequently utilising public 

walkways.  Third, producers recognized that the movements of personnel and vehicles 

were a major risk for disease introductions and expressed concerns over effectively 

managing biosecurity.  Lastly, a few producers also cited general issues with labour 

management and staffing. 

 

Forty-five producers further provided free-text responses when asked what areas of future 

research would be most beneficial to their farms.  There were many responses concerning 

improved strategies for managing litter on farm, developing a better understanding into 

which biosecurity practices (including vaccination, disinfection, and border control) are 

most effective in preventing endemic diseases from spreading between farms as well as 

controlling exotic disease from crossing the border and generating more evidence around 

the strengths and weaknesses of different housing systems.  Three producers cited a need 

for learning how to better manage public perceptions about poultry production and 

welfare whilst two producers also wanted more research around how best to prevent 

foreign diseases from being introduced into New Zealand.  

 

106



Chapter 3 | Disease risk and biosecurity 

3.5. Discussion 

The study results suggest that there are a significant number of contacts between 

commercial poultry farms in New Zealand, which have the potential to act as disease 

transmission pathways. However, despite these risks, a large proportion of the farms also 

had a relatively low uptake of biosecurity measures aimed at preventing disease 

transmission from occurring through these contacts.  Overall, no association was found 

between the estimated level of risk and the estimated level of on-farm biosecurity for any 

poultry sector despite notable differences in both the relative importance of different 

contact risk pathways and biosecurity adoption rates between each sector with the contact 

of wild birds and backyard poultry contributing largely to the risk score for the majority 

of layer enterprises in comparison to both breeder and broiler enterprises whose greatest 

risk was through the movement of transporting vehicles and employees. Layer enterprises 

also had the lowest average biosecurity score with many indicating ‘never’ having used 

protective overalls, boot covers or footbaths, all of which, were reported frequently by 

broiler and breeder enterprises. These major differences between the poultry sectors are 

likely related to the differences in the industry demographic structures. For example, for 

breeder enterprises, a large proportion of the contact risk score was associated with the 

on- and off-farm movement of goods and services. This large number of movements is 

most likely due to the transfer of live birds and hatching eggs since the New Zealand 

poultry industry is highly vertically integrated and relies on only a small number of 

breeding farms and hatcheries to service the majority of broiler farms.  

 

One of the most frequent contact risk pathways across all of the surveyed farms was the 

movement of employees. This result is similar to that reported by Rawdon and colleagues 

(2007, 2008) who also identified a large number of between-farms contacts was due to the 

frequent movement of personnel (Rawdon et al. 2007; Rawdon et al. 2008). However, 

there were other minor differences in the previously reported contact risk pathways 

compared with our present study. For example, untreated drinking water from high-risk 
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sources, such as rainwater, rivers, streams, and springs, was previously identified to be a 

major risk pathway for the entry of waterborne exotic pathogens. In our study, there was 

a slight increase in the proportion of farms that treated treating their drinking water, 

particularly in the layer industry. However, since most of the farms in our study sourced 

water from low-risk sources, most commonly bores, the probability of pathogen 

introduction via this pathway is very low even with a large proportion of farms leaving 

water untreated. Another important risk factor identified in the previous study was the 

sharing of equipment, whereas the majority of farms in our study reported that they did 

not share equipment with other farms and, of those that did, a large proportion indicated 

that they cleaned the equipment after its return to minimise the potential risk of disease 

introduction and spread.  In comparison, the patterns of biosecurity adoption between 

the two studies has remained fairly constant, including some of the observed differences 

between the poultry sectors.  For example, in both studies, a greater proportion of broiler 

enterprises reported the use of footbaths and protective clothing compared with layer 

enterprises whereas the use of rodent bait stations, bird-proofed housing and bird-

proofed feed stores continued to be implemented by the majority of surveyed farms in 

both sectors (Rawdon et al. 2007; Rawdon et al. 2008).  

In our current study, these differences in biosecurity practices have resulted in a greater 

biosecurity score among broiler and breeder enterprises in comparison to both layer 

enterprises and all ‘other’ poultry producers; suggesting that broiler and breeder 

enterprises may be more proactive in adopting biosecurity measures. This higher 

adoption rate may be for many reasons for instance, breeder enterprises may have 

pressure to maintain a high level of biosecurity given they supply many downstream 

farms particularly as the industry tries to reduce the use of antimicrobials meaning good 

biosecurity practices on breeder enterprises and hatcheries have become even more 

important (Anonymous, 2017). For broiler producers a large concern will be those 

pathogens responsible for foodborne illnesses, such as Campylobacter, with New Zealand 
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having one of the highest rates of human campylobacteriosis in comparison to other 

industrialised countries (Olson et al. 2008). In comparison, the primary concern for the 

layer industry will most likely be Salmonella, which has a comparatively much lower 

prevalence overall, reducing the perceived risk of disease; a factor known to influence 

biosecurity adoption rates (Hidano et al. 2018). The higher average biosecurity score 

among broilers could also be an artefact of the survey design, for example, many breeder 

enterprises are known to have on-farm showers to reduce the risk of disease introduction 

via the movement of employees, however, this practice was not included in the pre-

determined list of biosecurity procedures in the survey-questionnaire. Instead only a 

limited number of biosecurity measures were included with no space provided for 

producers to expand on unidentified biosecurity procedures.  

 

For our study, the biosecurity measures were selected from the biosecurity guidelines 

jointly published by MPI and PIANZ on the basis that they offer a good baseline for all 

producers. For this reason, it is more likely that broiler enterprises would have adopted 

the combination of biosecurity measures in the survey as the guidelines have been largely 

taken up by all the major poultry suppliers who govern over 90% of broiler producers 

(Muellner et al. 2016). Therefore, despite no legislation enforcing the adoption of 

biosecurity practices, the majority of broiler producers will be following the 

recommended guidelines under their company’s policies on expected biosecurity 

practices in order to maintain a supply contract. In comparison to the broiler industry, 

the commercial layer industry consists of a much larger number of independent operators 

with only a few shared contractors. This means there is no common biosecurity policy 

setting, but instead, each individual producer is left to decide what measures they consider 

appropriate to mitigate on-farm risks, reducing the incentive to maintain a minimum set 

of biosecurity practices and resulting in a large amount of diversity between layer 

operations. Future surveys should expand on the range of biosecurity measures included 
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in the survey-questionnaire, or better still, provide a free-text response in which 

producers could add any biosecurity measures not found in the pre-selected list. 

 

Our study found no significant relationship between the reported uptake of biosecurity 

measures and the potential level of transmission risk through contacts with a generally 

low biosecurity score across many farms. This is a concern given that highly connected 

farms can contribute disproportionately to disease transmission through contact 

networks especially if no control measures are in place to limit spread (Christley et al. 

2005; Gates and Woolhouse, 2015).  A similar lack in biosecurity has also been reported 

in a number of previous studies looking both at commercial poultry industries outside 

New Zealand (Dorea et al. 2010; Van Steenwinkel et al. 2011; Scott et al. 2018) and other 

livestock sectors (Gunn et al. 2008; Laanen et al. 2014) although it is not always clear why. 

In our study, free-text responses suggest that many producers have some level of concern 

or doubt over the effectiveness of biosecurity procedures, noting that they are often too 

costly or impractical to implement. However, it is also important to consider the high 

health status of New Zealand’s national flock, which is free from major exotic avian 

diseases such as highly pathogenic avian influenza, Newcastle disease, and until recently 

infectious bursal disease (Davidson, 2002; Cobb and Smith, 2013), and where common 

pathogens like campylobacter have minimal economic impacts.  This may be serving to 

reduce the producer’s perception of risk both in terms of how vulnerable they feel towards 

a threat and how severe they think the potential consequences may be (Ferrer and Klein, 

2015). Further research is needed to understand both the efficacy of different biosecurity 

measures in reducing disease spread and understanding how to motivate producers to 

increase biosecurity adoption.  

 

There are several limitations in the study design that should be considered when 

interpreting the results. Given the low survey response rate, there is likely voluntary 

response bias particularly given that before completing the survey, all producers were 
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informed that the study objectives were to develop network simulation models in order 

to predict disease spread. Therefore, it is likely that those who chose to continue with the 

survey reflect producers that are more concerned about disease management and may 

practice different behaviours and practices to those producers who did not respond 

(Laanen et al. 2014). Reporting bias is also a further concern as results rely on the survey’s 

ability to accurately reflect the reality on farm, however, erroneous reporting can happen 

for a number of reasons with many previous studies showing particularly poor correlation 

between survey responses and on-farm biosecurity practices (Sax et al. 2003; Bewsell, 

2010; Racicot et al. 2012b). This reporting bias may be a result of pressure from the public, 

government, and other producers to maintain a high level of biosecurity; making it 

difficult for producers to speak openly about farm management practices in fear of 

potential repercussions and stigma. Further mismatches between the reported biosecurity 

and on-farm practices may also be because those completing the survey, often farm 

owners, may be unaware of employee practices or non-compliance overall, leading to an 

overestimation in the final biosecurity score. 

 

In order to control some of these biases, future research focusing on capturing on-farm 

biosecurity and contact risk pathways may benefit from using mixed method approaches 

including qualitative methods, such as semi-structured interviews, to more accurately 

capture what is happening on farm. Farm visits may also increase the response rate of 

future surveys, particularly in the layer industry who have governing body to promote 

research participation. Survey fatigue was also quite clear with the majority of responders 

indicating that they would not be willing be to participate in future surveys, however face-

to-face farms visits allow the researcher to engage more with producers and discuss the 

importance of the research. Interviews also allow for a broader range of questions that 

could be useful to explore on-farm practices in more detail, especially given the current 

uncertainty around the different practices between different producers. In addition to 

qualitative approaches, the low response may be ameliorated in future studies by working 
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closer with industry who could not only help to indorse the survey but also have the power 

to make responses mandatory with PIANZ membership. 

There were also limitations in the methods used to assess and quantify both the 

biosecurity and contact risk scores. Firstly, it was assumed that each biosecurity measure 

had equal importance. This assumption was made as there is very little research 

comparing the use of different biosecurity measures without reference to a specific 

disease, making it difficult to give weights or rank different measures. Nevertheless, it is 

important to consider that equal weighting may also be misleading and future studies may 

benefit by considering qualitative approaches, such as joint ranking, to avoid this 

assumption. Previous studies have also used expert opinion to give weights to biosecurity 

measures. For example, one study by Gelaude and colleagues (2014) was able to quantify 

the level of biosecurity on broiler farms by prioritizing and weighing various biosecurity 

measures taking into account the opinion of 16 different experts including 

epidemiologists, veterinary practitioners, and microbiologists (Gelaude et al. 2014). 

However, these weights depend on a number of different variables making it difficult to 

extrapolate a biosecurity scoring system across different studies (Sayer et al. 2014; Kuster 

et al. 2015). 

The transmission risk score is similarly limited by the ability to accurately capture disease 

risk pathways using an indirect measure to assess the risk of disease transmission. In the 

current study, the contact risk pathways were selected from both a previous survey by 

Rawdon and colleagues (2007, 2008) and evidence-based in the literature, however, many 

of these pathways are complex and cannot be quantitatively assessed from a single 

observation (Rawdon et al. 2007; Rawdon et al. 2008). For example, the potential risk 

from contact with wild birds or waterfowl was measured by their presence or absence on-

farm with no regard to variables such as the number of wild birds, their species and 

behaviour patterns such as migration and feeding traits, all of which are also thought to 
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play a role in the transmission dynamics between domestic and wild birds (Gilchrist, 

2005; Spackman, 2009; Prosser at el., 2013).  

 

Similarly to the biosecurity score, the relative importance of each pathway is also likely 

influenced by the characteristics of individual pathogens.  Lastly, when comparing both 

the biosecurity and contact risk scores, it is important to consider the implications of 

using scoring systems based on a numerical range. For example, for the biosecurity score 

a value was given between zero and four for each biosecurity measure listed such that the 

difference between a farm with the minimum level of biosecurity and the optimum level 

could range from zero to 28. However, this score does not assume that the magnitude of 

change in biosecurity is directly proportional to the scale used in the scoring system (i.e., 

a score of 28 does not imply that the biosecurity is double that for a score of 14). The small 

range between the minimum and optimum biosecurity score also results in many of the 

study farms being grouped together, implying that the level of biosecurity between the 

farms is very similar. This emphasises need to develop reliable and accessible tools that 

can be used to assess both on-farm risks and biosecurity practices as well as providing a 

benchmark to help individuals maintain a high level of biosecurity. However, despite 

these limitations in capturing and quantifying both on-farm biosecurity and contact risk 

pathways, it is still clear that there is a large variation between commercial poultry farms 

in New Zealand. 

 

3.6. Conclusion 

The study findings highlight the diversity in contact risk pathways and biosecurity 

practices across a subset of farms in New Zealand the commercial poultry industry.  From 

a disease control perspective, it is concerning that farms with the highest potential level 

of risk for acquiring and/or spreading disease through the contact network were no more 

or less likely to adopt biosecurity measures to prevent disease transmission than farms 

with relatively few contacts. This may be related to the low prevalence or absence of many 
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important infectious poultry diseases in New Zealand, leading farmers to believe there is 

limited need to maintain good biosecurity as well as farmer uncertainty around the 

efficacy of different biosecurity measures.  Further research is needed to understand (i) 

how producers are identifying and assessing disease risks and (ii) which factors are most 

important in motivating long-term changes in risk management behaviours. 
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4.1. Abstract 

AIMS: Commercial poultry farms are at risk of disease introductions through potential 

contacts with both backyard poultry producers and wild bird populations. However, it 

has historically been difficult to estimate this risk due to the lack of accurate data on the 

numbers, locations, and movement patterns of these three populations.  In this study, we 

explore the use of different data sources to determine the disease transmission risk within 

the New Zealand commercial poultry industry from (i) the sale of backyard poultry 

through an online auction website and (ii) the movement of wild birds both within New 

Zealand and from overseas.  

 

METHODS:  Results from a cross-sectional survey conducted in 2016 of all registered 

New Zealand commercial poultry operations were used to characterise contact patterns 

within the industry and investigate potential contacts with both backyard poultry 

producers and wild bird populations. For backyard poultry, a data extract containing all 

recorded poultry transactions made through the online auction website TradeMe® from 

2012 to 2018 were used to construct two poultry trade networks characterising the 

connectivity of individual traders and spatial locations. The spatial network was then used 

to create a Susceptible-Infectious network simulation model to help characterise the 

potential for an epidemic disease to spread across New Zealand through the movement 

of backyard poultry. To determine the disease transmission risk from migrating wild 

birds, both within New Zealand and from overseas, a data extract from the online citizen 

science bird monitoring project eBird was analysed. Bird observations made from 2012 

to 2018 were used to characterise the spatial distribution of wild birds. The overlap 

between commercial poultry premises, backyard poultry trade, migratory birds and water 

birds belonging to the Anatidae family was explored using bivariate choropleth maps.  

 

RESULTS: Analysis of the online auction data revealed highly active backyard poultry 

trade networks with a total of 137,270 recorded trades between 59,225 traders during the 
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study time period. There was a high level of connectivity and strong spatial linkages 

between the major urban centres that followed a similar pattern to that seen in the 

commercial poultry network suggesting significant overlap between backyard poultry 

trade and commercial poultry. Results from the simulation model shows the potential for 

disease to spread through these trades with all the 134 suburb nodes becoming infected 

in 96.4% (9,642/10,000) of the simulations. Analysis of the eBird data included 73,990 

reports sighting 80 bird species known to migrate to, from or within New Zealand. The 

majority of these migratory bird species belonged to the order Charadriiformes (coastal 

seabirds and wading birds) and posed little risk to commercial poultry with high numbers 

reported in isolated coastal areas. Resident birds that migrate within New Zealand and 

water birds were of greatest concern with many reported in the same habitat as both exotic 

migratory birds and inland in regions with a high density of commercial and backyard 

poultry.  

CONCLUSIONS: Overall, our study findings highlight how the spatial patterns of online 

poultry trade and migratory birds can influence the risk landscape within the commercial 

poultry industry. In particular, the high volume of animals traded through online auction 

websites over increasingly long distances and shorter timespans will have important 

implications for disease transmission dynamics. The significant overlap between wild 

bird populations and backyard poultry also increases the risk of disease introduction and 

spread, particularly given the generally low standards of biosecurity for backyard poultry. 

To reduce this risk, it is essential that future disease prevention and control strategies 

consider increasing biosecurity education and regulations within the backyard poultry 

sector. 

KEY WORDS: Backyard poultry, Migratory wild birds, Contact networks, Disease 

transmission risk  
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4.2. Introduction 

Controlling the spread of infectious disease through poultry and livestock production 

systems requires detailed knowledge about the location of farms and the patterns of 

contact between them (Garner et al.2007).  As such, most developed countries have 

established national databases that require farmers to provide up-to-date information on 

the numbers of animals in their care as well as the movements of animals between 

registered locations for trade and other purposes such as grazing, breeding, veterinary 

care, or exhibition at shows (Saatkamp et al.1995).  This had led to a significant 

improvement in the quality of data in both commercial poultry and livestock operations.  

However, it is widely recognized that these systems often fail to capture information on 

non-commercial or “backyard” producers, defined as those individuals who keep a small 

number of animals for personal consumption or as a hobby (Johnson et al.2004). This 

knowledge gap presents a major concern for commercial operations and health 

authorities as there is a potential for backyard producers to act as major disease reservoirs, 

increasing the risk of disease transmission to not only commercial operations but also the 

general public if the disease is zoonotic (Behravesh et al.2014; Pohjola et al.2016).  

In an attempt to mitigate this risk, there is a limited number of studies that have tried to 

characterise the risk of disease from backyard poultry to commercial poultry producers 

with a focus on the local spread of endemic diseases where backyard poultry are in close 

contact with both commercial poultry and wild birds or waterfowl  (Johnson et al.2004; 

Derksen et al.2008; Fiebig et al.2009). Further studies have also investigated the general 

structure of the backyard poultry sector in terms of its size and composition, the 

geographical distribution of households keeping poultry, and their knowledge and 

management practices of disease control in order to help assess the risk backyard poultry 

pose to the commercial poultry industry (Jutzi, 2005). 
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More recently, with improvements in our ability to track wild populations, an increasing 

number of studies have also investigated the risk of exotic disease being introduced into 

commercial poultry via direct contact with migratory bird populations but  also via 

contact with backyard poultry that have also been exposed to migratory birds (Hamilton-

West et al.2012; Wang et al.2013). For disease introduction, the latter  pathway is of 

growing concern with a rapid expansion in the number of households keeping poultry 

(USDA, 2013) in conjunction with the lack of regulations aimed at the backyard poultry 

sector and the varying levels of knowledge between backyard producers that often result 

in less than optimal levels of biosecurity (Smith and Dunipace, 2011; Schembri et al.2015). 

However, in order to fully characterise these risks, studies must be able to accurately 

capture information on both backyard poultry and wild birds as well as being able to 

determine if any contact pathways exist between these populations and commercial 

poultry enterprises. 

In New Zealand, a number of studies have used a range of data sources to characterise the 

risk from backyard poultry to the commercial poultry industry. For example, Zheng and 

colleagues (2010) used a traditional cross-sectional survey data and diagnostic samples 

from 54 non-commercial poultry owners to identify several possible transmission 

pathways that posed a risk of spreading avian influenza (AI) to commercial operations 

with survey results highlighting the potential for backyard poultry to be exposed to AI 

through direct contact with wild birds (Zheng et al.2010). This is in keeping with a further 

study by Lockhart and colleagues (2010) that also used a cross-sectional survey to record 

details from a subset of backyard poultry producers in urban and peri-urban settings 

within New Zealand, with results also highlighting the importance of strict biosecurity 

measures on commercial farms due to the close proximity of backyard poultry with a low 

level of biosecurity (Lockhart et al.2010a).  
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However, in both of these previous studies, it was recognised that the data most likely 

failed to capture a large proportion of contacts involving backyard producers due to the 

limitations in both the geographic region and/or time scale over which the data was 

collected. Similar limitations have seen studies starting to utilise less traditional data 

sources in an attempt to infer information on the demographic and contact patterns of 

backyard producers such as the registration data at poultry shows (Hernández-Jover et 

al.2013; Hernández-Jover et al.2015). These alternative data sources offer opportunities 

to re-evaluate the risks posed by backyard producers. For example, in New Zealand, a 

popular method to buy and sell both poultry and livestock is through the online trading 

website TradeMe® (www.trademe.co.nz) and although it is not possible to determine what 

fraction of all backyard poultry trades occur through this site, it is anecdotally believed to 

be the most popular marketing channel, with over 3 million registered users out of a total 

country population of 4.2 million, representing a significant number of backyard poultry 

movements that have not been accounted for. 

Data sources regarding the spatial distribution and movement patterns of wild birds is far 

more limited and although data and information on migratory and resident birds is 

frequently collected for research, management and conservation, it is often restricted to 

only a small number of species within a single geographical area (Isaac et al.2014). This is 

the case with several surveys in New Zealand that have looked at wild bird populations 

many of which have been a part of the national surveillance program for AI, and therefore 

have been focused on those species considered high risk (Tana et al.2007; Frazer et 

al.2008-2010; Langstaff et al.2009). More recently, studies have turned to citizen science 

projects as alternative data sources that can be used to help determine the distribution of 

different species. A citizen scientist is any member of the general public that collects and 

analyses data typically as part of a collaborative project with a scientific team. Despite the 

generated data often being less structured with a high amount of variability and bias, it is 

high in quantity and has allowed the scientific community to address many questions on 
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broad temporal and spatial scales that would otherwise be logistically or financially 

unfeasible (Dickinson et al.2010; Bird et al.2014). One such project looking at the 

abundance and distribution of wild birds is eBird (https://ebird.org). Launched in 2002 

by the Cornell Lab of Ornithology at Cornell University and the National Audubon 

Society, eBird is the world’s largest biodiversity-related citizen science project and 

although originally recordings were restricted to the Western Hemisphere, the project 

was expanded in 2008 to include New Zealand (https://ebird.org/newzealand) and then 

again in 2010 for worldwide coverage. Since its launch over 420,000 people have 

participated in the project with more than 590 million bird observations in the database 

contributing to over 220 peer-reviewed scientific publications (eBird, 2018).  

The main objectives of this study were to explore the use of different data sources to (i) 

characterise the trading network of backyard poultry sold through the online auction 

website TradeMe®, and (ii) determine the spatial pattern of wild birds that are known to 

migrate to, from and within New Zealand using eBird observations, (iii) investigate the 

risk of diseases spreading between non-commercial poultry, backyard poultry and wild 

birds populations and, (iv) evaluate the use of these datasets in  supporting disease 

preparedness and response efforts. 

4.3. Materials and Methods 

4.3.1. Commercial poultry network 

Contact details for commercial poultry enterprises in New Zealand were obtained from 

the Poultry Industry Association of New Zealand (PIANZ) and the Egg Producers’ 

Federation (EPF). The database was accessed in June 2016 and listed 426 enterprises 

including hatcheries, breeding and rearing units, layer farms and broiler production 

units. The addresses provided in the database were used to retrieve longitude and latitude 

co-ordinates using the R package ggmap (Kahle and Wickham, 2013). The co-ordinates 

were then plotted to visualise the spatial distribution of poultry enterprises across New 
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Zealand. Additional choropleth maps were constructed using the R package ggplot2 

(Wickham, 2016) to identify the territorial authorities (TAs) with the highest density of 

commercial premises for comparison with a map showing the spatial distribution of 

migratory birds described below. 

In addition, a contact network was constructed to show all on- and off-farm movements 

relating to feed, waste, litter, live birds, hatching eggs, table eggs and additional poultry 

products i.e., offal and feathers. The reported movements were obtained from the results 

of an industry survey administered to all active poultry producers in New Zealand. The 

survey was based on a previous questionnaire conducted by Lockhart and colleagues in 

2006 (Lockhart et al.2010b) and modified in collaboration with PIANZ, EPF and the 

Ministry for Primary Industries (MPI) with an aim of collecting information on the farm 

demographics, contact patterns, and biosecurity practices of New Zealand commercial 

poultry operations. The study was judged to be low risk thorough peer evaluation and 

consequently was not formally reviewed by any of the University’s Human Ethics 

Committees. Full details on the survey design and implementation have been described 

in Chapter 3 and a copy of the complete survey questionnaire is available in Appendix A. 

In the network, nodes represented commercial poultry premises that responded to the 

industry survey with undirected edges linking nodes who reported the use of a common 

company delivery goods or services on- and off-farm (Figure 4.1). A network graph was 

constructed using a force-based algorithm proposed by Fruchterman and Reingold 

(1991) in the R package igraph (Csardi and Nepusz, 2006). Basic network statistics such 

as measures of centrality and cohesion have been described in Chapter 3, while for this 

study the network graph was plotted onto a geographical map so that nodes were 

positioned on their corresponding farm coordinates. The plot was created using the R 

package ggplot2 (Wickham, 2016) for comparison with the spatial networks constructed 

from the sale of backyard poultry described below.  
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Figure 4.1. Schematic diagram showing the construction of the commercial poultry 

network with (a) showing three farms connected to transporting vehicles belonging to 

different companies: one providing feed, the other removing waste. All three farms use 

the waste company (blue lines) whilst only Farms 2 and 3 use the feed company (orange 

lines) with those farms linked to the same company being directly linked in (b) such that 

farms 1 is connected to farms 2 and 3 via the movement of waste, and farms 2 and 3 are 

connected via the both the movement of feed and waste.  

4.3.2. Backyard poultry network 

4.3.2.1. TradeMe® transactions 

A data extract containing records of all online poultry auction sales occurring through 

the TradeMe® website over a seven-year period from 01st January 2012 to 31st December 

2018 was provided.  This included details on the (i) trade date, (ii) anonymized seller and 

buyer identification numbers, (iii) geographic location of the seller and buyer at the 

region and suburb levels, (iv) type of poultry traded (bantams, chickens, and ducks), (v) 

number of animals traded and, (vi) free-text descriptions provided by the seller on the 

poultry for sale. It should be noted that the number of animals traded represents the lower 

bounds since there were many trades that had “1” recorded under number of animals 

traded, but where the free-text descriptions indicated that multiple animals were being 

sold. Hereafter, we collectively referred to sellers and buyers registered on the TradeMe® 

website as “traders”.  Trades to Australia and the Chatham Islands were excluded from 

the analysis as they were considered to be a low disease risk. Descriptive statistics were 

129



Chapter 4 | Disease risk from backyard poultry and migratory birds 

calculated summarising the number and frequency of transactions and the number of 

active traders each year during the study time period, stratified by poultry type. All 

analyses were performed using the R statistical software (R Core Team, 2018). 

4.3.2.2. Backyard poultry networks 

For each year, two separate networks were constructed: (i) with nodes representing the 

traders and (ii) with nodes representing suburbs. The trader network was used to 

characterise patterns in individual connectivity whilst the suburb network was used to 

characterise patterns in spatial connectivity.  Data from the 2018 calendar year (01st 

January 2018 to 31st December 2018) have been used as an exemplar year.  Network 

graphs were constructed using the R package igraph (Csardi and Nepusz, 2006) with links 

between nodes representing a poultry transaction for all poultry types (chickens, bantams 

and ducks) in both the trader networks and spatial networks. The network statistics, 

described in Table 4.1, were calculated for each network including node in- and out-

degree, betweenness, density, diameter, average path length, network clustering co-

efficient, number of strongly connected and weakly connected components (SCC and 

WCC respectively), the size of the giant strongly connected component (GSCC) and the 

giant weakly connected component (GWCC), network reprocicity, and network 

fragmentation. Degree distributions for the number of inward contacts, number of 

outward contacts, and the total number of contacts, were also calculated for the trader 

network to determine if the scale-free property in which a small number of individuals 

contribute a disproportionately large number of links in the network (Barabási, 2009) 

existed as is common in other commercial livestock networks (Hardstaff et al.2015).  

To visualize the spatial pattern of poultry sales and identify regions with a large amount 

of trade, the spatial networks were plotted onto geographical maps using the R package 

ggplot2 (Wickham, 2016) in which nodes were positioned on the regional centroids 

corresponding to the geographic location of the trader as identified in the database. Three 
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additional network graphs were constructed for each year to compare and contrast the 

networks constructed from the transaction of the different poultry types. In each graph 

the nodes represented the traders whilst the links between nodes represented the 

transaction of either chickens, bantams, or ducks.  

Table 4.1. Network analysis glossary of terms used to describe the trader networks and 

spatial networks representing poultry auction sales occurring through the TradeMe® 

website in New Zealand.  

Network 
statistic 

Definition 

Density The proportion of all possible links between nodes in the network that are 
present 

Diameter The longest path between any two pair of nodes in the network 
In-degree Number of individual trades received by a node in the network 
Out-degree Number of individual trades dispatched by a node in the network 

Total-Degree The sum of the in- and out-degree 
Betweenness The frequency a node is found on the shortest path between any other two 

pair of nodes in the network 
Average path 
length 

The average shortest path between any pair of nodes in the network 
averaged over all pairs of nodes 

Clustering 
coefficient 

For any node in the network the clustering coefficient is the proportion of 
neighbouring nodes in direct contact with the node that are also connected 
to each other.  

CC CC: Connected Components. A set of nodes within the network in which all 
nodes are mutually accessible. In a strongly connected component (SCC) 
each pair of nodes in the connected component is reachable by following the 
direction of the link whereas in a weakly connect component (WCC) the 
direction of the link is ignored. 

GSCC GSCC: Giant Strongly Connected Component. The largest strongly 
connected component (SCC) in a directed network in which all nodes are 
mutually accessible by following the direction of the link.  

GWCC GWCC: Giant Weakly Connected Component. The largest weakly 
connected component (WCC) in the network that is an undirected network 
in which all nodes are linked. 

Reciprocity The likelihood of nodes to be mutually linked i.e., the likelihood that any 
pair of nodes in the network both receive and dispatch trades between each 
other.  

Fragmentation The proportion of node pairs for which a path does not exist between them. 
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4.3.2.3. Backyard poultry disease simulation model 

To explore the potential for an epidemic disease, such as avian influenza, to spread across 

New Zealand through the movement of backyard poultry, a Susceptible-Infectious (SI) 

network simulation model was created modelling poultry trades between the 134 suburb 

nodes found in the largest of the spatial networks. Given the limited data to inform 

within-suburb transmission dynamics, the objective of this model was to reproduce the 

“worst case” scenario assuming maximum transmission between suburbs; such that, if a 

movement occurred between an infected suburb to a susceptible suburb the probability 

of tranmission was fixed at one with no delay between the time in which a transmission 

event occurred and the time it takes for the entire suburb to be infected. Using this 

approach network structures that support worst-case scenarios can be identified, an 

exercise that has been applied to many diseases, such as smallpox (Kaplan et al.2002), 

measles, norovirus (Daughton et al.2017) and influenza (Keeling and Danon, 2009), for 

which the available data precludes accurate prediction of disease spread but models have 

still been important decision support tools aiding public health planning.  

For each model simulation, a single suburb was selected as the primary infectious case on 

any random day between 01st January 2012 and 31st December 2018.  The simulation was 

then updated on a daily basis with any trades from an infectious source suburb causing 

the destination suburb to become immediately infectious.  The explicit patterns of daily 

transactions recorded in the data set were used to model the connections between suburb 

nodes.  The simulation was stopped either when all the suburb nodes were infected or 

when a maximum of seven years had elapsed.  If the simulation reached the calendar date 

of 31st December 2018 before either of those conditions were met, we recycled the data 

starting from 01st January 2012 with a total of 10,000 simulations performed.  For each 

simulation, the following information was recorded: (i) the date of seeding, (ii) the suburb 

in which the disease was seeded, (iii) whether or not an individual suburb node became 

infected during the run, and (iv) the number of days from the start of the outbreak until 
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each individual suburb node became infected.  For each individual suburb node, 

descriptive statistics were generated on the mean and median number of days it took for 

the suburb node to become infected across the 10,000 simulation runs. 

4.3.3. Migrating wilds birds and waterfowl 

Bird observation data was extracted from the citizen science project, eBird (Sullivan et 

al.2009); an online bird monitoring project in which participants report the time, 

location, search effort and count of birds in a standardized manner. New Zealand 

presence-absence checklist data from 01st January 2012 to 31st December 2018 was 

requested for this analysis, with access granted on the 04th April 2019. Over 1 million 

observations had been recorded, however for the purpose of this analysis only records 

that could identify the bird species was used. To begin with, a choropleth map showing 

the total number of bird species reported within each TA in each year was created as a 

proxy measure for bird population and diversity. Those bird species not classified as 

migratory birds were then excluded in further analyses. A complete list of bird species 

known to migrate to, from or within New Zealand was obtained from the online 

encyclopaedia of New Zealand birds (http://nzbirdsonline.org.nz). For this analysis, it 

was assumed that seabirds that are known to spend large periods of time flying at sea, 

returning to land only for breeding, would be a low disease risk and therefore were 

excluded including all albatrosses (Diomedeidae family), petrels (Oceanitidae family), 

skuas (Stercorariidae family) and gannets (Sulidae family). The remaining migratory bird 

species were crossed referenced with the eBird data extract using both their common and 

scientific names to exclude non-migratory birds from the dataset. The remaining records 

were then categorised into resident bird species that only migrate within New Zealand 

and migratory bird species that migrate to and from New Zealand. These categories were 

used to distinguish between those bird species that present more of a risk for spreading 

endemic diseases within New Zealand versus bird species that present a risk of 

introducing an exotic disease from overseas respectively. Records observed on the islands 
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surrounding New Zealand coastline including the Auckland Islands, Snares Islands, 

Chatham Island, Pitt Island, Campbell Island and Antipodes Island were further excluded 

as these observations were also assumed to have little impact on disease risk.  

In addition to the migratory bird species described above, all birds belonging to the family 

Anatidae, a biological family of water birds that includes ducks, geese, and swans, that do 

not migrate but are known to be found in New Zealand were also identified in the online 

encyclopaedia of New Zealand birds (http://nzbirdsonline.org.nz) and cross-referenced 

with the eBird data extract. This family of birds was included in the analysis as they are 

recognised as one of the largest natural host reservoirs for low pathogenic AI (Webster et 

al.1992) that can not only result in severe disease and fatality in chickens (Short et al.2015) 

but  also presents a major risk for the introduction of highly pathogenic avian influenza 

virus H5N1 (HPAI) into New Zealand. Currently, the H5N1 virus has been detected in 

many parts of Asia, Europe and Africa with over 800 cases and 400 deaths in humans 

reported since 2003 and millions of deaths in domestic poultry and wild birds as a result 

from both the effects of the disease and culling efforts (Alexander, 2007; Whitworth et 

al.2007; WHO, 2019). However, the H5N1 virus has yet to be detected in New Zealand 

although a number of species within the Anatidae family have been previously found 

positive for low pathogenic avian influenza, including those of the H5 or H7 subtype 

(Rawdon et al.2007) that have the potential to evolve into HPAI viruses (Moone et 

al.2014). 

To visualize the spatial distribution of the migratory birds, both resident and exotic, and 

the water birds in the eBird data extracts, longitude and latitude coordinates were used to 

plot a map showing the location at which every observation was recorded in each given 

year over the seven-year study period. Choropleth maps were constructed using the R 

package ggplot2 (Wickham, 2016) to identify regions with a high number of observations. 

To account for higher detection rates in urban centres with larger populations, maps were 
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adjusted by the population density within each TA using population count data from the 

2013 census accessed via StatsNZ (https://www.stats.govt.nz).  

4.3.4. Disease transmission risk between commercial and non-commercial 

poultry 

To identify regions with a high chance of contact between commercial poultry and either 

backyard poultry or wild birds, a range of bivariate choropleth maps were constructed 

highlighting those TAs with both a high number of commercial poultry enterprises and 

(i) backyard poultry trades, (ii) bird species migrating to and from New Zealand, (iii) bird 

species migrating only within New Zealand, and (iv) bird species belonging to the 

Anatidae family. Additional bivariate choropleths maps were also constructed to identify 

regions with a high number of backyard poultry trades and (i) bird species migrating to 

and from New Zealand, (ii) bird species migrating only within New Zealand, and (iii) bird 

species belonging to the Anatidae family.  

Within each TA the number of commercial poultry premises and bird observations were 

calculated using the point data described above including all the poultry producers 

registered in the PIANZ-EPF database (i.e., both survey responders and non-responders). 

For backyard poultry trades, the spatial network was used to calculate an annual degree 

measure for each TA; that is the total number of trades made to, from or within the region 

over a one-year period. For each bivariate map a 9-class sequential colour scheme with 

each TA being categorized in to three classes: low, medium and high such that when 

variables were combined (i.e., the number of commercial poultry enterprises, the annual 

trading degree or the number of wild bird observations) all combination resulted in a 3x3 

grid that could be reflected using the 9-class sequential colour scheme. The cut-off points 

within each variable were calculated by dividing the range into terciles, creating the three 

classes. TAs could then be grouped by tercile with those in the lowest tercile considered 

to have low values relative to the other observations, those in the middle tercile having 

medium values and those in the highest tercile considered to have high values. 
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4.4. Results 

4.4.1. Commercial poultry network 

Overall, 414 active commercial poultry premises were identified in the PIANZ-EPF 

database with a high density of productions premises located within Auckland, New 

Plymouth, Selwyn, Waikato, Matamata-Piako and Waimakariri (Figure 4.2). As of 

October 2016, 29.0% (120/414) of the poultry producers had returned a completed postal 

survey with responses varying by production type such that broiler enterprises 

constituted 47.5% (57/120) of the survey responses whilst 19.2% (23/120) were layer 

enterprises, 1.67% (2/120) were pullet enterprises, 8.33% (10/120) were mixed pullet and 

layer enterprise, 20.0% ( 24/120) were breeder enterprises, 0.83% (1/120) were turkey 

enterprise, and 2.5% were duck enterprises. For the purpose of this study a full report of 

the survey findings has been omitted, however readers are directed to Chapter 3 for a 

comprehensive description of the survey results.   

The contact network between the 120 survey respondents had 16,640 edges representing 

on- and off-farms movements relating to feed (5,453/16,640; 32.8%), live birds and 

hatching eggs (7,444/16,640; 44.7%), poultry waste and litter (3,583/16,640; 21.5%) and, 

poultry products and table eggs (160/16,640; 9.6%). Network statistics have been shown 

in Table 4.2 but to summarise, there was a large variation in the node degree with some 

farms reporting only a single movement in comparison to other which had 50 on- and 

off-farm movements, however despite this range, the majority of farms only reported  a 

small number of movements resulting in a skewed degree distribution. In addition, the 

average shortest path between any two pair of farms in the network was only 2.42 whilst 

there was also a high clustering coefficient of 0.824 with geographical clustering and 

network hubs surrounding urbanised centres such as Auckland, New Plymouth and 

Christchurch (Figure 4.2).  
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Table 4.2. Summary network statistics for the New Zealand commercial poultry network 

showing the yearly on- and off-farms movements relating to feed, live birds, hatching 

eggs, poultry waste, dead birds, litter, and all other poultry products. 

Network statistics Commercial poultry 
Number of nodes 120 
Number of links 16640 
Density 2.00x10-1 
Diameter 7 
Mean degree (min-max) 29.00 (1-50) 
Mean betweenness (min-max) 81.44 (0-740) 
Average path length 2.42 
Clustering coefficient 0.824 
Total number of SCCa 
(Number of nodes in GSCCa) 

NA 

Total number of WCCb  
(Number of nodes in GWCCb) 

3 (188) 

Reciprocity NA 
Fragmentation 3.32x10-2 
a SCC: Strongly Connected Component - A set of nodes within the network in which all nodes 
are mutually accessible by following the direction of the links. The giant strongly connected 
component (GSCC) is the largest SCC.  
b WCC: Weakly Connected Component - A set of nodes within the network in which all nodes 
are mutually accessible ignoring the direction of the links. The giant weakly connected 
component (GWCC) is the largest WCC. 

NA: network statistics not applicable for an undirected network graph 
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4.4.2. Backyard poultry network 

4.4.2.1. TradeMe® transactions 

Over the seven-year period from 01st January 2012 to 31st December 2018, there were a 

total of 137,270 recorded poultry trades between 59,225 unique traders registered on the 

TradeMe® website. A consistent trading pattern was seen across each of the study years 

with only a small majority of the traders trading more than one type of poultry (i.e., 

chickens, bantams or ducks). Over the entire study period, only 2.4% (1,456/59,225) of 

traders traded all three types of poultry compared to 6.8% (4,038/59,225) trading bantams 

and chickens, 0.2% (136/59,225) trading bantams and ducks, 5.7% (3,364/59,225) trading 

chickens and ducks, 3.5% (2,126/59,225) trading only bantams, 4.8% (2,856/59,225) 

trading only ducks, and 76.4% (45,249/59,225) trading only chickens. Descriptive 

statistics on the frequency of trades, the estimated lower bounds on the number of 

animals traded, and the number of unique traders stratified by poultry type and year are 

presented in Tables 4.3, 4.4, and 4.5 respectively. To summarise, the average number of 

trades made in a year equals 19,610 trades involving 23,768 birds to and from 8,460 active 

traders. The frequency of poultry trades remained relatively consistent between each year 

in the study period with the number of trades peaking during in the summer months of 

October through to February (Figure 4.3). On average, 1.38 birds were recorded under 

the number of animals traded with a maximum of 70 birds recorded under a single 

transaction although 93.7% (128,627/137,270) of trades had “1” recorded under the 

number of animals traded including 89.7% (15,979/17,814) from 01st January 2018 to 

31st December 2018. 

4.4.2.2. Backyard poultry networks 

The trader network constructed from poultry trades between 01st January 2018 and 31st 

December 2018, had a total of 16,453 unique edges between 13,291 uniquely identified 

traders whilst the spatial network constructed from poultry trades within the same 

timeframe had 2,712 unique edges between 134 unique suburbs. Network statistics for 
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Table 4.3. Frequency of poultry trades occurring through the online auction website 

TradeMe® in New Zealand stratified by the type of bird (n = 3) and year of trade. 

2012 2013 2014 2015 2016 2017 2018 Total 

Poultry 
Chickens 16,895 17,176 16,074 16,632 15,918 15,436 15,113 113,244 

Bantams 2,494 2,179 1,909 1,681 1,618 1,494 1,105 12,480 

Ducks 1,508 1,598 1,749 1,779 1,715 1,601 1,596 11,546 

Total 20,897 20,953 19,732 20,092 19,251 18,531 17,814 137,270 

Table 4.4. Estimated lower bounds on the number of poultry traded through the online 

auction website TradeMe® in New Zealand stratified by the type of bird (n = 3) and year 

of trade. 

2012 2013 2014 2015 2016 2017 2018 Total 

Poultry 
Chickens 18,455 19,157 19,060 21,160 22,956 21,483 21,320 143,591 

Bantams 2,574 2,373 2,019 1,821 2,048 1,711 1,252 13,798 

Ducks 1,526 1,637 1,900 1,979 1,949 1,867 2,069 12,927 

Total 22,555 23,167 22,979 24,960 26,953 23,194 22,572 166,380 

Table 4.5. Number of uniquely identified poultry traders utilizing the online auction 

website TradeMe® in New Zealand stratified the type of bird (n = 3) and year of trade. 

2012 2013 2014 2015 2016 2017 2018 Total 

Trader 
Sellers 3,540 3,827 3,785 3,774 3,485 3,289 3,288 14,812 

Buyers 11,075 11,625 10,909 11,239 11,091 11,079 10,944 53,268 

Total 13,232 14,051 13,371 13,755 13,470 13,422 13,291 59,225 
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the trader network and spatial network have been summarised in Tables 4.6 and 4.7, 

respectively, with additional statistics for the subsequent study years presented in 

Appendix C (Tables C1 and C2). To summarise, all the trader networks for the different 

poultry type (i.e., chicken, bantams and ducks) in 2018 only had a small proportion of all 

possible connections actually realised with a density of 9.3x10-5 for the network 

constructed from all poultry trades. Networks varied in their diameter, ranging from 5-

24 and their average path length ranging from 1.37-8.55 emphasising the difference 

between the number of traders and frequency at which chickens are traded in comparison 

to bantams and ducks.  

The reciprocity, fragmentation and clustering coefficients between the networks were 

reasonable similar. Reciprocity equalled zero for the trader networks showing the 

transaction of bantams and ducks whilst being only slightly above zero for the chicken 

trader network. This indicates that only a small fraction of bi-directional links are present 

in the network. Fragmentation was slightly below one for all the networks whilst the 

clustering coefficients all ranged between 0.001 and 0.006 indicating an overall lack of 

cohesiveness between all the traders in the networks. This result is further emphasised by 

the small number of traders identified in the GSCCs in each graph. For example, when all 

poultry transaction are considered the network contains 13,200 SCC with the largest 

GSCC only containing 0.6% (89/13,291) of traders however, when the direction of the 

trade is ignored the network contains 630 WCC with the largest GSWC containing 89.1% 

(11,847/13,291) of traders (Table 4.6). This highlights the limited number of bidirectional 

trades and emphasises the fragmentation in the network. 
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Table 4.6. Summary network statistics for the trader network showing poultry trades 

occurring through the online auction website TradeMe® in New Zealand from 01st January 

2018 to 31st December 2018. 

Network statistic Chickens Bantams Ducks All Poultry 
Number of nodes 11,804 1,087 1,647 13,291 
Number of links 14,000 1,002 1,512 16,453 
Density 1.01 x 10-4 8.49 x 10-4 5.58 x 10-4 9.32 x 10-5 
Diameter 24 5 5 20 

Mean in-degree (min-max) 
1.19 

(0-42) 
0.92 

(0-10) 
0.92 

(0-15) 
1.24 

(1-50) 

Mean out-degree (min-max) 
1.19 

(0-395) 
0.92 

(0-63) 
0.92 

(0-39) 
1.24 

(0-395) 

Mean betweenness (min-max) 
364.30 

(0-266,038) 
1.72 

(0-521) 
0.47 

(0-123) 
538.40 

(0-382,789) 
Average path length 8.55 1.91 1.37 7.56 
Clustering coefficient 1.24 x 10-3 1.57 x 10-3 5.33 x 10-3 1.62 x 10-3 
Total number of SCCa 

(Number of nodes in GSCCa) 
11,738 

(64) 
1,085 

(3) 
1647 
(1) 

13,200 
(89) 

Total number of WCCb 
(Number of nodes in GWCCb) 

587 
(10,428) 

161 
(677) 

229 
(1,004) 

630 
(11,847) 

Reciprocity 5.714 x 10-4 0.00 0.00 8.509 x 10-4 
Fragmentation 1.00 1.00 1.00 1.00 
a SCC: Strongly Connected Component - A set of nodes within the network in which all nodes 
are mutually accessible by following the direction of the links. The giant strongly connected 
component (GSCC) is the largest SCC.  
b WCC: Weakly Connected Component - A set of nodes within the network in which all nodes 
are mutually accessible ignoring the direction of the links. The giant weakly connected 
component (GWCC) is the largest WCC. 
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Table 4.7. Summary network statistics for the spatial network showing poultry trades 

occurring through the online auction website TradeMe® in New Zealand from 01st January 

2018 to 31st December 2018. 

Network statistic Chickens Bantams Ducks All Poultry 
Number of nodes 132 112 118 133 
Number of links 2424 447 636 2712 
Density 1.40x10-1 3.60x10-2 4.61x10-2 1.54x10-1 
Diameter 6 8 6 4 

Mean in-degree (min-max) 
1.19 

(0-42) 
0.92 

(0-10) 
0.92 

(0-15) 
1.24 

(0-50) 

Mean out-degree (min-max) 
1.19 

(0-395) 
0.92 

(0-63) 
0.92 

(0-39) 
1.24 

(0-395) 

Mean betweenness (min-max) 
364.30 

(0-266038) 
1.72 

(0-521) 
0.47 

(0-123) 
53.40 

(0-382789) 
Average path length 2.04 3.06 2.85 2.00 
Clustering coefficient 0.480 0.243 0.298 0.504 
Total number of SCCa 

(Number of nodes in GSCCa) 
27 

(106) 
45 

(68) 
39 

(80) 
23 

(111) 
Total number of WCCb 
(Number of nodes in GWCCb) 

1 
(132) 

1 
(112) 

1 
(118) 

1 
(133) 

Reciprocity 0.446 0.246 0.311 0.476 
Fragmentation 0.36 0.63 0.54 0.30 
a SCC: Strongly Connected Component - A set of nodes within the network in which all nodes 
are mutually accessible by following the direction of the links. The giant strongly connected 
component (GSCC) is the largest SCC.  
b WCC: Weakly Connected Component - A set of nodes within the network in which all 
nodes are mutually accessible ignoring the direction of the links. The giant weakly connected 
component (GWCC) is the largest WCC. 

Within each network, there was a huge range in the node degree although the vast 

majority of poultry traders only had a degree of one. For example in the trader networks 

showing transactions for all poultry 69.9% (9,284/13,291) and 14.5% (1,924/13,291) of 

traders had a degree of one or two, respectively, compared to a smaller proportion with 

degrees ranging between 3 to 10 (1,732/13,291; 13.0%), 11 to 25 (218/13,291; 1.6%), and 

26 to 395 (133/13,291; 1.0%). This skewed degree distribution suggests that a small 

majority of the nodes are responsible for the majority of connections which is likely to 

lead to the formation of network hubs. Highly connected individuals acting as hubs in the 

poultry trader network are highlighted in Figure 4.4. Similar variation in the network 
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Figure 4.4. Trader contact networks for (a) chicken*, (b) bantam, (c) duck and (d) all 

poultry* trades occurring through the online auction website TradeMe® in New Zealand 

from 01st January 2018 to 31st December 2018.  Node colour and size highlights those 

nodes with a degree centrality measure ≥50 for bantam and duck trades (red: degree ≥50, 

orange: degree <50) and ≥100 for chicken and all poultry trades (red: degree ≥100, 

orange: degree <100). To improve clarity in the visualization, only connections to and 

from nodes with a degree ≥100 are shown in the networks showing (a) chicken and (d) 

all poultry trades. 

 

statistics was seen between all spatial networks for the different poultry type however all 

the spatial networks appeared to have a higher level of cohesiveness. For example, when 

considering all poultry transactions, the observed network reciprocity was 0.4, 

fragmentation was 0.3, the clustering coefficient was 0.5 and 82.8% (111/134) of the 
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suburbs formed the GSCC. Figure 4.5 further highlights the number of connections 

between all regions of the country with particularly strong linkages between the major 

urban centres in New Zealand. 

 

4.4.2.3. Backyard poultry disease simulation model 

Out of the 10,000 simulation runs, 9,642 (96.4%) resulted in all 134 suburb nodes 

becoming infected while the remainder were generally outbreaks that were seeded on 

suburb nodes with only inwards contacts. The time it took for any individual suburb node 

to become infected during an outbreak ranged between 0 to 2,555 days with a mean equal 

to 176 days. The full summary data on the number of days until infection for each 

individual suburb node is presented in Appendix C (Table C3).  Across all 10,000 

simulations, the number of suburb nodes that became infected during the first 14 days 

ranged between 1 to 103 suburbs, with a mean equal to 24, whilst the number of suburb 

nodes that became infected during the first 30 days ranged between 1 to 123 suburbs, with 

a mean equal to 51. The top 5 suburbs most frequently infected within the first 14 days of 

a simulation were Manukau City, Auckland City, Waitakere City, Hamilton, and North 

Shore. 

 

4.4.3. Migrating wilds birds and waterfowl 

In total 983,257 reports identifying bird species had been documented through the New 

Zealand eBird monitoring website from 01st January 2012 to 31st December 2018, overall 

sighting 304 bird species including migratory and non-migratory birds. The top five 

regions with the highest number of reported species were Southland (202 species), Far 

North (186 species), Taupo (185 species), Waitaki (185 species) and Marlborough (163 

species) (Figure 4.6). When reports were crossed reference with the list of migratory birds 

retrieved from the online Encyclopaedia of New Zealand birds 73,990 reports remained 

sighting 80 different bird species known to migrate to, from or within New Zealand. The 

majority of these migratory bird species belonged to the order Charadriiformes: a diverse  
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Figure 4.5. Spatial networks for (a) chicken, (b) bantam, (c) duck and (d) all poultry 

trades occurring through the online auction website TradeMe® in New Zealand from 01st 

January 2018 to 31st December 2018. Edge colour indicates the frequency of trades (i.e., 

the number of days between two consecutive trades going to and from the same two 

nodes). 
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order of birds containing coastal seabirds and wading birds, however for this analysis, a 

large proportion (48/80; 60.0%) of the species in this order were excluded from further 

analysis resulting in a final data extract containing a total of 72,749 reports sighting 32 

different bird species (Appendix C, Table C4) from across 10,000 unique locations. Out 

of these species only three; the South Island oystercatcher (Haematopus finschi), the 

double-banded plover (Charadrius bicinctus), and the wrybill (Anarhynchus frontalis) 

were identified as resident birds that migrate only within New Zealand with sightings of 

these three species accounting for 27.1% (19,692/72,749) of the observations in the 

extracted data. From the online Encyclopaedia of New Zealand birds an additional 24 bird 

species belonging to the Anatidae family (Appendix C, Table C5) were identified of which 

91.7% (22/24) had been reported to eBird at least once with a total of 90,768 observations. 

During the period between 01st January 2018 and 31st December 2018, a total of 29,080 

reports had been documented in eBird including 8,109 sightings of resident bird species 

known to migrate within New Zealand, 20,970 sightings of exotic migratory bird species, 

and 24,182 sightings of water birds belonging to the Anatidae family. Observations had 

been made across New Zealand however the top three regions with the highest number 

of bird reports across all species was Auckland, Hauraki, and Waimakariri with a similar 

pattern seen when the species are grouped such that Auckland had the highest count of 

resident bird species, exotic bird species, and water birds. However, after taking into 

account the regional population density the top three regions were Southland, Mackenzie, 

and Westland for all bird species known to migrate to, from or within New Zealand, and 

Southland, Mackenzie and Clutha for water birds (Figure 4.6). A similar pattern can be 

seen across all the study years although the total number of reports made each year can 

been seen to dramatically increase (Appendix C, Figures C3-C8). 
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Figure 4.6. Choropleth maps showing the number of bird sighting reported to eBird in 

each of the 67 territorial authorities from 01st January 2018 to 31st December 2018 with 

(a) indicating the total number of bird species reported, (b) the number of resident wild 

birds that are known to migrate within New Zealand, (c) the number of exotic wild birds 

known to migrate to and from New Zealand, and (d) the number of resident water birds 

within the Anatidae family. The raw point data is presented alongside each map, with the 

choropleth maps adjusted for by the population density in each region.  
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4.4.4. Disease transmission risk between commercial and non-commercial 

poultry 

Overall, the bivariate map showing spatial overlap between commercial poultry premises 

and backyard poultry trade highlights a number of regions distributed across New 

Zealand that have a high annual degree (i.e., a high number of movements over a single 

year), suggesting that there is a lot of backyard poultry moving to, from or within the 

region and a high density of commercial poultry premises; including the Far North, 

Kaipara, Waipa, South Waikato, Kapiti Coast and Waitaki (Figure 4.7). In comparison to 

backyard poultry, the spatial overlap between commercial poultry premises and wild 

birds, both resident and exotic, is far more limited with many regions with a high number 

of wild bird observations having very few or no commercial poultry premises present 

although, out of those limited number of high risk regions most have been identified on 

the North Island and are also those regions with a high number of backyard poultry trades 

including; the Far North, Whanagarei, Waikato, Hauraki, Whanganui and Hastings 

(Figure 4.7).  

For backyard poultry, there is a greater number of regions on the South Island; including 

the Tasman, Dunedin, Timaru, and Waimakariri, that have been identified as having a 

high risk of contact between backyard poultry and resident wild birds in comparison to 

the risk of contact with exotic wild bird, for which there is a greater number of high risk 

regions in the North Island (Figure 4.7). Lastly, the bivariate maps showing spatial overlap 

between water birds and both commercial poultry and risk regions for contact between 

backyard poultry and water birds than commercial poultry and water birds including; the 

Tasman, Dunedin, Waimakariri, Waikato and Auckland, although there are also a 

number of regions with a high number of water bird observations and a fairly moderate 

density of commercial poultry enterprises (Figure 4.8). The bivariate maps showing the 

spatial overlap between water birds and migratory birds, highlight large areas across New 

Zealand where these populations may come into contacts with many high-risk regions  
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Figure 4.7. The spatial overlap between (a) the commercial poultry network (yellow 

edges) and the backyard poultry trade network (red edges), and bivariate choropleth 

maps showing further overlap between (b) commercial poultry enterprise (x-axis) and 

backyard poultry trade (y-axis), (c) resident migratory wild birds (x-axis) and backyard 

poultry trade (y-axis), (d) exotic migratory wild birds (x-axis) and backyard poultry trade 

(y-axis), (e) commercial poultry enterprises (x-axis) and resident migratory wild birds (y-

axis),  and (f) commercial poultry enterprises (x-axis) and exotic migratory wild birds (y-

axis). All data extracted from 01st January 2018 to 31st December 2018.  
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Figure 4.8. Bivariate choropleth maps showing the spatial overlap between resident water 

birds in the Anatidae family (y-axis) and (a) commercial poultry enterprises (x-axis), (b) 

backyard poultry trade (x-axis), (c) exotic migratory wild birds (x-axis), and (d) resident 

migratory wild birds. All data extracted from 01st January 2018 to 31st December 2018  
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across the South Island for both exotic and resident migratory bird species and several 

more regions in the North Island with overlap between water birds and exotic migratory 

birds. 

 

4.5. Discussion 

This study is the first to our knowledge that combines data from commercial, backyard, 

and wildlife to estimate the risk of disease transmission through avian populations. 

Analysis of the online auction data in New Zealand revealed highly active backyard 

poultry trade networks with strong spatial linkages. This spatial pattern is similar to that 

identified in the New Zealand commercial poultry network with the major population 

centres acting as network hubs including Auckland, New Plymouth and Christchurch. 

These hubs, with a high network degree, account for a large proportion of the movements 

in both the backyard and commercial network, a characteristic of scale-free networks that 

has been associated with both an increased risk and shorter time to infection in simulated 

outbreaks (Christley et al. 2005; Gates and Woolhouse, 2015), and suggests that these 

more central regions may be ideal to locate disease surveillance and control strategies. 

 

Within the commercial poultry network the existence of hubs may be explained by the 

limited number of businesses supplying all the major poultry producers with the majority 

of these small businesses operating out of the large urban centres where a large proportion 

of the country’s retail and trade is focused, however, the existence of hubs in the trader 

networks is not so easily explained. One possible reason is that some commercial layer 

farms will sell spent hens at the end of a laying cycle, which may be distributed to a large 

number of non-commercial farmers looking to raise backyard poultry. In fact, out of the 

survey respondents, 69.2% (83/120) of producers indicated selling either point-of-lay or 

end-of-lay birds, of which a large majority sighted TradeMe® as a means of advertising 

birds for sale. In addition to TradeMe®, producers also reported other methods including 

word-of-mouth or local newspapers, with customers picking birds up directly from the 
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production premises or in public meeting places. If this is the case, the directionality of 

these trades from commercial to backyard poultry producers poses a greater risk of 

disease introduction into the backyard poultry network from commercial poultry 

premises, however, this relationship remains unclear and without knowing the type of 

contacts being made it is difficult to fully characterise the disease risk to both sectors. 

Further work is needed to be able to distinguish between the different contact types 

linking the two networks as the risk of disease via local spreading mechanisms and the 

spatial proximity of farms in comparison to the risk from direct linkages though the 

movement of people and vehicles is not only important for different pathogens but also 

in understanding the best way  to mitigate the risk. Despite this uncertainty, these trades 

still represent a significant potential for contact to occur between backyard and 

commercial poultry.  

In addition to trade between backyard and commercial premises, some backyard traders 

may also be acting in a commercial fashion either raising specialty poultry breeds for sale 

or acting as distributors for other poultry sellers. This behaviour is hard to assess with 

limited information available about the buyers, sellers, or transaction details but, these 

breeders could also be acting as hubs in the network with a large number of connections.  

The increasing popularity of lifestyle blocks may also be another reason for the high 

number of backyard poultry trades near urban centres with a growing demand in regions 

such as Waikato, Bay of Plenty, Canterbury and Otago (MPI, 2018). The exact number of 

these lifestyle blocks remains unclear; however, recent estimates suggest there may be 

more than 140,000 “lifestylers” across New Zealand (MPI, 2018) with the majority 

located in peri-urban regions where owners have the space to manage a hobby farm or 

small-holding whilst also having easy access to urban centres. Important characteristics 

of these properties, such as the number of animals and species present, are often 

undetermined making it difficult to fully characterise the risk from these properties, 

however their prime location breaches the gap between the urban-rural divide with the 
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potential to facilitate many local spreading mechanisms between backyard and 

commercial poultry even if there is no direct contact through trade. Given this 

uncertainty, future research should focus on further describing these individuals with a 

large number of connections and the type of contacts they make as in the event of a disease 

outbreak, it would be these individuals that pose the greatest risk of disseminating 

pathogens within the network. Furthermore, with the identification of these key 

individuals there could be an opportunity for risk-based surveillance focusing on hubs in 

the trading network; a strategy that has been shown to be highly effective for disease 

detection given limited resources (Christley et al.2005; Gates and Woolhouse, 2015).  

 

Given the highly active trading community on TradeMe® a more general approach for 

risk-mitigation could also be taken by using TradeMe® as a platform to communicate 

important messages to backyard poultry producers in a response to a disease outbreak. 

Additionally, platforms such as TradeMe®,  with a large captured audience, may also act 

as valuable channels to educate and encourage good ownership practices such as 

biosecurity and animal health with many backyard producers having been shown to have 

less knowledge regarding disease management (Smith and Dunipace, 2011; Burns et 

al.2013) and a preference for more informal networks such as agricultural suppliers, 

community forums, and neighbours for solving animal health issues (Zheng et al.2010).  

In particular, increasing biosecurity within the backyard poultry sector could have a 

significant impact on reducing disease spread with results from the simulation models 

highlighting the potential spatial spread of disease as a result of backyard poultry trade. It 

is also important to note from an avian influenza risk perspective that many active traders 

dealt with both ducks and chickens, which could promote the co-mingling of different 

circulating avian strains (WHO, 2005).  Many of backyard poultry trades also occurred 

in the spring and summer months which coincides with the time at which susceptible 

juvenile wild birds begin to migrate between different waterways in New Zealand; a high-

risk period for the spread of avian influenza either from direct contact with wild birds or 
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from the environment (Watts et al.2016). To characterise this risk further and provide 

insights into which region pose the highest risk at which time periods, future analyses 

should examine the densities of wild birds by migratory seasons.  

 

The analysis of eBird data further highlights the potential risk of disease transmission 

from migratory birds with different regions posing a high risk for the spread of endemic 

diseases via resident birds versus the risk of a disease being introduced via exotic 

migratory birds, within the backyard poultry sector. However, the regional risk profiles 

for spread between commercial poultry and migratory bird, both resident and exotic, 

were very similar. However, despite regional differences, the number of high-risk regions 

remained low when considering the spatial overlap with migratory wild birds and both 

backyard and commercial poultry. This result may be explained by the high number of  

majority bird species that can be classified as wader birds or seabirds that rarely venture 

inland preferring to roost on exposed beaches, headlands or islets (Williams et al.2006) 

where backyard and commercial poultry premises are unlikely to be located. The 

exception to this is two migratory forest birds both belonging to the Cuculidae family: the 

shining cuckoo (Chrysococcyx lucidus) and long-tailed cuckoo (Urodynamis taitensis). 

Arriving in August and September, these birds migrate to Pacific islands over winter 

(Higgins and Davies, 1999) and although both favour forest habitats, they have been 

sighted in urban parks and rural populated regions where they could potentially come 

into contact with either backyard or commercial poultry.  

 

Of greater concern is the interactions between migratory birds and water birds due to the 

potential for transmission of novel diseases between these populations followed by the 

onward transmission to backyard or commercial producers. Interspecies co-occurrence 

of migrant and resident birds is very common as many species share common feeding 

grounds, such as lakes, estuaries, and mudflats, or will congregate and intermingle in 

flocks whilst roosting (Williams et al.2006). Resident birds that then go on to migrate 
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across large distance within New Zealand, have a significantly higher risk of coming into 

contact with either backyard or commercial poultry. For example, the native South Island 

pied oystercatcher (Haematopus finschi) will breed on the South Island mainly east of the 

Southern Alps on riverbeds and farmland, high country grasslands, and in coastal areas 

adjacent to estuaries and lagoons before migrating inland to North Island wintering sites 

(Sagar, 2013). Some of this spatial overlap between resident birds and both backyard and 

commercial poultry can be seen in the bivariate maps considering bird species belonging 

to the Anatidae family with a number of high-risk regions being identified across New 

Zealand. This pattern may be less of a concern for commercial producers who will often 

have biosecurity measures in place to prevent birds and other wildlife from entering the 

production area and coming into contact with poultry. However, it is clear from the 

survey results that the biosecurity measures are not always effective as 38.3% (46/120) 

reported the presence of either wild birds or waterfowl within the same area as 

production, despite also reporting the use of bird-proof housing. The majority of bird 

species reported were resident birds including sparrows, starlings, pukekos, plovers, 

swallows, and fantails, which would have been excluded as they are not classed as 

migratory birds. 

 

The exclusion of these birds presents a major gap in the risk profile of endemic pathogen 

such as campylobacter and salmonella, both of which are huge concerns for public health 

(Scott, 2003). In order to fully characterise the risk from wild birds, future analysis should 

focus on the movement patterns of other resident birds that are known to regularly come 

into direct contact with commercial poultry or can be found widespread in gardens and 

public spaces where they present a risk to backyard producers. For example, during the 

late 1990’s an extended outbreak of Salmonella enterica serovar Typhimurium definitive 

type 160 (DT160) was responsible for over 3,000 human salmonellosis cases and 

thousands of avian deaths (Alley et al.2002). The rapid spread and prolonged period of 
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this outbreak was thought to be due to ongoing transmission between different host 

groups particularly wild bird sources (Bloomfield et al.2017).  

In addition to this limitation in characterising the spatial risk of wild birds, there are 

further data constraints in this study that must be considered. In particular citizen science 

data, such as that obtained from eBird, typically suffers from many drawbacks as it will 

often be collected in a less rigorous manner in comparison to more traditional scientific 

research. For this reason, data in this study only included complete checklists to try and 

ensure a minimum standard of data quality. Nevertheless, there are still many other 

additional sources of variability and bias inherent to citizen science data that are more 

difficult to account for including variability in observer skills and effort, geographic 

coverage and bias in reporting rates between rare and common species (Isaac et al. 2014,  

Mair and Ruete, 2015; Kamp et al. 2016). For example, in eBird data observations are 

likely to be seasonal, although this was not checked in the study extract, and it can be 

assumed that people are more likely to be outside making observations in the summer 

months when the weather is better. In previous studies, various statistical modelling 

approaches have been used to help account for the variability and bias inherent in citizen 

science data (Hochachka et al. 2012; Bird et al. 2014; Chen and Gomes, 2018). These 

approaches may be important in future studies to be able to fully characterise the risk 

from wild birds, as well as cross-referencing other data sources such as data from the five-

minute bird count project promoted by The Department of Conservation 

(https://www.doc.govt.nz/our-work/five-minute-bird-counts/). In addition to 

integrating different data sources, future studies may also benefit from limiting wild bird 

observations geographically and include only those reported close to or on commercial 

poultry premises. For example, in a study by Scott and colleagues (2018), camera traps 

were used to assess the presence and interactions of different wildlife species with 

chickens on Australian commercial poultry farms. In this study, they identified that 

mynah birds, corvids and Columbiformes were the most common birds found on farm, 
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however the majority of observations showed no direct contact between chickens and 

wildlife, suggesting the indirect routes of pathogen transfer may be more significant (Scott 

et al. 2018). 

 

In addition to the exclusion of incomplete eBird report, the number of eBird observations 

were further adjusted for by the regional population density in an effort to account for 

regions that may have little to no observations due to their remote location. However, this 

method does not account for differences in the number of observations due to visitors in 

the region. For example, in New Zealand there are a number of remote regions, particular 

in the South Island, that have a limited number of permanent residents but are popular 

destinations for visitors who are often there to enjoy nature and therefore may be 

contributing more to citizen science projects such as eBird. Future analyses may consider 

other methods to account for regions that may have less observation due to their location 

such as environmental niche modelling; a method that attempts to correct variability in 

species observation and detection by identifying habitat most frequently associated with 

each species, such as the level of vegetation, and using those to extrapolate predictions to 

areas that lack observational data. However, it is also worth considering the added value 

of this method for characterising disease risk with many of these remote regions having 

little spatial overlap with either backyard or commercial poultry therefore without 

knowing further details on migration routes of birds species, these low regions would be 

likely to remain low risk even after data extrapolation. 

 

Further drawbacks with the data used to construct the contact networks for both backyard 

and commercial poultry must be considered. For example, although the TradeMe® dataset 

listed all the transactions during the study period, the spatial resolution was fairly coarse 

making it difficult to accurately assess the potential spatial overlap and proximity of 

backyard premises to commercial poultry producers. However, despite this limitation, it 

is clear that highly active trading hubs do exist within the network; highlighting the 
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potential impact of backyard trades in the event of a disease outbreak and the importance 

of collecting further data on the backyard poultry sector in order to include them in any 

disease contingency plans. This would include trying to assess what fraction of backyard 

poultry trade is captured through TradeMe®, without which it would be difficult to 

determine if there are other informal networks that may be contributing to disease spread 

such as other trades occurring through local papers and community web forums. The lack 

of information regarding within suburb contact also limits the ability to model disease 

dynamics, as seen in our spatial models which undoubtedly overestimate the true rate of 

spread. The spatial model also suffers from the assumption that all movements carry the 

same risk with no regards to risk factors such as the number of birds traded. 

Unfortunately, it is clear from the TradeMe data that the number of animals listed does 

not always match the number of animals actually being sold as described in the additional 

comments. To reliably include this risk factor in the spatial model, for example weight 

each edge by the average number of birds traded, some further work would be needed in 

which the number of birds sold is extracted from the trader comments. Additional data 

such as this would not only improve future models used to inform control and 

surveillance activities, but also reduce the time and resources regulatory authorities would 

have to invest in performing contact tracing within suburbs in the event of a disease 

outbreak. 

 

Within the commercial poultry network, survey results provided a huge amount of 

information regarding on- and off-farm movements such as the movement frequency and 

the quantity moved.  However, the survey’s low response rate limits the ability to fully 

characterise the network due to a large proportion of missing links including potential 

network connections that are not accounted for by the movement of goods and services 

such as the movement of personnel to or from other sites or farms with poultry, an 

important contact that has thought to be responsible for a number of disease outbreaks 

overseas including Newcastle disease, chronic respiratory disease and infectious 
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laryngotracheitis (Rawdon et al.2007). Similar to other surveys, it is also likely that there 

is some degree of non-response bias and reporter bias, that have been discussed in detail 

in Chapter 3, but overall may result in further missing links, making it difficult to assess 

if the network structure accurately reflects the contact patterns in the commercial poultry 

industry.  

 

4.6. Conclusion 

Overall, our study findings highlight how the spatial patterns of online poultry trade, 

migratory birds and resident water birds can affect the risk landscape within the 

commercial poultry sector. Results highlight the importance of accounting for the 

growing number of animals traded through online auction websites, over increasingly 

long distances and shorter timespans, on disease transmission dynamics in New Zealand. 

Failure to account for the existence of backyard producers and the high frequency of 

movements between them could lead to gross underestimation of the potential size and 

spread of infectious disease outbreaks. However, without knowing more details about the 

demographic characteristics or intended purpose of the animals traded it is also difficult 

to fully quantify the potential disease transmission risks from backyard poultry. The 

spatial overlap between wild birds with both backyard and commercial poultry also 

highlight the importance of accounting for the movement dynamics of a number of bird 

species, with a low risk of disease introduction into the commercial poultry industry via 

direct contact with migratory wild birds but a high risk via indirect contact due to the 

population dynamics of resident birds that not only present a risk of spreading endemic 

diseases but also a risk of  introducing exotic disease due to the co-mingling of species. It 

is therefore important that future research tries to further characterise the movement of 

both backyard poultry and wild birds within New Zealand, such that effective risk-based 

surveillance programmes can be established to maintain freedom from disease in addition 

to providing data for modelling activities that may be used to inform response actions in 

the event of a disease incursion. 
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5.1. Abstract 

AIMS: Despite intensive surveillance and control activities, campylobacteriosis remains 

the most frequently reported foodborne illness in New Zealand with the largest 

proportion of human cases linked to the consumption of poultry meat. As highlighted by 

the recent emergence and rapid spread of an antimicrobial resistant Campylobacter jejuni 

Sequence Type (ST)-6964 within New Zealand commercial poultry, it is important to 

understand the relative contribution of different between-flock transmission pathways to 

guide recommendations around mitigating disease spread.  The aims of this study were 

(i) to describe the genetic population structure of C. jejuni ST-6964 within the New 

Zealand commercial poultry industry and (ii) to investigate the role of multiple contact 

pathways on the genetic relatedness of these isolates in order to identify the most likely 

routes of transmission. 

 

MATERIALS AND METHODS: Whole-genome sequencing was performed on 167 C. 

jejuni ST-6964 isolates sampled from across 30 New Zealand commercial poultry 

enterprises including 26 broiler flocks and 4 breeding flocks.  The genetic relatedness 

between isolates was examined using whole-genome multilocus sequence type (wgMLST) 

analysis. Multiple pairwise distance matrices were generated using (i) farm coordinates 

to calculate both the Euclidean distance and road distance between farms and (ii) an 

industry survey to calculate the shortest path between farms within  three potential 

contact networks constructed from the on- and off-farms movements of either feed, live 

birds and hatching eggs or poultry waste and litter. Permutational multivariate analysis 

of variance (PERMANOVA) and distance-based linear models (DistLM) were used to 

explore the relative importance of geographical distance and network distances as 

potential determinants of the pairwise genetic relatedness between the C. jejuni isolates.  

RESULTS: After the removal of recombinant regions from the 167 C. jejuni isolates, 230 

polymorphic sites were identified including 204 single nucleotide polymorphic loci. 

Genes from three C. jejuni integrated elements; CJIE1, CJIE1v and CJIE4 were detected 
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with differential distributions amongst all the isolates. The plasmid pTetO was also found 

to be present in 49.1% (82/167) of the isolates, with both CJIEs and pTetO found in 

samples from across all the major poultry suppliers. The functional genes glcD and amtB 

were found to be truncated in 31.1% (52/167) and 32.9% (55/167) of the isolates, 

respectively, all of which were sampled from farms belonging to only a single poultry 

supplier. Within the phylogeny reconstructed from core polymorphic loci, two distinct 

genetic clusters were identified with the majority of isolates sampled from farms 

belonging to the same parent company grouping within the same genetic cluster, 

supporting previous evidence that pathogen phylogeny is associated with poultry 

suppliers. After controlling for this effect, a significant association was found between the 

pairwise genetic relatedness of the C. jejuni isolates and both the road distance and the 

network distance of transporting feed vehicles.  

 

CONCLUSION: Overall, this study suggests that the transportation of feed within the 

commercial poultry industry as well as other local contacts between flocks, such as the 

movements of wildlife and personnel, may play a significant role in the spread of C. jejuni. 

These results could have important implications for the surveillance and control activities 

within the commercial poultry industry. However, further work is needed to fully 

characterise the risk of these pathways and to understand how they could be targeted to 

reduce the spread of C. jejuni.  

 

KEYWORDS: Campylobacter jejuni, Contact networks, Phylodynamics, PERMANOVA, 

Correlation matrix   
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5.2. Introduction 

To control the spread of any infectious disease it is essential to have a good understanding 

of the mechanisms and pathways through which the infectious agent is spreading within 

the population. However, many pathogens can utilise multiple transmission pathways, 

and transmission modes often vary among pathogen strains and host populations 

(Antonovics et al. 2017). This creates a major challenge in many infectious disease 

outbreaks, as without determining the extent to which different transmission pathways 

are contributing to disease dynamics it is difficult to recommend targeted control 

strategies that are both timely and cost-effective (Antonovics, 2017; Webster et al. 2017). 

This is true for many pathogens responsible for foodborne illnesses. For example, 

Campylobacter, one of the leading causes of foodborne gastroenteritis worldwide 

(Kaakoush et al. 2015), is known for its complicated dynamics and multiple transmission 

pathways that make it difficult to model (Koutsoumanis et al. 2016) and control despite 

the implementation of many targeted control strategies (Lin, 2009; Newell et al. 2011). 

In New Zealand, source attribution models have identified a range of sources responsible 

for human campylobacteriosis cases, including both environmental and ruminant 

sources, however by far the largest proportion of human cases have been linked to the 

consumption of poultry meat (Müllner et al. 2009). The identification of this risk factor 

resulted in the implementation of numerous regulatory and voluntary control strategies 

along the poultry supply chain (NZFSA, 2008) and in the three years following their 

implementation (from 2005-2008), there was a 50% reduction in human 

campylobacteriosis notifications (Sears et al. 2011). However, despite continued control 

efforts, campylobacteriosis continues to be the most frequently reported foodborne 

illness in New Zealand, with rates as much as ten times that of the United States and 

double that of other industrialised countries such as the United Kingdom (Olson et al. 

2008). Furthermore, in 2014, routine sampling at a sentinel surveillance site in the 

Manawatu region of New Zealand detected a new and emerging strain of C. jejuni 
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Sequence Type (ST) 6964 (Muellner et al. 2016). Subsequent sampling throughout the 

poultry industry detected this emerging strain across all four major poultry suppliers, 

responsible for servicing over 90% of the industry (Stafford, 2017), suggesting a major 

epidemiological shift with transmission occurring between suppliers despite the vertically 

integrated structure of the New Zealand poultry industry and minimal contact between 

each supplier. This structure was thought to be one of the main factors contributing to 

the past association between different Campylobacter STs and individual poultry 

suppliers (Müllner et al. 2010); however, given the rapid spread of ST-6964, it is clear that 

there is a gap in biosecurity that needs to be targeted in order to prevent further spread. 

Nevertheless, without knowing how different transmission pathways contributed 

towards the spread of the pathogen, it is difficult to know where to direct control and 

surveillance activities.       

 

In addition to the change in transmission dynamics, initial evidence from human isolates 

showed that ST-6964 was also resistant to a range of antimicrobial agents, including 

tetracyclines and fluoroquinolones. As a result, several surveys were launched sampling 

both humans and poultry with initial survey results detecting fluoroquinolone-resistance 

in 30% of the human C. jejuni isolates sampled, 77% of which were also resistant to 

tetracycline, and both ciprofloxacin- and tetracycline-resistance in 37% of C. jejuni 

isolates sampled from poultry (Muellner et al. 2016). These findings represented a 

significant increase in the patterns of resistance (Williamson et al. 2015), similar to that 

seen in many other countries (Kaakoush et al. 2015), incentivising further investigations 

using molecular sequencing data to try and understand the evolutionary mechanisms 

driving this resistance. The genomic analysis provided evidence of ST-6964 undergoing 

rapid evolution in New Zealand through multiple mechanisms including the integration 

of both the tetO gene and prophage integrated elements amongst tetracycline-resistant 

isolates (French et al. 2019).  
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Having this knowledge is important to help characterise the genetic diversity between 

epidemiologically related isolates (Duong et al. 2009) which can then be used to help 

resolve unknown transmission dynamics (Grenfell et al. 2004; Ypma et al. 2012; 

Gilbertson et al. 2018) using approaches based on principles in coalescent theory 

(Kingman, 2000), which, simply put, suggests that as pathogen isolates from infected 

individuals become more genetically diverse, then the hosts are less likely to be directly 

linked to each other in the chain of transmission. In addition to many techniques that rely 

on pathogen sequence data alone to infer transmission dynamics, an increasing number 

of studies are integrating pathogen phylogenies with host contact network data to help 

determine which transmission modes are most important for the spread of pathogens 

within a population (Leventhal et al. 2012; Stadler and Bonhoeffer, 2013; Jombart et al. 

2014). 

In the study of infectious disease, contact data tries to capture interactions which may be 

contributing to transmission between hosts, including both direct and indirect contacts 

(Sah et al. 2018; Silk et al. 2018; Chaters et al. 2019). Data can be used to reconstruct 

network graphs and parameterise disease transmission models in order to study the 

influence of population structure on disease spread and test disease control measures 

(Christley et al. 2005; Bajardi et al. 2012; Gates et al. 2015). Alongside traditional contact 

tracing methods contact networks can also be used in disease outbreaks to help 

reconstruct transmission trees under the assumption that the transmission network will 

always be a subset of the contact network (Craft, 2015). This largely relies on the ability 

to correctly define all the contacts that are relevant for disease transmission; however, the 

challenges in collecting network data are numerous. For example, information on the 

disease dynamics may be limited, making it difficult to identify all the host species and 

define the contacts between them. Due to these limitations, many previous studies have 

relied on network-based disease simulation models (Eubank et al. 2004; Zhang et al. 2012; 

Enns and Brandeau, 2011) with few real-world examples currently in the literature to 
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validate the methodologies used to integrate pathogen sequence data into network 

analyses.  

 

In New Zealand, the rapid spread of the recently emerged C. jejuni ST-6964 presents a 

timely opportunity to collect pathogen whole-genome sequence data and validate 

approaches integrating pathogen phylogenies and contact network data with hopes of 

identifying the relative contribution of different transmission pathways towards the 

spread of C. jejuni ST-6964 throughout the poultry industry. Given this, the aims of this 

study were (i) to describe the genetic population structure of C. jejuni ST-6964 within the 

New Zealand commercial poultry industry and (ii) to investigate the role of multiple 

contact pathways on the genetic relatedness of these isolates in order to determine the 

most important routes of transmission contributing towards the rapid spread of this 

strain. 

 

5.3. Materials and Methods 

5.3.1. Sample collection, isolate culture, and whole-genome sequencing 

Swabs from the pooled caecal contents of up to five chickens from the same shed were 

collected from slaughter processing plants across New Zealand’s North and South Island 

ensuring there were samples taken from each of the four major poultry suppliers 

(hereafter anonymously referred to as “A”, “B”, “C” and “D”). Sampling took place 

between May 2015 and July 2016 as an extension of the poultry survey reported by the 

Institute of Environmental Science and Research (ESR) in collaboration with the Poultry 

Industry of New Zealand (PIANZ) (Muellner et al. 2016). As samples were taken from 

poultry carcases post-slaughter at commercial poultry abattoirs it was advised by the 

Massey University Human Ethics Committee: Northern that animal ethical approval was 

not required. Swabs were delivered for bacterial culture to the Molecular Epidemiology 

and Public Health laboratory (mEpiLab) at Massey University where cultures were grown 

in a microaerobic incubator (Don Whitley Scientific, Yorkshire, UK) at 42 °C on modified 

charcoal cefoperazone deoxycholate agar (mCCDA) (LabM, Lancashire, UK) containing 

175



Chapter 5 | Transmission dynamics of C. jejuni ST-6964 

ciprofloxacin (4 mg/litre) (Sigma, Missouri, USA) and tetracycline (16 mg/litre) (Sigma, 

Missouri, USA) for selective isolation of resistant C. jejuni colonies.  

 

One to two single colonies from each positive plate were sub-cultured and genomic DNA 

was isolated on a JANUS automated workstation (PerkinElmer, 

https://www.perkinelmer.com) by using Chemagic magnetic bead technology, according 

to the manufacturer’s instructions. The DNA quality was assessed using QubitTM dsDNA 

high sensitivity assay kits (Thermo Fisher Scientific Inc.) before DNA libraries were 

prepared using a NexteraXT DNA preparation kit (Illumina, https://www.illumina.com). 

The majority of the isolates where sequenced using the NextSeq 500 platform (Illumina) 

i.e., 2 × 100 bp sequencing, as previously described (Baines et al. 2016), whilst four 

representative C. jejuni isolates also underwent whole-genome sequencing on the Pacific 

Biosciences, Inc., RS II platform (https://www.pacb.com). The additional DNA 

extractions protocol and library preparation for these four isolates have been described 

elsewhere (French et al. 2019) and sequence data are available from GenBank BioProject 

ID PRJNA520992 and PubMLST (https://pubmlst.org/campylobacterExternal Link) nos. 

70207–12, 70229, 70230, 70232, 70233, 70252, 70253, and 78631–845. 

 

5.3.2. Genome assembly and whole-genome MLST analysis 

The Illumina raw reads underwent a quality control check using the QCtool pipeline 

developed by Mauro Truglio (https://github.com/mtruglio/QCtool) to ensure potential 

contaminants such as PhiX control reads and adapter sequences were removed. The 

quality control report was then checked manually to exclude further poor-quality 

sequencing results which might have been deleterious in the subsequent analysis. 

Genome de novo assemble was completed using the software tool Spades (v3.10.1) 

(Bankevich et al. 2012) with the assembly run in “careful mode” to ensure mismatches 

were corrected. Assemblies were then imported into Prokka (v1.12) (Seemann, 2014) 

such that genomic features including coding sequences and ribosomal ribonucleic acid 
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(rRNA) genes could be annotated after which, the relationship between the isolates was 

determined by an ad hoc wgMLST analysis using Genome Profiler (GeP) (Zhang et al. 

2015) to convert assembly data into wgMLST allelic profiles.  

 

For this analysis, a reference sequence was selected from the list of assemblies based on 

the quality control checks ensuring that the reference sequence had the smallest number 

overlapping reads (i.e., contigs) whilst not having extreme values for maximum length 

and GC content in comparison to all other isolates. Next, recombinant regions were 

removed using Gubbins (v2.2.0) (Croucher et al. 2015) in order to try and mitigate the 

effects of horizontal sequence transfer mechanisms on phylogenetic reconstructions 

(Boto, 2010). After the removal of recombinant regions, the alignment of core 

polymorphic loci was used to construct a rooted maximum-likelihood phylogenetic tree 

using the R package phangorn (Schliep, 2011), allowing the genetic relatedness of isolates 

to be visualised. To examine if closely related isolates shared other common factors, 

metric multidimensional scaling (mMDS) ordination plots (Kruskal and Wish, 1978) 

were generated in PRIMER v7.0 (Clarke and Gorley, 2015) with plots mapping isolates in 

a two-dimensional Euclidean space in a manner that preserves the dissimilarity scales 

present in the underlying genetic distance matrices described in section 5.3.4. Different 

colours were then used to easily identify isolates sharing a common factor such as parent 

company or network communities described in section 5.3.5. 

 

5.3.3. Comparative genomics of mobile elements 

For the purpose of this study, the presence of three plasmids (pTet, pVir and CP006703), 

seven C. jejuni integrated elements (CJIE1-6 and CJIE1v), and two functional genes (amtB 

and glcD) was examined. These were selected on the basis that they have either been 

previously identified in ST-6964 isolates (French et al. 2019) or are known to contribute 

to the resistance, virulence or host adaptation of C. jejuni. For example, the virulence 

plasmid pVir has been associated with C. jejuni virulence in a number of in vitro cell 
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culture systems, animal models and clinical infection (Bacon et al. 2002; Tracz et al. 2005; 

Wu et al. 2013); and although the mechanisms and role of pVir in pathogenesis are not 

well understood, DNA sequencing and mutational analysis means it has been well 

characterised (Bacon et al. 2002; Shen et al. 2016).   

To determine the likelihood of the plasmids and CJIEs being in each of the C. jejuni ST-

6964 genomes, a method previously reported by Llarena and colleagues (2016) was used. 

To summarise, this method uses all the amino acid sequences within the coding region of 

pre-selected reference sequences (Table 5.1) for each of the mobile elements and run 

queries that aim to match these sequences with those found in the C.jejuni ST-6964 

genomes using the online BLASTX tool. The hit with the highest BLAST score in each 

BLAST search was used to calculate the percentage of the query amino acid sequence 

covered by the BLAST alignment whilst the mean of each CJIEs in each whole-genome 

sequence was also calculated. If the identity percentage was no less than 70% and the e-

value; that is, the number of hits expected by chance, no less than 0.0001, the CJIE was 

considered present. This analysis was completed by a custom Perl script (Llarena et al. 

2016) with results displayed as heat maps alongside the maximum-likelihood 

phylogenetic tree described above using the online tool Interactive Tree of Life (iTOL) 

(v4.5.3) (Letunic and Bork, 2016). In addition to plasmids and CJIEs, the selection for the 

truncation of two functional genes amtB, linked to ammonium transportation, and glcD, 

a putative glycolate oxidase subunit, was also displayed in the heat maps. The truncation 

of these genes has previously been associated with a single poultry supplier in New 

Zealand (Zhang et al. 2017) and it is thought that the relatively low number of human 

cases associated with this poultry supplier may be linked to the observed truncation of 

these genes. 
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Table 5.1. The C. jejuni reference sequences and the corresponding NCBI references used 

to determine the likelihood of three plasmids: pTet, pVir and CP006703, and seven C. 

jejuni integrated elements (CJIE1-4 and CJIE1v) being located in the C. jejuni ST-6964 

genomes reported in this study (n =  167), using a method previously described by Llarena 

et al. 2016. 

 

5.3.4. Genetic distance matrices 

To represent the relationship between each pair of C. jejuni ST-6964 isolates, two different 

types of genetic distance matrices were calculated based on (i) the uncorrected p-distance 

measure, and (ii) an allelic distance measure.  The p-distance; that is, the proportion of 

nucleotide sites that differ between a pair of isolates, was calculated using MEGA7 

(v7.0.26) (Kumar et al. 2016) without making any corrections for multiple substitutions 

at the same site or differences in the evolutionary rates among sites. The program GeP 

(v2.2) (Zhang et al. 2015) was used to calculate allelic distances as the proportion of alleles 

that differed between a pair of isolates out of the total number of alleles observed across 

that pair. Results obtained using these two matrices were highly consistent, so we report 

here only the results obtained using the allelic distance matrix with results from the p-

distance matrix provided in Appendix D. 

 

5.3.5. Model matrices 

An additional five model matrices were constructed with the aim of relating these, both 

individually and collectively, to the genetic distances described above. Model matrices 

included: (i) the geographical Euclidean distance (based on latitude and longitude) 

between each pair of farms from which isolates were collected from, (ii) the road distance 

Mobile element C. jejuni reference strain NCBI reference sequence 
pTet 81-176 AY394561 
pVir 81-176 AF226280 
CP006703 15-537360 CP006703 
CJIE1-4 RM1221 NC_003912 
CJIE1v 15AR0984 CP035892 
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between farms, and the network distance between farms based on contact networks 

constructed from the on- and off-farm movements of (iii) feed, (iv) live birds and 

hatching eggs, and (v) waste and litter. 

 

The geographical distances between farms were calculated by obtaining a postal address 

for each farm from a database of commercial poultry producers registered with either the 

Poultry Industry Association of New Zealand (PIANZ) or the Egg Producers Federation 

of New Zealand (EPF). The addresses provided in the database were checked using 

Google Maps (2017) to make sure they specified a poultry production site (indicated by 

the presence of poultry sheds) and not the producers’ residential address. Co-ordinates 

were collected and the two pairwise distance matrices (Euclidean distances and road 

distances) were calculated using the R packages geosphere (Hijmans, 2019) and 

gmapsdistance (Melo et al, 2018), respectively. The matrices were then expanded to 

express the geographical distance between each pair of isolates with a value of zero in the 

matrix indicating that the isolates were sampled from the same farm. The matrices were 

used to create hierarchical dendrograms representing the geographical distance between 

sequenced isolates using the R package ape (Paradis and Schliep, 2019) which were used 

to construct the tanglegrams described in section 5.3.6. 

 

The network distances between farms was calculated by constructing several contact 

networks from the reported on- and off-farm movements relating to either (i) feed, (ii) 

live birds and hatching eggs, or (iii) waste and litter. In each network, nodes represented 

the farms from which isolates were sampled, with an undirected edge linking nodes (i.e., 

farms) utilising the same transport company (Figure 5.1). The reported movements were 

obtained from the results of an industry survey administered to all active poultry 

producers in New Zealand registered with either PIANZ or EPF as of June 2016. The 

survey was based on a previous questionnaire conducted in 2006 (Lockhart et al. 2010) 

and modified in collaboration with PIANZ, EPF and the Ministry for Primary Industries  
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Figure 5.1. Schematic diagram showing the construction of (a) bimodal and (b) unimodal 

network graphs. In network (a) there are two node types representing either farms 

(circles) or transporting companies (squares) moving on- and off-farm. In network (b) 

the farms have been directly linked if they have a transporting company in common. The 

shortest path (SP) between any two farms is the least number of steps needed to get to one 

farm from another in the unimodal network graph. For example, in network (b) Farm 4 

can be reached from Farm 2 via Farm 3 with a SP equal to 2 as shown in (c) which is the 

shortest path matrix when considering all the transporting companies with 1 indicating 

there is a direct link between two farms in (b) and 99 indicating no link. 

 

(MPI) with the aim of collecting information on the farm demographics, contact patterns, 

and biosecurity practices of New Zealand commercial poultry operations. The study was 

judged to be low risk thorough peer evaluation and consequently was not formally 

reviewed by any of the University’s Human Ethics Committees. Full details on the survey 

design and implementation have been described in Chapter 3 and a copy of the complete 
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survey questionnaire is provided in Appendix A. As not all farms from which isolates 

were collected completed the survey (i.e., there were non-responders), two networks were 

constructed for each type of on- and off-farm movement: one including only the farms 

that responded (hereafter referred to as the “empirical network”), and one including all 

the farms with sampled isolates (hereafter referred to as the “imputed network”). For the 

latter, missing links caused by non-responders were inferred based on information 

supplied by an industry representative who was able to provide the names of the 

transporting companies that each non-responder was most likely utilising, based on their 

expert opinion. Results obtained using empirical versus imputed networks were highly 

congruent, so we report here only the results obtained using the imputed networks with 

results from the empirical networks provided in Appendix D. 

Network graphs were constructed using the R package igraph (Csardi and Nepusz, 2006) 

based on a force-based algorithm proposed by Fruchterman and Reingold (1991). We 

report here the network degree centrality and betweenness centrality for each network 

but note that other network statistics for these data have been described in the previous 

chapters. Network graphs were used to produce pairwise distance matrices with values 

representing the shortest path (i.e., the minimum number of links) between each pair of 

farms in each network (Figure 5.1). If a pair of farms were completely unconnected in the 

network, a numeric value of 99 was recorded in the matrix to represent a very large 

distance between pairs of isolates that were unconnected. In addition to network matrices, 

a community analysis was performed in which all the on- and off-farm movements were 

combined to produce a single network. Communities could then be identified with farms 

in the same community having more internal links between them than external links to 

other communities within the network. This analysis was completed using a link 

community detection algorithm (Ahn et al. 2010) in the R package linkcomm (Kalinka 

and Tomancak, 2011).  
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5.3.6. Relating genetic distances and model matrices 

The relationship between the genetic distance matrix and each of the individual model 

distance matrices was examined using a non-parametric Mantel test (Mantel, 1967). A 

robust version of the Mantel test was implemented in the RELATE routine in PRIMER 

(v7.0; Clarke & Gorley 2015), using Spearman’s rank correlation (rho) as a measure of 

matrix correlation. Model matrices that had a statistically significant relationship with the 

genetic distance matrix (p < 0.05, 9999 permutations) were explored further in the formal 

linear models described in section 5.3.7. To further examine if an association remained 

after removing any potential effects of individual farms and their parent company on the 

genetic distances, a residual genetic distance matrix (removing the effects of parent 

company and farms nested within parent company) was obtained using the method 

described in Anderson (2017). Mantel tests were then repeated (using the RELATE 

routine) to examine the correlation between this residual genetic distance matrix and 

each of the model matrices. To visualise the relative strengths of matrix associations, a 

second stage mMDS ordination plot (Somerfield and Clarke, 1995) was created after 

calculating the matrix correlations between all pairs of distance matrices (i.e., the allelic 

distance matrix, the geographic distance matrices and the network distance matrices). 

This allowed us to see not only the proximity of each model matrix to the genetic distance 

matrix but also showed visually the similarities among the various different model 

matrices.   

 

In addition to the Mantel test and mMDS ordination plots, the relationship between 

pathogen phylogeny and the geographical proximity between all the farms (i.e., Euclidean 

distance and road distance) was visualised using tanglegrams. Tanglegram were 

constructed using the R package dendextend (Galili, 2015) such that, isolates on the 

maximum-likelihood phylogenetic tree were connected via auxiliary lines to the 

corresponding isolate on the hierarchical dendrograms described above representing 

either the Euclidean distance or road distance between the isolates. To optimise each 
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tanglegram, a two-tree crossing minimization technique was used to minimize the 

number of crossings between the auxiliary lines. Tanglegrams were annotated to indicate 

the production type and parent company of the farm from which the isolates were 

sampled, and a Spearman’s rank correlation coefficient calculated between the trees 

cophenetic distances matrices (Sokal and Rohlf, 1962).  

 

5.3.7. Explaining variation in genetic distances 

To find parsimonious models to explain variation in genetic distances using the 

information provided in the geographical and/or network distance matrices, we first 

generated Euclidean coordinates that would capture the information contained in each 

model distance matrix. This was done by calculating a number (m) of coordinate axes 

using mMDS to represent the information in each distance matrix. We found that, in 

every case, m = 2 or 3 was sufficient to capture the salient information contained in each 

of the model distance matrices (stress < 0.01). We also created regression coordinates i.e., 

in the form of analysis of variance (ANOVA) contrasts, that coded for two additional 

factors; parent company and farms (nested in parent company) in order to fit the matrix 

models and ANOVA factors in a regression setting. Note that coordinates corresponding 

to specific network distance matrices (or ANOVA factors) were kept together as a group 

for model selection. A DISTLM routine was then used in the PERMANOVA+ add-on 

package (Anderson et al. 2008) for PRIMER v7.0 (Clarke & Gorley 2015) to fit distance-

based redundancy analysis (dbRDA) (Legendre & Anderson 1999; McArdle & Anderson 

2001) including models of genetic distances versus the network models and ANOVA 

factors.  

 

To select the final model, we first performed marginal tests for each set individually (with 

p-values obtained using 9999 unconstrained permutations), and used forward selection 

based on R2 to uncover potential redundancies and regions of overlap in the explanatory 

power of regression variable sets (with p-values for sequential conditional tests at each 
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step obtained using permutation of residuals under a reduced model) (Freedman and 

Lane 1983). Next, we then searched for the best overall model; that is combinations of sets 

of regression coordinates, to explain variation in the genetic distance among isolates using 

the multivariate analogue to the Akaike Information Criterion (AIC) criterion (Anderson 

et al. 2008) in the DISTLM routine with each model forcing the inclusion of parent 

company and farm (ANOVA terms in the model) during model selection. 

5.4. Results 

5.4.1. Sample collection, isolate culture, and whole-genome sequencing 

Overall, swabs were taken from 922 birds originating from across 75 commercial poultry 

farms including farms belonging to all four of the major poultry suppliers. From these, 

668 samples from across 41 of the farms gave growth that resembled Campylobacter on 

mCCDA plates containing both ciprofloxacin and tetracycline. Currently only 

approximately a third of these samples have been sequenced all of which have been 

confirmed as C. jejuni ST-6964, with the ST of the remaining samples unconfirmed. For 

this study, a subset containing 167 of the confirmed C. jejuni ST6964 samples were 

randomly selected for whole-genome sequencing resulting in isolates from across 30 

individual poultry farms belonging to three out of the four major poultry suppliers 

(hereafter anonymously referred to as “A”, “B” and “C”), and including 26 broiler flocks 

(i.e., poultry growers)and 4 breeding flocks. The geographical distribution amongst the 

selected subset of farms was limited to three regions on the North Island of New Zealand 

with four farms from both suppliers A and B located in the Auckland region, two farms 

from supplier B and eleven farms from supplier C located in the Waikato region, and nine 

farm from supplier A located in the Taranaki region (Figure 5.2a). The number of selected 

samples from each supplier was unevenly distributed with 57.5% (96/167) of the isolates 

sampled from supplier A, 35.9% (60/167) of isolates sampled from supplier B and 6.6% 

(11/167) sampled from supplier C.  
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5.4.2. Whole-genome MLST analysis 

A rooted maximum-likelihood phylogenetic tree reconstructed from core polymorphic 

loci is shown in Figure 5.2b. In this analysis, 230 polymorphic sites were identified 

including 204 SNP loci shared by the 167 isolates. Within the phylogeny, there were two 

distinct genetic clusters, with the majority of isolates sampled from farms belonging to 

the same poultry supplier grouping within the same genetic cluster (Figure 5.3a) and 

network community (Figure 5.3b) with the exception of a few single isolates that cluster 

with isolates sampled from farms belonging neither to the same parent company or 

community. However, the tanglegram generated from the rooted maximum-likelihood 

phylogenetic tree and hierarchical dendrogram based on Euclidean distance show that 

these single isolates are located within the same geographical region as other isolates in 

the cluster (Figure 5.4). Despite this, there was only a weak correlation between the 

phylogenetic distances and geographical distances with a Spearman rho value equal to 

0.387 for Euclidean distance, and 0.385 for road distance. The tanglegram generated from 

the rooted maximum-likelihood phylogenetic tree and hierarchical dendrogram based on 

road distance is shown in Appendix D, Figure D3. 
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Figure 5.3. Two-dimensional metric multidimensional scaling (mMDS) ordination plots 

based on the allelic dissimilarity matrix between 167 C. jejuni isolates with isolates 

coloured according to (a) the parent company and (b) the network community. 
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Figure 5.4. A tanglegram containing a maximum-likelihood phylogenetic tree rooted by 

outgroup showing the population structure of 167 C. jejuni ST-6964 isolates based on the 

core polymorphic loci alignment following core-genome MLST (left) compared to a 

dendrogram representing the Euclidean distances between the farms from which isolates 

were sampled (right). The colour of the connecting line indicates the poultry supplier of 

each farm (A, B, or C) with farms belonging to supplier A located in two geographical 

regions (regions 1 and 2) in comparison to poultry suppliers B and C whose farms are 

geographically clustered in one region. A purple square following the isolate ID indicates 

the farm is a poultry breeder whilst no square indicates it is a poultry grower. 
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5.4.3. Comparative genomics of mobile elements 

Overall, genes from three out of the five CJIE reference sequences were distributed 

differentially among the isolates, with CJIE1 genes present in 100% of the isolates, CJIE1v 

genes present in 85.0% (142/167) of the isolates and CJIE4 genes present in 76.6% 

(128/167) of the isolates (Figure 5.5). The plasmid pTetO, was identified in 49.1% 

(82/167) of the isolates across all poultry suppliers whilst the plasmid pVir, was absent 

from all isolates (Figure 5.6). The functional gene glcD was found to be truncated in 31.1% 

(52/167) of the isolates, all of which were sampled from farms belonging to a single 

poultry supplier. The amtB gene was also truncated in all of these isolates with the 

addition of three isolates also belonging to the same supplier but with an intact glcD gene 

(Figure 5.6).  

 

5.4.4. Characteristics of model matrices 

The allelic distance between isolates ranged from 0-129.78 (mean = 26.55) whilst the p-

distance ranged from 0-0.16 (mean = 0.04). In the geographical distance matrices, the 

Euclidean distance between the farms ranged from 1.31km - 282.08km (mean = 

131.73km) whilst the road distance ranged from 1.32km - 418.79km (mean = 180.98km). 

In the network distance matrices based on the imputed networks, no shortest path 

between any two farms was greater than 3; however, many farms remained unconnected. 

For example, in the feed network, 59.1% of the potential pathways between farms did not 

exist, while 39.8% of the pathways were a direct link between two farms. Both the live bird 

and waste networks had 43.4% of the pathways that were non-existent, while 33.8% and 

36.3% were direct links between two farms, respectively. This suggests that in these 

networks, a greater number of farms were connected, although not so many with direct 

links. The network graphs, shown in Appendix D, Figure D1, also indicated that live bird 

and waste networks were more cohesive, having larger betweenness centrality scores 

(Table 5.2). The high proportion of farms directly linked within the feed network reflects 

the small number of transporting companies operating within the network. The network  
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Figure 5.5. A rooted maximum-likelihood phylogenetic tree reconstructed from core 

polymorphic loci between 167 C. jejuni ST-6964 sampled from 30 New Zealand 

commercial poultry farms. The coloured rings indicate (i) the parent company (PC) of 

the farm from which the isolate was collected, (ii) the farm production type (PT) (broiler 

versus breeder), (iii) the presence or absence of C. jejuni integrated element 1 (CJIE1), 

(iv) CJIE1v, (v) CJIE2, (vi) CJIE3, and (vii) CJIE4. The figure has been created using the 

online tool Interactive Tree of Life (iTOL) (v4.4.2).  
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Figure 5.6. A rooted maximum-likelihood phylogenetic tree reconstructed from core 

polymorphic loci between 167 C. jejuni ST-6964 sampled from New Zealand commercial 

poultry farms (n = 30). The coloured rings indicate (i) the parent company (PC) of the 

farm from which the isolate was collected (ii) the farm production type (PT) (broiler 

versus breeder), (iii) the presence or absence of a Tet-like plasmid that has been associated 

with resistance (pTetO), (iv) the presence or absence the virulent plasmid pVir, and the 

selected truncation of two functional genes (v) amtB encoding an ammonium transporter 

and (vi) glcD encoding the putative glycolate oxidase subunit D. The figure has been 

created using the online tool Interactive Tree of Life (iTOL) (v4.4.2).  
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Table 5.2. Network statistics describing both the empirical network (i.e., the network 

constructed from 16 survey responses reporting all on- and off-farm movements over a 

one-year period) and the imputed network (i.e., the network constructed using all 30 

farms from which isolates were sampled, with missing edges imputed based on expert 

opinion) constructed from all on- and off-farm movements relating to (i) feed, (ii) live 

birds and hatching eggs or (iii) waste and litter within the New Zealand commercial 

poultry industry. Network metrics include the “Degree”, indicating the total number 

of on- and off-farm movements on a single farm in the network and, “Betweenness” 

indicating the frequency a farm is on the shortest path between any two other farms in 

the network. 

Network metric 
Network 

Empirical 
network 

Imputed 
network 

Number of nodes All 16 30 
Number of Edges  
  

Feed 
Live birds & hatching eggs 
Waste & litter 
Combined 

208 
457 
367 
1032 

455 
1121 
776 
2352 

Mean degreea  
(min-max) 
  

Feed 
Live birds & hatching eggs 
Waste & litter 
Combined 

6.25 (0-8) 
57.12 (4-94) 
5.63 (1-8) 
6.75 (3-8) 

11.53 (3-16) 
74.73 (18-109) 
10.53 (4-17) 
13.73 (8-20) 

Mean betweennessb 
(min-max) 
  

Feed 
Live birds & hatching eggs 
Waste & litter 
Combined 

0.06 (0-0.25) 
0.56 (0-4) 
1.13 (0-9) 
0.19 (0-1) 

0.17 (0-0.45) 
3.57 (0-90) 
3.13 (0-28) 
1.33 (0-6) 

 

graphs showed a clustering of farms around each of the 3 companies operating within the 

feed network with no links between the clusters (Appendix D, Figure D1). In contrast, the 

live bird and waste networks had a greater number of links between clusters (i.e., 

individual farms are using more than one transporting company). The community 

analysis performed on the imputed network combining all the on- and off-farm 

movements identified four communities (Appendix D, Figure D2) with 56.7% (17/30) of 

the farms belonging to the largest community. The mMDS plot, based on the allelic 
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genetic distance matrix suggested that pathogens in the same network community have 

similar genetic structures (Figure 5.3b). 

5.4.5. Relating genetic distances and model matrices 

All model matrices showed a significant relationship (p<0.001) with the unconstrained 

allelic dissimilarity matrix. The Spearman rank matrix correlation coefficients ranged 

from 0.438 to 0.632 (Table 5.3). In addition, parent company had a significant effect on 

the genetic structure of isolates, and there was also significant variation due to individual 

farms (Appendix D, Table D1). After removing the effects of farm and parent company, 

only the feed network had a significant matrix correlation with the residual allelic 

dissimilarity matrix (p<0.05). The second stage mMDS plot showed that Euclidean 

distance and road distance matrices were very highly correlated, as were the live bird and 

waste networks, whilst minimum spanning trees (MSTs) indicated that the feed network 

had the closest relationship with the allelic dissimilarities among pathogen isolates 

(Figure 5.7). 

Table 5.3. Spearman’s rank matrix correlation (rho) between each model matrix and (i) 

the allelic dissimilarity matrix between 167 C. jejuni isolates and (ii) the residual allelic 

dissimilarity matrix after fitting the ANOVA factors of parent company (n = 3) and farm 

(n = 30) nested within parent company, with p-values obtained using 9999 permutations. 

(i) Unconstrained matrix (ii) Residual matrix
rho p-value rho p-value

Feed 0.632 0.0001 0.040 0.0370 

Live birds 0.623 0.0001 0.001 0.4154 

Waste 0.614 0.0001 0.005 0.3336 

Road distance 0.584 0.0001 -0.005 0.5491 

Euclidean distance 0.580 0.0001 -0.024 0.8023 

Parent company 0.438 0.0001 - - 
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Figure 5.7. Second‐stage metric multidimensional scaling (mMDS) ordination plots 

showing proximities (rank matrix correlations) between the allelic dissimilarity matrix 

(“allelic”) and each of several model distance matrices: “euc” = Euclidean distance; 

“road” = road distance; “feed” = feed network distance; “live” = live birds network 

distance; “waste” = waste and litter network distance; “parent” = parent company 

distance. Superimposed on each plot is the minimum spanning tree (MST). The mMDS 

plot shown in (a) includes parent company whereas (b) does not include parent company.  
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5.4.6. Explaining variation in genetic distances 

 When considered individually (marginal tests), road distance accounted for the largest 

proportion of the variation in the allelic dissimilarity matrix, followed by the Euclidean 

distance and the feed network (Table 5.4). Sequential tests showed that, after the addition 

of road distance, farm, parent company, and feed network, the remaining networks added 

little to explain genetic variation (Table 5.5; p>0.50). Indeed, the model with the lowest 

AIC value (out of the class of models that included per force the parent company and the 

farm) included only feed network and road distance (Table 5.6). A similar result was 

found for the empirical networks (Appendix D, Tables D4-D8). However, there was a 

slight discrepancy in the models built using the alternative genetic distance measure, the 

p-distance, which did not include the feed network in the model with the best AIC value 

(Appendix D, Tables D9-D18).  

 

Table 5.4. Individual distance-based redundancy analysis (dbRDA) models to explain 

variation in allelic dissimilarities among 167 C. jejuni isolates in response to each of two 

ANOVA factors (parent company or farm nested in parent company) or sets of regression 

coordinates corresponding to geographic position (Euclidean distance or road distance) 

or the network model matrices of interest (feed, live birds or waste), with p-values for 

each of these separate marginal tests obtained using 9999 unrestricted permutations. 

“Prop” gives the proportion of the total variation explained whilst “df” gives the 

numerator (regression) and denominator (residual) degrees of freedom for the test. 

Models have been presented in order of decreasing R2 values. 

 Prop. Pseudo-F df p-value 

Parent Company 0.2649 29.55 3, 164 0.0001 

Waste 0.2854 32.76 3, 164 0.0001 

Farm 0.2894 2.10 28, 139 0.0117 

Live birds 0.2912 33.69 3, 164 0.0001 

Feed 0.3184 25.39 4, 163 0.0001 

Euclidean distance 0.3458 43.33 3, 164 0.0001 

Road distance 0.4112 37.95 4, 163 0.0001 
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Table 5.5. Distance-based redundancy analysis (dbRDA) to explain variation in allelic 

dissimilarities among 167 C. jejuni isolates in response to the factors and sets of regressors 

listed in Table 5.4, but here conditional tests were done in a sequential stepwise fashion 

under forward selection based on R2. Each test used 9999 permutations of residuals under 

a reduced model. “Prop” gives the proportion of additional variation explained by adding 

that set of variables to the model, “Cumul” tracks the cumulative explained variation with 

each added step, and “df” provides the regression and residual degrees of freedom. Note: 

from step 5 onwards, additional explained variation is < 1%. 

Step Prop. Cumul. df Pseudo-F p-value 
1 +Road 0.4112 0.4112 4, 163 37.95 0.0001 
2 +Farm 0.1475 0.5588 31, 136 1.684 0.0438 
3 +Parent company 0.0156 0.5743 33, 134 2.453 0.0497 
4 +Feed 0.0192 0.5935 36, 131 2.063 0.0839 
5 +Live birds 0.0052 0.5987 38, 129 0.8342 0.5017 
6 +Euclidean 0.0030 0.6018 40, 127 0.4805 0.6538 
7 +Waste 0.0025 0.6042 42, 125 0.3891 0.8696 

 

 

Table 5.6. Top four dbRDA models obtained on the basis of the multivariate analogue to 

the Akaike Information Criterion (AIC) (see text) to explain variation in allelic 

dissimilarities among 167 C. jejuni isolates. Two ANOVA factors (parent company and 

farms nested in parent company) were included in all potential models a priori.  

Model selections R2 No. Sets AIC 

Feed network, road distance, parent company and farm 0.5935 4 975.23 

Road distance, parent company and farm 0.5743 3 976.94 

Feed network, live bird network, road distance, parent 
company and farm 

0.5987 5 977.09 

Euclidean distance, feed network, road distance, parent 
company and farm 

0.5964 5 978.06 
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5.5. Discussion 

This study was one of the first to combine network data with molecular data in 

PERMANOVA and DistLM analyses to identify transmission pathways important to the 

spread of C. jejuni in the New Zealand poultry industry. Overall, study results support 

previous findings showing an association between poultry suppliers and pathogen 

phylogeny (McTavish et al. 2008; Müllner et al. 2009, 2010) with the genetic distance 

between isolates from different poultry suppliers greater than the distance between 

isolates from the same poultry supplier. However, this study also found a significant 

association between the road distance, Euclidean distance and the network distance of 

transporting feed vehicles with the genetic relatedness of the 167 C. jejuni ST-6964 

isolates from across the 30 poultry farms. These results suggest that the transportation of 

feed within the commercial poultry industry may play a significant role in the spread of 

C. jejuni between flocks however, it is not clear if it is the transporting vehicle that is

important or the feed itself that may be acting as a vector. Similarly, results suggest that 

local contacts may also play a role however, without further information the exact 

mechanism cannot be deduced with many local pathways known to contribute to the 

spread of C. jejuni; such as the movement of wildlife or personnel. 

This study also determined the presence of three CJIEs, genomic integrated elements 

identified in C. jejuni strain RM1221 (Fouts et al. 2005), in the New Zealand isolates. This 

demonstrates a high genetic diversity between the study C. jejuni isolates, all of which 

belong to ST-6964, and highlights how the presence of bacteriophage-related genes in 

integrated elements are contributing to the genetic diversity seen in C. jejuni. 

Furthermore, the similarity between the presence-absence profile of both CJIE1v and 

CJIE4 suggests that these integrated elements may not only help to differentiate between 

closely related strains but also help determine epidemiological links between isolates 

belonging to the same strain. The presence-absence of the pTet plasmid also contributes 

to the genetic differentiation between the study isolates; although, it was identified across 
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all three poultry suppliers in multiple regions making it difficult to determine 

transmission dynamics, especially if there is limited evidence that isolates are 

epidemiologically related. Lastly, this study examined the state of two functional genes, 

amtB and glcD, that have previously been associated with human infection when intact. 

Both genes were found to be truncated in isolates from a single poultry supplier and only 

within one region. Although it is not possible to determine the clinical relevance of this 

selective truncation, the relatively limited number of observed truncated genes suggests 

that having an intact amtB and glcD gene may offer a selective advantage.  

 

Although our study has potential implications for future surveillance and control 

activities, it did have limitations, including a relatively small number of study farms and 

sampled isolates. Only 39.2% (62/158) of commercial broiler producers registered with 

PIANZ or EPF were sampled for this study.  Having missing farms made it difficult to 

represent the true distribution of C. jejuni ST-6964 across New Zealand. Furthermore, 

only a limited number of samples was taken from each farm, increasing the chances of 

there being farms where C. jejuni ST-6964 was present but not detected. A small sample 

size is also likely to hinder phylogenetic reconstruction (Nabhan and Sarkar, 2012).  

Although this is more of a problem when attempting to infer transmission between farms, 

a greater resolution could have been gained by sampling a greater number of farms or by 

sequencing more C. jejuni positive isolates from the sampled farms in this study. Lastly, 

by only constructing networks using the small proportion of broiler farms that were 

sampled here, artefacts may arise in community analysis: farms identified within a 

community may only belong to that community when considering a particular subset of 

network nodes and edges (Shizuka and Farine, 2016).  

 

Another limitation of our study was the low response rate to the industry survey, hence 

the potential for both non-response bias and recall bias to occur. Only 53.3% (16/30) of 

the farms in the study had movement data that could be used to construct the contact 
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networks, and although movement data for non-responders was collected based on 

expert opinion, it is hard to quantify the impact of this non-response bias. However, the 

similarity in results obtained using the imputed and the empirical networks provided 

some reassurance regarding the network imputation methods used. Secondly, by using a 

survey questionnaire the study results are likely to suffer from limitations inherent to 

most questionnaires, such as recall bias, with many previous studies showing a poor 

correlation between survey responses and on-farm practices (Sax et al. 2003; Bewsell, 

2010; Racicot et al. 2012). In this study, producers were asked to recall all on- and off-

farm movements over a one-year period. This was thought to be appropriate due to the 

steady nature of the poultry industry and the relationship between parent company and 

on-farm contractors, making it easier for producers to name all the transporting 

companies that deliver goods or services such as feed. However, over a one-year period, 

it may be hard for producers to recall more informal movements, such as the on- and off-

farm movement of farm visitors, or irregular movements such as the redistribution of left-

over feed at the end of a production cycle. 

In addition to the effects of network imputation, this study also looked at the effect of 

using two different genetic distance measures on the relationship between the model 

matrices and the genetic relatedness of the C. jejuni isolates. The discrepancies between 

the final models fitted to different genetic distance dissimilarity matrices creates some 

doubt as to the exact contribution of transporting feed vehicles in the spread C. jejuni ST-

6964. These discrepancies may be explained, however, by the resolution captured within 

each of the matrices. Overall, there should be greater resolution within the allelic 

dissimilarity matrix that was produced using a whole-genome multi-locus sequence 

typing (wg-MLST) and therefore includes homopolymeric tracts; repetitive DNA 

sequences that can be used to distinguish between very closely related isolates, such as 

those within the same ST as in this study (Zhang et al. 2015; Allard et al. 2016; Schürch et 

al. 2018). In contrast, the p-distance matrix was produced using a SNP-based approach, 
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looking at just the core genome in which recombinant regions had been removed. This 

means that only core SNPs were used to distinguish between isolates, meaning that some 

resolution may have been lost, especially considering the small timeframe over which 

isolates were collected. 

 

It is clear that more research is needed to understand why and how these contact networks 

may be important for the spread of C. jejuni. In particular, being able to identify the 

attributes within the feed network and the pathways captured by both road distance and 

Euclidean distance contributing to transmission would help inform targeted control 

activities within the commercial poultry industry. Future research will rely on both the 

participation of producers and innovative technology to capture and track all on- and off-

farms movements that may be contributing to the spread of disease. For example, Global 

Positioning Systems (GPS) may be used to track the spatial pattern of transporting 

vehicles within livestock contact networks, or new recording systems may be developed 

to aid the producer to track all vehicles entering their farm, such as the OnSide® 

smartphone-based app (http://www.onside.co.nz/). Further research into on-farm 

biosecurity is also important to see if producers are identifying these pathways as major 

risks for disease transmission and if they are implementing any disease risk management 

strategies to target these pathways such as the disinfection of vehicles. Without this 

additional research, it will be difficult to recommend suitable control strategies that may 

target pathways contributing to the spread of C. jejuni within the commercial poultry 

industry. 

 

5.6. Conclusion 

This study highlights the importance of both local transmission mechanisms and the 

movement of transporting vehicles in the spread of C. jejuni within the commercial 

poultry industry. This includes not only transmission between farms sharing the same 

parent company but also between farms in different supply chains. Although this spread 
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is likely to be facilitated by the small number of companies servicing the industry, 

particularly those few delivering and transporting feed, additional research is required to 

fully characterise these risk pathways and to develop appropriate control strategies that 

would reduce the spread of C. jejuni within the commercial poultry industry. 
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6.1. Abstract 

AIMS: Phylogenetic analysis using pathogen sequence data has become an increasingly 

popular tool for making epidemiological inferences. However, the current lack of robust 

empirical data on transmission events, combined with the limited understanding of how 

host population contact structures influence pathogen phylogenies, has made it difficult 

to validate some of the existing analytical methods. Using Campylobacter jejuni 

transmission in the New Zealand poultry industry as a case example, this study developed 

a novel disease simulation model to explore the use of pathogen phylogenies in 

determining (i) who-infected-whom in model systems that consider only discrete 

network contacts or indeterminate local contacts,  and (ii) the relative contribution of 

different pathways in model systems that consider multiple contact types. 

 

METHODS: Point-mutation within the genome sequence of C. jejuni ST-6964 was 

simulated across 600 outbreaks within the New Zealand commercial broiler industry 

including 156 farms with a total of 715 poultry sheds. The underlying metapopulation 

network simulation model incorporated within-farm spread through a stochastic 

Maternally Immune-Susceptible-Latent-Infectious (MSEI) compartmental model and 

between-farm spread through both local contacts (determined by the geographical 

proximity between farms), and network contacts (determined by the reported on- and 

off-farm movements of transporting vehicles).  Three transmission scenarios were 

explored with 200 simulation replicates with only local contacts, 200 with only network 

contacts, and 200 with both local and network contacts.  All infected poultry sheds were 

sampled at the end of each simulation replicate and a maximum likelihood phylogenetic 

tree was constructed based on the number of single nucleotide polymorphisms between 

the simulated C. jejuni sequences. Each phylogeny was then used to infer a single 

transmission tree which could be compared with the recorded contacts to determine the 

number of transmissions which had been correctly inferred using the phylogeny. Lastly, 

a non-parametric Mantel test was completed to explore if the pairwise genetic distance 
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between the simulated C. jejuni sequences could be used to determine the relative 

contribution of each of the contacts pathways. 

 
RESULTS: Overall, 49.5% (99/200) of the simulations including both local and network 

contacts resulted in an outbreak that persisted through to the end of the 365-day 

simulation period. On average, there was 4,625 new shed-level infections across the 715 

sheds during the course of a single outbreak, of which 65.0% were a result of a local 

contact, 30.9% from a network contact, and 4.0% from a neighbouring shed. Among the 

200 simulations that modelled the spread of C. jejuni through network contacts only, 

30.5% (61/200) persisted through end of simulation period with an average of 3,352 new 

infections during the course of a single outbreak, whilst among the 200 simulations that 

modelled the spread of C. jejuni through local contacts only, 48.0% (96/200) persisted 

through end of simulation period with an average of  3,959 new infections. On average 

only 3.0% of the simulated infectious contacts were correctly identified in the inferred 

transmission trees of which on average 67.6% were local contacts, and 32.4% were 

network contacts. Results from the non-parametric Mantel test found a weak correlation 

between the genetic pairwise distance and all other model matrices with little difference 

seen in the correlation coefficients between the different model systems.  

 
CONCLUSION: This study highlights the importance of combining both network and 

local contacts in phylogenetic analyses when trying to determine who-infected-whom 

and mechanisms of spread. Careful consideration of the limitations in pathogen sequence 

data must also be taken into account, such as the sampling time frame and missing hosts, 

if pathogen phylogenies are to be used to make any epidemiological inferences.  

 

KEYWORDS: Campylobacter jejuni, Phylodynamics, Contact networks, Sequence 

simulation, Infectious disease modelling  
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6.2. Introduction 

Campylobacter jejuni is one of the leading causes of bacterial foodborne gastroenteritis 

worldwide (Kaakoush et al. 2015) with a large proportion of human campylobacteriosis 

cases associated with the consumption and handling of poultry meat (Allos, 2001; 

Humphrey et al.  2007). Due to this risk, many countries with commercial poultry 

production systems have introduced a number of regulatory on-farm preventions 

measures to reduce the risk to public health, with a clear association seen between high 

on-farm biosecurity levels and the absence of C. jejuni in poultry (Jacobs-Reitsma et al.  

2008; Lin, 2009). Nevertheless, the effectiveness of individual biosecurity measures in 

preventing the onward transmission of C. jejuni is notoriously difficult to assess due the 

pathogen’s complex disease dynamics and multiple mechanisms through which is can 

spread both within and between poultry farms (Newell et al 2011). Further understanding 

of the risk factors and transmission dynamics of C. jejuni in poultry may allow the 

development of more targeted pre-processing interventions aimed at limiting human 

exposure to C. jejuni (Wagenaar et al.  2008).  

 

Previous studies investigating the risk factors and transmission dynamics of C. jejuni in 

poultry have almost exclusively relied on questionnaire-based approaches and risk 

assessment models with many contradictory results reported between studies (Newell 

and Fearnley, 2003; Conlan et al.  2007). Despite these discrepancies, there are a number 

of horizontal transmissions mechanisms that are thought to be significant risk factors for 

infection in a commercial broiler flock including the transportation of goods such as feed, 

litter, and water that are essential for production (Mills and Philips, 2003; Hutchison et 

al.  2004; Newell et al.  2010), the movement of personnel including maintenance staff, 

veterinarians, and catching crews (Slader et al.  2002; Ridley et al.  2011), and unwanted 

contacts with wild animals such as birds, rodents, and insects (Craven et al. 2000; Ekdahl 

et al. 2005; Nichlos, 2005; Couins et al.  2019). With this number of potential transmission 

routes, it is often difficult in an outbreak situation to know which specific pathways have 
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contributed to the spread of the disease using contact tracing data. Consequently, a 

growing number of studies are undertaking phylogenetic analyses using pathogen 

sequence data isolated from infected farms to make inferences about who-infected-whom 

(Cottam et al.  2008; Jombart et al.  2014; de Maio et al.  2016), identify risk factors 

associated with transmissions (Gardy et al.  2011; Hayama et al.  2019) and determine the 

transmission mechanisms responsible for the spread of a disease (Spada et al.  2004; Ypma 

et al.  2013). These inferences often rely on determining the genetic relatedness between 

the sampled pathogen isolates based on approaches that have historically been used in 

other research disciplines such as evolutionary biology and population genetics. 

Nevertheless, many of the analytical methods integrating pathogen sequence data into 

epidemiological investigations are still in their infancy and work on only a limited 

understanding of the complex relationship between disease transmission dynamics and 

pathogen phylogenies.   

 

To provide insight into this relationship, many studies have begun to incorporate contact 

network data into phylodynamic analyses to investigate what pathogen phylogenies can 

reveal about the underlying host population structure (Leventhal et al.  2012; Robinson et 

al.  2013; Vasylyeva et al.  2016). Contact networks are mathematical and graphical 

representations of the potential contacts between individuals in a population including 

features such as the nature, strength, and frequency of the contact which is known to 

influence the likelihood of a disease spreading via that contact (de Cao et al. 2014; Yin et 

al. 2017). However, many contact networks, particularly those for wildlife populations, 

are difficult to study empirically (Craft, 2015) and present numerous challenges when 

trying to model disease dynamics using pathogen sequence data. For this reason, some 

studies have split model systems into discrete network contacts which are more easily 

defined and local contacts which are more difficult to characterise (Gates et al. 2013; Rossi 

et al. 2017; Qi et al. 2019). For example, in a study by Firestone and colleagues (2011) 

social network analysis was used to characterise the importance of both spatial location 
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and contact network position in the 2007 equine influenza epidemic in Australia. 

Spatiotemporal models showed that the underlying contact network was essential to 

describe the pattern of spread whilst models without any reference to the underlying 

contact network structure were imprecise; particularly in the early phases of the epidemic 

where it was thought that dissemination was dominated by the movement of infected 

horses between spatially clustered premises. This study highlighted the importance of 

linking the spatial and network analyses of disease outbreaks in order to improve the 

validity of disease transmission inferences and provide insight into both the sequence and 

scale of spatial spread; helping to pinpoint which pathways may need to be targeted for 

control (Lessler et al. 2016). However, despite the success of these approaches in 

exploring the relative contribution of different transmission pathways, very few have 

combined split model systems into a phylogenetic analysis and looked at the ability of 

phylogenies to capture these dynamics. In fact, until recently there has been very little 

attempt to validate any of the pathogen phylodynamic models currently in the literature, 

although a limited number of studies can be found in which the performance of different 

models have been compared (Klinkenberg et al. 2017; Bloomfield et al. 2019; Firestone et 

al. 2019). 

 

In this study, the spread of C. jejuni through the New Zealand commercial poultry 

industry was simulated using a metapopulation disease transmission model as a 

theoretical example to evaluate the validity and performance of the methodology used in 

Chapter 5 without any intention to make any accurate inferences about the true 

transmission dynamics of C. jejuni in the industry. In the model, the probability of 

transmission between two farms was modelled as a function of the geographical 

proximity of the farms as well as the underlying contact network based on the movement 

of goods and services across the industry. Pathogen sequence data and mutations were 

also specifically modelled to allow for the reconstruction of pathogen phylogenies. Using 

both the network data and the sequence data, the objectives of this study were to assess 
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the performance of methods that use pathogen genetics to determine (i) who-infected-

whom for discrete network contacts, (ii) who-infected-whom for nebulous local contacts, 

and (iii) the relative contribution of different pathways in model systems that consider 

disease spread through both network and local contacts. 

 

6.3. Material and Methods 

6.3.1. Disease simulation model 

A disease simulation model was developed to explore how pathogen phylogenies can be 

used to characterise the spread of C. jejuni through the New Zealand commercial broiler 

industry. The model consisted of four components: (i) a demographic component 

describing the location and structure of individual poultry farms based on the results from 

a previous industry survey, (ii) an on-farm component describing the disease status of 

birds within each poultry shed on farm and the transmission of C. jejuni within and 

between sheds on the same farm, (iii) a between farm component describing disease 

transmission between different farms via one of two mechanisms; indirect local spread 

and/or direct network contacts and, (iv) a sequence simulation component describing the 

nucleotide substitutions occurring over time in each infected shed (Figure 6.1).  

 

6.3.2. Model demographics 

The model demographics were constructed using the New Zealand commercial broiler 

industry as a case example. Farm information including the production system (i.e., all-

in-all-out for the entire farm versus multiple different age groups simultaneously present 

on farm), the total number of poultry on farm (i.e., flock size), the number of poultry 

sheds on farm, the length of the production cycle, and the downtime period between 

production cycles (where sheds are typically cleaned and left empty for a period between 

when one grown flock is depopulated and the next batch of chicks is introduced) was 

collected through a paper-based survey that was sent to all poultry producers registered 

with either the Poultry Industry Association of New Zealand (PIANZ) or the Egg  
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Figure 6.1. Schematic diagram showing an overview of the Campylobacter transmission 

model among three individual farms at time 𝑡𝑡𝑛𝑛. Each farm has a fixed number of sheds 

housing a fixed number of birds with the shed colour indicating its infectious status 

(yellow: infectious and blue: non-infectious). When Campylobacter first enters a shed, the 

within shed prevalence of Campylobacter for 𝑡𝑡𝑛𝑛+1 is modelled using an MSEI 

compartment model (1) with the number of infected birds recorded in each time step. The 

within shed prevalence is used to determine the likelihood of transmission between sheds 

in the same flock (2) indicated by the vertical arrows in farm 1 where transmission has 

occurred from shed 1 to shed 2 and from shed 2 to sheds 3 and  4.  Transmission between 

flocks (3) can occur via two mechanism (3a) indicates spread from farm 1 to farm 3 due 

to a direct contact in the network showing the movement of transporting vehicles 

(horizontal arrow) whilst (3b) indicates spread from farm 1 to farm 2 due the spatial 

proximity of the production premises (dashed boxes). 
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Producers Federation (EPF) as of June 2016.  This database was believed to capture the 

majority of commercial broiler enterprises since PIANZ membership represents over 

99% of the country’s chicken meat producers. The study was judged to be low risk 

thorough peer evaluation and consequently was not formally reviewed by any of the 

University’s Human Ethics Committees. Chapter 3 provides a full description of the 

survey design, implementation, and results, with a copy of the complete survey 

questionnaire provided in Appendix A. For the purpose of this study, only survey 

responses from commercial broiler enterprises (defined as farms with > 80% of poultry 

on-site classified as broilers) were used as they are considered the primary risk factor for 

C. jejuni entering the human food chain (Humphrey et al.  2007).  

 

If farms did not respond to the postal survey, the farm demographics (i.e., flock size, 

number of sheds, production cycle length and downtime period), were inferred by 

randomly sampling from a kernel density estimate (KDE) derived from a histogram 

produced using the survey responses. The samples were selected using the R package stats 

(R Core Team., 2018) so that the resulting KDE, derived from the inferred estimates, 

reproduced the bandwidth and mean from the kernel produced using the survey 

responses (i.e., the kernel from which the estimates were sampled).  Each shed was 

assigned a random day in the production cycle or downtime period drawn from a uniform 

distribution to begin the simulations.  Sheds on farms with an all-in-all-out system all 

started the simulations on the same day whereas farms with continuous flow production 

systems had sheds at different stages of the production cycle. Once set, the day in 

production on which a shed started each simulation was kept constant over all model 

iterations. 

 
After initialisation, the farm demographics were kept constant over all model iterations 

with subsequent management processes represented as deterministic discrete-time 

events. For example, on the first day in a production cycle on an all-in-all-out farm, the 

entire farm would be populated with the number of 1-day-old-chicks indicated by their 
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total flock size with the chicks distributed evenly across all of the sheds present on farm.  

For a farm with multiple age groups present, sheds were repopulated using the same 

process, but on different days in the simulation depending on when the individual shed 

was designated to begin its production cycle.  When sheds were repopulated on the first 

day of the production cycle, it was assumed that chicks were both disease-free and 

immune to colonisation with C. jejuni, regardless of the farm disease status. This 

assumption was made given strong evidence that the prevalence of C. jejuni within a 

commercial flock is strongly age-dependent and birds less than two- to three-weeks old 

are rarely colonized naturally (Stern et al.  2001; Goddard et al.  2013).  

 

Reasons for this lag phase are unclear, but evidence points towards the effect of maternally 

derived antibodies and age-related differences in the intestinal environment and natural 

gut flora of birds (van der Wielen et al.  2000; Cawthraw and Newell, 2010). However, this 

naturally immunity decreases over time with most birds shown to become susceptible to 

colonisation with C. jejuni within two- to three-weeks (Stern et al.  2000). Immunity to 

other poultry pathogens that are also known to affect the morbidity and mortality in 

young chicks, such as Escherichia coli (Sawah et al. 2018) and Clostridium perfringens 

(Cooper et al. 2013), was not accounted for, and the effects of colonisation with these 

pathogens was reflected in the background mortality rate that was present throughout the 

duration of the model; such that chicks immune to C. jejuni had a higher mortality rate 

than any other disease status (i.e., susceptible, exposed or infected) to reflect the peak in 

mortality usually seen 3 to 4 days after placement (Tabler at el. 2004; Yassin et al. 2009). 

The model was updated on a daily basis until the end of the production cycle was reached.  

At this point, either the entire farm was depopulated in all-in-all-out systems or the shed 

was depopulated on farms with multiple age groups, with sheds remaining empty for the 

length of the downtime period. 
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6.3.3. On-farm disease dynamics 

A deterministic continuous-time MSEI compartmental model was used to simulate 

disease dynamics within each shed with birds being classified into one of four mutually 

exclusive disease statuses: maternally immune (M), susceptible (S), exposed (E), or 

infectious (I) (Figure 6.2). As each shed started a simulation on a predetermined day in 

their production cycle, it was assumed that all birds started as susceptible (S) unless the 

day selected was either within the first 14 days of the farms production cycle, in which 

case all birds started the simulation in the maternally immune group (M), or the shed 

started the simulation in their downtime period in which case no birds were present. 

Throughout the duration of each simulation run, when sheds were repopulated all 

individuals entered the immune group (M). Birds transitioned into the susceptible group 

(S), in which they could be infected, at a constant rate (γ) that ensured all individuals 

would come susceptible after the first 21 days, reflecting the two- to three-week lag phase 

reported in experimental studies (Stern et al.  2000). If a farm became infected during its 

production cycle, a random shed on the farm was selected, ensuring that the shed 

contained susceptible birds whilst not already having been infected. One susceptible bird 

in the selected shed was then moved to the exposed group (E) after which, each 

susceptible individual in the infected shed received the force of infection (λ) at a rate that 

= λ(I).  

 

Once exposed, birds transitioned into the infectious group (I) at a constant rate (δ) 

reflecting a latency period of 1.5 days in which exposed birds remained infected but not 

yet infectious and so therefore did not contribute to the force of infection. Birds in the 

infected group (I) were assumed to be persistently infected for the remaining duration of 

the production cycle. vertical lines represent birds leaving the compartment due a 

background mortality rate (α). In the model all 1-day-olds chicks start immune (M) with 

maternal antibodies decaying at a constant rate (γ) ensuring that all chicks become 

susceptible (S) within 2-3 weeks. If infected one susceptible bird was moved to the  
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Figure 6.2. Schematic showing the MSEI deterministic compartmental model where solid 

horizontal lines indicate the movement of birds between compartments whilst dashed 

that varied as a function of the number of infectious individuals in the shed; such that, λ  

varied as a function of the number of infectious individuals in the shed; such that, λ = 

λ(I).  Many different expressions can be used to describe the force of infection; however, 

for the purpose of this study, λ was generated by considering the interaction between the 

transmission rate (β), a product of the contact rate and the probability of infection given 

a contact, and the proportion of infectious individuals (i.e., the disease prevalence: I/N); 

such that, λ(I) = β (I/N).  

exposed group (E) after which, each susceptible individual in the infected shed received 

the force of infection (λ) at a rate. Throughout all the simulations the β value was kept 

constant with an initial value selected to reproduce the dynamics shown in a previous 

study by van Gerwe and colleagues (2009) in which colonized flocks consisting of 20,000 

broiler birds were shown to reach a within-flock prevalence of more than 95% within the 

first 4 to 8 days after colonization of the first broiler (van Gerwe et al. 2009). Once 

exposed, birds transitioned into the infectious group (I) at a constant rate (δ) reflecting a 
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mean latency period of 1.5 days (van Gerwe et al. 2005) in which exposed birds remained 

infected but not yet infectious, and therefore did not contribute to the force of infection. 

Birds in the infected group (I) were assumed to be persistently infected for the remaining 

duration of the production cycle (Neves et al. 2019) giving rise to ordinary differential 

Equations 1-4, where λ(I) = β(I/N). 

 
𝑑𝑑𝑑𝑑 
d𝑡𝑡

= µ𝑁𝑁 − 𝛾𝛾𝑀𝑀 − 𝛼𝛼1𝑀𝑀  (Equation 1) 

d𝑆𝑆 
d𝑡𝑡

= 𝛾𝛾𝛾𝛾 −  𝜆𝜆(𝐼𝐼)𝑆𝑆 − 𝛼𝛼2𝑆𝑆 (Equation 2) 

d𝐸𝐸
d𝑡𝑡

 = 𝜆𝜆(𝐼𝐼)𝑆𝑆 −  𝛿𝛿𝛿𝛿 − 𝛼𝛼2𝐸𝐸 (Equation 3) 

d𝐼𝐼
d𝑡𝑡

 =  𝛿𝛿𝐸𝐸 − 𝛼𝛼2I   (Equation 4) 

Once a shed was infected, the probability of transmission between an infected shed (i) 

and an uninfected shed (j) on the same farm was calculated with the probability assumed 

to scale linearly with the prevalence in the infected shed. If multiple sheds were infected, 

the daily total probability of transmission was calculated as shown in Equation 5, where 

m is equal to the rate at which the probability increases with the infection prevalence, and 

1-m(Ii/Ni) is equal to the probability that transmission will not occur from shed i to shed 

j. For the purpose of this study no attempts were made to estimate a value for m based on 

any data in the literature, instead m was set to an arbitrary value of 0.05 which remained 

the same across all the model simulations. This simplifying assumption limits any 

inference that can be made about the transmission dynamics of C. jejuni; however, this 

was considered beyond the scope of this paper. 

 

𝑃𝑃𝑗𝑗 = 1 −  ∏ [1 −𝑚𝑚( 𝐼𝐼𝑖𝑖
𝑁𝑁𝑖𝑖

𝑖𝑖
1 )]   (Equation 5) 
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6.3.4. Between-farm disease dynamics 

Transmission between an infected farm and a non-infected farm could occur through two 

possible pathways including (i) the discrete on- and off-farm movement of commercial 

vehicles transporting either feed, live birds, hatching eggs, litter, or waste and, (ii) through 

local contacts  including the movements of wild birds, rodents, and other unknown 

vectors or fomites between neighbouring poultry farms.  

 

6.3.4.1. Spread through network contacts 

To determine which farms were connected by the movement of transporting vehicles, 

three separate contact networks were constructed using information reported in a 

previous industry survey. Contacts were split to represent common groups of companies 

that support the poultry industry with one network constructed from all the on- and off-

farm movements relating to feed products, another network constructed from all the 

movements relating to live birds and hatching eggs, including the movement of the 

catching companies, and the final network constructed from all the movements relating 

to poultry litter and waste. In each network, the number of nodes was set to equal the 

number of broiler farms registered in the PIANZ-EPF database (n = 156), with edges 

between nodes representing an indirect connection between farms that had reported 

using the same transporting company (Figure 6.3).  

 

For any farms that did not respond to the postal survey, missing edges were inferred by 

grouping non-responders based on two known attributes: farm location and parent 

company.  Non-responders were then randomly assigned a transporting company that 

was known to service other farms belonging to the same parent company within the same 

district. For example, a farm belonging to parent company B could only be assigned a 

transporting company that had been reported in the survey by a farm also belonging to 

parent company B located in the same district as the non-responder. For each inferred 

edge, the frequency of movements along that edge also had to be inferred. Values for the  
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Figure 6.3. A schematic diagram showing a network graph (left) that could have been 

constructed from survey responses with vertices (V) belonging to different groups; for 

example, V1 (1, 2, 3 and 4) represent poultry farms whilst V2 (A, B, C and D) represent 

those transporting companies reported to have delivered goods or services to the 

connected farm. This graph can be used to construct the network on the right which 

contains just the vertices from the V1 group (i.e., only the poultry farms that responded 

to the survey), with edges between vertices that share a common vertex belonging to the 

V2.group. For example, the green dashed edge connects farm 1 and farm 4 in the right-

hand graph due to the movement of waste and litter shown in the left-hand graph by 

transporting company C.  

 

frequency were estimated similar to the missing farm demographics with estimates 

randomly sampled from a KDE derived from the histogram produced using the survey 

responses so that the resulting KDE reproduced the bandwidth and mean from the kernel 

they were sampled from. Edge frequency was used to determine the number of days 

between contacts along an edge in the model.  For example, a contact frequency of 10, 

indicated that there was 10 days between two consecutive contacts along that edge. In 

addition to edge frequency, a number of network statistic were used to describe the 

structure of each of the inferred networks including (i) degree, (ii) betweenness, (iii) 

225



Chapter 6 | The impact of network structure on phylogenies 

density, (iv) average path length, (v) clustering coefficient, (vi) fragmentation and, (vii) 

diameter. All network statistics were calculated using the R package igraph (Csardi and 

Nepusz, 2006) with a further description of each measure provided in Table 6.1. Given a 

contact in any of the networks, the probability of transmission between an uninfected 

farm (j) and an infected farm (i) was calculated with the probability assumed to scale 

linearly with the prevalence of C. jejuni infected birds on the infected farm. If a farm had 

multiple contacts in the same network on the same day, the total probability of 

transmission was given as shown in Equation 6. 

 

𝑃𝑃𝑗𝑗 = 1 −  ∏ [1 − ( 𝐼𝐼𝑖𝑖
𝑁𝑁𝑖𝑖

𝑖𝑖
1 ∅𝑒𝑒−𝛼𝛼𝑑𝑑𝑖𝑖𝑖𝑖)]   (Equation 6) 

 

Table 6.1. Network analysis glossary of terms used to describe the contact network graphs 

representing the movement of goods and services between commercial poultry producers 

in New Zealand.  

Network 
measure  

Definition  

Total degree The sum of the in- and out-degree, whereby the in-degree is the number of 
individual movements onto a farm and the out-degree is the number of 
individual movements onto a farm  

Betweenness The frequency a farm is found on the shortest path between any other two pair 
of farms in the network 

Density The proportion of all possible links between farms in the network that are 
present 

Average path 
length 

The average shortest path between any pair of farms in the network averaged 
over all pairs of farms 

Clustering 
coefficient 

The proportion of neighbouring farms in direct contact with a farm that are 
also connected to each other. 

Fragmentation The proportion of farm pairs for which a path does not exist between them. 
Diameter The longest path between any two pair of farms in the network 

 

6.3.4.2. Spread through local contacts 

In addition to network contacts, local contacts where considered possible between all 

farms within 7km (~4.34 miles) of each other. This distance was selected on the basis of 

the highly pathogenic avian influenza buffer zones recommended by the United States 
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Department of Agriculture (USDA) which consider farms outside this distance from an 

infected farm, being unlikely to get infected (USDA, 2017). The Euclidean distance 

between each farm was calculated using the addresses provided in the PIANZ-EPF 

database with addresses first having been checked using Google Maps (2017) to make 

sure they specified a poultry farm (indicated by the presence of poultry sheds) and not 

the producers' residential address. The probability of transmission between an uninfected 

farm (j) and an infected farm (i) was then calculated with the probability assumed to scale 

linearly with the prevalence on the infected farm whilst decreasing exponentially with the 

Euclidean distance between the two farms (dij)., and if a farm had multiple infected 

neighbours, the daily total probability of transmission was given as shown in Equation 6, 

where α is the rate at which the probability declines with distance, ∅ is equal to the 

probability of transmission when the dij is equal to zero, and 1-(Ii/Ni)∅e-αdij is the 

probability that transmission will not occur. For the purpose of this study no attempts 

were made to estimate a value for either ∅ or α based on data in the literature, instead ∅ 

was set to an arbitrary value of 0.05 whilst α was set to 1.46, similar to the transmission 

kernel applied in a previous study by VanderWaal and colleagues (2016), with both ∅ and 

α remaining the same across all the model simulations.  

 

6.3.5. Estimating the probability of infection 

Once the transmission probability for each pathway had been calculated, the total 

probability of a new infection occurring on a farm was calculated as shown in Equation 

7; taking in to account all the possible routes including between shed transmission (if the 

farm was already infected), transmission via a transporting vehicle, or transmission via a 

local contact (Figure 6.4). A random number generator was then used to select any 

number between zero and one (n) and if the total probability of infection was greater than 

n, an infection was seeded on the farm. Given that an infection occurred, a Bernoulli trial 

was then performed to select which pathway would be considered responsible for the 

infection, followed by an addition trial to select the source farm out of the possible 
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Figure 6.4. A schematic diagram showing how to calculate the total probability (P) of a 

new infection occurring in an uninfected shed (i.e., Shed 2, Farm 2: shown in blue) from 

an infected shed (shown in yellow). In this example no infection can result from a 

movement in either the waste network, or the live bird and hatching egg network as the 

farms do not share the same transporting companies. Therefore, both P1 and P3 are equal 

to 0. However, there is a probability of Shed 2 becoming from Farm 1, in which all sheds 

are infected, due to either the close proximity of the two farms (indicated by the dashed 

lines) and the probability of a local contact (P5), or via a contact in the feed network (P2), 

as both Farms 1 and 2 share the same feed company. Shed 2 could also become infected 

via contact with the other infected shed on the farm (i.e., Shed 1, Farm 2). Therefore, the 

total probability of Shed 2 becoming infected is: 1 – [(1-P1) x (1-P2) x (1-P3)].  
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infected farms in contact with the newly infected farm on the selected pathways (i.e., if an 

uninfected farm had multiple infected neighbours, the source was determined through a 

Bernoulli trial using the individual probabilities of each infected neighbouring farm). A 

shed was then randomly selected from the source farm, ensuring that it had at least one 

infectious bird, to be recorded as the source shed. 

 

𝑃𝑃𝑗𝑗 = 1 −  ∏ (1 − 𝑃𝑃𝑖𝑖)𝑖𝑖
1    (Equation 7) 

 

6.3.6. Sequence simulation 

For the sequence simulation, a single C. jejuni ST-6964 whole-genome sequence was 

selected from the whole-genome sequencing data presented in Chapter 5; that is, the 167 

C. jejuni isolates that were sampled as an extension of the study reported by the Institute 

of Environmental Science and Research (ESR) in collaboration with the Poultry Industry 

of New Zealand (PIANZ) (Muellner et al. 2016). For the full details describing sample 

collection, isolate culture and the genomic analysis of the isoaltes including genome 

seqeuncing, assembly and multi-locus sequence typing (MLST) readers are directed to 

Chapter 5. For the purpose of this study, the single C. jejuni ST-6964 sequence was 

selected based on two quality control features; the number of overlapping reads (i.e., 

contigs) and the guanine-cytosine content (Gurevich et al. 2013) . The selected sequence 

was then limited to the size of the first node produced from de novo assembly: that was, 

208,001 nucleotide bases, as a trade-off between computational capacity and biological 

accuracy. The sequence was used to seed the infection in each model simulation with the 

sequence remaining the same across all iterations.  

 

Given an infectious contact, the newly infected shed would acquire the sequence from the 

source shed and a nucleotide substitution process would pursue independently in both 

infected sheds following the Jukes-Cantor model for nucleotide substitution (Jukes and 

Cantor, 1969) under an adjusted substitution rate based on the reported rate of 3.0×10−7 
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per site per year for this C. jejuni lineage (French et al.  2019). This substitution rate was 

adjusted, as shown in Equation 8, to provide a daily probability of mutation over the 

limited number of nucleotide bases in the selected sequence, with the adjusted rate being 

used to determine the number of potential substitutions occurring in each time step under 

a binomial distribution: B(n, p), where n is equal to the sequence length and p equal to the 

adjusted substitution rate. Once infected and a sequence had been recorded for a shed, it 

was assumed that multiple infections could not occur within the same production cycle 

meaning that each infected shed only had a single sequence.  

 

Adjusted substitution rate = [(3.0𝑒𝑒−7 × 1,708,234) 208,001⁄ ]
365

 

 

Equation 8. Calculation used to adjust the substitution rate provided by French and 

colleagues (2019) (i.e., 3.0 x 10-7per site per year) to give a daily substitution rate across 

only a small length of the genome (i.e., 208,001 bp out of 1,708,234 bp)  

 

6.3.7. Simulations conditions 

Each model simulation ran over the course of one year (i.e., 365 days) unless the outbreak 

died out after the initial seed was set. To seed the infection at the start of each simulation, 

a single shed was randomly selected. If the selected shed had either all immune birds or 

no birds (i.e., within the first 14 days of production or in the downtime period), the 

selection process was repeated until a susceptible shed was chosen, in which case four 

birds were moved from the susceptible group (S) into the exposed group (E). With each 

new infection, the infectious pathway, the source farm, the source shed, the day of 

infection, and the genetic sequence in the source shed at the time of infection was 

recorded and extracted as a CSV file. This information was used to (i) track who-infected-

whom, (ii) determine the contribution of each contact pathway to the number of new 

infections, and (iii) produce epidemic curves showing the total number of infected farms 

on each day of the simulation. The genetic sequence was then updated every day to record 
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any mutations that may have occurred with all genetic sequences at the end of each 

simulation (i.e., one sequence from all infected sheds after 365 days), exported as a multi-

sequence alignment FASTA files for use in the phylogenetic analysis described in section 

6.1.8. Altogether 600 model iterations were run, with 200 including both local and 

network contacts, 200 including just local contacts, and the remaining 200 including just 

network contacts. 

 

6.3.8. Phylogenetic analysis 

In order to assess the ability of a phylogeny to capture the contribution of multiple 

transmission pathways on the spread of the outbreak, a phylogenetic tree was constructed 

at the end of each simulation. Maximum Likelihood (ML) phylogenetic trees were 

constructed using MEGA7 (v7.0.26) (Kumar et al. 2016) based on the number of Single 

Nucleotide Polymorphisms (SNPs) in the multi-sequence alignment and the Jukes-

Cantor model (Jukes and Cantor, 1969), with SNPs extracted using the software tool SNP-

sites (v3.0.) (Page et al. 2016). The pairwise genetic distance between each of the 

sequences sampled at the end of the simulation was also calculated based on the 

uncorrected p-distance measure; that is, the proportion of nucleotide sites that differ 

between each pair of sequences. P-distance matrices were constructed using the R 

package ape (Paradis and Schliep, 2018) with no corrections made for multiple 

substitutions at the same site. The uncorrected p-distances were used in the statistical 

analysis described in section 6.1.9. 

 

To infer who-infected-whom from the simulated C. jejuni sequences, the computational 

method for the reconstruction of transmission trees described by Klinkenberg and 

colleagues (2017) was implemented using the R package phybreak (Klinkenberg et al. 

2017). To reduce the computation time, only 50 (50.5%, 50/99) of the simulations 

including both network and local contacts were randomly selected for this analysis in 

which a Markov-Chain Monte Carlo (MCMC) chain was run with a burn-in length of 
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5000 MCMC cycles followed by 25,000 samples. A final consensus transmission tree was 

constructed for each of the 50 simulations by finding the maximum parent credibility 

(mpc) tree as described in Hall and colleagues (2015). This is the tree in the set of posterior 

samples that has maximum support as measured by the frequency of the infector in the 

posterior distribution. The consensus transmission tree was then compared  with the 

recorded transmission network (Figure 6.5) to determine (i) the proportion of direct 

infectious contacts correctly identified (i.e., who-infected-whom), and (ii) the proportion 

of contacts in the transmission chain  correctly identified (i.e., direct infectious contacts 

that have been incorrectly inferred but are still connected in the same transmission 

chain).  

 

6.3.9. Statistical analysis 

To examine if the phylogeny had captured the contribution of all the different contacts 

the relationship between the genetic matrix and an additional four individual model 

distance matrices was examined using a non-parametric Mantel test (Mantel, 1967). Out 

of the four additional matrices, there was a single geographical distance matrix in which 

values corresponded to the Euclidean distance between each poultry shed in the model. 

This matrix was constructed using the R package geosphere (Hijmans, 2019) and the farm 

coordinates that had been extracted from the PIANZ-EPF database. Each value in the 

matrix was expanded to express the pairwise Euclidean distance (km) between the sheds 

on each farm with values for sheds on the same farm set to zero.  The three remaining 

model distance matrices represented the shortest path between farms in each of the 

contact networks, that is, the minimum number of links between two nodes in a network 

weighted by the frequency of the movement along that edge. To calculate the shortest 

path, network graphs were constructed using the R package igraph (Csardi and Nepusz, 

2006) under the force-based algorithm proposed by Fruchterman and Reingold (1991). 

These matrices were then also expanded to express the pairwise distance between each 

model shed, however, if a pair of farms were completely unconnected in the network  
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Figure 6.5. (a) A schematic diagram representing a transmission network containing 

three different transmission chains as indicated by the colour of the lines (blue, red and 

black). In this example, the primary case is Farm 1, who directly infects Farm 5 (blue 

chain), Farm 6 (red chain), and Farm 8 (black chain). There is then onward transmission 

from both Farms 5 and 6 as indicated by the direction of the arrows in each of the chains. 

(b) shows the corresponding network that has been inferred using pathogen sequence 

data. In the network the direct transmissions between Farm 1 and Farm 6, Farm 1 and 

Farm 8, and Farm 7 and Farm 4 have been correctly identified, as indicated by the solid 

lines. Indirect transmission between Farm 1 and Farm 2 as well as between Farm 6 and 

Farm 7 has also been correctly identified, as indicated by the dashed line, meaning that 

these farms are not direct contacts in (a) but are in the same transmission chain. 

Therefore, the proportion of infectious contacts correctly identified is 42.9% (3/7), whilst 

proportion of contacts in a transmission chain correctly identified 71.4% (5/7) 
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graphs, a numeric value of 99 was recorded in the matrix in order to be able to distinguish 

between those sequences sampled from sheds on unconnected farms and those sequences 

sampled from sheds on the same farm. 

A non-parametric Mantel test (Mantel, 1967) was then implemented between the genetic 

p-distance matrix and each of the individual model distance matrices using the RELATE

routine in PRIMER (v7.0.) (Clarke and Gorley, 2015), with Spearman’s rank correlations 

(rho) calculated as a measure of matrix correlation. To further examine if any of the 

phylogenies had captured the contribution of local contacts, tanglegrams were 

constructed using the R package dendextend (Galili, 2015) in which each sequences on 

the phylogenetic tree was connected via an auxiliary line to the corresponding node on a 

hierarchical dendrogram representing the Euclidean distance between the sheds from 

which the sequences were sampled from. To optimise each tanglegram, a two-tree 

crossing minimization technique was used to minimize the number of crossings between 

the auxiliary lines. Tanglegrams were then used to calculate the cophenetic correlation 

coefficient between the trees cophenetic distances matrices with values near 0 meaning 

that the two trees are not statistically similar (Sokal and Rohlf, 1962) and suggesting that 

the geographical proximity of farms has little influence on the shape of the pathogen 

phylogeny.  

6.4. Results 

6.4.1. Industry demographics and contacts 

Out of the 156 broiler farms registered in the PIANZ-EPF database, 36.5% (57/156) 

responded to the industry survey, meaning that the farm demographics for 99 of the farms 

in the model had to be inferred; overall resulting in a final model with 715 poultry shed 

and the model demographics summarised in Table 6.2. The average Euclidean distance 

between a pair of farms was 309.63km (min: 0.001, max: 1049.71, median: 212.95) with 

only 4.0% (480/12,090) of pairwise distances being 7km or less: the cut-off distance for 
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local spread to occur between two farms (Figure 6.6). Across the three inferred contacts 

networks, the waste and litter network had the greatest average path length equal to 2.15 

followed by the live bird and hatching eggs network with an average path length of 2.10 

and the feed network with an average path length of 1.27. The live birds and hatching eggs 

network had the greatest number of edges with 9722 edges between the 156 broiler farms 

(Table 6.3).  

Table 6.2. Summary farm demographics across 156 broiler farms registered in the 

PIANZ-EPF database, of which 63.5% (99/156) have been inferred by randomly sampling 

from a kernel density estimate derived from a histogram produced using survey responses 

from 36.5% (57/156) of the broiler farms. 

Farm demographic Number of farms (%) 
Housing type Free-range 28 (17.9) 

Barn 120 (76.9) 
Colony 8 (5.1) 

Flow All-in-all-out 112 (71.8) 
Multiple age groups 44 (28.2) 

Mean flock size 
(min-max) 

135,767.7 
(31,200-923,000) 

Mean number of sheds 
(min-max) 

4.6 
(2-12) 

Mean production cycle length (days) 
(min-max) 

42.4 
(18-56) 

Mean downtime period (days) 
(min-max) 

8.9 
(0-18) 

235



Chapter 6 | The impact of network structure on phylogenies 

Table 6.3. Summary network measures for the inferred network graphs representing the 

yearly on- and off-farms movements relating to feed, live birds and hatching eggs and, 

poultry waste and litter between all 156 commercial broiler producers in New Zealand 

registered on the PIANZ-EPF database. 

Network measure 

Network 

Feed 
Live birds and 
hatching eggs 

Waste and litter 

Number of edges 6038 9722 9188 
Average total degree 
(min-max) 

35.87 
(3-62) 

38.31 
(3-86) 

33.35 
(4-80) 

Average betweenness 
(min-max) 

8.09 
(0-1050) 

148.7 
(0-4903) 

153.80 
(0-6345) 

Density 0.23 0.25 0.22 
Average path length 1.27 2.10 2.15 
Clustering coefficient 0.99 0.91 0.78 
Fragmentation 0.69 0.00 0.10 
Diameter 550 353 377 
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6.4.2. Disease transmission model 

Among the 200 simulations that modelled the combined spread of C. jejuni through both 

network and local contacts, 34.5% (69/200) failed to generate a secondary infection after 

the initial seed, 16.0% (32/200) died out before the end of simulation period, and 49.5% 

(99/200) persisted through end of simulation period. Across all the model iterations that 

resulted in the onward spread of C. jejuni and in which the outbreak ran for the full length 

of the simulation, there was an average of 4,625 (min: 3,918, max: 4,907, median: 4,689) 

new infections during the course of a single outbreak, of which an average of  65.6% (min: 

64.0, max: 67.2, median: 65.6) were a result of a local contact, 18.0% (min: 16.7, max: 19.4, 

median: 18.0) from a contact in the feed network, 8.0% (min: 7.1, max: 9.2, median: 8.0) 

from a contact in the live bird network, 4.8% (min: 4.1, max: 5.8, median: 4.8) from a 

contact in the waste network and, 3.6% (min: 2.9, max: 4.4, median: 3.6) from a 

neighbouring shed. On average 58.3% (91/156) of the farms were infected on day 90 in 

comparison to 85.9% (134/156) on day 180, 82.7% (129/156) on day 270, and 85.9% 

(134/156) on the last day of the simulation, with the complete epidemic curves presented 

in Figure 6.7. 

Across the 200 simulations that modelled the spread of C. jejuni through only network 

contacts, 45.0% (90/200) failed to generate a secondary infection after the initial seed, 

24.5% (49/200) died out before the end of simulation period, and 30.5% (61/200) 

persisted through end of simulation period. Across all the model iterations that resulted 

in the onward spread of C. jejuni, and in which the outbreak ran for the full length of the 

simulation, there was an average of 3,352 (min: 2,556, max: 3,997, median: 3,356) new 

infections during the course of a single outbreak, of which on average 52.0% (min: 50.0, 

max: 53.8, median: 52.1) were a result of a contact in the feed network, 20.0% (min: 19.0, 

max: 21.6, median: 20.1) from a contact in the live bird network, 14.4% (min: 13.2, max: 

15.8, median: 14.4) from a contact in the waste network, and 14.4% (min: 13.2, max: 15.8, 

median: 14.4) from a neighbouring shed. On average 15.4% (24/156) of the farms were  
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infected on day 90 in comparison to 56.4% (88/156) on day 180, 73.1% (114/156) on day 

270, and 78.8% (123/156) on the last day of the simulation (Figure 6.7). 

Among the 200 simulations that modelled the spread of C. jejuni through only local 

contacts, 38.0% (76/200) failed to generate a secondary infection after the initial seed, 

14.0% (28/200) died out before the end of simulation period, and 48.0% (96/200) 

persisted through end of simulation period. Across all the model iterations that resulted 

in the onward spread of C. jejuni, and in which the outbreak ran for the full length of the 

simulation, there was an average of 3,959 (min: 2,095, max: 4,677, median: 4,162) new 

infections during the course of a single outbreak, of which 94.5% (min: 92.9, max: 95.7, 

median: 94.5) were a result of a local contact, and 5.5% (min: 4.3, max: 7.1, median: 5.5) 

from a neighbouring shed. On average 41.7% (65/156) of the farms were infected on day 

90 in comparison to 67.9% (106/156) on day 180, 77.6% (121/156) on day 270, and 84.0% 

(131/156) on the last day of the simulation (Figure 6.7). 

6.4.3. Phylogenetic and statistical analyses 

Results from the non-parametric Mantel test found a weak correlation between the p-

distance matrix (indicating the genetic pairwise distance between sample isolates) and the 

Euclidean distance matrix (indicating the geographical distance between infected sheds) 

with an average cophenetic correlation coefficient equal to 0.017 (min: -0.077, max: 0.229, 

median: 0.010) across simulations including both network and local contacts, 0.028 (min: 

-0.072, max: 0.277, median: 0.014) across simulations including only network contacts,

and 0.033 (min: -0.086, max: 0.474, median: 0.009) across simulations including only 

local contacts (Figure 6.8). The average Spearman rho values between the phylogenetic p-

distance matrix and the different network model matrices also showed very little variation 

across the different model systems, even in comparison to the model simulations that did 

not include any network contacts (Figure 6.9). For example, the average Spearman rho 
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Figure 6.8. Boxplot showing the cophenetic correlation coefficient over 99 model 

simulations including both network and local contacts (blue), 61 model simulations 

including only network contacts (yellow), and 96 model simulations including only local 

contacts (green) with values in the graph representing the minimum, maximum, median, 

first quartile and third quartile in the data.  

values between the phylogenetic p-distances and the distance in the feed network was 

0.014 (min: -0.051, max: 0.116, median: 0.007) across all simulations that included both 

network and local contacts, 0.021 (min: -0.036, max: 0.186, median: 0.010) across all 

simulations that only included network contacts, and 0.018 (min: -0.051, max: 0.253, 

median: 0.008 across all simulations that only included local contacts. The cophenetic 

correlation coefficient also showed very little variation between the model systems with 

an average value of 0.018 (min: -0.095, max: 0.232, median: 0.004) across all simulations 

including both network and local contacts,  0.042 (min: -0.067, max: 0.350, median: 

0.020) across all simulations including only network contacts, and 0.062 (min: -0.101, 

max: 0.574, median: 0.021) across all simulations including only local contacts (Figure 

6.9). 
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When comparing the consensus transmission trees, inferred from each phylogeny, with 

the recorded transmission networks from across 50 of the simulations including both 

network and local contacts, on average 3.0% (min: 1.7, max: 5.3, median: 2.9) of direct 

infectious contacts were identified  in the consensus tree whilst 47.4% (min: 41.6, max: 

50.3, median: 47.9) of infectious contacts in the transmission chain were identified. Out 

of those direct contacts correctly inferred on average 61.3% (min: 30.0, max: 84.6, median: 

63.1) were a local contact, 17.5% (min: 0.0, max: 50.0, median: 16.7) were a contact in the 

feed network, 9.7% (min: 0.0, max: 31.3, median: 10.0) were a contact in the live bird 

network, 5.2% (min: 0.0, max: 25.0, median: 5.4) were a contact in the waste network, and 

6.4% (min: 0.0, max: 30.8, median: 5.1) were a contact with a neighbouring shed on the 

same farm.  

6.5. Discussion 

To the best of our knowledge, this is the first disease transmission model that has been 

constructed within a commercial poultry industry that incorporates pathogen genome 

sequence data and, despite the limited availability of demographic and contact network 

data, this model presents a framework for assessing the use of pathogen phylogenies in 

determining important transmission dynamics such as who-infected-whom. However, in 

order to make any inferences about the spread of C. jejuni as the model pathogen, more 

work is needed to improve the estimates for the model parameters including the 

transmission rate. Nevertheless, the variation in transmission patterns across the model 

systems highlights the importance of combining both network and local contacts in 

future models to ensure meaningful inferences can be made about disease outbreak 

dynamics.  

Despite of the variation in transmission patterns across the different model systems, very 

little distinction was identified using the Mantel test; with no association found between 

the pairwise genetic distance of simulated sequences and any of the model matrices. This 
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result does not concur with the findings presented in Chapter 5 or the general hypothesis 

that a disease spreading predominantly through a single contact, for example local 

contacts, would result in a strong correlation between the phylogeny, indicating the 

genetic distance between isolates, and the corresponding distance matrix (i.e., the 

Euclidean distance). However, it is important to consider that the lack of correlation in 

the modelled dataset in comparison to the data presented in Chapter 5 may be due to 

some of the limiting assumptions in the model structure. For example, when considering 

the spread through local contacts a fixed boundary was used so that an infected farm was 

only able to infect those farms within a 7km radius. Not only is this unlikely to be the case 

in reality but it also limits local spread to only a small proportion of farm pairs as shown 

in Figure 6.6. Therefore, the Euclidean distance matrix, which was used in the Mantel test 

and accounts for all the pairwise distances between farms including those far greater than 

7km, may not accurately reflect local contacts due to the fixed limit used in the model. 

This may explain why the correlation between the genetic distance and the Euclidean 

distance is lower than expected as indicated by the rho values (i.e., the Mantel test); 

although for the cophenetic correlation coefficients that were calculated from the 

tanglegrams, no significant correlation was found in either the modelled dataset or the 

data presented in Chapter 5. This highlights the importance of assessing the performance 

of analytical methods that are currently being developed and considering the effects of 

integrating epidemiological data into a phylogenetic framework (or vice versa). For 

instance, for the cophenetic correlation coefficients it is important to consider the effect 

of comparing a dendrogram with a phylogenetic tree whose structures are not quite the 

same; with the former including the lengths of the branches and the splits (Fowlkes and 

Mallows, 1983).  

 

The comparison between the consensus transmission trees constructed from the 

simulated sequence data and the recorded infectious contacts further highlight some of 

the limitations of using a phylogenetic framework to infer transmission without careful 
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consideration of either epidemiological biases. These include the sampling strategy and 

features of pathogen evolution and the transmission processes, such as incomplete lineage 

sorting, that are known to influence phylogenetic reconstruction (de Maio et al. 2016). 

For example, in this study the inferred transmission trees were constructed using the 

sequence data from all infected sheds on the last day of the simulation; representing all 

infected hosts but only at a single time point during each outbreak. This is a major 

limitation as no inferences can be made for non-sampled hosts that would have 

contributed to the spread of infection earlier in the infection process. Although many 

studies have shown that low sampling coverage or differences in subsampling strategies 

do not contribute to substantial biases in other estimates such as the epidemic starting 

date (Ratmann et al. 2017; Hidano and Gate, 2019), it is important to try and ensure 

samples are taken from across the tree. Nevertheless, given the novelty of this model, it 

would be important for future studies to complete a sensitivity analysis in order to further 

describe these phenomena; for example, looking at the effect of transmission tree 

reconstruction under different sampling strategies.  

 

A further sensitivity analysis could also be performed to help scale model parameters 

without having to rely on existing data. This may also have a large effect on the ability to 

infer who-infected-whom particularly with regards to the transmission rate which, if 

reduced, would help prevent the homogeneous cycle of infection that is seen in the 

current model; whereby each farm is repeatedly re-infected; making it difficult to identify 

a single chain of transmission -  particularly given the limited number of SNPs 

accumulated throughout an outbreak. The use of a different model pathogen may also be 

helpful in refining both the model structure and the analytical methods; C. jejuni is a 

relatively slow evolving pathogen, resulting in very little genetic diversity over the length 

of the simulation, making it more difficult to correctly infer transmission dynamics (Frost 

et al. 2015; Rife et al. 2017). Many previous studies have highlighted the same limitation 

for other slowly evolving pathogens; for example, in a study by Campbell and colleagues 
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(2018) the comparison of two different outbreak reconstruction tools, outbreaker and 

phybreak, highlighted how pathogens with a lower mean transmission divergence provide 

little to no information about individual transmission events, and there is a need to 

expand phylogenetic tools to integrate epidemiological data that may help improve 

inferences (Campbell et al. 2018). 

 

This use of phybreak has previously been compared to other outbreak reconstruction 

tools that can be implemented using the R packages outbreaker (Jombart et al. 2014) and 

TransPhylo (Didelot et al. 2017). Comparisons show that phybreak is able to correctly 

identify a greater number of transmissions including in outbreaks that are relatively small 

or those with different generation and sampling interval distributions (Klinkenberg et al. 

2017). However, further comparison against different computational methods for the 

reconstruction of transmission trees, suggests that phybreak may not always be the most 

appropriate model. For example, in a study by Firestone and colleagues (2019) phybreak 

was shown to have the highest accuracy in comparison to five other models but only when 

considering those sources with consensus support which included just 6.5% of the 

inferred sources (Firestone et al. 2019). This supports the use of phybreak in relatively 

small outbreaks, however other models have been shown to have a similar predictive 

accuracy for larger datasets, such as those produced by the current model simulations. 

These include the SCOTTI model which models each host as a distinct population and 

transmissions between hosts as migration events (de Maio et al. 2016), and the Lau model 

that has been specifically developed to accommodate individual-level spatio-temporal 

data (Lau et al. 2017). Therefore, to improve the transmission tree reconstruction it may 

also be important to test different models, such as the SCOTTI or Lau model, as well as 

changing the sampling strategy.  

 

When considering these results, it is also important to consider both the appropriateness 

of the analytical methods and the model assumptions that will have influenced the 

simulated sequences before phylogenetic reconstruction. For example, a major 
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simplification is that only a single infection can occur within each shed. In reality there is 

often multiple strains present in a single production area and even two competing 

variants of the same strain (Newell and Fearnley, 2003) although infection of a single 

chicken with more than one strain of Campylobacter is a rare observation (Sahin et al.  

2002) and many farms appear to be dominated by a single strain (Ring et al. 2005). 

Nevertheless, the presence of multiple infections is more likely to hinder phylogenetic 

reconstruction; particularly if sampling is limited and strains that are present end up not 

being sampled. The competition between strains will also affect the transmission and 

survival of the pathogen; for example, in a study by Bull and colleagues (2005) 

longitudinal sampling in UK broiler flocks showed the replacement and extinction of 

different Campylobacter strains over time (Bull et al.  2005). Other simplifications made 

in the model will also have influenced the degree of similarity between the simulated 

sequences, including a disregard for evolutionary complexities such as recombination, 

within host evolution, changing mutations rates and hyper-variable regions. For example, 

recombination is known to play a fundamental role in the genetic diversity of 

Campylobacter; generating diversity at twice the rate of de novo mutation and facilitating 

gene flow between C. jejuni and other Campylobacter strains (Fearnhead et al.  2005; 

Wilson et al.  2008). Therefore, disregarding this process in the model could have a 

significant impact on phylogenetic reconstruction and transmission inferences. 

 

Other model assumptions have little effect on the sequence simulation but instead impact 

the transmission dynamics. For example, seasonal variation in the prevalence of C. jejuni 

has been reported not only in chickens (Wallace et al. 1997), but also other farm animals 

(Stanley et al. 1998) which coincides with a marked increase in human 

campylobacteriosis reports. These increases in prevalence usually occur during the 

summer months (Nylen et al. 2002; Meldrum et al. 2004) and may be particularly evident 

in certain sequence types (Friedrich et al. 2016), which would be an important 

consideration to model. In addition to seasonality, other important demographic features 
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have been overlooked that are thought to be important risk factors for Campylobacter; 

including differences in biosecurity level, and farm type (i.e., free-range versus barn and 

organic flocks versus conventionally farmed) (Van Overbeke et al. 2006). Of particular 

importance would also be the inclusion of thinning events, whereby birds are reared to 

the maximum stocking density permitted before a proportion is removed to lower the 

density. This can take place several times before all the birds are finally removed from the 

shed and the next production cycle begins, and it has been shown that the thinning 

process is a major risk factor for the introduction of Campylobacter (Goddard et al.  2013; 

Koolman et al.  2014). 

Another potential risk factor that has not been included in the current model is carryover; 

that is, if the farm had been infected in its previous production cycle, it may be re-infected 

in the start of the next cycle due to unremoved environmental contamination (Newell and 

Fearnley, 2003; Bronowsk et al.  2014). Although, the importance of carryover is highly 

debated, with many genotyping studies suggesting it is a relatively infrequent event (Evan 

and Sayers, 2000; Shreeve et al. 2002), the exclusion of this potential transmission route 

as well as the other production features described above, may change the modelled 

transmission dynamics. It is also important to consider the impact of making inferences 

on the farm demographics that were included in the model, such as the length of a farm’s 

production cycle and downtime period. In order for future models to be able to make 

accurate inferences about the spread of C jejuni, or any pathogen, through the New 

Zealand commercial broiler industry, it would be important to collect and update more 

basic demographic information directly from producers; however, for the purpose of this 

study making these inferences should provide a sufficiently realistic framework to 

investigate the use of pathogen phylogenies in an epidemiological investigation. 
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6.6. Conclusion 

Despite the many limiting assumptions both in the disease simulation model and 

phylogenetic analysis, this study has provided an opportunity to gain insight into how a 

network-based disease transmission model can be combined with a phylogenetic analysis 

and used to help determine who-infected-whom and the relative contribution of different 

transmission pathways in the New Zealand commercial poultry industry. Results show 

that the association between the genetic relatedness of pathogens isolates and different 

distance matrices may not be enough to accurately infer disease transmission dynamics. 

Nevertheless, model results emphasise the importance of combining both network and 

local contacts in disease models.  
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7.1. Abstract 

AIMS: Staphylococcus aureus is one of the leading causes of bovine mastitis worldwide 

and is a common indication for use of antimicrobials on dairy farms. However, the use of 

antimicrobial agents on dairy farms, as well as in other food animal production systems, 

is a major concern for its role in the emergence of antimicrobial resistance (AMR) in S. 

aureus. The aims of this study were to (i) describe the genetic population structure of 

mastitis-causing S. aureus in a sample of New Zealand dairy herds, (ii) identify genes 

associated with virulence and AMR, (iii) investigate the association between on-farm 

antimicrobial usage and the AMR profiles of S. aureus, (iv) examine the potential 

contribution of live animal movements to the spread of S. aureus between the study herds 

and lastly, (v) to determine the relationship between the bovine-derived S. aureus isolates 

collected in this study and isolates collected previously from humans, domesticated pets 

and livestock both within New Zealand and internationally.   

METHODS: Whole-genome sequencing was performed on a total of 57 S. aureus isolates 

derived from cows with either clinical or subclinical mastitis across 17 New Zealand dairy 

herds located in the Waikato region of the North Island. The genetic relatedness between 

the isolates was examined using the core single nucleotide polymorphism alignment to a 

construct phylogenetic tree whilst AMR and virulence genes were identified in silico. The 

association between on-farm antimicrobial usage and the presence of resistance genes 

was investigated. In addition, a permutational multivariate analysis of variance analysis 

model was used to examine the relative importance of live animal movements and the 

spatial proximity of farms as determinants of the pairwise genetic relatedness of S. aureus. 

Lastly, two maximum-likelihood phylogenetic trees were constructed to investigate the 

relationship between the bovine-derived S. aureus isolates collected in this study and (i) 

59 S. aureus isolates collected previously from domesticated pets and humans in New 

Zealand and (ii) 103 S. aureus Sequence Type (ST)-1 isolates collected previously from 

across 19 different countries.  
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RESULTS: This study identified eight S. aureus Sequence Types (STs) in the 57 S. aureus 

isolates, of which 61.4% (35/57) belonged to ST-1. Altogether 14 genes associated with 

AMR and 76 genes associated with virulence factors were identified with little genetic 

diversity between isolates belonging to the same ST. Overall, no association (p<0.05) was 

found between gene presence-absence and the use of four different dry cow therapy 

treatments.  However, the genetic relatedness of isolates was found to be associated with 

both the trading community (p = 0.0001) and township (p = 0.0004). In the global 

comparison of ST-1 isolates, the New Zealand bovine isolates formed a monophyletic 

group with the exception of one closely related bovine-derived isolate originating from 

Australia; whilst other New Zealand isolates collected from both domesticated pets and 

humans were interspersed throughout the phylogeny; clustering with other international 

S. aureus isolates.  

 

CONCLUSIONS: This study characterised bovine-derived S. aureus isolates from bovine 

mastitis cases in the Waikato region of New Zealand. Overall, the majority of isolates were 

related to historically human-derived STs, whilst STs thought to be dominant worldwide 

in bovine milk were relatively rare in our sample. No association was found between the 

AMR gene profiles and either on-farm antimicrobial usage or antimicrobial sensitivity 

patterns and, although results provide evidence that the movement of live animals may 

be an important risk factor for the regional spread of S. aureus, it is clear that using cattle-

tracing data alone may not be enough to fully capture the transmission dynamics of S. 

aureus between farms due to other contacts that may be contributing to the spread of the 

pathogen. 

 

KEYWORDS: Staphylococcus aureus, Network community, PERMANOVA, Whole-

genome sequencing, Comparative genomics, Antimicrobial resistance   
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7.2. Introduction 

Bovine mastitis continues to be one of the most economically important diseases affecting 

the dairy cattle industry worldwide despite intensive research and the increasing uptake 

of various on-farm control strategies (Seegers et al. 2003; Petrovski et al. 2006). With over 

137 different organisms including bacteria such as mycoplasma, yeasts and algae having 

been previously described as causative agents (Watts, 1988), one of the major challenges 

in controlling bovine mastitis is correctly identifying the pathogen responsible for causing 

disease (Bogni et al. 2011). The relative importance of these different pathogens is largely 

country-dependent however, more than 90% of all new intra-mammary infections are 

caused by only a small number of pathogenic bacteria which are typically classified into 

two groups; contagious, comprising of Streptococcus dysgalactiae, Streptococcus 

agalactiae and Staphylococcus aureus, or environmental, comprising of Escherichia coli 

and Streptococcus uberis (Eberhart, 1986; Bradley, 2002). These classifications are not 

always clear cut but are based on the source of infection, mode of transmission and 

tendency to cause persistent or transient intra-mammary infection. 

In the New Zealand dairy industry, the epidemiology of the predominant mastitis-

causing pathogens varies greatly in comparison with many countries in the northern 

hemisphere, where there is a greater reliance on indoor housing systems and year-round 

calving practices. However, within the last five decades New Zealand has seen a notable 

change in the aetiology and epidemiology of mastitis in dairy cows (McDougall, 2002; 

Petrovski et al. 2009; Heffernan et al. 2015) with contagious mastitis pathogens, such as 

S. agalactiae, decreasing in prevalence in comparison to environmental pathogens, such

as S. uberis, which are now on the rise (McDougall, 2002; McDougall et al. 2007; Petrovski 

et al. 2011). This change followed the successful uptake of a mastitis control strategy 

entitled the Seasonal Approach to Managing Mastitis (SAMM plan), which operated in 

New Zealand between 1993 and 2010, and its subsequent development into the 

SmartSAMM programme that encouraged antibiotic dry-cow therapy for the treatment 
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of intra-mammary infection at the end of lactation (Lacy-Hulbert et al. 2011). However, 

current recommendations are moving away from the treatment of all cows with 

antimicrobials at the end of lactation (i.e., “blanket dry cow therapy”) towards more 

targeted dry cow therapy and the use of bismuth subnitrate-based internal teat sealants, 

with a goal to eliminate the use of antibiotics for the maintenance of animal health and 

wellness across New Zealand by 2030 (Hillerton and Allison, 2015). 

 

Despite the overall decline in contagious mastitis-causing pathogens, S. aureus continues 

to cause significant economic losses in the dairy industry due largely to its role in sub-

clinical and chronic disease resulting in its long-term persistence within many dairy herds 

(Rall et al. 2014; Bonsaglia et al. 2018; Rossi et al. 2019). In addition, many New Zealand 

S. aureus isolates collected from sub-clinical mastitis cases also show resistance to 

common antibiotic classes used in dry-cow therapy treatments (McDougall et al. 2014; 

Petrovski et al. 2015). This growing pattern of resistance raises concerns over the use of 

antimicrobials for the treatment and control of mastitis, due to not only the general 

concern of using antibiotics in food-producing livestock but also because there is 

increasing evidence for livestock-associated methicillin-resistant S. aureus (LA-MRSA) 

in humans cases (Mehndiratta and Bhalla, 2014; Cuny et al. 2015; Mohammed and 

Nigatu, 2015).  

 

Since the first LA-MRSA was described in Belgium in 1972, isolated from a case of bovine 

mastitis (Devriese et al. 1972), there has been a series of studies looking at the emergence, 

evolution and dissemination of LA-MRSA. Many studies have focused on the most widely 

spread LA-MRSA clonal complex (CC) 398 that was first isolated from nasal swabs of 

breeding pigs (Williamson et al. 2013; Becker et al. 2015) but has subsequently been 

detected in numerous livestock species, including veal calves, poultry, dairy cattle and 

goats, as well as domesticated pets and human cases (Cuny et al. 2015; Gonçalves da Silva 

et al. 2017). The latter are usually limited to those in close contact with livestock species 
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(Wulf and Voss, 2008; Fluit 2012; Verkade et al. 2013). Due to this growing concern of 

LA-MRSA, an increasing number of studies are using molecular typing methods such as 

Pulsed-Field Gel Electrophoresis (PFGE) and Multilocus Sequence Typing (MLST) to 

look at the genetic relationships between S. aureus isolates. These techniques provided 

higher resolution genotypic insights into the transmission and evolutionary dynamics of 

S. aureus between animal and human populations; supporting evidence for both the

emergence of historically livestock-associated S. aureus strains in humans (Spoor et al. 

2013; Costa et al. 2015) and animal-adapted strains thought to be derived from humans 

within livestock populations (Lowder et al. 2009; Guinane et al. 2010; Sakwinska et al. 

2011; Price et al. 2012). However, there is limited evidence for presence of MRSA in 

livestock in New Zealand (Grinberg et al. 2008), and a very low prevalence of LA-MRSA 

isolates in human derived isolates (Heffernan et al. 2015). 

In addition to molecular typing, many studies have used contacts networks to determine 

which interactions within a population are most important for the introduction, spread 

and persistence of S. aureus strains (Ciccolini et al. 2012; Jarynowski and Liljeros, 2015; 

Obadia et al. 2015; Pei et al. 2018). Contact networks are constructed from a set of 

elements, often referred to as nodes, vertices or actors, which represents a unit of interest 

within the network such as a farm, with edges capturing contacts between any two nodes 

in the network, such as the movement of animals between two farms (Wasserman and 

Faust, 1994). Network models are a popular tool in infectious disease epidemiology; 

providing insight into the transmission of infectious diseases by helping to determine 

individuals in the network that pose the greatest risk for disease dissemination and 

informing disease control and surveillance activities (Christley et al. 2005; Bansal et al. 

2007; Danon et al. 2011). More recently, an increasing number of network models have 

used molecular typing data to help estimate model parameters and look at both 

transmission and evolutionary dynamics. However, one limitation in building these 

models is the requirement to have both adequate network data and pathogen molecular 
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data. For this reason, examples integrating S. aureus molecular data with livestock contact 

networks is limited, although one study by Álvarez and colleagues (2011) is a good 

example of how these data sources can be integrated to study the transmission and 

evolution of S. aureus strains, and there are several studies that have looked at other 

pathogens in cattle networks (Biek et al. 2012; Broeckl et al. 2017; de Knegt et al. 2018). 

The Álvarez and colleagues (2011) study used a network-based model constructed from 

the reported movements of cattle, and molecular data on bovine S. aureus, to highlight 

the importance of cattle movements and other local contacts, such as farm visitors, for 

circulating different S. aureus strains between farms (Álvarez et al. 2011).  

 

In New Zealand, despite there being a number of studies have looked at the genetic 

diversity, spatial distribution and antimicrobial susceptibility patterns of S. aureus strains 

in cattle (McDougall et al. 2014; Petrovski et al. 2015), few attempts have been made to 

either integrate contact networks with molecular data, to investigate the contribution of 

cattle trade on the spread of S. aureus, or to look at the genetic relationship between 

human and cattle S. aureus isolates to investigate the role of cross-zoonotic transmission  

on the distribution and persistence of strains in New Zealand; with common, clonal 

aetiology previously shown between farmers and cows in New Zealand (Grinberg et al. 

2004).  This study aims to describe the genetic population structure of bovine mastitis-

causing S. aureus from a small sample of New Zealand dairy herds; providing a snapshot 

of the genetic basis for virulence and resistance currently within the population. By 

further investigating the genetic relationship between these bovine mastitis-causing S. 

aureus isolates and human isolates, collected both throughout New Zealand and 

internationally, this study also aims to determine the potential for zoonotic transmission. 

Lastly, this study aims to investigate the role of cattle trade on the genetic relationship of 

bovine mastitis-causing S. aureus in order to consider the contribution of live animal 

movements in the spread and evolution of this important pathogen.  
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7.3. Materials and Methods 

7.3.1. Current study: sample selection, microbiology, and whole-genome 

sequencing 

The S. aureus isolates used in the present study were obtained from milk samples that 

were collected during a study conducted between 22nd October 2015 and 27th January 

2016 across dairy herds located in the Waikato region of New Zealand’s North Island. 

Herds were selected on a convenience basis (i.e., the herd owners were willing to be 

involved in the study). Cows with grossly evident changes to the milk and/or heat and 

swelling of the mammary gland (i.e., clinical mastitis), or cows with an elevated somatic 

cell count (i.e., >200,000 cells/mL) at production recording had milk samples collected 

following aseptic teat end preparation. Milk samples were submitted for routine 

microbiology following the procedures of the National Mastitis Council, US. For this 

current study, a subset of the S. aureus isolates were selected for whole-genome 

sequencing using stratified random sampling with three hierarchical groups created to 

ensure that there was (i) at least one isolate from each herd to explore the between-herd 

variation in S. aureus isolates, (ii) multiple isolates from different cows in the same herd 

to explore the within-herd variation in S. aureus isolates and, (iii) multiple isolates from 

different quarters on individual cows to explore the within-animal variation in S. aureus 

isolates. Before sampling the isolates, the study was judged to be low risk thorough peer 

evaluation and consequently was not formally reviewed by any of the University’s Human 

Ethics Committees. 

 

The selected S. aureus isolates were delivered on Dorset egg slopes to the mEpiLab, Massey 

University. All isolates were re-cultured on Columbia horse blood agar plates, and from 

a pure sub-culture a heavy inoculum was made in nutrient broth No. 2 (Oxoid, 

Hampshire, UK) containing 15% glycerol and an aliquot frozen at -80ºC. From this, a 

sub-culture was made on Columbia horse blood agar and a single bacterial colony selected 

for DNA extraction using a QIAamp DNA Mini Kit (QIAGEN). DNA libraries were then 

prepared using the Nextera XT DNA preparation kit (Illumina, San Diego, USA) for 
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submission to New Zealand Genomics Limited (University of Otago, Dunedin, New 

Zealand), which performed 2 x 100 bp sequencing on the Illumina NextSeq 500 platform 

following the manufacturer’s instructions.  

7.3.2. Genomic analyses: current study 

Raw reads from Illumina sequencing were evaluated, assembled, annotated, and analysed 

using the Nullarbor pipeline (v2.0.0) (https://github.com/tseemann/nullarbor). In short, 

the adapter sequences were trimmed with Trimmomatic (v0.38) (Bolger et al. 2014. 

Trimmed sequences subsequently underwent de novo assembly in SKESA (v2.3) 

(Souvorov et al. 2018), annotation in Prokka (v1.13) (Seemann, 2014) and scanned with 

PubMLST S. aureus typing scheme with MLST (https://github.com/tseemann/mlst). To 

generate an alignment of core genome single nucleotide polymorphisms (SNPs), 

sequence reads for each isolate were aligned to the reference genome MSSA476, a 

methicillin-susceptible S. aureus (MSSA) isolate assigned to ST-1 (GenBank Accession: 

NC_002953.3) within the Nullarbor pipeline using Snippy (v4.0) 

(https://github.com/tseemann/snippy). Recombinant regions were eliminated from the 

genome alignment and the remaining polymorphic sites were identified using the 

software tool Gubbins (v2.3.2) (Croucher et al. 2015) before removing indels and 

extracting SNP sites using the software tool SNP-sites (v2.4.0) (Page et al. 2016). 

Identification of antimicrobial resistance (AMR) genes were also performed within the 

Nullarbor pipeline using the software tool ABRicate (v0.8) 

(https://github.com/tseemann/abricate) to screen contigs through ResFinder (v3.1) 

(Zankari, et al. 2012) and the Comprehensive Antibiotic Resistance Database (CARD) 

(Jia et al. 2017) whilst screening for virulence genes was undertaken via the Virulence 

Factors Database (Chen et al. 2005). Genome Profiler (GeP) (Zhang et al. 2015) was used 

to convert assembly data into whole-genome multilocus sequence typing (wgMLST) 

allelic profiles. The relationship between the isolates was then examined by using the core 
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SNP alignment to construct a maximum-likelihood phylogeny using the R package ape 

(Paradis and Schliep, 2018). Phylogenetic trees were displayed alongside the AMR and 

virulence gene profile of each isolate using the online tool Interactive Tree of Life (iTOL) 

(v4.5.3) (Letunic and Bork, 2016). 

7.3.3. Antimicrobial sensitivity 

The sensitivity of a subset of S. aureus isolates (50/57, 87.7%) was determined using a 

zone diffusion test following the procedures provided by the Clinical and Laboratory 

Standards Institute (CLSI). The antimicrobials assessed included penicillin (10 µg), 

novobiocin (5 µg), cefoxitin (30 μg), tetracycline (30 µg), ceftiofur (30 μg), and oxacillin 

(1 μg); with isolates being declared sensitive, intermediate or resistant, based on CLSI 

recommendations. The sensitivity of each isolate was also displayed alongside the 

phylogenetic tree using iTOL (v4.5.3) (Letunic and Bork, 2016) to examine the 

association between gene presence-absence and the sensitivity to each antimicrobial. 

7.3.4. Comparative genomics: S. aureus within New Zealand 

To determine the similarity of epidemiologically unrelated S. aureus isolates from across 

New Zealand, a multispecies comparative genomic analysis was performed with the 

addition of 59 MSSA isolates sampled from human clinical cases and colonised humans, 

dogs and cats across New Zealand. These isolates were collected as part of a previous study 

by Grinberg and colleagues (2017) investigating the genetic differentiation across 

colonisation and skin and soft tissue infections (SSTI) between people and household pets 

(Grinberg et al. 2017). Raw reads were accessed via the European Bioinformatics Institute 

online database (https://www.ebi.ac.uk/ena) using the accession number: PRJNA391123. 

The raw reads were processed using the Nullarbor pipeline described above followed by 

GeP analysis (Zhang et al. 2015) in order to obtain the wgMLST allelic profiles. A 

maximum-likelihood phylogeny was constructed from core SNPs to show the 

relationship between the 57 S. aureus isolates sampled from bovine milk for this study 
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and the 59 S. aureus isolates sampled from both humans and pets for the study by 

Grinberg and colleagues (2017). All figures depicting phylogenetic relationships and 

associated variables were created using the online tool Microreact (Argimón et al. 2016).  

 

7.3.5. Comparative genomics: S. aureus ST-1 globally 

To compare ST-1 genomes sequences in our study to the other previously submitted ST-

1 genomes, all the available S. aureus genome assemblies (n = 9,897, accessed on 

12.03.2019) were download from GenBank (https://www.ncbi.nlm.nih.gov/genbank/). 

The ST of the assemblies where scanned using the  MLST pipeline 

(https://github.com/tseemann/mlst) and an additional multispecies comparative 

genomic analysis was performed looking at the genetic similarity between all the ST-1 S. 

aureus isolates including all the ST-1 isolates from the current study (the predominant 

ST), all the ST-1 whole-genome sequence assemblies identified from GenBank and, all 

the ST-1 isolates identified in the previous study by Grinberg and colleagues (2017). A list 

of the Genbank accession numbers of all the genome sequences used can be found in 

Appendix E (Table E1). Similarly, to both the regional and within-country genomic 

analyses, the raw reads were processed using the Nullarbor pipeline and the wgMLST 

analysis was performed with GeP (Zhang et al. 2015). A maximum-likelihood phylogeny 

was constructed from core SNPs showing the relationship between the 35 S. aureus ST-1 

isolates from this study and 103 S. aureus ST-1 isolates found in GenBank. All figures 

depicting phylogenetic relationships were created using the online tool Microreact 

(Argimón et al. 2016).  

 

Scoary (v 1.6.16), a software tool used for studying the association between gene presence-

absence and known traits (Brynildsrud et al. 2016), was used to investigate the association 

between gene presence-absence and both sample location on a continental scale (i.e., 

Asia, Africa, Europe, South America, North America, and Oceania), and for the sampled 

host (i.e., bovine, human and household pets). These Scoary analyses were limited to only 
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ST-1 isolates in an attempt to control for the potential confounding effects of ST. In order 

to further control confounding by lineage it is recommended to use a pairwise 

comparison algorithm that accounts for contrasting pairs that share a common ancestor 

(Maddison, 2000; Brynildsrud et al. 2016). However, in these analyses, no causal 

inference i.e., which genes cause membership in a group is being made, instead the aim 

of the analysis was to identify if any genes are overrepresented, therefore no pairwise 

comparison was made. Instead, Scoary results were filtered so that only genes that had an 

odds ratio greater than one, a specificity greater than 95%, a Benjamini-Hochberg 

corrected p-value (Benjamini and Hochberg, 1995) below 0.05, and were not annotated 

as either a “hypothetical protein” or a “putative protein” were considered significant. The 

remaining genes were subsequently used as search terms in the UniProt Knowledgebase 

(UniProtKB; http://www.uniprot.org) (The UniProt Consortium, 2011) to determine if 

genes had Gene Ontology (GO) terms (Gene Ontology Consortium, 2010) describing 

either biological processes or molecular functions that have been associated with the gene 

products (Dimmer et al. 2012). 

 

7.3.6. Cattle trade network 

To characterise the contact patterns between the 17 dairy farms included in our study, we 

obtained an extract of animal movement records from the Livestock Improvement 

Corporation (LIC) over the period from 1985 to 2011.  LIC is a multinational farmer-

owned co-operative that provides members with the computerised herd management 

software called MINDA, which can be is used to record information on individual dairy 

cattle that have entered into lactation including basic production data as well as 

information on the purchases, sales, culls, and deaths of individual animals. Movement 

records for individual animals contain the movement date, the reason for the movement, 

and if a change of ownership occurred following the movement. Movement data was 

exported from Microsoft Excel into the R statistical software package (R Core Team, 

2018) in order to construct a contact network to determine which of the 17 study farms 
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had been in contact with each other through the movement of at least one animal. The 

farms in our study were identified in the MINDA database using their unique LIC herd 

identification code. The network graph was constructed using the R package igraph 

(Csardi and Nepusz, 2006) with nodes representing all the farms that reported a 

movement in the MINDA database and directed edges between a pair of nodes 

representing the movement of a live animal. Edges were weighted to show if more than 

one animal movement had occurred. Common network metrics, described in Appendix 

E (Table E2), were calculated including measures to indicate network size (i.e., the total 

number of nodes, the total number of edges and network diameter), centrality (i.e., in- 

and out-degree and betweenness) and cohesion (i.e., network density and clustering 

coefficient).  

 

A fast-greedy community analysis was also completed based on the network community 

algorithm presented by Clauset and colleagues (2004) to identify groups of farms that 

have more internal links between them than external links to other communities within 

the network (Clauset et al. 2004). The community analysis was performed using the R 

package igraph (Csardi and Nepusz, 2006) on the complete network containing all the 

farms that reported a movement in the MINDA. Network community was then included 

as a variable in the permutational multivariate analysis of variance (PERMANOVA) 

model described below. 

 

7.3.7. Antimicrobial usage 

Antimicrobial usage (AMU) based on the daily dose per cow per lactation for each of the 

study herds was estimated from antimicrobial purchase data for the 2015-2016 lactation. 

This timeframe was chosen because this is the lactation from which the isolate samples 

were collected. The daily dose (DD) was calculated for intra-mammary treatments based 

on tubes per day; for example, if an intra-mammary treatment states two tubes per day 

on the label and the farm purchased a box of 20 tubes then it was recorded as 10 DDs. The 
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exception to this was dry cow therapy where four tubes (i.e., one tube per quarter at drying 

off) is considered 1 DD. A similar method was used for injectables but instead the 

recommended volume (in millilitres) per cow per day was considered as the DD and this 

was divided by the total volume of products sold. For example, a treatment of 20 ml per 

cow per day would be considered the daily dose and if 100 ml of a product had been 

purchased then it was recorded as 5 DDs. An adjustment to the DD was made if the 

formulation was considered long acting. For example, some oxytetracycline treatments 

will have three days of activity in a single dose. Thus, a single treatment of 20 ml acting 

over three days would be equal to a DD of 7 ml. The DDs for all the antimicrobials 

purchased by a farm over the 12-month period was then summed and divided by the 

number of cows on-farm to give an average daily dose per cow per lactation.  

 

To investigate the potential relationship between AMU and both herd size and the 

presence of resistance genes, scatterplots were created with AMU plotted against (i) the 

total number of animals per farm and (ii) the total number of resistance genes per farm; 

that is, the sum of all the unique resistance genes identified in each isolate sampled from 

that farm. A Spearman’s rank correlation coefficient (SCC) could then be calculated using 

the R package stats (R-Core Team, 2018). A further Scoary analysis was then performed 

to investigate the association between the presence of resistance genes and the use of four 

common treatments used in dry cow therapy; BovacloxTM and Dryclox® (both containing 

500 mg cloxacillin and 250 mg ampicillin), Cepravin® (containing 250 mg cephalonium), 

and Orbenin® (containing 500 mg of cloxacillin). For this analysis, the gene presence-

absence matrix produced by Roary (v3.12.0) (Page et al. 2015) was used alongside a binary 

matrix indicating if an isolate had been sampled from a farm using any of the dry cow 

therapy treatments, such that  “1” indicated the use of the treatment on-farm whilst “0” 

indicated that the treatment had not been used.  
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An additional Scoary analysis was also used to investigate the association between the 

presence of virulence genes and sample type (clinical versus sub-clinical). In this analysis, 

the same gene presence-absence matrix produced by Roary was used with the additional 

matrix indicating if isolates had been sampled from cows presenting with either clinical 

or sub-clinical mastitis. For both Scoary analyses, there was an interest in causal genes, 

therefore, unlike the previous Scoary analyses described above, a pairwise comparison 

was used in order to find the maximum number of phylogenetically non-intersecting 

pairs of isolates that contrast for both the gene and trait (Figure 7.1). Genes were 

considered significant if the entire range of pairwise comparison p-values were less than 

0.05 with significant genes used as further search terms in the UniProtKB. 

Figure 7.1. (a) shows one contrasting pair (blue branches; 1-0|0-1) whilst (b) shows 

another contrasting pair on the same tree (red branches; 1-1|0-0), however the maximum 

number of non-intersecting, contrasting pairs in the tree remains as one due to the 

common branches, highlighted in green, shared by both contrasting pairs. The “best” 

picking is the red pair with both the gene and the trait present whilst the “worst” picking 

is the blue pair. To handle confounding by lineage a pairwise comparisons algorithm can 

be used to identify the maximum number of non-intersecting, contrasting pairs in a tree 

and calculate the corresponding binomial test p-value taking into account the proportion 

of “best” and “worst” pickings over the set of non-intersecting, contrasting pairs. 
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7.3.8. Permutational multivariate analysis of variance 

The core SNP alignment outputted from Gubbins (Croucher et al. 2015) was used to 

create a pairwise distance matrix in MEGA7 (v7.0.25) (Kumar et al. 2016) with values in 

the matrix corresponding to the uncorrected p-measure; that is, the proportion of 

nucleotide sites at which the two sequences being compared differ. The association 

between the genetic distance matrix and three independent variables; township, farm (as 

an independent variable and not nested in township), and network community, were 

evaluated using the PERMANOVA+ add-on package (Anderson et al. 2008) for PRIMER 

(v7.0). For this analysis, the farm’s coordinates were used to determine which township 

they belonged to. The coordinates were first plotted using Google Maps (2017), and the 

township given in the address was recorded. Univariate PERMANOVA models were 

performed for each factor with p-values obtained using 9999 unrestricted permutations 

of raw data. Non-metric multidimensional scaling (MDS) ordination plots (Kruskal and 

Wish, 1978) were then constructed, also in PRIMER (v7.0), mapping isolates in a two-

dimensional Euclidean space in a manner that preserves the genetic distance between 

each isolate. Plots were used to identify any outliers and further investigate the 

relationship between each variable and the genetic distance between each isolate by using 

different colours to identify isolates with a variable in common. To evaluate whether there 

was an association between two variables, as an indication for collinearity, a Chi-square 

test of independence was performed between each of the contingency tables using the R 

package stats (R-Core Team, 2018) before a final multivariate backward stepwise model 

was built with factors being removed if p > 0.25.  

7.4. Results 

7.4.1 Genomic analysis: current study 

In total, 57 S. aureus isolates were selected for wgMLST analysis with isolates sampled 

from 51 cows with either clinical or sub-clinical mastitis on 17 farms (Table 7.1). The 

geographical distribution of farms was limited to the Waikato region of New Zealand’s 

North Island (Figure 7.2) with the Euclidean distance between farms ranging from 0.7km 
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to 44.1km (mean = 19.9 km). Altogether, 33.3% (19/57) of the isolates were sampled from 

animals presenting with clinical mastitis compared to 66.7% (38/57) from sub-clinical 

animals. Overall, 51,796 polymorphic sites were identified amongst the 57 isolates 

containing 37,746 core SNPs. Eight unique STs were distinguished with the predominant 

sequence type, ST-1, being found across 64.7% (11/17) of the study farms and 61.5% 

(32/51) of the sampled animals (Table 7.1). The maximum-likelihood phylogeny is 

shown in Figure 7.2 however, the relatively large genetic distances between the major 

clades mask the fine-scale variation between isolates within clades, therefore a higher 

resolution phylogeny of the ST-1 cluster has been provided in Appendix E, Figure E1 with 

1,063 polymorphic sites and 1,061 core SNPs identified between the 35 ST-1 isolates.  

Table 7.1. Isolate-level (n = 57), farm-level (n = 17) and cow-level (n = 52) prevalence of 

eight Staphylococcus aureus whole-genome multi-locus sequence types (ST) isolated from 

the Waikato region of New Zealand North Island. The distribution of S. aureus sequence 

types among isolates show if the isolate was collected from a cow presenting with either 

clinical (n = 19) or sub-clinical (n = 38) mastitis. 

Multilocus sequence type (ST) 
ST-1 ST-188 ST-5 ST-705 ST-1247 ST-97 ST-151 ST-425 

Isolates 
(%) 
Clinical  

Sub-clinical 

Total 

12 
(63.2) 

23 
(60.5) 

35 
(61.4) 

0 
(0.0) 

5 
(13.2) 

5 
(8.8) 

0 
(0.0) 

1 
(2.6) 

1 
(1.8) 

1 
(5.3) 

1 
(2.6) 

2 
(3.5) 

0 
(0.0) 

2 
(5.3) 

2 
 (3.5) 

2 
(10.5) 

3 
(7.9) 

5 
(8.8) 

1 
(5.3) 

0 
(0.0) 

1 
(1.8) 

0 
(0.0) 

1 
(2.6) 

1 
(1.8) 

Farms 
(%) 

11 
(64.7) 

1 
(5.9) 

1 
(5.9) 

2 
(11.8) 

2 
(11.8) 

3 
(17.6) 

1 
(5.9) 

1 
(5.9) 

Cows 
(%) 

32 
(61.5) 

4 
(7.7) 

1 
(1.9) 

2 
(3.8) 

2 
(3.8) 

5 
(9.6) 

1 
(1.9) 

1 
(1.9) 
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Figure 7.2. (a) M
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um
-likelihood phylogeny generated from
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s across the 57 S. aureus isolates. The colour of the 

term
inal tree nodes corresponds to the farm

 location show
n in (b), and all isolates have been labelled w

ith their sequence type identified by seven M
LST genes. 

(b)
M

ap show
ing the geographical distribution of selected dairy farm

s (n=17). The alphabetic labels (A
-Q

) have been used to identify the farm
s in the

subsequent phylogenetic analysis. Figure created using the online tool M
icroreact (A

rgim
ón et al. 2016). 
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Overall, four STs: ST-188, ST-5, ST-151 and ST-425, were limited to one farm whilst the 

remaining, including ST-1, were found across multiple farms. On farms from which 

multiple isolates were sampled, 50.0% (6/12) had two or more STs, however in most cases, 

the different STs were isolated from different study animals. The exception was one 

animal with sub-clinical mastitis in which two STs were isolated (ST-1247 and ST-1) from 

different teats. Across the isolates, seven STs were identified from sub-clinical samples 

whereas four STs were identified from cases of clinical mastitis. The STs from clinical 

cases were ST-1, ST-97, ST-151 and ST-705 (Table 7.1).  

The screening of contigs through ResFinder identified 14 AMR genes (Appendix E, Table 

E3) associated with a range of drug classes and phenotypes (Table 7.2). Figure 7.3 shows 

how the profile of these genes vary between the isolates with some genes (dfrC, fusC, mecA 

and mecR1) only found to be present  in a single isolate whilst one gene, tet(38), was 

present in all 57 isolates.  Screening through the Virulence Factors Database identified 76 

virulence genes, 55 (72.4%) of which appeared across 100% of the isolates (Appendix E, 

Table E4).  The profiles for those genes that varied in prevalence across the isolates can 

be seen in Figure 7.4, highlighting genes uncommon to all the isolates, including those 

only found in a single isolate (chp, sea and selk). In the Scoary analysis three STs: ST-1, 

ST-97 and ST-188, were found to be associated with a number of genes based on our 

criteria for significance; that is, having an odds ratio greater than one, a specificity greater 

than 95%, Benjamini-Hochberg corrected p-value below 0.05, and not being identified as 

either a hypothetical or putative protein. 

Overall, 21 genes were identified by Scoary as having a significant association with the 35 

ST-1 bovine isolates (Table 7.3). Out of these genes, 85.7% (18/21) were found only in 

ST-1 isolates with 47.6% (10/21) found in all 35 ST-1 isolates. The GO terms for these  

genes revealed that many play a role in DNA replication and modification mechanisms  
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Table 7.2. Drug classes influenced by the 14 resistance genes identified in the 57 

Staphylococcus aureus isolates and their common uses in the New Zealand dairy industry. 

Resistance genes have been grouped by their gene family. 

Gene(s) Drug Class Common use in New Zealand dairy industry 

ant(9)-
Ia 

Aminoglycosides Intra-mammary antimicrobials for the treatment of mastitis 
in lactating cows e.g. Neomycin, Lincomycin and 
Streptomycin 

blaI 
blaPC1 
blaR1 
blaZ 

ß-lactamsa 

Broad range antimicrobials used to treat a range of intra-
mammary, intra-uterine and systemic infections e.g. 
Penicillin, Amoxicillin, Cloxacillin, Penethamate, 
Cefuroxime, Cephalexin, Cephalonium, Cefapirin, Ceftiofur 
and Cefquinome 

mecA 
mecR1 
dfrC Diaminopyrimidines  Used to treat a broad variety of bacterial infections in 

humans, particularly urinary tract infections with limited 
use in cattle, with the exception of Trimethoprim, which is 
commonly used in combination with sulfa drugs so 
therefore is a fairly common treatment (e.g., Amphoprim® 
or Tribrissen®) for enteric or respiratory tract disease in 
cattle 

erm(A) Streptogramins, 
Lincosamides and 
Macrolides  

Antimicrobials used in the treatment of various systemic 
and localised bacterial infections including mastitis, 
respiratory infection, metritis and foot-rot, although 
Tilmicosin and Tulathromycin have a very long milk WHP 
so hence are not used in lactating cattle, and rarely on dairy 
farms. Erythromycin is also no longer used in cattle in New 
Zealand. 

fosD Fosfomycin Used to treat a broad variety of bacterial infections in 
humans, particularly urinary tract infections but it is not 
registered for animal use in New Zealand 

fusC Fusidic acid Fusidic acid is not registered for cattle use in New Zealand 
but has registration for use in dogs 

qacA 
qacB 

Fluoroquinolones Injectable antimicrobials used in a range of treatment 
including E. coli and Pseudomonas mastitis, osteomyelitis 
and respiratory infections 

tet(38) Tetracyclines Antimicrobial used in broad-spectrum treatment of local 
and systemic infections particularly uterine infections and 
other soft tissue infections in cattle  

a ß-lactam antibiotics include Penicillins, Cephalosporins, Cephamycins, Monobactams and, 
Carbapenems 
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Figure 7.3. Resistance gene profiles of 57 S. aureus isolates presented alongside a 

maximum-likelihood tree generated from the core single nucleotide polymorphisms. 

Isolate IDs identify the date the sample was collected (dd/mmm/yyyy), the farm from 

which it was collected from (A-Q) as indicated in Figure 7.2, and the animal ID number 

(####). 

whilst only three; agrB, entH and flr, have been linked to increased virulence and 

pathogenesis (Table 7.3). For the Scoary analysis, examining gene presence-absence in 

isolates sampled from clinical and sub-clinical mastitis cases, many candidate genes were 

identified; however, for all the genes the pairwise p-value was greater than 0.05 suggesting 

that after consideration of the confounding by lineages, no genes were significantly 

associated with either clinical or sub-clinical phenotypes. To view the complete Scoary 

results readers are guided to the additional file that is available in the following GitHub 

repository https://github.com/SSGreening/NZ_S.aureus 
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Table 7.3. Scoary result summary showing the genes found to be significantly associated 

with Staphylococcus aureus sequence type (ST)-1 and the Gene Ontology (GO) terms 

indicating either the biological processes or molecular functions associated with the gene 

products. Significant genes were those that had an odds ratio greater than 1, a specificity 

greater than 95%, a Benjamini-Hochberg corrected p-value below 0.05 and were not 

annotated as either a “hypothetical” or “putative” protein. 

Table 7.3 continues next page 

Gene GO terms 

Number of isolates gene 
present (%) 

ST-1 
(n = 35) 

Other STs 
(n = 22) 

agrB Quorum sensing, pathogenesis and, peptidase 
activity 

35 (100) 0 

entH Virulence, metal ion binding and, toxin activity 35 (100) 0 
flr Pathogenesis and, signal peptide 35 (100) 0 
catE-2 

Transcription regulation and, DNA-binding 
35 (100) 1 (4.5) 

gltR 35 (100) 1 (4.5) 
yofA 35 (100) 0 
gdmA Cytolysis and, signalling receptor binding 35 (100) 0 
nisC Maturation of the lantibiotic 35 (100) 0 
repE 

DNA replication initiation and, DNA-binding 
35 (100) 0 

repN 35 (100) 0 
group-2156 

Signal peptide 
35 (100) 0 

group-2167 35 (100) 0 
ssbA-1 DNA replication, repair and recombination and, 

Single stranded DNA binding 
23 (65.7) 0 

ssbA-2 14 (40.0) 1 (4.5) 
dnaC-2 DNA replication, synthesis of RNA primer, ATP 

binding, DNA binding and, DNA helicase activity 
21 (60.0) 0 

brnQ-3 Branched-chain amino acid transmembrane 
transporter activity 

16 (45.7) 0 

dut dUMP biosynthetic process,  
dUTP diphosphatase activity and, magnesium ion 
binding 

14 (40.0) 0 
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Table 7.3 continued 

7.4.2. Antimicrobial sensitivity 

Out of the six antimicrobials tested, isolates only showed full resistance to penicillin and 

some intermediate resistance to oxacillin (Figure 7.5). For penicillin 36.0% (18/50) 

showed resistance of which the majority had the blaI (17/18, 94.4%), blaR1(17/18, 

94.4%), blaZ (16/18, 88.9%), and tet(38) (18/18, 100%) gene present whilst a small 

number also had the blaPC1 (4/18, 22.2%), erm(A) (1/18, 5.6%), qacA (4/18, 22.2%), and 

qacB (2/18, 11.1%) gene present (Table 7.4). Note here that not all these genes are 

associated with penicillin resistance; for example, the tet(38) gene is instead known to be 

associated with tetracycline resistance; although in this case the tet(38) gene did not 

correlate with any tetracycline resistance. For oxacillin 6.0% (3/50) showed intermediate 

resistance, with all three isolates having all the bla genes present (blaI, blaR1, blaZ, and 

blaPC1) and the qacA gene (Table 7.4). For the full test results including the zone range 

for each antimicrobial, readers are directed to Appendix E (Table E5). 

Gene GO terms 

Number of isolates gene 
present (%) 

ST-1 
(n = 35) 

Other STs 
(n = 22) 

bcgIA DNA modification, DNA-binding, hydrolase activity 
and, N-methyltransferase activity 

14 (40.0) 0 
bcgIB 14 (40.0) 0 
hin DNA integration, DNA-binding and, recombinase 

activity 
10 (28.6) 0 

cna Pathogenesis, cell adhesion and, collagen binding 9 (25.7) 0 
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Figure 7.5. Antimicrobial sensitivity profiles of 50 S. aureus isolates presented alongside 

a maximum-likelihood tree generated from the core single nucleotide polymorphisms. 

Sensitivity was determined using a zone diffusion test following the procedures provided 

by the Clinical and Laboratory Standards Institute (CLSI) for penicillin (Pen), novobiocin 

(Nov), cefoxitin (Cef), tetracycline (Tet), ceftiofur (XNL), and oxacillin (OXA); with 

isolates being declared sensitive (S), intermediate (I) or resistant (R), based on CLSI 

recommendations. Isolate IDs identify the date the sample was collected 

(dd/mmm/yyyy), the farm from which it was collected from (A-Q) as indicated in Figure 

7.2, and the animal ID number (####). 
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Table 7.4. The presence-absence of 14 resistance genes and the antim
icrobial sensitivity across 50 S. aureus isolates. A

ntim
icrobial tested zone diffusion 

include penicillin (Pen), novobiocin (N
ov), cefoxitin (C

ef), tetracycline (Tet), ceftiofur (XN
L), and oxacillin (O

XA
); w

ith isolates being declared sensitive (S) 

or resistant (R)(including those also identified as interm
ediate), based on C

LSI recom
m

endations.  

G
ene presence/absence 

(num
ber of isolates w

ith gene) 
Pen 

N
ov 

C
ef 

Tet 
X

N
L 

O
X

A
 

R 
S 

R 
S 

R 
S 

R 
S 

R 
S 

R
a 

S 
ant(9)-ia 
(n = 0) 

A
bsent 

18 
32 

0 
50 

0 
50 

0 
50 

0 
50 

3 
47 

Present 
- 

- 
- 

- 
-

- 
-

- 
- 

- 
- 

- 
blaI 
(n = 17) 

A
bsent 

1 
32 

0 
33 

0 
33 

0 
33 

0 
33 

0 
33 

Present 
17 

0 
0 

17 
0 

17 
0 

17 
0 

17 
3 

14 
blaPC1 
(n = 4) 

A
bsent 

14 
32 

0 
46 

0 
46 

0 
46 

0 
46 

0 
46 

Present 
4 

0 
0 

4 
0 

4 
0 

4 
0 

4 
3 

1 
blaR1 
(n = 17) 

A
bsent 

1 
32 

0 
33 

0 
33 

0 
33 

0 
33 

0 
33 

Present 
17 

0 
0 

17 
0 

17 
0 

17 
0 

17 
3 

14 
blaZ 
(n = 16) 

A
bsent 

2 
32 

0 
34 

0 
34 

0 
34 

0 
46 

0 
34 

Present 
16 

0 
0 

16 
0 

16 
0 

16 
0 

4 
3 

13 
dfrC 
(n = 1) 

A
bsent 

18 
31 

0 
49 

0 
49 

0 
49 

0 
33 

0 
34 

Present 
0 

1 
0 

1 
0 

1 
0 

1 
0 

17 
3 

13 
Table 7.4 continues next page. 
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7.4.3. Comparative genomics: S. aureus within New Zealand 

The maximum-likelihood phylogeny of the 57 S. aureus isolates from this study and the 

59 S. aureus isolates from the previous study by Grinberg and colleagues (2010) is shown 

in Figure 7.6 (Grinberg et al. 2017). Overall, 42,929 polymorphic sites were identified 

between the 116 isolates containing 22,484 core SNPs. In total 15 STs were identified 

(Table 7.5) of which, only three: ST-5, ST-188 and ST-1, contained isolates sampled from 

all the species; that is cattle, humans, dogs and cats. Appendix E, Figure E2 provides a 

higher resolution phylogeny of the ST-1 cluster containing 35 isolates sampled from 

bovine milk samples, nine isolates sampled from humans, two isolates sampled from pet 

cats and five isolates sampled from pet dogs. Other STs were limited to bovine-derived 

isolates including ST-97, ST-151, ST-425, ST-705 and ST-1247 whilst the remaining 

included isolates from both humans and pets. Overall, there was a higher prevalence of 

ST-1 isolates in bovine-derived isolates in comparison to isolates sampled from either 

humans, cats or dogs but a lower prevalence of both ST-188 and ST-5 (Table 7.5) 
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Figure 7.6. Maximum-likelihood phylogeny generated from core single nucleotide 

polymorphisms across 57 S. aureus isolates from this study (i.e., New Zealand dairy cattle) 

and 59 S. aureus isolates from a previous study by Grinberg and colleagues (Grinberg et 

al. 2010). Isolate IDs identify the year the sample was collected (yyyy) and the species the 

sample was taken from. The colour of the terminal tree node indicates the sequence type 

identified by seven MLST genes whilst the shape further identifies the species and site 

from which the isolate it was collected. BM: bovine milk, HC: human clinical case, HN: 

human nasal colonisation, CC: canine clinical case, CN: canine nasal colonisation, FC: 

feline clinical case and FP: feline perianal colonisation. 
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Table 7.5. The dominant Staphylococcus aureus 7 gene multilocus sequence types (MLST) 

observed in our study looking at 57 S. aureus isolates sampled from bovine milk samples, 

and previous studies conducted by Grinberg et al. (2017) (Study 1) including 59 S. aureus 

isolates sampled from humans (n = 34) and household pets (cats = 6, dogs = 19) from 

across New Zealand and Heffernan et al. (2015) (Study 2) including 1255 methicillin-

susceptible S. aureus (MSSA) isolates sampled from humans from across New Zealand. 

Note the MLST for five of the isolates in the current study (5/57, 8.8%) could be detected 

as well as three in study 1 (3/59, 5.1%). For study 2 only the seven dominant MSSA clones 

have been identified therefore, the column percentages do not equal 100%.  

7 geneMLST types Source 
Prevalence (% of all isolates) 

Current study Study 1 Study 2 
ST-1 Bovine 35 (61.4) - - 

Human - 9 (15.3) 192 (15.3) 
Pets - 7 (11.9) - 

ST-188 Bovine 5 (8.8) - - 
Human - 9 (15.3) 128 (10.2) 
Pets - 5 (8.5) - 

ST-5 (and ST-835)a Bovine 1 (1.8) - - 
Human - 9 (15.3) 108 (8.6) 
Pets - 5 (8.5) - 

ST-705 Bovine 2 (3.5) 
Human - 
Pets - 

ST-1247 Bovine 2 (3.5) 
Human - 
Pets - 

ST-97 Bovine 5 (8.8) 
Human - 
Pets - 

ST-151 Bovine 1 (1.8) 
Human - 
Pets - 

ST-425 Bovine 1 (1.8) 
Human - 
Pets - 

Table 7.5 continued 
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Table 7.5 continued 

7.4.4. Comparative genomics: S. aureus ST-1 globally 

Overall, 9,897 WGS S. aureus assemblies were available from GenBank as of March 2019. 

After wgMLST it was revealed that 25.8% (2,550/9,897) belonged to one of the eight STs 

identified for this study of which 4.4% (103/2,550) were ST-1; the predominant ST in this 

study (Appendix E, Figure E1). These included isolates sampled from across 19 countries 

(Figure 7.7) between the years 1998 to 2017. From these isolates, 4.9% (5/103) were 

collected from milk samples from cattle originating in the United Kingdom, Australia, 

Brazil and Italy compared to 93.2% (96/103) that were collected from humans including 

blood cultures, nasal swabs, pharyngeal swabs, skin lesion and wounds, sputum samples, 

wgMLST types Source 
Prevalence (% of all isolates) 

Current study Study 1 Study 2 
ST-15 Bovine - - 

Human 2 (3.4) 35 (2.8) 
Pets - - 

ST-30 Bovine - - 
Human 3 (5.1) 24 (1.9) 
Pets 2 (3.4) - 

ST-34 Bovine - 
Human - 
Pets 1 (1.7) 

ST-39 Bovine - 
Human - 
Pets 1 (1.7) 

ST-582 Bovine - 
Human - 
Pets 1 (1.7) 

ST-1259 Bovine - 
Human - 
Pets 1 (1.7) 

ST-121 (and ST-2276)b Bovine - 
Human 73 (5.8) 
Pets - 

a Combined prevalence of ST-5 and ST-835, a single-locus variant of ST-5, and therefore 
belonging to the same MLST clonal complex 5 (CC5)  
b Combined prevalence of ST-121 and ST-2276, a double-locus variant of ST-121, and therefore 
belonging to the same MLST clonal complex 121 (CC121)  
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Figure 7.7. (a) Maximum-likelihood phylogeny generated from core single nucleotide 

polymorphisms across 35 S. aureus ST-1 isolates from this study (i.e., New Zealand dairy 

cattle) and the 103 S. aureus ST-1 isolates available in Genbank as of March 2019. Isolate 

IDs identify the year the sample was collected (yyyy) and the country from which it was 

sampled from whilst the shape of the terminal node indicates the species it was sampled 

from (circle = cattle, square = human, star = domesticated pets and, triangle = all other 

samples). (b) Map showing the countries from which the isolates were sampled from with 

points sitting on the centroid position. Point shape indicates the dominate species that 

has been sampled in the country. 
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ear swabs and, broncho- and tracheal-aspirations. The two (1.9%) remaining isolates 

were sourced from broiler chickens in Poland and the assembly production room of a 

bakery in the United States. The maximum-likelihood phylogeny of the 35 S. aureus ST-

1 isolates from this study, the 16 S. aureus ST-1 isolates from the previous study by 

Grinberg and colleagues (2010) and the 103 S. aureus ST-1 isolates described above is 

shown in Figure 7.7 (Grinberg et al. 2017). They cluster according to 7,072 polymorphic 

sites and 7,010 core SNPs identified between the 154 ST-1 isolates. This phylogeny shows 

a monophyletic group, which has been highlighted in Figure 7.7, containing 18 New 

Zealand bovine isolates and one Australian isolate also from a bovine raw milk sample. 

The addition of the remaining 17 New Zealand bovine isolates creates a polyphyletic 

group including one human isolate from the USA and a bovine isolate from Brazil. These 

17 New Zealand isolates also form a second more diverse monophyletic group containing 

not only another Australian bovine isolate but also human isolates Thailand, Brazil, USA, 

Ghana, Lebanon, Italy, France, Japan and Russia. The New Zealand ST-1 isolates samples 

from both humans and pets can be found throughout the phylogeny, clustering with 

isolates collected from across all the study countries.  

 

The Scoary analysis found a number of genes to be overrepresented in isolates sampled 

from 4/5 of the geographical regions, excluding South America. However, no genes were 

considered of interest in those isolates sampled from North America and Africa. In 

isolates sampled from Asia, 25 genes were found to be overrepresented, including several 

genes associated with Pathogenicity Island proteins, whilst 26 genes were found to be 

overrepresented in isolated sampled from Europe, including the resistance genes mecA 

and ermA, and 51 genes overrepresented in isolates sampled from across Oceania, 

including a number of genes associated with phage-related proteins. However, all the 

genes found to be significantly associated with isolates sampled from Asia, Europe and 

Oceania were only present in a small proportion of the total isolates from that region.  
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Further Scoary results looking at ST-1 gene presence-absence and host species, found the 

presence of 93 different genes to be significantly overrepresented in bovine-derived 

isolates of which 54.8% (51/93) were limited to only the bovine-derived isolates although 

none were found across all of the bovine isolates. Most interestingly a small number of 

these genes (26.9%; 25/93) were identified as phage-related proteins with many also being 

identified in the human isolates but not in the isolates sampled from pets. Out of the 

remaining genes, many are thought to act as transcriptional regulators with two genes; 

lukD and lukE, associated with increased virulence via toxin activity and cytolysis found 

in 37.5% (15/40) of the isolates. Overall, 72 genes were found to be significantly 

overrepresented with the human-derived isolates of which 43.1% (31/72) were limited to 

only the human isolates. Out of these genes, four have been associated with enterotoxin 

production and increased virulence, with the two most prevalent; sem and sei, found in 

over 55% of the human isolates. In addition to these virulence genes, three genes 

associated with resistance; mecR1, mecA and ermA were also found to be overrepresented 

in the human isolate with a presence in 41.0% (43/105), 32.4% (34/105), and 29.5% 

(31/105) of the isolates respectively. Lastly, 32 genes were found to be significantly 

overrepresented with isolates sampled from pets of which 43.1% (23/32) were limited to 

only the pet isolates, however, no GO terms could be found for any of these genes. To 

view the complete Scoary results readers are guided to the additional file that is available 

in the following GitHub repository https://github.com/SSGreening/NZ_S.aureus. 

7.4.5. Cattle trade network 

The LIC-MINDA database included 150,315 movement records between 45,641 different 

farms. In total, 82.4% (14/17) of the farms in this study had recorded a live animal 

movement in the LIC-MINDA database, suggesting that three of the herds were closed 

herds with no on- or off-farm live animal movements prior to 2011, or more likely a lack 

of data recording. Network statistics have been presented in Table 7.6. To summarise, 

there seemed to be lack of cohesiveness between all the farms in the network with only a  
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 Table 7.6. Summary network statistic for all on- and off-farm live animal movements 

recorded in the Livestock Improvement Corporation (LIC) MINDA database over a 26-

year period from 1985-2011. 

 

small proportion of all possible connections being made resulting in a highly fragmented 

network structure. However, when considering all live animal movements, 43.7% 

(19,965/45,641) of farms form the giant strongly connected component indicating some 

level of connectivity. In total, the fast-greedy community analysis identified 5,740 

different communities; the largest of which contained 152 farms, however, despite the 

large number of communities 64.7% (11/17) of the study farms belonged to a single 

community. Overall, all the study farms were grouped into six different communities 

including the three farms with no animal movements records as isolated communities.  

 

7.4.6. Antimicrobial usage 

The antimicrobial sales data showed a large amount of heterogeneity in the purchasing of 

antimicrobials between the study farms. The DD was calculated per cow per year to 

account for differences in the herd size which ranged from 96 to 950 animals (mean = 

512). Overall the DD ranged from 0.08 to 3.02 per cow per year (mean = 1.57) however 

this varied by treatment method, with intra-mammary treatments having the highest DD 

Network 
property  

Network measure  Value 

Network 
size 

Number of nodes  45,641 
Number of edges  150,315 
Network diameter 21 
Average path length  6.86 

Centrality 
measures 

Average in-degree (min-max) 3.29 (0 - 227) 
Average out-degree (min-max) 3.29 (0 - 110) 
Average betweenness (min-max) 42356 (0 - 1.8X107) 

Cohesion 
measures 

 Network density  7.21 x 10-5 
Clustering coefficient  0.029 
Giant Strongly Connected Component (GSCC) 19,965 
Giant Weakly Connected Component (GWCC) 31,681 
Reciprocity 0.078 
Fragmentation 0.809 
Assortativity  0.002 
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ranging from 0 to 2.76  (mean = 1.41) followed by injectable (mean = 0.33) and intra-

uterine treatments (mean = 0.05). To investigate if larger herds used more antimicrobials, 

the SCC was calculated, however no association was found between herd size and DD 

(SCC = 0.27, P = 0.263) (Appendix E, Figure E3). To investigate if an increase in AMU 

was associated with the total number of resistance genes present a further SCC was 

calculated however no association was found (SCC -0.32, p = 0.204) (Appendix E, Figure 

E4). When considering only dry cow therapy, five treatment methods were reported. The 

use of BovacloxTM was reported by 23.5% (4/17), Cepravin® by 35.3% (6/17), Dryclox® by 

17.6% (3/17), Orbenin® by 47.1% (8/17), and Teatseal® by 58.9% (10/17).  

 

Scoary analysis found no association between any of the dry cow therapy treatments and 

any of the resistance genes identified through ResFinder (Zankari, et al. 2012) and CARD 

(Jia et al. 2017). In fact, no genes were found to be significantly associated with treatment 

when considering the pairwise p-values however, when making no causal inference one 

gene; yezG, known for its role in the YeeF-YezG toxin-antitoxin module (Christensen et 

al. 2016), was found to be significantly overrepresented (Benjamini-Hochberg p-value = 

0.048) in isolates sampled from reporting the use of Orbenin®. A number of genes were 

also found to be overrepresented in isolates sampled from farms reporting the use of 

BovacloxTM of which 83.8% (31/37) were found in all the isolates positive for this trait 

including the merR1 gene which is thought to be the principal regulatory gene that 

controls the expression of the merA operon responsible for mercury resistance in bacteria 

(Stapleton et al. 2004; Ojo et al. 2004). The norB4 gene was also found in all the isolates 

sampled from farms that had reported using BovacloxTM, and although this gene was not 

identified by either ResFinder or CARD, it has previously been associated with 

ciprofloxacin-resistant S. aureus (Kwak et al. 2013). To view the complete Scoary results 

readers are guided to the additional file that is available in the following GitHub 

repository https://github.com/SSGreening/NZ_S.aureus. 
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7.4.7. Permutational multivariate analysis of variance 

The univariate PERMANOVA models showed that there was a significant difference in 

the core SNP profiles between the different farms (p = 0.0046), townships (p = 0.0004) 

and network communities (p = 0.0001) (Appendix E, Table E6) with differences between 

farms accounting for more of the variation between the genetic profiles than differences 

between townships or communities. When comparing two mixed-design PERMANOVA 

models, with farms nested either within township or community, community effects 

(Table 7.7) were stronger (p = 0.0009) than township (p = 0.0146). However, care must 

be taken when interpreting the multivariate PERMANOVA models as the Chi-squared 

test showed a strong association between all the predictor variables (Appendix E, Table 

E7) suggesting collinearity. MDS ordination plots based on the uncorrected p-measure 

identified one isolate relatively distant from the other isolates. However, when this isolate 

was removed, three clusters emerged from the core SNP profiles with isolates more closely 

related to others within the same cluster compared to isolates in neighbouring a cluster. 

From the MDS ordination plots  alone it is difficult to determine if isolates within these 

clusters are also grouped by farm, community or township despite the associations found 

in the univariate PERMANOVA models (Appendix E, Figure E5).  

 

Table 7.7. Multivariate Permutational Multivariate Analysis of Variance 

(PERMANOVA) model comparing the p-dissimilarity measure between the core genome 

single nucleotide polymorphism (SNP) profiles of 57 Staphylococcus aureus isolates by 

network community (n = 6) and farm (nested within community) (n = 17) with p-values 

for each test obtained using 9999 unrestricted permutations. “SS” provides the sum of 

squares, “MS” the mean squares, and “df” the degrees of freedom for each test.  

 df SS MS Pseudo-F p-value 
Communitya 5 0.77 0.15 0.04 0.0009 
Farm 11 0.39 0.04 0.40 0.4684 
Residuals 40 1.40 0.04   
Total 56 2.56    
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7.5. Discussion 

Overall, this study identified eight S. aureus sequence types amongst 57 isolates derived 

from bovine milk samples with a number of STs identified from isolates collected both 

within the same herd and from the same animal. Altogether, 14 genes associated with 

antimicrobial resistance and 76 genes associated with virulence factors were identified 

with very little variation in the gene profiles both within a single ST and between STs 

except for one ST-5 isolate. Furthermore, despite a number of resistance genes being 

identified very few of the isolates showed evidence of resistance to any of the 

antimicrobials tested with the exception of the bla genes and penicillin resistance. This 

highlights the importance of performing phenotypic tests for antimicrobial susceptibility 

with many weaknesses identified in genome-based predictions (Courvalin, 2005; Gordon 

et al. 2014). Overall, the low level of diversity may be a result of a very strong farm effect, 

with isolates from the same farm, belonging to the same ST, having very similar genetic 

profiles. In addition to farm-level effects, the genetic relatedness of isolates was found to 

be associated with both trading community and township; supporting previous evidence 

that the movement of live animals may be an important risk factor for the spread of S. 

aureus. However, given that some closely related isolates were not connected in the 

animal trade network, it suggests that other between farm contacts, such as the shared 

milking parlours or neighbouring paddocks, may also be playing a role in the spread of S. 

aureus (Álvarez et al. 2011). Given the likelihood that some of the isolates may also have 

human origin, it would also be important to consider other human contacts with animals 

in local communities such as the movement of personnel between farms.  

When comparing the current study bovine-derived isolates with additional S. aureus 

isolates collected from domestic pets and humans across New Zealand, only three STs 

were identified across all species; ST-1 (the predominant ST in the bovine isolates), ST-5, 

and ST-188. These STs are thought to be derived from lineages associated with human 

infection whilst historically found to be uncommon among bovine isolates in comparison 
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to human MRSA and MSSA isolates (Hata et al. 2010). This result is consistent with the 

growing emergence of human-associated STs as causative agents of bovine mastitis that 

has been reported in a number of studies worldwide (Sakwinska et al. 2011; Bar-Gal et al. 

2015); supporting evidence of S. aureus as a zoonotic pathogen. Nevertheless, without 

collecting furthers isolates over a greater geographical distribution and longer timeframe, 

it is not possible to identify if these human-derived STs are persisting within the livestock 

populations.  

 

In the global comparison of ST-1 isolates, the bovine isolates from the current study 

formed two genetic clusters within a monophyletic group whereas, the isolates from both 

domesticated pets and humans in New Zealand were spread throughout several clusters 

including isolates collected from many other countries. This clustering of New Zealand 

bovine ST-1 isolates may also be an artefact resulting from the current studies small 

sample size that is limited to one geographical region. The restriction may also explain 

the low prevalence of ST-97 and ST-705, the two lineages thought to be otherwise 

dominant worldwide from isolates derived from bovine milk (Hata et al. 2010). However, 

it may also be possible that New Zealand’s strict border control and import regulations 

for live animals have limited the introduction of S. aureus from other countries with the 

last live cattle import from Australia into New Zealand dating back to 2008, and live 

imports from other countries ceasing in the early ‘90s; resulting in genetically distinct 

clusters. Nevertheless, the presence of a closely related isolate originating from Australia 

does suggest possible transmission within Australasia which could be either from a 

historic cattle import or derived from human isolates that have subsequently adapted to 

cattle, although without further genetic comparison between New Zealand and 

Australian isolates it is not possible to infer any transmission dynamics. Further 

investigation could be conducted to try and trace any relevant epidemiological links that 

may have resulted in transmission, such as any historic cattle trades between the two 

countries, although it would be hard to define a time period in which to restrict the search 
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as the small number of isolates characterised in the current study over a short time period 

makes it difficult to trace the time to the most recent common ancestor (MRCA); a 

common technique used in phylogenetics to study the shared evolutionary history of 

isolates and infer transmission. The close relationship between the Australian and New 

Zealand isolates may not be explained by cattle trade but could instead be the result of 

human movement, particularly of those who work in close contact with livestock such as 

farm workers or veterinarians, which would be harder to trace.  

 

In addition to the small sample size, there are many other limitations in the study that 

must be taken into account when interpreting the results. For example, in the genomic 

analysis an ST-1 reference genome was used to create the SNP alignment and identify 

differences between the isolates; a method that is widely used but not without its 

limitations as the accuracy of SNP calling can be reduced when applied to relatively 

diverse genomes (Olson et al. 2015; Bush et al. 2019). For this study, this means that there 

is a higher discriminatory power when mapping the ST-1 isolates back to the reference in 

comparison to the other STs which are more distantly related and may even have entire 

regions that cannot be aligned with the reference sequence. This could result in 

alignments errors and biases when SNP calling (Nielsen et al. 2011). However, this 

drawback is not present in the wgMLST analysis which relies on de novo assembly, an 

alternative to mapping in which no reference genome is used (Wilson 2012), and has been 

shown to provide a significantly higher resolution and epidemiological concordance 

when compared with reference-based methods (Carleton and Gerner-Smidt, 2016; 

Nadon et al. 2017).  

 

In addition to limitations with the genomic analysis, there are also many restrictions in 

the network analysis performed in this study. In order to construct the network graphs 

movement records from the LIC database were used however, it is likely that some 

movements have not been recorded due to human error. Movements may also be lost due 
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to the turnover of farms for examples, over 45,000 different farms were identified in the 

LIC database however, DairyNZ recorded just over 12,000 herds in 2017/18 (DairyNZ, 

2018). This makes it clear that herd identifiers may be being lost or changed over time, 

making it difficult to historically trace the movements between farms. In addition to these 

limitations in the data, the extract used in this study only showed movements up until 

2011 whilst the S. aureus isolates were collected in the 2015/16 lactation. Therefore, all 

the movement between the study herds that occurred between 2012 to 2016 would not be 

represented in the contact networks. Furthermore, these records do not consider other 

contacts that could be important for transmission, such as the movement of farm visitors, 

resulting in further missing link data between farms that will inherently change the 

structure of the final network and hinder downstream network analysis unreliable. 

However, this study is most interested in network communities which have been shown 

to withstand the effects of missing data better than other network statistics (Kossinets, 

2006; Yan and Gregory, 2011).  

 

Despite these limitations, the gene profiles characterised in this study still allow for some 

comparison not only within the study population but with previous studies in order to 

identify changing patterns of resistance which may help to guide clinical decisions around 

S. aureus management, especially considering New Zealand’s current target to completely 

stop the use of antibiotics for the maintenance of animal health and wellness by 2030 

(Hillerton and Allison, 2015); that is, antimicrobials will not be used for preventative or 

metaphylactic disease therapy in animals. In light of this target, it is promising to see the 

small amount of diversity in the resistance gene profiles of all the bovine-derived S. aureus 

isolates with only one ST-5 isolate having mecA and mecR genes present; both of which 

are associated with methicillin-resistant S. aureus (Aires-de-Sousa, 2017). Unfortunately, 

this isolate did not undergo any of the sensitivity testing meaning no further conclusions 

can be drawn; however, being the only isolate in the study with genes associated with 

methicillin-resistant fits in with the current understanding that the risk of LA-MRSA 
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originating from cattle is minimal; with only one methicillin-resistant isolate ever having 

been found from a bovine source in New Zealand (Grinberg et al. 2008). However, this 

relies on the ability to extrapolate the current findings to the wider population of S. aureus 

which is difficult given that New Zealand lacks a good national survey at either the cow 

or bulk milk level. Nevertheless, given these findings, it appears that MRSA is relatively 

uncommon in cattle, in comparison to many European countries where cases have been 

on the rise (Spoor et al. 2013; Sharma et al. 2016), and it would suggest that the efficacy 

of methicillin antibiotics has been preserved.  

 

On the other hand, all the bla genes associated with penicillin resistance were found 

present in 33.3% (19/57) of the isolates; the majority of which were identified as ST-5, ST-

97 or ST-188, and showed resistance in the sensitivity test to penicillin. Both this ST 

profile and sensitivity pattern is consistent with previous studies; for example, in a study 

by van den Borne and colleagues (2010) penicillin resistance was found to be higher in ST 

lineages with human origin (including ST-5 and ST-188), although the majority of STs 

derived from bovine origin, such as ST-97 in the current study, showed little to no 

resistance (van den Borne et al. 2010). A further study by Steele and McDougall (2014), 

found approximately 45% of S. aureus isolates to be both phenotypically penicillin 

resistant and genotypically blaZ positive, and presence of this genotype/phenotype was 

associated with very poor bacteriological cure following antimicrobial therapy (Steele and 

McDougall, 2014). This high level of resistance to penicillin in comparison to all the other 

antimicrobial tested raises some concerns with many penicillins regarded as “critically 

important” (e.g., ampicillin) or “highly important” (e.g., cloxacillin) (WHO, 2018). 

However, without either further susceptibility testing or more details describing 

antimicrobial usage in New Zealand, it is difficult to determine which antimicrobials are 

most effected. 
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Of further concern is also the significant diversity in virulence genes that was found 

among only a limited number of isolates. In particular, some of these genes have been 

associated with food poisoning in humans namely a group of highly heat resistant 

superantigens called staphylococcal enterotoxins (SE) (Hennekinne et al. 2012). To date, 

there are over 20 described SEs with the majority of foodborne illnesses traced to five 

main serological groups; SEA, SEB, SEC, SED and SEE that are known to survive the 

pasteurisation process. In this study, the prevalence of SE genes was high with 70.2% 

(40/57) of isolates harboured at least one SE gene whilst 8.8% (5/57) had two or more. 

This difference is largely due to the association between SEs and STs as all ST-1 isolates, 

the predominant ST in this study, had the SE gene seh present, whilst only ST-705 and 

ST-5 had multiple SEs present as well as the enterotoxin-like genes selk and sell and the 

toxic shock syndrome gene tsst-1, all of which have been associated with human disease 

after the consumption of raw milk (Argudin et al. 2012; Nazari et al. 2014). However, 

overall the prevalence of SE genes in this study is comparatively lower than that previously 

reported by many other countries; including Italy (Riva et al. 2015), Germany (Zschöck 

et al. 2005), United States (Bar-Gal et al. 2015) and Australia (McMillan et al. 2016), and 

their presence alone is not indicative of the level of expression and toxin production in 

milk. Therefore, given the limitation in genome-based virulence prediction, it is 

important for future studies to conduct more phenotypic tests on samples that are more 

representatives of the wider population in order to fully assess the risk to public health, 

particularly regarding the consumption of raw milk.  

 

7.6. Conclusion 

By characterising the genetic population structure of mastitis-causing S. aureus within a 

limited number of New Zealand dairy herds, this study has provided evidence for the 

predominance of an ST formerly associated with human infection. However, despite 

these STs having historically higher rates of resistance, the presence of resistance genes 

remains low with little diversity between S. aureus isolates sampled from the different 
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farms. Lastly, by comparing the genetic relatedness of S. aureus isolates within and 

between trading communities this study provides evidence that the movement of live 

animals may be a risk factor for the spread of S. aureus, and although this highlights the 

importance of animal movement records in epidemiological investigations, it is also clear 

that using cattle-tracing data alone may not be enough to fully capture disease dynamics 

with further evidence of local spread. 
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8.1. Introduction 

The ability to infer the transmission dynamics of a disease outbreak is a key aspect in 

many epidemiological investigations; however, outbreak reconstruction is often time-

consuming, expensive and results in many uncertainties. Contact networks are a popular 

epidemiological tool that are often used to inform the population contact structure in 

disease simulation models; supporting inferences on who-infected-whom and providing 

evidence for or against different disease control strategies (Welch et al. 2011; Ray et al. 

2016). Nevertheless, using contact networks can also have many limitations, and in the 

real-world network data is often incomplete or unreliable (Craft, 2015) making it difficult 

to infer the transmission dynamics from network data alone. Therefore, a growing 

number of studies are developing methods to use the molecular sequence data of rapidly 

evolving pathogens in outbreak reconstruction (Campbell et al. 2018), however despite 

the success of previous studies, using molecular sequence data also presents many 

challenges.  

For example, many of the current methods often rely on a high proportion of disease cases 

having been identified and sampled, as well as detailed knowledge surrounding 

epidemiological parameters such as the generation time (i.e., the time between an 

individual becoming infected and infecting others). Incorporating molecular data also 

often requires both an evolutionary model, indicating how and at what rate mutations 

occur, and a pathogen population model to specify the transmission dynamics within and 

between host populations such as the number of lineages present, and how lineages are 

transmitted upon infection. For these reasons, it is important to develop methods that  

integrate pathogen molecular sequence data with epidemiological data, including contact 

networks, and clinical information to obtain more robust inferences on the origin and 

transmission of a disease, whilst also providing insight into the evolution of important 

pathogen traits such as antimicrobial resistance (Wilson, 2012; Kao et al. 2014; Campbell 

et al. 2019).  
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This general discussion brings together the context of this thesis, which aimed at 

investigating the transmission and evolution of two important pathogens; Campylobacter 

jejuni and Staphylococcus aureus, through the integration of pathogen whole genome 

sequence (WGS) data and contact network data. In this discussion the contents of each 

chapter have been critically evaluated with demonstrations of how the results fit within 

the current knowledge and support potential areas for future research.  

 

8.2. Overview of results: Campylobacter jejuni 

In 2014, a previously unidentified C. jejuni lineage, known as ST-6964, was detected 

across all major poultry suppliers in New Zealand, and has since been associated with a 

number of human campylobacteriosis sporadic cases and outbreaks. In addition to the 

rapid spread of this lineage, antimicrobial drug-resistance was also observed in many of 

the disease cases, and subsequent genomic analysis revealed a number of evolutionary 

changes associated with tetracycline and fluoroquinolone resistance (French et al. 2019). 

Despite this knowledge, many questions still remain about the means by which this 

lineage was able to spread between the different poultry suppliers, when previous 

dominant lineages, such as ST-474 and ST-48, were shown to be strongly associated with 

single suppliers (Müllner et al. 2010). This change in epidemiology suggests there could 

be a potential gap in biosecurity providing a pathway for C. jejuni to spread between farms 

belonging to different poultry suppliers.  

 

In Chapter 3, the results from an industry survey suggest that the biosecurity practices 

between different producers vary greatly, with many farms forgoing basic recommended 

practices, and although this low level of biosecurity does not provide any evidence for the 

spread of C. jejuni, it is clear that more needs to be done to promote good practices across 

the industry and maintain a minimum level of biosecurity in the event of a disease 

outbreak.  Nevertheless, current evidence suggests that improving the general standard 

of biosecurity may not be enough to reduce the public health risk of Campylobacter, and 
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instead a more targeted approach is needed. For example, a study by Ridley and colleagues 

(2011) compared the Campylobacter prevalence between farms with standard biosecurity 

practices versus farms with enhanced biosecurity practices, and although there was a 

reduction in Campylobacter prevalence on the majority of farms with enhanced 

biosecurity measures, in many cases it was not enough to prevent colonization (Ridley et 

al. 2011). A similar pattern can be seen in many countries where, despite the introduction 

of evidence-based interventions throughout their poultry industry together with 

increased media coverage educating the consumer on the risk of Campylobacter, human 

campylobacteriosis cases remain high. This emphasises the difficulties in controlling 

Campylobacter and the importance of identifying potential transmission pathways that 

could be targeted.  

In addition to the disease risk pathways that are commonly associated with production 

processes, additional risk pathways have been observed due to the interaction between 

commercial poultry and both backyard poultry (Conan et al. 2012) and wild birds 

(Gilchrist, 2007; Si et al. 2013), although these pathways can be notoriously more difficult 

to characterise. In Chapter 4, results provide evidence of a spatial overlap between 

backyard poultry with both commercial poultry and wild birds; a contact pattern that 

presents a high risk for the transmission of endemic diseases as well as the introduction 

of exotic diseases to the commercial poultry industry. These results are similar to that of 

other studies presenting the growing risk of backyard poultry as disease reservoirs for not 

only avian diseases that pose a risk to the commercial poultry industry but also many 

zoonotic diseases that may have huge public health consequences (Behravesh et al. 2014; 

Pohjola et al. 2016; Derksen et al. 2018). Long-range movements further demonstrate the 

importance of considering backyard poultry when planning disease surveillance and 

control activities even after taking into account limitations in the data, as previously 

discussed, as well as highlighting the potential of using online trading platforms to start 

educating and promoting good practices for animal health and biosecurity. 
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To further characterise the risk pathways in the New Zealand commercial poultry 

industry, Chapter 5, uses a distance-based linear model to determine the contribution of 

different network and geographical distances to the pairwise genetic distance between 167 

ST-6964 C. jejuni isolates. Results suggested that both transporting feed vehicles and local 

transmission mechanisms may have played an important role in the spread of this 

pathogen between farms and suppliers. Both these risk factors have been previously 

identified and many studies emphasise the importance of expanding biosecurity 

measures beyond the production area to include the disinfection of important contact 

points such as farm gates and vehicles (Newell et al. 2011; Silbanda et al. 2018). However, 

the cost-effectiveness of these measures has also been questioned (Hald et al. 2000), and 

before making recommendation to producers it would be important to complete 

additional environmental sampling; such as those from vehicle tyres or personnel, to 

provide more robust evidence of these risk factors. Additional sampling may also help to 

discern between the different local mechanisms, for instance, a study by Ridley and 

colleagues (2011) was able to match Campylobacter sequences sampled from farms with 

those isolated from the lunch bags of employees; emphasizing the movement of personnel 

as a major risk factor (Ridley et al. 2011). Other studies have managed to make a 

distinction between employees, highlighting depopulation and the entrance of the 

catching crew as a major risk for the introduction of Campylobacter, leading to the 

conclusion that the most cost-effective intervention might be the introduction of a strict 

all-in-all-out system with a complete ban on partial depopulation (Ellis-Iversen et al. 

2012; van Wagenberg et al. 2016). In New Zealand, this would require a major restructure 

for many poultry producers who currently rely on mixed-aged production cycles or 

practice partial depopulation in order to optimise production and meet the requirement 

for birds of particular sizes by retailers and fast food companies. Therefore, before any 

recommendation can be made, it would be important for future studies to collect 

additional isolates for sequencing to help determine the importance between different 

local pathways.  
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Together with more C. jejuni isolates, it would also be important for future studies to 

collect additional farm demographic and contact data; as demonstrated in Chapter 6, in 

which the inferences about the spread of C. jejuni are limited by the available data. Ideally, 

any study aiming to use pathogen sequence data in an epidemiological analysis should 

design the study to ensure that such population level data is collected in parallel to the 

isolates intended for sequencing thereby limiting the mismatch between datasets (i.e., not 

knowing the contact structure for the sampled pathogen, or lacking an appropriate 

pathogen for an observed network) (Craft, 2015; Eames et al. 2015). However, it also 

remains clear that there is a need for the further development of robust analytical methods 

that aim at combining network-based disease transmission models into a phylogenetic 

framework in order to make accurate inference about both pathogen transmission and 

evolutionary dynamics.  

 

8.3. Overview of results: Staphylococcus aureus 

Bovine mastitis causes both major economic losses and animal welfare concerns for dairy 

industries worldwide (Petrovski et al. 2006; Halasa et al. 2007), with S. aureus known to 

be one of the primary pathogens responsible for both clinical and sub-clinical mastitis on 

many dairy herds. In New Zealand, an estimated quarter of all clinical mastitis cases our 

thought to be caused by an infection with S. aureus (Petrovski et al. 2009; Notcovich et al. 

2018). Until recently, these infections would be treated with the use of blanket 

antimicrobial dry-cow therapy and the treatment of intra-mammary infection during 

drying off.  However, with growing concerns for the use of antimicrobials in food-

producing animals, specifically those critical to human medicine, new recommendations 

have been developed to promote the stewardship of antimicrobials, and support the goal 

to eliminate the use of antimicrobials for the maintenance of animal health and wellness 

across New Zealand by 2030 (Hillerton and Allison, 2015). Therefore, to effectively 

control mastitis whilst also ensuring the stewardship of antimicrobials, it is crucial to have 

a good understanding of both the transmission dynamics of the pathogens responsible 
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including knowledge on the pathways that may be contributing to their spread and 

maintenance within the population, and the current evolutionary mechanisms that 

present a potential risk of antimicrobial resistance. 

 

In chapter 7, the genetic relatedness between 59 S. aureus isolates sampled from 17 dairy 

farms located in the Waikato region of New Zealand was determined in order to 

investigate both the role of live animal movements towards the local spread of S. aureus 

and contribute to findings on the antimicrobial resistance patterns within the pathogen 

population. Overall, very little diversity was found between the isolates, although only a 

limited number of the study farms could be directly connected via an animal movement. 

This result suggests that other local transmission mechanisms, such as the movement of 

personnel between farms, could be more important for the spread of S. aureus; 

particularly within high risk groups such as casual employees. Many previous studies 

have provided evidence of transmission between humans and animals (Juhász-

Kaszanyitzky et al. 2007; Türkyılmaz et al. 2010); however, the risk of human movement 

between farms as a transmission pathway has not been fully characterised and without 

further sampling across a range of different environments, hosts and other potential 

fomites, no further inferences can be made about the contribution of different risk 

pathways. Nevertheless, it is clear that using animal movement data alone may not be 

enough to fully capture the transmission dynamics of S. aureus. Future research should 

focus on potentially high-risk groups for example, in New Zealand there are many Willing 

Workers on Organic Farms (i.e., ‘WWOOFers’), that exchange hours of work for 

accommodation and food. However, despite many WWOOFers moving between a 

number of different farms over long distances (https://wwoofinternational.org/), no 

research has been conducted to look at their potential impact on the spread of disease. 

This knowledge gap may exist for many reasons, with a number of limitations on our 

ability to capture contacts between humans and animals. This includes contact between 

humans and livestock, pets and wildlife, that could present a potential risk for both 
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zoonotic and reverse-zoonotic transmission of S. aureus (Gonçalves et al. 2017); 

including the potential transmission of antimicrobial resistance (Cuny et al. 2015).  

For this reason, Chapter 7 further explores the genetic relatedness between the 59 bovine 

derived S. aureus isolates with both national and international S. aureus isolates 

previously collected from human, pets and livestock. Results from this analysis show the 

majority of New Zealand bovine isolates within the same genetic cluster, supporting 

previous evidence for the limited transmission of S. aureus between humans and cattle 

(Burgess and French, 2017). However, the genetic relatedness between the New Zealand 

bovine isolates and a single bovine isolate originating from Australia does suggests a 

potential transmission event between the two countries, although with only a limited 

amount of data, no inferences can be made as to the directionality, timing, or mechanism 

of spread. Nevertheless, this result does highlight the importance of maintaining good 

animal movement records for not only in the event of an outbreak but also to study 

historic transmission events that may be responsible for the long-term maintenance of a 

disease within a population.   

However, despite this importance, many databases aimed at recording movement data 

are known to only capture a proportion of all the animal movements; making it difficult 

to reliably infer disease dynamics. For example, in New Zealand the recent outbreak of 

Mycoplasma bovis brought to attention limitations within the National Animal 

Identification and Tracing (NAIT) system that was used in the outbreak response 

including non-compliancy among producers, mismatches between information recorded 

in different systems i.e., NAIT versus LIC MINDA data, and incorrect or missing records 

(i.e., recorded culls for animals still alive and being traded); making it difficult to rely 

solely on NAIT data to have captured all movements relevant for transmission, and 

therefore increasing the time and resources needed to trace all possible contacts 

(Browning et al. 2019). 
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8.4. Future opportunities 

Many of the findings presented in this thesis have highlighted the potential of using both 

network data and pathogen whole genome sequence data to investigate pathogen 

transmission and evolutionary dynamics; adding not only to areas of knowledge within 

epidemiology, phylogenetics and public health, but also highlighting opportunities for 

future research within these fields. Across Chapters 3 to 6 the structure and vulnerability 

of New Zealand’s poultry industry to disease incursion was demonstrated; with results 

from an industry survey conducted in 2016 highlighting the varying level of biosecurity 

among poultry producers. Without further research, it is hard to understand what drives 

a producer to adopt one biosecurity measure over another, although thematic analysis on 

the qualitative free-text survey responses show that producers would like to see more 

evidence-based research into the effectiveness of different biosecurity measures. This 

suggests that some producers may currently have doubts that prevent them from utilising 

a full range of biosecurity practices. The generally low level of biosecurity across the 

industry will also become of greater concern as more producers transition to free-range 

housing systems in order to meet the animal welfare legislations by 2022 (MPI, 2017), 

making it more difficult to maintain adequate biosecurity due to a greater risk of disease 

incursions particularly for diseases such as avian influenza that can be easily spread from 

wild birds (Burns et al. 2013).  Given these concerns, a new two-year project in 

collaboration between Massey University’s EpiCentre, the Poultry Industry Association 

of New Zealand (PIANZ), and the Egg Producers Federation (EPF) aims to use semi-

structured interviews of both commercial and backyard poultry producers to co-design a 

national poultry data system. The aim of this database would be to not only capture 

important data on farm demographics, contact patterns and biosecurity practices that 

could be used in response to an outbreak, but also to support producers in maintaining 

good biosecurity practices and increase future engagement between producers and 

researchers by introducing feedback loops that clearly demonstrate the value of producer 

responses; with aims of encouraging their future participation in research.  
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In addition to these targets, a key aim of the project is to not only foster communication 

between researchers, industry, and commercial producers but also backyard poultry 

traders. In Chapter 4, the use of data from the auction website TradeMe®, showed a highly 

active backyard poultry industry in New Zealand with more than 13,000 traders and 

16,000 trades occurring each year through TradeMe® alone. These trades present a 

significant risk for both the spread of endemic diseases as well as the introduction of 

exotic diseases, due to the spatial overlap of many wild bird populations and backyard 

poultry producers. Furthermore, backyard poultry producers are notoriously more 

difficult to engage with since there is no national industry representative body and no 

legislative requirement for owners to register their poultry unless they keep more than 20 

birds on site; making it difficult to fully capture movements within the backyard poultry 

network and characterise the risk they present (Burns et al. 2013). For these reasons, it is 

clear that further engagement with backyard poultry producers is needed across different 

platforms, such as TradeMe®, in order to support disease control and surveillance 

activities including disease simulation modelling, contract tracing and, resource 

allocation.  

 

Alongside additional network data, the continued use of WGS data for endemic 

pathogens such as Campylobacter would be of great value, as demonstrated in Chapter 5 

which integrated both pathogen sequence data and network data into a distance-based 

linear model to investigate the role of different transmission pathways on the spread of a 

recently emerged C. jejuni lineage. After controlling for parent company, a significant 

association was found between the pairwise genetic distance between isolates and both 

the road distance and the network distance of transporting feed vehicles. These findings 

provide insight into potential pathways where control measures may currently be non-

existent or insufficient in mitigating transmission. For example, the association with road 

distance may be capturing the movement of personnel that present a risk for between 

farm transmission. However, before any further inferences can be made it would be 
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essential to increase the number of sequenced isolates, improving phylogenetic 

reconstruction, and encourage greater compliance from producers in order to eliminate 

the need to infer or impute network features. Only with more data can any insight into 

the spatial and temporal transmission patterns be extended to make any inference on 

who-infected-whom (Astill et al. 2018); further highlighting the importance of 

continuing surveillance in not only commercial poultry, but also a need to introduce 

surveillance in backyard poultry and wild bird populations, particularly those that are 

either considered high-risk such as water birds or those captured in commercial 

production areas.  

 

The need for further surveillance and the continued development of databases that can 

capture host contact patterns is also highlighted in Chapter 7 in which multiple 

phylogenetic analyses across different geographical scales were used to investigate the 

transmission dynamics of S. aureus. Results showed very little genetic diversity between 

locally sourced bovine-derived isolates however, without a reliable contact network it was 

difficult to infer transmission dynamics. A greater number of sequenced isolates targeting 

those farms known to be connected in the network would help to identify the 

contribution of live animal movements to the spread of S. aureus. Further phenotypic 

sensitivity tests such as zone diffusion or minimum inhibitory concentrations (MIC) 

could also be performed to help determine the relationship between the isolates, as well 

as provide sensitivity data for the different antimicrobials; an important step in 

determining the resistance patterns in a population that may be used to guide local 

treatment and ensure the stewardship of antimicrobials. Sensitivity data could also be 

used to make a comparison among the global isolates as both in order to help determine 

where isolates originate from (Nishi et al. 2016), and support evidence for the 

transportation of S. aureus between geographical locations as suggested by the number of 

human isolates sampled from different countries that cluster in the phylogeny. MIC 

values have also been used to compare resistance profiles at geographical locations and 
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antimicrobial usage patterns (de Oliveira et al. 2000), although these studies often involve 

extensive sampling with many aiming to limit isolates from the same herd to improve the 

comparison between different countries (Aarestrup et al. 2012; Stefani et al. 2012) 

alongside collecting additional data in order to identify individual management practices 

that can influence antimicrobial resistance levels (Østerås et al. 1999; de Oliveira et al. 

2000). This study design increases both the cost and time needed to collect samples which 

may be hard to justify in New Zealand where there is very little evidence of MRSA 

(Petrovski et al. 2011; Williamson et al. 2013) and the presence of other resistance genes 

remains low. Nevertheless, the increasing global prevalence of LA-MRSA 

(Mehndiratta and Bhalla, 2014; Cuny et al. 2015; Mohammed and Nigatu, 2015) as well 

as evidence of resistance in gut bacteria (Toombs-Ruane et al. 2017) highlights the 

importance of antimicrobial stewardship, limiting the exposure of S. aureus infected 

animals to antimicrobial drugs, and the widespread adoption of mastitis control 

programs to prevent infections.  

8.5. Data limitations 

Despite the differences between the two pathogens examined in this thesis, there are many 

commonalities in the limitations of the datasets that should be considered or addressed 

in future studies. For example, both the poultry and cattle contact networks were 

incomplete although for different reasons. For the poultry network, the low response rate 

to the industry survey contributed substantially to missing links in the network although 

most of the nodes (i.e., producers) were correctly identified through the PIANZ database. 

On the other hand, for the dairy cattle network, it is a challenge being able to identify all 

the dairy farms in New Zealand and there is known underreporting of certain types of 

cattle movements resulting a contact network that may be incomplete or non-

representative. Both networks were also impacted by the lack of knowledge about the 

range of alternative transmission pathways for the disease such as the the contribution of 

different wildlife reservoirs (i.e., wild birds versus rodents versus insects) for 
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Campylobacter that make it difficult not only to fully characterise the network but also 

use a modelling approach to study disease transmission dynamics. Even in cases where 

risk pathways are well characterised, additional information may be needed to include 

them in transmission models. For example, it is well recognised that catchers entering 

poultry sheds are associated with the introduction of Campylobacter in a flock, however, 

more information is needed on the catching protocol on each farm to model this risk 

further such as if the farm uses a catching company and when are the first cuts taken from 

each shed. Similar information regarding the movements of personnel on dairy farms 

would also be highly valuable to inform disease models particularly if employees have 

direct contact with animals and frequently move between farms if they are working for 

different businesses on casual employment contracts. 

 

In addition to the limitations in constructing the contact networks, there were also issues 

arising with the phylogenetic analysis due to the restricted number and spatial 

distribution of the pathogen isolate samples. For many studies, this is often the case due 

to time and cost restraints, and although comparisons can be made with samples from 

across multiple studies, such as with S. aureus, it is often difficult to determine the 

epidemiological linkages across the different study samples. Therefore even in the 

presence of a phylogeny, it is important to ask if the isolates are relevant for disease 

transmission. For some diseases this may be more difficult if the transmission pathways 

are not well described, however in most cases, this limitation can be overcome by 

strategically sampling farms with known temporal movement connections to see if the 

isolates are more closely related in comparison to farms with no known movement 

connections. For instance, in this thesis S. aureus was selected as a pathogen example as 

its transmission dynamics have been well described with most transmission events 

occurring in the milking shed and between farm transmission predominantly occurring 

through the movement of adult lactating dairy cattle (Álvarez et al. 2011), which is 

generally well captured in MINDA. This means that the contact network relevant to S. 
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aureus transmission should be relatively complete, however, the main limitation with the 

phylogenetic data in this case was that few of the sampled herds had any direct movement 

connections with each other. This emphasises the importance of study design and 

sampling strategy when trying to integrate contact networks and pathogen phylogenies. 

 

8.6 Developing methodologies 

However, even after giving consideration for the study design many studies focusing on 

livestock diseases still lack a “true” dataset since most of the time there is always missing 

information on infected individuals, their contacts, and who they infected. Without a 

“true” dataset, it is difficult to validate new methods and test their assumptions, although 

in more recent years, the emergence of novel diseases such as COVID-19 (Andersen et al. 

2020) has given rise to an influx of contact data. These improvements in contact tracing 

alongside the growing use of online repositories that contain information on genomic 

variants, present new opportunities to validate current methods. However, with such data 

becoming increasingly accessible, the importance of maintaining transparency and 

reproducibility in research grows too (Catalá-López et al. 2016; Prager et al. 2019). For 

example, many of the findings presented in this thesis have highlighted the potential of 

using both network data and pathogen whole genome sequence data to investigate the 

transmission and evolutionary dynamics of two specific pathogens and the methods 

could easily be extended to other pathogens. However, before this is done, it is important 

that researchers consider the limitation in their own data, and if the assumptions made in 

each method are appropriate for the study design. For example, the phybreak model, used 

in Chapter 6, assumes the Jukes-Cantor nucleotide substitution model under which only 

a single mutation rate is inferred (Klinkenberg et al. 2017). Therefore, it is important that 

if this method is used, there is an understanding of the differences between different 

substitution models, which is most relevant to the pathogen being studied, and how this 

assumption may limit the results. 
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8.7. Concluding comments 

In the world of big data there is ever increasing opportunities to apply multidisciplinary 

techniques across a range of data sources. A good example can be seen in the number of 

methodologies recently developed integrating both pathogen sequence data and network 

analysis; representing powerful new tools in the fight against infectious disease. However, 

many of these approaches have yet to be validated, and with many relying on a number 

of simplifying assumptions it is clear that further discussion is needed to ensure the 

development of not only robust methods but also reliable databases that are often of 

interest across multiple research disciplines.  
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A P P E N D I X A

Supplementary Material 

Poultry Industry Survey Questionnaire 2016 



CONTACT STRUCTURES 
IN THE NEW ZEALAND 
COMMERCIAL POULTRY 
INDUSTRY 

Dear Producer, 

We are conducting a survey to describe the extent and nature of contacts between 
commercial farms in the New Zealand poultry industry.  Specifically, we are interested in 
contacts made through the sale of feed, transportation of live poultry and poultry products, 
regular visits made by industry personnel, and the movement of waste products such as 
manure, litter and dead birds. 

Why are we conducting this survey? 
Contacts are an important means by which diseases can spread from farm to farm.  There 
have been many changes in the poultry industry since the last contact survey was 
conducted in 2006.  We want to know how these changes have impacted your risk of 
getting disease from other farms and how we can better help to protect your livelihoods. 

How will we use the survey information? 
 We will use this data to reconstruct the industry contact network and develop simulation 
models to predict how diseases like Avian Influenza and Campylobacter may spread. 

Confidentiality 
All information will be treated as strictly confidential and no information will be used in 
any way that could reasonably be expected to identify individual persons, practices or 
organisations. 

The study results will only be useful if all producers take part.  We greatly appreciate your 
valuable time in completing the survey questions. 
Sincerely, 

Dr. Carolyn Gates  
Massey University 

Thank You!

This research study is being conducted by the EpiCentre at Massey University and is fully endorsed by the 
Poultry Industry Association of New Zealand (PIANZ) and the Egg Producers Federation of New Zealand (EPF) 

with support from the Ministry for Primary Industries. 



P a g e  | 2 

INSTRUCTIONS
Please read carefully before beginning the survey 
In this questionnaire, we would like you to think about individuals and companies that have 
visited your farm (e.g. to supply or remove birds, goods or products) throughout the past 
year.  We use the term farm to refer to facilities where birds or eggs are kept under a 
common system of management.  In most situations, a farm will be a single physical 
location.  Sometimes a farm may be made up of several distinct physical locations in close 
proximity, which we call sites (see Section 1.3). 

For each farm, you will be asked to fill out information on: 

Farm Demographics 
1. Enterprise and farm details
2. Farm capacity and management

Routine Contacts 
3. Transport companies
4. Feed companies
5. Live birds and hatching eggs
6. Table eggs and poultry products
7. Regular movements of personnel
8. Manure, litter, and dead birds

Other Information 
9. Biosecurity risks
10. Additional feedback

We will need to link data from all survey respondents to create the final industry contact 
network so it is important that you provide us with as much accurate detail as possible 
about the identity of individuals and companies that have visited your farm.  Once the study 
has been completed, you will be provided with a risk map similar to the figure above 
showing the number of direct (yellow) and indirect (blue) connections to your farm.  The 
identity of the indirect connections will be hidden in the figure to preserve confidentiality. 

Returning the questionnaire 
Please return the questionnaire using the prepaid addressed envelope provided. 

Questions 
If you have any questions or concerns about completing the questionnaire or participating 
in the study, please contact: 

 Carolyn Gates 
 Massey University 
 Institute of Veterinary, Animal and Biomedical Science (IVABS) 
 Private Bag 11-222 Palmerston North 4442 
 Tel: (06) 951 8140 
 Email: c.gates@massey.ac.nz 

mailto:c.gates@massey.ac.nz
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1. ENTERPRISE AND FARM DETAILS

1.1. Details of the person filling in this questionnaire 

Name 
Position 

1.2. Farm contact details 

Name 
Street or PO Box number 
Town 
Phone (business) 
Phone (home) 
Phone (mobile) 
Facsimile 
Email 
Parent company (if applicable) a 
a   A parent company refers to the organisation that owns birds that are raised on one or more farms. 
Tegel Foods Limited, for example, would be referred to as a parent company. 

1.3. Farm 
location 
details 

Address (town or city only) Agribaseb 

(if present)

Farms Online ID c 

(if present)

Main site (1) 
Other site (2) 
Other site (3) 
Other site (4) 
Other site (5) 
b,c

 We will only use this information to determine the spatial location of your farm so that we can 

report how many other commercial farms are in close proximity. 

1.4. What type(s) of commercial poultry operation do you run on the farm? 
If more than one type of commercial poultry operation is present, please indicate 
approximately what % each contributes to your total farm production. 

Present? 
(check all that 

apply) 

% of total 
farm 

production 

Commercial - Breeder 
Commercial - Layer hens 
Commercial - Pullets 
Commercial - Broilers 
Commercial - Turkeys 
Commercial - Hatchery 
Commercial - Ducks 

Other (e.g. emu, ostrich, aviary birds)– please 
specify types and numbers of such birds. 

□ 

□ 

□ 

□ 

□ 

□ 

□ 

Total 100% 
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2. FARM CAPACITY AND MANAGEMENT

2.1. Over the past year, on average, how many live birds (or fertile eggs for hatcheries) 
were typically housed on the farm at any given time? 
Please also indicate (a) the total number of sheds in which these birds were housed, (b) the 
average number of birds per shed, and (c) the total combined housing capacity of all sheds 
present on the farm. 

Species 

Approximate 
number of live 

birds (or 
fertile eggs) 

(a) 
Total 

number 
of sheds 

(b) 
Average 

shed 
capacity 

(c) 
Total 
farm 

capacity 

Layers 
Pullets 
Hatchery only (give fertile egg numbers) 
Broilers (when birds present) 

Turkeys 
Ducks 

2.2. How would you describe the typical flow of live birds (or fertile eggs for hatcheries) 
on and off farm? 
Please indicate (a) if the management for the poultry species is all-in-all-out OR if multiple 
age classes are present at the same time, (b) the average length of the production cycle (#) 
specifying the time units in days, weeks, or months (i.e. 42 days), and (c) the average time 
that sheds are left empty before new birds (or fertile eggs) are introduced (#) specifying the 
time units in days, weeks, or months (i.e. 1 week). 

Species 

(a) Flow of birds
(choose one)

(b) Length of
production

cycle 

(c) Downtime
between cycles

All-
in-all-

out 

Multiple 
age 

classes # 
Time 
units # 

Time 
units 

Layers □ □ 

Pullets □ □ 

Hatchery only (give fertile egg numbers) □ □ 

Broilers □ □ 

Turkeys □ □ 

Ducks □ □ 

2.3. Which of the following best describes your (a) current housing type and (b) intended 
housing type to comply with regulatory changes by 2022. 

(a) Current (b) Future

Free range housing □ □ 

Colony housing □ □ 

Barn housing □ □ 

I do not intend to produce after 2022 □
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9. BIOSECURITY RISKS

9.1. Please answer the following questions about the workers on your farm. 

How many full-time workers are present? 

How many part-time workers are present? 

Workers are assigned to (select one): □ Whole farm □ Specific sheds

9.2. Which of the following biosecurity measures are implemented on your property? 
Please indicate how frequently they are implemented. 

Never Rarely Sometimes Often Always 

Vehicle disinfection before entering farm □ □ □ □ □ 

Dedicated clean coveralls for each shed □ □ □ □ □ 

Dedicated boots or boot covers worn for 
      each shed 

□ □ □ □ □ 

Footbaths at shed entrances □ □ □ □ □ 

Monitored rat and mouse bait stations □ □ □ □ □ 

Bird-proofed housing □ □ □ □ □ 

Bird-proofed feed storage □ □ □ □ □ 

9.3. Which of the following equipment is shared with other farms? 
Choose all that apply.  For part (b), please indicate whether the shared equipment is 
cleaned and disinfected between farms. 

(a) 
Equipment 

(b) Is the equipment
cleaned and

disinfected between 
farms? 

Vehicles and trailers □ □ No □ Yes

Gates and panels □ □ No □ Yes

Lawn mowers □ □ No □ Yes

Pressure sprayers / washers □ □ No □ Yes

Skid steer loaders (tractors with buckets for 
      cleaning out sheds) 

□ □ No □ Yes

Other equipment □ □ No □ Yes

9.4. Please answer the following questions about the water supply on your farm. 
Select ONE option for each question 

What is the main source of 
drinking water for poultry on 
your farm? 

□ Town supply
□ River
□ Bore
□ Other, please specify:

How is the drinking water 
treated?  

□ No treatment
□ Chlorine dioxide
□ Ultraviolet
□ Other, please specify:
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9.5. Please answer the following questions about litter management on your farm. 

What type of litter do you use? 

Is a litter shed present? □ No □ Yes

How often are the sheds cleaned out? □ Partially after each run □ Fully after each run

What disinfectant do you use? 

How moist is the litter? □ Too dry □ About right □ Too wet

Do you use litter treatment? □ No □ Yes, please specify:

9.6. Do you see wild birds or waterfowl (a) in the same area as poultry (e.g. within sheds or 
within ranges on free-range operations) or (b) on any ponds or waterways present on the 
farm? If you do have ponds or waterways on the farm, (c) what is the approximate 
distance of the ponds or waterways from the poultry sheds? 

(a) In the same
area as poultry?

(b) On ponds or
waterways on the 

farm? 

(c) Approximate
distance of pond

or waterway from
sheds (metres) 

Wild birds □ No     □ Yes □ No     □ Yes    □ NA*

Waterfowl □ No     □ Yes □ No     □ Yes    □ NA*

* I do not have any ponds or waterways present on the farm.

If you answered yes to question (a) and/or (b), please indicate which of the following wild 
bird or waterfowl species are observed: 

(a) (b) 

Sparrow □ □ 

Starling □ □ 

Sea gull □ □ 

Duck □ □ 

Others (please specify): □ □ 

9.7. Please answer the following questions about contact with backyard (non-commercial) 
poultry operations. 

No Yes NA 

Do point-of-lay birds get sold directly to backyard flocks from your farm? □ □ * □ 

Do end-of-lay birds get sold directly to backyard flocks from your farm? □ □ * □ 

How many independently-owned backyard flocks are adjacent to your 
farm (i.e share a farm boundary)? 

* If you answered yes to either of these questions, would you mind telling us how these
birds are advertised for sale?
___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________ 
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10. ADDITIONAL FEEDBACK

10.1. How concerned are you about the following poultry health issues on your farm? 

Not at all 
concerned 

Slightly 
concerned 

Somewhat 
concerned 

Moderately 
concerned 

Extremely 
concerned 

Campylobacter □ □ □ □ □ 

Salmonella □ □ □ □ □ 

Avian influenza □ □ □ □ □ 

Coccidiosis □ □ □ □ □ 

Antibiotic resistance □ □ □ □ □ 

Welfare □ □ □ □ □ 

Comments: 
___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________ 

10.2. What would you describe as the biggest concern facing your farm? 

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________ 

___________________________________________________________________________ 

10.3. What areas of future research would have the most benefit to your farm? 

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________ 

___________________________________________________________________________ 

10.4. Would you be willing to participate in follow-up surveys? 

Yes □ 

No □ 

Thank You! 
We greatly appreciate your time in filling out this survey. 
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B.1. Network reconstruction

In order to calculate a degree centrality score for each of the study farms, several network graphs were 

constructed from the reported on- and off-farm movement of goods and services. To begin with, 

bimodal networks were built with nodes representing either a study farm, a transporting company or 

a group of personnel. Transporting companies were identified from the survey responses with 

companies responsible for the on- and off-farm movement of either (i) feed, (ii) waste and litter, (iii) 

live birds and hatching eggs or (iv) any other poultry product. Before constructing the network graphs, 

the company names were cross-checked for variation and spelling errors to ensure that the same 

company was not listed multiple times. Where company descriptions were unclear, clarification was 

sought from PIANZ and/or MPI staff.   If single companies had enterprises in multiple locations, each 

separate location was assigned a unique identification number by name and address so it would appear 

as a unique node in the network analysis. For the reported movement of personnel, neither individuals, 

or the companies they work for, could be identified from the survey responses, however, personnel 

had been categorised within one of five groups; (i) an employee, (ii) a contractor, (iii) an individual in 

contact with commercial poultry, (iv) an individual in contact with non-commercial poultry or (v) a 

veterinarian, advisor or industry representative. These categorises were used to create additional 

network nodes by subdividing personnel within each category by the district they originate from, as 

reported in the survey. For example, all veterinarians, advisors or industry representatives from the 

Manawatu region would form one group which could then be used as a node in the network in addition 

to transporting companies and study farms.  

Network graphs could then be constructed by forming an undirected edge between each study farm 

and every transporting company or personnel group that they had reported in the survey. Each edge 

had information attached regarding the movement frequency; that is the number of days in between 

two consecutive movements, and the quantity of product moved. All the numeric variables describing 

the frequency and quantity of items transferred between the study farms were checked for conflicts in 

the unit of measure and standardised as needed. All together six bimodal networks were constructed 

such that each network graph showed just the movements relating to either  (i) feed, (ii) waste and 
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litter, (iii) live birds and hatching eggs, (iv) all other poultry products, (v) personnel or (vi) all the 

reported movements combined.  

Using each of the bimodal networks, six additional unimodal network graphs were also constructed 

with nodes representing only the study farms. Unimodal network graphs were built by forming an 

undirected edge between each of the study farms in the network that shared a link to a common 

transporting company or personnel group (Figure B3). Both the bimodal and unimodal network 

graphs were plotted using a force-based algorithm proposed by Fruchterman and Reingold (1991) to 

help visualise the network structure (Figure B4). In each graph, any study farm that did not report a 

movement within one of the networks or reported internal movements (e.g., spreading litter on-site) 

can still be seen as isolated nodes without edges. Basic network statistics were calculated to describe 

each network graph in terms of their overall size, the frequency of movements and the quantity of 

products moved. In addition, the degree centrality and betweenness were also calculated for each of 

the study farms using the unimodal network graphs to identify individuals with the greatest number 

of on- and off-farm movements (degree) and individuals most frequently found on the shortest path 

between two other farms in the network (betweenness) (Table B9). The calculated degree measure 

from the combined unimodal network graph, showing all on- and off-farm movements, was used as 

the risk criterion in the main study analysis (Table B10). Lastly, degree distributions were plotted to 

distinguish any major network structures in comparison to other real-world networks (Figure B1).  
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Table B1. Frequency of implementing seven common biosecurity measures amongst 120 producers 

in the New Zealand commercial poultry industry including 33 layer enterprises (including mixed 

pullet and layer operations), 57 broiler enterprises, 24 breeder enterprises and 6 other poultry 

enterprises (including duck, turkey and pullet operations). 

Number of farms (%) 
Layers 

(n = 33) 
Broilers 
(n = 57) 

Breeders 
(n = 24) 

Other poultry 
(n = 6) 

Vehicle 
disinfection 

Never 30 (90.9) 20 (35.1) 4 (16.7) 2 (33.3) 
Rarely 1 (3.0) 5 (8.8) 8 (33.3) 1 (16.7) 
Sometimes 2 (6.1) 10 (17.5) 1 (4.2) 0 (0.0) 
Often 0 (0.0) 8 (14.0) 0 (0.0) 1 (16.7) 
Always 0 (0.0) 14 (24.6) 11 (45.8) 2 (33.3) 

Clean coveralls Never 20 (60.6) 18 (31.6) 1 (4.2) 6 (100) 
Rarely 2 (6.1) 3 (5.3) 0 (0.0) 0 (0.0) 
Sometimes 4 (12.1) 15 (26.3) 1 (4.2) 0 (0.0) 
Often 3 (9.1) 4 (7.0) 0 (0.0) 0 (0.0) 
Always 4 (12.1) 17 (29.8) 22 (91.7) 0 (0.0) 

Boot covers Never 18 (54.5) 1 (1.8) 1 (4.2) 1 (16.7) 
Rarely 1 (3.0) 0 (0.0) 0 (0.0) 0 (0.0) 
Sometimes 3 (9.1) 2 (3.5) 0 (0.0) 0 (0.0) 
Often 2 (6.1) 0 (0.0) 0 (0.0) 3 (50.0) 
Always 9 (27.3) 54 (94.7) 23 (95.8) 2 (33.3) 

Footbaths 
Never 21 (63.6) 10 (17.5) 0 (0.0) 0 (0.0) 
Rarely 0 (0.0) 2 (3.5) 11 (45.8) 0 (0.0) 
Sometimes 2 (6.1) 4 (7.0) 0 (0.0) 0 (0.0) 
Often 2 (6.1) 2 (3.5) 0 (0.0) 0 (0.0) 
Always 8 (24.2) 39 (68.4) 13 (54.2) 6 (100) 

Rodent bait 
stations 

Never 1 (3.0) 0 (0.0) 0 (0.0) 0.(0.0) 
Rarely 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
Sometimes 1 (3.0) 0 (0.0) 0 (0.0) 0 (0.0) 
Often 1 (3.0) 2 (3.5) 0 (0.0) 0 (0.0) 
Always 30 (90.9) 55 (96.5) 24 (100) 6 (100) 

Table B1 continues next page 
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  Table B1 continued 

Bird-proofed 
housing 

Never 7 (21.2) 1 (1.8) 0 (0.0) 0.(0.0) 
Rarely 3 (9.1) 0 (0.0) 0 (0.0) 0 (0.0) 
Sometimes 1 (3.0) 4 (7.0) 0 (0.0) 0 (0.0) 
Often 2 (6.1) 0 (0.0) 0 (0.0) 0 (0.0) 
Always 20 (60.6) 52 (91.2) 24 (100) 6 (100) 

Bird-proofed feed 
store 

Never 3 (9.1) 0 (0.0) 1 (4.2) 0.(0.0) 
Rarely 0 (0.0) 0.(0.0) 0.(0.0) 0 (0.0) 
Sometimes 2 (6.1) 0.(0.0) 0.(0.0) 0 (0.0) 
Often 1 (3.0) 1 (1.8) 0.(0.0) 0 (0.0) 
Always 27 (81.8) 56 (98.2) 23 (95.8) 6 (100) 
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Table B2. Results from multiple Dunn’s tests comparing the estimated biosecurity score between 

poultry production types following a significant Kruskal-Wallis test (χ2= 43.99, df = 3, p<0.0001). 

Significance values are based on the adjusted p-value, adjusted for multiple testing using the 

Bonferroni correction.   

z-score Adjusted p-value 
Breeder – Broiler     1.43 0.4572 

Breeder – Layer ***  5.78 <0.0001 

Broiler – Layer ***  5.49 <0.0001 

Breeder – Other *  2.89 0.0114 

Broiler – Other      2.21 0.0821 

Layer – Other  -0.99 0.9700 
Level of significance *** p<0.001, ** p<0.001, * p<0.1  
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Table B3. Results from multiple Dunn’s tests comparing the estimated disease contact risk score 

between poultry production types following a significant Kruskal-Wallis test (χ2 = 25.48, df = 3, 

p<0.0001). Significance values based on the adjusted p-value, adjusted for multiple testing using the 

Bonferroni correction. 

z-score Adjusted p-value 
Breeder - Broiler *  -3.33 0.0026 

Breeder - Layer *** -4.72 <0.0001 

Broiler - Layer    -2.12 0.1008 

Breeder - Other *  -3.46 0.0018 

Broiler - Other    -1.56 0.3572 

Layer - Other  -0.29 1.00 
Level of significance *** p<0.001, ** p<0.001, * p<0.1 
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Table B4. The breakdown of 120 producers in the New Zealand commercial poultry industry, 

including 33layer enterprises (including mixed pullet and layer operations), 57 broiler enterprises, 24 

breeder enterprises and 6 other poultry enterprises (including duck, turkey and pullet operations), and 

the number of neighbouring commercial poultry farms within a 5km radius of their production 

premises. 

Number of 
neighbouring 
farms 

Number of farms (% within the sector) 
Layers 

(n = 33) 
Broilers 
(n = 57) 

Breeders 
(n = 24) 

Other poultry 
(n = 6) 

1 18 (54.5) 6 (10.5) 2 (8.3) 3 (50.0) 

2 6 (18.2) 6 (10.5) 8 (33.3) 1 (16.7) 

3 4 (12.1) 6 (10.5) 0 (0.0) 0 (0.0) 

4 1 (3.3) 7 (12.3) 3 (12.5) 0 (0.0) 

5 0 (0.0) 5 (8.8) 2 (8.3) 0 (0.0) 

6 1 (3.3) 3 (5.3) 3 (12.5) 0 (0.0) 

7 0 (0.0) 2 (3.5) 5 (20.8) 2 (33.3) 

≥ 8 3 (9.9) 22 (38.6) 1 (4.2) 0 (0.0) 
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Table B5. Water source and treatment on 120 producers in the New Zealand commercial poultry 

industry, including 33 layer operations (including mixed pullet and layer enterprises), 57 broiler 

enterprises, 24 breeder enterprises and 6 other poultry enterprises (including duck, turkey and pullet 

operations). 

Number of farms (% within the sector) 
Layers 

(n = 33) 
Broilers 
(n = 57) 

Breeders 
(n = 24) 

Other poultry 
(n = 6) 

Water source Town supply 6 (18.2) 10 (17.5) 18 (75.0) 3 (50.0) 
River/ stream/ spring 3 (9.1) 4 (7.0) 0 (0.0) 0 (0.0) 
Bore 16 (48.5) 43 (75.4) 6 (25.0) 3 (50.0) 
Rain/ roof water 8 (24.2) 0 (0.0) 0 (0.0) 0 (0.0) 

Treatment No treatment 16 (48.5) 3 (5.3) 4 (16.7) 5 (83.3) 
Chlorine Dioxide 7 (21.2) 52 (91.2) 9 (37.5) 0 (0.0) 
Ultraviolet 8 (24.2) 0 (0.0) 0 (0.0) 0 (0.0) 
Sodium Hypochlorite 0 (0.0) 2 (3.5) 11 (45.8) 0 (0.0) 
Filtration  2 (6.1) 0 (0.0) 0 (0.0) 0 (0.0) 
Citric acid mix  0 (0.0) 0 (0.0) 0 (0.0) 1 (16.7) 
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Table B6. Litter management on 120 producers in the New Zealand commercial poultry industry, 

including 33 layer operations (including mixed pullet and layer enterprises), 57 broiler enterprises, 24 

breeder enterprises and 6 other poultry enterprises (including duck, turkey and pullet operations). 

Number of farms (% within the sector) 
Layers 

(n = 33) 
Broilers 
(n = 57) 

Breeders 
(n = 24) 

Other poultry 
(n = 6) 

Litter type No litter 15 (45.5) 6 (10.5) 2 (8.3) 2 (33.3) 
Sawdust 5 (15.2) 0 (0.0) 0 (0.0) 0 (0.0) 
Wood shavings 10 (30.3) 51 (89.5) 0 (0.0) 0 (0.0) 
Other 3 (9.09) 0 (0.0) 22 (91.7) 4 (66.7) 

Litter shed Present 10 (30.3) 4 (7.0) 2 (8.3) 4 (66.7) 
Absent 23 (69.7) 53 (93.0) 22 (91.7) 2 (33.3) 

Regularity of 
cleaning sheds 

Partially 3 (9.09) 0 (0.0) 0 (0.0) 2 (33.3) 
Fully 23 (69.7) 57 (100) 23 (95.8) 4 (66.7) 
N/A 7 (21.2) 0 (0.0) 1 (4.2) 0 (0.0) 

Disinfectant used None 14 (42.4) 19 (33.3) 3 (12.5) 3 (50.0) 
Techsan 0 (0.0) 4 (7.0) 3 (12.5) 1 (16.7) 
Glutasan 0 (0.0) 4 (7.0) 11 (45.8) 0 (0.0) 
Environsan 2 (6.06) 5 (8.8) 0 (0.0) 0 (0.0) 
Virkon 9 (27.3) 8 (14.0) 0 (0.0) 1 (16.7) 
Other 8 (24.2) 17 (29.8) 7 (29.2) 1 (16.7) 

Litter moisture Too dry 2 (6.06) 1 (1.8) 0 (0.0) 0 (0.0) 
About right 24 (72.7) 56 (98.2) 23 (95.8) 6 (100) 
Too wet 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
N/A 7 (21.2) 0 (0.0) 1 (4.2) 0 (0.0) 

Litter treatment  No 24 (72.7) 57 (100) 23 (95.8) 6 (100) 
Yes 2 (6.06) 0 (0.0) 0 (0.0) 0 (0.0) 
N/A 7 (21.2) 0 (0.0) 1 (4.2) 0 (0.0) 
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Table B7. Reported sightings of wild birds, including six common species and waterfowl, on 120 

producers in the New Zealand commercial poultry industry, including 33 layer enterprises (including 

mixed pullet and layer enterprises), 57 broiler enterprises, 24 breeder enterprises and 6 other poultry 

enterprises (including duck, turkey and pullet operations). 

Number of farms (% within the sector) 
Layers 

(n = 33) 
Broilers 
(n = 57) 

Breeders 
(n = 24) 

Other poultry 
(n = 6) 

In the same area as 
poultry (%) 

Wild birds 21 (63.6) 20 (35.1) 1 (4.2) 3 (50.0) 
Waterfowl 3 (9.1) 5 (8.8) 1 (4.2) 0 (0.0) 
Sparrows 21 (63.6) 24 (42.1) 0 (0.0) 3 (50.0) 
Starlings 15 (45.5) 14 (24.6) 0 (0.0) 3 (50.0) 
Sea gulls 4 (12.1) 5 (8.8) 0 (0.0) 0 (0.0) 
Duck 3 (9.1) 7 (12.3) 1 (4.2) 1 (16.7) 
Other 6 (18.2) 8 (14.0) 8 (33.3) 2 (33.3) 

On ponds or 
waterways on the 
farm (%) 

Wild birds 7 (21.2) 14 (24.6) 1 (4.2) 3 (50.0) 
Waterfowl 7 (21.2) 17 (29.8) 6 (25.0) 3 (50.0) 
Sparrows 2 (6.1) 10 (17.5) 0 (0.0) 1 (16.7) 
Starlings 3 (9.1) 7 (12.3) 0 (0.0) 1 (16.7) 
Sea gulls 3 (9.1) 1 (1.8) 0 (0.0) 0 (0.0) 
Duck 7 (21.2) 15 (26.3) 1 (4.2) 1 (16.7) 
Other 1 (3.0) 5 (8.8) 1 (4.2) 1 (16.7) 
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Table B8. Equipment shared by 120 producers in the New Zealand commercial poultry industry and 

the proportion cleaning them upon return. 

Number of farms 
sharing equipment 

(n = 120) (% cleaned) 

% of farms that 
shared but did not 
clean equipment 

Number of farms not 
sharing equipment 

(n = 120) (%) 
Vehicles 39 (53.8, 21/39) 46.2 (18/39) 81 (67.5) 

Gates 21 (33.3, 7/21) 66.7 (14/21) 99 (82.5) 

Lawn equipment 33 (51.5, 17/33) 48.5 (16/33) 87 (72.5) 

Sprayers 47 (63.8, 30/47) 36.2 (17/47) 73 (60.8) 

Skid steer loaders 53 (67.9, 36/53) 32.1 (17/53) 67 (55.8) 

Other equipment 43 (65.1, 28/43) 34.9 (15/43) 77 (64.1) 
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Table B9. Network statistics for the five contact networks constructed from the on- and off-farm 

movements of (i) feed, (ii) litter and waste, (iii) live birds and hatching eggs, (iv) personnel and, (v) all 

other poultry products across 120 producers in the New Zealand commercial poultry industry. Both 

the frequency (i.e., the number of days between two consecutive contacts on the same farm) and 

quantity (i.e., the amount of goods transferred in each movement with varying units across the contact 

networks) have been given in addition to the network degree (i.e., the total number of movements 

onto and off a farm) and betweenness (i.e., the frequency a farm is in the shortest path between two 

other farms in the network). 

Feed 
Litter and 

waste 
Live birds & 

hatching eggs 
Personnel 

Poultry 
products 

Number of poultry 
premisesa 

115 112 117 92 45 

Number of unique 
companiesb 

23 87 38 49 50 

Total number of 
nodes 

138 199 155 141 95 

Movements onto-
farm  

5305 1246 3512 NAc 30 

Movements off-farm 148 2337 3932 NAc 130 
Total number of 
edges 

5453 3583 7444 4462 160 

Mean frequency
(min-max) 

13 
(1-270) 

68 
(1-450) 

263 
(1-18250) 

20533 
(1-799350) 

9 
(1-100) 

Mean quantity 
(min-max) 

5101 tonnes 
(0.2-300000) 

107 tonnes 
(0.01-4000) 

54847 birds 
(210-413000) 

1 person 
(NA) 

1130 dozen 
(8-7000) 

Mean degreec  
(min-max, median) 

20.3 
(0-42, 28) 

11.7 
(0-37,14) 

20.6 
(0-45, 26) 

13.0 
(0-43, 16) 

1.1 
(0-10, 0) 

Mean betweennessd

(min-max, median) 
64.0 

(0-2070, 0.0) 
63.4 

(0-1056, 1.3) 
59 

(0-551, 2.4) 
46.6 

(0-1186, 0.0) 
0.1 

(0-10, 0.0) 
a Poultry premises with degree>0 
b Companies are those providing goods and services to poultry premises in the network. If single 
companies    had enterprises in multiple locations, each separate location was assigned a unique 
identification number by name and address so it would appear as a unique company in the network 
analysis 
c Movement of personnel considered undirected 

361



Table B10. Basic network statistics for the contact network constructed from the on- and off-farm 

movements of all goods and services across 120 producers in the New Zealand commercial poultry 

industry including 33 layer enterprises (including mixed pullet and layer operations), 57 broiler 

enterprises, 24 breeder enterprises and 6 other poultry enterprises (including duck, turkey and pullet 

operations). Definitions for each measure areas follows; “degree” = the total number of movements 

onto and off a farm, “betweenness” = the frequency a farm is in the shortest path between two other 

farms in the network, “network density” = the proportion of all possible links between farms in the 

network that are actually present, “average path length” = the average shortest path between any pair 

of farms in the network averaged over all pairs of farms, “clustering coefficient” = for any farm in the 

network the clustering coefficient is the proportion of neighbouring farms in direct contact with the 

farms that are also connected to each other, “network diameter” = the longest path between any two 

pair of farms in the network and, “fragmentation” = the proportion of farm pairs for which a path does 

not exist between them. 

Network statistic Network nodes 

Mean degree 
(min-max, median) 

Layers (n = 33) 13.0 (0-41, 9.0) 
Broilers (n = 57) 29.6 (8-57, 29.0) 
Breeders (n =24) 35.5 (22-50, 34.0) 
Other poultry (n = 6) 29.7 (4-37, 34.0) 
All nodes (n = 120) 26.2 (0-57, 29.0) 

Mean betweenness 

(min-max, median) 
Layers (n = 33) 92.0 (0-640, 33.8) 
Broilers (n = 57) 59.7 (0-650, 4.8) 
Breeders (n =24) 52.7 (0-223, 42.7) 
Other poultry (n = 6) 132.9 (0-545, 0.9) 
All nodes (n = 120) 70.9 (0-650, 20.6) 

Network density All nodes (n = 120) 0.220 
Average path length All nodes (n = 120) 2.211 
Clustering coefficient All nodes (n = 120) 0.777 
Network diameter All nodes (n = 120) 6 
Fragmentation All nodes (n = 120) 0.017 
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Figure B1. Degree distribution for the six contact networks constructed from the on- and off-farm 

movements of (a) all good and services, (b) feed, (c) waste and litter, (d) live birds and hatching eggs, 

(e) table eggs and poultry products and, (f) personnel report by 120 producers within the New Zealand 

commercial poultry industry. Graphs include the mean degree (μ) and median degree (x̃) for each

network.
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Figure B2. Scatter plots showing the relationship between the estimated biosecurity score, calculated 

from the reported frequency of implementing seven common biosecurity practices, and the estimated 

disease contact risk score across (a) 57 broiler enterprises, (b) 33 layer enterprises (including mixed 

pullet and layer operations), (c) 24 breeder enterprises and (d) 6 other poultry enterprises (including 

duck, turkey or pullet operations) in the New Zealand commercial poultry industry. The Pearson’s 

correlation coefficient (PCC) and 95% confidence intervals were -0.03 (-0.29, 0.23), -0.02   (-0.11, 

0.33), 0.66 (0.34, 0.84), and -0.01 (-0.82, 0.81) for plots (a), (b), (c) and (d) respectively (p-value <0.01). 
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Figure B3. Bimodal networks (BMN) have vertices (V) belonging to different groups or modes. The 

top graph shows a schematic of the study BMN; V1 (A, B, C, and D) are poultry enterprises and V2 (1, 

2, 3 and 4) are those companies providing goods and services to each operation.  The bottom graph 

shows the unimodal network (UMN) constructed from BMN above by forming an edge between 

vertices belonging to V1 if they share common vertices belonging to V2 i.e. A is connected to D via 

their shared connection to 3. Edge colour in both graphs corresponds to the movement of different 

goods and services in the networks. 
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Table C1. Summary network statistics for the trader networks showing poultry trades occurring 

through the online auction website TradeMe® in New Zealand from 01st January 2012 to 31st December 

2017. For each year four trader networks were constructed showing the transaction of (i) chickens, (ii) 

bantams, (iii) ducks and, (iv) all poultry. Measures include the number of nodes, number of links (i.e., 

edges), network density, diameter, average path length, clustering coefficient, number of giant strongly 

connected components (GSCC) and giant weakly connected components (GWCC), reciprocity and, 

fragmentation. 

Trader network 2012 2013 2014 2015 2016 2017 
Number of 
nodes 

Chickens 
Bantams 
Ducks 
All poultry 

11643 
1977 
1469 

13220 

12405 
1874 
1622 

14049 

11686 
1711 
1688 

13360 

12083 
1537 
1757 

13737 

11848 
1467 
1723 

13461 

11807 
1391 
1697 

13422 
Number of 
links 

Chickens 
Bantams 
Ducks 
All poultry 

15368 
2188 
1396 

18848 

15787 
1940 
1508 

19134 

14785 
1721 
1662 

18064 

15172 
1512 
1675 

18260 

14687 
1465 
1622 

17687 

14313 
1347 
1540 

17109 
Density Chickens 

Bantams 
Ducks 
All poultry 

1.13x10-4 
5.60x10-4 
6.47x10-4 
1.08x10-4 

1.03x10-4 
5.53x10-4 
5.74x10-4 
9.69x10-5 

1.08x10-4 
5.88x10-4 
5.84x10-4 
1.01x10-4 

1.04x10-4 
6.40x10-4 
5.43x10-4 
9.68x10-5 

1.05x10-4

6.81x10-4

5.47x10-4

9.76x10-5 

1.03x10-4

6.97x10-4

5.35x10-4

9.50x10-5

Diameter Chickens 
Bantams 
Ducks 
All poultry 

24 
16 
6 

19 

19 
13 
5 

19 

19 
8 
6 

19 

19 
9 
5 

19 

19 
10 
7 

17 

22 
7 
5 

18 
Average path 
length 

Chickens 
Bantams 
Ducks 
All poultry 

8.85 
4.84 
1.67 
7.10 

7.12 
4.61 
1.39 
6.91 

6.69 
2.87 
1.61 
6.70 

6.63 
2.51 
1.74 
6.49 

7.33 
2.56 
1.52 
7.03 

6.96 
2.27 
1.42 
6.66 

Clustering 
coefficient 

Chickens 
Bantams 
Ducks 
All poultry 

2.71x10-3 
1.37x10-2 
5.96x10-3 
4.15x10-3 

2.94x10-3 
9.57x10-3 
3.41x10-3 
3.79x10-3 

3.35x10-3 
7.03x10-3 
3.68x10-3 
4.04x10-3 

3.78x10-3 
4.29x10-3 
1.56x10-3 
4.21x10-3 

2.28x10-3

4.35x10-3

2.68x10-3

3.12x10-3 

1.08x10-3

5.63x10-3

1.60x10-3

1.39x10-3

Number nodes 
in GSCC 

Chickens 
Bantams 
Ducks 
All poultry 

218 
24 
1 

393 

242 
9 
1 

351 

215 
2 
1 

321 

213 
3 
2 

299 

141 
3 
1 

226 

79 
5 
1 

94 
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Table C1 continued 

Number nodes 
in GWCC 

Chickens 
Bantams 
Ducks 
All poultry 

10647 
1512 
956 

12230 

11114 
1385 
1009 

12801 

10423 
1254 
1109 

12120 

10767 
1044 
1165 

12405 

10458 
1049 
1014 

12116 

10442 
874 

1005 
12031 

Reciprocity Chickens 
Bantams 
Ducks 
All poultry 

2.86x10-3 
1.83x10-3 

0.0 
3.40x10-3 

1.90x10-3 
3.09x10-3 

0.0 
2.72x10-3 

2.71x10-3 
1.16x10-3 

0.0 
3.32x10-3 

2.24x10-3 
1.32x10-3 
1.19x10-3 
2.63x10-3 

8.17x10-4

1.37x10-3

0.0 
1.02x10-3 

8.38x10-4

1.48x10-3

0.0 
1.05x10-3

Fragmentation Chickens 
Bantams 
Ducks  
All poultry 

1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 
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Table C2. Summary network statistics for the spatial networks showing poultry trades occurring 

through the online auction website TradeMe® in New Zealand from 01st January 2012 to 31st December 

2017. For each year four trader networks were constructed showing the transaction of (i) chickens, (ii) 

bantams, (iii) ducks and, (iv) all poultry. Measures include the number of nodes, number of links (i.e., 

edges), network density, diameter, average path length, clustering coefficient, number of giant strongly 

connected components (GSCC) and giant weakly connected components (GWCC), reciprocity and, 

fragmentation. 

Spatial Network 2012 2013 2014 2015 2016 2017 
Number of 
nodes 

Chickens 
Bantams 
Ducks 
All poultry 

130 
122 
119 
130 

131 
119 
119 
131 

129 
122 
115 
130 

130 
115 
116 
130 

133 
115 
121 
133 

134 
117 
112 
134 

Number of 
links 

Chickens 
Bantams 
Ducks 
All poultry 

2528 
853 
642 

2992 

2456 
798 
642 

2874 

2317 
713 
647 

2697 

2486 
651 
612 

2824 

2413 
655 
682 

2786 

2401 
594 
643 

2783 
Density Chickens 

Bantams 
Ducks 
All poultry 

0.15 
0.06 
0.05 
0.18 

0.14 
0.06 
0.05 
0.17 

0.14 
0.05 
0.05 
0.16 

0.15 
0.05 
0.05 
0.17 

0.14 
0.05 
0.05 
0.16 

0.14 
0.04 
0.05 
0.16 

Diameter Chickens 
Bantams 
Ducks 
All poultry 

5 
7 
6 
5 

5 
7 
6 
5 

5 
8 
7 
5 

4 
6 
8 
4 

5 
7 
7 
5 

5 
7 
6 
5 

Average path 
length 

Chickens 
Bantams 
Ducks 
All poultry 

2.11 
2.72 
2.89 
2.00 

2.11 
2.86 
2.89 
2.03 

2.12 
2.92 
3.01 
2.04 

2.06 
2.82 
3.06 
2.00 

2.11 
2.93 
2.82 
2.05 

2.08 
3.05 
2.90 
2.03 

Clustering 
coefficient 

Chickens 
Bantams 
Ducks 
All poultry 

0.49 
0.30 
0.27 
0.52 

0.47 
0.31 
0.27 
0.51 

0.46 
0.29 
0.30 
0.49 

0.49 
0.27 
0.28 
0.51 

0.48 
0.29 
0.30 
0.51 

0.46 
0.26 
0.30 
0.49 

Number nodes 
in GSCC 

Chickens 
Bantams 
Ducks 
All poultry 

119 
93 
84 

121 

119 
102 
84 

123 

119 
91 
90 

122 

114 
84 
88 

118 

114 
80 
77 

119 

111 
74 
83 

115 
Table C2 continues next page 
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Table C2 continued 

Number nodes 
in GWCC 

Chickens 
Bantams 
Ducks 
All poultry 

130 
122 
119 
130 

131 
119 
119 
131 

129 
122 
115 
130 

130 
115 
116 
130 

133 
115 
121 
133 

134 
117 
112 
134 

Reciprocity Chickens 
Bantams 
Ducks 
All poultry 

0.47 
0.34 
0.27 
0.50 

0.45 
0.31 
0.27 
0.49 

0.50 
0.30 
0.28 
0.52 

0.48 
0.30 
0.31 
0.51 

0.46 
0.26 
0.34 
0.49 

0.43 
0.25 
0.28 
0.46 

Fragmentation Chickens 
Bantams 
Ducks  
All poultry 

0.16 
0.42 
0.50 
0.13 

0.18 
0.27 
0.50 
0.12 

0.15 
0.45 
0.39 
0.12 

0.23 
0.47 
0.43 
0.18 

0.27 
0.52 
0.60 
0.20 

0.31 
0.60 
0.45 
0.26 
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Table C3. Summary data from a Susceptible-Infectious (SI) network stochastic simulation modelling 

poultry trades between 134 suburbs in New Zealand through the online auction website TradeMe®. In 

total 10,000 permutations were performed with the infection seeded randomly in a single suburb at 

the beginning of each permutation. The simulation was stopped either when all the suburb nodes had 

been infected or when a maximum of seven years (2,555 days) had elapsed. Suburbs are listed in 

alphabetical order.  

Suburb 
Total runs 

infected (%) 

Mean number of 
days until infected 

(min-max) 

Total runs infected 
within first 14 days 

(%) 

Total runs infected 
within first 30 days 

(%) 
Akaroa 9652 (96.52) 162.33 (0-2529) 1040 (10.78) 3039 (31.49) 
Alexandra 9652 (96.52) 151.91 (0-2512) 1347 (13.96) 3833 (39.72) 
Amberley 9652 (96.52) 144.15 (0-2509) 2560 (26.53) 5079 (52.63) 
Ashburton 9652 (96.52) 142.09 (0-2510) 2947 (30.54) 5276 (54.67) 
Auckland City 9652 (96.52) 138.71 (0-2511) 3819 (39.57) 5549 (57.50) 
Balclutha 9652 (96.52) 148.20 (0-2518) 1877 (19.45) 4454 (46.15) 
Blenheim 9652 (96.52) 144.90 (0-2513) 2314 (23.98) 4962 (51.41) 
Bluff 9652 (96.52) 192.22 (0-2529) 437 (4.53) 1580 (16.37) 
Bulls 9652 (96.52) 156.14 (0-2552) 1150 (11.92) 3374 (34.96) 
Cambridge 9652 (96.52) 142.65 (0-2509) 2927 (30.33) 5173 (53.60) 
Carterton 9652 (96.52) 151.92 (0-2513) 1706 (17.68) 4159 (43.09) 
Chatham Islands 9708 (97.08) 352.11 (0-2542) 229 (2.36) 601 (6.20) 
Cheviot 9652 (96.52) 159.10 (0-2543) 1030 (10.68) 3015 (31.24) 
Christchurch City 9652 (96.52) 139.64 (0-2508) 3531 (36.59) 5485 (56.83) 
Coromandel 9652 (96.52) 149.51 (0-2511) 1726 (17.89) 4213 (43.65) 
Cromwell 9652 (96.52) 157.95 (0-2536) 1010 (10.47) 3079 (31.91) 
Dannevirke 9652 (96.52) 152.68 (0-2547) 1589 (16.47) 4024 (41.70) 
Darfield 9652 (96.52) 142.59 (0-2507) 2858 (29.62) 5243 (54.33) 
Dargaville 9652 (96.52) 147.04 (0-2517) 2084 (21.60) 4661 (48.30) 
Dunedin 9652 (96.52) 141.48 (0-2518) 3069 (31.80) 5348 (55.41) 
Edendale 9652 (96.52) 153.99 (0-2516) 1130 (11.71) 3538 (36.66) 
Fairlie 9652 (96.52) 157.32 (0-2529) 993 (10.29) 3225 (33.42) 
Featherston 9652 (96.52) 153.70 (0-2528) 1361 (14.11) 3938 (40.80) 
Feilding 9652 (96.52) 144.77 (0-2514) 2619 (27.14) 5043 (52.25) 
Franklin 9652 (96.52) 140.03 (0-2511) 3587 (37.17) 5463 (56.60) 
Geraldine 9652 (96.52) 154.75 (0-2514) 1405 (14.56) 3753 (38.89) 
Gisborne 9652 (96.52) 145.81 (0-2521) 2036 (21.10) 4598 (47.64) 
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Table C3 continued 

Golden Bay 9651 (96.51) 159.53 (0-2516) 829 (8.59) 2751 (28.51) 
Gore 9652 (96.52) 147.00 (0-2510) 1989 (20.61) 4641 (48.09) 
Great Barrier Island 9638 (96.38) 259.82 (0-2552) 275 (2.86) 851 (8.83) 
Greymouth 9652 (96.52) 147.67 (0-2513) 2099 (21.75) 4600 (47.66) 
Greytown 9652 (96.52) 162.25 (0-2545) 911 (9.44) 2981 (30.89) 
Hamilton 9652 (96.52) 139.41 (0-2512) 3694 (38.28) 5473 (56.71) 
Hanmer Springs 9652 (96.52) 157.03 (0-2514) 1287 (13.34) 3423 (35.47) 
Hastings 9652 (96.52) 144.12 (0-2522) 2730 (28.29) 5066 (52.49) 
Hawera 9652 (96.52) 144.14 (0-2514) 2671 (27.68) 5067 (52.50) 
Helensville 9652 (96.52) 142.22 (0-2508) 3061 (31.72) 5256 (54.46) 
Hibiscus Coast 9652 (96.52) 142.93 (0-2511) 2951 (30.58) 5200 (53.88) 
Hokitika 9652 (96.52) 150.28 (0-2513) 1450 (15.03) 3944 (40.87) 
Huntly 9652 (96.52) 142.94 (0-2515) 2892 (29.97) 5189 (53.77) 
Invercargill 9652 (96.52) 144.31 (0-2510) 2437 (25.25) 5010 (51.91) 
Kaiapoi 9652 (96.52) 144.59 (0-2511) 2500 (25.91) 4975 (51.55) 
Kaikohe 9652 (96.52) 151.55 (0-2509) 1645 (17.05) 4029 (41.75) 
Kaikoura 9652 (96.52) 156.30 (0-2519) 1151 (11.93) 3374 (34.96) 
Kaitaia 9652 (96.52) 150.11 (0-2519) 1666 (17.27) 4281 (44.36) 
Kapiti 9652 (96.52) 142.26 (0-2516) 3048 (31.58) 5303 (54.95) 
Katikati 9652 (96.52) 146.36 (0-2521) 2198 (22.78) 4815 (49.89) 
Kawakawa 9649 (96.49) 174.07 (0-2543) 735 (7.62) 2519 (26.11) 
Kerikeri 9652 (96.52) 145.92 (0-2521) 2402 (24.89) 4831 (50.06) 
Kurow 9652 (96.52) 170.74 (0-2525) 756 (7.84) 2567 (26.60) 
Lawrence 9651 (96.51) 179.98 (0-2522) 523 (5.42) 1751 (18.15) 
Levin 9652 (96.52) 145.07 (0-2511) 2448 (25.37) 4927 (51.05) 
Lower Hutt City 9652 (96.52) 141.60 (0-2516) 3284 (34.03) 5369 (55.63) 
Lumsden 9652 (96.52) 158.96 (0-2511) 948 (9.83) 2987 (30.95) 
Manawatu 9652 (96.52) 148.14 (0-2518) 1911 (19.8) 4571 (47.36) 
Manukau City 9652 (96.52) 138.83 (0-2508) 3827 (39.65) 5535 (57.35) 
Marlborough Sounds 9652 (96.52) 158.97 (0-2542) 920 (9.54) 3098 (32.10) 
Martinborough 9650 (96.50) 161.28 (0-2536) 777 (8.06) 2908 (30.14) 
Marton 9652 (96.52) 152.69 (0-2533) 1465 (15.18) 4042 (41.88) 
Masterton 9652 (96.52) 145.12 (0-2521) 2385 (24.71) 4997 (51.78) 
Matamata 9652 (96.52) 144.65 (0-2511) 2523 (26.14) 4989 (51.69) 
Maungaturoto 9652 (96.52) 150.45 (0-2513) 1635 (16.94) 4248 (44.02) 
Milton 9652 (96.52) 155.91 (0-2519) 1160 (12.02) 3483 (36.09) 
Mokau 9709 (97.09) 354.21 (0-2544) 161 (1.66) 497 (5.12) 
Morrinsville 9652 (96.52) 142.31 (0-2518) 3053 (31.64) 5225 (54.14) 
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Motueka 9652 (96.52) 150.31 (0-2519) 1485 (15.39) 4080 (42.28) 
Mt Cook 9722 (97.22) 245.27 (0-2526) 278 (2.86) 856 (8.81) 
Mt. Maunganui 9652 (96.52) 150.15 (0-2516) 1553 (16.09) 4152 (43.02) 
Murchison 9649 (96.49) 236.91 (0-2549) 261 (2.71) 843 (8.74) 
Napier 9652 (96.52) 144.00 (0-2524) 2772 (28.72) 5084 (52.68) 
Nelson 9652 (96.52) 146.13 (0-2515) 2298 (23.81) 4720 (48.91) 
New Plymouth 9652 (96.52) 142.58 (0-2508) 3028 (31.38) 5220 (54.09) 
North Shore 9652 (96.52) 139.83 (0-2511) 3621 (37.52) 5467 (56.65) 
Oamaru 9652 (96.52) 146.65 (0-2516) 2115 (21.92) 4618 (47.85) 
Ohakune 9652 (96.52) 163.21 (0-2517) 1002 (10.39) 2963 (30.70) 
Opotiki 9652 (96.52) 159.48 (0-2524) 1032 (10.70) 3011 (31.20) 
Opunake 9652 (96.52) 154.59 (0-2520) 1164 (12.06) 3657 (37.89) 
Otautau 9652 (96.52) 153.43 (0-2520) 1223 (12.68) 3675 (38.08) 
Otorohanga 9652 (96.52) 146.65 (0-2524) 2186 (22.65) 4758 (49.30) 
Paeroa 9651 (96.51) 153.49 (0-2526) 1473 (15.27) 3879 (40.20) 
Pahiatua 9652 (96.52) 154.01 (0-2535) 1226 (12.71) 3880 (40.20) 
Paihia 9652 (96.52) 167.27 (0-2536) 846 (8.77) 2668 (27.65) 
Palmerston 9652 (96.52) 156.07 (0-2510) 1078 (11.17) 3358 (34.80) 
Palmerston North 9652 (96.52) 141.78 (0-2512) 3302 (34.22) 5383 (55.78) 
Papakura City 9652 (96.52) 141.02 (0-2510) 3337 (34.58) 5381 (55.76) 
Picton 9640 (96.4) 351.18 (0-2545) 186 (1.93) 478 (4.96) 
Porirua 9652 (96.52) 143.43 (0-2514) 2922 (30.28) 5221 (54.10) 
Queenstown 9652 (96.52) 153.65 (0-2539) 1390 (14.41) 3824 (39.62) 
Raglan 9652 (96.52) 154.20 (0-2514) 1578 (16.35) 4072 (42.19) 
Ranfurly 9652 (96.52) 164.26 (0-2516) 870 (9.02) 2638 (27.34) 
Rangiora 9652 (96.52) 141.14 (0-2510) 3216 (33.32) 5387 (55.82) 
Riverton 9652 (96.52) 170.34 (0-2525) 781 (8.10) 2532 (26.24) 
Rotorua 9652 (96.52) 141.81 (0-2510) 3159 (32.73) 5289 (54.80) 
Roxburgh 9650 (96.5) 187.58 (0-2523) 480 (4.98) 1601 (16.60) 
Ruatoria 9695 (96.95) 315.98 (0-2538) 187 (1.93) 525 (5.42) 
Stewart Island 9652 (96.52) 224.43 (0-2528) 322 (3.34) 1152 (11.94) 
Stratford 9652 (96.52) 146.23 (0-2514) 2421 (25.09) 4826 (50.00) 
Taihape 9652 (96.52) 163.75 (0-2536) 756 (7.84) 2708 (28.06) 
Taumarunui 9652 (96.52) 151.88 (0-2518) 1468 (15.21) 3876 (40.16) 
Taupo 9652 (96.52) 144.94 (0-2524) 2513 (26.04) 5013 (51.94) 
Tauranga 9652 (96.52) 141.27 (0-2511) 3305 (34.25) 5347 (55.40) 
Te Anau 9652 (96.52) 165.17 (0-2530) 705 (7.31) 2530 (26.22) 
Te Awamutu 9652 (96.52) 142.49 (0-2508) 3036 (31.46) 5248 (54.38) 
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Table C3 continued 

Te Kuiti 9652 (96.52) 147.60 (0-2524) 1999 (20.72) 4516 (46.79) 
Te Puke 9652 (96.52) 144.98 (0-2521) 2429 (25.17) 4974 (51.54) 
Thames 9652 (96.52) 146.15 (0-2538) 2312 (23.96) 4786 (49.59) 
Timaru 9652 (96.52) 144.70 (0-2508) 2398 (24.85) 5008 (51.89) 
Tokanui 9652 (96.52) 190.17 (0-2519) 354 (3.67) 1252 (12.98) 
Tokoroa/Putaruru 9652 (96.52) 144.31 (0-2512) 2531 (26.23) 5039 (52.21) 
Turangi 9653 (96.53) 193.69 (0-2547) 397 (4.12) 1225 (12.70) 
Twizel 9652 (96.52) 172.59 (0-2548) 501 (5.20) 1804 (18.70) 
Upper Hutt City 9652 (96.52) 143.66 (0-2516) 2844 (29.47) 5174 (53.61) 
Waiheke Island 9652 (96.52) 156.08 (0-2523) 1183 (12.26) 3272 (33.9) 
Waihi 9652 (96.52) 153.66 (0-2536) 1496 (15.50) 3833 (39.72) 
Waihi Beach 9652 (96.52) 205.93 (0-2533) 340 (3.53) 1196 (12.4) 
Waimate 9652 (96.52) 151.32 (0-2514) 1525 (15.80) 3988 (41.32) 
Waiouru 9655 (96.55) 277.14 (0-2542) 177 (1.84) 582 (6.03) 
Waipukurau 9652 (96.52) 146.96 (0-2530) 2177 (22.56) 4718 (48.89) 
Wairoa 9652 (96.52) 158.33 (0-2520) 1058 (10.97) 3218 (33.35) 
Waitakere City 9652 (96.52) 139.50 (0-2510) 3702 (38.36) 5488 (56.86) 
Wanaka 9652 (96.52) 154.05 (0-2524) 1239 (12.84) 3577 (37.06) 
Wanganui 9652 (96.52) 160.31 (0-2527) 2382 (24.68) 4570 (47.35) 
Warkworth 9652 (96.52) 145.18 (0-2515) 2439 (25.27) 4937 (51.16) 
Wellington City 9652 (96.52) 140.21 (0-2514) 3588 (37.18) 5520 (57.20) 
Wellsford 9652 (96.52) 146.09 (0-2512) 2249 (23.31) 4795 (49.68) 
Westport 9651 (96.51) 157.62 (0-2544) 1329 (13.78) 3584 (37.14) 
Whakatane 9653 (96.53) 143.36 (0-2552) 2814 (29.16) 5166 (53.52) 
Whangamata 9651 (96.51) 199.87 (0-2529) 424 (4.40) 1411 (14.63) 
Whanganui 9184 (91.84) 1092.09 (0-2552) 354 (3.86) 651 (7.09) 
Whangarei 9652 (96.52) 142.01 (0-2508) 3127 (32.40) 5293 (54.84) 
Whitianga 9521 (95.21) 547.96 (0-2555) 307 (3.23) 977 (10.27) 
Winton 9652 (96.52) 150.74 (0-2510) 1461 (15.14) 4110 (42.59) 
Woodville 9652 (96.52) 170.27 (0-2518) 661 (6.85) 2282 (23.65) 
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Table C4. List of bird species known to migrate to, from or within New Zealand excluding albatrosses, 

petrels, skuas and gannets. Data retrieved from the online encyclopaedia of New Zealand birds in April 

2019 (http://nzbirdsonline.org.nz) and crossed checked with bird sightings reported to eBird between 

01st January 2012 and 31st December 2018. All 32 species listed had been reported in eBird. 

Common name Scientific name 
Wrybill Anarhynchus frontalis 
Ruddy turnstone Arenaria interpres 
Sharp-tailed sandpiper Calidris acuminate 
Sanderling Calidris alba 
Lesser knot Calidris canutus 
Curlew sandpiper Calidris ferruginea 
Pectoral sandpiper Calidris melanotos 
Red-necked stint Calidris ruficollis 
Banded dotterel Charadrius bicinctus 
Large sand dotterel Charadrius leschenaultii 
Lesser sand plover Charadrius mongolus 
White-winged black tern Chlidonias leucopterus 
Black-billed gull Chroicocephalus bulleri 
Shining cuckoo Chrysococcyx lucidus 
South Island pied oystercatcher Haematopus finschi 
Pied stilt Himantopus leucocephalus 
Eastern bar-tailed godwit Limosa lapponica 
Black-tailed godwit Limosa limosa 
Eastern curlew Numenius madagascariensis 
Whimbrel Numenius phaeopus 
Pacific golden plover Pluvialis fulva 
Grey plover Pluvialis squatarola 
Common tern Sterna hirundo 
Arctic tern Sterna paradisaea 
White-fronted tern Sterna striata 
Little tern Sternula albifrons 
Grey-tailed tattler Tringa brevipes 
Wandering tattler Tringa incana 
Greenshank Tringa nebularia 
Marsh sandpiper Tringa stagnatilis 
Long-tailed cuckoo Urodynamis taitensis 
Terek sandpiper Xenus cinereus 
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Table C5. List of bird species belonging to Anatidae; a family of water birds that includes ducks, geese, 

and swans, found in New Zealand. Data retrieved from the online encyclopaedia of New Zealand birds 

in November 2019 (http://nzbirdsonline.org.nz) and crossed checked with bird sightings reported to 

eBird between 01st January 2012 and 31st December 2018. Only 91.7% (22/24) of the species listed had 

been reported in eBird excluding the northern pintail (Anas acuta) and the pink-eared duck 

(Malacorhynchus membranaceus).  

Common name Scientific name 
Northern pintail Anas acuta 
Auckland Island teal Anas aucklandica 
Chestnut teal Anas castanea 
Brown teal Anas chlorotis 
Grey teal Anas gracilis 
Campbell Island teal Anas nesiotis 
Mallard Anas platyrhynchos 
Grey duck Anas superciliosa 
Greylag goose Anser anser 
Australian white-eyed duck Aythya australis 
New Zealand scaup Aythya novaeseelandiae 
Canada goose Branta canadensis 
Muscovy duck Cairina moschata 
Cape Barren goose Cereopsis novaehollandiae 
Australian wood duck Chenonetta jubata 
Black swan Cygnus atratus 
Mute swan Cygnus olor 
Plumed whistling duck Dendrocygna eytoni 
Blue duck Hymenolaimus malacorhynchos 
Pink-eared duck Malacorhynchus membranaceus 
Northern shoveler Spatula clypeata 
Australasian shoveler Spatula rhynchotis 
Chestnut-breasted shelduck Tadorna tadornoides 
Paradise shelduck Tadorna variegata 
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Figure C1. Annual trader contact networks for all poultry trades occurring through the online auction 

website TradeMe® in New Zealand from 2012 to 2017. To improve clarity in the visualization, only 

connections to and from nodes with a degree ≥100 are shown with node colour and size highlighting 

those nodes with a degree centrality measure ≥100 (orange: degree <100, red: degree ≥100). For each 

year the total number of traders and number of movements is shown in parenthesis in the form of; 

YYYY (number of traders: number of movements).  
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Figure C2. Annual spatial networks for all poultry trades occurring through the online auction website 

TradeMe® in New Zealand from 2012 to 2017. Edge colour indicates the frequency of trades (i.e., the 

number of days between two consecutive trades going to and from the same two nodes). For each year 

the total number of suburbs and number of movements is shown in parenthesis in the form of; YYYY 

(number of suburbs: number of movements). 
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Figure D1. A tanglegram of the rooted maximum-likelihood tree showing the population structure of 

the 167 C. jejuni ST-6964 isolates (left) compared to a dendrogram representing the Road distance 

between the farms from which isolates were sampled (right) with line colour indicating one of three 

poultry suppliers (A, B or C) with farms belonging to supplier A located in two geographical regions 

(regions 1 and 2) in comparison to poultry suppliers B and C whose farms are geographically clustered 

in one region. To maximise tree congruence a two-tree crossing minimization technique was used 

based on a greedy forward selection algorithm. 
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Figure D2. (a) Network graph showing the four link communities identified and (b) the hierarchical 

cluster dendrogram used to define the cut-off point for community extraction (0.92). Network edges 

are coloured by the community they belong to whilst nodes are coloured according to the type of 

poultry enterprise (blue: poultry grower, red: poultry breeder) with size proportional to their node 

degree centrality measure. 
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Figure D3. Imputed unimodal network graphs (left) and corresponding bimodal network graphs 

(right) showing (a, b) all on- and off-farm movements relating to feed, live birds, hatching eggs, waste 

or new and used litter between New Zealand commercial poultry farms (n = 30). Movements have 

been sub-divided so that the network graphs (c and d) show only movements relating to feed, (e and 

f) show only movements relating to live birds and hatching eggs and (g and h) show only movements

relating to waster and litter. The node colour indicates the type of node (green: transporting company, 

blue: poultry grower, red: poultry breeder) whilst the node size is proportional to node degree 

centrality measure. 
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Table D1.  PERMANOVA model comparing the allelic dissimilarity between 167 C. jejuni isolates by 

parent company (n = 3) and farm (nested within parent company) (n = 30) with p-values for each test 

obtained using 9999 unrestricted permutations. “SS” provides the sum of squares, “MS” the mean 

squares, and “df” the degrees of freedom for each test. 

df SS MS Pseudo-F p-value
Parent company 2 24308 12154 11.807 0.0001 
Farm 27 26554 983.47 3.2949 0.0001 
Residuals 137 40891 298.48 
Total 166 91753 
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Table D2. Resemblance matrix considering the relationship between the allelic dissimilarity matrix 

and six additional matrix models indicating the network distance, geographical distance and shared 

parent companies between 167 C. jejuni isolates. The matrix was obtained using the Primer (v7.0.) 

2STAGE routine using methods described in Anderson et al. (2017). 

Allelic 
dissimilarity 

Euclidean 
distance 

Feed 
network 

Live bird 
network 

Parent 
company 

Road 
distance 

Waste 
network 

Allelic 
dissimilarity 

- 

Euclidean 
distance 

0.580 - 

Feed 
network 

0.632 0.869 - 

Live bird 
network 

0.623 0.895 0.941 - 

Parent 
company 

0.438 0.597 0.762 0.744 - 

Road 
distance 

0.584 0.988 0.869 0.905 0.597 - 

Waste 
network 

0.614 0.890 0.940 0.973 0.723 0.899 -
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Table D3. Resemblance matrix considering the relationship between the residual allelic dissimilarity 

matrix, after removing the effects of parent company and farms nested within parent company) and 

five additional matrix models indicating the network distance and geographical distance between 167 

C. jejuni isolates. The matrix was obtained using the Primer (v7.0.) 2STAGE routine using methods

described in Anderson et al (2017). 

Residual allelic 
dissimilarity 

Euclidean 
distance 

Feed 
network 

Live bird 
network 

Road 
distance 

Waste 
network 

Residual 
allelic 
dissimilarity 

- 

Euclidean 
distance 

-0.024 - 

Feed 
network 

0.040 0.869 - 

Live bird 
network 

0.001 0.895 0.941 - 

Road 
distance 

-0.005 0.988 0.869 0.905 - 

Waste 
network 

0.005 0.890 0.940 0.973 0.899 -
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Table D4.  PERMANOVA model comparing the allelic distance between 125 C. jejuni isolates by 

parent company (n = 3) and farm (nested within parent company) (n = 16) with p-values for each test 

obtained using 9999 unrestricted permutations. “SS” provides the sum of squares, “MS” the mean 

squares, and “df” the degrees of freedom for each test. 

df SS MS Pseudo-F p-value
Parent company 2 11531 11531 9.6467 0.0002 
Farm 13 16931 1302.4 3.9195 0.0001 
Residuals 109 36219 332.28 
Total 124 76211 
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Table D5.  Spearman’s rank matrix correlation (rho) between each model matrix and (i) the allelic 

dissimilarity matrix between 125 C. jejuni isolates and (ii) the residual allelic dissimilarity matrix after 

fitting the ANOVA factors of parent company (n = 3) and farm (n = 16) nested within parent 

company, with p-values obtained using 9999 permutations. 

(i) Unconstrained
matrix 

(ii) Residual matrix

rho p-value rho p-value
Feed 0.665 0.0001 0.084 0.0263 

Live birds 0.665 0.0001 0.076 0.0318 

Waste 0.674 0.0001 0.108 0.0085 

Road distance 0.609 0.0001 0.022 0.3162 

Euclidean distance 0.603 0.0001 -0.017 0.6146 

Parent company 0.573 0.0001 - - 
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Table D6. Individual distance-based redundancy analysis (dbRDA) models to explain variation in 

allelic dissimilarities among 125 C. jejuni isolates in response to each of two ANOVA factors (parent 

company or farm nested in parent company) or sets of regression coordinates corresponding to 

geographic position (Euclidean distance or road distance) or the network model matrices of interest 

(feed, live birds or waste), with p-values for each of these separate marginal tests obtained using 9999 

unrestricted permutations. “Prop” gives the proportion of the total variation explained whilst “df” 

gives the numerator (regression) and denominator (residual) degrees of freedom for the test. Models 

have been presented in order of decreasing R2 values. 

Prop. Pseudo-F df p-value
Parent Company 0.3026 26.47 3, 122 0.0001 

Farm 0.5248 8.02 16, 109 0.0001 

Euclidean distance 0.3539 33.42 3, 122 0.0001 

Road distance 0.4128 28.35 4, 121 0.0001 

Feed 0.3236 19.30 4, 121 0.0001 

Live birds 0.2996 26.10 3, 122 0.0001 

Waste 0.2898 24.89 3, 122 0.0001 
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Table D7. Distance-based redundancy analysis (dbRDA) to explain variation in allelic dissimilarities 

among 125 C. jejuni isolates in response to the factors and sets of regressors listed in Table S6, but here 

conditional tests were done in a sequential stepwise fashion under forward selection based on R2. Each 

test used 9999 permutations of residuals under a reduced model. “Prop” gives the proportion of 

additional variation explained by adding that set of variables to the model, “Cumul” tracks the 

cumulative explained variation with each added step, and “df” provides the regression and residual 

degrees of freedom.  

Step Prop. Cumul. df Pseudo-F p-value
1 +Farm 0.5248 0.5248 16, 109 8.024 0.0001 

2 +Road 0.0286 0.5533 19, 106 2.260 0.0624 

3 +Feed 0.0222 0.5755 22, 103 1.792 0.1267 

4 +Live birds 0.0064 0.5818 24, 101 0.767 0.5288 

5 +Euclidean 0.0041 0.5859 26, 99 0.490 0.6234 

6 +Waste 0.0026 0.5886 28, 97 0.309 0.9057 

7 +Parent company <0.0001 0.5886 28, 97 - - 

391



Table D8. Top four dbRDA models obtained on the basis of the multivariate analogue to the Akaike 

Information Criterion (AIC) to explain variation in allelic dissimilarities among 125 C. jejuni isolates. 

Two ANOVA factors (parent company (n = 3) and farms (n = 16) nested in parent company) were 

included in all potential models a priori.  

Model selections R2 No. Sets AIC 
Feed network, road distance, parent company and farm 0.5755 4 738.52 

Road distance, parent company and farm 0.5533 3 738.88 

Parent company and farm 0.5248 2 740.63 

Feed network, live bird network, road distance, parent 
company and farm 

0.5818 5 740.64 
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Table D9. PERMANOVA model comparing the p-distance between 167 C. jejuni isolates by parent 

company (n = 3) and farms nested within parent company (n = 30) with p-values for each test obtained 

using 9999 unrestricted permutations. “SS” provides the sum of squares, “MS” the mean squares, and 

“df” the degrees of freedom for each test. 

df SS MS Pseudo-F p-value
Parent company 2 33.159 0.0366 33.159 0.0001 
Farm 27 0.0285 0.0011 3.4202 0.0001 
Residuals 137 0.0423 0.0003 
Total 166 0.1440 
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Table D10.  Spearman’s rank matrix correlation (rho) between each model matrix and (i) the p-

distance matrix between 167 C. jejuni isolates and (ii) the residual p-distance matrix after fitting the 

ANOVA factors of parent company (n = 3) and farm (n = 30) nested within parent company, with p-

values obtained using 9999 permutations. 

(i) Unconstrained
matrix 

(ii) Residual matrix

rho p-value rho p-value
Feed 0.663 0.0001 0.059 0.0061 

Live birds 0.640 0.0001 0.006 0.2738 

Waste 0.624 0.0001 -0.003 0.5766 

Road distance 0.559 0.0001 0.011 0.3364 

Euclidean distance 0.559 0.0001 0.013 0.3160 

Parent company 0.499 0.0001 - - 
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Table D11. Individual distance-based redundancy analysis (dbRDA) models to explain variation in 

the p-distance matrix among 167 C. jejuni isolates in response to each of two ANOVA factors (parent 

company or farm nested in parent company) or sets of regression coordinates corresponding to 

geographic position (Euclidean distance or road distance) or the network model matrices of interest 

(feed, live birds or waste), with p-values for each of these separate marginal tests obtained using 9999 

unrestricted permutations. “Prop” gives the proportion of the total variation explained whilst “df” 

gives the numerator (regression) and denominator (residual) degrees of freedom for the test. Models 

have been presented in order of decreasing R2 values. 

Prop. Pseudo-F df p-value
Parent Company 0.5088 84.95 3, 164 0.0001 

Farm 0.1978 1.269 28, 139 0.1251 

Euclidean distance 0.5881 117.1 3, 164 0.0001 

Road distance 0.5869 77.19 4, 163 0.0001 

Feed 0.5966 80.36 4, 163 0.0001 

Live birds 0.5353 94.46 3, 164 0.0001 

Waste 0.5249 90.59 3, 164 0.0001 
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Table D12. Distance-based redundancy analysis (dbRDA) to explain variation in the p-distance matrix 

among 167 C. jejuni isolates in response to the factors and sets of regressors listed in Table S11, but 

here conditional tests were done in a sequential stepwise fashion under forward selection based on R2. 

Each test used 9999 permutations of residuals under a reduced model. “Prop” gives the proportion of 

additional variation explained by adding that set of variables to the model, “Cumul” tracks the 

cumulative explained variation with each added step, and “df” provides the regression and residual 

degrees of freedom.  

Step Prop. Cumul. df Pseudo-F p-value
1 +Feed 0.5966 0.5966 4, 163 80.36 0.0001 

2 +Farm 0.1094 0.7060 31, 136 1.874 0.0062 

3 +Road 0.0122 0.7182 34, 133 1.912 0.0724 

4 +Parent company 0.0064 0.7246 36, 131 1.526 0.1740 

5 +Live birds 0.0037 0.7283 38, 129 0.884 0.4970 

6 +Euclidean 0.0034 0.7318 40, 127 0.816 0.4330 

7 +Waste 0.0018 0.7336 42, 125 0.429 0.8435 
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Table D13.  Top four dbRDA models obtained on the basis of the multivariate analogue to the Akaike 

Information Criterion (AIC) to explain variation in the p-distance matrix among 167 C. jejuni isolates. 

Two ANOVA factors (parent company (n = 3) and farms (n = 30) nested in parent company) were 

included in all potential models a priori. 

Model selections R2 No. Sets AIC 
Road distance, parent company and farm 0.7202 3 -1325.0

Euclidean distance, road distance, parent company and farm 0.7239 4 -1323.3

Parent company and farm 0.7066 2 -1323.1

Live birds, road distance, parent company and farm 0.7237 4 -1323.1
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Table D14.  PERMANOVA model comparing the p-distance between 125 C. jejuni isolates by parent 

company (n = 3) and farms nested within parent company (n = 16) with p-values for each test obtained 

using 9999 unrestricted permutations. “SS” provides the sum of squares, “MS” the mean squares, and 

“df” the degrees of freedom for each test. 

df SS MS Pseudo-F p-value
Parent company 2 0.049461 0.02473 21.913 0.0001 
Farm 13 0.015983 0.001229 3.8939 0.0001 
Residuals 109 0.034415 0.000316 
Total 124 0.099859 
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Table D15.  Spearman’s rank matrix correlation (rho) between each model matrix and (i) p-distance 

matrix between 125 C. jejuni isolates and (ii) the p-distance matrix after fitting the ANOVA factors of 

parent company (n = 3) and farm (n = 16) nested within parent company, with p-values obtained 

using 9999 permutations. 

(i) Unconstrained
matrix 

(ii) Residual matrix

rho p-value rho p-value
Feed 0.649 0.0001 -0.039 0.8238 

Live birds 0.647 0.0001 -0.066 0.9719 

Waste 0.630 0.0001 -0.084 0.9862 

Road distance 0.579 0.0001 -0.065 0.9120 

Euclidean distance 0.575 0.0001 -0.065 0.8982 

Parent company 0.540 0.0001 - - 
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Table D16. Individual distance-based redundancy analysis (dbRDA) models to explain variation in 

the p-distance matrix among 125 C. jejuni isolates in response to each of two ANOVA factors (parent 

company or farm nested in parent company) or sets of regression coordinates corresponding to 

geographic position (Euclidean distance or road distance) or the network model matrices of interest 

(feed, live birds or waste), with p-values for each of these separate marginal tests obtained using 9999 

unrestricted permutations. “Prop” gives the proportion of the total variation explained whilst “df” 

gives the numerator (regression) and denominator (residual) degrees of freedom for the test. Models 

have been presented in order of decreasing R2 values. 

Prop. Pseudo-F df p-value
Parent Company 0.4953 59.87 3, 122 0.0001 

Farm 0.6554 13.82 16, 109 0.0001 

Euclidean distance 0.5466 73.54 3, 122 0.0001 

Road distance 0.5445 48.21 4, 121 0.0001 

Feed 0.5489 49.07 4, 121 0.0001 

Live birds 0.5393 71.40 3, 122 0.0001 

Waste 0.5264 67.79 3, 122 0.0001 
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Table D17. Distance-based redundancy analysis (dbRDA) to explain variation within the p-distance 

matrix among 125 C. jejuni isolates in response to the factors and sets of regressors listed in Table S6, 

but here conditional tests were done in a sequential stepwise fashion under forward selection based on 

R2. Each test used 9999 permutations of residuals under a reduced model. “Prop” gives the proportion 

of additional variation explained by adding that set of variables to the model, “Cumul” tracks the 

cumulative explained variation with each added step, and “df” provides the regression and residual 

degrees of freedom.  

Step Prop. Cumul. df Pseudo-F p-value
1 +Farm 0.6554 0.6554 16, 109 13.82 0.0001 

2 +Road 0.0270 0.6824 19, 106 3.006 0.0136 

3 +Feed 0.0156 0.6979 22, 103 1.768 0.1245 

4 +Euclidean 0.0057 0.7036 24, 101 0.965 0.3933 

5 +Live birds 0.0031 0.7067 26, 99 0.519 0.7823 

6 +Waste 0.0021 0.7088 28, 97 0.348 0.8770 
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Table D18. Top four dbRDA models obtained on the basis of the multivariate analogue to the Akaike 

Information Criterion (AIC) to explain variation in the p-distance matrix among 125 C. jejuni isolates. 

Two ANOVA factors (parent company (n = 3) and farms (n = 16) nested in parent company) were 

included in all potential models a priori. 

Model selections R2 No. Sets AIC 
Feed network, road distance, parent company and farm 0.6979 4 -997.18

Road distance, parent company and farm 0.6824 3 -996.90

Euclidean distance, Feed network, road distance, parent 
company and farm 

0.7036 5 -995.55

Live bird network, road distance, parent company and 
farm 

0.6884 4 -995.29
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Table E1. GenBank accession numbers and the corresponding BioSample IDs of the 103 S. aureus 
Sequence Type (ST)-1 whole-genome sequence assemblies. 

GenBank accession BioSample 
GCF_000011265.1 SAMD00061104 
GCF_000011525.1 SAMEA1705922 
GCF_000149015.1 SAMN00001489 
GCF_000164715.1 SAMN00139434 
GCF_000248655.1 SAMN00627551 
GCF_000249015.1 SAMN00627578 
GCF_000336515.1 SAMN02471422 
GCF_000582745.1 SAMEA3138947 
GCF_000626855.1 SAMN00138219 
GCF_000626955.1 SAMN00117451 
GCF_000747275.1 SAMN02983094 
GCF_000763455.1 SAMN02953024 
GCF_001018645.2 SAMN03255442 
GCF_001019125.2 SAMN03255482 
GCF_001019535.2 SAMN03255481 
GCF_001063885.1 SAMN03197360 
GCF_001275825.1 SAMN03753597 
GCF_001297365.1 SAMN03658597 
GCF_001469015.1 SAMN04191397 
GCF_001680935.1 SAMN05188391 
GCF_001681155.1 SAMN05188398 
GCF_001879545.1 SAMN04243988 
GCF_002096985.1 SAMN06546698 
GCF_002125325.1 SAMN06698047 
GCF_002188415.1 SAMN07167826 
GCF_002188425.1 SAMN07167827 
GCF_002188455.1 SAMN07167825 
GCF_002188495.1 SAMN07167824 
GCF_002209325.1 SAMN05520967 
GCF_002572965.1 SAMN07765389 
GCF_002633825.1 SAMN03763946 
GCF_002795285.1 SAMN05864218 
GCF_002798125.1 SAMN07967050 
GCF_002887375.1 SAMN04346839 
GCF_002905535.1 SAMN04089983 
GCF_003017755.1 SAMN08456651 
GCF_003038455.1 SAMN08683528 

Table E1 continues next page. 
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Table E1 continued. 
GenBank accession BioSample 
GCF_003038575.1 SAMN08683521 
GCF_003038595.1 SAMN08683520 
GCF_003237255.1 SAMN08717736 
GCF_003237355.1 SAMN08717728 
GCF_003237515.1 SAMN08717710 
GCF_003238125.1 SAMN08717725 
GCF_003238315.1 SAMN08717692 
GCF_003238375.1 SAMN08717682 
GCF_003238485.1 SAMN08717665 
GCF_003238595.1 SAMN08717654 
GCF_003238605.1 SAMN08717649 
GCF_003238735.1 SAMN08717638 
GCF_003238925.1 SAMN08717621 
GCF_003238965.1 SAMN08717610 
GCF_003239385.1 SAMN08717708 
GCF_003239715.1 SAMN08717630 
GCF_003239855.1 SAMN08717679 
GCF_003240035.1 SAMN08717662 
GCF_003240175.1 SAMN08717643 
GCF_003336555.1 SAMN05853514 
GCF_003421225.1 SAMD00083578 
GCF_003422085.1 SAMD00083621 
GCF_003422945.1 SAMD00083664 
GCF_003573835.1 SAMD00134209 
GCF_003605265.1 SAMN09935541 
GCF_900020485.1 SAMEA1464707 
GCF_900022645.1 SAMEA1464324 
GCF_900038315.1 SAMEA1464506 
GCF_900039205.1 SAMEA1464531 
GCF_900040355.1 SAMEA1464588 
GCF_900041185.1 SAMEA1317313 
GCF_900041785.1 SAMEA1469688 
GCF_900046035.1 SAMEA1464549 
GCF_900046215.1 SAMEA1317392 
GCF_900081355.1 SAMEA2384256 
GCF_900081975.1 SAMEA2384527 
GCF_900083415.1 SAMEA2445646 
GCF_900097745.1 SAMEA2298730 

Table E1 continues next page. 
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Table E1 continued. 
GenBank accession BioSample 
GCF_900097885.1 SAMEA2298711 
GCF_900097905.1 SAMEA2298740 
GCF_900098195.1 SAMEA1708910 
GCF_900124805.1 SAMEA3448998 
GCF_900125475.1 SAMEA3448847 
GCF_900125785.1 SAMEA3449400 
GCF_900126045.1 SAMEA3448920 
GCF_900126415.1 SAMEA3448890 
GCF_900126535.1 SAMEA3449068 
GCF_900127665.1 SAMEA3448997 
GCF_900127805.1 SAMEA3448837 
GCF_900127825.1 SAMEA3448860 
GCF_900128065.1 SAMEA3448950 
GCF_900128095.1 SAMEA3448960 
GCF_900149245.1 SAMEA3883070 
GCF_900149255.1 SAMEA3883072 
GCF_900149335.1 SAMEA4535272 
GCF_900250415.1 SAMEA104473384 
GCF_900250665.1 SAMEA104473405 
GCF_900250795.1 SAMEA104473424 
GCF_900250985.1 SAMEA104473434 
GCF_900251105.1 SAMEA104473460 
GCF_900251355.1 SAMEA104473472 
GCF_900251445.1 SAMEA104473490 
GCF_900251525.1 SAMEA104473497 
GCF_900252035.1 SAMEA104473547 
GCF_900252205.1 SAMEA104473563 
GCF_900457625.1 SAMEA3491707 
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Table E2. Network analysis glossary of terms used to describe the network representing the movement 

of live animals between dairy herds in New Zealand. Note: all the definitions given have been 

interpreted in context of this study. Measures include the number of nodes, number of edges, network 

diameter, average path length, in-degree, out-degree, betweenness, network density, clustering 

coefficient, number of giant strongly connected components (GSCC) and giant weakly connected 

components (GWCC), reciprocity, fragmentation and, assortativity. 

Network metric Definition 
Network size Number of nodes Total number of farms recorded in the LIC-MINDA 

database sending or receiving animals 

Number of edges Total number of live animal movements to or 
from all the farms in the network  

Network diameter The longest path between any two pair of farms 
in the network 

Average path length The average shortest path between any pair of 
farms in the network averaged over all pairs of 
farms  

Centrality measures  In-degree Number of movements received by a farm 

Out-degree  Number of movements sent off-farm  

Betweenness The frequency a farm is found on the shortest 
path between any other two pair of farms in the 
network 

Cohesion measures Network density The proportion of all possible links between farms 
in the network that are present 

Clustering coefficient The proportion of neighbouring farms in direct 
contact with a farm that are also connected to 
each other 

GSCC The largest sub-network in which all farms are 
mutually accessible by following the direction of 
the movements in the network   

GWCC The largest sub-network in which all farms are 
linked when disregarding the direction of the 
movements in the network   

Table E2 continues next page. 
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Table E2 continued. 
Network metric Definition 

Reciprocity The likelihood that any pair of farms in the 
network both receive and send animals between 
each other  

Fragmentation The proportion of farm pairs for which a 
movement does not exist between them 

Assortativity A preference for a farm to attach to other farms 
that have similar degree centrality measures   
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Table E3. Prevalence of 14 resistance genes identified across 57 S. aureus isolates isolated from bovine 

milk in New Zealand. Genes are listed in ascending order 

Resistance Gene(s) Number of Isolate (%) 

ant(9)-Ia, dfrC, fusC, mecA, mecR1 1 (1.75) 

erm(A), qacB 2 (3.51) 

blaPC1, qacA 4 (7.02) 

fosD 6 (10.53) 

blaZ 18 (31.58) 

blaI, blaR1 19 (33.33) 

tet(38) 57 (100.0) 

409



Table E4. Prevalence of 76 virulence genes identified across 57 S. aureus isolates isolated from bovine 

milk in New Zealand. Genes are listed in ascending order with a total of 55 genes being present in 

100% of isolates   

Virulence Gene(s) Number of Isolates (%) 

chp, sea, selk 1 (1.75) 

sak, scn 2 (3.51) 

tsst-1 3 (5.26) 

sec, sell 4 (7.02) 

seh 35 (61.40) 

cna 41 (71.93) 

sdrD 42 (73.68) 

fnbB 45 (78.95) 

cap8(H-K) 49 (85.96) 

esaC, esxB 50 (87.72) 

sdrE 51 (89.47) 

lukF-PV, map 56 (98.25) 

adsA, aur, cap8(A-G), cap8(L-P), clf(A,B,P) coa, ebp, esa(A-B), 
(essA-C) esxA, fnbA, geh, hlb, hld, hlg(A-C), hly/hla, hysA, ica(A-
D,R), isd(A-G), lip, sbi, sdrC, spa, srtB, ssp(A-C), vWbp 

57 (100.0) 
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Table E5. Antimicrobial sensitivity profiles of 50 S. aureus isolates labelled according to the isolate ID 

which identifies the date the sample was collected (dd/mmm/yyyy), the farm from which it was 

collected from (A-Q), and the animal ID number (####). Sensitivity was determined using a zone 

diffusion test following the procedures provided by the Clinical and Laboratory Standards Institute 

(CLSI) for penicillin (Pen), novobiocin (Nov), cefoxitin (Cef), tetracycline (Tet), ceftiofur (XNL), and 

oxacillin (OXA). Zone range for each antimicrobial has been presented in millimetres (mm) with 

isolates being declared sensitive (S), intermediate (I) or resistant (R), based on CLSI recommendations. 

Isolate ID Sample type 
Diameter (mm) (Sensitivity) 

Pen Nov Cef Tet XNL OXA 
19Jan2016-A-90 Subclinical 18 (R) 36 (S) 30 (S) 31 (S) 32 (S) 21 (S) 
27Jan2016-B-849 Subclinical 44 (S) 32 (S) 28 (S) 30 (S) 30 (S) 22 (S) 
27Jan2016-B-1019 Subclinical 45 (S) 32 (S) 28 (S) 29 (S) 33 (S) 28 (S) 
20Jan2016-C-554 Subclinical 46 (S) 40 (S) 28 (S) 32 (S) 34 (S) 26 (S) 
07Jan2016-B-1061 Clinical 46 (S) 35 (S) 28 (S) 26 (S) 32 (S) 26 (S) 
06Jan2016-D-321 Clinical 40 (S) 40 (S) 30 (S) 32 (S) 30 (S) 24 (S) 
05Jan2016-E-452 Subclinical 44 (S) 36 (S) 29 (S) 30 (S) 32 (S) 26 (S) 
27Jan2016-B-1323 Subclinical 40 (S) 32 (S) 28 (S) 32 (S) 32 (S) 22 (S) 
20Jan2016-C-86 Subclinical 40 (S) 34 (S) 28 (S) 26 (S) 30 (S) 24 (S) 
05Jan2016-E-452 Subclinical 44 (S) 36 (S) 28 (S) 30 (S) 32 (S) 25 (S) 
08Jan2016-F-20 Clinical 40 (S) 36 (S) 26 (S) 29 (S) 36 (S) 24 (S) 
21Jan2016-F-49 Clinical 42 (S) 38 (S) 28 (S) 31 (S) 31 (S) 24 (S) 
05Jan2016-E-452 Subclinical 50 (S) 38 (S) 29 (S) 26 (S) 32 (S) 28 (S) 
30Nov2015-H-163 Clinical 26 (R) 35 (S) 28 (S) 34 (S) 35 (S) 23 (S) 
06Dec2015-(I)-50 Clinical 38 (S) 35 (S) 28 (S) 28 (S) 35 (S) 26 (S) 
05Jan2016-E-80 Subclinical 40 (S) 34 (S) 27 (S) 26 (S) 30 (S) 26 (S) 
13Jan2016-J-35 Subclinical 38 (S) 36 (S) 27 (S) 30 (S) 32 (S) 24 (S) 
05Jan2016-E-80 Subclinical 44 (S) 36 (S) 26 (S) 27 (S) 30 (S) 26 (S) 
13Jan2016-J-76 Subclinical 38 (S) 35 (S) 28 (S) 31 (S) 31 (S) 24 (S) 
05Jan2016-E-80 Subclinical 42 (S) 36 (S) 26 (S) 28 (S) 31 (S) 26 (S) 
13Jan2016-J-126 Subclinical 40 (S) 36 (S) 28 (S) 29 (S) 32 (S) 24 (S) 
19Nov2015-E-222 Clinical 21 (R) 36 (S) 29 (S) 31 (S) 36 (S) 24 (S) 
14Jan2016-K-695 Subclinical 11 (R) 34 (S) 28 (S) 29 (S) 27 (S) 16 (S) 
13Jan2016-J-397 Subclinical 40 (S) 35 (S) 26 (S) 29 (S) 30 (S) 24 (S) 
14Jan2016-K-501 Subclinical 40 (S) 35 (S) 30 (S) 29 (S) 29 (S) 26 (S) 
13Jan2016-J-397 Subclinical 46 (S) 37 (S) 27 (S) 30 (S) 30 (S) 24 (S) 
05Jan2016-E-315 Subclinical 41 (S) 34 (S) 27 (S) 30 (S) 30 (S) 26 (S) 
15Dec2015-E-405 Clinical 22 (R) 34 (S) 28 (S) 26 (S) 30 (S) 25 (S) 
05Jan2016-E-438 Subclinical 44 (S) 36 (S) 28 (S) 28 (S) 30 (S) 25 (S) 

    Table E5 continues next page. 
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    Table E5 continued. 

Isolate ID Sample type 
Diameter (mm) (Sensitivity) 

Pen Nov Cef Tet XNL OXA 
05Jan2016-E-340 Clinical 22 (R) 34 (S) 26 (S) 28 (S) 30 (S) 24 (S) 
20Nov2015-L-555 Clinical 49 (S) 36 (S) 28 (S) 30 (S) 33 (S) 30 (S) 
14Jan2016-K-585 Subclinical 44 (S) 37 (S) 27 (S) 32 (S) 34 (S) 30 (S) 
30Nov2015-M-885 Clinical 21 (R) 37 (S) 28 (S) 30 (S) 37 (S) 22 (S) 
10Dec2015-N-28 Subclinical 16 (R) 36 (S) 26 (S) 26 (S) 36 (S) 19 (S) 
14Jan2016-K-695 Subclinical 11 (R) 34 (S) 28 (S) 29 (S) 27 (S) 16 (S) 
10Dec2015-N-53 Subclinical 14 (R) 36 (S) 28 (S) 30 (S) 26 (S) 12 (I) 
22Nov2015-H-223 Clinical 19 (R) 40 (S) 30 (S) 33 (S) 40 (S) 22 (S) 
10Dec2015-N-79 Subclinical 18 (R) 38 (S) 29 (S) 30 (S) 32 (S) 20 (S) 
06Dec2015-O-261 Clinical 40 (S) 34 (S) 26 (S) 30 (S) 34 (S) 28 (S) 
10Dec2015-N-242 Subclinical 12 (R) 30 (S) 27 (S) 28 (S) 25 (S) 12 (I) 
07Jan2016-N-348 Clinical 14 (R) 26 (S) 28 (S) 30 (S) 25 (S) 12 (I) 
10Dec2015-N-365 Subclinical 15 (R) 31 (S) 27 (S) 30 (S) 30 (S) 19 (S) 
14Jan2016-K-117 Subclinical 14 (R) 34 (S) 29 (S) 27 (S) 29 (S) 15 (S) 
14Dec2015-P-109 Clinical 34 (S) 36 (S) 28 (S) 30 (S) 30 (S) 28 (S) 
20Jan2016-C-470 Subclinical 44 (S) 34 (S) 26 (S) 28 (S) 30 (S) 26 (S) 
14Jan2016-K-478 Subclinical 13 (R) 34 (S) 29 (S) 28 (S) 29 (S) 16 (S) 
19Nov2015-Q-416 Clinical 50 (S) 36 (S) 28 (S) 30 (S) 36 (S) 31 (S) 
20Jan2016-C-508 Subclinical 50 (S) 36 (S) 34 (S) 32 (S) 34 (S) 30 (S) 
19Jan2016-A-58 Subclinical 19 (R) 35 (S) 28 (S) 32 (S) 31 (S) 22 (S) 
27Jan2016-B-809 Subclinical 44 (S) 34 (S) 27 (S) 28 (S) 30 (S) 26 (S) 
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Table E6. Three PERMANOVA models (1, 2, and 3) comparing the uncorrected p-dissimilarity 

measure between 57 S. aureus isolates by either township (n = 12), farm (n = 17) or, network 

community (n = 6) with p-values for each test obtained using 9999 unrestricted permutations. “SS” 

provides the sum of squares, “MS” the mean squares, and “df” the degrees of freedom for each test. 

Model Variables df SS MS Pseudo-F p-value
1 Farm 16 1.15 0.07 2.06 0.0037 

Residuals 40 1.40 0.04 

2 Township 11 1.04 0.09 2.79 0.0004 
Residuals 45 1.52 0.03 

3 Community a 5 0.77 0.15 4.39 0.0002 
Residuals 51 1.79 0.04 

a Communities identified using the network community algorithm based on greedy optimisation 
(Clauset et al. 2004) 
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Table E7. Pearson's Chi-squared test results between township (n = 12), farm (n = 17) and community 

(n = 6)   

Pearson's Chi-squared test (df, p-value) 
Township Farm Community 

Township - - - 
Farm 627.0 (176, 2.2x10-16) - - 
Community 181.3 (55, 2.1x10-15) 285 (80, 2.2x10-16) -
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Figure E2. M
axim

um
-likelihood phylogeny generated from

 core single nucleotide polym
orphism

s across 35 S. aureus Sequence Type (ST)-1 isolates isolated 

from
 bovine m

ilk sam
ples (circles), 9 isolated from

 hum
ans (squares), 2 from

 pet cats (triangles) and 5 from
 pet dogs (stars) from

 across N
ew

 Zealand. Isolate 

ID
s identify the year the sam

ple w
as collected (yyyy) and the species (BM

: bovine m
ilk, H

C
: hum

an clinical cases, H
N

: hum
an nasal colonisation, C

C
: canine 

clinical cases, C
N

: canine nasal colonisation, FC
: feline clinical cases, FP: feline perianal colonisation) 
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Figure E4. Scatter plot show
ing the relationship betw

een antim
icrobial usage, across 14 dairy herds in the W

aikato region of N
ew

 Zealand’s N
orth Island, and 

the num
ber of resistant genes found to be present in isolates collected from

 each farm
. The size of each point is proportional to the total num

ber of genes 

present w
hich the colour indicates w

hich genes w
ere present. A

M
U

: antim
icrobial usage, D

D
: daily dose 
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